WO2022189750A1 - Capteur à aimant et pôles ferromagnétiques - Google Patents

Capteur à aimant et pôles ferromagnétiques Download PDF

Info

Publication number
WO2022189750A1
WO2022189750A1 PCT/FR2022/050417 FR2022050417W WO2022189750A1 WO 2022189750 A1 WO2022189750 A1 WO 2022189750A1 FR 2022050417 W FR2022050417 W FR 2022050417W WO 2022189750 A1 WO2022189750 A1 WO 2022189750A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
position sensor
magneto
magnetic
sensor according
Prior art date
Application number
PCT/FR2022/050417
Other languages
English (en)
Inventor
Didier Frachon
Original Assignee
Moving Magnet Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moving Magnet Technologies filed Critical Moving Magnet Technologies
Priority to CN202280019318.7A priority Critical patent/CN117015689A/zh
Priority to JP2023554353A priority patent/JP2024508955A/ja
Priority to EP22712979.8A priority patent/EP4305385A1/fr
Priority to KR1020237030418A priority patent/KR20230152706A/ko
Priority to US18/549,680 priority patent/US20240159570A1/en
Publication of WO2022189750A1 publication Critical patent/WO2022189750A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux

Definitions

  • the present invention relates to the field of magnetic position sensors comprising at least one permanent magnet, to detect the passage in front of a magneto-sensitive probe, for relative movements of the magnet with respect to the probe which are, according to the intended application, linear or angular, even multidirectional.
  • These sensors are, for example, suitable for monitoring and detecting the angular position of the output shaft of an actuator such as, for example, an electric gear motor for heat engine control applications of a motor vehicle, truck, transport, agricultural machinery etc.
  • an actuator such as, for example, an electric gear motor for heat engine control applications of a motor vehicle, truck, transport, agricultural machinery etc.
  • the position information returned via the integrated electronics of the electric motor to the centralized control electronics (ECU) of the vehicle is decisive for carrying out the calibration of the actuator (determination of the useful travel between stops), it can also be used to refine control or for diagnostic purposes.
  • the senor must be in the form of a digital sensor for a movement of up to 360° with a signal in the "ON" state over a range of 20° to 30° and “OFF” on the complementary angular range, the expected tolerance on switching being ⁇ 2°.
  • patent application US20190078910 is known describing a vehicle element actuator comprising a housing, an actuator motor in the housing and a rotary output gear shaft assembly in the housing, containing a rotary shaft output and a gear.
  • the output gear contains at least one defined discontinuity therein exhibiting a magnetic flux signature.
  • a position sensor eg, containing an integrated magnet Hall effect probe, senses the magnetic flux signature of said discontinuity on the output gear to sense and determine the position of the output gear shaft assembly.
  • the discontinuities may be of the same or different sizes/configurations, and equally or unequally spaced from each other.
  • the discontinuities can be slits or protrusions or any other aspect with a unique magnetic flux signature, which the position sensor can detect.
  • US20190140524 discloses a rotary position sensor comprising a rotary shaped ring magnet, which in one embodiment is mounted on the output shaft of an actuator, and comprises a plurality of pairs of pole sections north and south extending around the circumference of the ring magnet in an alternating relationship and defining a plurality of magnetic field switching points extending circumferential spaced at predetermined distances on the ring magnet corresponding to a plurality of single predetermined positions of the ring magnet adapted for detection by a switch such as a Hall effect switch.
  • the ring magnet includes a plurality of pairs of north and south pole sections and switch points on the ring magnet of different predetermined lengths and different predetermined locations respectively corresponding to a plurality of switch positions. predetermined ring magnets to be detected.
  • EP1989505B1 describing a magnetic rotary, linear or curvilinear displacement sensor using at least one permanent magnet and at least one magneto-sensitive element, movable relative to each other. the other.
  • the magnet has a direction of magnetization which varies linearly according to said direction of displacement of the magnet on a surface defined by the direction of displacement and a normal direction, excluding diametrical magnetization in the case of a rotary sensor.
  • the permanent magnet thus generates a magnetic field whose normal component (Y) on the one hand, and at least one of the tangential (X) and transverse (Z) components on the other hand, measured at the surface of the magnet vary periodically in a sinusoidal way, the normal (Y) and transverse (Z) components varying with the same phase while the tangential component (X) is out of phase by a quarter of a period.
  • This last solution is very relevant and effective, but it requires a large volume of magnet (therefore expensive) since it has to cover approximately once the race which must be measured and the rotating magnetization is difficult to achieve.
  • the invention relates in its most general sense to a magnetic sensor having the characteristics set out in claim 1.
  • Such a magnetic sensor is suitable for applications for which the use of iron poles reduces the volume of magnet required, which brings a significant reduction in costs, and presenting an insensitivity with respect to a modification of the air gap, which can occur in a production line, due to manufacturing dispersions or during the life of the sensor, due to wear.
  • the magnetic position sensor comprises: o a magnetized structure provided with a permanent magnet producing a magnetic field and a support made of soft ferromagnetic material in which the magnet is embedded, said support having two pole shoes located on either side of said magnet, o at least one magneto-sensitive element which can be set in relative motion, with respect to said magnet embedded in the support, according to a measurement trajectory, said magnet and said two pole shoes respectively presenting a surface face all being located opposite the at least one magneto-sensitive element during movement along the measurement path, characterized in that during movement along the measurement path, the front surfaces are successively opposite -screw of the sensitive element and in that the ratio between: o the minimum distance between the front surface of the magnet and the center of the magnetic element neto-sensitive and o the minimum distance between one or other of the front surfaces of the pole shoes and the center of the magneto-sensitive element, is between 0.7 and 1.3.
  • the front surfaces are successively opposite the sensitive element and the minimum distance, between a front surface opposite the magneto-sensitive element and the center of the magneto-sensitive element, presents variations of less than 50% with respect to its mean value.
  • the magnetic position sensor is such that the ratios between: o on the one hand, the minimum distance between the front surface of the magnet and the at least one magneto-sensitive element, during movement along the measurement trajectory, and o on the other hand, the minimum distance between one or other of the front surfaces of the pole shoes and the at least one magneto-sensitive element, during movement along the measurement trajectory, are both between 0.7 and 1.3.
  • these ratios are both between 0.9 and 1.1.
  • the magnetic position sensor according to the invention is characterized in that the measurement trajectory is located in a plane and in that along the direction orthogonal to this plane, the thickness of the pole shoes is less than the thickness of the magnet.
  • the sum of the lengths of the front surfaces of the pole shoes, according to the measurement path, is greater than or equal to the length of the front surface of the magnet.
  • the length of the front surfaces of each of the pole shoes along the measurement path is greater than or equal to that of the front surface of the magnet.
  • the magnetization of said magnet has a unidirectional magnetization direction.
  • the magnetization of said magnet is parallel to a plane passing through the magnet and orthogonal to the path of the relative displacement.
  • the magnetization of said magnet is diametrical.
  • the magnetization of said magnet has a direction of magnetization which varies continuously according to the path of movement.
  • the magnetization of said magnet has a magnetization whose intensity varies continuously according to the path of movement.
  • the magnetization of said magnet has a direction of magnetization which varies continuously in 2 directions corresponding to the trajectory of the displacement.
  • said magneto-sensitive element is a programmable probe which is temperature compensated according to the characteristics of the magnet.
  • said magneto-sensitive element is a probe for measuring the magnetic angle directly or indirectly via the measurement of the magnetic components constituting a sensor with absolute output as a function of the mechanical position.
  • the relative movement of said permanent magnet with respect to said magneto-sensitive element is linear.
  • the relative movement of said permanent magnet with respect to said magneto-sensitive element is rotary.
  • the relative movement of said permanent magnet with respect to said magneto-sensitive element takes place along several dimensions, for example a linear movement along one dimension and a rotary movement along another dimension, without however limiting to the only combinations of these movements or a movement along only two dimensions.
  • the magneto-sensitive probe is a magnetic switch, the position sensor having invariant switching positions depending on the air gap.
  • the magnetic switch measures a component of the magnetic field and has a switching threshold which can be programmed.
  • the magneto-sensitive probe reconstructs the analog position information from the components of the magnetic field collinear with the displacement and in a direction orthogonal to said relative displacement.
  • the magneto-sensitive probe reconstructs the analog position information from the component of the magnetic field collinear with the direction of magnetization.
  • said pole shoes have a shape profile sculpted according to an algorithm maximizing the precision of the sensor.
  • said ferromagnetic material support consists of a stack of sheets.
  • the invention also relates to a mechatronic assembly comprising an actuator formed by a stator constituted by an assembly of ferromagnetic sheets defining teeth of which at least part is surrounded by a coil, and a position sensor according to the preceding claim characterized in that the outer contour of the laminations of said ferromagnetic material support of the sensor is contained in the inner contour of the laminations of said stator of the actuator.
  • measurement trajectory is meant that, in the frame of reference of the magneto-sensitive element, a trajectory representative of the movement described by the center of gravity of the front surface of the magnet over the entire travel useful for the measurement.
  • the point located on one of the front surfaces having the minimum distance with the center of the magneto-sensitive element varies throughout the course of the measurement trajectory.
  • FIG. 1 shows a perspective view of a rotary sensor according to which the magnet is shown in transparency
  • FIG. 2 represents the curves of the radial and tangential components of the induction as well as the magnetic angle as a function of the position, of a rotary sensor for a reduced active stroke according to the invention
  • FIG. 3 represents for several air gaps the curves of the radial component of the induction as a function of the position of the shaft of a rotary sensor according to the invention as well as the digital signal from the magneto-probe sensitive,
  • FIG. 4 represents a view of a rotary sensor variant according to the invention based on a multipolar rotor
  • FIG. 5 represents a perspective view of a linear sensor according to the invention
  • FIG. 6 represents the curves of the components parallel and orthogonal to the direction of magnetization, of the induction as a function of the position, of a linear sensor according to the invention
  • figure 7 represents the magnetic angle and linearity curves as a function of the position of the linear sensor of figure 6,
  • FIG. 8 represents a view of a variant of a linear sensor according to the invention based on a multipolar magnetized structure
  • FIG. 9 represents a perspective view of a rotary sensor with axial flux according to the invention
  • FIG. 10 represents a view of a variant of an axial flux rotary sensor according to the invention based on a multipolar rotor
  • FIG. 11 represents a perspective view of a magnetized structure, optimized for mass production, and for a rotary sensor according to the invention
  • FIG. 12 shows a top view of the cutouts of the ferromagnetic sheets of the sensor and of the motor of the actuator with which the sensor is associated
  • FIG. 13 represents a view in partial section of an actuator equipped with a sensor according to the invention.
  • the magnetized structure (1) consists of a permanent magnet (10) whose magnetization can be variable in direction and intensity, which is associated with a ferromagnetic support (20) consisting of soft iron sheets, forming a configuration defining two adjacent pole shoes (21, 22).
  • This magnetized structure (1) associated with a first set, aims to generate a magnetic field which is detected by a magneto-sensitive probe (30) associated with a second set, said first and second sets being in relative motion along a trajectory of measure (2).
  • the pole shoes (21, 22) as well as the magnet (10) respectively have a front surface (15, 24, 25), that is to say which can be located directly opposite the magneto probe.
  • front surface is meant a magnetically active surface located in the direct vicinity of the probe, the front surface (15) of the magnet (10) being the emitting surface of the magnetic field measured by the probe and the front surfaces (24, 25) being the surfaces of the pole shoes (21, 22) intended to collect the magnetic flux generated by the magnet.
  • front surface is meant a magnetically active surface located in the direct vicinity of the probe, the front surface (15) of the magnet (10) being the emitting surface of the magnetic field measured by the probe and the front surfaces (24, 25) being the surfaces of the pole shoes (21, 22) intended to collect the magnetic flux generated by the magnet.
  • the small air gap variations make it possible to produce a very compact sensor structure by making it possible to bring the probe as close as possible to the magnetic structure (1). These small air gap variations also make it possible to maximize the induction along the measurement trajectory (2).
  • the ratio between, on the one hand the minimum distance measured between the frontal surface (15) of the magnet (10) and the magneto-sensitive element (30), and on the other hand the minimum distance measured between one or the other of the front surfaces (24, 25) of the pole shoes (21, 22) and the magneto-sensitive element (30 ), is between 0.7 and 1.3.
  • this ratio can be limited to a variation between 0.9 and 1.1.
  • Another less generic criterion relates to variations in distance within the same frontal surface (15, 24, 25).
  • a satisfactory condition is that the ratio between the minimum distance and the maximum distance measured between the frontal surface and the magneto-magnetic probe sensitive remains below 0.5.
  • Another, more restrictive criterion is linked to the variations in air gap between the front surface (15) of the magnet (10) and the front surfaces (24, 25) of one and the other of the pole shoes (21, 22). Indeed in the case where the linearity and the compactness are real concerns, a satisfactory criterion imposes that for any point of the trajectory (2) of measurement for which the probe is vis-à-vis a frontal surface, the The magnetic air gap does not show variations greater than 50% with respect to its average value.
  • the shape of the permanent magnet (10), its magnetization profile and the profile of the pole shoes (21, 22) may differ depending on the trajectory (2) of the movement to be analyzed, the aim being to obtain the best possible accuracy of the relative position of said first and second sets, while ensuring good resilience to manufacturing dispersions or inherent in aging.
  • the magnetization of the magnet can thus have an intensity and/or a direction (14) which varies continuously or discretely depending on the direction of movement. In the extreme this magnetization can be unidirectional and of maximum intensity to allow the saturation of the magnet.
  • unidirectional magnetization is meant a magnetization of the material in a single direction of a preferably Cartesian frame of reference. Thus, if we exclude the edge effects at the magnet limit, the magnetization is at all points parallel and in the same direction as a given vector.
  • this type of magnetization is not limiting of the invention and a diametral magnetization, that is to say unidirectional in a cylindrical marker, is also envisaged.
  • the ferromagnetic support (20) is preferably a stack of sheets of ferromagnetic material in one piece, having between its pole shoes (21, 22) a recess capable of receiving the permanent magnet (10), preferably by driving or by injection or any other type of assembly that a person skilled in the art could envisage.
  • a possible alternative is to produce the pole shoes (21, 22) in two stacks of separate sheets then secured to the magnet by means from among those known to those skilled in the art. This alternative is not preferential in the sense that it requires more precautions for the assembly of the pole shoes (21, 22) to the permanent magnet (10), one possibility would be to secure the pole shoes with an overmolding by a plastic material or directly not the material constituting the magnet.
  • the invention involves the mechanical embedding of the magnet (10) in the support part (20) and is not satisfied with the magnetic bonding forces between the pole tips (21, 22) and the magnet. (10) to ensure the integrity of the first set. Indeed, the assembly and maintenance by magnetic forces does not ensure the integrity of the assembly in extreme environments, and is very sensitive to manufacturing dispersions.
  • the pole shoes (21, 22) have for their part a shape profile produced by a cutting tool or any other material removal process known to those skilled in the art. If the support (20) is not the result of a stack of sheets, it can be obtained in a monolithic soft ferromagnetic material, using for example a sintering process.
  • the pole shoes (21, 22) of the ferromagnetic support (20) spread on either side of the permanent magnet (10) leaving a recess (34, 35) with the magnet (10), such so that the front surfaces (15, 24, 25) are not contiguous during the course of the measurement path.
  • This configuration although not limiting, has the advantage of avoiding a looping back of the flux of the magnet (10) generated at the boundary zone directly into the pole shoes (21, 22) without it being able to cross the probe, this generally leads to a loss of amplitude of the signal, but also to a degradation of the linearity of the sensor. If these two criteria are not essential, as for the realization of a magnetic switch, the realization of these recesses is not necessary this then making it possible to obtain more compact elements and less sensitive to manufacturing tolerances.
  • the magnetized structure (1) preferably has symmetrical adjacent pole shoes (21, 22), particularly well suited for detecting angles or positions along a rectilinear trajectory, but this without being limiting of the invention, the permanent magnet (10) or the pole shoes (21, 22), also called pole shoes, can be asymmetrical to measure a position along a curvilinear trajectory or to obtain better linearity when taking account of integrating the sensor into its environment.
  • the height of the ferromagnetic support (20) is less than the height of the permanent magnet (10), typically between 15% and 60% of the height of the permanent magnet (10).
  • This configuration aims at the same time a better fastening of the permanent magnet (10) on the support (20), but also confers a better regularity of the magnetic flux while maintaining a high level of magnetic field which leads to an increased precision of the sensor according to the invention by increasing the signal to noise ratio.
  • Figures 1, 2 and 3 describe a first example of a rotary sensor according to the invention.
  • Figure 1 illustrates in perspective the magnetized structure (1) vis-à-vis the magneto-sensitive probe (30), these being set in relative motion along the trajectory (2) of measurement.
  • the aim here is to provide an angular sensor solution that is robust in terms of endurance and vibration, simple and very economical, guaranteeing a large imbalance between the active angular stroke (typically 30°) and the passive angular stroke (typically 330°), with a dependence to the hysteresis due to the ferromagnetic parts and to the remanent induction of the permanent magnet (11) very reduced and finally a signal stability according to the air gap variations compared to the solutions of the prior art.
  • active angular travel is meant the angular travel over which we want to measure an angle, or more simply change the switching state of a magnetic switch, the passive angular travel being the angular range which does not require measurement. or on which the magnetic switch is in the low state.
  • the magnetized structure (1) adopts a configuration which concentrates its magnetic variations on a small part of the trajectory (2) of measurement, here a circle of radius R located in the vicinity of the probe.
  • the magnetized structure (1) is composed of a support part (20), consisting of a pack of ferromagnetic sheets having a central zone extended symmetrically on either side by pole shoes (21, 22) called here pole tips , and a permanent magnet (10) injected by overmolding on the support part (20) or having a notch complementary to the central zone of the support part (20) to secure them by radial insertion, the magnet (10) being shown in transparency in Figure 1 allows to appreciate its maintenance on the support piece (20).
  • the magnet (10) is magnetized in a direction (14) of single magnetization and a constant magnetic field amplitude, oriented, for a rotary displacement application, in a direction included in the plane (X, Z) perpendicular to the Y direction (12) of relative displacement of the magnet (10) with respect to the magneto-sensitive probe (30), the mark being fixed with respect to the magnet (10).
  • the magnetization direction (14) being preferentially collinear with the X vector (11), so as to maximize the radial component of the amplitude of the magnetic field, but it can also have a component collinear with the Z vector (13) to adapt to manufacturing constraints or improve the field measured in the case of a particular positioning of the probe.
  • the amplitudes of the radial (50) and tangential (51) magnetic induction measured along this trajectory are typically similar to those represented graphically in figure 2.
  • the measurement of these components, by a magneto-sensitive probe, makes it possible to reconstruct numerically the magnetic angle (52) according to, for example, the formula a m
  • FIG. 3 A second feature of this first embodiment, making it particularly robust to geometric dispersions, is shown in Figure 3.
  • the graph shows the variation of the radial magnetic induction (54, 55, 56) along three circular trajectories, concentric with that represented in figure 1, but of different radius (3), the curve (54) corresponding to the smallest radius and the curve (56) that of greater radius. This amounts, commonly speaking, to increasing the mechanical measuring gap. It can then be noted that, systematically, these measurements have a central lobe of positive induction presenting on either side a point of inflection, the points of inflection (58, 59) varying very little in angle and in amplitude. when the measurement magnetic air gap changes.
  • This embodiment is particularly advantageous for producing a magnetic switch whose transition positions from the low state to the high state are very robust with regard to manufacturing or aging tolerances. Indeed, if the transitions of the magnetic switch are matched with the inflection points (58, 59) of the radial induction, the curve (57) represented in FIG. 3 is obtained, and which is independent of the distance of the magneto-sensitive probe, the switch produced according to the invention then being able to absorb inaccuracies in the positioning of said probe.
  • Another advantage not shown here, but typically giving the same type of results as those shown in Figure 3, is the insensitivity of these inflection points (58, 59) to the saturation level of the permanent magnet (10 ).
  • the inflection points (58, 59) have a relatively high level of induction, here 60 Gauss, which makes it possible to obtain a magnetic switch insensitive to parasitic transitions which can occur over the entire inactive range. when the transition is close to 0 Gauss and the environment is magnetically disturbed.
  • the active angular travel is not limited to small angles and its increase is accompanied by an even greater reduction in the volume of the magnet, compared to the sensors conventionally used in the art. prior.
  • the permanent magnet (10) preferably has an angular spread close to half the angular travel to ensure good linearity of the sensor.
  • the rotary variant of such a sensor associated with a digital probe makes it possible, for example, to generate an index at a predetermined angle which will be very precise, making it possible, for example, to search for a start-of-race position with high repeatability.
  • a variant of an angular sensor as represented in FIG. 4, consists in multiplying N magnetized structures distributed regularly, or not, over 360°. Associated with a magneto-sensitive probe directly measuring the magnetic angle or the components of the magnetic field, this multipolar ring makes it possible to produce a magnetic encoder to, for example, drive an electric motor in vector mode.
  • FIG. 5 represents a view of a linear sensor according to the invention.
  • the magnetized structure (1) comprises a support (20) notched to accommodate a permanent magnet (10) magnetized in a variable direction (14) and a constant magnetic field amplitude.
  • the magnetized structure (1) is in relative displacement, with respect to a magneto-sensitive probe (30), along a measurement trajectory (2), this trajectory being linear and in the Y direction.
  • the support (20) is formed by a stack of sheets or a monolithic bar, made of a soft ferromagnetic material, having a notch to receive the magnet (10) by plastic injection or gluing for example.
  • This support has two pole shoes (21, 22) extending laterally, on either side, the magnet (10).
  • the shape of the pole shoes makes it possible to sculpt the longitudinal and orthogonal components, on the periphery of the magnet, in order to improve the regularity of the variations of the magnetic field and therefore to minimize the non-linearity of the sensor.
  • the calculation of the shape of the horns can be carried out with an optimization algorithm associated with digital magnetic calculation software. This calculation can also involve a shape profile on the magnet or even the variable profile of the magnetization to constitute a second or even a third optimization lever. This type of optimization is particularly interesting in the case where it is sought to measure the displacement along a curvilinear trajectory.
  • FIG. 6 represents the variations of the magnetic field, generated by the magnetized structure (1), according to two components, when it has in this particular case a direction (14) of single magnetization, or unidirectional magnetization .
  • These two components when associated with a probe with 2 measurement axes or sensitive to the magnetic angle, make it possible to measure the position of the magnet (62) which is presented in figure 7 and which is accompanied by a curve (63) typical linearity defects present in this position measurement.
  • a measurement over 90 mm of travel is carried out with an error of the order of +/-0.25% with a 50 mm long magnet, ie approximately half of what is traditionally necessary.
  • the magnet (10) may have a convex section, to present a greater thickness in the center than at its ends.
  • the support (20) has, possibly in addition to this feature, an increasing thickness as it moves away from the magnet, as shown in Figure 5.
  • linear variant of such a sensor associated with an analog output probe makes it possible, for example, to detect the position of a hydraulic cylinder or else of a mechanical shaft of the rack type in linear displacement in a housing.
  • a possible application would consist in providing a solution for direct measurement of the steering wheel angle in power steering or even a solution for direct measurement of the angle given to the wheels in a steering of the Steer-by-Wire type.
  • a variant of a linear sensor, as represented in FIG. 8, consists in multiplying N magnetized structures distributed regularly, or not, over the total travel to be measured. Associated with a magneto-sensitive probe measuring the components of the magnetic field, this multipolar structure makes it possible to lengthen the total travel without degrading the precision. Absolute position measurement remains possible via the use of M magneto-sensitive probes or of a magneto-sensitive probe associated with a magnetic tachometer element with, in both cases, signals which will be post-processed to reconstruct an absolute position.
  • FIG. 9 represents a view of the magnetic structure (1) and of the magneto-sensitive probe (30) for a rotary sensor with axial detection according to the invention. It consists of a permanent magnet (10), magnetized in a constant direction and amplitude of the magnetic field, and oriented in a direction included in the XY plane perpendicular to the direction X (11) of relative movement of the permanent magnet (10) compared to a magneto-sensitive probe.
  • the preferred magnetization direction of the permanent magnet (10) is in the Z direction (13) so as to maximize the magnetic flux collected by the magneto-sensitive probe (30) in this direction.
  • the support (20) is formed for example of a piece obtained by sintering ring-shaped powder having a notch to receive the permanent magnet (10) by plastic injection or gluing for examples. Said support (20) is extended axially by two pole shoes (21, 22), also called pole shoes, located on either side of the permanent magnet (10).
  • the support (20) has a cylindrical passage (26) so as to be assembled on an axis (70), for example of a rotor, the angular position of which is to be detected, which provides a particularly advantageous solution when the device is intended to be mounted at the end of the axis, the magneto-sensitive probe (30) being able to be directly integrated into a fixed printed circuit.
  • Figures 11 to 13 show an embodiment particularly well suited to industrial production and its integration into a mechatronic system.
  • FIG. 11 represents a particular configuration of a support (20) extended behind the pole shoes (21, 22), also called pole shoes, by an annular yoke in a stack of annular ferromagnetic sheets defining a cylindrical passage (26 ) facilitating the mounting of the support (20) on a rotary axis causing the angular displacement of the permanent magnet (10) relative to a fixed magneto-sensitive probe.
  • the two pole shoes (21, 22) delimit a housing (23) for the overmoulding injection of the permanent magnet (10).
  • Said permanent magnet (10) is an injected isotropic magnet, the injection point (16) of which is located axially to avoid having an injection residue in radial excess on the outer diameter (and thus limit the risk of contact with the nearby printed circuit).
  • the magnet has tapers of 0.5° to 1° max to facilitate demoulding, except in the thickness zone of the sheet pack (2.5mm) where the edges of the magnet are straight / cylindrical, the joint plane of the mold is coplanar with one of the 2 faces of the stack of sheets.
  • the injection of the magnet is however not limiting of the invention and any other type of magnet and its means of connection to the iron poles are envisaged, such as for example the overmoulding of a compressed magnet.
  • the unipolar magnet is made by overmolding the support (20).
  • a PPS-NdFeB material having good mechanical temperature resistance with high magnetic performance (Br, Hcb) is used: a high switching threshold (>70G) and a steep slope are thus obtained for clean and well-controlled switching.
  • the metal support also has a specific shape to radially lock the overmolded magnet. The choice of the stack of laminations as a support makes it possible to magnetize the magnet after overmolding without significant effect of the residual magnetization in the laminations (very low coercive field) on the switchings and therefore the precision of the targeted stroke.
  • the magnet has a thickness in the axial direction greater than the thickness of the stack of sheets, typically 7mm for 2.5mm of iron, i.e. a ratio greater than 2:1, this not being limiting of the invention.
  • the axial median plane of the magnet and of the stack of laminations is coplanar with the sensitive element of the probe.
  • a variant of a rotary sensor with axial flux as represented in FIG. 10, consists in multiplying N magnetized structures distributed regularly, or not, over 360°. Associated with a magneto-sensitive probe directly measuring the magnetic angle or the components of the magnetic field, this multipolar ring makes it possible to produce a magnetic encoder to, for example, drive an electric motor in vector mode.
  • the ferromagnetic support (20) of the sensor can be produced by using the scrap material at the center of the stack of stator laminations (40) of the electric motor integrated in the actuator.
  • This solution is very economical (recovery of offcuts, no surface treatment to be applied%) and it also and above all makes it possible to have very precise manufacturing tolerances without re-machining for the press fit of the support (20) on the axis and for the shape of the two pole shoes (21, 22).
  • Figure 13 shows a partial sectional view of an actuator equipped with a sensor according to the invention.
  • the support (20) is embedded on the axis (70) output of a rotary actuator. It drives the permanent magnet (10) which rotates to temporarily position itself opposite the magneto-sensitive probe (30) mounted on a fixed printed circuit (31).
  • the realization presents a great simplicity of manufacture and assembly, a very low cost, and a great robustness in endurance-vibration-temperature and also a "precision" below the specified ⁇ 2° (of the order of ⁇ 0.50 °)
  • the sheet metal package is tightly fitted on the output shaft of the actuator, it is stopped axially on a shoulder (27) and does not need to be angularly indexed (360° actuator).
  • the shoulder (27) also makes it possible to limit the swiveling of the support (20) (short adjustment: 2.5mm thick for 09.8) on the axis by guaranteeing orthogonality between the median plane of the magnet and the axis rotation.
  • the cutout (26) is engaged on the axis of a member whose angular position is to be measured, for example the axis (70) of an actuator, for a mechatronic assembly.
  • the axis on which the support (20) is mounted is carried by 2 ball bearings, the upper bearing being guided in the cover, the lower bearing close to the sensor assembly being guided by the housing, the PCB bearing the hall probe being fixed on the housing.
  • the reading radius is precise thanks to a chain of dimensions with few links and thanks to easily controllable nominal dimensions (aluminum machining, bearing seat, axle seat, stamped sheet metal package, overmoulding of the magnet).
  • Such a structure makes it possible to reduce the magnet volume to 171 mm3, ie a reduction of more than 25% compared to a structure consisting solely of magnets.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

L'invention présente un capteur magnétique de position comportant au moins un élément magnéto-sensible mobile par rapport à un aimant permanent produisant un champ magnétique, dont ledit aimant est encastré dans un support en matériau ferromagnétique doux présentant deux épanouissements polaires situés de part et d'autre dudit aimant.

Description

DESCRIPTION
Titre : Capteur à aimant et pôles ferromagnétiques
[0001] La présente invention concerne le domaine des capteurs de position magnétiques comportant au moins un aimant permanent, pour détecter le passage devant une sonde magnéto-sensible, pour des déplacements relatifs de l'aimant par rapport à la sonde qui sont, selon l'application visée, linéaire ou angulaire, voire multidirectionnels.
[0002] Ces capteurs sont par exemple adaptés au suivi et à la détection de la position angulaire de l'axe de sortie d'un actionneur tel que par exemple un motoréducteur électrique pour des applications de contrôle moteur thermique d'un véhicule automobile, d'un camion, d'un transport, d'engins agricoles etc.
[0003] L'information de position, retournée par l'intermédiaire de l'électronique intégrée du moteur électrique à l'électronique de contrôle centralisée (ECU) du véhicule est déterminante pour la réalisation de la calibration de l'actionneur (détermination de la course utile entre butées), elle peut être utilisée également pour affiner le pilotage ou encore à des fins de diagnostic.
[0004] Pour ces applications, le capteur doit se présenter sous la forme d'un capteur digital pour un déplacement pouvant aller jusqu'à 360° avec un signal à l'état « ON » sur une plage de 20° à 30° et « OFF » sur la plage angulaire complémentaire, la tolérance attendue sur la commutation étant de ±2°.
[0005] Une autre intégration possible est celle des capteurs à détection de position linéaire d'un arbre sur des courses de quelques dizaines de millimètre et pour lesquelles il est important de minimiser le volume d'aimant nécessaire pour d'une part obtenir un champ magnétique suffisant pour qu'il soit mesurable par la sonde magnéto-sensible et d'autre par une précision typiquement inférieure à +/-1%. On peut citer pour exemple le cas de la détection sur 200 mm du déplacement linéaire d'une crémaillère de direction automobile ou encore d'un embrayage. Etat de la technique
[0006] L'état de l'art propose de nombreuses solutions « bon marché » avec contact (potentiomètre sensible à l'usure par frottement) ou par technologie optique (sensible à l'encrassement et à la poussière).
[0007] Pour des applications devant répondre à un niveau d'exigence élevé (durée de vie très importante, vibration, forte amplitude thermique), ces solutions ne sont toutefois pas appropriées et des solutions magnétiques comportant un élément mobile excitant un élément sensible fixe sont préférées.
[0008] On connaît par exemple la demande de brevet US20190078910 décrivant un actionneur d'élément de véhicule comprenant un boîtier, un moteur d'actionneur dans le boîtier et un ensemble arbre rotatif d'engrenage de sortie dans le boîtier, contenant un arbre rotatif de sortie et un engrenage. L'engrenage de sortie contient au moins une discontinuité définie dans ce dernier, présentant une signature de flux magnétique. Un capteur de position, contenant par exemple une sonde à effet Hall à aimant intégré, détecte la signature de flux magnétique de ladite discontinuité sur l'engrenage de sortie pour détecter et pour déterminer la position de l'ensemble arbre d'engrenage de sortie. Les discontinuités peuvent être de tailles/configurations identiques ou différentes, et espacées de manière égale ou inégale les unes des autres. Les discontinuités peuvent être des fentes ou des saillies ou tout autre aspect présentant une signature de flux magnétique unique, que le capteur de position peut détecter.
[0009] L'utilisation d'une discontinuité sur la roue de sortie du réducteur n'est pas totalement satisfaisante car les limites de la discontinuité peuvent varier avec le temps et la température, et conduire à des commutations inopinées. D'autre part une difficulté inhérente à ces technologies est de pouvoir détecter de petits angles par exemple 20° lorsqu'ils sont entourés d'angles très importants par exemple 340° tout en garantissant une bonne précision de ces petits angles lorsque le capteur est soumis à des tolérances d'entrefer.
[0010] Le brevet US20190140524 décrit un capteur de position rotatif comprenant un aimant annulaire modelé rotatif, qui, dans un mode de réalisation, est monté sur l'arbre de sortie d'un actionneur, et comprend une pluralité de paires de sections de pôle nord et sud s'étendant autour de la circonférence de l'aimant annulaire dans une relation alternée et définissant une pluralité de points de commutation de champ magnétique s'étendant de façon circonférentielle espacés à des distances prédéterminées sur l'aimant annulaire correspondant à une pluralité de positions uniques prédéterminées de l'aimant annulaire adaptées pour la détection par un commutateur tel qu'un commutateur à effet Hall. Dans un mode de réalisation, l'aimant annulaire comprend une pluralité de paires de sections de pôle nord et sud et des points de commutation sur l'aimant annulaire de différentes longueurs prédéterminées et de différents emplacements prédéterminés correspondant respectivement à une pluralité de positions d'aimants annulaire prédéterminées devant être détectées.
[0011] L'utilisation d'un aimant bague multipolaire sur la roue de sortie entraîne des coûts relativement élevés.
[0012] De façon générale, ces solutions de l'art antérieur contraignent fortement la topologie de l'actionneur et l'assemblage du réducteur pour permettre à la roue de sortie supportant la cible magnétique d'être positionnée à proximité immédiate du circuit imprimé supportant l'élément magnéto-sensible. Ces solutions sont également contraignantes pour le circuit imprimé qui doit venir coiffer la roue de sortie portant l'aimant pour la mesure de la composante axiale : le circuit imprimé restreint ainsi fortement la place disponible pour les éléments de guidage à insérer.
[0013] La mise en œuvre de la seconde solution s'avère compliquée. Il faut en effet intégrer des pièces ferromagnétiques de guidage et de concentration du flux magnétique qui sont encombrantes. De plus elle nécessite un volume d'aimant important puisque ce dernier est constitué d'un anneau complet.
[0014] On connaît aussi dans l'état de la technique le brevet européen EP1989505B1 décrivant un capteur magnétique de déplacement rotatif, linéaire ou curviligne utilisant au moins un aimant permanent et au moins un élément magnéto-sensible, mobiles l'un par rapport à l'autre. L'aimant présente une direction d'aimantation qui varie linéairement suivant ladite direction de déplacement de l'aimant sur une surface définie par la direction de déplacement et une direction normale, à l'exclusion d'une aimantation diamétrale dans le cas d'un capteur rotatif. L'aimant permanent engendre ainsi un champ magnétique dont la composante normale (Y) d'une part, et l'une au moins des composantes tangentielle (X) et transversale (Z) d'autre part, mesurées à la surface de l'aimant varient périodiquement de façon sinusoïdale, les composantes normale (Y) et transversale (Z) variant avec la même phase alors que la composante tangentielle (X) est déphasée d'un quart de période. [0015] Cette dernière solution est très pertinente et performante mais elle nécessite un volume d'aimant important (donc coûteux) puisque devant couvrir environ une fois la course qui doit être mesurée et l'aimantation tournante est délicate à réaliser.
Solution apportée par l'invention
[0016] Afin de remédier à ces inconvénients, l'invention concerne selon son acception la plus générale un capteur magnétique présentant les caractéristiques énoncées dans la revendication 1.
[0017] Un tel capteur magnétique est adapté aux applications pour lesquelles l'utilisation de pôles fer réduit le volume d'aimant nécessaire, ce qui apporte une réduction significative des coûts, et présentant une insensibilité par rapport à une modification d'entrefer, pouvant survenir dans une chaîne de production, due aux dispersions de fabrication ou durant la vie du capteur, due à l'usure.
[0018] Avantageusement, le capteur magnétique de position comporte : o une structure aimantée munie d'un aimant permanent produisant un champ magnétique et d'un support en matériau ferromagnétique doux dans lequel est encastré l'aimant, ledit support présentant deux épanouissements polaires situés de part et d'autre dudit aimant, o au moins un élément magnéto-sensible pouvant être mis en mouvement relatif, par rapport audit aimant encastré dans le support, selon une trajectoire de mesure, ledit aimant et lesdits deux épanouissements polaires présentant respectivement une surface frontale toutes étant situées en vis-à-vis du au moins un élément magnéto-sensible lors du déplacement selon la trajectoire de mesure, caractérisé en ce que lors du déplacement selon la trajectoire de mesure, les surfaces frontales se trouvent successivement en vis-à-vis de l'élément sensible et en ce que le ratio entre : o la distance minimale entre la surface frontale de l'aimant et le centre de l'élément magnéto-sensible et o la distance minimale entre l'une ou l'autre des surfaces frontales des épanouissements polaires et le centre de l'élément magnéto-sensible, est compris entre 0,7 et 1,3.
[0019] Selon une première variante, lors du déplacement selon la trajectoire de mesure, les surfaces frontales se trouvent successivement en vis-à-vis de l'élément sensible et la distance minimale, entre une surface frontale en vis-à-vis de l'élément magnéto-sensible et le centre de l'élément magnéto-sensible, présente des variations inférieures à 50% par rapport à sa valeur moyenne.
[0020] Selon une variante, le capteur magnétique de position est tel que les ratios entre : o d'une part, la distance minimale entre la surface frontale de l'aimant et l'au moins un élément magnéto-sensible, lors du déplacement selon la trajectoire de mesure, et o d'autre part, la distance minimale entre l'une ou l'autre des surfaces frontales des épanouissements polaires et l'au moins un élément magnéto-sensible, lors du déplacement selon la trajectoire de mesure, sont tous deux situés entre 0,7 et 1,3.
[0021] En alternative, ces ratios sont tous deux situés entre 0,9 et 1,1.
[0022] Dans une autre variante, il existe des évidements entre les épanouissements polaires et l'aimant tels que les surfaces frontales ne sont pas contiguës.
[0023] Préférentiellement, le capteur magnétique de position selon l'invention est caractérisé en ce que la trajectoire de mesure est située dans un plan et en ce que selon la direction orthogonale à ce plan, l'épaisseur des épanouissements polaires est inférieure à l'épaisseur de l'aimant.
[0024] Toujours de manière préférentielle, la somme des longueurs des surfaces frontales des épanouissements polaires, selon la trajectoire de mesure, est supérieure ou égale à la longueur de la surface frontale de l'aimant.
[0025] En alternative possible, la longueur des surfaces frontales de chacun des épanouissements polaires selon la trajectoire de mesure est supérieure ou égale à celle de la surface frontale de l'aimant.
[0026] Selon une variante, l'aimantation dudit aimant présente une direction d'aimantation unidirectionnelle. [0027] En alternative possible, l'aimantation dudit aimant est parallèle à un plan traversant l'aimant et orthogonal à la trajectoire du déplacement relatif.
[0028] En seconde alternative, l'aimantation dudit aimant est diamétrale.
[0029] En troisième alternative, l'aimantation dudit aimant présente une direction d'aimantation qui varie continûment selon la trajectoire de déplacement.
[0030] En quatrième alternative, l'aimantation dudit aimant présente une aimantation dont l'intensité varie continûment selon la trajectoire de déplacement.
[0031] En cinquième alternative, l'aimantation dudit aimant présente une direction d'aimantation qui varie continûment selon 2 directions correspondant à la trajectoire du déplacement.
[0032] Avantageusement, ledit élément magnéto-sensible est une sonde programmable et compensée en température selon les caractéristiques de l'aimant.
[0033] Selon un mode de réalisation particulier, ledit élément magnéto-sensible est une sonde de mesure directe de l'angle magnétique ou indirecte via la mesure des composantes magnétiques constituant un capteur à sortie absolue en fonction de la position mécanique. [0034] Selon une variante, le déplacement relatif dudit un aimant permanent par rapport audit élément magnéto-sensible est linéaire.
[0035] Selon une autre variante, le déplacement relatif dudit un aimant permanent par rapport audit élément magnéto-sensible est rotatif.
[0036] Selon une autre variante, le déplacement relatif dudit un aimant permanent par rapport audit élément magnéto-sensible s'effectue selon plusieurs dimensions, par exemple un mouvement linéaire selon une dimension et un mouvement rotatif selon une autre dimension, sans toutefois limiter à la combinaisons seule de ces mouvements ou à un déplacement selon uniquement deux dimensions.
[0037] Selon un mode de mise en œuvre, la sonde magnéto-sensible est un interrupteur magnétique, le capteur de position présentant des positions de commutation invariantes en fonction de l'entrefer.
[0038] Avantageusement, l'interrupteur magnétique mesure une composante du champ magnétique et présente un seuil de commutation qui peut être programmé.
[0039] Selon un mode de mise en œuvre particulier, la sonde magnéto-sensible reconstruit l'information de position analogique à partir des composantes du champ magnétique colinéaire au déplacement et dans une direction orthogonale audit déplacement relatif. [0040] Avantageusement, la sonde magnéto-sensible reconstruit l'information de position analogique à partir de la composante du champ magnétique colinéaire à la direction d'aimantation.
[0041] De préférence, les dits épanouissements polaires présentent un profil de forme sculpté suivant un algorithme maximisant la précision du capteur.
[0042] Selon un mode de fabrication particulier, ledit support en matériau ferromagnétique est constitué par un paquet de tôles.
[0043] L'invention concerne aussi un ensemble mécatronique comportant un actionneur formé par un stator constitué par un assemblage de tôles ferromagnétiques définissant des dents dont une partie au moins est entourée par une bobine, et un capteur de position conforme à la revendication précédente caractérisé en ce que le contour extérieur des tôles dudit support en matériau ferromagnétique du capteur est contenu dans le contour intérieur des tôles dudit stator de l'actionneur.
[0044] On entend par trajectoire de mesure que, dans le repère de l'élément magnéto- sensible, une trajectoire représentative du mouvement décrit par le centre de gravité de la surface frontale de l'aimant sur toute la course utile pour la mesure. Lors du parcours de la trajectoire de mesure, le point situé sur l'une des surfaces frontales présentant la distance minimale avec le centre de l'élément magnéto-sensible varie tout au long du parcours de la trajectoire de mesure. Ainsi un capteur type « bout d'axe » connu de l'homme de métier, et pour lequel une sonde est située sur l'axe de rotation de l'élément mobile supportant la structure aimantée, ne présente pas de notion de trajectoire au sens de l'invention car il ceci conduirait à une trajectoire ponctuelle.
Description détaillée d'un exemple non limitatif de réalisation
[0045] La présente invention sera mieux comprise à la lecture de la description qui suit, concernant un exemple non limitatif de réalisation illustré par les dessins annexés où :
[FIGURE 1] la figure 1 représente une vue en perspective d'un capteur rotatif selon dont l'aimant est représenté en transparence, [FIGURE 2] la figure 2 représente les courbes des composantes radiale et tangentielle de l'induction ainsi que l'angle magnétique en fonction de la position, d'un capteur rotatif pour une course active réduite selon l'invention,
[FIGURE 3] la figure 3 représente pour plusieurs entrefers les courbes de la composante radiale de l'induction en fonction de la position de l'arbre d'un capteur rotatif selon l'invention ainsi que le signal digital issu de la sonde magnéto-sensible,
[FIGURE 4] la figure 4 représente une vue d'une variante de capteur rotatif selon l'invention reposant sur un rotor multipolaire,
[FIGURE 5] la figure 5 représente une vue en perspective d'un capteur linéaire selon l'invention,
[FIGURE 6] la figure 6 représente les courbes des composantes parallèles et orthogonales à la direction d'aimantation, de l'induction en fonction de la position, d'un capteur linéaire selon l'invention,
[FIGURE 7] la figure 7 représente les courbes d'angle magnétique et de linéarité en fonction de la position du capteur linéaire de la figure 6,
[FIGURE 8] la figure 8 représente une vue d'une variante de capteur linéaire selon l'invention reposant sur une structure aimantée multipolaire,
[FIGURE 9] la figure 9 représente une vue en perspective d'un capteur rotatif à flux axial selon l'invention,
[FIGURE 10] la figure 10 représente une vue d'une variante de capteur rotatif à flux axial selon l'invention reposant sur un rotor multipolaire,
[FIGURE 11] la figure 11 représente une vue en perspective d'une structure aimantée, optimisée pour une production en série, et pour un capteur rotatif selon l'invention,
[FIGURE 12] la figure 12 représente une vue de dessus des découpes de tôles ferromagnétiques du capteur et du moteur de l'actionneur auquel le capteur est associé, [FIGURE 13] la figure 13 représente une vue en coupe partielle d'un actionneur équipé d'un capteur selon l'invention.
Description de la structure aimantée
[0046] Pour plus de clarté les numérotations utilisées dans cette partie sont communes à tout le document et sont à apprécier au travers des différentes figures.
[0047] La structure aimantée (1) est constituée par un aimant (10) permanent dont l'aimantation peut être variable en direction et en intensité, qui est associé à un support (20) ferromagnétique constitué de tôles en fer doux, formant une configuration définissant deux épanouissements polaires (21, 22) adjacents. Cette structure aimantée (1), associée à un premier ensemble, vise à générer un champ magnétique qui est détecté par une sonde magnéto-sensible (30) associée à un second ensemble, lesdits premier et second ensembles étant en mouvement relatif selon une trajectoire de mesure (2). Les épanouissement polaires (21, 22) ainsi que l'aimant (10) présentent respectivement une surface frontale (15, 24, 25), c'est-à-dire pouvant se trouver en vis-à-vis immédiat de la sonde magnéto-sensible (30) lors du parcours de la trajectoire de mesure (2), l'entrefer réalisé entre ces surfaces frontales (15, 24, 25) et la sonde magnéto-sensible (30) présentant de faibles variations. On entend par surface frontale, une surface magnétiquement active située dans le voisinage direct de la sonde, la surface frontale (15) de l'aimant (10) étant la surface émettrice du champ magnétique mesuré par la sonde et les surfaces frontales (24, 25) étant les surfaces des épanouissement polaires (21, 22) destinées à collecter le flux magnétique généré par l'aimant. [0048] Les faibles variations d'entrefer permettent de réaliser une structure de capteur très compacte en permettant de rapprocher au maximum la sonde de la structure aimantée (1). Ces faibles variations d'entrefer permettent également de maximiser l'induction le long de la trajectoire (2) de mesure. Lorsque les variations d'entrefer sont trop fortes, il est nécessaire d'éloigner l'élément magnéto-sensible (30) de la structure aimantée pour éviter les problèmes de linéarité. Par exemple, un critère important est que l'aimant ne doit pas se trouver plus en retrait, vis-à-vis de l'élément magnéto-sensible (30), que les épanouissements polaires (21, 22), en effet ce retrait conduit à une baisse significative de l'induction magnétique mesurable par la sonde, et augmente l'encombrement du capteur. L'inverse, soit des épanouissements polaires (21, 22) en retrait par rapport à l'aimant (10), n'est pas souhaitable pour les mêmes raisons. On définit comme critère pour répondre à ce besoin que le long de la trajectoire (2) de mesure, le ratio entre, d'une part la distance minimale mesurée entre la surface frontale (15) de l'aimant (10) et l'élément magnéto-sensible (30), et d'autre part la distance minimale mesurée entre l'une ou l'autre des surfaces frontales (24, 25) des épanouissements polaires (21, 22) et l'élément magnéto-sensible (30), est compris entre 0,7 et 1,3. Pour les applications plus contraignantes, ce ratio peut être limité à une variation comprise entre 0,9 et 1,1. Un autre critère moins générique s'attache aux variations de distance au sein d'une même surface frontale (15, 24, 25). Lors du parcours d'une même surface frontale (15, 24, 25) selon la trajectoire de mesure (2), une condition satisfaisante est que le ratio entre la distance minimal et la distance maximale mesurée entre la surface frontale et la sonde magnéto-sensible reste inférieur à 0,5. Un autre critère, plus restrictif est lié aux variations d'entrefer entre la surface frontale (15) de l'aimant (10) et les surface frontales (24, 25) de l'un et l'autre des épanouissements polaires (21, 22). En effet dans le cas où la linéarité et la compacité sont de réelles préoccupations, un critère satisfaisant impose que pour tout point de la trajectoire (2) de mesure pour lequel la sonde est en vis-à-vis d'une surface frontale, l'entrefer magnétique ne présente pas des variations supérieures à 50% par rapport à sa valeur moyenne.
[0049] La forme de l'aimant permanent (10), son profil d'aimantation et le profil des épanouissements polaires (21, 22) peuvent différer en fonction de la trajectoire (2) du mouvement à analyser, le but étant d'obtenir la meilleure précision possible de la position relative desdits premier et second ensembles, tout en assurant une bonne résilience aux dispersions de fabrication ou inhérentes au vieillissement.
[0050] Diverses configurations sont illustrées au travers des exemples présentés, visant la détection de mouvements linéaires ou rotatifs, sans toutefois que ces dernières soient limitatives de l'invention. On pourrait ainsi également imaginer que la trajectoire (2) à analyser soit curviligne.
[0051] L'aimantation de l'aimant peut ainsi présenter une intensité et/ou une direction (14) qui varie continûment ou de manière discrète selon la direction de déplacement. A l'extrême cette aimantation peut être unidirectionnelle et d'intensité maximale pour permettre la saturation de l'aimant. On entend par aimantation unidirectionnelle, une aimantation du matériau selon une unique direction d'un repère préférentiellement cartésien. Ainsi, si l'on exclut les effets de bords en limite d'aimant, l'aimantation est en tout point parallèle et de même sens qu'un vecteur donné. Bien entendu ce type d'aimantation n'est pas limitatif de l'invention et une aimantation diamétrale, c'est-à-dire unidirectionnelle dans un repère cylindrique, est aussi envisagée. Enfin l'homme de métier pourrait imaginer associer une aimantation différente à un aimant à pôle de forme, soit par sculptage de l'aimant ou par l'ajout d'un matériau ferromagnétique supplémentaire, l'aimantation unidirectionnelle étant la plus simple à réaliser et à décrire dans le but visé par l'invention.
[0052] Le support (20) ferromagnétique est préférentiellement un empilement de tôles de matériau ferromagnétique d'un seul tenant, présentant entre ses épanouissements polaires (21, 22) un évidement apte à accueillir l'aimant (10) permanent, préférentiellement par chassage ou par injection ou tout autre type d'assemblage que pourrait envisager l'homme de métier. Une alternative possible est de réaliser les épanouissements polaires (21, 22) en deux empilements de tôles disjoints puis solidarisés à l'aimant par un moyen parmi ceux connus de l'homme de métier. Cette alternative n'est pas préférentielle dans le sens où elle demande plus de précautions pour l'assemblage des épanouissements polaires (21, 22) à l'aimant (10) permanent, une possibilité serait de solidariser les épanouissements polaires avec un surmoulage par une matière plastique ou directement pas la matière constituant l'aimant. Dans tous les cas l'invention implique l'encastrement mécanique de l'aimant (10) dans la pièce support (20) et ne se satisfait pas des forces de collage magnétique entre les cornes polaires (21, 22) et le l'aimant (10) pour assurer l'intégrité du premier ensemble. En effet, l'assemblage et le maintien par forces magnétique ne permet pas d'assurer l'intégrité de l'ensemble dans des environnements extrêmes, et est très sensible aux dispersions de fabrication. Les épanouissements polaires (21, 22) présentent quant à eux un profil de forme réalisé par un outil de découpe ou tout autre processus d'enlèvement de matière connu de l'homme de métier. Si le support (20) n'est pas le résultat d'un empilement de tôles, il peut être obtenu dans un matériau ferromagnétique doux monolithique, en utilisant par exemple un processus de frittage. Les épanouissement polaires (21, 22) du support (20) ferromagnétique s'épanouissent de part et d'autre de l'aimant permanent (10) en laissant un évidement (34, 35) avec l'aimant (10), de telle sorte que les surfaces frontales (15, 24, 25) ne sont pas contigües lors du parcours de la trajectoire de mesure. Cette configuration, bien que non limitative, à l'avantage d'éviter un rebouclement du flux de l'aimant (10) généré à la zone frontière directement dans les épanouissement polaires (21, 22) sans qu'il puisse traverser la sonde, ceci conduisant généralement à une perte d'amplitude du signal, mais aussi à une dégradation de la linéarité du capteur. Dans le cas où ces deux critères ne sont pas primordiaux, comme pour la réalisation d'un interrupteur magnétique, la réalisation de ces évidements n'est pas nécessaire ceci permettant alors d'obtenir des éléments plus compacts et moins sensibles aux tolérances de fabrication.
[0053] La structure aimantée (1) présente préférentiellement des épanouissements polaires (21, 22) adjacents symétriques, particulièrement bien adaptés pour la détection d'angles ou de positions le long d'une trajectoire rectiligne, mais ce sans être limitatif de l'invention, l'aimant permanent (10) ou les épanouissements polaires (21, 22), appelés aussi cornes polaires, pouvant être asymétriques pour mesurer une position le long d'une trajectoire curviligne ou pour obtenir une meilleure linéarité lorsqu'on tient compte de l'intégration du capteur dans son environnement.
[0054] Dans l'exemple de la figure 1, la hauteur du support (20) ferromagnétique est inférieure à la hauteur de l'aimant permanent (10), typiquement comprise entre 15% et 60% de la hauteur de l'aimant permanent (10). Cette configuration vise à la fois une meilleure solidarisation de l'aimant permanent (10) sur le support (20), mais confère aussi une meilleure régularité du flux magnétique tout en maintenant un niveau de champ magnétique élevé ce qui conduit à une précision accrue du capteur selon l'invention en augmentant le rapport signal sur bruit. Ces enseignements sont particulièrement vrais lorsque la structure aimantée (1) est de faible épaisseur axiale, mais n'est en aucun cas une généralité limitative de l'invention.
Capteur rotatif
[0055] Les figures 1, 2 et 3 décrivent un premier exemple de capteur rotatif selon l'invention. La figure 1 illustre en perspective la structure aimantée (1) en vis-à-vis de la sonde magnéto- sensible (30), ceux-ci étant mis en mouvement relatif le long de la trajectoire (2) de mesure. Le but visé ici est de fournir une solution de capteur angulaire robuste en endurance et vibration, simple et très économique garantissant un grand déséquilibre entre la course angulaire active (typiquement 30°) et la course angulaire passive (typiquement 330°), avec une dépendance à l'hystérésis dû aux pièces ferromagnétiques et à l'induction rémanente de l'aimant permanent (11) très réduite et enfin une stabilité de signal suivant les variations d'entrefer par rapport aux solutions de l'art antérieur. [0056] On entend par course angulaire active, la course angulaire sur laquelle nous voulons mesurer un angle, ou plus simplement changer l'état de commutation d'un interrupteur magnétique, la course angulaire passive étant la plage angulaire qui ne nécessite pas de mesure ou sur laquelle l'interrupteur magnétique est à l'état bas.
[0057] A cet effet, la structure aimantée (1) adopte une configuration qui concentre ses variations magnétiques sur une petite partie de la trajectoire (2) de mesure, ici un cercle de rayon R situé au voisinage de la sonde. La structure aimantée (1) est composée d'une pièce support (20), constituée d'un paquet de tôles ferromagnétiques présentant une zone centrale prolongée symétriquement de part et d'autre par des épanouissement polaires (21, 22) appelés ici cornes polaires, et d'un aimant (10) permanent injecté par surmoulage sur la pièce support (20) ou présentant une encoche complémentaire de la zone centrale de la pièce support (20) pour les solidariser par insertion radiale, l'aimant (10) étant représenté en transparence dans la figure 1 permet d'apprécier son maintien sur la pièce support (20). L'aimant (10) est aimanté selon une direction (14) d'aimantation unique et une amplitude du champ magnétique constante, orientée, pour une application à déplacement rotatif, selon une direction comprise dans le plan (X, Z) perpendiculaire à la direction Y (12) de déplacement relatif de l'aimant (10) par rapport à la sonde magnéto-sensible (30), le repère étant fixe par rapport à l'aimant (10). La direction (14) d'aimantation étant préférentiellement colinéaire au vecteur X (11), de manière à maximiser la composante radiale de l'amplitude du champ magnétique, mais elle peut aussi présenter une composante colinéaire au vecteur Z (13) pour s'adapter à des contraintes de fabrication ou améliorer le champ mesuré dans le cas d'un positionnement particulier de la sonde. Les amplitudes de l'induction magnétique radiale (50) et tangentielle (51) mesurées le long de cette trajectoire sont typiquement semblables à celles représentées graphiquement dans la figure 2. La mesure de ces composantes, par une sonde magnéto-sensible, permet de reconstruire numériquement l'angle magnétique (52) selon, par exemple, la formule am On est alors capable de mesurer une variation de
Figure imgf000014_0001
champ magnétique de 360° pour une rotation d'environ 60° mécanique ce qui permet d'augmenter la précision du capteur lorsque la course ne nécessite d'être évaluée que sur un angle restreint.
[0058] Une seconde particularité de ce premier mode de réalisation, le rendant particulièrement robuste aux dispersions géométriques, est représentée figure 3. Le graphique montre la variation de l'induction magnétique radiale (54 ,55, 56) le long de trois trajectoires circulaires, concentriques à celle représentée dans la figure 1, mais de rayon (3) différent, la courbe (54) correspondant au plus petit rayon et la courbe (56) celle de plus grand rayon. Ceci revient, communément parlant, à augmenter l'entrefer mécanique de mesure. On peut alors remarquer que, systématiquement, ces mesures possèdent un lobe central d'induction positive présentant de part et d'autre un point d'inflexion, les points d'inflexion (58, 59) étant très peu variants en angle et en amplitude lorsque l'entrefer magnétique de mesure change. Ce mode de réalisation est particulièrement avantageux pour réaliser un interrupteur magnétique dont les positions de transition de l'état bas à l'état haut sont très robustes à l'égard de tolérances de fabrication ou de vieillissement. En effet, si l'on fait concorder les transitions de l'interrupteur magnétique avec les points d'inflexion (58, 59) de l'induction radiale, on obtient la courbe (57) représentée figure 3, et qui est indépendante de l'éloignement de la sonde magnéto-sensible, l'interrupteur réalisé selon l'invention pouvant alors absorber des imprécisions de positionnement de ladite sonde. Un autre avantage, non représenté ici, mais donnant typiquement le même type de résultats que ceux représentés dans la figure 3, est l'insensibilité de ces points d'inflexion (58, 59) au niveau de saturation de l'aimant permanent (10). Ainsi les trois courbes d'induction (54, 55, 56) présentées en figure 3 pourraient être obtenues pour une trajectoire de même rayon (3), mais correspondant à 3 niveaux d'aimantation différents. On obtient ainsi des points d'inflexions (58, 59) invariants avec le niveau d'aimantation et donc un capteur pouvant à la fois absorber une dispersion au niveau de l'outil d'aimantation ou une désaimantation partielle pouvant survenir au cours de la vie du dispositif.
[0059] Enfin les points d'inflexion (58, 59) présentent un niveau d'induction relativement élevé, ici 60 Gauss, ce qui permet d'obtenir un interrupteur magnétique insensible à des transitions parasites qui peuvent se manifester sur toute la plage inactive lorsque la transition est proche de 0 Gauss et que l'environnement est magnétiquement perturbé.
[0060] Bien entendu, la course angulaire active n'est pas limitée à de petits angles et son augmentation s'accompagne d'une réduction d'autant plus importante du volume d'aimant, par rapport aux capteurs classiquement utilisés dans l'art antérieur. Toutefois, pour les versions rotatives du capteur selon l'invention, l'aimant permanent (10) présente préférentiellement un épanouissement angulaire proche de la moitié de la course angulaire pour assurer une bonne linéarité du capteur. [0061] La variante rotative d'un tel capteur associé à une sonde digitale permet par exemple de générer un index sur un angle prédéterminé qui sera très précis permettant par exemple de rechercher une position début de course avec une grande répétabilité.
[0062] Une variante d'un capteur angulaire, telle que représentée en figure 4, consiste à multiplier N structures aimantées réparties régulièrement, ou pas, sur 360°. Associée à une sonde magnéto-sensible mesurant directement l'angle magnétique ou les composantes du champ magnétique, cette bague multipolaire permet de réaliser un codeur magnétique pour par exemple piloter un moteur électrique en mode vectoriel.
Capteur linéaire
[0063] La figure 5 représente une vue d'un capteur linéaire selon l'invention. Dans cet exemple de réalisation, la structure aimantée (1) comporte un support (20) encoché pour accueillir un aimant permanent (10) aimanté selon une direction (14) variable et une amplitude du champ magnétique constante. La structure aimantée (1) est en déplacement relatif, par rapport à une sonde magnéto-sensible (30), selon une trajectoire (2) de mesure, cette trajectoire étant linéaire et dans la direction Y.
[0064] Le support (20) est formé par un paquet de tôles ou un barreau monolithique, réalisé dans un matériau ferromagnétique doux, présentant une encoche pour recevoir l'aimant (10) par injection plastique ou collage par exemple. Ce support présente deux épanouissements polaires (21, 22) prolongeant latéralement, de part et d'autre, l'aimant (10).
[0065] La forme des épanouissements polaires permet de sculpter les composantes longitudinale et orthogonale, en périphérie de l'aimant, afin d'améliorer la régularité des variations du champ magnétique et donc de minimiser la non-linéarité du capteur. Le calcul de la forme des cornes peut être réalisé avec un algorithme d'optimisation associé à un logiciel de calcul magnétique numérique. Ce calcul peut aussi faire intervenir un profil de forme sur l'aimant voire le profil variable de l'aimantation pour constituer un second voire un troisième levier d'optimisation. Ce type d'optimisation est particulièrement intéressant dans le cas où l'on cherche à mesurer le déplacement selon une trajectoire curviligne.
[0066] Il est à noter que le support (20) peut être une partie du mobile dont on cherche à mesurer le déplacement, ou une pièce rajoutée sur ce dernier. [0067] La figure 6 représente quant à elle les variations du champ magnétique, générées par la structure aimantée (1), selon deux composantes, lorsqu'elle présente dans ce cas particulier une direction (14) d'aimantation unique, ou aimantation unidirectionnelle. L'une orthogonale (60) au déplacement, selon l'axe X (11), et l'autre parallèle (61) au déplacement, selon l'axe Y (12). Ces deux composantes, lorsqu'associées à une sonde à 2 axes de mesure ou sensible à l'angle magnétique, permettent de mesurer la position de l'aimant (62) qui est présentée en figure 7 et qui est accompagnée en courbe (63) des défauts typiques de linéarité que présente cette mesure de position. Dans cet exemple, une mesure sur 90 mm de course est réalisée avec une erreur de l'ordre de +/-0.25% avec un aimant de 50 mm de longueur soit environ la moitié de ce qui est nécessaire traditionnellement.
[0068] Pour des courses importantes, l'aimant (10) peut présenter une section convexe, pour présenter une épaisseur plus importante au centre qu'à ses extrémités.
[0069] Le support (20) présente, éventuellement additionnellement à cette caractéristique, une épaisseur croissante en s'éloignant de l'aimant, comme représenté en figure 5.
[0070] La variante linéaire d'un tel capteur associé à une sonde à sortie analogique permet par exemple de détecter la position d'un vérin hydraulique ou encore d'un arbre mécanique de type crémaillère en déplacement linéaire dans un boîtier. Une application possible consisterait à apporter une solution de mesure directe de l'angle volant dans une direction assistée voire une solution de mesure directe de l'angle donné aux roues dans une direction de type Steer-by-Wire.
[0071] Une variante d'un capteur linéaire, telle que représentée en figure 8, consiste à multiplier N structures aimantées réparties régulièrement, ou pas, sur la course totale à mesurer. Associée à une sonde magnéto-sensible mesurant les composantes du champ magnétique, cette structure multipolaire permet d'allonger la course totale sans dégrader la précision. La mesure de position absolue demeurant possible via l'emploi de M sondes magnéto-sensibles ou d'une sonde magnéto-sensible associée à un élément de compte tour magnétique avec dans les 2 cas des signaux qui seront post traités pour reconstruire une position absolue.
Capteur rotatif à flux axial [0072] La figure 9 représente une vue de la structure aimantée (1) et de la sonde magnéto- sensible (30) pour un capteur rotatif à détection axiale selon l'invention. Elle est constituée d'un aimant permanent (10), aimanté selon une direction et une amplitude du champ magnétique constantes, et orientée selon une direction comprise dans le plan XY perpendiculaire à la direction X (11) de déplacement relatif de l'aimant permanent (10) par rapport à une sonde magnéto-sensible. Dans les versions de capteur rotatif à détection axiale, la direction privilégiée d'aimantation de l'aimant permanent (10) est selon la direction Z (13) de manière à maximiser le flux magnétique collecté par la sonde magnéto-sensible (30) dans cette direction.
[0073] Le support (20) est formé par exemple d'une pièce obtenue en frittage de poudre de forme annulaire présentant une encoche pour recevoir l'aimant permanent (10) par injection plastique ou collage pour exemples. Ledit support (20) est prolongé axialement de deux épanouissements polaires (21, 22), appelés aussi cornes polaires, situées de part et d'autre de l'aimant permanent (10). Le support (20) présente un passage cylindrique (26) de manière à être assemblée sur un axe (70), par exemple d'un rotor, dont on veut détecter la position angulaire, ce qui confère une solution particulièrement intéressante lorsque le dispositif est destiné à être monté en bout d'axe, la sonde magnéto-sensible (30) pouvant être directement intégrée à un circuit imprimé fixe.
Réalisation particulière du capteur rotatif
[0074] Les figures 11 à 13 représentent un mode de réalisation particulièrement bien adapté à la production industrielle et à son intégration dans un système mécatronique.
[0075] La figure 11 représente une configuration particulière d'un support (20) prolongé en arrière des épanouissements polaires (21, 22), appelés aussi cornes polaires, par une culasse annulaire en empilement de tôles ferromagnétiques annulaires définissant un passage cylindrique (26) facilitant le montage du support (20) sur un axe rotatif entraînant le déplacement angulaire de l'aimant permanent (10) par rapport à une sonde magnéto-sensible fixe. Les deux épanouissements polaires (21, 22) délimitent un logement (23) pour l'injection en surmoulage de l'aimant permanent (10).
[0076] Ledit aimant permanent (10) est un aimant isotrope injecté, dont le point d'injection (16) est localisé axialement pour éviter d'avoir un résidu d'injection en dépassement radial sur le diamètre extérieur (et limiter ainsi le risque de contact avec le circuit imprimé proche). L'aimant présente des dépouilles de 0.5° à 1° max pour faciliter le démoulage, sauf dans la zone d'épaisseur du paquet de tôles (2.5mm) où les bords de l'aimant sont droits / cylindriques, le plan de joint du moule est coplanaire avec une des 2 faces du paquet de tôles. L'injection de l'aimant n'est toutefois pas limitative de l'invention et tout autre type d'aimant et son moyen de liaison à des pôles fers sont envisagés, comme par exemple le surmoulage d'un aimant compressé.
[0077] Plus particulièrement, l'aimant unipolaire est réalisé par surmoulage du support (20). On utilise une matière PPS-NdFeB présentant une bonne tenue mécanique en température avec des performances magnétiques (Br, Hcb) élevées : on obtient ainsi un seuil de commutation élevé (>70G) et une pente raide pour des commutations propres et bien maîtrisées. Le support métallique présente aussi une forme spécifique pour verrouiller radialement l'aimant surmoulé. Le choix du paquet de tôles comme support permet de magnétiser après surmoulage l'aimant sans effet significatif de l'aimantation résiduelle dans les tôles (très faible champ coercitif) sur les commutations et donc la précision de la course ciblée.
[0078] Pour limiter la sensibilité aux perturbations extérieures et aux tolérances d'assemblage, l'aimant présente une épaisseur dans la direction axiale supérieure à l'épaisseur du paquet de tôles, typiquement 7mm pour 2.5mm de fer soit un rapport plus grand que 2:1, ceci n'étant pas limitatif de l'invention. Au nominal, le plan médian axial de l'aimant et du paquet de tôles est coplanaire avec l'élément sensible de la sonde.
[0079] Une variante d'un capteur rotatif à flux axial, telle que représentée en figure 10, consiste à multiplier N structures aimantées réparties régulièrement, ou pas, sur 360°. Associée à une sonde magnéto-sensible mesurant directement l'angle magnétique ou les composantes du champ magnétique, cette bague multipolaire permet de réaliser un codeur magnétique pour par exemple piloter un moteur électrique en mode vectoriel.
[0080] Comme présenté en figure 12, le support (20) ferromagnétique du capteur peut être réalisé en utilisant la chute de matière au centre du paquet de tôles stator (40) du moteur électrique intégré à l'actionneur. Cette solution est très économique (valorisation des chutes, pas de traitement de surface à appliquer...) et elle permet aussi et surtout d'avoir sans reprise d'usinage des tolérances de fabrication très précises pour l'emmanchement en force du support (20) sur l'axe et pour la forme des deux épanouissements polaires (21, 22).
Ensemble mécatronique selon l'invention
[0081] La figure 13 représente une vue en coupe partielle d'un actionneur équipé d'un capteur selon l'invention. Le support (20) est encastré sur l'axe (70) de sortie d'un actionneur rotatif. Il entraîne l'aimant permanent (10) qui tourne pour venir se positionner transitoirement en face de la sonde magnéto-sensible (30) montée sur un circuit imprimé (31) fixe. La réalisation présente une grande simplicité de fabrication et d'assemblage, un très faible coût, et une grande robustesse en endurance-vibration-température et également une « précision » en-deçà des ±2° spécifiés (de l'ordre de ±0.50°)
[0082] Le paquet de tôle est ajusté serré sur l'axe de sortie de l'actionneur, il est arrêté axialement sur un épaulement (27) et n'a pas besoin d'être indexé angulairement (actionneur 360°). L'épaulement (27) permet également de limiter le rotulage du support (20) (ajustement court : 2.5mm d'épaisseur pour 09.8) sur l'axe en garantissant l'orthogonalité entre le plan médian de l'aimant et l'axe de rotation. La faible masse de l'ensemble capteur (5g) permet d'estimer que sous 28.9Grms de perturbations vibratoires (soit 28.9 x 3 x V2 = 122G), l'ensemble ne subira que 6N d'accélération. Relativement aux forces de chassage pouvant de varier de 250N à 1250N, la marge de sécurité du maintien est très bonne.
[0083] La découpe (26) est engagée sur l'axe d'un organe dont on veut mesurer la position angulaire, par exemple l'axe (70) d'un actionneur, pour un ensemble mécatronique.
[0084] L'axe sur laquelle est monté le support (20) est porté par 2 roulements à billes, le roulement supérieur étant guidé dans le couvercle, le roulement inférieur proche de l'ensemble capteur étant guidé par le boîtier, le PCB portant la sonde de hall étant fixé sur le boîtier. Ainsi, le rayon de lecture est précis grâce une chaîne de cotes à peu de maillons et grâce à des cotes nominales facilement maîtrisables (usinage aluminium, portée de roulement, portée d'axe, paquet de tôles étampé, surmoulage de l'aimant).
[0085] Une telle structure permet de diminuer le volume d'aimant à 171 mm3 soit une diminution de plus de 25% par rapport à une structure uniquement constituée d'aimants.

Claims

Revendications
1 - Capteur magnétique de position comportant :
• une structure aimantée (1), munie d'un aimant (10) permanent produisant un champ magnétique et d'un support (20) en matériau ferromagnétique doux dans lequel est encastré l'aimant (10), ledit support (20) présentant deux épanouissements polaires (21, 22) situés de part et d'autre dudit aimant (10),
• au moins un élément magnéto-sensible (30) pouvant être mis en mouvement relatif, par rapport audit aimant (10) selon une trajectoire (2) de mesure, caractérisé en ce que ledit aimant (10) et lesdits deux épanouissements polaires (21, 22) présentent respectivement une surface frontale (15, 24, 25) toutes étant situées en vis-à-vis du au moins un élément magnéto-sensible (30) lors du déplacement selon la trajectoire de mesure (2), et en ce que, lors du déplacement selon la trajectoire (2) de mesure, les surfaces frontales (15, 24, 25) se trouvent successivement en vis-à-vis de l'élément sensible (30) et en ce que le ratio entre : la distance minimale entre la surface frontale (15) de l'aimant (10) et le centre de l'élément magnéto-sensible (30) et la distance minimale entre l'une ou l'autre des surfaces frontales (24, 25) des épanouissements polaires (21, 22) et le centre de l'élément magnéto-sensible (30) est compris entre 0,7 et 1,3.
2 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que lors du déplacement selon la trajectoire (2) de mesure, les surfaces frontales (15, 24, 25) se trouvent successivement en vis-à-vis de l'élément sensible (30) et en ce que la distance minimale, entre une surface frontale (15, 24, 25) en vis-à-vis de l'élément magnéto- sensible (30) et le centre de l'élément magnéto-sensible (30), présente des variations inférieures à 50% par rapport à sa valeur moyenne. 3 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que les ratios entre : d'une part, la distance minimale entre la surface frontale (15) de l'aimant et l'au moins un élément magnéto-sensible (30), lors du déplacement selon la trajectoire (2) de mesure, et d'autre part, la distance minimale entre l'une ou l'autre des surfaces frontales (24, 25) des épanouissements polaires (21, 22) et l'au moins un élément magnéto-sensible (30), lors du déplacement selon la trajectoire (2) de mesure, sont tous deux compris entre 0,7 et 1,3.
4 - Capteur magnétique de position selon la revendication 2 caractérisé en ce que les ratios sont tous deux situés entre 0,9 et 1,1.
5 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que des évidements (34, 35) sont formés entre les épanouissements polaires (21, 22) et l'aimant (10) tels que les surfaces frontales (15, 24, 25) ne sont pas contiguës.
6 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que la trajectoire de mesure (2) est située dans un plan et en ce que selon la direction orthogonale à ce plan, l'épaisseur des épanouissements polaires (21, 22) est inférieure à l'épaisseur de l'aimant (10).
7 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que la somme des longueurs des surfaces frontales (24, 25) des épanouissements polaires (21, 22) selon la trajectoire de mesure est supérieure ou égale à la longueur de la surface frontale (15) de l'aimant (10).
8 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que la longueur des surfaces frontales (24, 25) de chacun des épanouissements polaires (21, 22) selon la trajectoire de mesure est supérieure ou égale à celle de la surface frontale (15) de l'aimant (10). 9 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que l'aimantation dudit aimant (10) présente une direction (14) d'aimantation unique, ou aimantation unidirectionnelle.
10 - Capteur magnétique de position selon la revendication 2 caractérisé en ce que l'aimantation dudit aimant (10) est diamétrale.
11 - Capteur magnétique de position selon une des revendications précédentes caractérisé en ce que l'aimantation dudit aimant (10) présente une aimantation dont l'intensité varie continûment selon la trajectoire de déplacement.
12 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que l'aimantation dudit aimant (10) présente une direction (14) d'aimantation qui varie continûment selon la trajectoire de déplacement.
13 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que ledit élément magnéto-sensible est une sonde de mesure directe de l'angle magnétique ou indirecte via la mesure des composantes magnétiques constituant un capteur à sortie absolue en fonction de la position mécanique.
14 - Capteur magnétique de position selon l'une au moins des revendications 1 à 8 caractérisé en ce que le déplacement relatif dudit un aimant permanent (10) par rapport audit élément magnéto-sensible (30) est linéaire.
15 - Capteur magnétique de position selon l'une au moins des revendications 1 à 8 caractérisé en ce que le déplacement relatif dudit un aimant permanent (10) par rapport audit élément magnéto-sensible (30) est rotatif. 16 - Capteur magnétique de position selon la revendication 1 caractérisé en ce que la sonde magnéto-sensible est un interrupteur magnétique, le capteur de position présentant des positions de commutation invariantes en fonction de l'entrefer.
17 - Capteur magnétique de position selon la revendication précédente caractérisé en ce que l'interrupteur magnétique mesure une composante du champ magnétique et en ce que le seuil de commutation soit programmé.
18 - Capteur magnétique de position selon une des revendications 1 à 10 caractérisé en ce que la sonde magnéto-sensible reconstruit l'information de position analogique à partir des composantes du champ magnétique colinéaire au déplacement et dans une direction orthogonale audit déplacement relatif.
19 - Capteur magnétique de position selon une des revendications 1 à 10 caractérisé en ce que la sonde magnéto-sensible reconstruit l'information de position analogique à partir de la composante du champ magnétique colinéaire à la direction d'aimantation.
20 - Ensemble mécatronique comportant un actionneur formé par un stator constitué par un assemblage de tôles ferromagnétiques définissant des dents dont une partie au moins est entourée par une bobine, et un capteur de position conforme à la revendication précédente caractérisé en ce que le contour extérieur des tôles dudit support (20) en matériau ferromagnétique du capteur est contenu dans le contour intérieur des tôles dudit stator de l'actionneur.
PCT/FR2022/050417 2021-03-08 2022-03-08 Capteur à aimant et pôles ferromagnétiques WO2022189750A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280019318.7A CN117015689A (zh) 2021-03-08 2022-03-08 磁体传感器和铁磁极
JP2023554353A JP2024508955A (ja) 2021-03-08 2022-03-08 磁気センサ及び強磁性極
EP22712979.8A EP4305385A1 (fr) 2021-03-08 2022-03-08 Capteur à aimant et pôles ferromagnétiques
KR1020237030418A KR20230152706A (ko) 2021-03-08 2022-03-08 자석 센서 및 강자성 극
US18/549,680 US20240159570A1 (en) 2021-03-08 2022-03-08 Magnet sensor and ferromagnetic poles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2102198A FR3120434B3 (fr) 2021-03-08 2021-03-08 Capteur à aimant et pôles ferromagnétiques
FRFR2102198 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022189750A1 true WO2022189750A1 (fr) 2022-09-15

Family

ID=76283851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/050417 WO2022189750A1 (fr) 2021-03-08 2022-03-08 Capteur à aimant et pôles ferromagnétiques

Country Status (7)

Country Link
US (1) US20240159570A1 (fr)
EP (1) EP4305385A1 (fr)
JP (1) JP2024508955A (fr)
KR (1) KR20230152706A (fr)
CN (1) CN117015689A (fr)
FR (1) FR3120434B3 (fr)
WO (1) WO2022189750A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2155303A5 (fr) * 1971-09-27 1973-05-18 Veeder Industries Inc
US20050172732A1 (en) * 2004-02-06 2005-08-11 Sainan Feng Integrated non-contacting torque and absolute position sensor for steering applications
US7375510B2 (en) * 2003-11-18 2008-05-20 Hitachi, Ltd. Rotational position sensor and electronically controlled throttle device and internal combustion engine
US7671584B2 (en) * 2006-03-29 2010-03-02 Mitsubishi Denki Kabushiki Kaisha Rotation angle detection device
EP1989505B1 (fr) 2006-03-02 2010-07-21 Moving Magnet Technologies "M.M.T." Capteur de position a direction d'aimantation variable et procede de realisation
EP2309229A1 (fr) * 2008-07-29 2011-04-13 Mitsubishi Electric Corporation Capteur de position magnétique
EP2496914B1 (fr) * 2009-11-06 2016-08-03 Moving Magnet Technologies Capteur de position magnetique bidirectionnel à rotation de champ
US20190078910A1 (en) 2017-09-12 2019-03-14 Cts Corporation Actuator with position sensor assembly
US20190140524A1 (en) 2017-11-07 2019-05-09 Cts Corporation Rotary position sensor including switch and patterned magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2155303A5 (fr) * 1971-09-27 1973-05-18 Veeder Industries Inc
US7375510B2 (en) * 2003-11-18 2008-05-20 Hitachi, Ltd. Rotational position sensor and electronically controlled throttle device and internal combustion engine
US20050172732A1 (en) * 2004-02-06 2005-08-11 Sainan Feng Integrated non-contacting torque and absolute position sensor for steering applications
EP1989505B1 (fr) 2006-03-02 2010-07-21 Moving Magnet Technologies "M.M.T." Capteur de position a direction d'aimantation variable et procede de realisation
US7671584B2 (en) * 2006-03-29 2010-03-02 Mitsubishi Denki Kabushiki Kaisha Rotation angle detection device
EP2309229A1 (fr) * 2008-07-29 2011-04-13 Mitsubishi Electric Corporation Capteur de position magnétique
EP2496914B1 (fr) * 2009-11-06 2016-08-03 Moving Magnet Technologies Capteur de position magnetique bidirectionnel à rotation de champ
US20190078910A1 (en) 2017-09-12 2019-03-14 Cts Corporation Actuator with position sensor assembly
US20190140524A1 (en) 2017-11-07 2019-05-09 Cts Corporation Rotary position sensor including switch and patterned magnet

Also Published As

Publication number Publication date
FR3120434A3 (fr) 2022-09-09
JP2024508955A (ja) 2024-02-28
US20240159570A1 (en) 2024-05-16
KR20230152706A (ko) 2023-11-03
CN117015689A (zh) 2023-11-07
EP4305385A1 (fr) 2024-01-17
FR3120434B3 (fr) 2023-10-13

Similar Documents

Publication Publication Date Title
EP1269133B1 (fr) Capteur de position, notamment destine a la detection de la torsion d'une colonne de direction
EP2338030B1 (fr) Capteur de position magnetique a mesure de direction de champ et a collecteur de flux
EP0514530B1 (fr) Capteur magnetique de position et de vitesse a sonde de hall
EP2609401B1 (fr) Dipositif de detection magnetique de position absolue multitour
EP2496914B1 (fr) Capteur de position magnetique bidirectionnel à rotation de champ
WO2007057563A1 (fr) Capteur de position angulaire magnetique pour une course allant jusqu'a 360°
EP1157255A1 (fr) Capteur de position a sonde magneto-sensible
EP1774272A1 (fr) Capteur de position, notamment destine a la mesure de la torsion d'une colonne de direction
WO2010034896A2 (fr) Capteur de position lineaire ou rotatif a aimant permanent pour la detection d'une cible ferromagnetique
WO2011045540A2 (fr) Capteur magnetique pour determiner la position et l'orientation d'une cible
FR2930637A1 (fr) Montage d'un systeme de determination de position angulaire comprenant deux aimants multipolaires
FR2816047A1 (fr) Dispositif de palier a roulement instrumente, notamment pour volant de commande
FR3019892A1 (fr) Dispositif de mesure pour une saisie sans contact d'un angle de rotation
EP1196787B1 (fr) Palier a roulement instrumente
FR2844591A1 (fr) Dispositif de determination du deplacement d'un arbre
WO2015128592A1 (fr) Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure
WO2022189750A1 (fr) Capteur à aimant et pôles ferromagnétiques
FR2776064A1 (fr) Dispositif de mesure de position angulaire utilisant un capteur magnetique
EP4278154B1 (fr) Capteur de position sans contact comportant un aimant permanent
EP3708963B1 (fr) Système de détermination d'au moins un paramètre de rotation d'un organe tournant
EP0038744A1 (fr) Moteur pas à pas notamment pour montre électronique
EP3244167B1 (fr) Composant magnetique pour capteur a effet hall, ensemble electrique et compresseur de suralimentation electrique comprenant un tel composant magnetique
FR3080679A1 (fr) Dispositif de detection de la position angulaire d'un rotor d'une machine electrique tournante
FR2829574A1 (fr) Capteur de la position d'un objet mobile, sur une trajectoire rectiligne
FR2841978A1 (fr) Dispositif codeur pour detection de parametres de rotation, palier a roulement instrumente et moteur electrique ainsi equipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22712979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202327056794

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280019318.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237030418

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023554353

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18549680

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022712979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022712979

Country of ref document: EP

Effective date: 20231009