WO2015124046A1 - 一种计算振荡中心电压的方法及装置 - Google Patents

一种计算振荡中心电压的方法及装置 Download PDF

Info

Publication number
WO2015124046A1
WO2015124046A1 PCT/CN2015/070595 CN2015070595W WO2015124046A1 WO 2015124046 A1 WO2015124046 A1 WO 2015124046A1 CN 2015070595 W CN2015070595 W CN 2015070595W WO 2015124046 A1 WO2015124046 A1 WO 2015124046A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive sequence
voltage
vector
phase
oscillation center
Prior art date
Application number
PCT/CN2015/070595
Other languages
English (en)
French (fr)
Inventor
赵青春
朱晓彤
谢华
李园园
Original Assignee
南京南瑞继保电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司 filed Critical 南京南瑞继保电气有限公司
Publication of WO2015124046A1 publication Critical patent/WO2015124046A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging

Definitions

  • the invention relates to a grid protection technology, in particular to a method and a device for calculating an oscillation center voltage.
  • the system oscillation center voltage is generally used to determine whether the oscillation protection of the distance protection is open, the distance protection overload, and the safety and stability control field.
  • the method for calculating the oscillation center voltage of the system is as shown in FIG. 1 , which includes: first sampling to obtain a three-phase voltage and a three-phase current sampling sequence, and using a Fourier algorithm to obtain a vector value of the three-phase voltage and a vector value of the three-phase current; According to the vector value of the three-phase voltage and the vector value of the three-phase current, the positive sequence voltage vector and the positive sequence current vector are calculated; after that, the positive sequence current vector is phase-compensated, and the positive sequence voltage vector is phase-compensated with the positive sequence current vector. Projection is performed to obtain the oscillation center voltage.
  • embodiments of the present invention are directed to a method and apparatus for calculating an oscillation center voltage, which can obtain an oscillation center voltage without using a data window, thereby avoiding a rapid oscillation caused by a time when the data window cannot satisfy the time required for calculating the oscillation center voltage. Blocking open and oscillation discrimination.
  • An embodiment of the present invention provides a method for calculating an oscillation center voltage, comprising: acquiring a discrete sample value of a three-phase voltage and a discrete sample value of a three-phase current; and a discrete sample value of the acquired three-phase voltage And a discrete sample value of the three-phase current, respectively obtaining a positive sequence voltage vector and a positive sequence current vector; calculating an oscillation center voltage according to the obtained positive sequence voltage vector and positive sequence current vector.
  • the discrete sample values of the three-phase voltage comprise: U a (k), U b (k), and U c (k);
  • the discrete sample values of the three-phase current include: I a (k), I b (k), and I c (k);
  • the obtaining a positive sequence voltage vector according to the obtained three-phase voltage discrete sampling value is:
  • the obtaining a positive sequence current vector according to the obtained three-phase current discrete sampling value is:
  • j is the imaginary unit.
  • the calculating the oscillation center voltage according to the acquired positive sequence voltage vector and the positive sequence current vector comprises: performing line impedance angle compensation on the positive sequence current vector, and projecting the positive sequence voltage vector to the compensated positive sequence current vector, Calculate the oscillation center voltage.
  • the embodiment of the invention further provides an apparatus for calculating an oscillation center voltage, comprising: a first acquisition module, a second acquisition module, and a calculation module; wherein
  • a first acquiring module configured to acquire discrete sampling values of three-phase voltages and discrete sampling values of three-phase currents
  • a second obtaining module configured to obtain a positive sequence voltage vector and a positive sequence current vector according to discrete sample values of the three-phase voltage and discrete sample values of the three-phase current;
  • a calculation module for calculating an oscillation center voltage based on the positive sequence voltage vector and the positive sequence current vector.
  • the discrete sample values of the three-phase voltage acquired by the first acquisition module include: U a (k), U b (k), and U c (k);
  • the discrete sample values of the three-phase current include: I a (k), I b (k), and I c (k);
  • the second obtaining module obtains a positive sequence voltage vector according to the three-phase voltage discrete sampling value acquired by the first acquiring module:
  • the second obtaining module obtains a positive sequence current vector according to the three-phase current discrete sampling value acquired by the first acquiring module:
  • j is the imaginary unit.
  • the calculating module calculates the oscillation center voltage according to the positive sequence voltage vector and the positive sequence current vector acquired by the second acquisition module, including: performing line impedance angle compensation on the positive sequence current vector, and compensating the positive sequence voltage vector to the compensated The positive sequence current vector is projected and the oscillation center voltage is calculated.
  • the method and device for calculating the oscillation center voltage provided by the embodiments of the present invention first obtain discrete sampling values of three-phase voltages and discrete sampling values of three-phase currents; and then according to discrete sampling values of the obtained three-phase voltages and three-phase currents. Discrete sampled values, respectively obtain the positive sequence voltage vector and the positive sequence current vector; finally calculate the oscillation center voltage according to the obtained positive sequence voltage vector and positive sequence current vector; thus, the oscillation center voltage can be obtained without using the data window, thereby avoiding the data
  • the window can not meet the time required to calculate the oscillation center voltage and affect the fast oscillation blocking open and oscillation discrimination; the shorter the better the data window required to obtain the oscillating voltage, the faster the voltage data of the oscillation center can be obtained.
  • 1 is a schematic diagram of a calculation process for calculating an oscillation center voltage based on a Fourier algorithm
  • FIG. 2 is a schematic diagram of a basic implementation process of a method for calculating an oscillation center voltage according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing an implementation flow of calculating an oscillation center voltage according to the obtained positive sequence voltage vector and positive sequence current vector according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a detailed implementation process of a method for calculating an oscillation center voltage according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a process for calculating a positive sequence voltage vector and a positive sequence current vector according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a device for calculating an oscillation center voltage according to an embodiment of the present invention.
  • the basic implementation process of the method for calculating the oscillation center voltage in the embodiment of the present invention, as shown in FIG. 2, includes the following steps:
  • Step 101 Obtain a discrete sample value of the three-phase voltage and a discrete sample value of the three-phase current
  • the discrete sample values of the three-phase voltage include: U a (k), U b (k), and U c (k); the discrete sample values of the three-phase current include: I a (k), I b (k ), and I c (k); k is the sampling point number;
  • Step 102 Acquire a positive sequence voltage vector and a positive sequence current vector according to the discrete sample values of the acquired three-phase voltage and discrete sample values of the three-phase current;
  • the positive sequence voltage vector is obtained according to the obtained discrete sample values of the three-phase voltage:
  • a positive sequence voltage vector Is the positive sequence voltage vector
  • j is the imaginary unit.
  • Step 103 Calculate an oscillation center voltage according to the obtained positive sequence voltage vector and positive sequence current vector;
  • the implementation process of calculating the oscillation center voltage according to the obtained positive sequence voltage vector and positive sequence current vector, as shown in FIG. 3, includes the following steps:
  • Step 103a performing line impedance angle compensation on the positive sequence current vector
  • the compensated positive sequence current vector is:
  • Step 103b projecting the positive sequence voltage vector to the compensated positive sequence current vector, and calculating the oscillation center voltage
  • the calculated oscillation center voltage is:
  • U 1.os is the oscillation center voltage value
  • the detailed implementation process of the method for calculating the oscillation center voltage in the embodiment of the present invention is as shown in FIG. 4, and includes the following steps:
  • Step 201 Obtain a discrete sample value of the three-phase voltage and a discrete sample value of the three-phase current
  • the discrete sample values of the three-phase voltage include: U a (k), U b (k), and U c (k);
  • the discrete sample values of the three-phase current include: I a (k), I b (k) And I c (k);
  • the system three-phase voltage values are:
  • U M is the voltage amplitude
  • is the system frequency
  • t is the arbitrary time
  • is the initial phase angle
  • the system three-phase voltage synchronous sampling value is:
  • t 0 is the sampling time
  • k is the sampling point label
  • U M is the positive sequence voltage amplitude based on the A phase
  • ⁇ t 0 + ⁇ is the phase.
  • I a (k) I M ⁇ sin( ⁇ t 0 + ⁇ )
  • I b (k) I M ⁇ sin( ⁇ t 0 + ⁇ +240°)
  • I c (k) I M ⁇ sin( ⁇ t 0 + ⁇ +120°)
  • I M is the current amplitude
  • is the system frequency
  • is the initial phase angle
  • t 0 is the sampling time
  • k is the sampling point number.
  • Step 202 Acquire a positive sequence voltage vector and a positive sequence current vector according to the discrete sample values of the acquired three-phase voltage and the discrete sample values of the three-phase current;
  • FIG. 5 A schematic diagram of a calculation process for obtaining a positive sequence voltage vector and a positive sequence current vector, as shown in FIG. 5;
  • a positive sequence voltage vector Is the positive sequence voltage vector
  • j is the imaginary unit.
  • Step 203 performing line impedance angle compensation on the positive sequence current vector
  • the compensated positive sequence current vector is:
  • Step 204 projecting the positive sequence voltage vector to the compensated positive sequence current vector, and calculating the oscillation center voltage
  • the calculated oscillation center voltage is:
  • U 1.os is the oscillation center voltage value
  • the embodiment of the present invention further provides a device for calculating the oscillating center voltage, wherein the device constituting the oscillating center voltage is composed of a device, as shown in FIG.
  • the first obtaining module 10 is configured to acquire discrete sampling values of the three-phase voltage and discrete sampling values of the three-phase current;
  • the second obtaining module 20 is configured to obtain a positive sequence voltage vector and a positive sequence current vector according to the discrete sample values of the three-phase voltage and the discrete sample values of the three-phase current acquired by the first obtaining module 10;
  • the calculation module 30 is configured to calculate the oscillation center voltage according to the positive sequence voltage vector and the positive sequence current vector acquired by the second acquisition module 20.
  • the discrete sample values of the three-phase voltage acquired by the first acquisition module include: U a (k), U b (k), and U c (k); the discrete sample values of the three-phase current include: a (k), I b (k), and I c (k); where k is a sample point number.
  • the second obtaining module acquires a positive sequence voltage vector according to the three-phase voltage discrete sampling value acquired by the first acquiring module: among them, Is the positive sequence voltage vector; j is the imaginary unit.
  • the second obtaining module obtains a positive sequence current vector according to the three-phase current discrete sampling value acquired by the first acquiring module: among them, Is the positive sequence current vector, j is the imaginary unit.
  • the calculation module calculates the oscillation center voltage according to the positive sequence voltage vector and the positive sequence current vector acquired by the second acquisition module, including: performing line impedance angle compensation on the positive sequence current vector, and correcting the positive sequence voltage vector to the compensated positive sequence current Vector projection, calculated to obtain the oscillation center voltage.
  • the functions of the first obtaining module 10, the second obtaining module 20, and the calculating module 30 may be performed by a central processing unit (CPU), or a microprocessor (MPU), or a number. Word Signal Processor (DSP), or Programmable Gate Array (FPGA) implementation.
  • CPU central processing unit
  • MPU microprocessor
  • DSP Programmable Gate Array

Abstract

一种计算振荡中心电压的方法及装置,该方法包括:获取三相电压的离散采样值和三相电流的离散采样值(101),根据所获取的三相电压和三相电流的离散采样值分别获取正序电压向量和正序电流向量(102),根据所获取的正序电压向量和正序电流向量计算振荡中心电压(103)。

Description

一种计算振荡中心电压的方法及装置 技术领域
本发明涉及电网保护技术,尤其涉及一种计算振荡中心电压的方法及装置。
背景技术
在电网系统中,系统振荡中心电压,一般用于判别距离保护的振荡闭锁是否开放、防止距离保护过负荷、以及安全稳定控制领域。通常,计算系统振荡中心电压的方法如图1所示,包括:先采样获得三相电压和三相电流采样序列,并利用傅立叶算法获得三相电压的向量值和三相电流的向量值;再根据三相电压的向量值和三相电流的向量值,计算正序电压向量和正序电流向量;之后,对正序电流向量进行相位补偿,将正序电压向量向相位补偿后的正序电流向量进行投影,获得振荡中心电压。
但是,利用傅立叶算法获得三相电压的向量值和三相电流的向量值时,必须使用一定数据窗才能获得完整的数据信息;在某些应用情况下,比如:快速振荡闭锁开放以及振荡判别时,往往需要快速获得振荡中心的电压数据,这就要求获得振荡中心电压所需的数据窗越短越好;而在实际应用中,数据窗往往不能满足计算振荡中心电压所需的时间。
发明内容
有鉴于此,本发明实施例期望提供一种计算振荡中心电压的方法及装置,能够不使用数据窗便获得振荡中心电压,从而避免由于数据窗不能满足计算振荡中心电压所需时间而影响快速振荡闭锁开放以及振荡判别。
为达到上述目的,本发明实施例的技术方案是这样实现的:
本发明实施例提供一种计算振荡中心电压的方法,包括:获取三相电压的离散采样值和三相电流的离散采样值;根据所述获取的三相电压的离散采样值 和三相电流的离散采样值,分别获取正序电压向量和正序电流向量;根据所述获取的正序电压向量和正序电流向量计算振荡中心电压。
优选地,所述三相电压的离散采样值包括:Ua(k)、Ub(k)、和Uc(k);所述三相电流的离散采样值包括:Ia(k)、Ib(k)、和Ic(k);
其中,k为采样点标号。
优选地,所述根据获取的所述三相电压离散采样值获取正序电压向量为:
Figure PCTCN2015070595-appb-000001
其中,
Figure PCTCN2015070595-appb-000002
为正序电压向量;j为虚数单位。
优选地,所述根据获取的所述三相电流离散采样值获取正序电流向量为:
Figure PCTCN2015070595-appb-000003
其中,
Figure PCTCN2015070595-appb-000004
为正序电流向量,j为虚数单位。
优选地,所述根据所述获取的正序电压向量和正序电流向量计算振荡中心电压包括:对正序电流向量进行线路阻抗角补偿,将正序电压向量向补偿后的正序电流向量投影,计算获得振荡中心电压。
本发明实施例还提供一种计算振荡中心电压的装置,包括:第一获取模块、第二获取模块、以及计算模块;其中,
第一获取模块,用于获取三相电压的离散采样值和三相电流的离散采样值;
第二获取模块,用于根据三相电压的离散采样值和三相电流的离散采样值,分别获取正序电压向量和正序电流向量;
计算模块,用于根据正序电压向量和正序电流向量计算振荡中心电压。
优选地,所述第一获取模块获取的三相电压的离散采样值包括:Ua(k)、Ub(k)、和Uc(k);所述三相电流的离散采样值包括:Ia(k)、Ib(k)、和Ic(k);
其中,k为采样点标号。
优选地,所述第二获取模块根据第一获取模块获取的所述三相电压离散采 样值获取正序电压向量为:
Figure PCTCN2015070595-appb-000005
其中,
Figure PCTCN2015070595-appb-000006
为正序电压向量;j为虚数单位。
优选地,所述第二获取模块根据第一获取模块获取的所述三相电流离散采样值获取正序电流向量为:
Figure PCTCN2015070595-appb-000007
其中,
Figure PCTCN2015070595-appb-000008
为正序电流向量,j为虚数单位。
优选地,所述计算模块根据所述第二获取模块获取的正序电压向量和正序电流向量计算振荡中心电压包括:对正序电流向量进行线路阻抗角补偿,将正序电压向量向补偿后的正序电流向量投影,计算获得振荡中心电压。
本发明实施例所提供的计算振荡中心电压的方法及装置,先获取三相电压的离散采样值和三相电流的离散采样值;再根据获取的三相电压的离散采样值和三相电流的离散采样值,分别获取正序电压向量和正序电流向量;最后根据获取的正序电压向量和正序电流向量计算振荡中心电压;如此,能够不使用数据窗便获得振荡中心电压,从而避免了由于数据窗不能满足计算振荡中心电压所需时间而影响快速振荡闭锁开放以及振荡判别;在要求获得振荡电压所需数据窗越短越好的情况下,能快速获得振荡中心的电压数据。
附图说明
图1为基于傅立叶算法计算振荡中心电压的计算过程示意图;
图2为本发明实施例计算振荡中心电压的方法的基本实现流程示意图;
图3为本发明实施例根据所述获取的正序电压向量和正序电流向量计算振荡中心电压的实现流程示意图;
图4为本发明实施例计算振荡中心电压的方法的详细实现流程示意图;
图5为本发明实施例获得正序电压向量和正序电流向量的计算过程示意图;
图6为本发明实施例计算振荡中心电压的装置的组成结构示意图。
具体实施方式
本发明实施例计算振荡中心电压的方法的基本实现流程,如图2所示,包括以下步骤:
步骤101,获取三相电压的离散采样值和三相电流的离散采样值;
具体的,三相电压的离散采样值包括:Ua(k)、Ub(k)、和Uc(k);三相电流的离散采样值包括:Ia(k)、Ib(k)、和Ic(k);k为采样点标号;
其中,如何获取三相电压的离散采样值和三相电流的离散采样值,属于现有技术,这里不再赘述。
步骤102,根据所述获取的三相电压的离散采样值和三相电流的离散采样值,分别获取正序电压向量和正序电流向量;
具体的,根据获取的所述三相电压的离散采样值获取正序电压向量为:
Figure PCTCN2015070595-appb-000009
根据获取的所述三相电流的离散采样值获取正序电流向量为:
Figure PCTCN2015070595-appb-000010
其中,
Figure PCTCN2015070595-appb-000011
为正序电压向量;
Figure PCTCN2015070595-appb-000012
为正序电压向量;j为虚数单位。
步骤103,根据所述获取的正序电压向量和正序电流向量计算振荡中心电压;
具体的,根据所述获取的正序电压向量和正序电流向量计算振荡中心电压的实现流程,如图3所示,包括以下步骤:
步骤103a,对正序电流向量进行线路阻抗角补偿;
具体的,补偿后的正序电流向量为:
Figure PCTCN2015070595-appb-000013
其中,
Figure PCTCN2015070595-appb-000014
为补偿后的正序电流向量;
Figure PCTCN2015070595-appb-000015
为线路正序阻抗角;j为虚数单位。
步骤103b,将正序电压向量向补偿后的正序电流向量投影,计算获得振荡中心电压;
具体的,计算获得的振荡中心电压为:
Figure PCTCN2015070595-appb-000016
其中,real为取实部运算,
Figure PCTCN2015070595-appb-000017
Figure PCTCN2015070595-appb-000018
的共轭向量,U1.os为振荡中心电压值。
本发明实施例计算振荡中心电压的方法的详细实现流程如图4所示,包括以下步骤:
步骤201,获取三相电压的离散采样值和三相电流的离散采样值;
其中,三相电压的离散采样值包括:Ua(k)、Ub(k)、和Uc(k);三相电流的离散采样值包括:Ia(k)、Ib(k)、和Ic(k);
具体的,三相系统对称时,系统三相电压值为:
Ua(t)=UM×sin(ωt+α)
Ub(t)=UM×sin(ωt+α+240°)
Uc(t)=UM×sin(ωt+α+120°)
其中,UM为电压幅值,ω为系统频率,t为任意时间,α为初相角。
在t0时刻,系统三相电压同步采样值为:
Ua(k)=UM×sin(ωt0+α)
Ub(k)=UM×sin(ωt0+α+240°)
Uc(k)=UM×sin(ωt0+α+120°)
其中,t0为采样时刻,k为采样点标号,UM为以A相为基准的正序电压幅值为,ωt0+α为相位。
同理,在t0时刻,系统三相电流同步采样值为:
Ia(k)=IM×sin(ωt0+β)
Ib(k)=IM×sin(ωt0+β+240°)
Ic(k)=IM×sin(ωt0+β+120°)
其中,IM为电流幅值,ω为系统频率,β为初相角,t0为采样时刻,k为采样点标号。
步骤202,根据所述获取的三相电压的离散采样值和三相电流的离散采样值,分别获取正序电压向量和正序电流向量;
获得正序电压向量和正序电流向量的计算过程示意图,如图5所示;
具体的,组成向量
Figure PCTCN2015070595-appb-000019
其中,向量
Figure PCTCN2015070595-appb-000020
的幅值为UM,相位为ωt0+α,与以A相为基准的正序电压幅值和相位一致,即:向量
Figure PCTCN2015070595-appb-000021
为系统正序电压向量
Figure PCTCN2015070595-appb-000022
因此,
Figure PCTCN2015070595-appb-000023
同理,
Figure PCTCN2015070595-appb-000024
其中,
Figure PCTCN2015070595-appb-000025
为正序电压向量;
Figure PCTCN2015070595-appb-000026
为正序电压向量;j为虚数单位。
步骤203,对正序电流向量进行线路阻抗角补偿;
具体的,补偿后的正序电流向量为:
Figure PCTCN2015070595-appb-000027
其中,
Figure PCTCN2015070595-appb-000028
为补偿后的正序电流向量;
Figure PCTCN2015070595-appb-000029
为线路正序阻抗角;j为虚数单位。
步骤204,将正序电压向量向补偿后的正序电流向量投影,计算获得振荡中心电压;
具体的,计算获得的振荡中心电压为:
Figure PCTCN2015070595-appb-000030
其中,real为取实部运算,
Figure PCTCN2015070595-appb-000031
Figure PCTCN2015070595-appb-000032
的共轭向量,U1.os为振荡中心电压值。
为实现上述计算振荡中心电压的方法,本发明实施例还提供了一种计算振荡中心电压的装置,所述计算振荡中心电压的装置组成结构,如图6所示,该装置包括:
第一获取模块10,用于获取三相电压的离散采样值和三相电流的离散采样值;
第二获取模块20,用于根据第一获取模块10获取的三相电压的离散采样值和三相电流的离散采样值,分别获取正序电压向量和正序电流向量;
计算模块30,用于根据第二获取模块20获取的正序电压向量和正序电流向量计算振荡中心电压。
这里,所述第一获取模块获取的三相电压的离散采样值包括:Ua(k)、Ub(k)、和Uc(k);所述三相电流的离散采样值包括:Ia(k)、Ib(k)、和Ic(k);其中,k为采样点标号。
所述第二获取模块根据第一获取模块获取的所述三相电压离散采样值获取正序电压向量为:
Figure PCTCN2015070595-appb-000033
其中,
Figure PCTCN2015070595-appb-000034
为正序电压向量;j为取虚数单位。
所述第二获取模块根据第一获取模块获取的所述三相电流离散采样值获取正序电流向量为:
Figure PCTCN2015070595-appb-000035
其中,
Figure PCTCN2015070595-appb-000036
为正序电流向量,j为虚数单位。
所述计算模块根据所述第二获取模块获取的正序电压向量和正序电流向量计算振荡中心电压包括:对正序电流向量进行线路阻抗角补偿,将正序电压向量向补偿后的正序电流向量投影,计算获得振荡中心电压。
需要说明的是,在实际应用中,所述第一获取模块10、第二获取模块20、以及计算模块30的功能可由中央处理器(CPU)、或微处理器(MPU)、或数 字信号处理器(DSP)、或可编程门阵列(FPGA)实现。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (10)

  1. 一种计算振荡中心电压的方法,其特征在于,所述方法包括:
    获取三相电压的离散采样值和三相电流的离散采样值;
    根据所述获取的三相电压的离散采样值和三相电流的离散采样值,分别获取正序电压向量和正序电流向量;
    根据所述获取的正序电压向量和正序电流向量计算振荡中心电压。
  2. 根据权利要求1所述计算振荡中心电压的方法,其特征在于,所述三相电压的离散采样值包括:Ua(k)、Ub(k)、和Uc(k);所述三相电流的离散采样值包括:Ia(k)、Ib(k)、和Ic(k);
    其中,k为采样点标号。
  3. 根据权利要求2所述计算振荡中心电压的方法,其特征在于,所述根据获取的所述三相电压离散采样值获取正序电压向量为:
    Figure PCTCN2015070595-appb-100001
    其中,
    Figure PCTCN2015070595-appb-100002
    为正序电压向量;j为虚数单位。
  4. 根据权利要求2所述计算振荡中心电压的方法,其特征在于,所述根据获取的所述三相电流离散采样值获取正序电流向量为:
    Figure PCTCN2015070595-appb-100003
    其中,
    Figure PCTCN2015070595-appb-100004
    为正序电流向量,j为虚数单位。
  5. 根据权利要求1所述计算振荡中心电压的方法,其特征在于,所述根据所述获取的正序电压向量和正序电流向量计算振荡中心电压包括:对正序电流向量进行线路阻抗角补偿,将正序电压向量向补偿后的正序电流向量投影,计算获得振荡中心电压。
  6. 一种计算振荡中心电压的装置,其特征在于,所述装置包括:第一获取模块、第二获取模块、以及计算模块;其中,
    第一获取模块,用于获取三相电压的离散采样值和三相电流的离散采样值;
    第二获取模块,用于根据三相电压的离散采样值和三相电流的离散采样值, 分别获取正序电压向量和正序电流向量;
    计算模块,用于根据正序电压向量和正序电流向量计算振荡中心电压。
  7. 根据权利要求6所述计算振荡中心电压的装置,其特征在于,所述第一获取模块获取的三相电压的离散采样值包括:Ua(k)、Ub(k)、和Uc(k);所述三相电流的离散采样值包括:Ia(k)、Ib(k)、和Ic(k);
    其中,k为采样点标号。
  8. 根据权利要求7所述计算振荡中心电压的装置,其特征在于,所述第二获取模块根据第一获取模块获取的所述三相电压离散采样值获取正序电压向量为:
    Figure PCTCN2015070595-appb-100005
    其中,
    Figure PCTCN2015070595-appb-100006
    为正序电压向量;j为虚数单位。
  9. 根据权利要求7所述计算振荡中心电压的装置,其特征在于,所述第二获取模块根据第一获取模块获取的所述三相电流离散采样值获取正序电流向量为:
    Figure PCTCN2015070595-appb-100007
    其中,
    Figure PCTCN2015070595-appb-100008
    为正序电流向量,j为虚数单位。
  10. 根据权利要求6所述获取计算振荡中心电压的装置,其特征在于,所述计算模块根据所述第二获取模块获取的正序电压向量和正序电流向量计算振荡中心电压包括:对正序电流向量进行线路阻抗角补偿,将正序电压向量向补偿后的正序电流向量投影,计算获得振荡中心电压。
PCT/CN2015/070595 2014-02-20 2015-01-13 一种计算振荡中心电压的方法及装置 WO2015124046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410058449.3A CN104865432B (zh) 2014-02-20 2014-02-20 一种计算振荡中心电压的方法及装置
CN201410058449.3 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015124046A1 true WO2015124046A1 (zh) 2015-08-27

Family

ID=53877626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070595 WO2015124046A1 (zh) 2014-02-20 2015-01-13 一种计算振荡中心电压的方法及装置

Country Status (2)

Country Link
CN (1) CN104865432B (zh)
WO (1) WO2015124046A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211561A (zh) * 2020-03-06 2020-05-29 中国电力科学研究院有限公司 一种用于电网自适应失步解列断面的定位方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459545A (en) * 1980-06-30 1984-07-10 Mitsubishi Denki Kabushiki Kaisha Apparatus for detecting a current peak value and a voltage peak value
CN1223493A (zh) * 1997-10-15 1999-07-21 西门子公司 获得供电网波动显示信号的方法
CN101034128A (zh) * 2007-02-09 2007-09-12 田伟 一种快速识别振荡中对称性故障的方法
CN101593983A (zh) * 2009-07-06 2009-12-02 中国电力科学研究院 一种电力系统振荡中心快速定位方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1181351C (zh) * 2002-09-30 2004-12-22 南京南瑞继保电气有限公司 基于ucosφ的电力系统失步检测判别方法
ES2316280B1 (es) * 2007-04-30 2010-01-29 Universidad Politecnica De Valencia Procedimiento y sistema de puesta en practica para la medida de la potencia de desequilibrio en instalaciones electricas, asi como el dispositivo para su calibracion.
CN102200564B (zh) * 2011-03-10 2013-01-16 北京四方继保自动化股份有限公司 一种基于功角计算的电力系统振荡识别方法
CN103336161A (zh) * 2013-06-05 2013-10-02 南方电网科学研究院有限责任公司 一种基于光纤通信的多端振荡电压测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4459545A (en) * 1980-06-30 1984-07-10 Mitsubishi Denki Kabushiki Kaisha Apparatus for detecting a current peak value and a voltage peak value
CN1223493A (zh) * 1997-10-15 1999-07-21 西门子公司 获得供电网波动显示信号的方法
CN101034128A (zh) * 2007-02-09 2007-09-12 田伟 一种快速识别振荡中对称性故障的方法
CN101593983A (zh) * 2009-07-06 2009-12-02 中国电力科学研究院 一种电力系统振荡中心快速定位方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211561A (zh) * 2020-03-06 2020-05-29 中国电力科学研究院有限公司 一种用于电网自适应失步解列断面的定位方法及装置
CN111211561B (zh) * 2020-03-06 2022-09-02 中国电力科学研究院有限公司 一种用于电网自适应失步解列断面的定位方法及装置

Also Published As

Publication number Publication date
CN104865432A (zh) 2015-08-26
CN104865432B (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
SG11201901519XA (en) User identity verification method, apparatus and system
WO2021056797A1 (zh) 音视频信息处理方法及装置、电子设备和存储介质
TW201248554A (en) Method for object detection and apparatus using the same
JP2016023968A5 (zh)
PH12019500925A1 (en) Beam measurement method and apparatus
CN103809023A (zh) 基于二分搜索的电网同步谐波相量测量方法
CN111122952B (zh) 一种快速检测三相电压暂降的方法
TW201335854A (zh) 圖像相似度計算系統及方法
CN109492531B (zh) 人脸图像关键点提取方法、装置、存储介质及电子设备
MX2018004301A (es) Determinacion de la contaminacion armonica en una red de distribucion de energia electrica.
WO2015124046A1 (zh) 一种计算振荡中心电压的方法及装置
US10474775B2 (en) Method and system for modeling an electronic device under test (DUT) using a kernel method
MY189696A (en) Weather data processing apparatus and method using weather radar
WO2016008364A1 (zh) 星轨拍摄方法、物体运动轨迹拍摄方法、装置及存储介质
JP2016015536A5 (zh)
MY192394A (en) Image processing method and device
Le et al. Superpixel-based background removal for accuracy salience person re-identification
Chang et al. Radiation measurement of small targets based on PSF
MX2019002493A (es) Metodo y sistema de generacion de la firma de una superficie.
WO2016184148A1 (zh) 一种时钟切换的方法、装置及基站
CN107579509B (zh) 一种解决采样频率偏差对电流保护方向元件影响的方法
Oi et al. ORB-based fast anti-viewing image feature matching algorithm
Kouassi et al. Safety assessment of a transmission line with EMC requirements
XU et al. Change detection based on segmentation and matched features points for UAV images
刘延飞 et al. Directional Analysis of the Chaotic Superlattice around the Equilibrium Point in the Phase Space

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752114

Country of ref document: EP

Kind code of ref document: A1