WO2015127843A1 - 一种ups电路 - Google Patents

一种ups电路 Download PDF

Info

Publication number
WO2015127843A1
WO2015127843A1 PCT/CN2015/071378 CN2015071378W WO2015127843A1 WO 2015127843 A1 WO2015127843 A1 WO 2015127843A1 CN 2015071378 W CN2015071378 W CN 2015071378W WO 2015127843 A1 WO2015127843 A1 WO 2015127843A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
ups
circuit
frequency transformer
power
Prior art date
Application number
PCT/CN2015/071378
Other languages
English (en)
French (fr)
Inventor
胡双平
蔡火圆
马云
Original Assignee
伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
胡双平
蔡火圆
马云
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构, 胡双平, 蔡火圆, 马云 filed Critical 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构
Priority to US15/119,298 priority Critical patent/US10411502B2/en
Priority to EP15754520.3A priority patent/EP3113326A4/en
Publication of WO2015127843A1 publication Critical patent/WO2015127843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads

Definitions

  • the present invention relates to a UPS circuit, and more particularly to a UPS circuit having a low frequency transformer.
  • the UPS Uninterruptible Power System
  • the energy storage device such as a battery is mainly used to provide an uninterrupted power supply to the load during a power outage.
  • the UPS supplies the mains voltage to the load for use.
  • the UPS immediately uses the energy of the energy storage device to continue to supply AC power to the load, so that the load maintains normal operation and protection.
  • the load is soft and the hardware is not damaged.
  • the basic circuit structure of the UPS is shown in Figure 1. It has an input terminal T in receiving AC power from the mains and an output T out providing AC power to the load.
  • the input terminal T in and the output terminal T out have an electromagnetic interference filter EMI, switches SW1, SW2, SW3 and SW4 and a low frequency transformer TX.
  • EMI electromagnetic interference filter
  • switches SW1, SW2, SW3 and SW4 are closed, AC power is delivered from the input terminal T in to the output terminal T out , and the secondary side of the low-frequency transformer TX provides AC power to the circuit module AD that can realize AC/DC conversion.
  • the circuit module AD rectifies the AC power into DC power and then charges the battery B.
  • the circuit module AD When the utility power is interrupted and the UPS operates in the battery mode, the circuit module AD operates in the inverter mode, converts the DC power provided by the battery B into AC power and supplies it to the secondary side of the transformer TX, and the primary side of the TX AC power is supplied to the output Tout of the UPS circuit.
  • the function of the switches SW1 and SW2 is to adjust the mains voltage when the mains voltage is too high or too low.
  • the machine In the mains mode, the machine still has a lot of self-loss even when the battery is fully charged.
  • the losses mainly include: 1) the conduction energy loss of the whole line and the loss of components between the mains; 2) in order to maintain the operation of the entire control system and the operating loss of the switching elements; 3) low frequency variation Excitation loss of the press.
  • the excitation loss accounts for more than 60% of the total no-load loss, and is also the main source of no-load loss.
  • a core material having a lower magnetic loss loss can be used, but this requires a higher cost to be realized, and the improvement effect is limited.
  • Another way to reduce the excitation loss is to disconnect the low frequency transformer from the mains circuit in mains mode. Theoretically, in the mains mode, when the battery B is full, the low-frequency transformer does not need to supply power to the battery B, and disconnecting the low-frequency voltage device has no effect on the UPS circuit. However, in reality, the battery has a self-discharge effect, and even if the battery does not supply power to the load, the stored electrical energy is slowly lost. In addition, some control circuits also require a small amount of power from the battery.
  • a low frequency transformer is required to continuously charge the battery. Therefore, the method of disconnecting the low-frequency transformer can completely remove the excitation loss of the low-frequency transformer, but since the battery self-discharge and the control circuit still need to be taken from the mains energy to maintain, it is required to additionally add a separate power source to provide this part of the energy, and increase The separate power supply requires a higher cost to achieve.
  • the present invention provides a UPS circuit having a low frequency transformer having a primary side winding and a secondary side winding connected to the battery, wherein the primary side winding is connected to the city via a switching device (SW)
  • the electrical circuit, the switching device (SW) can operate in a chopping mode.
  • a UPS circuit according to the present invention wherein the secondary side winding is connected to the battery by a circuit module that can implement AC/DC conversion.
  • a UPS circuit wherein the switching device further has a conduction mode of operation, the switching device operating in the conduction mode when the battery is charged.
  • the switching device can be selected to operate in the chopping mode.
  • the switching device in the chopping mode, is intermittently turned on.
  • the switching device in the chopping mode, is periodically turned on and off.
  • the period in which the switching device is turned on and off is the same as the period of the voltage input to the UPS circuit.
  • a UPS circuit according to the present invention wherein the switching device is turned on and off acyclically.
  • a UPS circuit wherein the secondary side winding includes a first sub-winding and a second sub-winding, the first sub-winding and the second sub-winding being respectively connected to the inverter circuit module and the rectifying circuit module Said battery.
  • a switch SW is disposed between the primary side winding of the low frequency transformer and the mains circuit, and the switch SW is intermittently turned on, thereby satisfying the power demand of the battery B and the control circuit. Under the premise, the excitation loss of the low frequency transformer is greatly reduced, thereby reducing the overall loss of the UPS circuit.
  • FIG. 1 is a schematic structural view of a UPS circuit in the prior art
  • FIG. 2 is a schematic structural diagram of a UPS circuit according to an embodiment of the present invention.
  • Figures 3 - 5 show three waveforms of the voltage input to the low frequency transformer TX;
  • FIG. 6 is a block diagram showing the structure of a UPS circuit in accordance with still another embodiment of the present invention.
  • This embodiment provides a UPS circuit having a structure as shown in FIG. 2, including an input terminal T in receiving AC power from a commercial power source and an output terminal T out providing AC power to a load.
  • the input terminal T in and the output terminal T out have an electromagnetic interference filter EMI, switches SW1, SW2, SW3 and SW4 and a low frequency transformer TX.
  • the switch SW3 is used to disconnect the low frequency transformer TX from the mains when the UPS uses its battery B to supply power to the output terminal Tout .
  • the switches SW1 and SW2 are used together to adjust the mains voltage when the mains voltage is too high or too low.
  • the contact 1 of the SW1 When the mains voltage is normal, the contact 1 of the SW1 is connected to the contact 2, and the contact 1 of the SW2 is connected to the contact 2, that is, the case shown in FIG.
  • the contact 1 of SW1 When the mains voltage is too high, the contact 1 of SW1 is turned on with the contact 2, and the contact 1 of the SW2 is turned on with the contact 3, thereby performing step-down regulation.
  • the contact 1 of the SW1 is turned on with the contact 3, and the contact 1 of the SW2 is turned on with the contact 2, thereby boosting.
  • the switch SW4 acts as an output switch of the UPS for controlling whether the UPS outputs a voltage to the load.
  • the secondary side of the low frequency transformer TX is connected to the battery B through a circuit module AD that can realize AC/DC conversion.
  • the circuit module AD that can realize AC/DC conversion rectifies the AC power outputted from the secondary side winding of the low frequency transformer TX into DC power and then charges the battery B.
  • the circuit module AD operates in the inverter mode, converts the DC power provided by the battery B into AC power, and supplies it to the secondary winding of the low frequency transformer TX, and thereby supplies the AC power to the UPS.
  • TX frequency transformers primary side through the switch SW is connected to the mains circuit, i.e. connected to the UPS input terminal T in the circuit through the switch SW.
  • the switch SW has a conduction mode and a chopping mode.
  • the switch SW In the conduction mode, the switch SW is always in the on state.
  • the switch SW In the chopping mode, the switch SW continuously switches between the on state and the off state to control the waveform of the voltage input to the low frequency transformer TX, so that the volt-second product of the low frequency transformer TX is lowered.
  • the waveform of the voltage input to the low frequency transformer TX can be made as shown in any of Figs. The sine wave in FIGS.
  • 3 to 5 is a waveform of a voltage input from the commercial power to the low frequency transformer TX, wherein a solid line portion represents a period in which the switch SW is turned on, and a broken line portion represents a period in which the switch SW is turned off.
  • the switch SW When the UPS has just started, the switch SW is turned on in the work mode, then, via the input mains to provide power while T in T out to the output terminal, charging of the battery B through the low-frequency transformer and the circuit module TX AD.
  • the switch SW When the battery B is fully charged, it does not need to be continuously charged by the commercial power.
  • the switch SW is operated in the chopping mode, so that the switch SW is repeatedly switched between the on state and the off state, even if the switch SW Intermittently turned on. In this way, the self-discharge loss of the battery B can be supplemented, the power demand of the control circuit can be satisfied, and the volt-second product input to the low-frequency transformer TX can be reduced, thereby reducing the excitation loss of the low-frequency transformer.
  • SW1 and SW2 need to be used together to adjust the mains voltage, so that the switch SW operates in the conduction mode, so that the primary winding of the low frequency transformer can be boosted or depressurized. .
  • FIGS. 3 to 5 only show waveforms of three exemplary voltages input to the low frequency transformer TX, and are not limitative. Those skilled in the art can change the input according to actual needs.
  • the waveform of the voltage to the low frequency transformer TX can appropriately set the on-time, the on-frequency, and the like of the switch SW in accordance with the speed of self-discharge of the battery B and the amount of power demand of the control circuit.
  • the UPS is usually powered by the commercial power, and the commercial power is usually a sine wave
  • the technical solutions of the present invention will be described by taking a sine wave as an example in FIGS.
  • the UPS adopting the technical solution according to the present invention is also applicable to power supplies of other waveforms.
  • the on and off of the switch SW may be periodic, that is, another fixed on-time period is performed every fixed off-time period.
  • the turn-on and turn-off of the switch SW may also be aperiodic, that is, the off period and the on-time period appear non-periodically.
  • the period of the switch SW may be the same as or different from the period of the commercial sine wave.
  • FIG. 6 A low frequency transformer with two secondary windings is shown.
  • the low frequency transformer of the type shown in FIG. 6 there is a first secondary winding TX1 and a second secondary winding TX2, and the secondary windings TX1 and TX2 respectively pass through the inverter circuit module DC-AC and the rectifier circuit module AC-
  • the DC is connected to battery B.
  • the low frequency transformer charges the battery B through the secondary side winding TX2 and the rectifier circuit module AC-DC.
  • the inverter circuit module DC-AC converts the DC power supplied from the battery B into AC power and supplies it to the secondary side winding TX1 and thereby supplies the AC power to the output terminal Tout of the UPS.
  • the switch SW can be various types of switches, as long as it is a switch type capable of achieving intermittent conduction, and those skilled in the art can make various choices according to actual needs.
  • the present invention provides a UPS circuit having a low frequency transformer by setting a switch SW between a primary side winding of a low frequency transformer and a mains circuit, and causing the switch SW to be turned on intermittently, thereby satisfying the battery B and Under the premise of controlling the power demand of the circuit, the excitation loss of the low frequency transformer is greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

一种UPS电路,具有低频变压器(TX)和电池(B),所述低频变压器(TX)具有一次侧绕组和连接到所述电池(B)的二次侧绕组,其中所述一次侧绕组通过开关装置(SW)连接到市电回路,所述开关装置(SW)可工作在斩波模式。

Description

一种UPS电路 技术领域
本发明涉及一种UPS电路,尤其涉及一种具有低频变压器的UPS电路。
背景技术
UPS(Uninterruptible Power System,不间断电源)是一种含有储能装置的交流电源。主要利用电池等储能装置在停电时向负载提供不间断的电力供应。当市电输入正常时,UPS将市电稳压后供应给负载使用,当市电中断(事故停电)时,UPS立即利用储能装置的电能向负载继续供应交流电,使负载维持正常工作并保护负载软、硬件不受损坏。
UPS的基本电路结构如图1所示,具有从市电接收AC电能的输入端Tin以及向负载提供AC电能的输出端Tout。输入端Tin与输出端Tout之间具有电磁干扰滤波器EMI、开关SW1、SW2、SW3和SW4以及低频变压器TX。在市电模式下,SW3、SW4闭合,AC电能从输入端Tin被输送到输出端Tout,同时低频变压器TX的二次侧向可实现AC/DC转换的电路模块AD提供AC电能,该电路模块AD将AC电能整流为DC电能后向电池B充电。当市电中断、UPS工作在电池模式下时,电路模块AD工作在逆变模式下,将电池B提供的DC电能转换为AC电能并提供给变压器TX的二次侧,TX的一次侧将该AC电能提供到UPS电路的输出端Tout。其中开关SW1和SW2的作用是,当市电电压过高或者过低时,对市电电压进行调整。
但是随着对于环保加强,特别是EPA Energy star的提出,对于UPS的能效要求越来越高。此种类型的UPS电路中,损耗很大,很难通过Energy star标准效率要求。
在市电模式下,即使在电池充饱的条件下,机器仍旧有很大的自身损耗。损耗主要包括:1)整个线路的导通能量损耗以及市电之间元件的损耗;2)为了维持整个控制系统运行以及开关元件工作损耗;3)低频变 压器的励磁损耗。其中励磁损耗占到整个空载损耗的60%以上,也是主要的空载损耗来源。
为了降低低频变压器的励磁损耗,可使用磁损损耗更低的铁芯材料,但这需要增加更高的成本来实现,而且改善的效果有限。另外一种降低励磁损耗的方法是,在市电模式下将低频变压器从市电回路中断开。理论上说,在市电模式下,当电池B充饱情况下,低频变压器无需向电池B提供电能,断开低频电压器对UPS电路并无影响。然而,实际上,电池具有自放电效应,即使电池不向负载提供电能,其储存的电能也会慢慢损耗。另外,一些控制电路也需要从电池获取少量电能。因此,需要低频变压器不断地向电池充电。所以断开低频变压器的方法虽然可以完全去掉低频变压器的励磁损耗,但是由于电池自放电以及控制电路仍旧需要取自市电能量来维持,因此需求额外增加单独的电源来提供这部分能量,而增加的单独电源要求较高的成本来实现。
发明内容
因此,本发明的目的在于克服上述现有技术的缺陷,提供一种UPS电路。
本发明提供了一种UPS电路,具有低频变压器和电池,所述低频变压器具有一次侧绕组和连接到所述电池的二次侧绕组,其中所述一次侧绕组通过开关装置(SW)连接到市电回路,所述开关装置(SW)可工作在斩波模式。
根据本发明提供的UPS电路,其中所述二次侧绕组通过可实现AC/DC转换的电路模块与所述电池连接。
根据本发明提供的UPS电路,其中所述开关装置还具有导通工作模式,当所述电池被充电时,所述开关装置工作在所述导通模式下。
根据本发明提供的UPS电路,其中所述电池被充饱后,所述开关装置可被选择为工作在所述斩波模式下。
根据本发明提供的UPS电路,其中在所述斩波模式下,所述开关装置间歇性地导通。
根据本发明提供的UPS电路,其中在所述斩波模式下,所述开关装置周期性地导通和关断。
根据本发明提供的UPS电路,其中所述开关装置导通和关断的周期与输入到所述UPS电路的电压的周期相同。
根据本发明提供的UPS电路,其中所述开关装置的导通与关断是非周期性的。
根据本发明提供的UPS电路,其中所述二次侧绕组包括第一子绕组和第二子绕组,所述第一子绕组和第二子绕组分别通过逆变电路模块和整流电路模块连接到所述电池。
本发明提供的具有低频变压器的UPS电路中,在低频变压器的一次侧绕组与市电回路之间设置开关SW,并使开关SW间歇性地导通,从而在满足电池B和控制电路的电量需求的前提下,大大降低了低频变压器的励磁损耗,进而降低了UPS电路的整体损耗。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1为现有技术中的UPS电路的结构示意图;
图2为根据本发明的一个实施例的UPS电路的结构示意图;
图3-图5示出了输入到低频变压器TX的电压的三种波形;
图6为根据本发明的又一个实施例的UPS电路的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本实施例提供一种UPS电路,其结构如图2所示,包括从市电接收AC电能的输入端Tin以及向负载提供AC电能的输出端Tout。输入端Tin与输出端Tout之间具有电磁干扰滤波器EMI、开关SW1、SW2、SW3和SW4以及低频变压器TX。其中开关SW3用于当UPS利用其电池B向输出端Tout供电时,使低频变压器TX从市电断开。开关SW1和SW2配合使用,用于当市电电压过高或者过低时,对市电电压进行调整。
当市电电压正常时,SW1的触点1与触点2接通,SW2的触点1与触点2接通,即图2中所示的情况。当市电电压过高时,SW1的触点1与 触点2接通,SW2的触点1与触点3接通,从而进行降压调节。当市电电压过低时,SW1的触点1与触点3接通,SW2的触点1与触点2接通,从而进行升压。开关SW4作为UPS的输出开关,用于控制UPS是否向负载输出电压。低频变压器TX的二次侧通过可实现AC/DC转换的电路模块AD与电池B连接。在电池的充电过程中,可实现AC/DC转换的电路模块AD将低频变压器TX的二次侧绕组输出的AC电能整流为DC电能后向电池B充电。当需要电池B供电时,该电路模块AD工作在逆变模式下,将电池B提供的DC电能转换成AC电能后提供给低频变压器TX的二次侧绕组,并由此将AC电能提供给UPS的输出端Tout。低频变压器TX的一次侧通过开关SW与市电回路相连接,即通过开关SW连接到UPS电路的输入端Tin
其中该开关SW具有导通模式和斩波模式。在导通模式下,开关SW一直处于导通状态。在斩波模式下,开关SW在导通状态和关断状态之间不断切换,以控制输入到低频变压器TX的电压的波形,使低频变压器TX的伏秒积降低。通过使开关SW在导通状态和关断状态之间不断地反复切换,可以使输入到低频变压器TX的电压的波形如图3-图5中任一附图所示。图3-图5中的正弦波为市电向低频变压器TX输入的电压的波形,其中实线部分代表开关SW导通的时间段,虚线部分代表开关SW关断的时间段。
当UPS刚开始启动时,使开关SW工作在导通模式下,这时,市电经由输入端Tin向输出端Tout提供电能的同时,通过低频变压器TX和电路模块AD对电池B充电。当电池B被充饱后,无需市电对其持续的充电,此时使开关SW工作在斩波模式下,使开关SW在导通状态和关断状态之间不断地反复切换,即使开关SW间歇性地导通。通过这种方式,既可以补充电池B的自放电损耗,满足控制电路的电量需求,同时还可以减小输入到低频变压器TX的伏秒积,从而降低低频变压器的励磁损耗。
当市电电压过高或过低,需要SW1和SW2配合使用以对市电电压进行调整时,使开关SW工作在导通模式,以使低频变压器的一次侧绕组实现升压或降压的作用。
另外,图3-图5仅示出了三种示例性的输入到低频变压器TX的电压的波形,而并非限制性的。本领域技术人员可以根据实际需要而改变输入 到低频变压器TX的电压的波形。例如,本领域技术人员可以根据电池B的自放电的速度以及控制电路的电量需求量而适当地设置开关SW的导通时间、导通频率等。
此外,由于UPS通常由市电供电,而市电通常为正弦波,因此图3-图5中均以正弦波为例对本发明的技术方案进行说明。但本领域技术人员可以理解的是,采用了根据本发明的技术方案的UPS同样适用于其它波形的供电电源。
根据本发明的其它实施例,其中开关SW的导通与关断可以是周期性的,即每间隔固定的关断时间段则进行另一固定的导通时间段。开关SW的导通与关断也可以是非周期性的,即关断时间段与导通时间段非周期性地出现。对于周期性的导通与关断,开关SW的周期可以与市电正弦波的周期相同,也可以不同。
根据本发明的其它实施例,其中低频变压器并不限于上述实施例中所述的类型,其它类型的低频变压器同样可以采用根据本发明的技术方案而达到降低励磁损耗的目的,例如图6中所示的具有两个二次侧绕组的低频变压器。在图6所示类型的低频变压器中,具有第一二次侧绕组TX1和第二二次侧绕组TX2,二次侧绕组TX1和TX2分别通过逆变电路模块DC-AC和整流电路模块AC-DC连接到电池B。在电池的充电过程中,低频变压器通过二次侧绕组TX2以及整流电路模块AC-DC向电池B充电。当需要电池B供电时,逆变电路模块DC-AC将电池B提供的DC电能转换成AC电能后提供给二次侧绕组TX1并由此将AC电能提供给UPS的输出端Tout
本发明的UPS电路中,所述开关SW可以为各种类型的开关,只要是能够实现间歇性的导通的开关类型即可,本领域技术人员可以根据实际需要而做种各种选择。
综上,本发明提供了一种具有低频变压器的UPS电路,通过在低频变压器的一次侧绕组与市电回路之间设置开关SW,并使开关SW间歇性地导通,从而在满足电池B和控制电路的电量需求的前提下,大大降低了低频变压器的励磁损耗。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方 案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种UPS电路,具有低频变压器和电池,所述低频变压器具有一次侧绕组和连接到所述电池的二次侧绕组,其中所述一次侧绕组通过开关装置(SW)连接到市电回路,所述开关装置(SW)可工作在斩波模式。
  2. 根据权利要求1所述的UPS电路,其中所述二次侧绕组通过可实现AC/DC转换的电路模块与所述电池连接。
  3. 根据权利要求1所述的UPS电路,其中所述开关装置还具有导通工作模式,当所述电池被充电时,所述开关装置工作在所述导通模式下。
  4. 根据权利要求1所述的UPS电路,其中所述电池被充饱后,所述开关装置可被选择为工作在所述斩波模式下。
  5. 根据权利要求1所述的UPS电路,其中在所述斩波模式下,所述开关装置间歇性地导通。
  6. 根据权利要求1所述的UPS电路,其中在所述斩波模式下,所述开关装置周期性地导通和关断。
  7. 根据权利要求6所述的UPS电路,其中所述开关装置导通和关断的周期与输入到所述UPS电路的电压的周期相同。
  8. 根据权利要求1所述的UPS电路,其中所述开关装置的导通与关断是非周期性的。
  9. 根据权利要求1所述的UPS电路,其中所述二次侧绕组包括第一子绕组和第二子绕组,所述第一子绕组和第二子绕组分别通过逆变电路模块和整流电路模块连接到所述电池。
PCT/CN2015/071378 2014-02-27 2015-01-23 一种ups电路 WO2015127843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/119,298 US10411502B2 (en) 2014-02-27 2015-01-23 UPS circuit
EP15754520.3A EP3113326A4 (en) 2014-02-27 2015-01-23 Ups circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410069076.XA CN104882913A (zh) 2014-02-27 2014-02-27 一种ups电路
CN201410069076X 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015127843A1 true WO2015127843A1 (zh) 2015-09-03

Family

ID=53950296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071378 WO2015127843A1 (zh) 2014-02-27 2015-01-23 一种ups电路

Country Status (4)

Country Link
US (1) US10411502B2 (zh)
EP (1) EP3113326A4 (zh)
CN (1) CN104882913A (zh)
WO (1) WO2015127843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958098B1 (en) 2019-10-07 2021-03-23 Google Llc UPS system for powering alternating and direct current loads

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106549488A (zh) * 2016-12-28 2017-03-29 重庆中黎讯科技有限公司 直接逆变防雷ups电源
CN107979166A (zh) * 2017-11-28 2018-05-01 珠海存中信息技术有限公司 一种电力开关操作电源
US10944287B2 (en) * 2018-07-02 2021-03-09 Schneider Electric It Corporation AVR bypass relay welding detection
CN109818414A (zh) * 2019-03-15 2019-05-28 谢志和 一种交直流转换的电源系统
CN110061559B (zh) * 2019-05-24 2022-01-25 联正电子(深圳)有限公司 离线式不间断电源及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169617A (zh) * 1996-05-22 1998-01-07 杨泰和 间歇开关调节式直流电源供给电路
CN1284777A (zh) * 1999-08-13 2001-02-21 帕尔威电力器具公司 包括平衡器电路的多方式功率变换器及其操作方法
CN1321351A (zh) * 1998-10-02 2001-11-07 帕尔威电力器具公司 使用被控制的铁磁谐振变压器电路的不间断电源系统,电压调节器和操作方法
JP2005176460A (ja) * 2003-12-09 2005-06-30 Fuji Electric Fa Components & Systems Co Ltd 無停電電源装置
CN102291014A (zh) * 2011-07-22 2011-12-21 上海交通大学 交流斩波-全桥整流的ac-dc变换器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307332A (en) * 1980-04-17 1981-12-22 Pitney Bowes Inc. Energy efficient regulated power supply system
JP2001078446A (ja) * 1999-06-29 2001-03-23 Toshiba Corp 電源装置
US7259476B2 (en) * 2005-04-26 2007-08-21 Always “On” UPS Systems Inc. DC and AC uninterruptible power supply
US8212402B2 (en) * 2009-01-27 2012-07-03 American Power Conversion Corporation System and method for limiting losses in an uninterruptible power supply
US8946930B2 (en) * 2011-07-01 2015-02-03 Cyber Power Systems Inc. Uninterruptible power supply having an integrated transformer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169617A (zh) * 1996-05-22 1998-01-07 杨泰和 间歇开关调节式直流电源供给电路
CN1321351A (zh) * 1998-10-02 2001-11-07 帕尔威电力器具公司 使用被控制的铁磁谐振变压器电路的不间断电源系统,电压调节器和操作方法
CN1284777A (zh) * 1999-08-13 2001-02-21 帕尔威电力器具公司 包括平衡器电路的多方式功率变换器及其操作方法
JP2005176460A (ja) * 2003-12-09 2005-06-30 Fuji Electric Fa Components & Systems Co Ltd 無停電電源装置
CN102291014A (zh) * 2011-07-22 2011-12-21 上海交通大学 交流斩波-全桥整流的ac-dc变换器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3113326A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958098B1 (en) 2019-10-07 2021-03-23 Google Llc UPS system for powering alternating and direct current loads

Also Published As

Publication number Publication date
EP3113326A1 (en) 2017-01-04
US10411502B2 (en) 2019-09-10
US20170012465A1 (en) 2017-01-12
EP3113326A4 (en) 2017-10-25
CN104882913A (zh) 2015-09-02

Similar Documents

Publication Publication Date Title
WO2015127843A1 (zh) 一种ups电路
US10574084B2 (en) Bi-directional DC-DC converter
US10985661B2 (en) Interim power source system and method
CN107579591B (zh) 一种交流电源供电的备电系统
TW200743289A (en) UPS system with low power loss
JP2000116027A (ja) 電源装置
CN103023128A (zh) 一种用于ups服务器的电源系统
JP2011050231A (ja) 省電力ラインインタラクティブ無停電電源装置
US8338984B2 (en) Uninterruptible power supply supporting active loads
CN102739077A (zh) 一种开关电源的辅助电源
RU2517207C2 (ru) Способ управления выходными сигналами источника бесперебойного питания
CN102651562B (zh) 一种电动车直流供电系统
CN105634108B (zh) 离线式不间断电源
JP2015042067A (ja) 双方向絶縁型dc−dcコンバータを備える蓄電用バッテリーの充放電制御装置
CN102185358A (zh) 一种简单实用的移动式不间断电源
CN101521391A (zh) 脱机式不间断电源装置
US9450453B2 (en) Uninterruptible power supply system with energy feedback to chargers and sinusoidal output
CN103246208A (zh) 电器控制器
CN107800185B (zh) 在线式不间断电源
CN104810871A (zh) 不间断电源及其启动方法
CN111200294B (zh) 高频双向光伏能逆变储能系统
CN2572644Y (zh) 含ups功能的atx电源
CN204597614U (zh) 一种供电系统的应急旁路系统
WO2016026285A1 (zh) 一种不间断电源
CN204424934U (zh) 一种ups电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15119298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015754520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754520

Country of ref document: EP