WO2015125760A1 - Resin-modified filler, epoxy resin composition, and cured product thereof - Google Patents
Resin-modified filler, epoxy resin composition, and cured product thereof Download PDFInfo
- Publication number
- WO2015125760A1 WO2015125760A1 PCT/JP2015/054217 JP2015054217W WO2015125760A1 WO 2015125760 A1 WO2015125760 A1 WO 2015125760A1 JP 2015054217 W JP2015054217 W JP 2015054217W WO 2015125760 A1 WO2015125760 A1 WO 2015125760A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy resin
- resin
- filler
- modified filler
- resin composition
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3072—Treatment with macro-molecular organic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
Definitions
- the present invention relates to a resin-modified filler that gives an epoxy resin composition excellent in fluidity and handling characteristics, an epoxy resin composition using the same, and a cured product thereof.
- the present invention relates to electrical and electronic material applications that require high functionality, and particularly to a resin-modified filler, an epoxy resin composition, and a cured product thereof suitable as a semiconductor sealant and a thin film substrate material.
- Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.
- Non-Patent Document 1 the sealing resin used for the rewiring layer such as wafer level package and the correlation insulating film used for the build-up layer, etc.
- the thickness of the layer is thin and the filler is filled with fine filler to reduce the linear expansion coefficient. Necessary. Therefore, the low viscosity of the system is necessary in this application as well (Non-Patent Document 1).
- the present invention provides a resin-modified filler that contributes to the fluidity of an epoxy resin composition and has excellent blocking resistance, an epoxy resin composition using the resin-modified filler, and a cured product thereof. Is an issue.
- the resin-modified filler of the present invention is a filler that contributes to the fluidity of the epoxy resin composition
- the curable epoxy resin composition containing the filler includes an insulating material for electrical and electronic parts and a laminate (printed wiring board, build It is useful for various composite materials such as up-substrates) and CFRP, adhesives and paints. In particular, it is extremely useful for a semiconductor sealing material for protecting a semiconductor element.
- FIG. 1 is an enlarged photograph of the massive resin-modified filler of the present invention.
- FIG. 2 is an enlarged photograph of the powdery resin-modified filler of the present invention.
- FIG. 3 is an enlarged photograph of a mixture of an epoxy resin and an inorganic filler.
- FIG. 4 is an enlarged photograph (magnification 200 times) of the resin-modified filler obtained in Example 8.
- FIG. 5 is an enlarged photograph of the resin-modified filler obtained in Example 8 (magnification rate 800 times).
- FIG. 6 is an enlarged photograph (magnification rate 50000 times) of the resin-modified filler obtained in Example 8.
- FIG. 7 is an enlarged photograph (magnification 200 times) of the resin-modified filler obtained in Example 9.
- FIG. 8 is an enlarged photograph (magnification rate 800 times) of the resin-modified filler obtained in Example 9.
- FIG. 9 is an enlarged photograph (magnification rate 50000 times) of the resin-modified filler obtained in Example 9.
- the resin-modified filler of the present invention contains an inorganic filler (a) and an epoxy resin (b) having an average of 2 to 10 epoxy groups in one molecule.
- the inorganic filler (a) is silica gel (crystalline silica, fused silica, nano silica, sol-gel silicon oxide polymer, etc.), alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, Examples include, but are not limited to, powders such as fosterite, steatite, spinel, titania, and talc, or beads obtained by spheroidizing these. These may be used alone or in combination of two or more.
- silica gel, alumina, boron nitride, aluminum nitride and the like are particularly preferable, and silica gel and alumina are particularly preferable.
- the average particle size is preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 60 ⁇ m, and particularly preferably 0.1 to 30 ⁇ m.
- the average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer (dry type) (manufactured by Seishin Co., Ltd .: LMS-30).
- the average particle size is preferably selected according to the package shape.
- 0.1 to 10 ⁇ m is preferable, and 0.1 to 5 ⁇ m is more preferable.
- 1 to 30 ⁇ m is preferable, and 1 to 25 ⁇ m is particularly preferable.
- epoxy resin (b) used in the present invention include novolac type epoxy resin, bisphenol A type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol aralkyl type epoxy resin and the like.
- bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene,
- biphenyl type phenol aralkyl type epoxy resins phenyl type phenol aralkyl type epoxy resins, polycondensates of phenols with dicyclopentadiene, modified products thereof, and novolac type epoxy resins are preferred.
- the softening point of the resin is particularly preferably 35 to 75 ° C, and particularly preferably 35 to 60 ° C.
- an epoxy resin can be kept in a solid state while suppressing blocking in the epoxy resin when used in an environment lower by 30 ° C. than the softening point.
- Epoxy resins are preferably used at a temperature lower by 50 ° C. than the softening point. In that case, when the temperature exceeds 75 ° C., it usually becomes solid, and it is not necessary to use this method. There is a risk that it may end up. Further, a compound having a softening point of 35 to 75 ° C. tends to have an excellent balance between melt viscosity and curing characteristics such as heat resistance.
- the preferable melt viscosity in 150 degreeC is 0.2 Pa.s or less. If the melt viscosity is higher than 150 ° C., there is a risk of problems in moldability. Since the lower the viscosity, the more useful it is, the lower limit is not set in the present invention (measurement is difficult with a normal viscometer).
- the epoxy resin used in the present invention has an average of 2 to 10 epoxy groups in one molecule. If the average number of epoxy groups contained in one molecule is less than 2, the curing properties such as heat resistance will be adversely affected. If the average number of epoxy groups contained in one molecule exceeds 10, the viscosity will be very high. However, there is a problem in handling characteristics.
- the epoxy equivalent of the epoxy resin used in the present invention is 150 to 750 g / eq. And particularly preferably 150 to 500 g / eq. It is. By being in this range, the composition tends to have good fluidity and curability, and the cured product tends to have excellent heat resistance, thermal decomposition characteristics, water absorption characteristics, and mechanical strength. It can be suitably used for manufacturing a semiconductor device.
- the resin-modified filler of the present invention can further contain additives such as a coupling agent.
- the coupling agent is preferably added during mixing in order to improve the familiarity between the resin and the filler.
- Preferred coupling agents include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxy Silane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl
- the method for producing the resin-modified filler of the present invention is not particularly specified, but a method using a solvent is preferable. Although there is a modification method by melt-kneading, in consideration of uniformly coating and / or impregnating the epoxy resin with the filler, it is preferable that the filler be sufficiently familiar with the filler.
- the resin-modified filler of the present invention is obtained by mixing a solvent, a resin and a filler, and then distilling off the solvent under reduced pressure. At this time, the resin may be dissolved in the solvent in advance, and then the filler may be added and mixed, or the resin may be added and mixed in a place where the filler is dispersed in the solvent, or may be added simultaneously.
- the mixing temperature is not particularly limited, but is preferably 0 ° C. to 100 ° C., particularly preferably 10 ° C. to 80 ° C. In addition, you may use the method of cooling after heating and making it uniform.
- the solvent is distilled off under reduced pressure.
- the distillation temperature of the solvent is usually 50 to 200 ° C, particularly preferably 50 to 180 ° C. At this time, the residual solvent is preferably 1% or less, and if it exceeds this, voids and peeling may occur during molding.
- Solvents that can be used in the present invention include aromatic hydrocarbons represented by toluene, xylene, naphtha, ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetone, cyclohexanone, cyclopentanone, ethyl acetate, butyl acetate, ethyl lactate, Examples include carbitol acetate, propylene glycol monomethyl ether acetate, esters such as ⁇ -butyrolactone, alcohols such as methanol, ethanol, and pronol butanol, and ethers such as diglyme, triglyme, dioxane, and tetrahydrofuran.
- aromatic hydrocarbons represented by toluene, xylene, naphtha
- ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetone, cyclohexanone
- ketones and esters are preferable from the solubility of the resin, and it is particularly preferable to use ketones and esters.
- Two or more kinds of solvents can be combined, and the dispersibility of the resin soluble filler and the volatility at the time of distillation can be adjusted.
- solubility with a combination of ketones and alcohols, and to adjust volatility with ketones and aromatic hydrocarbons.
- those having a boiling point of 150 ° C. or lower are preferable, and particularly preferably 130 ° C. or lower. If the boiling point is too high, residual solvent tends to remain, which is not preferable.
- the method for distilling off the solvent is not particularly limited, but it is preferable to distill off the solvent while stirring.
- a structure such as a vacuum dryer (a chopper that can be used under reduced pressure) is preferable, and a structure that can be stirred in an environment capable of reducing the pressure at 200 torr or less is preferable.
- a vacuum dryer a chopper that can be used under reduced pressure
- a structure that can be stirred in an environment capable of reducing the pressure at 200 torr or less is preferable.
- a metal pulverizer that is crushed vigorously, the possibility of metal contamination is high, which is not preferable.
- the number of magnetized foreign metal particles of 100 ⁇ m or more is preferably 1 or less per 10 g, more preferably 1 or less per 30 g, and particularly preferably 1 or less per 50 g.
- the number of magnetized foreign metal particles of 100 ⁇ m or more is preferably 1 or less per 10 g, more preferably 1 or less per 30 g, and particularly preferably 1 or less per 50 g.
- the resin-modified filler thus obtained is in the form of granules, lumps, or powders, and even if it is piled up at 1 cm or more at 20 ° C., it does not become a single lumps for more than one week. 5 cm) or powder (major axis: 0.1 ⁇ m to 0.1 mm).
- the lump and the powder remain as a guideline for separating both.
- the fact that it is not a single lump indicates that it is a sticking to the extent that it can be loosened by the power of human hands, even if there is a little sticking.
- blocking that normally occurs when a general epoxy resin is stacked, the shape becomes almost single and does not become a shape that can be loosened by human hands.
- a particularly preferable shape is one that does not become a single lump even when stored at 100 ° C. for 1 hour or longer.
- the resin-modified filler of the present invention exists, for example, in a state in which an inorganic resin is impregnated with a filler in which inorganic fillers are bound together by an epoxy resin or an inorganic filler.
- the major axis of the resin-modified filler is 5 cm or less, preferably 0.1 ⁇ m to 1 cm, and more preferably 0.3 ⁇ m to 5 mm.
- the major axis indicates the diameter of the longest diameter of granular, massive or powdery particles, and the measurement method is to use a ruler or have a mesh of a certain size to be measured.
- each of FIGS. 1 and 2 is compared with a conventional mixture of an epoxy resin and an inorganic filler (integrated in a plate shape as a whole: FIG. 3). It is the shape shown in.
- the epoxy resin composition of this invention containing the resin modified filler of this invention.
- a curing agent and / or a polymerization catalyst are used as essential components.
- an epoxy resin it is also conceivable to add an epoxy resin separately.
- the epoxy resin that can be used is not particularly limited, but for example, the above-described epoxy resin can be used.
- the curing agent contained in the epoxy resin composition of the present invention include, for example, phenol resins, phenol compounds, amine compounds, acid anhydride compounds, amide compounds, carboxylic acid compounds, and the like.
- Specific examples of the curing agent that can be used include phenol resin, phenol compound; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 '.
- phenol resins include phenol aralkyl resins (resins having an aromatic alkylene structure), particularly preferably a structure having at least one selected from phenol, naphthol, and cresol, and the alkylene portion serving as the linker is benzene.
- a resin characterized by at least one selected from a structure, a biphenyl structure, and a naphthalene structure (specific examples include zylock, naphthol zylock, phenol biphenylene novolak resin, cresol-biphenylene novolak resin, phenol-naphthalene novolak resin, etc.)
- Amine compounds, amide compounds; nitrogen-containing compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, linolenic acid and polyamide resins synthesized from ethylenediamine; Acid anhydride compounds, carboxylic acid compounds; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride
- the amount of curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resins. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
- the polymerization catalyst may be used in combination with a curing agent or without a curing agent.
- Specific examples of the polymerization catalyst that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo.
- Tertiary amines such as (5,4,0) undecene-7, phosphines such as tolylphosphine and triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium Quaternary ammonium salts such as salts, quaternary phosphonium salts such as triphenylbenzylphosphonium salts, triphenylethylphosphonium salts, and tetrabutylphosphonium salts.
- phosphines such as tolylphosphine and triphenylphosphine
- tetrabutylammonium salt triisopropylmethylammonium salt
- trimethyldecanylammonium salt cetyltrimethylammonium Quaternary ammonium salts
- quaternary phosphonium salts such as triphenylbenzyl
- the counter ion of the quaternary salt is not particularly specified, such as halogen, organic acid ion, hydroxide ion, etc., but organic acid ion and hydroxide ion are particularly preferable), metal compounds such as tin octylate, etc. It is done.
- a curing accelerator 0.01 to 5.0 parts by weight is used as necessary with respect to 100 parts by weight of the epoxy resin.
- tertiary amines, phosphines, quaternary phosphonium salts and the like are particularly preferable.
- the curing agent may be cured without using a curing agent, or the curing agent amount may be smaller than a predetermined amount, and may be cured by anionic polymerization. It doesn't matter.
- the epoxy resin composition other epoxy resins may be used in combination with the epoxy resin used for the resin-modified filler of the present invention.
- the proportion of the epoxy resin used in the resin-modified filler of the present invention in the total epoxy resin is preferably 15% by weight or more, particularly preferably 20% by weight or more.
- epoxy resins include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like.
- bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc
- the epoxy resin composition of the present invention can contain a phosphorus-containing compound as a flame retardant component.
- the phosphorus-containing compound may be a reactive type or an additive type.
- Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phos
- Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
- an antioxidant may be added to the epoxy resin composition of the present invention as necessary.
- Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more.
- the amount of the antioxidant used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, per 100 parts by weight of the resin component in the epoxy resin composition of the present invention.
- antioxidants examples include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant.
- phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl- ⁇ - (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl
- sulfur antioxidant examples include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyll-3,3′-thiodipropionate, and the like. .
- phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbi (2,4 -Phosphites such as -di-t-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl
- antioxidants can be used alone, but two or more kinds may be used in combination.
- a phosphorus-based antioxidant is particularly preferable.
- HALS hindered amine-based light stabilizers
- HALS is not particularly limited, but representative examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4
- the epoxy resin composition of the present invention can be blended with a binder resin as necessary.
- the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these.
- the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
- the epoxy resin composition of the present invention further includes various combinations of a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, a surfactant, a dye, a pigment, and an ultraviolet absorber.
- a silane coupling agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, a surfactant, a dye, a pigment, and an ultraviolet absorber.
- a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate
- a surfactant such as stearic acid, palmitic acid, zinc stearate, calcium stearate
- a dye such as stearic acid, palmitic acid, zinc stearate, calcium stearate
- an ultraviolet absorber such as stearic acid, palmitic acid, zinc stearate, calcium stearate
- An agent and various thermosetting resins
- the epoxy resin composition of the present invention can be obtained by uniformly mixing each component.
- the epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, until the resin-modified filler of the present invention, a curing agent, and if necessary, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are uniform using an extruder, a kneader, a roll, or the like as necessary Mix thoroughly to obtain an epoxy resin composition, pot the epoxy resin composition, and after melting (without melting in the case of liquid), mold using a casting or transfer molding machine, and further at 80 to 200 ° C.
- the cured product of the present invention can be obtained by heating for 2 to 10 hours.
- the cured product obtained by curing the epoxy resin composition of the present invention can be used for various applications.
- a sealing material for semiconductors but other than that, for example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.) ), Additives to other resins and the like in addition to the sealant.
- the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives.
- adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
- interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
- sealing agents potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip It is suitable for underfill for such as, and for sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
- Examples 1-7 Comparative Examples 1-4 Methyl ethyl ketone (MEK) as a solvent, orthocresol novolak type epoxy resin having a softening point of 52 ° C. as an epoxy resin (EP1: Nippon Kayaku EOCN-1020-52), orthocresol novolak type epoxy resin having a softening point of 55 ° (EP2: Nippon Kayaku EOCN-1020-55), softening point 52 ° C. biphenyl novolac type epoxy resin (EP3: Nippon Kayaku NC-3000-L), softening point 45 ° C.
- MEK Methyl ethyl ketone
- the resin-modified filler of the present invention maintained the powdery or granular shape both immediately after production and after the stability test, and the result of the blocking test was also good.
- the mixture of the epoxy resin and the inorganic filler of the comparative example could only be obtained in the form of blocking immediately after production or after the stability test, or in the form of a plate and inferior in handleability.
- Examples 8 and 9 Acetone and methyl isobutyl ketone (1: 1) solution as solvent, biphenyl novolac type epoxy resin (EP6: Nippon Kayaku NC-3000) having a softening point of 58 ° C as epoxy resin, and spherical silica (Admafine 1030 Admatechs) as inorganic filler Co., Ltd. (average particle size: 0.3 ⁇ m) using solution 150, epoxy resin 10, spherical silica 90 composition (Example 8), and solution 150, epoxy resin 20, spherical silica 80 composition (Example 9) The following operations were performed.
- the resin-modified filler of the present invention is a filler that contributes to the fluidity of the epoxy resin composition
- the curable epoxy resin composition containing the filler includes an insulating material for electrical and electronic parts and a laminate (printed wiring board, build It is useful for various composite materials such as up-substrates) and CFRP, adhesives and paints. In particular, it is extremely useful for a semiconductor sealing material for protecting a semiconductor element.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
The purpose of the present invention is to provide: a resin-modified filler exhibiting excellent anti-blocking properties, and contributing fluidity to an epoxy resin composition; an epoxy resin composition using the same; and a cured product thereof. This resin-modified filler is one containing an inorganic filler (a) and an epoxy resin (b) having an average of 2-10 epoxy groups in each molecule, wherein the weight ratio of (a) to (b) is (a):(b)=70:30-98:2, and the lengthwise diameter thereof is 5cm or less.
Description
本発明は流動性に優れ、またハンドリング特性に優れたエポキシ樹脂組成物を与える樹脂変性フィラー、それを用いたエポキシ樹脂組成物、およびその硬化物に関する。
The present invention relates to a resin-modified filler that gives an epoxy resin composition excellent in fluidity and handling characteristics, an epoxy resin composition using the same, and a cured product thereof.
本発明は高機能が要求される電気電子材料用途、特に半導体の封止剤、薄膜基板材料として好適な樹脂変性フィラー、エポキシ樹脂組成物、およびその硬化物に関する。
The present invention relates to electrical and electronic material applications that require high functionality, and particularly to a resin-modified filler, an epoxy resin composition, and a cured product thereof suitable as a semiconductor sealant and a thin film substrate material.
エポキシ樹脂組成物は作業性及びその硬化物の優れた電気特性、耐熱性、接着性、耐湿性(耐水性)等により電気・電子部品、構造用材料、接着剤、塗料等の分野で幅広く用いられている。
Epoxy resin compositions are widely used in the fields of electrical and electronic parts, structural materials, adhesives, paints, etc. due to their workability and excellent electrical properties, heat resistance, adhesion, moisture resistance (water resistance), etc. It has been.
しかし近年、電気・電子分野においてはその発展に伴い、樹脂組成物の高純度化をはじめ耐湿性、密着性、誘電特性、フィラー(無機または有機充填剤)を高充填させるための低粘度化、成型サイクルを短くするための反応性のアップ等の諸特性の一層の向上が求められている。又、構造材としては航空宇宙材料、レジャー・スポーツ器具用途などにおいて軽量で機械物性の優れた材料が求められている。特に半導体封止分野、基板(基板自体、もしくはその周辺材料)においては、その半導体の変遷に従い、薄層化、スタック化、システム化、三次元化と複雑になっていき、そのワイヤ配線の狭ピッチ化、細線化がますます進んできており、高流動性が無いとワイヤスィープを誘発してしまう。さらにはワイヤの接続部に悪影響を及ぼすようになってきた。
さらには、フリップチップタイプのパッケージにおいて、安価製造方法という側面からアンダーフィルを使用せず、一気に封止してしまうというMUFという手法が注目されている。本用途においてはチップとパッケージ基板の非常に狭い隙間を樹脂が通り抜ける必要があり、フィラーの微細化が重要となっており、この微細化により、系の粘度が上昇、ボイドの原因となる。
さらにはウエハーレベルパッケージなど再配線層に使用する封止樹脂や、ビルドアップ層に使用される相関絶縁膜等においては層の厚みが薄いこと、また線膨張率を下げるため、微細フィラーの充填が必要となる。したがって、本用途においても先と同様、系の低粘度が必要となる(非特許文献1)。 However, in recent years, with the development in the electric / electronic field, moisture resistance, adhesion, dielectric properties, low viscosity for high filling of filler (inorganic or organic filler) as well as high purity of resin composition, There is a need for further improvements in various properties such as increased reactivity to shorten the molding cycle. Further, as a structural material, there is a demand for a material that is lightweight and has excellent mechanical properties in applications such as aerospace materials and leisure / sports equipment. Especially in the field of semiconductor encapsulation, substrates (substrate itself or its peripheral materials), the complexity of thinning, stacking, systematization, and three-dimensionalization has become more complex as the semiconductor has changed. Pitching and thinning are progressing more and more, and if there is no high fluidity, a wire sweep is induced. Furthermore, it has come to have a bad influence on the connection part of a wire.
Furthermore, in the flip chip type package, a technique called MUF is attracting attention because it does not use an underfill from the aspect of a low cost manufacturing method and seals at a stretch. In this application, the resin needs to pass through a very narrow gap between the chip and the package substrate, and miniaturization of the filler is important. This miniaturization increases the viscosity of the system and causes voids.
Furthermore, in the sealing resin used for the rewiring layer such as wafer level package and the correlation insulating film used for the build-up layer, etc., the thickness of the layer is thin and the filler is filled with fine filler to reduce the linear expansion coefficient. Necessary. Therefore, the low viscosity of the system is necessary in this application as well (Non-Patent Document 1).
さらには、フリップチップタイプのパッケージにおいて、安価製造方法という側面からアンダーフィルを使用せず、一気に封止してしまうというMUFという手法が注目されている。本用途においてはチップとパッケージ基板の非常に狭い隙間を樹脂が通り抜ける必要があり、フィラーの微細化が重要となっており、この微細化により、系の粘度が上昇、ボイドの原因となる。
さらにはウエハーレベルパッケージなど再配線層に使用する封止樹脂や、ビルドアップ層に使用される相関絶縁膜等においては層の厚みが薄いこと、また線膨張率を下げるため、微細フィラーの充填が必要となる。したがって、本用途においても先と同様、系の低粘度が必要となる(非特許文献1)。 However, in recent years, with the development in the electric / electronic field, moisture resistance, adhesion, dielectric properties, low viscosity for high filling of filler (inorganic or organic filler) as well as high purity of resin composition, There is a need for further improvements in various properties such as increased reactivity to shorten the molding cycle. Further, as a structural material, there is a demand for a material that is lightweight and has excellent mechanical properties in applications such as aerospace materials and leisure / sports equipment. Especially in the field of semiconductor encapsulation, substrates (substrate itself or its peripheral materials), the complexity of thinning, stacking, systematization, and three-dimensionalization has become more complex as the semiconductor has changed. Pitching and thinning are progressing more and more, and if there is no high fluidity, a wire sweep is induced. Furthermore, it has come to have a bad influence on the connection part of a wire.
Furthermore, in the flip chip type package, a technique called MUF is attracting attention because it does not use an underfill from the aspect of a low cost manufacturing method and seals at a stretch. In this application, the resin needs to pass through a very narrow gap between the chip and the package substrate, and miniaturization of the filler is important. This miniaturization increases the viscosity of the system and causes voids.
Furthermore, in the sealing resin used for the rewiring layer such as wafer level package and the correlation insulating film used for the build-up layer, etc., the thickness of the layer is thin and the filler is filled with fine filler to reduce the linear expansion coefficient. Necessary. Therefore, the low viscosity of the system is necessary in this application as well (Non-Patent Document 1).
一般にエポキシ樹脂組成物の低粘度化の手法としては、使用する樹脂の低分子量化が用いられるが、低分子量化すると軟化点が低下し、室温での形状が流動性を持ちやすくなってしまうため室温での取り扱いが難しい、さらには組成物とした際にベタツキが出てしまい貯蔵やハンドリングが困難となる等の不具合が生じる。
そこで、こういった用途に対し、結晶性のエポキシ樹脂の提供が検討されているが、樹脂自体のハンドリング特性が良くても溶融混練した後に結晶化が進まず、ベタツキを持つ場合がある。これは混練時に均一にしているつもりであっても、工業的な製造においては混練のクリアランスが大きく、均一に混練が難しいことから表面に樹脂塊が残ってしまい、これによるブロッキングが促進される等の問題が生じるためである。
このような従来の問題点に鑑み、本発明はエポキシ樹脂組成物の流動性に寄与し、耐ブロッキング性に優れた樹脂変性フィラー、それを用いたエポキシ樹脂組成物、その硬化物を提供することを課題とする。 In general, as a method for reducing the viscosity of an epoxy resin composition, lowering the molecular weight of the resin used is used. However, if the molecular weight is lowered, the softening point decreases, and the shape at room temperature tends to have fluidity. Problems such as difficulty in handling at room temperature and stickiness when used as a composition make storage and handling difficult.
Thus, although provision of a crystalline epoxy resin is being studied for such applications, even if the handling characteristics of the resin itself are good, crystallization does not proceed after melt-kneading and may be sticky. Even if this is intended to be uniform at the time of kneading, the clearance of kneading is large in industrial production, and since uniform kneading is difficult, resin lumps remain on the surface, thereby promoting blocking, etc. This is because the problem arises.
In view of such conventional problems, the present invention provides a resin-modified filler that contributes to the fluidity of an epoxy resin composition and has excellent blocking resistance, an epoxy resin composition using the resin-modified filler, and a cured product thereof. Is an issue.
そこで、こういった用途に対し、結晶性のエポキシ樹脂の提供が検討されているが、樹脂自体のハンドリング特性が良くても溶融混練した後に結晶化が進まず、ベタツキを持つ場合がある。これは混練時に均一にしているつもりであっても、工業的な製造においては混練のクリアランスが大きく、均一に混練が難しいことから表面に樹脂塊が残ってしまい、これによるブロッキングが促進される等の問題が生じるためである。
このような従来の問題点に鑑み、本発明はエポキシ樹脂組成物の流動性に寄与し、耐ブロッキング性に優れた樹脂変性フィラー、それを用いたエポキシ樹脂組成物、その硬化物を提供することを課題とする。 In general, as a method for reducing the viscosity of an epoxy resin composition, lowering the molecular weight of the resin used is used. However, if the molecular weight is lowered, the softening point decreases, and the shape at room temperature tends to have fluidity. Problems such as difficulty in handling at room temperature and stickiness when used as a composition make storage and handling difficult.
Thus, although provision of a crystalline epoxy resin is being studied for such applications, even if the handling characteristics of the resin itself are good, crystallization does not proceed after melt-kneading and may be sticky. Even if this is intended to be uniform at the time of kneading, the clearance of kneading is large in industrial production, and since uniform kneading is difficult, resin lumps remain on the surface, thereby promoting blocking, etc. This is because the problem arises.
In view of such conventional problems, the present invention provides a resin-modified filler that contributes to the fluidity of an epoxy resin composition and has excellent blocking resistance, an epoxy resin composition using the resin-modified filler, and a cured product thereof. Is an issue.
本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、下記[1]~[4]に関する。
[1] 無機フィラー(a)と、一分子内に平均2~10個のエポキシ基を有するエポキシ樹脂(b)とを含む樹脂変性フィラーであって、
(a)と(b)の重量比が(a):(b)=70:30~98:2であり、長径が5cm以下である樹脂変性フィラー。
[2] エポキシ樹脂(b)の軟化点が35~75℃である[1]に記載の樹脂変性フィラー。
[3] [1]または[2]に記載の樹脂変性フィラーと、エポキシ樹脂用硬化剤および/または重合触媒とを含むエポキシ樹脂組成物。
[4] [3]に記載のエポキシ樹脂組成物を硬化して得られる硬化物。 As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention relates to the following [1] to [4].
[1] A resin-modified filler comprising an inorganic filler (a) and an epoxy resin (b) having an average of 2 to 10 epoxy groups in one molecule,
A resin-modified filler having a weight ratio of (a) to (b) of (a) :( b) = 70: 30 to 98: 2 and a major axis of 5 cm or less.
[2] The resin-modified filler according to [1], wherein the softening point of the epoxy resin (b) is 35 to 75 ° C.
[3] An epoxy resin composition comprising the resin-modified filler according to [1] or [2] and a curing agent for epoxy resin and / or a polymerization catalyst.
[4] A cured product obtained by curing the epoxy resin composition according to [3].
すなわち本発明は、下記[1]~[4]に関する。
[1] 無機フィラー(a)と、一分子内に平均2~10個のエポキシ基を有するエポキシ樹脂(b)とを含む樹脂変性フィラーであって、
(a)と(b)の重量比が(a):(b)=70:30~98:2であり、長径が5cm以下である樹脂変性フィラー。
[2] エポキシ樹脂(b)の軟化点が35~75℃である[1]に記載の樹脂変性フィラー。
[3] [1]または[2]に記載の樹脂変性フィラーと、エポキシ樹脂用硬化剤および/または重合触媒とを含むエポキシ樹脂組成物。
[4] [3]に記載のエポキシ樹脂組成物を硬化して得られる硬化物。 As a result of intensive studies in view of the actual situation as described above, the present inventors have completed the present invention.
That is, the present invention relates to the following [1] to [4].
[1] A resin-modified filler comprising an inorganic filler (a) and an epoxy resin (b) having an average of 2 to 10 epoxy groups in one molecule,
A resin-modified filler having a weight ratio of (a) to (b) of (a) :( b) = 70: 30 to 98: 2 and a major axis of 5 cm or less.
[2] The resin-modified filler according to [1], wherein the softening point of the epoxy resin (b) is 35 to 75 ° C.
[3] An epoxy resin composition comprising the resin-modified filler according to [1] or [2] and a curing agent for epoxy resin and / or a polymerization catalyst.
[4] A cured product obtained by curing the epoxy resin composition according to [3].
本発明の樹脂変性フィラーはエポキシ樹脂組成物の流動性に寄与するフィラーであり、該フィラーを含有する硬化性のエポキシ樹脂組成物は、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。特に半導体素子を保護する半導体封止材料にきわめて有用である。
The resin-modified filler of the present invention is a filler that contributes to the fluidity of the epoxy resin composition, and the curable epoxy resin composition containing the filler includes an insulating material for electrical and electronic parts and a laminate (printed wiring board, build It is useful for various composite materials such as up-substrates) and CFRP, adhesives and paints. In particular, it is extremely useful for a semiconductor sealing material for protecting a semiconductor element.
本発明の樹脂変性フィラーは無機フィラー(a)と、一分子内に平均2~10個のエポキシ基を有するエポキシ樹脂(b)とを含む。
The resin-modified filler of the present invention contains an inorganic filler (a) and an epoxy resin (b) having an average of 2 to 10 epoxy groups in one molecule.
本発明において無機フィラー(a)とはシリカゲル(結晶シリカ、溶融シリカ、ナノシリカ、ゾルーゲルによる酸化ケイ素重合体等)、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。本発明においては特にシリカゲルやアルミナ、窒化ホウ素、窒化アルミなどが好ましく、特にシリカゲル、アルミナが好ましい。
その粒径においては種々挙げられるが、その平均粒径が0.1~100μmが好ましく、0.1~60μmがより好ましく、特に0.1~30μmが好ましい。平均粒径の測定としては、例えば、レーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製:LMS-30)等を使用して測定することができる。
尚、平均粒径はパッケージ形状によって選択することが好ましい。フリップチップタイプであれば、0.1~10μmが好ましく、0.1~5μmがより好ましい。また、ワイヤボンディングタイプであれば1~30μmが好ましく、特には1~25μmが好ましい。 In the present invention, the inorganic filler (a) is silica gel (crystalline silica, fused silica, nano silica, sol-gel silicon oxide polymer, etc.), alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, Examples include, but are not limited to, powders such as fosterite, steatite, spinel, titania, and talc, or beads obtained by spheroidizing these. These may be used alone or in combination of two or more. In the present invention, silica gel, alumina, boron nitride, aluminum nitride and the like are particularly preferable, and silica gel and alumina are particularly preferable.
There are various particle sizes, but the average particle size is preferably 0.1 to 100 μm, more preferably 0.1 to 60 μm, and particularly preferably 0.1 to 30 μm. The average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer (dry type) (manufactured by Seishin Co., Ltd .: LMS-30).
The average particle size is preferably selected according to the package shape. In the case of a flip chip type, 0.1 to 10 μm is preferable, and 0.1 to 5 μm is more preferable. In the case of a wire bonding type, 1 to 30 μm is preferable, and 1 to 25 μm is particularly preferable.
その粒径においては種々挙げられるが、その平均粒径が0.1~100μmが好ましく、0.1~60μmがより好ましく、特に0.1~30μmが好ましい。平均粒径の測定としては、例えば、レーザー回折・散乱式粒度分布測定器(乾式)(株式会社セイシン企業製:LMS-30)等を使用して測定することができる。
尚、平均粒径はパッケージ形状によって選択することが好ましい。フリップチップタイプであれば、0.1~10μmが好ましく、0.1~5μmがより好ましい。また、ワイヤボンディングタイプであれば1~30μmが好ましく、特には1~25μmが好ましい。 In the present invention, the inorganic filler (a) is silica gel (crystalline silica, fused silica, nano silica, sol-gel silicon oxide polymer, etc.), alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, Examples include, but are not limited to, powders such as fosterite, steatite, spinel, titania, and talc, or beads obtained by spheroidizing these. These may be used alone or in combination of two or more. In the present invention, silica gel, alumina, boron nitride, aluminum nitride and the like are particularly preferable, and silica gel and alumina are particularly preferable.
There are various particle sizes, but the average particle size is preferably 0.1 to 100 μm, more preferably 0.1 to 60 μm, and particularly preferably 0.1 to 30 μm. The average particle size can be measured using, for example, a laser diffraction / scattering type particle size distribution analyzer (dry type) (manufactured by Seishin Co., Ltd .: LMS-30).
The average particle size is preferably selected according to the package shape. In the case of a flip chip type, 0.1 to 10 μm is preferable, and 0.1 to 5 μm is more preferable. In the case of a wire bonding type, 1 to 30 μm is preferable, and 1 to 25 μm is particularly preferable.
本発明に使用するエポキシ樹脂(b)の具体例としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、等シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等のエポキシ樹脂が挙げられるが、これらに限定されるものではない。ここで、中でもビフェニル型フェノールアラルキル型エポキシ樹脂、フェニル型フェノールアラルキル型エポキシ樹脂、フェノール類とジシクロペンタジエンとの重縮合物及びこれらの変性物、ノボラック型エポキシ樹脂が好ましい。
Specific examples of the epoxy resin (b) used in the present invention include novolac type epoxy resin, bisphenol A type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol aralkyl type epoxy resin and the like. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetate Enone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols , Cycloaliphatic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, silsesquioxane epoxy resin (chain structure, cyclic structure, ladder structure, or a mixed structure of at least two of them) Glycidyl group and / or epoxycyclohexane structure Epoxy resin) epoxy resin and the like having, but not limited thereto. Among these, biphenyl type phenol aralkyl type epoxy resins, phenyl type phenol aralkyl type epoxy resins, polycondensates of phenols with dicyclopentadiene, modified products thereof, and novolac type epoxy resins are preferred.
ただし、本発明においては特にその樹脂の軟化点が35~75℃であることが好ましく、特に35~60℃が好ましい。一般にエポキシ樹脂は軟化点より30℃低い環境下での使用がエポキシ樹脂においてブロッキングを抑えながら固形状に保つことができる。エポキシ樹脂においては、特に軟化点より50℃低い温度での使用が好ましく、その場合通常75℃を超えると固形状となり、本手法をあえて用いる必要が少なく、その効果が少ないばかりか粘度が高くなってしまう場合がある恐れがある。また35~75℃の軟化点の化合物が溶融粘度と耐熱性等の硬化特性とのバランスに優れる傾向にある。
また150℃における好ましい溶融粘度は0.2Pa・s以下である。溶融粘度が150℃よりも高いと成型性に課題が出る恐れがある。粘度が低ければ低いほど有用であるため、本発明においては下限を設けない(通常の粘度計では測定も困難となる。) However, in the present invention, the softening point of the resin is particularly preferably 35 to 75 ° C, and particularly preferably 35 to 60 ° C. In general, an epoxy resin can be kept in a solid state while suppressing blocking in the epoxy resin when used in an environment lower by 30 ° C. than the softening point. Epoxy resins are preferably used at a temperature lower by 50 ° C. than the softening point. In that case, when the temperature exceeds 75 ° C., it usually becomes solid, and it is not necessary to use this method. There is a risk that it may end up. Further, a compound having a softening point of 35 to 75 ° C. tends to have an excellent balance between melt viscosity and curing characteristics such as heat resistance.
Moreover, the preferable melt viscosity in 150 degreeC is 0.2 Pa.s or less. If the melt viscosity is higher than 150 ° C., there is a risk of problems in moldability. Since the lower the viscosity, the more useful it is, the lower limit is not set in the present invention (measurement is difficult with a normal viscometer).
また150℃における好ましい溶融粘度は0.2Pa・s以下である。溶融粘度が150℃よりも高いと成型性に課題が出る恐れがある。粘度が低ければ低いほど有用であるため、本発明においては下限を設けない(通常の粘度計では測定も困難となる。) However, in the present invention, the softening point of the resin is particularly preferably 35 to 75 ° C, and particularly preferably 35 to 60 ° C. In general, an epoxy resin can be kept in a solid state while suppressing blocking in the epoxy resin when used in an environment lower by 30 ° C. than the softening point. Epoxy resins are preferably used at a temperature lower by 50 ° C. than the softening point. In that case, when the temperature exceeds 75 ° C., it usually becomes solid, and it is not necessary to use this method. There is a risk that it may end up. Further, a compound having a softening point of 35 to 75 ° C. tends to have an excellent balance between melt viscosity and curing characteristics such as heat resistance.
Moreover, the preferable melt viscosity in 150 degreeC is 0.2 Pa.s or less. If the melt viscosity is higher than 150 ° C., there is a risk of problems in moldability. Since the lower the viscosity, the more useful it is, the lower limit is not set in the present invention (measurement is difficult with a normal viscometer).
なお、本発明において使用するエポキシ樹脂は、一分子内に平均2~10個のエポキシ基を有する。一分子内に含まれるエポキシ基の数の平均が2を切ると耐熱性等の硬化特性に悪影響を及ぼし、一分子内に含まれるエポキシ基の数の平均が10を超えた場合、粘度が非常に高くなりハンドリング特性に問題が生じる。
また本発明に使用するエポキシ樹脂のエポキシ当量は150~750g/eq.であることが好ましく、特に好ましくは150~500g/eq.である。本範囲内にあることで、組成物において流動性、硬化性が良好となる傾向にあり、またその硬化物において、耐熱性、熱分解特性、吸水特性、機械強度に優れる傾向にあり、良好な半導体装置の製造に好適に使用できる。 The epoxy resin used in the present invention has an average of 2 to 10 epoxy groups in one molecule. If the average number of epoxy groups contained in one molecule is less than 2, the curing properties such as heat resistance will be adversely affected. If the average number of epoxy groups contained in one molecule exceeds 10, the viscosity will be very high. However, there is a problem in handling characteristics.
The epoxy equivalent of the epoxy resin used in the present invention is 150 to 750 g / eq. And particularly preferably 150 to 500 g / eq. It is. By being in this range, the composition tends to have good fluidity and curability, and the cured product tends to have excellent heat resistance, thermal decomposition characteristics, water absorption characteristics, and mechanical strength. It can be suitably used for manufacturing a semiconductor device.
また本発明に使用するエポキシ樹脂のエポキシ当量は150~750g/eq.であることが好ましく、特に好ましくは150~500g/eq.である。本範囲内にあることで、組成物において流動性、硬化性が良好となる傾向にあり、またその硬化物において、耐熱性、熱分解特性、吸水特性、機械強度に優れる傾向にあり、良好な半導体装置の製造に好適に使用できる。 The epoxy resin used in the present invention has an average of 2 to 10 epoxy groups in one molecule. If the average number of epoxy groups contained in one molecule is less than 2, the curing properties such as heat resistance will be adversely affected. If the average number of epoxy groups contained in one molecule exceeds 10, the viscosity will be very high. However, there is a problem in handling characteristics.
The epoxy equivalent of the epoxy resin used in the present invention is 150 to 750 g / eq. And particularly preferably 150 to 500 g / eq. It is. By being in this range, the composition tends to have good fluidity and curability, and the cured product tends to have excellent heat resistance, thermal decomposition characteristics, water absorption characteristics, and mechanical strength. It can be suitably used for manufacturing a semiconductor device.
本発明において無機フィラー(a)とエポキシ樹脂(b)との比率は、重量比で(a):(b)=70:30~98:2であり、より好ましくは70:30~95:5である。
(a):(b)=70:30の比率と比べてフィラー量の割合が少なくなると、特に軟化点60℃以下のエポキシ樹脂を用いた場合、室温での取り扱いにおいてブロッキングが生じる可能性が高く、ハンドリングが非常に難しくなる。例えば軟化点50℃以下のエポキシ樹脂を用いた場合、細かく砕き、粒状、もしくはフレーク状もしくは小さなブロック状にすることも困難となる。すなわち、流動性、ハンドリング等の特性の面から(a):(b)=70:30~98:2である。 In the present invention, the weight ratio of the inorganic filler (a) to the epoxy resin (b) is (a) :( b) = 70: 30 to 98: 2, more preferably 70:30 to 95: 5. It is.
When the proportion of the filler amount is reduced compared to the ratio of (a) :( b) = 70: 30, particularly when an epoxy resin having a softening point of 60 ° C. or lower is used, blocking is likely to occur in handling at room temperature. , Handling becomes very difficult. For example, when an epoxy resin having a softening point of 50 ° C. or lower is used, it becomes difficult to finely pulverize, granulate, flakes or small blocks. That is, from the viewpoint of characteristics such as fluidity and handling, (a) :( b) = 70: 30 to 98: 2.
(a):(b)=70:30の比率と比べてフィラー量の割合が少なくなると、特に軟化点60℃以下のエポキシ樹脂を用いた場合、室温での取り扱いにおいてブロッキングが生じる可能性が高く、ハンドリングが非常に難しくなる。例えば軟化点50℃以下のエポキシ樹脂を用いた場合、細かく砕き、粒状、もしくはフレーク状もしくは小さなブロック状にすることも困難となる。すなわち、流動性、ハンドリング等の特性の面から(a):(b)=70:30~98:2である。 In the present invention, the weight ratio of the inorganic filler (a) to the epoxy resin (b) is (a) :( b) = 70: 30 to 98: 2, more preferably 70:30 to 95: 5. It is.
When the proportion of the filler amount is reduced compared to the ratio of (a) :( b) = 70: 30, particularly when an epoxy resin having a softening point of 60 ° C. or lower is used, blocking is likely to occur in handling at room temperature. , Handling becomes very difficult. For example, when an epoxy resin having a softening point of 50 ° C. or lower is used, it becomes difficult to finely pulverize, granulate, flakes or small blocks. That is, from the viewpoint of characteristics such as fluidity and handling, (a) :( b) = 70: 30 to 98: 2.
本発明の樹脂変性フィラーは、さらにカップリング剤等の添加剤を含有することができる。カップリング剤は樹脂とフィラーとの馴染みを良くするため、混合時に添加することが好ましい。
好ましいカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
これらカップリング剤は1種又は2種以上を混合して用いても良い。
カップリング剤は、本発明のエポキシ樹脂組成物において通常0.05~20重量部、好ましくは0.1~10重量部が必要に応じて含有される。 The resin-modified filler of the present invention can further contain additives such as a coupling agent. The coupling agent is preferably added during mixing in order to improve the familiarity between the resin and the filler.
Preferred coupling agents include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxy Silane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate Titanium coupling agents such as neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneo Decanoyl zirconate, neoalkoxytris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxytris (ethylenediaminoethyl) zirconate, neoalkoxy Examples thereof include zirconium such as citris (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al-acetylacetonate, Al-methacrylate, and Al-propionate, or an aluminum coupling agent.
These coupling agents may be used alone or in combination of two or more.
In the epoxy resin composition of the present invention, the coupling agent is usually contained in an amount of 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight, if necessary.
好ましいカップリング剤としては、例えば3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビニルトリメトキシシラン、N-(2-(ビニルベンジルアミノ)エチル)3-アミノプロピルトリメトキシシラン塩酸塩、3-メタクリロキシプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン等のシラン系カップリング剤;イソプロピル(N-エチルアミノエチルアミノ)チタネート、イソプロピルトリイソステアロイルチタネート、チタニウムジ(ジオクチルピロフォスフェート)オキシアセテート、テトライソプロピルジ(ジオクチルフォスファイト)チタネート、ネオアルコキシトリ(p-N-(β-アミノエチル)アミノフェニル)チタネート等のチタン系カップリング剤;Zr-アセチルアセトネート、Zr-メタクリレート、Zr-プロピオネート、ネオアルコキシジルコネート、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデカノイル)ベンゼンスルフォニルジルコネート、ネオアルコキシトリス(エチレンジアミノエチル)ジルコネート、ネオアルコキシトリス(m-アミノフェニル)ジルコネート、アンモニウムジルコニウムカーボネート、Al-アセチルアセトネート、Al-メタクリレート、Al-プロピオネート等のジルコニウム、或いはアルミニウム系カップリング剤等が挙げられる。
これらカップリング剤は1種又は2種以上を混合して用いても良い。
カップリング剤は、本発明のエポキシ樹脂組成物において通常0.05~20重量部、好ましくは0.1~10重量部が必要に応じて含有される。 The resin-modified filler of the present invention can further contain additives such as a coupling agent. The coupling agent is preferably added during mixing in order to improve the familiarity between the resin and the filler.
Preferred coupling agents include, for example, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri Methoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxy Silane, vinyltrimethoxysilane, N- (2- (vinylbenzylamino) ethyl) 3-aminopropyltrimethoxysilane hydrochloride, 3-methacryloxypropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloro Silane coupling agents such as propyltrimethoxysilane; isopropyl (N-ethylaminoethylamino) titanate, isopropyl triisostearoyl titanate, titanium di (dioctyl pyrophosphate) oxyacetate, tetraisopropyl di (dioctyl phosphite) titanate Titanium coupling agents such as neoalkoxytri (pN- (β-aminoethyl) aminophenyl) titanate; Zr-acetylacetonate, Zr-methacrylate, Zr-propionate, neoalkoxyzirconate, neoalkoxytrisneo Decanoyl zirconate, neoalkoxytris (dodecanoyl) benzenesulfonyl zirconate, neoalkoxytris (ethylenediaminoethyl) zirconate, neoalkoxy Examples thereof include zirconium such as citris (m-aminophenyl) zirconate, ammonium zirconium carbonate, Al-acetylacetonate, Al-methacrylate, and Al-propionate, or an aluminum coupling agent.
These coupling agents may be used alone or in combination of two or more.
In the epoxy resin composition of the present invention, the coupling agent is usually contained in an amount of 0.05 to 20 parts by weight, preferably 0.1 to 10 parts by weight, if necessary.
本発明の樹脂変性フィラーの製造方法としては、特に指定はないが、溶剤を用いた手法が好ましい。溶融混練による変性方法もあるが、フィラーに均一にエポキシ樹脂をコートおよび/または含浸することを考えた場合、溶剤により十分にフィラーになじませることが好ましい。具体的には、溶剤、樹脂、フィラーを混合し、その後溶剤を減圧下で留去することで本発明の樹脂変性フィラーが得られる。この際、溶剤にあらかじめ樹脂を溶解し、その後フィラーを入れて混合しても、溶剤にフィラーを分散させているところに樹脂を投入し混合しても構わず、同時に投入しても構わない。なお、混合する温度は特に規定しないが、0℃~100℃が好ましく、特に好ましくは10℃~80℃である。なお、加温して均一にした後、冷却するという手法を用いても構わない。
溶剤の留去は減圧下で行われる。溶剤の留去温度は通常50~200℃、特に好ましくは50~180℃である。この際、残溶剤が1%以下であることが好ましく、これを超えた場合、成型時にボイド・剥離の原因となる場合がある。 The method for producing the resin-modified filler of the present invention is not particularly specified, but a method using a solvent is preferable. Although there is a modification method by melt-kneading, in consideration of uniformly coating and / or impregnating the epoxy resin with the filler, it is preferable that the filler be sufficiently familiar with the filler. Specifically, the resin-modified filler of the present invention is obtained by mixing a solvent, a resin and a filler, and then distilling off the solvent under reduced pressure. At this time, the resin may be dissolved in the solvent in advance, and then the filler may be added and mixed, or the resin may be added and mixed in a place where the filler is dispersed in the solvent, or may be added simultaneously. The mixing temperature is not particularly limited, but is preferably 0 ° C. to 100 ° C., particularly preferably 10 ° C. to 80 ° C. In addition, you may use the method of cooling after heating and making it uniform.
The solvent is distilled off under reduced pressure. The distillation temperature of the solvent is usually 50 to 200 ° C, particularly preferably 50 to 180 ° C. At this time, the residual solvent is preferably 1% or less, and if it exceeds this, voids and peeling may occur during molding.
溶剤の留去は減圧下で行われる。溶剤の留去温度は通常50~200℃、特に好ましくは50~180℃である。この際、残溶剤が1%以下であることが好ましく、これを超えた場合、成型時にボイド・剥離の原因となる場合がある。 The method for producing the resin-modified filler of the present invention is not particularly specified, but a method using a solvent is preferable. Although there is a modification method by melt-kneading, in consideration of uniformly coating and / or impregnating the epoxy resin with the filler, it is preferable that the filler be sufficiently familiar with the filler. Specifically, the resin-modified filler of the present invention is obtained by mixing a solvent, a resin and a filler, and then distilling off the solvent under reduced pressure. At this time, the resin may be dissolved in the solvent in advance, and then the filler may be added and mixed, or the resin may be added and mixed in a place where the filler is dispersed in the solvent, or may be added simultaneously. The mixing temperature is not particularly limited, but is preferably 0 ° C. to 100 ° C., particularly preferably 10 ° C. to 80 ° C. In addition, you may use the method of cooling after heating and making it uniform.
The solvent is distilled off under reduced pressure. The distillation temperature of the solvent is usually 50 to 200 ° C, particularly preferably 50 to 180 ° C. At this time, the residual solvent is preferably 1% or less, and if it exceeds this, voids and peeling may occur during molding.
本発明において使用できる溶剤としてはトルエン、キシレン、ナフサに代表される芳香族炭化水素類、メチルエチルケトン、メチルイソブチルケトン、アセトン、シクロヘキサノン、シクロペンタノン等のケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、γブチロラクトン等のエステル類、メタノール、エタノール、プロノールブタノール等のアルコール類、ジグライム、トリグライム、ジオキサン、テトラヒドロフラン等のエーテル類、などが挙げられ、特に香族炭化水素類、ケトン類、エステル類がその樹脂の溶解性から好ましく、特にケトン類、エステル類を用いることが好ましい。なお、二種類以上の溶剤を合わせることも可能であり、樹脂の溶解性フィラーの分散性、留去時の揮発性を調整することもできる。例えばケトン類とアルコール類との組み合わせで溶解性を調整、ケトン類と芳香族炭化水素で揮発性を調整するということも可能である。
なお、本発明においてその沸点が150℃以下のものが好ましく、特に130℃以下が好ましい。沸点が高すぎると残溶剤が残りやすく好ましくない。 Solvents that can be used in the present invention include aromatic hydrocarbons represented by toluene, xylene, naphtha, ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetone, cyclohexanone, cyclopentanone, ethyl acetate, butyl acetate, ethyl lactate, Examples include carbitol acetate, propylene glycol monomethyl ether acetate, esters such as γ-butyrolactone, alcohols such as methanol, ethanol, and pronol butanol, and ethers such as diglyme, triglyme, dioxane, and tetrahydrofuran. Hydrogens, ketones, and esters are preferable from the solubility of the resin, and it is particularly preferable to use ketones and esters. Two or more kinds of solvents can be combined, and the dispersibility of the resin soluble filler and the volatility at the time of distillation can be adjusted. For example, it is possible to adjust solubility with a combination of ketones and alcohols, and to adjust volatility with ketones and aromatic hydrocarbons.
In the present invention, those having a boiling point of 150 ° C. or lower are preferable, and particularly preferably 130 ° C. or lower. If the boiling point is too high, residual solvent tends to remain, which is not preferable.
なお、本発明においてその沸点が150℃以下のものが好ましく、特に130℃以下が好ましい。沸点が高すぎると残溶剤が残りやすく好ましくない。 Solvents that can be used in the present invention include aromatic hydrocarbons represented by toluene, xylene, naphtha, ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetone, cyclohexanone, cyclopentanone, ethyl acetate, butyl acetate, ethyl lactate, Examples include carbitol acetate, propylene glycol monomethyl ether acetate, esters such as γ-butyrolactone, alcohols such as methanol, ethanol, and pronol butanol, and ethers such as diglyme, triglyme, dioxane, and tetrahydrofuran. Hydrogens, ketones, and esters are preferable from the solubility of the resin, and it is particularly preferable to use ketones and esters. Two or more kinds of solvents can be combined, and the dispersibility of the resin soluble filler and the volatility at the time of distillation can be adjusted. For example, it is possible to adjust solubility with a combination of ketones and alcohols, and to adjust volatility with ketones and aromatic hydrocarbons.
In the present invention, those having a boiling point of 150 ° C. or lower are preferable, and particularly preferably 130 ° C. or lower. If the boiling point is too high, residual solvent tends to remain, which is not preferable.
本発明においてはその溶剤の留去方法は特に限定されないが、撹拌しながら溶剤留去することが好ましく、具体的には、ナウターミキサー、リボコーン、コニカルドライヤ、減圧下でのプラネタリミキサー、エバポレータ、バキュームドライヤー(減圧条件下で使用できるチョッパー)、等の構造が好ましく、200torr以下での減圧ができる環境下で撹拌できるものがよい。ただし、激しく砕くような金属製の粉砕機の場合、金属がコンタミネーションする可能性が高いことから好ましくない。
本発明においては100μm以上の着磁金属異物は10gあたり1個以下であることが好ましく、さらに好ましくは30gあたり1個以下、特に50gあたり1個以下であることが好ましい。100gあたり1個以上着磁異物が混入した場合、出来上がった半導体装置に致命的な問題を与える恐れがある。 In the present invention, the method for distilling off the solvent is not particularly limited, but it is preferable to distill off the solvent while stirring. Specifically, a nauter mixer, ribocorn, conical dryer, a planetary mixer under reduced pressure, an evaporator, A structure such as a vacuum dryer (a chopper that can be used under reduced pressure) is preferable, and a structure that can be stirred in an environment capable of reducing the pressure at 200 torr or less is preferable. However, in the case of a metal pulverizer that is crushed vigorously, the possibility of metal contamination is high, which is not preferable.
In the present invention, the number of magnetized foreign metal particles of 100 μm or more is preferably 1 or less per 10 g, more preferably 1 or less per 30 g, and particularly preferably 1 or less per 50 g. When one or more magnetized foreign substances are mixed per 100 g, there is a risk of giving a fatal problem to the completed semiconductor device.
本発明においては100μm以上の着磁金属異物は10gあたり1個以下であることが好ましく、さらに好ましくは30gあたり1個以下、特に50gあたり1個以下であることが好ましい。100gあたり1個以上着磁異物が混入した場合、出来上がった半導体装置に致命的な問題を与える恐れがある。 In the present invention, the method for distilling off the solvent is not particularly limited, but it is preferable to distill off the solvent while stirring. Specifically, a nauter mixer, ribocorn, conical dryer, a planetary mixer under reduced pressure, an evaporator, A structure such as a vacuum dryer (a chopper that can be used under reduced pressure) is preferable, and a structure that can be stirred in an environment capable of reducing the pressure at 200 torr or less is preferable. However, in the case of a metal pulverizer that is crushed vigorously, the possibility of metal contamination is high, which is not preferable.
In the present invention, the number of magnetized foreign metal particles of 100 μm or more is preferably 1 or less per 10 g, more preferably 1 or less per 30 g, and particularly preferably 1 or less per 50 g. When one or more magnetized foreign substances are mixed per 100 g, there is a risk of giving a fatal problem to the completed semiconductor device.
このようにして得られた樹脂変性フィラーは粒状、塊状、もしくは粉状を呈し、20℃において1cm以上重ねても1週間以上単一の塊とならず、粒状もしくは塊状(長径:0.1mm~5cm)、もしくは粉状(長径:0.1μm~0.1mm)の形状を示す。尚、塊状、粉状は両者を区分けする目安に留まる。ここにおいて単一の塊とならずとは多少のくっつきはあったとしても人の手の力でほぐれる程度のくっつきであることを示す。一般的なエポキシ樹脂を重ねた場合に通常生じ得るブロッキングが進むとほぼ単一となり人の手でほぐれる形状とならない。特に好ましい形状のものは、100℃で1時間以上保管しても単一の塊とならないものである。
本発明の樹脂変性フィラーは、例えば、無機フィラー同士がエポキシ樹脂によって結着したフィラーや無機フィラーにエポキシ樹脂が含浸されているような状態で存在している。そして、このような樹脂変性フィラーの粒径について長径は5cm以下であり、0.1μm~1cmが好ましく、0.3μm~5mmがより好ましい。ここで、長径は、粒状、塊状または粉状の粒子の一番直径が長い箇所の直径を示し、測定方法としては、定規を使用して測定するか、測定したい一定の大きさの網目を有するメッシュを通過させて通過の有無を確認することで測定することができる。また、顕微鏡を使用して長径を測定することも可能である。尚、平均粒径としては、通常5cm以下であり、0.1μm~1cmが好ましく、0.3μm~5mmがより好ましい。測定方法は同様である。
本発明の樹脂変性フィラーの形状の例としては、従来のエポキシ樹脂と無機フィラーの混合物(全体で一体化して板状の形態をしている:図3)のものと比較すると各々図1~2に示された形状である。 The resin-modified filler thus obtained is in the form of granules, lumps, or powders, and even if it is piled up at 1 cm or more at 20 ° C., it does not become a single lumps for more than one week. 5 cm) or powder (major axis: 0.1 μm to 0.1 mm). In addition, the lump and the powder remain as a guideline for separating both. Here, the fact that it is not a single lump indicates that it is a sticking to the extent that it can be loosened by the power of human hands, even if there is a little sticking. When blocking that normally occurs when a general epoxy resin is stacked, the shape becomes almost single and does not become a shape that can be loosened by human hands. A particularly preferable shape is one that does not become a single lump even when stored at 100 ° C. for 1 hour or longer.
The resin-modified filler of the present invention exists, for example, in a state in which an inorganic resin is impregnated with a filler in which inorganic fillers are bound together by an epoxy resin or an inorganic filler. The major axis of the resin-modified filler is 5 cm or less, preferably 0.1 μm to 1 cm, and more preferably 0.3 μm to 5 mm. Here, the major axis indicates the diameter of the longest diameter of granular, massive or powdery particles, and the measurement method is to use a ruler or have a mesh of a certain size to be measured. It can be measured by passing the mesh and confirming the presence or absence of the passage. It is also possible to measure the major axis using a microscope. The average particle size is usually 5 cm or less, preferably 0.1 μm to 1 cm, and more preferably 0.3 μm to 5 mm. The measurement method is the same.
As an example of the shape of the resin-modified filler of the present invention, each of FIGS. 1 and 2 is compared with a conventional mixture of an epoxy resin and an inorganic filler (integrated in a plate shape as a whole: FIG. 3). It is the shape shown in.
本発明の樹脂変性フィラーは、例えば、無機フィラー同士がエポキシ樹脂によって結着したフィラーや無機フィラーにエポキシ樹脂が含浸されているような状態で存在している。そして、このような樹脂変性フィラーの粒径について長径は5cm以下であり、0.1μm~1cmが好ましく、0.3μm~5mmがより好ましい。ここで、長径は、粒状、塊状または粉状の粒子の一番直径が長い箇所の直径を示し、測定方法としては、定規を使用して測定するか、測定したい一定の大きさの網目を有するメッシュを通過させて通過の有無を確認することで測定することができる。また、顕微鏡を使用して長径を測定することも可能である。尚、平均粒径としては、通常5cm以下であり、0.1μm~1cmが好ましく、0.3μm~5mmがより好ましい。測定方法は同様である。
本発明の樹脂変性フィラーの形状の例としては、従来のエポキシ樹脂と無機フィラーの混合物(全体で一体化して板状の形態をしている:図3)のものと比較すると各々図1~2に示された形状である。 The resin-modified filler thus obtained is in the form of granules, lumps, or powders, and even if it is piled up at 1 cm or more at 20 ° C., it does not become a single lumps for more than one week. 5 cm) or powder (major axis: 0.1 μm to 0.1 mm). In addition, the lump and the powder remain as a guideline for separating both. Here, the fact that it is not a single lump indicates that it is a sticking to the extent that it can be loosened by the power of human hands, even if there is a little sticking. When blocking that normally occurs when a general epoxy resin is stacked, the shape becomes almost single and does not become a shape that can be loosened by human hands. A particularly preferable shape is one that does not become a single lump even when stored at 100 ° C. for 1 hour or longer.
The resin-modified filler of the present invention exists, for example, in a state in which an inorganic resin is impregnated with a filler in which inorganic fillers are bound together by an epoxy resin or an inorganic filler. The major axis of the resin-modified filler is 5 cm or less, preferably 0.1 μm to 1 cm, and more preferably 0.3 μm to 5 mm. Here, the major axis indicates the diameter of the longest diameter of granular, massive or powdery particles, and the measurement method is to use a ruler or have a mesh of a certain size to be measured. It can be measured by passing the mesh and confirming the presence or absence of the passage. It is also possible to measure the major axis using a microscope. The average particle size is usually 5 cm or less, preferably 0.1 μm to 1 cm, and more preferably 0.3 μm to 5 mm. The measurement method is the same.
As an example of the shape of the resin-modified filler of the present invention, each of FIGS. 1 and 2 is compared with a conventional mixture of an epoxy resin and an inorganic filler (integrated in a plate shape as a whole: FIG. 3). It is the shape shown in.
以下、本発明の樹脂変性フィラーを含む本発明のエポキシ樹脂組成物について記載する。
本発明のエポキシ樹脂組成物においては、硬化剤および/または重合触媒を必須成分として使用する。尚、さらに別途エポキシ樹脂を含有させることも考えられ、その場合、使用できるエポキシ樹脂は特に限定されないが、例えば前述したエポキシ樹脂を使用できる。 Hereinafter, it describes about the epoxy resin composition of this invention containing the resin modified filler of this invention.
In the epoxy resin composition of the present invention, a curing agent and / or a polymerization catalyst are used as essential components. In addition, it is also conceivable to add an epoxy resin separately. In that case, the epoxy resin that can be used is not particularly limited, but for example, the above-described epoxy resin can be used.
本発明のエポキシ樹脂組成物においては、硬化剤および/または重合触媒を必須成分として使用する。尚、さらに別途エポキシ樹脂を含有させることも考えられ、その場合、使用できるエポキシ樹脂は特に限定されないが、例えば前述したエポキシ樹脂を使用できる。 Hereinafter, it describes about the epoxy resin composition of this invention containing the resin modified filler of this invention.
In the epoxy resin composition of the present invention, a curing agent and / or a polymerization catalyst are used as essential components. In addition, it is also conceivable to add an epoxy resin separately. In that case, the epoxy resin that can be used is not particularly limited, but for example, the above-described epoxy resin can be used.
本発明のエポキシ樹脂組成物が含有する硬化剤の具体例としては例えばフェノール樹脂、フェノール系化合物、アミン系化合物、酸無水物系化合物、アミド系化合物、カルボン酸系化合物などが挙げられる。用いうる硬化剤の具体例としては、フェノール樹脂、フェノール化合物;ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物などのポリフェノール類が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
Specific examples of the curing agent contained in the epoxy resin composition of the present invention include, for example, phenol resins, phenol compounds, amine compounds, acid anhydride compounds, amide compounds, carboxylic acid compounds, and the like. Specific examples of the curing agent that can be used include phenol resin, phenol compound; bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, terpene diphenol, 4,4'-biphenol, 2,2'-biphenol, 3,3 '. , 5,5'-tetramethyl- [1,1'-biphenyl] -4,4'-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2- Tetrakis (4-hydroxyphenyl) ethane, phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde o-hydroxybenzaldehyde, p-hydroxyacetophenone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4'-bis (chloromethyl) -1,1'-biphenyl, 4,4'-bis (methoxymethyl)- Polycondensates with 1,1′-biphenyl, 1,4′-bis (chloromethyl) benzene, 1,4′-bis (methoxymethyl) benzene, etc., and their modified products, halogenated tetrabromobisphenol A, etc. Polyphenols such as bisphenols and condensates of terpenes and phenols are exemplified, but the invention is not limited to these. These may be used alone or in combination of two or more.
好ましいフェノール樹脂としては、フェノールアラルキル樹脂(芳香族アルキレン構造を有する樹脂)が挙げられ、特に好ましくはフェノール、ナフトール、クレゾールから選ばれる少なくとも一種を有する構造であり、そのリンカーとなるアルキレン部が、ベンゼン構造、ビフェニル構造、ナフタレン構造から選ばれる少なくとも一種であることを特徴とする樹脂(具体的にはザイロック、ナフトールザイロック、フェノールビフェニレンノボラック樹脂、クレゾール-ビフェニレンノボラック樹脂、フェノール-ナフタレンノボラック樹脂などが挙げられる。)である。
アミン系化合物、アミド系化合物;ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物;
酸無水物系化合物、カルボン酸系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂;
その他;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。本発明においては特に信頼性の面からフェノール樹脂の使用が好ましい。 Preferable phenol resins include phenol aralkyl resins (resins having an aromatic alkylene structure), particularly preferably a structure having at least one selected from phenol, naphthol, and cresol, and the alkylene portion serving as the linker is benzene. A resin characterized by at least one selected from a structure, a biphenyl structure, and a naphthalene structure (specific examples include zylock, naphthol zylock, phenol biphenylene novolak resin, cresol-biphenylene novolak resin, phenol-naphthalene novolak resin, etc.) Is.)
Amine compounds, amide compounds; nitrogen-containing compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, linolenic acid and polyamide resins synthesized from ethylenediamine;
Acid anhydride compounds, carboxylic acid compounds; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydro Phthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2.2.1] heptane-2, Acid anhydrides such as 3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, etc .; by addition reaction of various alcohols, carbinol-modified silicone, and the above-mentioned acid anhydrides Resulting carboxylic acid resin;
Others: Examples include, but are not limited to, imidazole, trifluoroborane-amine complexes, guanidine derivative compounds, and the like. These may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use a phenol resin from the viewpoint of reliability.
アミン系化合物、アミド系化合物;ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂などの含窒素化合物;
酸無水物系化合物、カルボン酸系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物;各種アルコール、カルビノール変性シリコーン、と前述の酸無水物との付加反応により得られるカルボン酸樹脂;
その他;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体の化合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。本発明においては特に信頼性の面からフェノール樹脂の使用が好ましい。 Preferable phenol resins include phenol aralkyl resins (resins having an aromatic alkylene structure), particularly preferably a structure having at least one selected from phenol, naphthol, and cresol, and the alkylene portion serving as the linker is benzene. A resin characterized by at least one selected from a structure, a biphenyl structure, and a naphthalene structure (specific examples include zylock, naphthol zylock, phenol biphenylene novolak resin, cresol-biphenylene novolak resin, phenol-naphthalene novolak resin, etc.) Is.)
Amine compounds, amide compounds; nitrogen-containing compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, linolenic acid and polyamide resins synthesized from ethylenediamine;
Acid anhydride compounds, carboxylic acid compounds; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, hexahydro Phthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2.2.1] heptane-2, Acid anhydrides such as 3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, etc .; by addition reaction of various alcohols, carbinol-modified silicone, and the above-mentioned acid anhydrides Resulting carboxylic acid resin;
Others: Examples include, but are not limited to, imidazole, trifluoroborane-amine complexes, guanidine derivative compounds, and the like. These may be used alone or in combination of two or more. In the present invention, it is particularly preferable to use a phenol resin from the viewpoint of reliability.
本発明のエポキシ樹脂組成物において硬化剤の使用量は、全エポキシ樹脂のエポキシ基1当量に対して0.7~1.2当量が好ましい。エポキシ基1当量に対して、0.7当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
In the epoxy resin composition of the present invention, the amount of curing agent used is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of the epoxy groups of all epoxy resins. When less than 0.7 equivalent or more than 1.2 equivalent with respect to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
本発明のエポキシ樹脂組成物においては、重合触媒を硬化剤と併用、もしくは硬化剤無しで使用しても差し支えない。用い得る重合触媒の具体例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリトリルフォスフィン、トリフェニルホスフィン等のホスフィン類、テトラブチルアンモニウム塩、トリイソプロピルメチルアンモニウム塩、トリメチルデカニルアンモニウム塩、セチルトリメチルアンモニウム塩などの4級アンモニウム塩、トリフェニルベンジルフォスフォニウム塩、トリフェニルエチルフォスフォニウム塩、テトラブチルフォスフォニウム塩などの4級フォスフォニウム塩が挙げられる。(4級塩のカウンターイオンはハロゲン、有機酸イオン、水酸化物イオンなど、特に指定は無いが、特に有機酸イオン、水酸化物イオンが好ましい。)、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤を用いる場合は、エポキシ樹脂100重量部に対して0.01~5.0重量部が必要に応じ用いられる。
本発明においては、特に3級アミン類、フォスフィン類、4級フォスフォニウム塩等が好ましい。
なお、3級アミン類などのアミン系の化合物を重合触媒として使用する場合、硬化剤無に、または硬化剤量を既定の量より少ない量で硬化させても構わず、アニオン重合により硬化させても構わない。 In the epoxy resin composition of the present invention, the polymerization catalyst may be used in combination with a curing agent or without a curing agent. Specific examples of the polymerization catalyst that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo. Tertiary amines such as (5,4,0) undecene-7, phosphines such as tolylphosphine and triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium Quaternary ammonium salts such as salts, quaternary phosphonium salts such as triphenylbenzylphosphonium salts, triphenylethylphosphonium salts, and tetrabutylphosphonium salts. (The counter ion of the quaternary salt is not particularly specified, such as halogen, organic acid ion, hydroxide ion, etc., but organic acid ion and hydroxide ion are particularly preferable), metal compounds such as tin octylate, etc. It is done. When a curing accelerator is used, 0.01 to 5.0 parts by weight is used as necessary with respect to 100 parts by weight of the epoxy resin.
In the present invention, tertiary amines, phosphines, quaternary phosphonium salts and the like are particularly preferable.
When amine-based compounds such as tertiary amines are used as the polymerization catalyst, the curing agent may be cured without using a curing agent, or the curing agent amount may be smaller than a predetermined amount, and may be cured by anionic polymerization. It doesn't matter.
本発明においては、特に3級アミン類、フォスフィン類、4級フォスフォニウム塩等が好ましい。
なお、3級アミン類などのアミン系の化合物を重合触媒として使用する場合、硬化剤無に、または硬化剤量を既定の量より少ない量で硬化させても構わず、アニオン重合により硬化させても構わない。 In the epoxy resin composition of the present invention, the polymerization catalyst may be used in combination with a curing agent or without a curing agent. Specific examples of the polymerization catalyst that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, 1,8-diaza-bicyclo. Tertiary amines such as (5,4,0) undecene-7, phosphines such as tolylphosphine and triphenylphosphine, tetrabutylammonium salt, triisopropylmethylammonium salt, trimethyldecanylammonium salt, cetyltrimethylammonium Quaternary ammonium salts such as salts, quaternary phosphonium salts such as triphenylbenzylphosphonium salts, triphenylethylphosphonium salts, and tetrabutylphosphonium salts. (The counter ion of the quaternary salt is not particularly specified, such as halogen, organic acid ion, hydroxide ion, etc., but organic acid ion and hydroxide ion are particularly preferable), metal compounds such as tin octylate, etc. It is done. When a curing accelerator is used, 0.01 to 5.0 parts by weight is used as necessary with respect to 100 parts by weight of the epoxy resin.
In the present invention, tertiary amines, phosphines, quaternary phosphonium salts and the like are particularly preferable.
When amine-based compounds such as tertiary amines are used as the polymerization catalyst, the curing agent may be cured without using a curing agent, or the curing agent amount may be smaller than a predetermined amount, and may be cured by anionic polymerization. It doesn't matter.
エポキシ樹脂組成物において本発明の樹脂変性フィラーに使用するエポキシ樹脂以外に他のエポキシ樹脂を併用しても構わない。併用する場合、本発明の樹脂変性フィラーに使用したエポキシ樹脂が全エポキシ樹脂中に占める割合は15重量%以上が好ましく、特に20重量%以上が好ましい。
In the epoxy resin composition, other epoxy resins may be used in combination with the epoxy resin used for the resin-modified filler of the present invention. When used in combination, the proportion of the epoxy resin used in the resin-modified filler of the present invention in the total epoxy resin is preferably 15% by weight or more, particularly preferably 20% by weight or more.
他のエポキシ樹脂の具体例としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、等シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等のエポキシ樹脂が挙げられるが、これらに限定されるものではない。
Specific examples of other epoxy resins include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, phenol aralkyl type epoxy resins, and the like. Specifically, bisphenol A, bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p-hydroxyacetate Enone, o-hydroxyacetophenone, dicyclopentadiene, furfural, 4,4′-bis (chloromethyl) -1,1′-biphenyl, 4,4′-bis (methoxymethyl) -1,1′-biphenyl, 1, Glycidyl ethers derived from polycondensates with 4-bis (chloromethyl) benzene, 1,4-bis (methoxymethyl) benzene and the like, modified products thereof, halogenated bisphenols such as tetrabromobisphenol A, and alcohols , Cycloaliphatic epoxy resin, glycidylamine epoxy resin, glycidyl ester epoxy resin, silsesquioxane epoxy resin (chain structure, cyclic structure, ladder structure, or a mixed structure of at least two of them) Glycidyl group and / or epoxycyclohexane structure Epoxy resin) epoxy resin and the like having, but not limited thereto.
本発明のエポキシ樹脂組成物は、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
The epoxy resin composition of the present invention can contain a phosphorus-containing compound as a flame retardant component. The phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-phosphaphenanthrene-10-oxide; epoxy resin and active hydrogen of the phosphanes Contains phosphorus obtained by reacting with Poxy compounds, red phosphorus and the like can be mentioned. Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred. The phosphorus-containing compound content is preferably phosphorus-containing compound / total epoxy resin = 0.1 to 0.6 (weight ratio). If it is 0.1 or less, the flame retardancy is insufficient, and if it is 0.6 or more, there is a concern that it may adversely affect the hygroscopicity and dielectric properties of the cured product.
さらに本発明のエポキシ樹脂組成物には、必要に応じて酸化防止剤を添加しても構わない。使用できる酸化防止剤としては、フェノール系、イオウ系、リン系酸化防止剤が挙げられる。酸化防止剤は単独で又は2種以上を組み合わせて使用できる。酸化防止剤の使用量は、本発明のエポキシ樹脂組成物中の樹脂成分100重量部に対して、通常0.008~1重量部、好ましくは0.01~0.5重量部である。
Furthermore, an antioxidant may be added to the epoxy resin composition of the present invention as necessary. Antioxidants that can be used include phenol-based, sulfur-based, and phosphorus-based antioxidants. Antioxidants can be used alone or in combination of two or more. The amount of the antioxidant used is usually 0.008 to 1 part by weight, preferably 0.01 to 0.5 part by weight, per 100 parts by weight of the resin component in the epoxy resin composition of the present invention.
酸化防止剤としては、例えば、フェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤などが挙げられる。フェノール系酸化防止剤の具体例として、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-p-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、等のモノフェノール類;2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネート-ジエチルエステル、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチル)カルシウム等のビスフェノール類;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェノール等の高分子型フェノール類が例示される。
Examples of the antioxidant include a phenol-based antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant. Specific examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-p-ethylphenol, stearyl-β- (3 , 5-di-t-butyl-4-hydroxyphenyl) propionate, isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio)- Monophenols such as 6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,4-bis [(octylthio) methyl] -o-cresol; 2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis (3- Til-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) ) Propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], N, N′-hexamethylenebis (3,5-di-t -Butyl-4-hydroxy-hydrocinnamamide), 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 3,5-di-t -Butyl-4-hydroxybenzyl phosphonate-diethyl ester, 3,9-bis [1,1-dimethyl-2- {β- (3-t-butyl-4-hydroxy-5- Bisphenols such as (tilphenyl) propionyloxy} ethyl] 2,4,8,10-tetraoxaspiro [5,5] undecane, bis (3,5-di-t-butyl-4-hydroxybenzylsulfonate ethyl) calcium 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3′-bis- (4 '-Hydroxy-3'-tert-butylphenyl) butyric acid] glycol ester, tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -iso Anureate, 1,3,5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, tocophenol And the like.
イオウ系酸化防止剤の具体例として、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリルル-3,3’-チオジプロピオネート等が例示される。
Specific examples of the sulfur antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyll-3,3′-thiodipropionate, and the like. .
リン系酸化防止剤の具体例として、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビ(2,4-ジ-t-ブチル-4-メチルフェニル)ホスファイト、ビス[2-t-ブチル-6-メチル-4-{2-(オクタデシルオキシカルボニル)エチル}フェニル]ヒドロゲンホスファイト等のホスファイト類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のオキサホスファフェナントレンオキサイド類などが例示される。
Specific examples of phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, diisodecylpentaerythritol phosphite, tris (2,4-di-t- Butylphenyl) phosphite, cyclic neopentanetetraylbis (octadecyl) phosphite, cyclic neopentanetetraylbi (2,4-di-t-butylphenyl) phosphite, cyclic neopentanetetraylbi (2,4 -Phosphites such as -di-t-butyl-4-methylphenyl) phosphite, bis [2-tert-butyl-6-methyl-4- {2- (octadecyloxycarbonyl) ethyl} phenyl] hydrogen phosphite ; 9,10-dihydride -9-oxa-10-phosphaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene- Examples thereof include oxaphosphaphenanthrene oxides such as 10-oxide, 10-decyloxy-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, and the like.
これらの酸化防止剤はそれぞれ単独で使用できるが、2種以上を組み合わせて併用しても構わない。特に本発明においてはリン系の酸化防止剤が好ましい。
These antioxidants can be used alone, but two or more kinds may be used in combination. In the present invention, a phosphorus-based antioxidant is particularly preferable.
さらに本発明のエポキシ樹脂組成物には、必要に応じて光安定剤を添加しても構わない。
光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン、1,3,5-トリアジン、N,N’―ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。 Furthermore, you may add a light stabilizer to the epoxy resin composition of this invention as needed.
As the light stabilizer, hindered amine-based light stabilizers, particularly HALS and the like are suitable. HALS is not particularly limited, but representative examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], bis (1,2,2, 6,6-Pentamethyl-4-pi Peridyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3,5-di -T-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), etc. Only one HALS is used. Two or more types may be used in combination.
光安定剤としては、ヒンダートアミン系の光安定剤、特にHALS等が好適である。HALSとしては特に限定されるものではないが、代表的なものとしては、ジブチルアミン、1,3,5-トリアジン、N,N’―ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ〔{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドリキシフェニル〕メチル〕ブチルマロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、等が挙げられる。HALSは1種のみが用いられても良いし、2種類以上が併用されても良い。 Furthermore, you may add a light stabilizer to the epoxy resin composition of this invention as needed.
As the light stabilizer, hindered amine-based light stabilizers, particularly HALS and the like are suitable. HALS is not particularly limited, but representative examples include dibutylamine, 1,3,5-triazine, N, N′-bis (2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy succinate -2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], bis (1,2,2, 6,6-Pentamethyl-4-pi Peridyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3,5-di -T-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), etc. Only one HALS is used. Two or more types may be used in combination.
さらに本発明のエポキシ樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。
Furthermore, the epoxy resin composition of the present invention can be blended with a binder resin as necessary. Examples of the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these. The blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 0.05 to 20 parts per 100 parts by weight of the resin component. Part by weight is used as needed.
本発明のエポキシ樹脂組成物には、更にシランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、界面活性剤、染料、顔料、紫外線吸収剤等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
The epoxy resin composition of the present invention further includes various combinations of a silane coupling agent, a release agent such as stearic acid, palmitic acid, zinc stearate, calcium stearate, a surfactant, a dye, a pigment, and an ultraviolet absorber. An agent and various thermosetting resins can be added.
本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えば本発明の樹脂変性フィラーと硬化剤並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを必要に応じて押出機、ニーダ、ロール等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、そのエポキシ樹脂組成物をポッティング、溶融後(液状の場合は溶融無しに)注型あるいはトランスファー成型機などを用いて成型し、さらに80~200℃で2~10時間加熱することにより本発明の硬化物を得ることができる。
The epoxy resin composition of the present invention can be obtained by uniformly mixing each component. The epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method. For example, until the resin-modified filler of the present invention, a curing agent, and if necessary, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are uniform using an extruder, a kneader, a roll, or the like as necessary Mix thoroughly to obtain an epoxy resin composition, pot the epoxy resin composition, and after melting (without melting in the case of liquid), mold using a casting or transfer molding machine, and further at 80 to 200 ° C. The cured product of the present invention can be obtained by heating for 2 to 10 hours.
本発明のエポキシ樹脂組成物を硬化してなる硬化物は各種用途に使用できる。好適には半導体の封止材料として用いられるが、それ以外に例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
The cured product obtained by curing the epoxy resin composition of the present invention can be used for various applications. Preferably used as a sealing material for semiconductors, but other than that, for example, adhesives, paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (including printed circuit boards, wire coatings, etc.) ), Additives to other resins and the like in addition to the sealant. Examples of the adhesive include civil engineering, architectural, automotive, general office, and medical adhesives, and electronic material adhesives. Among these, adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)へ好適である。
As sealing agents, potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip It is suitable for underfill for such as, and for sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。
以下に実施例で用いた各種分析方法について記載する。
・エポキシ当量: JIS K 7236(ISO 3001)に準拠
・ICI溶融粘度: JIS K 7117-2(ISO 3219)に準拠
・軟化点: JIS K 7234 に準拠 EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples.
The various analysis methods used in the examples are described below.
・ Epoxy equivalent: Conforms to JIS K 7236 (ISO 3001) ・ ICI melt viscosity: Conforms to JIS K 7117-2 (ISO 3219) ・ Softening point: Conforms to JIS K 7234
以下に実施例で用いた各種分析方法について記載する。
・エポキシ当量: JIS K 7236(ISO 3001)に準拠
・ICI溶融粘度: JIS K 7117-2(ISO 3219)に準拠
・軟化点: JIS K 7234 に準拠 EXAMPLES Next, the present invention will be described more specifically with reference to examples. In the following, parts are parts by weight unless otherwise specified. The present invention is not limited to these examples.
The various analysis methods used in the examples are described below.
・ Epoxy equivalent: Conforms to JIS K 7236 (ISO 3001) ・ ICI melt viscosity: Conforms to JIS K 7117-2 (ISO 3219) ・ Softening point: Conforms to JIS K 7234
以下、実施例、比較例により本発明を具体的に説明する。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
実施例1~7、比較例1~4
溶剤としてメチルエチルケトン(MEK)、エポキシ樹脂として軟化点52℃のオルソクレオゾールノボラックタイプのエポキシ樹脂(EP1:日本化薬製 EOCN-1020-52)、軟化点55℃のオルソクレオゾールノボラックタイプのエポキシ樹脂(EP2:日本化薬製 EOCN-1020-55)、軟化点52℃のビフェニルノボラック型エポキシ樹脂(EP3:日本化薬製 NC-3000-L)、軟化点45℃のトリスフェノールメタン型エポキシ樹脂(EP4:トリスフェノールメタン(本州化学工業製 TrisP-M)をグリシジルエーテル化したもの)、軟化点40℃のビスフェノールフルオレンエチレンオキサイド付加物のエポキシ化物(EP5:大阪瓦斯化学製)、無機フィラーとして溶融シリカ(瀧森製 MSR-2122)を用いて下記表1の組成で以下の操作を行った。 Examples 1-7, Comparative Examples 1-4
Methyl ethyl ketone (MEK) as a solvent, orthocresol novolak type epoxy resin having a softening point of 52 ° C. as an epoxy resin (EP1: Nippon Kayaku EOCN-1020-52), orthocresol novolak type epoxy resin having a softening point of 55 ° (EP2: Nippon Kayaku EOCN-1020-55), softening point 52 ° C. biphenyl novolac type epoxy resin (EP3: Nippon Kayaku NC-3000-L), softening point 45 ° C. trisphenol methane type epoxy resin ( EP4: Trisphenolmethane (TrisP-M made by Honshu Chemical Industry) glycidyl ether, epoxidized bisphenolfluorene ethylene oxide adduct (EP5: Osaka Gas Chemical Co., Ltd.) with a softening point of 40 ° C, fused silica as inorganic filler (MSR made by Sasamori 2122) The following procedure was performed with the composition of Table 1 using.
溶剤としてメチルエチルケトン(MEK)、エポキシ樹脂として軟化点52℃のオルソクレオゾールノボラックタイプのエポキシ樹脂(EP1:日本化薬製 EOCN-1020-52)、軟化点55℃のオルソクレオゾールノボラックタイプのエポキシ樹脂(EP2:日本化薬製 EOCN-1020-55)、軟化点52℃のビフェニルノボラック型エポキシ樹脂(EP3:日本化薬製 NC-3000-L)、軟化点45℃のトリスフェノールメタン型エポキシ樹脂(EP4:トリスフェノールメタン(本州化学工業製 TrisP-M)をグリシジルエーテル化したもの)、軟化点40℃のビスフェノールフルオレンエチレンオキサイド付加物のエポキシ化物(EP5:大阪瓦斯化学製)、無機フィラーとして溶融シリカ(瀧森製 MSR-2122)を用いて下記表1の組成で以下の操作を行った。 Examples 1-7, Comparative Examples 1-4
Methyl ethyl ketone (MEK) as a solvent, orthocresol novolak type epoxy resin having a softening point of 52 ° C. as an epoxy resin (EP1: Nippon Kayaku EOCN-1020-52), orthocresol novolak type epoxy resin having a softening point of 55 ° (EP2: Nippon Kayaku EOCN-1020-55), softening point 52 ° C. biphenyl novolac type epoxy resin (EP3: Nippon Kayaku NC-3000-L), softening point 45 ° C. trisphenol methane type epoxy resin ( EP4: Trisphenolmethane (TrisP-M made by Honshu Chemical Industry) glycidyl ether, epoxidized bisphenolfluorene ethylene oxide adduct (EP5: Osaka Gas Chemical Co., Ltd.) with a softening point of 40 ° C, fused silica as inorganic filler (MSR made by Sasamori 2122) The following procedure was performed with the composition of Table 1 using.
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら溶剤としてメチルエチルケトン(MEK)、表1記載の各々のエポキシ樹脂を投入後、25℃で1時間撹拌した。その後、ロータリーエバポレータで溶剤を留去、最終的に、120℃で20torrの減圧下で溶剤が出てこなくなるまで留去した。
得られた樹脂変性フィラーを取り出し、試料をプラチナスパッタ後に樹脂包埋し、CP3.5kVで断面試料を作成後、SEM(無蒸着低真空 加速電圧10kV)にて試料を観察した結果、いずれも粒度が5.0cm以下の粒径であり、樹脂とフィラーが集まった形状をしていることを確認した。また、25℃下で1週間かけてブロッキングテストを行った。結果を表1に示す。 A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with methyl ethyl ketone (MEK) and each epoxy resin shown in Table 1 as a solvent while purging with nitrogen, and then stirred at 25 ° C. for 1 hour. Thereafter, the solvent was distilled off by a rotary evaporator, and finally, the solvent was distilled off at 120 ° C. under a reduced pressure of 20 torr until no solvent was left.
The obtained resin-modified filler was taken out, the sample was embedded in resin after platinum sputtering, a cross-sectional sample was prepared at CP 3.5 kV, and the sample was observed with SEM (non-deposition lowvacuum acceleration voltage 10 kV). Was a particle size of 5.0 cm or less, and it was confirmed that the resin and the filler had a collected shape. Moreover, the blocking test was done over one week at 25 degreeC. The results are shown in Table 1.
得られた樹脂変性フィラーを取り出し、試料をプラチナスパッタ後に樹脂包埋し、CP3.5kVで断面試料を作成後、SEM(無蒸着低真空 加速電圧10kV)にて試料を観察した結果、いずれも粒度が5.0cm以下の粒径であり、樹脂とフィラーが集まった形状をしていることを確認した。また、25℃下で1週間かけてブロッキングテストを行った。結果を表1に示す。 A flask equipped with a stirrer, a reflux condenser, and a stirrer was charged with methyl ethyl ketone (MEK) and each epoxy resin shown in Table 1 as a solvent while purging with nitrogen, and then stirred at 25 ° C. for 1 hour. Thereafter, the solvent was distilled off by a rotary evaporator, and finally, the solvent was distilled off at 120 ° C. under a reduced pressure of 20 torr until no solvent was left.
The obtained resin-modified filler was taken out, the sample was embedded in resin after platinum sputtering, a cross-sectional sample was prepared at CP 3.5 kV, and the sample was observed with SEM (non-deposition low
表1に記載した通り、本発明の樹脂変性フィラーは、製造直後および安定性テスト後の両方において、粉状又は粒状の形状を維持しブロッキングテストの結果も良好であった。一方、比較例のエポキシ樹脂と無機フィラーの混合物は製造直後ないしは安定性テスト後においてブロッキングが生じたものや、板状の形態となりハンドリング性に劣るものしか得ることができなかった。
As described in Table 1, the resin-modified filler of the present invention maintained the powdery or granular shape both immediately after production and after the stability test, and the result of the blocking test was also good. On the other hand, the mixture of the epoxy resin and the inorganic filler of the comparative example could only be obtained in the form of blocking immediately after production or after the stability test, or in the form of a plate and inferior in handleability.
実施例8,9
溶剤としてアセトンとメチルイソブチルケトン(1:1)溶液、エポキシ樹脂として軟化点58℃のビフェニルノボラック型エポキシ樹脂(EP6:日本化薬製 NC-3000)、無機フィラーとして球状シリカ(アドマファイン1030 アドマテックス株式会社製 平均粒径0.3μm)を用いて溶液150、エポキシ樹脂10、球状シリカ90の組成(実施例8)、および溶液150、エポキシ樹脂20、球状シリカ80の組成(実施例9)で以下の操作を行った。
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、各々上記の組成で投入後、25℃で30分撹拌した。その後、ロータリーエバポレータで溶剤を留去し、最終的に、120℃で20torrの減圧下で溶剤が出てこなくなるまで留去した。
得られた樹脂変性フィラーを取り出し、試料をプラチナスパッタ後に樹脂包埋し、CP3.5kVで断面試料を作成後、SEM(無蒸着低真空 加速電圧10kV)にて試料を観察した結果、いずれも粒度が1mm以下の粒径であり、樹脂とフィラーが集まった形状をしていることを確認した。図4~9より、樹脂とフィラーが混在しており、最表面がフィラーで覆われている様子がわかる。また、25℃下で1週間かけてブロッキングテストを行ったところ、いずれもブロッキング(樹脂同士が多数、互いにくっ付き合っている状態)は見られなかった。 Examples 8 and 9
Acetone and methyl isobutyl ketone (1: 1) solution as solvent, biphenyl novolac type epoxy resin (EP6: Nippon Kayaku NC-3000) having a softening point of 58 ° C as epoxy resin, and spherical silica (Admafine 1030 Admatechs) as inorganic filler Co., Ltd. (average particle size: 0.3 μm) using solution 150,epoxy resin 10, spherical silica 90 composition (Example 8), and solution 150, epoxy resin 20, spherical silica 80 composition (Example 9) The following operations were performed.
Each of the flasks equipped with a stirrer, a reflux condenser, and a stirrer was charged with the above composition, and then stirred at 25 ° C. for 30 minutes. Thereafter, the solvent was distilled off with a rotary evaporator, and finally, the solvent was distilled off at 120 ° C. under a reduced pressure of 20 torr until no solvent was left.
The obtained resin-modified filler was taken out, the sample was embedded in resin after platinum sputtering, a cross-sectional sample was prepared at CP 3.5 kV, and the sample was observed with SEM (non-deposition lowvacuum acceleration voltage 10 kV). Is a particle diameter of 1 mm or less, and it has been confirmed that the resin and filler are in a collected shape. 4 to 9, it can be seen that the resin and filler are mixed and the outermost surface is covered with the filler. In addition, when a blocking test was performed at 25 ° C. over 1 week, no blocking (a state in which many resins were in contact with each other) was observed.
溶剤としてアセトンとメチルイソブチルケトン(1:1)溶液、エポキシ樹脂として軟化点58℃のビフェニルノボラック型エポキシ樹脂(EP6:日本化薬製 NC-3000)、無機フィラーとして球状シリカ(アドマファイン1030 アドマテックス株式会社製 平均粒径0.3μm)を用いて溶液150、エポキシ樹脂10、球状シリカ90の組成(実施例8)、および溶液150、エポキシ樹脂20、球状シリカ80の組成(実施例9)で以下の操作を行った。
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、各々上記の組成で投入後、25℃で30分撹拌した。その後、ロータリーエバポレータで溶剤を留去し、最終的に、120℃で20torrの減圧下で溶剤が出てこなくなるまで留去した。
得られた樹脂変性フィラーを取り出し、試料をプラチナスパッタ後に樹脂包埋し、CP3.5kVで断面試料を作成後、SEM(無蒸着低真空 加速電圧10kV)にて試料を観察した結果、いずれも粒度が1mm以下の粒径であり、樹脂とフィラーが集まった形状をしていることを確認した。図4~9より、樹脂とフィラーが混在しており、最表面がフィラーで覆われている様子がわかる。また、25℃下で1週間かけてブロッキングテストを行ったところ、いずれもブロッキング(樹脂同士が多数、互いにくっ付き合っている状態)は見られなかった。 Examples 8 and 9
Acetone and methyl isobutyl ketone (1: 1) solution as solvent, biphenyl novolac type epoxy resin (EP6: Nippon Kayaku NC-3000) having a softening point of 58 ° C as epoxy resin, and spherical silica (Admafine 1030 Admatechs) as inorganic filler Co., Ltd. (average particle size: 0.3 μm) using solution 150,
Each of the flasks equipped with a stirrer, a reflux condenser, and a stirrer was charged with the above composition, and then stirred at 25 ° C. for 30 minutes. Thereafter, the solvent was distilled off with a rotary evaporator, and finally, the solvent was distilled off at 120 ° C. under a reduced pressure of 20 torr until no solvent was left.
The obtained resin-modified filler was taken out, the sample was embedded in resin after platinum sputtering, a cross-sectional sample was prepared at CP 3.5 kV, and the sample was observed with SEM (non-deposition low
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
なお、本出願は、2014年2月19日付で出願された日本国特許出願(特願2014-029097)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application is based on a Japanese patent application (Japanese Patent Application No. 2014-029097) filed on February 19, 2014, and is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
なお、本出願は、2014年2月19日付で出願された日本国特許出願(特願2014-029097)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application is based on a Japanese patent application (Japanese Patent Application No. 2014-029097) filed on February 19, 2014, and is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.
本発明の樹脂変性フィラーはエポキシ樹脂組成物の流動性に寄与するフィラーであり、該フィラーを含有する硬化性のエポキシ樹脂組成物は、電気電子部品用絶縁材料及び積層板(プリント配線板、ビルドアップ基板など)やCFRPを始めとする各種複合材料、接着剤、塗料等に有用である。特に半導体素子を保護する半導体封止材料にきわめて有用である。
The resin-modified filler of the present invention is a filler that contributes to the fluidity of the epoxy resin composition, and the curable epoxy resin composition containing the filler includes an insulating material for electrical and electronic parts and a laminate (printed wiring board, build It is useful for various composite materials such as up-substrates) and CFRP, adhesives and paints. In particular, it is extremely useful for a semiconductor sealing material for protecting a semiconductor element.
Claims (4)
- 無機フィラー(a)と、一分子内に平均2~10個のエポキシ基を有するエポキシ樹脂(b)とを含む樹脂変性フィラーであって、
(a)と(b)の重量比が(a):(b)=70:30~98:2であり、長径が5cm以下である樹脂変性フィラー。 A resin-modified filler comprising an inorganic filler (a) and an epoxy resin (b) having an average of 2 to 10 epoxy groups in one molecule,
A resin-modified filler having a weight ratio of (a) to (b) of (a) :( b) = 70: 30 to 98: 2 and a major axis of 5 cm or less. - エポキシ樹脂(b)の軟化点が35~75℃である請求項1に記載の樹脂変性フィラー。 The resin-modified filler according to claim 1, wherein the softening point of the epoxy resin (b) is 35 to 75 ° C.
- 請求項1または2に記載の樹脂変性フィラーと、エポキシ樹脂用硬化剤および/または重合触媒とを含むエポキシ樹脂組成物。 An epoxy resin composition comprising the resin-modified filler according to claim 1 and a curing agent for epoxy resin and / or a polymerization catalyst.
- 請求項3に記載のエポキシ樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016504099A JP6521942B2 (en) | 2014-02-19 | 2015-02-17 | Resin-modified filler, epoxy resin composition, and cured product thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-029097 | 2014-02-19 | ||
JP2014029097 | 2014-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125760A1 true WO2015125760A1 (en) | 2015-08-27 |
Family
ID=53878262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054217 WO2015125760A1 (en) | 2014-02-19 | 2015-02-17 | Resin-modified filler, epoxy resin composition, and cured product thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6521942B2 (en) |
TW (1) | TWI663220B (en) |
WO (1) | WO2015125760A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203144A1 (en) * | 2023-03-30 | 2024-10-03 | 日本化薬株式会社 | Curable resin composition and cured product thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794641A (en) * | 1993-07-30 | 1995-04-07 | Nitto Denko Corp | Semiconductor device |
JPH09216939A (en) * | 1996-02-09 | 1997-08-19 | Shin Etsu Chem Co Ltd | Epoxy resin composition and semiconductor device |
JP2009120815A (en) * | 2007-09-14 | 2009-06-04 | Nippon Kayaku Co Ltd | Epoxy resin composition and semiconductor device |
JP2013203928A (en) * | 2012-03-29 | 2013-10-07 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for sealing, electronic equipment and method for manufacturing electronic equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4285491B2 (en) * | 2006-02-28 | 2009-06-24 | Dic株式会社 | Epoxy resin composition, cured product thereof, novel epoxy resin, novel phenol resin, and semiconductor sealing material |
JP5134824B2 (en) * | 2007-02-05 | 2013-01-30 | 日東電工株式会社 | Resin molded product manufacturing method |
JP5473196B2 (en) * | 2007-05-16 | 2014-04-16 | 東レ・ダウコーニング株式会社 | Curable epoxy resin composition and cured product thereof |
-
2015
- 2015-02-17 JP JP2016504099A patent/JP6521942B2/en active Active
- 2015-02-17 WO PCT/JP2015/054217 patent/WO2015125760A1/en active Application Filing
- 2015-02-17 TW TW104105770A patent/TWI663220B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0794641A (en) * | 1993-07-30 | 1995-04-07 | Nitto Denko Corp | Semiconductor device |
JPH09216939A (en) * | 1996-02-09 | 1997-08-19 | Shin Etsu Chem Co Ltd | Epoxy resin composition and semiconductor device |
JP2009120815A (en) * | 2007-09-14 | 2009-06-04 | Nippon Kayaku Co Ltd | Epoxy resin composition and semiconductor device |
JP2013203928A (en) * | 2012-03-29 | 2013-10-07 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for sealing, electronic equipment and method for manufacturing electronic equipment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203144A1 (en) * | 2023-03-30 | 2024-10-03 | 日本化薬株式会社 | Curable resin composition and cured product thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI663220B (en) | 2019-06-21 |
TW201544553A (en) | 2015-12-01 |
JPWO2015125760A1 (en) | 2017-03-30 |
JP6521942B2 (en) | 2019-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101229854B1 (en) | Epoxy resin, hardenable resin composition containing the same and use thereof | |
JP6090765B2 (en) | Phenol resin, epoxy resin, and curable resin composition | |
JP2017071706A (en) | Epoxy resin composition, curable resin composition and cured product thereof | |
WO2008020594A1 (en) | Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof | |
JP5368707B2 (en) | Liquid epoxy resin, epoxy resin composition, and cured product | |
JP6717005B2 (en) | Resin composition, cured product, resin film, sealing material and sealing structure | |
WO2018164042A1 (en) | Curable resin composition, cured product thereof, and method for producing curable resin composition | |
WO2015125760A1 (en) | Resin-modified filler, epoxy resin composition, and cured product thereof | |
JP6324317B2 (en) | Epoxy resin mixture, epoxy resin composition and cured product thereof | |
JP6576001B2 (en) | Epoxy resin mixture, epoxy resin composition and cured product thereof | |
JP6284732B2 (en) | Epoxy resin mixture and curable resin composition | |
JP2015067615A (en) | Epoxy resin mixture, curable resin composition and its cured matter | |
JP6427116B2 (en) | Epoxy resin mixture, epoxy resin composition, cured product thereof, and semiconductor device | |
WO2015125780A1 (en) | Epoxy resin, epoxy resin composition, and cured product thereof | |
JP7160511B1 (en) | Phenolic resin mixture, curable resin composition and cured product thereof | |
JP7160512B1 (en) | Phenolic resin mixture, curable resin composition and cured product thereof | |
JP2012087226A (en) | Liquid sealing material and semiconductor device using the same | |
JP6470186B2 (en) | Epoxy resin composition, cured product thereof, and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15751689 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016504099 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15751689 Country of ref document: EP Kind code of ref document: A1 |