WO2015122705A1 - Positive electrode active material for sodium secondary battery, and method for preparing same - Google Patents

Positive electrode active material for sodium secondary battery, and method for preparing same Download PDF

Info

Publication number
WO2015122705A1
WO2015122705A1 PCT/KR2015/001437 KR2015001437W WO2015122705A1 WO 2015122705 A1 WO2015122705 A1 WO 2015122705A1 KR 2015001437 W KR2015001437 W KR 2015001437W WO 2015122705 A1 WO2015122705 A1 WO 2015122705A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
secondary battery
sodium
sodium secondary
cathode active
Prior art date
Application number
PCT/KR2015/001437
Other languages
French (fr)
Korean (ko)
Inventor
선양국
오승민
황장연
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US15/118,342 priority Critical patent/US20170187039A1/en
Priority claimed from KR1020150021603A external-priority patent/KR101689457B1/en
Publication of WO2015122705A1 publication Critical patent/WO2015122705A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for sodium secondary batteries and a method of manufacturing the same.
  • lithium secondary batteries can be used for large secondary batteries, such as large power supplies for automobiles such as electric vehicles and hybrid vehicles, and distributed power storage power supplies, the demand for them is increasing.
  • lithium secondary batteries use a lot of rare metals such as cobalt, nickel, and lithium, there is a concern about supply of such rare metals due to the demand for large secondary batteries.
  • the sodium secondary battery comprises a positive electrode containing a positive electrode active material capable of doping and undoping sodium ions, a negative electrode containing a negative electrode active material capable of doping and undoping sodium ions, and a nonaqueous electrolyte containing sodium ions. It is composed. Since sodium secondary batteries use abundant and inexpensive sodium as a material, it is expected to be able to supply large secondary batteries in large quantities by making them practical.
  • sodium secondary battery like lithium ions of a lithium secondary battery, charge and discharge of the battery occurs by sodium ions reciprocating between the negative electrode and the positive electrode through an electrolyte.
  • Japanese Unexamined Patent Application Publication No. 2007-287661 has a positive electrode made of a composite metal oxide obtained by firing a raw material having a composition ratio of Na, Mn and Co (Na: Mn: Co) of 0.7: 0.5: 0.5 and a negative electrode made of sodium metal. Secondary batteries are described in detail. Further, Japanese Patent Laid-Open No. 2005-317511 discloses ⁇ -NaFeO 2 having a hexagonal crystal (layered rock salt) crystal structure as a sum metal oxide, specifically, by mixing Na 2 O 2 and Fe 3 O 4 . This composite metal oxide was obtained by baking at 600-700 degreeC in air.
  • the conventional sodium secondary battery has a low lifespan characteristic, that is, a discharge capacity retention rate when repeated charging and discharging is low, and thermal stability is low, and there is a need to improve it.
  • An object of the present invention is to provide a cathode active material for a new composition of sodium secondary battery, a sodium secondary battery positive electrode comprising the same and a sodium secondary battery comprising the same in order to solve the problems of the prior art as described above.
  • Another object of the present invention is to provide a method for producing a cathode active material for sodium secondary battery according to the present invention.
  • the present invention provides a cathode active material for sodium secondary batteries represented by the following formula (1) to solve the above problems.
  • M is an element selected from the group consisting of Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B and combinations thereof,
  • the cathode active material for a sodium secondary battery according to the present invention is structurally more stable by preventing a migration phenomenon in which Fe 3+ is converted to Fe 4+ and transferred to Na + site by substituting a part of the transition metal with Li, thereby improving the life characteristics and thermal properties. Improve stability.
  • the cathode active material for sodium secondary battery according to the present invention is characterized by having a spherical particle size of 5 to 15 ⁇ m and a monodisperse particle size.
  • the particle size of the positive electrode active material is less than 5 ⁇ m, the specific surface area of the positive electrode active material increases, but the input of a binding solution or electrolyte and stable contact may be inhibited. Therefore, a large amount of binder is required for binding of the positive electrode active material, thereby deteriorating battery characteristics. Can be.
  • the particle size of the positive electrode active material is more than 15 ⁇ m, battery characteristics may be reduced by reducing the specific surface area of the positive electrode active material.
  • the cathode active material for sodium secondary battery according to the present invention is characterized in that 2 ⁇ in XRD shows three peaks in a range of 30 ° to 40 °.
  • the cathode active material for a sodium secondary battery according to the present invention is characterized in that the peak (104) having a main peak in the range of 40 ° to 45 ° in 2 ⁇ in XRD.
  • the cathode active material for sodium secondary battery according to the present invention is characterized by having a peak of 6Li + , 7Li + obtained by cation analysis by time-of-flight secondary ion mass spectrometry.
  • the time-of-flight secondary ion mass spectrometry (TOF-SIMS) equipment is equipped with TOF, which is a mass spectrometer, in a SIMS device.
  • SIMS equipment is a device that can obtain chemical components and surface structures by analyzing ions (cations or anions) emitted when the primary ions collide with the surface of the analyte.
  • the TOF mass spectrometer is a device with excellent mass resolution capable of simultaneously measuring ions of all masses with a high ion passage rate, and TOF-SIMS equipment forms secondary ions of analytically useful molecules to directly display molecular information. It is highly sensitive to elements as well as molecules, and has high spatial resolution by finely focused ion beams.
  • the cathode active material for a sodium secondary battery according to the present invention is characterized by having a peak of Ni 3+ at 855 to 860 eV in oxidation number analysis by X-ray photoelectron spectroscopy (XPS).
  • the present invention also provides
  • It provides a method for producing a cathode active material for sodium secondary battery of the present invention comprising the step of heat-treating the mixture.
  • the cathode active material precursor for sodium secondary battery is characterized in that represented by any one of the following formula (2).
  • M is an element selected from the group consisting of Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B, and combinations thereof,
  • the sodium compound is characterized in that selected from sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a combination thereof.
  • the sodium compound per 1 mol of the cathode active material precursor for sodium secondary battery is characterized in that it is mixed in a ratio of 0.8 to 1.5 mol.
  • the lithium compound is characterized in that any one selected from the group consisting of lithium nitrate, lithium acetate, lithium carbonate, lithium hydroxide, and combinations thereof. .
  • the heat treatment step is characterized in that the heat treatment at 600 °C to 1000 °C. If the heat treatment temperature is less than 600 °C unreacted metal particles may remain lower than the melting point of the metal contained in the positive electrode active material, if more than 1000 °C non-uniformization of the elements constituting the positive electrode active material proceeds to the positive electrode active material The lifespan of the sodium secondary battery may be reduced.
  • the present invention also provides a sodium secondary battery positive electrode comprising a cathode active material for sodium secondary battery of the present invention and a sodium secondary battery comprising the same.
  • the cathode active material for a sodium secondary battery according to the present invention is structurally more stable by substituting a part of the transition metal with Li, thereby greatly improving the thermal stability and life characteristics of the sodium battery including the cathode active material.
  • Figure 1 shows the XRD measurement results of the positive electrode active material prepared in one embodiment and comparative example of the present invention.
  • Figure 2 shows the results of Tof-SIMS measurement of the positive electrode active material prepared in one embodiment and comparative example of the present invention.
  • Figure 3 shows the XPS measurement results of the positive electrode active material prepared in one embodiment and comparative example of the present invention.
  • Figure 4 shows the results of measuring the initial charge and discharge characteristics of a battery including a cathode active material prepared in one embodiment and comparative example of the present invention.
  • 5 to 8 show the results of measuring charge and discharge characteristics of a battery including a cathode active material prepared in Examples and Comparative Examples of the present invention.
  • FIG. 12 shows the measurement results of the rate characteristic of a battery including a cathode active material prepared in one embodiment and comparative example of the present invention.
  • FIG. 13 shows measurement results of life characteristics of a battery including a cathode active material prepared in Examples and Comparative Examples.
  • the reactor was charged with 4 L of distilled water, stirred at 1000 rpm while adding ammonia to adjust the pH inside the reactor to 7 and the internal temperature was maintained at 50 ° C. 4 M NaOH solution was added as a second pH adjusting agent to adjust the internal pH of the reactor to 10.2 and maintained for 30 minutes.
  • NiSO 4 ⁇ 6H 2 O, FeSO 4 ⁇ 7H 2 O, MnSO 4 ⁇ 5H 2 O were mixed in an equivalent ratio with an aqueous solution of a transition metal compound, and added into the reactor together with NH 4 OH as a complexing agent to give Ni 0.25 Fe 0.25 Mn 0.5 ( A precursor represented by OH) 2 was prepared. Sodium carbonate and lithium carbonate were mixed with the precursor and stirred, followed by heat treatment to prepare a cathode active material represented by Na 1.0 Li 0.05 [Ni 0.25 Fe 0.25 Mn 0.5 ] 0.95 O 2 .
  • a cathode active material represented by Na 1.0 [Ni 0.25 Fe 0.25 Mn 0.5 ] O 2 was prepared in the same manner as in Example except that only sodium carbonate was mixed with a precursor represented by Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2 . .
  • FIG. 1 XRD of the cathode active materials prepared in Examples and Comparative Examples was measured and the results are shown in FIG. 1. As shown in FIG. 1, in the XRD of the positive electrode active material prepared in the embodiment of the present invention, it can be seen that 2 ⁇ shows three peaks in a range of 30 ° to 40 °.
  • the cation analysis result obtained by using a time-of-flight secondary ion mass spectrometer (TOF-SIMS) for the cathode active materials prepared in Examples and Comparative Examples is shown in FIG. 2. Indicated.
  • the positive electrode active material prepared in Examples of the present invention exhibits 6Li + and 7Li + peaks, and the positive electrode active material of the Comparative Example does not show peaks.
  • Ni 3+ may appear at 855 to 860 eV, indicating that Ni 2+ is partially changed to Ni 3+ .
  • Composite metal oxide cathode active material prepared in the above examples or comparative examples, acetylene black (manufactured by Denki Chemical Co., Ltd.) as a conductive material, and PVDF (manufactured by KK Corporation, polyvinylidene difluoride polyflon) as a binder Poly Vinylidene DiFluoride Polyflon)) was weighed so as to have a composition of positive electrode active material: conductive material: binder 85:10: 5 (weight ratio).
  • the composite metal oxide cathode active material and acetylene black are sufficiently mixed with agate mortar, and N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Kasei Kogyo Co., Ltd.) is appropriately added to the mixture. Furthermore, PVDF was added and mixed to make it uniform and slurry. The obtained slurry was apply
  • the positive electrode sheet 1 thus prepared was punched out with an electrode puncher to a diameter of 1.5 cm, and then sufficiently compressed by a hand press to prepare a positive electrode.
  • a sodium secondary battery was produced by combining a polypropylene porous membrane (thickness 20 ⁇ m) with a 4 / propylene carbonate and a separator and a sodium metal as a negative electrode.
  • the ignition temperature is 297.6 ° C. and the temperature of the ignition point is 20 ° C. or more higher than that of the comparative example.
  • the thermal stability is greatly improved in the case of the cathode active material including Li by 30% or more by the embodiment of the present invention.
  • the O 3 structure is maintained even after charging and discharging.
  • the O 3 crystal structure was not maintained due to migration of Fe ions and changed to P 3. You can check it.
  • the rate characteristic is greatly improved compared to the cathode material not doped with conventional Li.
  • the positive electrode active material including Li exhibits a capacity retention rate of 76% for 200 cycles according to an embodiment of the present invention, and shows that the life characteristics of the positive electrode active material not doped with Li are greatly improved. Can be.
  • the cathode active material for sodium secondary battery according to the present invention is structurally more stable by substituting a part of the transition metal with Li, and accordingly, thermal stability and lifespan characteristics of the sodium battery including the cathode active material may be greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a positive electrode active material for a sodium secondary battery, and a method for preparing the same. The positive electrode active material for the sodium secondary battery according to the present invention is structurally more stable by replacing a part of the transition metal with Li, and accordingly, the thermal stability and life characteristics of the sodium battery comprising the positive electrode active material are greatly improved.

Description

나트륨 이차전지용 양극활물질 및 이의 제조 방법Cathode active material for sodium secondary battery and manufacturing method thereof
본 발명은 나트륨 이차전지용 양극활물질 및 이의 제조 방법에 관한 것이다. The present invention relates to a cathode active material for sodium secondary batteries and a method of manufacturing the same.
현재, 고에너지 밀도의 이차전지로서, 전해질염을 비수용매에 용해시킨 비수 전해액을 사용하고, 리튬 이온을 양극과 음극 사이에서 이동시켜 충방전이 이루어지도록 한 리튬 이온 이차전지가 많이 이용되고 있다. 리튬 이차 전지는 전기 자동차, 하이브리드 자동차 등의 자동차용 대형 전원이나 분산형 전력 저장용 전원 등의 대형 이차 전지용으로서 사용 가능하기 때문에 그에 따른 수요가 증대되고 있다. 그러나, 리튬 이차 전지는 코발트, 니켈, 리튬 등의 희소 금속을 많이 사용하고 있기 때문에, 대형 이차 전지 수요 증대에 따른 상기 희소 금속의 공급이 염려되고 있다.At present, as a secondary battery having a high energy density, a lithium ion secondary battery using a nonaqueous electrolyte solution in which an electrolyte salt is dissolved in a nonaqueous solvent and allowing lithium ions to move between a positive electrode and a negative electrode so that charge and discharge is performed is widely used. Since lithium secondary batteries can be used for large secondary batteries, such as large power supplies for automobiles such as electric vehicles and hybrid vehicles, and distributed power storage power supplies, the demand for them is increasing. However, since lithium secondary batteries use a lot of rare metals such as cobalt, nickel, and lithium, there is a concern about supply of such rare metals due to the demand for large secondary batteries.
이에 대하여 전지 재료의 공급 걱정을 해결할 수 있는 비수전해질 이차 전지로서 나트륨 이차 전지가 검토되고 있다. 나트륨 이차 전지는 나트륨 이온을 도핑 및 탈도핑할 수 있는 양극 활성 물질을 포함하는 양극과, 나트륨 이온을 도핑 및 탈도핑할 수 있는 음극 활성 물질을 포함하는 음극과, 나트륨 이온을 함유하는 비수전해질로 구성된다. 나트륨 이차 전지는 공급량이 풍부하고 염가인 나트륨을 재료로 사용하므로 이를 실용화함으로써 대형 이차 전지를 대량으로 공급할 수 있을 것으로 기대하고 있다.On the other hand, a sodium secondary battery is examined as a nonaqueous electrolyte secondary battery which can solve the worry of supply of a battery material. The sodium secondary battery comprises a positive electrode containing a positive electrode active material capable of doping and undoping sodium ions, a negative electrode containing a negative electrode active material capable of doping and undoping sodium ions, and a nonaqueous electrolyte containing sodium ions. It is composed. Since sodium secondary batteries use abundant and inexpensive sodium as a material, it is expected to be able to supply large secondary batteries in large quantities by making them practical.
나트륨 이차 전지는 리튬 이차 전지의 리튬 이온과 마찬가지로, 나트륨 이온이 전해질을 통해 음극과 양극 사이를 왕복함으로써 전지의 충방전이 일어난다. In the sodium secondary battery, like lithium ions of a lithium secondary battery, charge and discharge of the battery occurs by sodium ions reciprocating between the negative electrode and the positive electrode through an electrolyte.
일본 특허 공개 제2007-287661호 공보에는 Na, Mn 및 Co의 조성비(Na:Mn:Co)가 0.7:0.5:0.5인 원료를 소성하여 얻어지는 복합 금속 산화물을 이용한 정극과 나트륨 금속으로 이루어지는 부극을 가지는 이차 전지가 구체적으로 기재되어 있다. 또한, 일본 특허 공개 제2005-317511호 공보에는 합 금속 산화물로서 육방정(층상 암염형) 결정 구조를 갖는 α-NaFeO2가 구체적으로 개시되어 있고, Na2O2와 Fe3O4를 혼합하여 공기 중에 600 내지 700 ℃에서 소성시킴으로써 이 복합 금속 산화물을 얻었다. Japanese Unexamined Patent Application Publication No. 2007-287661 has a positive electrode made of a composite metal oxide obtained by firing a raw material having a composition ratio of Na, Mn and Co (Na: Mn: Co) of 0.7: 0.5: 0.5 and a negative electrode made of sodium metal. Secondary batteries are described in detail. Further, Japanese Patent Laid-Open No. 2005-317511 discloses α-NaFeO 2 having a hexagonal crystal (layered rock salt) crystal structure as a sum metal oxide, specifically, by mixing Na 2 O 2 and Fe 3 O 4 . This composite metal oxide was obtained by baking at 600-700 degreeC in air.
그러나, 종래의 나트륨 이차 전지는, 수명 특성, 즉 충방전을 반복했을 때의 방전 용량 유지율은 낮고, 열적 안정성이 낮아서 이를 개선해야 할 필요성이 있다.However, the conventional sodium secondary battery has a low lifespan characteristic, that is, a discharge capacity retention rate when repeated charging and discharging is low, and thermal stability is low, and there is a need to improve it.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 수명 특성이 개선된 새로운 조성의 나트륨 이차전지용 양극활물질, 이를 포함하는 나트륨 이차 전지용 양극 및 이를 포함하는 나트륨 이차전지를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a cathode active material for a new composition of sodium secondary battery, a sodium secondary battery positive electrode comprising the same and a sodium secondary battery comprising the same in order to solve the problems of the prior art as described above.
본 발명은 또한, 본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for producing a cathode active material for sodium secondary battery according to the present invention.
본 발명은 상기와 같은 과제를 해결하기 위하여 하기 화학식 1로 표시되는 나트륨 이차전지용 양극활물질을 제공한다.The present invention provides a cathode active material for sodium secondary batteries represented by the following formula (1) to solve the above problems.
[화학식 1] [Formula 1]
NaxLia[NiyFezMn1-y-z-bMb]1-aO2 Na x Li a [Ni y Fe z Mn 1-yzb M b ] 1-a O 2
(상기 화학식 1에서, M은 Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고,(In Formula 1, M is an element selected from the group consisting of Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B and combinations thereof,
0.8≤x≤1.2, 0.01≤a≤0.1, 0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9 임) 0.8≤x≤1.2, 0.01≤a≤0.1, 0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9
본 발명에 의한 나트륨 이차전지용 양극활물질은 전이금속 중 일부를 Li 으로 치환함으로써 Fe3+이 Fe4+로 변하여 Na+자리로 이동하는 migration 현상을 막아 구조적으로 보다 안정적이고, 이에 따라 수명 특성 및 열적 안정성을 향상시킨다. The cathode active material for a sodium secondary battery according to the present invention is structurally more stable by preventing a migration phenomenon in which Fe 3+ is converted to Fe 4+ and transferred to Na + site by substituting a part of the transition metal with Li, thereby improving the life characteristics and thermal properties. Improve stability.
본 발명에 의한 나트륨 이차전지용 양극활물질은 입자 크기가 5 내지 15 ㎛ 의 구형이고, 입자 크기가 단분산형인 것을 특징으로 한다. 상기 양극활물질의 입자 크기가 5㎛ 미만인 경우 양극활물질의 비표면적은 커지나 결착용액 또는 전해액의 투입 및 안정적인 접촉이 저해될 수 있으며, 따라서 양극활물질의 결착에 다량의 바인더가 요구되어 전지 특성을 저하시킬 수 있다. 한편, 상기 양극활물질의 입자 크기가 15㎛ 초과인 경우 양극활물질의 비표면적 감소에 의해 전지 특성이 저하될 수 있다.The cathode active material for sodium secondary battery according to the present invention is characterized by having a spherical particle size of 5 to 15 μm and a monodisperse particle size. When the particle size of the positive electrode active material is less than 5㎛, the specific surface area of the positive electrode active material increases, but the input of a binding solution or electrolyte and stable contact may be inhibited. Therefore, a large amount of binder is required for binding of the positive electrode active material, thereby deteriorating battery characteristics. Can be. On the other hand, when the particle size of the positive electrode active material is more than 15㎛, battery characteristics may be reduced by reducing the specific surface area of the positive electrode active material.
본 발명에 의한 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30° 내지 40° 범위에서 3 개의 피크를 나타내는 것을 특징으로 한다.The cathode active material for sodium secondary battery according to the present invention is characterized in that 2θ in XRD shows three peaks in a range of 30 ° to 40 °.
본 발명에 의한 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 40° 내지 45° 범위에서 주피크인 (104) 피크가 나타나는 것을 특징으로 한다.The cathode active material for a sodium secondary battery according to the present invention is characterized in that the peak (104) having a main peak in the range of 40 ° to 45 ° in 2θ in XRD.
본 발명에 의한 나트륨 이차전지용 양극활물질은 비행 시간형 2차 이온 질량 분석에 의한 양이온 분석으로 얻어지는 6Li+, 7Li+ 의 피크를 가지는 것을 특징으로 한다.The cathode active material for sodium secondary battery according to the present invention is characterized by having a peak of 6Li + , 7Li + obtained by cation analysis by time-of-flight secondary ion mass spectrometry.
상기 비행 시간형 2차 이온 질량 분석(Time-of-Flight Secondary Ion Mass Spectrometry, TOF-SIMS) 장비는 SIMS 장비에 질량분석관인 TOF를 장착한 것이다. 구체적으로, SIMS 장비는 일차이온을 분석 물질의 표면에 충돌시켰을 때 방출하는 이온(양이온 혹은 음이온)을 분석하여 화학적 성분과 표면 구조를 얻어낼 수 있는 장비이다. 한편, TOF 질량분석관은 높은 이온 통과율을 가지고 모든 질량을 가진 이온들을 동시에 측정하는 우수한 질량 분해능을 가진 장비로서, TOF-SIMS 장비는 분석적으로 유용한 분자의 이차이온을 형성하여 직접적으로 분자에 관한 정보를 얻을 수 있고 분자 뿐만 아니라 원소들에 대해 감도가 높으며 미세하게 초점이 맞추어진 이온빔에 의해 높은 공간분해능을 가진다.The time-of-flight secondary ion mass spectrometry (TOF-SIMS) equipment is equipped with TOF, which is a mass spectrometer, in a SIMS device. Specifically, SIMS equipment is a device that can obtain chemical components and surface structures by analyzing ions (cations or anions) emitted when the primary ions collide with the surface of the analyte. The TOF mass spectrometer, on the other hand, is a device with excellent mass resolution capable of simultaneously measuring ions of all masses with a high ion passage rate, and TOF-SIMS equipment forms secondary ions of analytically useful molecules to directly display molecular information. It is highly sensitive to elements as well as molecules, and has high spatial resolution by finely focused ion beams.
본 발명에 의한 나트륨 이차전지용 양극활물질은 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)에 의한 산화수 분석에서 855 내지 860 eV 에서 Ni3+ 의 피크를 가지는 것을 특징으로 한다.The cathode active material for a sodium secondary battery according to the present invention is characterized by having a peak of Ni 3+ at 855 to 860 eV in oxidation number analysis by X-ray photoelectron spectroscopy (XPS).
본 발명은 또한,The present invention also provides
나트륨 이차전지용 양극활물질 전구체, 나트륨 화합물 및 리튬 화합물을 혼합하는 단계; 및Mixing a cathode active material precursor, a sodium compound, and a lithium compound for a sodium secondary battery; And
상기 혼합물을 열처리 단계;를 포함하는 본 발명의 나트륨 이차전지용 양극활물질의 제조 방법을 제공한다. It provides a method for producing a cathode active material for sodium secondary battery of the present invention comprising the step of heat-treating the mixture.
본 발명의 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 나트륨 이차전지용 양극활물질 전구체는 아래의 화학식 2 내지 4 중 어느 하나로 표시되는 것을 특징으로 한다.In the method for producing a cathode active material for sodium secondary battery of the present invention, the cathode active material precursor for sodium secondary battery is characterized in that represented by any one of the following formula (2).
[화학식 2] NiyFezMn1-y-z-bMb(OH)2 Ni y Fe z Mn 1-yzb M b (OH) 2
[화학식 3] NiyFezMn1-y-z-bMbC2O4 Ni y Fe z Mn 1-yzb M b C 2 O 4
[화학식 4] [NiyFezMn1-y-z-bMb]3O4 [Ni y Fe z Mn 1-yzb M b ] 3 O 4
(상기 화학식 2 내지 4에서, M은 Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고,(In Formulas 2 to 4, M is an element selected from the group consisting of Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B, and combinations thereof,
0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9 임)0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9)
본 발명의 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 나트륨 화합물은 소듐 카보네이트, 소듐 나이트레이트, 소듐 아세테이트, 수산화 소듐, 수산화 소듐 수화물, 소듐 옥사이드 또는 이들의 조합에서 선택되는 것을 특징으로 한다.In the method for producing a cathode active material for sodium secondary battery of the present invention, the sodium compound is characterized in that selected from sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a combination thereof.
본 발명의 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 나트륨 이차전지용 양극활물질 전구체 1 몰당 상기 나트륨 화합물은 0.8 내지 1.5 몰의 비율로 혼합되는 것을 특징으로 한다.In the method for producing a cathode active material for sodium secondary battery of the present invention, the sodium compound per 1 mol of the cathode active material precursor for sodium secondary battery is characterized in that it is mixed in a ratio of 0.8 to 1.5 mol.
본 발명의 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 리튬 화합물은 리튬 나이트레이트, 리튬 아세테이트, 리튬 카보네이트, 리튬 하이드록사이드, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 한다.In the method for producing a cathode active material for sodium secondary battery of the present invention, the lithium compound is characterized in that any one selected from the group consisting of lithium nitrate, lithium acetate, lithium carbonate, lithium hydroxide, and combinations thereof. .
본 발명의 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 열처리 단계에서는 600 ℃ 내지 1000 ℃ 에서 열처리 하는 것을 특징으로 한다. 상기 열처리 온도가 600 ℃ 미만인 경우 상기 양극활물질에 포함되는 금속의 녹는점 보다 낮아 미반응 금속 입자가 잔존할 수 있고, 1000 ℃ 초과인 경우 양극활물질을 구성하는 원소들의 불균일화가 진행되어 상기 양극활물질을 포함하는 나트륨 이차전지의 수명 특성이 저하될 수 있다.In the method for producing a cathode active material for sodium secondary battery of the present invention, the heat treatment step is characterized in that the heat treatment at 600 ℃ to 1000 ℃. If the heat treatment temperature is less than 600 ℃ unreacted metal particles may remain lower than the melting point of the metal contained in the positive electrode active material, if more than 1000 ℃ non-uniformization of the elements constituting the positive electrode active material proceeds to the positive electrode active material The lifespan of the sodium secondary battery may be reduced.
본 발명은 또한, 본 발명의 나트륨 이차전지용 양극활물질을 포함하는 나트륨 이차전지용 양극 및 이를 포함하는 나트륨 이차전지를 제공한다.The present invention also provides a sodium secondary battery positive electrode comprising a cathode active material for sodium secondary battery of the present invention and a sodium secondary battery comprising the same.
본 발명에 의한 나트륨 이차전지용 양극활물질은 전이금속을 일부 Li 으로 치환함으로써 구조적으로 더 안정하고 그에 따라 상기 양극활물질을 포함하는 나트륨 전지의 열적 안정성 및 수명 특성이 크게 개선된다. The cathode active material for a sodium secondary battery according to the present invention is structurally more stable by substituting a part of the transition metal with Li, thereby greatly improving the thermal stability and life characteristics of the sodium battery including the cathode active material.
도 1은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 XRD 측정 결과를 나타낸다. Figure 1 shows the XRD measurement results of the positive electrode active material prepared in one embodiment and comparative example of the present invention.
도 2는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 Tof-SIMS 측정 결과를 나타낸다. Figure 2 shows the results of Tof-SIMS measurement of the positive electrode active material prepared in one embodiment and comparative example of the present invention.
도 3은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 XPS 측정 결과를 나타낸다. Figure 3 shows the XPS measurement results of the positive electrode active material prepared in one embodiment and comparative example of the present invention.
도 4 는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 초기 충방전 특성을 측정한 결과를 나타낸다. Figure 4 shows the results of measuring the initial charge and discharge characteristics of a battery including a cathode active material prepared in one embodiment and comparative example of the present invention.
도 5 내지 도 8은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 충방전 특성을 측정한 결과를 나타낸다. 5 to 8 show the results of measuring charge and discharge characteristics of a battery including a cathode active material prepared in Examples and Comparative Examples of the present invention.
도 9 및 도 10은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 DSC 측정 결과를 나타낸다. 9 and 10 show the results of DSC measurement of a battery including the cathode active material prepared in Examples and Comparative Examples of the present invention.
도 11 은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 충방전 후 XRD 를 측정한 결과를 나타낸다. 11 shows the results of XRD measurement after charge and discharge of the positive electrode active materials prepared in Examples and Comparative Examples of the present invention.
도 12 는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 율특성 측정 결과를 나타낸다.12 shows the measurement results of the rate characteristic of a battery including a cathode active material prepared in one embodiment and comparative example of the present invention.
도 13 은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 수명 특성 측정 결과를 나타낸다.FIG. 13 shows measurement results of life characteristics of a battery including a cathode active material prepared in Examples and Comparative Examples.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the following examples.
<실시예> 양극 활물질의 제조Example Preparation of Positive Electrode Active Material
반응기에 4ℓ의 증류수를 채우고, 암모니아를 첨가하면서 1000 rpm 으로 교반하여 반응기 내부 pH 를 7로 맞추고 내부 온도를 50 ℃ 로 유지하였다. 제 2 pH 조절제로서 4 M NaOH 용액을 투입하여 반응기 내부 pH 를 10.2 로 맞추고 30 분간 유지시켰다. 전이금속 화합물 수용액으로 NiSO4ㆍ6H2O , FeSO4ㆍ7H2O , MnSO4ㆍ5H2O 를 당량비로 혼합하고, 착화제로서 NH4OH 와 함께 반응기 내로 투입하여 Ni0.25Fe0.25Mn0.5(OH)2 로 표시되는 전구체를 제조하였다. 전구체에 소듐 카보네이트와 리튬 카보네이트를 혼합하고 교반한 후, 열처리하여 Na1.0Li0.05[Ni0.25Fe0.25Mn0.5]0.95O2 로 표시되는 양극 활물질을 제조하였다.The reactor was charged with 4 L of distilled water, stirred at 1000 rpm while adding ammonia to adjust the pH inside the reactor to 7 and the internal temperature was maintained at 50 ° C. 4 M NaOH solution was added as a second pH adjusting agent to adjust the internal pH of the reactor to 10.2 and maintained for 30 minutes. NiSO 4 ㆍ 6H 2 O, FeSO 4 ㆍ 7H 2 O, MnSO 4 ㆍ 5H 2 O were mixed in an equivalent ratio with an aqueous solution of a transition metal compound, and added into the reactor together with NH 4 OH as a complexing agent to give Ni 0.25 Fe 0.25 Mn 0.5 ( A precursor represented by OH) 2 was prepared. Sodium carbonate and lithium carbonate were mixed with the precursor and stirred, followed by heat treatment to prepare a cathode active material represented by Na 1.0 Li 0.05 [Ni 0.25 Fe 0.25 Mn 0.5 ] 0.95 O 2 .
<비교예>Comparative Example
Ni0.25Fe0.25Mn0.5(OH)2 로 표시되는 전구체에 소듐 카보네이트만을 혼합하는 것을 제외하고는 상기 실시예과 동일하게 하여 Na1.0[Ni0.25Fe0.25Mn0.5]O2 로 표시되는 양극 활물질을 제조하였다.A cathode active material represented by Na 1.0 [Ni 0.25 Fe 0.25 Mn 0.5 ] O 2 was prepared in the same manner as in Example except that only sodium carbonate was mixed with a precursor represented by Ni 0.25 Fe 0.25 Mn 0.5 (OH) 2 . .
<실험예> XRD 측정Experimental Example XRD Measurement
상기 실시예 및 비교예에서 제조된 양극활물질에 대해 XRD 를 측정하고 그 결과를 도 1에 나타내었다. 도 1 에서 보는 바와 같이 본 발명의 실시예에서 제조된 양극활물질의 XRD 에서 2θ가 30° 내지 40° 범위에서 3개의 피크가 나타나는 것을 확인할 수 있다.XRD of the cathode active materials prepared in Examples and Comparative Examples was measured and the results are shown in FIG. 1. As shown in FIG. 1, in the XRD of the positive electrode active material prepared in the embodiment of the present invention, it can be seen that 2θ shows three peaks in a range of 30 ° to 40 °.
<실험예> TOF-SIMS 측정Experimental Example TOF-SIMS Measurement
상기 실시예 및 비교예에서 제조된 양극활물질에 대해 시간형 2 차 이온 질량 분석 장치(TOF-SIMS, Time-of-Flight Secondary Ion Mass Spectrometry)를 이용하여 얻어지는 양이온(cation) 분석 결과를 도 2에 나타내었다. The cation analysis result obtained by using a time-of-flight secondary ion mass spectrometer (TOF-SIMS) for the cathode active materials prepared in Examples and Comparative Examples is shown in FIG. 2. Indicated.
도 2에서 보는 바와 같이 본 발명의 실시예에서 제조된 양극활물질의 경우 6Li+ 및 7Li+ 피크를 나타내는데 비해, 비교예의 양극활물질의 경우 피크가 나타나지 않는 것을 확인할 수 있다. As shown in FIG. 2, the positive electrode active material prepared in Examples of the present invention exhibits 6Li + and 7Li + peaks, and the positive electrode active material of the Comparative Example does not show peaks.
<실험예> X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)측정Experimental Example X-ray photoelectron spectroscopy (XPS) measurement
상기 실시예 및 비교예에서 제조된 양극활물질에 대해 XPS 를 이용하여 전이금속의 산화수 변화를 측정한 결과를 도 3에 나타내었다. 3 shows the results of measuring the oxidation number change of the transition metal using XPS for the cathode active materials prepared in Examples and Comparative Examples.
도 3에서 보는 바와 같이 본 발명의 실시예에서 제조된 양극활물질의 경우 855 내지 860 eV 에서 Ni3+가 나타나 Ni2+ 가 부분적으로 Ni3+로 변화하는 것을 확인할 수 있다. As shown in FIG. 3, in the case of the cathode active material prepared in the embodiment of the present invention, Ni 3+ may appear at 855 to 860 eV, indicating that Ni 2+ is partially changed to Ni 3+ .
<제조예> 나트륨 전지 제조 Preparation Example Sodium Battery Production
상기 실시예 또는 비교예에서 제조한 복합 금속 산화물 양극활물질, 도전재로서의 아세틸렌 블랙(덴키가가꾸 고교 가부시끼가이샤 제조) 및 결합제로서의 PVDF(가부시끼가이샤쿠레하 제조, 폴리비닐리덴디플루오라이드폴리플론(Poly VinylideneDiFluoridePolyflon))를 양극활물질:도전재:결합제=85:10:5(중량비)의 조성이 되도록 각각 칭량하였다. Composite metal oxide cathode active material prepared in the above examples or comparative examples, acetylene black (manufactured by Denki Chemical Co., Ltd.) as a conductive material, and PVDF (manufactured by KK Corporation, polyvinylidene difluoride polyflon) as a binder Poly Vinylidene DiFluoride Polyflon)) was weighed so as to have a composition of positive electrode active material: conductive material: binder = 85:10: 5 (weight ratio).
그 후, 우선 복합 금속 산화물 양극활물질과 아세틸렌 블랙을 아게이트 모르타르(agate mortar)로 충분히 혼합하고, 이 혼합물에 N-메틸-2-피롤리돈(NMP: 도쿄 가세이 고교 가부시끼가이샤 제조)을 적량 가하고, 추가로 PVDF를 가하여 계속해서 균일하게 되도록 혼합하여 슬러리화 하였다. 얻어진 슬러리를 집전체인 두께 40 ㎛ 의 알루미늄박 상에 어플리케이터를 이용하여 100 ㎛ 의 두께로 도포하고, 이를 건조기에 넣고, NMP 를 제거시키면서 충분히 건조함으로써 정극 시트를 얻었다. 이와 같이 제조된 정극 시트 1을 전극 펀칭기로 직경 1.5 cm 로 펀칭한 후, 핸드 프레스로 충분히 압착하여, 양극을 제조하였다. Thereafter, first, the composite metal oxide cathode active material and acetylene black are sufficiently mixed with agate mortar, and N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Kasei Kogyo Co., Ltd.) is appropriately added to the mixture. Furthermore, PVDF was added and mixed to make it uniform and slurry. The obtained slurry was apply | coated to the thickness of 100 micrometers using an applicator on the aluminum foil of 40 micrometers thickness which is an electrical power collector, it was put into the dryer, and it dried sufficiently, removing NMP, and obtained the positive electrode sheet. The positive electrode sheet 1 thus prepared was punched out with an electrode puncher to a diameter of 1.5 cm, and then sufficiently compressed by a hand press to prepare a positive electrode.
코인셀(호센 가부시끼가이샤 제조)의 하측 파트의 오목부에 알루미늄박을 아래로 향하여 제조된 양극을 놓고, 이어서 비수전해액으로서의 5 vol% 의 플루오로에틸렌카보네이트(FEC)를 첨가한 1 M 의 NaClO4/프로필렌카르보네이트, 세퍼레이터로 폴리프로필렌 다공질막(두께 20 ㎛) 및 음극으로 나트륨 금속을 조합하여 나트륨 이차 전지를 제작하였다.1 M NaClO to which a positive electrode prepared with the aluminum foil faced downward was placed in the recess of the lower part of the coin cell (manufactured by Hosen Kabushiki Co., Ltd.), followed by addition of 5 vol% of fluoroethylene carbonate (FEC) as a nonaqueous electrolyte. A sodium secondary battery was produced by combining a polypropylene porous membrane (thickness 20 μm) with a 4 / propylene carbonate and a separator and a sodium metal as a negative electrode.
<실험예> 초기 충방전 특성 측정Experimental Example Measurement of Initial Charge and Discharge Characteristics
상기 제조예에서 제조된 상기 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지 각각에 대해 초기 충방전 특성을 측정하고 그 결과를 도 4에 나타내었다. Initial charge and discharge characteristics were measured for each of the batteries including the cathode active materials prepared in Examples and Comparative Examples, which were manufactured in the preparation examples, and the results are shown in FIG. 4.
<실험예> 충방전 특성 측정Experimental Example Measurement of Charge and Discharge Characteristics
상기 제조예에서 제조된 상기 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지 각각에 대해 0.2 C, 0.5 C 조건에서 충방전 특성을 측정하고 그 결과를 도 5 내지 도 8에 나타내었다. The charge and discharge characteristics were measured at 0.2 C and 0.5 C conditions for each of the batteries including the cathode active materials prepared in Examples and Comparative Examples, which were prepared in the preparation examples, and the results are shown in FIGS. 5 to 8.
<실험예> 열안정성 측정Experimental Example Thermal Stability Measurement
상기 제조예에서 제조된 상기 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지 각각에 대해 DSC 측정에 의한 열안전성을 측정하고 그 결과를 도 9 및 도 10에 나타내었다. Thermal safety by DSC measurement was measured for each of the batteries including the cathode active materials prepared in Examples and Comparative Examples, prepared in the above preparation examples, and the results are shown in FIGS. 9 and 10.
도 9 및 도 10에서 보는 바와 같이 본 발명의 실시예에 의하여 Li 을 포함하는 양극활물질의 경우 발화 온도가 297.6 ℃ 로 비교예보다 20 ℃ 이상 발화점의 온도가 높아졌으며, 발화시 방출되는 열량의 경우에도 30 % 이상 감소하여 본 발명의 실시예에 의하여 Li 을 포함하는 양극활물질의 경우 열안정성이 크게 개선되는 것을 알 수 있다. As shown in FIGS. 9 and 10, in the case of the cathode active material including Li according to an embodiment of the present invention, the ignition temperature is 297.6 ° C. and the temperature of the ignition point is 20 ° C. or more higher than that of the comparative example. In addition, it can be seen that the thermal stability is greatly improved in the case of the cathode active material including Li by 30% or more by the embodiment of the present invention.
<실험예> 충방전 후 XRD 측정Experimental Example XRD Measurement after Charge and Discharge
상기 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지 각각에 대해 충방전 실험 후 XRD 를 측정하고 그 결과를 도 11에 나타내었다. XRD was measured after charge and discharge experiments for each of the batteries including the cathode active materials prepared in Examples and Comparative Examples, and the results are shown in FIG. 11.
도 11에서 보는 바와 같이 본 발명의 실시예에 의하여 Li 을 포함하는 양극활물질의 경우 충방전 후에도 O3 구조가 유지되나, 비교예의 경우 Fe 이온의 migration 에 의해 O3 결정구조가 유지되지 못하고 P3 로 변한 것을 확인할 수 있다. As shown in FIG. 11, in the positive electrode active material including Li according to an embodiment of the present invention, the O 3 structure is maintained even after charging and discharging. In the comparative example, the O 3 crystal structure was not maintained due to migration of Fe ions and changed to P 3. You can check it.
<실험예> 율특성 측정Experimental Example
상기 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지 각각에 대해 상온에서 0.1 C 충전 조건 및 0.1 C 내지 5 C 방전 조건에서 율특성을 측정하고 그 결과를 도 12에 나타내었다.For each of the batteries including the cathode active materials prepared in Examples and Comparative Examples, the rate characteristics were measured at 0.1 C charging conditions and 0.1 C to 5 C discharge conditions at room temperature, and the results are shown in FIG. 12.
도 12에서 보는 바와 같이 본 발명의 실시예에 의하여 Li 을 포함하는 양극활물질의 경우 율특성이 기존의 Li 이 도핑되지 않은 양극활물질 대비 크게 개선되는 것을 알 수 있다.As shown in FIG. 12, in the case of the cathode active material including Li according to the embodiment of the present invention, it can be seen that the rate characteristic is greatly improved compared to the cathode material not doped with conventional Li.
<실험예> 수명 특성 측정Experimental Example Measurement of Life Characteristics
상기 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지 각각에 대해 상온에서 0.5 C 조건에서 200 cycle 동안의 수명 특성을 측정하고 그 결과를 도 13에 나타내었다.For each of the batteries including the cathode active material prepared in Examples and Comparative Examples, the life characteristics of 200 cycles at 0.5 C at room temperature were measured and the results are shown in FIG. 13.
도 13에서 보는 바와 같이 본 발명의 실시예에 의하여 Li 을 포함하는 양극활물질의 경우 200 cycle 동안 76%의 용량 유지율을 보이며, 기존의 Li 이 도핑되지 않은 양극활물질 대비 수명 특성이 크게 개선되는 것을 알 수 있다.As shown in FIG. 13, the positive electrode active material including Li exhibits a capacity retention rate of 76% for 200 cycles according to an embodiment of the present invention, and shows that the life characteristics of the positive electrode active material not doped with Li are greatly improved. Can be.
본 발명에 의한 나트륨 이차전지용 양극활물질은 전이금속을 일부 Li 으로 치환함으로써 구조적으로 더 안정하고 그에 따라 상기 양극활물질을 포함하는 나트륨 전지의 열적 안정성 및 수명 특성이 크게 개선될 수 있다.The cathode active material for sodium secondary battery according to the present invention is structurally more stable by substituting a part of the transition metal with Li, and accordingly, thermal stability and lifespan characteristics of the sodium battery including the cathode active material may be greatly improved.

Claims (14)

  1. 하기 화학식 1로 표시되는 나트륨 이차전지용 양극활물질.Sodium secondary battery positive electrode active material represented by the formula (1).
    [화학식 1] [Formula 1]
    NaxLia[NiyFezMn1-y-z-bMb]1-aO2 Na x Li a [Ni y Fe z Mn 1-yzb M b ] 1-a O 2
    (상기 화학식 1에서, M은 Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고,(In Formula 1, M is an element selected from the group consisting of Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B and combinations thereof,
    0.8≤x≤1.2, 0.01≤a≤0.1, 0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9 임) 0.8≤x≤1.2, 0.01≤a≤0.1, 0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9
  2. 제 1 항에 있어서, The method of claim 1,
    상기 나트륨 이차전지용 양극활물질은 입자 크기가 5 내지 15 ㎛ 의 구형이고, 입자 크기가 단분산형인 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery has a spherical particle size of 5 to 15 μm, and the particle size is monodisperse positive electrode active material for sodium secondary battery.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30° 내지 40° 범위에서 3 개의 피크를 나타내는 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery is a cathode active material for sodium secondary battery, characterized in that 2θ in XRD shows three peaks in the range of 30 ° to 40 °.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 40° 내지 45° 범위에서 주피크인 (104) 피크가 나타나는 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery is a cathode active material for sodium secondary battery, characterized in that the peak (104) peak in the range 2θ in the range 40 ° to 45 ° in XRD.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 나트륨 이차전지용 양극활물질은 비행 시간형 2차 이온 질량 분석에 의한 양이온 분석으로 얻어지는 6Li+, 7Li+ 의 피크를 가지는 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery is a cathode active material for sodium secondary battery, characterized in that it has a peak of 6Li + , 7Li + obtained by cation analysis by time-of-flight secondary ion mass spectrometry.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 나트륨 이차전지용 양극활물질은 X-선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)에 의한 산화수 분석에서 855 내지 860 eV 에서 Ni3+ 의 피크를 가지는 것을 특징으로 하는 나트륨 이차전지용 양극활물질.The cathode active material for sodium secondary battery is a cathode active material for sodium secondary battery having a peak of Ni 3+ at 855 to 860 eV in the oxidation number analysis by X-ray photoelectron spectroscopy (XPS).
  7. 나트륨 이차전지용 양극활물질 전구체, 나트륨 화합물 및 리튬 화합물을 혼합하는 단계; 및Mixing a cathode active material precursor, a sodium compound, and a lithium compound for a sodium secondary battery; And
    상기 혼합물을 열처리 단계;를 포함하는 제 1 항의 나트륨 이차전지용 양극활물질의 제조 방법.Heat treatment of the mixture; Method of producing a cathode active material for sodium secondary battery of claim 1 comprising a.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 나트륨 이차전지용 양극활물질 전구체는 아래의 화학식 2 내지 4 중 어느 하나로 표시되는 것인 나트륨 이차전지용 양극활물질의 제조 방법.The cathode active material precursor for the sodium secondary battery is a method of producing a cathode active material for sodium secondary battery that is represented by any one of the formulas (2) to 4 below.
    [화학식 2] NiyFezMn1-y-z-bMb(OH)2 Ni y Fe z Mn 1-yzb M b (OH) 2
    [화학식 3] NiyFezMn1-y-z-bMbC2O4 Ni y Fe z Mn 1-yzb M b C 2 O 4
    [화학식 4] [NiyFezMn1-y-z-bMb]3O4 [Ni y Fe z Mn 1-yzb M b ] 3 O 4
    (상기 화학식 2 내지 4에서, M은 Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B 및 이들의 조합으로 이루어진 군에서 선택되는 원소이고,(In Formulas 2 to 4, M is an element selected from the group consisting of Co, Cr, Zr, Nb, Cu, V, Ti, Zn, Al, Ga, Mg, B, and combinations thereof,
    0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9 임)0.05≤y≤0.9, 0.05≤z≤0.9, 0≤b≤0.9, 0.05≤1-y-z-b≤0.9)
  9. 제 7 항에 있어서, The method of claim 7, wherein
    상기 나트륨 화합물은 소듐 카보네이트, 소듐 나이트레이트, 소듐 아세테이트, 수산화 소듐, 수산화 소듐 수화물, 소듐 옥사이드 또는 이들의 조합에서 선택되는 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.The sodium compound is sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a method for producing a cathode active material for a sodium secondary battery, characterized in that combinations thereof.
  10. 제 7 항에 있어서, The method of claim 7, wherein
    상기 나트륨 이차전지용 양극활물질 전구체 1 몰당 상기 나트륨 화합물은 0.8 내지 1.5 몰의 비율로 혼합되는 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.The sodium compound per one mole of the positive electrode active material precursor for the sodium secondary battery is a method for producing a positive electrode active material for sodium secondary battery, characterized in that the mixture of 0.8 to 1.5 moles.
  11. 제 7 항에 있어서, The method of claim 7, wherein
    상기 리튬 화합물은 리튬 나이트레이트, 리튬 아세테이트, 리튬 카보네이트, 리튬 하이드록사이드, 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.The lithium compound is a lithium nitrate, lithium acetate, lithium carbonate, lithium hydroxide, and a method for producing a cathode active material for sodium secondary battery, characterized in that any one selected from the group consisting of a combination thereof.
  12. 제 7 항에 있어서, The method of claim 7, wherein
    상기 열처리 단계에서는 600 ℃ 내지 1000 ℃ 에서 열처리 하는 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.In the heat treatment step, the cathode active material for sodium secondary battery, characterized in that the heat treatment at 600 ℃ to 1000 ℃.
  13. 제 1 항의 나트륨 이차전지용 양극활물질을 포함하는 나트륨 이차전지용 양극.A sodium secondary battery positive electrode comprising the cathode active material for sodium secondary battery of claim 1.
  14. 제 13 항의 나트륨 이차전지용 양극을 포함하는 나트륨 이차전지.A sodium secondary battery comprising the cathode for sodium secondary battery of claim 13.
PCT/KR2015/001437 2014-02-12 2015-02-12 Positive electrode active material for sodium secondary battery, and method for preparing same WO2015122705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/118,342 US20170187039A1 (en) 2014-02-12 2015-02-12 Positive electrode active material for sodium secondary battery, and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140016252 2014-02-12
KR10-2014-0016252 2014-02-12
KR1020150021603A KR101689457B1 (en) 2014-02-12 2015-02-12 Cathode active material for sodium rechargeable batteries and manufacturing method thereof
KR10-2015-0021603 2015-02-12

Publications (1)

Publication Number Publication Date
WO2015122705A1 true WO2015122705A1 (en) 2015-08-20

Family

ID=53800376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001437 WO2015122705A1 (en) 2014-02-12 2015-02-12 Positive electrode active material for sodium secondary battery, and method for preparing same

Country Status (1)

Country Link
WO (1) WO2015122705A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522828B2 (en) * 2016-05-26 2019-12-31 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive active material for rechargeable sodium battery, and method of fabricating the same
WO2024161411A1 (en) * 2023-02-02 2024-08-08 Council Of Scientific And Industrial Research An Indian Registered Body Incorporated Under The Regn. Of Soc. Act (Act Xxi Of 1860) Air and moisture stable high-capacity positive electrode materials for sodium-ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135092A (en) * 2007-11-09 2009-06-18 Sumitomo Chemical Co Ltd Compound metal oxide and sodium secondary battery
KR20130105676A (en) * 2010-11-05 2013-09-25 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135092A (en) * 2007-11-09 2009-06-18 Sumitomo Chemical Co Ltd Compound metal oxide and sodium secondary battery
KR20130105676A (en) * 2010-11-05 2013-09-25 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAEHOE LEE ET AL.: "An advanced cathode for Na-ion batteries with high rate and excellent structural stability", PHYS. CHEM. CHEM. PHYS., vol. 15, no. 9, 2013, pages 3304 - 3312, XP055189544 *
DONGHAN KIM ET AL.: "Enabling Sodium Batteries Using Lithium-Substituted Sodium Layered Transition Metal Oxide Cathodes", ADV. ENERGY MATER., vol. 1, no. 3, May 2011 (2011-05-01), pages 333 - 336, XP055219898 *
MARIA JOSE ARAGON ET AL.: "Improving the electrochemical performance of titanium phosphate-based electrodes in sodium batteries by lithium substitution", JOURNAL OF MATERIALS CHEMISTRY A, vol. 1, no. 44, 2013, pages 13963 - 13969, XP055219901 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522828B2 (en) * 2016-05-26 2019-12-31 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Positive active material for rechargeable sodium battery, and method of fabricating the same
WO2024161411A1 (en) * 2023-02-02 2024-08-08 Council Of Scientific And Industrial Research An Indian Registered Body Incorporated Under The Regn. Of Soc. Act (Act Xxi Of 1860) Air and moisture stable high-capacity positive electrode materials for sodium-ion battery

Similar Documents

Publication Publication Date Title
WO2016021791A1 (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery comprising same
WO2016052820A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including same
WO2014077662A1 (en) Method for producing anode active material precursor for sodium secondary battery by using coprecipitation technique and anode active material precursor for sodium secondary battery produced thereby
WO2012161476A2 (en) High energy density lithium secondary battery having enhanced energy density characteristic
WO2016108384A1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
WO2012161479A2 (en) High output lithium secondary battery having enhanced output density characteristic
KR101689457B1 (en) Cathode active material for sodium rechargeable batteries and manufacturing method thereof
WO2014077663A1 (en) Anode active material for sodium secondary battery and method for producing same
WO2013009078A2 (en) High-energy lithium secondary battery having improved energy density characteristics
WO2015099243A1 (en) Electrode active material containing boron compound and electrochemical device using same
WO2012161480A2 (en) High output lithium secondary battery having enhanced output density characteristic
WO2012039563A2 (en) Positive electrode active material comprising lithium manganese oxide and non-aqueous electrolyte secondary battery
WO2019078690A2 (en) Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
WO2014126312A1 (en) Method for producing anodic composite material for lithium secondary battery, method for producing electrode using same, and method for charging and discharging electrode
WO2019240496A1 (en) Anode active material for lithium secondary battery and lithium secondary battery comprising same
WO2014168398A1 (en) Electrode laminate comprising electrodes having different areas and secondary battery comprising same
WO2012161482A2 (en) High energy density lithium secondary battery having enhanced energy density characteristic
WO2021025370A1 (en) Cathode active material for lithium secondary battery
WO2015026121A1 (en) Lithium cobalt-based complex oxide having good lifespan properties, and secondary battery anode active material including same
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
WO2013109038A1 (en) Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
WO2012161474A2 (en) High-power lithium secondary battery having improved output density properties
EP4220758A1 (en) Silicon-based negative electrode composite material and lithium secondary battery
WO2014168286A1 (en) Method of manufacturing cathode active material precursor for lithium secondary battery, method of manufacturing cathode active material for lithium secondary battery, cathode including cathode active material and lithium secondary battery
WO2012161477A2 (en) High output lithium secondary battery having enhanced output density characteristic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15118342

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748467

Country of ref document: EP

Kind code of ref document: A1