WO2015122446A1 - Copper/ceramic bond and power module substrate - Google Patents
Copper/ceramic bond and power module substrate Download PDFInfo
- Publication number
- WO2015122446A1 WO2015122446A1 PCT/JP2015/053792 JP2015053792W WO2015122446A1 WO 2015122446 A1 WO2015122446 A1 WO 2015122446A1 JP 2015053792 W JP2015053792 W JP 2015053792W WO 2015122446 A1 WO2015122446 A1 WO 2015122446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- active element
- ceramic
- layer
- oxide layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/026—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/023—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
- C04B37/025—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/06—Oxidic interlayers
- C04B2237/068—Oxidic interlayers based on refractory oxides, e.g. zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/121—Metallic interlayers based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/12—Metallic interlayers
- C04B2237/126—Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/366—Aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/368—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/60—Forming at the joining interface or in the joining layer specific reaction phases or zones, e.g. diffusion of reactive species from the interlayer to the substrate or from a substrate to the joining interface, carbide forming at the joining interface
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/704—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/706—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/708—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
Definitions
- the present invention relates to a copper / ceramic bonded body formed by bonding a copper member made of copper or a copper alloy and a ceramic member, and a power module substrate formed of the copper / ceramic bonded body.
- This application is filed with Japanese Patent Application No. 2014-024410 filed in Japan on February 12, 2014, Japanese Patent Application No. 2014-052594 filed in Japan on March 14, 2014, and July 2, 2014. Furthermore, priority is claimed based on Japanese Patent Application No. 2014-136567 filed in Japan, the contents of which are incorporated herein.
- the active element oxide layer may contain P.
- the active element oxide layer containing P is easily formed on the surface of the ceramic member by bonding with the active element and reacting with oxygen. Therefore, the copper member and the ceramic member can be reliably bonded even under low temperature conditions. Thereby, it becomes possible to suppress the thermal deterioration of the ceramic member at the time of joining.
- a Cu—Al eutectic layer may be formed between the active element oxide layer and the copper member.
- the copper member and the ceramic member can be reliably bonded even under low temperature conditions.
- the reaction between Al and Cu results in the formation of a Cu—Al eutectic layer between the active element oxide layer and the copper member.
- the thickness t of the active element oxide layer 30 is determined by observing the bonding interface at a magnification of 200,000 times using a transmission electron microscope, and oxidizing the active element at a location where the active element concentration is in the range of 35 at% to 70 at%. It is regarded as the physical layer 30 and is obtained by measuring its thickness.
- the concentration (at%) of the active element is measured with an EDS (energy dispersive X-ray spectrometer) attached to the transmission electron microscope, and the active element concentration when the sum of the P concentration, the active element concentration, and the O concentration is 100 is used. Concentration.
- the thickness of the active element oxide layer was an average value of five fields of view.
- the heat sink 51 is bonded to the other surface side of the metal layer 13 of the power module substrate 10 (heat sink bonding step S04).
- the power module substrate 10 and the heat sink 51 are laminated via the brazing material 28, pressurized in the laminating direction, and inserted into a vacuum furnace for brazing.
- the metal layer 13 of the power module substrate 10 and the top plate portion 52 of the heat sink 51 are joined.
- the brazing material 28 for example, an Al—Si based brazing foil having a thickness of 20 to 110 ⁇ m (for example, Al-10 mass% Si brazing foil) can be used, and the brazing temperature is set in the heat treatment step S03. Set to a lower temperature than the temperature condition in.
- the ceramic substrate 11 made of AlN and the copper plate 22 are held at a high temperature with Ti interposed (for example, 790 ° C. to 850 ° C.), nitrogen in the ceramic substrate 11 reacts with Ti, and TiN becomes Although it is formed, in the first embodiment, the low temperature condition (in the range of 600 ° C. or more and 650 ° C. or less) is used in the heat treatment step S03, so that TiN is not formed and the active element oxide layer 30 is formed. (Ti—O layer) is formed.
- the ceramic substrate 11 and the circuit layer 12 are joined using a Cu—Al based brazing material containing Al, and the Al in the Cu—Al based brazing material is Cu.
- a liquid phase is generated under a low temperature condition, and the above-described Cu—Al eutectic layer 131 is formed.
- the thickness t e of the Cu-Al eutectic layer 131 is equal to or greater than 10 [mu] m, the liquid phase is sufficiently formed as described above, to reliably bond the ceramic substrate 11 and the circuit layer 12 Can do. Further, since the thickness t e of the Cu-Al eutectic layer 131 is a 60 ⁇ m or less, it is possible to suppress the bonding interface area becomes brittle, it is possible to ensure a high thermal cycle reliability.
- the active element oxide layer 230 can be reliably formed, and the ceramic substrate 211 and the circuit layer 12 can be reliably bonded. Further, since the P content is 10 mass% or less, the active element oxide layer 230 is not excessively hardened, and for example, the load on the ceramic substrate due to the thermal stress at the time of a cold cycle load can be reduced. It is possible to prevent the reliability of the interface from decreasing.
- the concentration and thickness of the active element of the active element oxide layer 230 and the P content are measured by the same method as the concentration and thickness of the active element and the P content of the active element oxide layer 30 of the first embodiment. Is done.
- the heat sink 51 is bonded to the other surface side of the metal layer 13 of the power module substrate 210 (heat sink bonding step S04).
- the power module substrate 210 and the heat sink 51 are laminated through the brazing material 28, pressurized in the laminating direction, and inserted into a vacuum furnace for brazing.
- the metal layer 13 of the power module substrate 210 and the top plate portion 52 of the heat sink 51 are joined.
- the brazing material 28 for example, an Al—Si based brazing foil having a thickness of 20 to 110 ⁇ m (for example, Al-10 mass% Si brazing foil) can be used, and the brazing temperature is set in the heat treatment step S03. Set to a lower temperature than the temperature condition in.
- alumina Al 2 O 3 purity of 98 mass% or more
- 92% alumina Al 2 O 3 purity of 92 mass% or more
- Other aluminas such as 96% alumina (Al 2 O 3 purity 96 mass% or more) and zirconia reinforced alumina may be applied.
- Ti has been described as an example of the active element, the present invention is not limited to this, and other active elements such as Zr and Hf may be applied.
- the heat sink is not limited to those exemplified in the third embodiment, and the structure of the heat sink is not particularly limited. Further, a buffer layer made of aluminum, an aluminum alloy, or a composite material containing aluminum (for example, AlSiC) may be provided between the top plate portion of the heat sink or the heat radiating plate and the metal layer.
- a buffer layer made of aluminum, an aluminum alloy, or a composite material containing aluminum (for example, AlSiC) may be provided between the top plate portion of the heat sink or the heat radiating plate and the metal layer.
- FIG. 6 shows the interface observation results and element mapping of Example A1 of the present invention.
- the bonding interface is observed at a magnification of 200,000 times, and the portion where the concentration of the active element is in the range of 35 at% to 70 at% is regarded as the active element oxide layer. It was measured.
- the active element concentration (at%) was determined by measuring the P concentration (at%), the active element concentration (at%), and the O concentration (at%) with an EDS attached to a transmission electron microscope. The concentration of the active element when the sum of the concentration and the O concentration was 100 was used.
- the thermal cycle test uses TSB-51, a thermal shock tester, Espec Corp., and -40 ° C x 5 minutes ⁇ ⁇ 150 ° C x 5 minutes 2000 cycles in the liquid phase (Fluorinert) for the power module substrate Carried out.
- the bonding interface between the circuit layer (copper plate) and the ceramic substrate was observed, and the initial bonding rate and the bonding rate after the thermal cycle were evaluated.
- the evaluation method was the same as in Example 1.
- the thickness of the active element oxide layer, the thickness of the Cu—Al eutectic layer, and the composition analysis were performed using an EDS attached to a transmission electron microscope.
- the Cu—Al eutectic layer is considered to be a Cu—Al eutectic layer where the Cu concentration is 60 at% to 90 at% when the composition is 100 at% of the combined Cu concentration and Al concentration, and the thickness is measured. did.
- the composition of the Cu—Al eutectic layer was measured at 5 points and the average value thereof.
- the observation results are shown in FIG.
- the evaluation results are shown in Table 4.
- a copper / ceramic bonded body in which a copper member made of copper or a copper alloy and a ceramic member made of nitride ceramics are securely bonded even under low temperature conditions. It was confirmed that it was possible to provide.
- a power module substrate was prepared.
- Table 6 shows the conditions for the heat treatment step.
- sample B4 a paste made of Cu-7 mass% P-15 mass% Sn-10 mass% Ni powder and Ti powder was used as a brazing material and an active element.
- the paste coating thickness was 80 ⁇ m.
- the present invention example B1 to the present invention example B11 in which the thickness of the active element oxide layer is 5 nm or more and 220 nm or less has a high initial bonding rate even under relatively low temperature conditions. And the copper plate were securely joined.
- examples B1-B6 and B9-B11 in which the phosphorus concentration in the active element oxide layer is in the range of 1.5 mass% to 10 mass% the bonding rate after the thermal cycle is as high as 90% or more, Bonding reliability was improved.
- a copper / ceramic bonded body (power module substrate) in which a copper member made of copper or a copper alloy and a ceramic member made of alumina are reliably bonded even at a low temperature. It was confirmed that it was possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Ceramic Products (AREA)
Abstract
Description
本願は、2014年2月12日に、日本に出願された特願2014-024410号、2014年3月14日に、日本に出願された特願2014-052594号、及び2014年7月2日に、日本に出願された特願2014-136567号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a copper / ceramic bonded body formed by bonding a copper member made of copper or a copper alloy and a ceramic member, and a power module substrate formed of the copper / ceramic bonded body.
This application is filed with Japanese Patent Application No. 2014-024410 filed in Japan on February 12, 2014, Japanese Patent Application No. 2014-052594 filed in Japan on March 14, 2014, and July 2, 2014. Furthermore, priority is claimed based on Japanese Patent Application No. 2014-136567 filed in Japan, the contents of which are incorporated herein.
風力発電、電気自動車、ハイブリッド自動車等を制御するために用いられる大電力制御用のパワー半導体素子においては、発熱量が多いことから、これを搭載する基板としては、例えばAlN(窒化アルミニウム)、Al2O3(アルミナ)などからなるセラミックス基板と、このセラミックス基板の一方の面に導電性の優れた金属板を接合して形成した回路層と、を備えたパワーモジュール用基板が、従来から広く用いられている。なお、パワージュール用基板としては、セラミックス基板の他方の面に金属板を接合して金属層が形成したものも提供されている。 A semiconductor device such as an LED or a power module has a structure in which a semiconductor element is bonded on a circuit layer made of a conductive material.
In power semiconductor elements for large power control used to control wind power generation, electric vehicles, hybrid vehicles, etc., the amount of heat generated is large, and for example, AlN (aluminum nitride), Al 2. Description of the Related Art Conventionally, a power module substrate including a ceramic substrate made of 2 O 3 (alumina) or the like and a circuit layer formed by bonding a metal plate having excellent conductivity to one surface of the ceramic substrate has been widely used. It is used. As the power joule substrate, a substrate in which a metal layer is formed by bonding a metal plate to the other surface of the ceramic substrate is also provided.
また、特許文献2に開示されているように、活性金属ろう付け法によってセラミックス基板と銅板とを接合する場合には、接合温度が900℃と比較的高温とされていることから、やはり、セラミックス基板が劣化してしまうといった問題があった。ここで、接合温度を低下させると、ろう材がセラミックス基板と十分に反応せず、セラミックス基板と銅板との界面での接合率が低下してしまい、信頼性の高いパワーモジュール用基板を提供することができなくなる。
さらに、活性金属ろう付け法では、セラミックス基板と銅板との接合界面にTiN層が形成される。このTiN層は硬く脆いため、冷熱サイクル負荷時にセラミックス基板に割れが発生するおそれがあった。 However, as disclosed in
Further, as disclosed in
Furthermore, in the active metal brazing method, a TiN layer is formed at the bonding interface between the ceramic substrate and the copper plate. Since this TiN layer is hard and brittle, there is a possibility that cracks may occur in the ceramic substrate when a thermal cycle is applied.
このような課題を解決して、前記目的を達成するために、本発明の第1の態様の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、窒化物セラミックスからなるセラミックス部材とが接合された銅/セラミックス接合体であって、前記銅部材と前記セラミックス部材との接合界面には、活性元素と酸素を含有する活性元素酸化物層が形成されており、この活性元素酸化物層の厚さが5nm以上220nm以下の範囲内とされていることを特徴としている。 [First embodiment]
In order to solve such problems and achieve the above object, the copper / ceramic bonded body according to the first aspect of the present invention includes a copper member made of copper or a copper alloy, and a ceramic member made of nitride ceramics. An active element oxide layer containing an active element and oxygen is formed at the bonding interface between the copper member and the ceramic member, and the active element oxide. The thickness of the layer is in the range of 5 nm to 220 nm.
なお、第1の態様においては、活性元素として、Ti,Zr,Hf,Nb等を用いることができる。さらに、窒化物セラミックスとして、AlN、Si3N4等を用いることができる。 Here, when a copper member and a ceramic member made of nitride ceramics are joined under the condition of maintaining a high temperature with an active element interposed, the active element and nitrogen of the nitride ceramic react to form a nitride layer. It will be. In the first aspect, the active element oxide layer can be formed instead of the nitride layer by bonding the copper member and the ceramic member made of the nitride ceramic under a low temperature condition. The active element oxide layer described above reacts with the active element interposed between the copper member and the ceramic member and the oxygen contained in the oxide or bonding material formed on the surface of the copper member or ceramic member. It is formed by doing.
In the first embodiment, Ti, Zr, Hf, Nb or the like can be used as the active element. Further, AlN, Si 3 N 4 or the like can be used as the nitride ceramic.
この場合、接合界面にPを介在させると、このPが活性元素と結合するとともに酸素と反応することにより、セラミックス部材の表面にPを含有する前記活性元素酸化物層が形成されやすくなる。よって、低温の条件でも、銅部材とセラミックス部材とを確実に接合することができる。これにより、接合時におけるセラミックス部材の熱劣化等を抑制することが可能となる。 In the copper / ceramic bonding article of the first aspect, the active element oxide layer may contain P.
In this case, when P is interposed at the bonding interface, the active element oxide layer containing P is easily formed on the surface of the ceramic member by bonding with the active element and reacting with oxygen. Therefore, the copper member and the ceramic member can be reliably bonded even under low temperature conditions. Thereby, it becomes possible to suppress the thermal deterioration of the ceramic member at the time of joining.
この場合、接合界面にAlを介在させることにより、低温の条件でも銅部材とセラミックス部材とを確実に接合することができる。このとき、AlとCuとが反応することで、上述の活性元素酸化物層と銅部材との間にCu-Al共晶層が形成されることになる。 In the copper / ceramic bonding article of the first aspect, a Cu—Al eutectic layer may be formed between the active element oxide layer and the copper member.
In this case, by interposing Al at the bonding interface, the copper member and the ceramic member can be reliably bonded even under low temperature conditions. At this time, the reaction between Al and Cu results in the formation of a Cu—Al eutectic layer between the active element oxide layer and the copper member.
この構成のパワーモジュール用基板によれば、上述の銅/セラミックス接合体で構成されているので、低温の条件で接合することによりセラミックス基板への熱負荷を軽減でき、セラミックス基板の劣化を抑制することができる。また、低温の条件で接合した場合であっても、セラミックス基板と銅板とが確実に接合しており、接合信頼性を確保することができる。なお、セラミックス基板の表面に接合された銅板は、回路層あるいは金属層として用いられる。 The power module substrate according to the first aspect is a power module substrate in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate made of nitride ceramics, and is composed of the above-described copper / ceramic bonded body. It is characterized by being.
According to the power module substrate having this configuration, the above-described copper / ceramic bonding body is used, so that the thermal load on the ceramic substrate can be reduced by bonding under low temperature conditions, and deterioration of the ceramic substrate is suppressed. be able to. Moreover, even if it joins on low temperature conditions, the ceramic substrate and the copper plate have joined reliably, and joining reliability can be ensured. In addition, the copper plate joined to the surface of the ceramic substrate is used as a circuit layer or a metal layer.
上記課題を解決して、前記目的を達成するために、本発明の第2の態様の銅/セラミックス接合体は、銅又は銅合金からなる銅部材と、アルミナからなるセラミックス部材とが接合された銅/セラミックス接合体であって、前記銅部材と前記セラミックス部材との接合界面には、活性元素と酸素と燐とを含有する活性元素酸化物層が形成されており、この活性元素酸化物層の厚さが5nm以上220nm以下の範囲内とされていることを特徴としている。 [Second embodiment]
In order to solve the above problems and achieve the above object, the copper / ceramic bonded body of the second aspect of the present invention is obtained by bonding a copper member made of copper or a copper alloy and a ceramic member made of alumina. An active element oxide layer containing an active element, oxygen and phosphorus is formed at a bonding interface between the copper member and the ceramic member, and the active element oxide layer. Is characterized in that the thickness is in the range of 5 nm to 220 nm.
また、接合界面に燐(P)を介在させると、この燐(P)が活性元素と結合するとともに酸素と反応することにより、セラミックス部材の表面に燐(P)を含有する前記活性元素酸化物層が形成されやすくなる。よって、低温の条件でも、銅部材とセラミックス部材とを確実に接合することができる。これにより、接合時におけるセラミックス部材の熱劣化等を抑制することが可能となる。
なお、第2の態様においては、活性金属として、Ti,Zr,Hf等を用いることができる。さらに、アルミナとして、92%アルミナ(Al2O3純度92mass%以上)、96%アルミナ(Al2O3純度96mass%以上)、98%アルミナ(Al2O3純度98mass%以上)、ジルコニア強化アルミナ等を用いることができる。 Here, when an active element is interposed and a ceramic member made of alumina and a ceramic member made of alumina are bonded together under the condition of maintaining a high temperature, the active element and oxygen of alumina react to form a thick oxide layer. . In the second aspect, the active element oxide layer can be formed relatively thin by bonding a copper member and a ceramic member made of alumina under low temperature conditions.
Further, when phosphorus (P) is interposed at the bonding interface, the phosphorus (P) is bonded to the active element and reacts with oxygen, whereby the active element oxide containing phosphorus (P) on the surface of the ceramic member. A layer is easily formed. Therefore, the copper member and the ceramic member can be reliably bonded even under low temperature conditions. Thereby, it becomes possible to suppress the thermal deterioration of the ceramic member at the time of joining.
In the second embodiment, Ti, Zr, Hf, etc. can be used as the active metal. Furthermore, as alumina, 92% alumina (Al 2 O 3 purity of 92 mass% or more), 96% alumina (Al 2 O 3 purity of 96 mass% or more), 98% alumina (Al 2 O 3 purity of 98 mass% or more), zirconia reinforced alumina Etc. can be used.
この場合、前記活性元素酸化物層における燐濃度(P濃度)が、1.5mass%以上とされているので、低温の条件でも確実に前記活性元素酸化物層を形成でき、銅部材とセラミックス部材とを強固に接合することが可能となる。また、前記活性元素酸化物層における燐濃度(P濃度)が、10mass%以下とされているので、前記活性元素酸化物層が過剰に硬くなることがなく、例えば冷熱サイクル負荷時の熱応力によってセラミックス部材に割れが生じることを抑制できる。 In the copper / ceramic bonding article of the second aspect, the phosphorus concentration in the active element oxide layer may be in the range of 1.5 mass% or more and 10 mass% or less.
In this case, since the phosphorus concentration (P concentration) in the active element oxide layer is 1.5 mass% or more, the active element oxide layer can be reliably formed even under low temperature conditions, and a copper member and a ceramic member. Can be firmly joined. In addition, since the phosphorus concentration (P concentration) in the active element oxide layer is set to 10 mass% or less, the active element oxide layer is not excessively hardened, for example, due to thermal stress during a cooling cycle load. It can suppress that a ceramic member is cracked.
この構成のパワーモジュール用基板によれば、上述の銅/セラミックス接合体で構成されているので、低温の条件で接合することによりセラミックス基板への熱負荷を軽減でき、セラミックス基板の劣化を抑制することができる。また、低温の条件で接合した場合であっても、セラミックス基板と銅板とが確実に接合しており、接合信頼性を確保することができる。なお、セラミックス基板の表面に接合された銅板は、回路層あるいは金属層として用いられる。 The power module substrate of the second aspect is a power module substrate in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate made of alumina, and is composed of the above-described copper / ceramic bonded body. It is characterized by being.
According to the power module substrate having this configuration, the above-described copper / ceramic bonding body is used, so that the thermal load on the ceramic substrate can be reduced by bonding under low temperature conditions, and deterioration of the ceramic substrate is suppressed. be able to. Moreover, even if it joins on low temperature conditions, the ceramic substrate and the copper plate have joined reliably, and joining reliability can be ensured. In addition, the copper plate joined to the surface of the ceramic substrate is used as a circuit layer or a metal layer.
[第一の実施形態]
以下に、本発明の第1の態様に係る、第一の実施形態について添付した図面を参照して説明する。
本発明の第一の実施形態に係る銅/セラミックス接合体は、窒化物セラミックスからなるセラミックス部材としてのセラミックス基板11と、銅または銅合金からなる銅部材としての銅板22(回路層12)とが接合されることにより構成されたパワーモジュール用基板10とされている。
図1に、本発明の第一の実施形態であるパワーモジュール用基板10及びこのパワーモジュール用基板10を用いたパワーモジュール1を示す。 [First embodiment]
[First embodiment]
Hereinafter, a first embodiment according to a first aspect of the present invention will be described with reference to the accompanying drawings.
The copper / ceramic bonding body according to the first embodiment of the present invention includes a
FIG. 1 shows a
ここで、はんだ層2は、例えばSn-Ag系、Sn-In系、若しくはSn-Ag-Cu系のはんだ材とされている。 The
Here, the
セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、第一の実施形態のセラミックス基板11は、窒化物セラミックスの1種であるAlN(窒化アルミニウム)で構成されている。ここで、セラミックス基板11の厚さは、0.2~1.5mmの範囲内に設定されていることが好ましく、第一の実施形態では、0.635mmに設定されている。 The
The
なお、このアルミニウム板23は、0.2%耐力が30N/mm2以下とされていることが好ましい。ここで、金属層13(アルミニウム板23)の厚さは0.5mm以上6mm以下の範囲内に設定されていることが好ましく、第一の実施形態では、2.0mmに設定されている。 As shown in FIG. 4, the
The
このヒートシンク51(天板部52)は、第一の実施形態においては、パワーモジュール用基板10の金属層13にろう付けによって直接接合されている。 The
In the first embodiment, the heat sink 51 (top plate portion 52) is directly joined to the
第一の実施形態においては、活性元素としてTiを有しており、上述の活性元素酸化物層30は、Tiと酸素とを含むTi-O層とされている。
また、第一の実施形態においては、後述するように、Pを含むCu-P系ろう材24を用いてセラミックス基板11と回路層12(銅板22)とを接合していることから、活性元素酸化物層30にはPが含有されている。なお、第一の実施形態では、活性元素酸化物層30におけるPの含有量が1.5mass%以上10mass%以下の範囲内とされていることが好ましく、より好ましくは3mass%以上8mass%以下の範囲内である。なお、ここでのPの含有量はTiとPとOの合計量を100とした時の含有量である。
Pの含有量が1.5mass%以上とされているので、確実に活性元素酸化物層30を形成することができ、セラミックス基板11と回路層12とを確実に接合することができる。また、Pの含有量が10mass%以下とされているので、活性元素酸化物層30が過剰に硬くなることがなく、例えば冷熱サイクル負荷時の熱応力によるセラミックス基板への負荷を低減でき、接合界面の信頼性低下を防ぐことができる。
なお、Pを含むCu-P系ろう材24を用いずにセラミックス基板11と回路層12(銅板22)とを接合する場合は、ろう材24として、後述するCu-Alろう材等を用いることが出来る。
活性元素酸化物層30の厚さtは、透過型電子顕微鏡を用い、倍率20万倍で接合界面を観察し、活性元素の濃度が35at%~70at%の範囲内にある箇所を活性元素酸化物層30とみなし、その厚さを測定して得る。活性元素の濃度(at%)は、透過型電子顕微鏡付属のEDS(エネルギー分散形X線分光器)で測定し、P濃度、活性元素濃度及びO濃度の合計を100とした時の活性元素の濃度とした。活性元素酸化物層の厚さは、5視野の平均値とした。
活性元素酸化物層30のPの含有量(mass%)は、活性元素酸化物層30中のP濃度(mass%)、Ti濃度(mass%)及びO濃度(mass%)を透過型電子顕微鏡付属のEDSで測定し、P濃度、Ti濃度及びO濃度の合計を100とした時のP濃度(mass%)を算出して得る。Pの含有量(mass%)については、測定点を5点とし、その平均値とした。 Here, as shown in FIG. 2, an active
In the first embodiment, Ti is used as an active element, and the above active
In the first embodiment, as will be described later, since the
Since the P content is 1.5 mass% or more, the active
When the
The thickness t of the active
The P content (mass%) of the active
Cu-P系ろう材24としては、他にCu-P-Znろう材等を用いることが出来る。 In the first embodiment, the Cu—
As the Cu—
さらに、第一の実施形態では、アルミニウム板23をセラミックス基板11に接合する接合材27として、融点降下元素であるSiを含有したAl-Si系ろう材(例えばAl-7.5mass%Siろう材)を用いることが好ましい。
接合材27としては、他にAl-Cuろう材やCu等を用いることが出来る。接合材27としてCu(例えば、固着量としては0.08mg/cm2以上2.7mg/cm2以下)を用いた場合、いわゆる過渡液相接合法(Transient Liquid Phase Diffusion Bonding、TLP)によって接合することが出来る。 In the first embodiment, the thickness of the
Furthermore, in the first embodiment, as the
As the
以上の工程S01~S03により、第一の実施形態であるパワーモジュール用基板10が製造される。 Next, the
Through the above steps S01 to S03, the
パワーモジュール用基板10とヒートシンク51とを、ろう材28を介して積層し、積層方向に加圧するとともに真空炉内に装入してろう付けを行う。これにより、パワーモジュール用基板10の金属層13とヒートシンク51の天板部52とを接合する。このとき、ろう材28としては、例えば、厚さ20~110μmのAl-Si系ろう材箔(例えばAl-10mass%Siろう材箔)を用いることができ、ろう付け温度は、加熱処理工程S03における温度条件よりも低温に設定する。 Next, the
The
以上の工程S01~S05により、図1に示すパワーモジュール1が製出される。 Next, the
Through the above steps S01 to S05, the
なお、上述の作用効果を奏するためには、活性元素酸化物層30(Ti-O層)の厚さtを10nm以上、220nm以下とすることが好ましい。
また、活性元素酸化物層30における活性元素(第一の実施形態ではTi)の濃度は35at%~70at%の範囲内とされている。なお、ここでの活性元素の濃度は活性元素(第一の実施形態ではTi)とPとOの合計量を100とした時の濃度である。 In the first embodiment, since the thickness t of the active element oxide layer 30 (Ti—O layer) is 5 nm or more, the
In order to achieve the above-described effects, the thickness t of the active element oxide layer 30 (Ti—O layer) is preferably 10 nm or more and 220 nm or less.
The concentration of the active element (Ti in the first embodiment) in the active
次に、本発明の第1の態様に係る、第二の実施形態について添付した図面を参照して説明する。
本発明の第二の実施形態に係る銅/セラミックス接合体は、第一の実施形態と同様に、窒化物セラミックスからなるセラミックス部材としてのセラミックス基板11と、銅または銅合金からなる銅部材としての銅板22(回路層12)とが接合されることにより構成されたパワーモジュール用基板とされており、図1に示すパワーモジュール用基板のうちセラミックス基板11と銅板22(回路層12)との接合界面の構造が異なっている。 [Second Embodiment]
Next, a second embodiment according to the first aspect of the present invention will be described with reference to the accompanying drawings.
As in the first embodiment, the copper / ceramic bonded body according to the second embodiment of the present invention is a
第二の実施形態においては、図5に示すように、セラミックス基板11と回路層12(銅板22)との接合界面には、活性元素と酸素とを含む活性元素酸化物層130と、Cu-Al共晶層131と、が積層配置されている。すなわち、活性元素酸化物層130と銅板22(回路層12)との間にCu-Al共晶層131が形成されているのである。 FIG. 5 shows the structure of the bonding interface between the
In the second embodiment, as shown in FIG. 5, at the bonding interface between the
また、第二の実施形態では、Cu-Al共晶層131の厚さteが10μm以上60μm以下の範囲内であることが好ましく、10μm以上30μm以下の範囲内であるとより好ましい。なお、Cu-Al共晶層131においては、活性元素酸化物層130側に活性元素(第二の実施形態ではTi)が濃化した活性元素濃化層131aを備えていてもよい。
活性元素酸化物層130における活性元素の濃度は35at%~70at%の範囲内とされている。
Cu-Al共晶層は、組成がCu濃度とAl濃度を合わせて100at%としたときのCu濃度が60at%~90at%である箇所をいう。
活性元素濃化層131aにおける活性元素の濃度は40at%~60at%の範囲内であることが好ましく、50at%~60at%の範囲内であることがより好ましい。活性元素濃化層131aはその厚みが10nm以上200nm以下の範囲内であると好ましく、10nm以上50nm以下の範囲内であるとより好ましい。
活性元素酸化物層130の活性元素の濃度及び厚みは、第一の実施形態の活性元素酸化物層30の活性元素の濃度及び厚みと同様の方法で測定される。
Cu-Al共晶層の厚みは、透過型電子顕微鏡付属のEDSを用い、組成がCu濃度とAl濃度を合わせて100at%としたときのCu濃度が60at%~90at%である箇所の厚さを5か所測定し、その平均値を求める。
活性元素濃化層131aの組成は、透過型電子顕微鏡付属のEDSを用いて測定する。 Here, in the second embodiment, the thickness t of the active
Further, in the second embodiment, it is preferable that the thickness t e of the Cu-
The concentration of the active element in the active
The Cu—Al eutectic layer refers to a portion where the Cu concentration is 60 at% to 90 at% when the composition is 100 at% in which the Cu concentration and the Al concentration are combined.
The concentration of the active element in the active element
The concentration and thickness of the active element in the active
The thickness of the Cu—Al eutectic layer is the thickness of the portion where the Cu concentration is 60 at% to 90 at% when the composition is set to 100 at% using the EDS attached to the transmission electron microscope. Is measured at five locations, and the average value is obtained.
The composition of the active element
第二の実施形態では、Cu-Al系ろう材として、Alを45mass%以上95mass%以下の範囲で含むCu-Alろう材を用いている。さらに、Cu-Al系ろう材の厚さは、5μm以上50μm以下の範囲とされていることが好ましい。
なお、接合時の加熱温度は、580℃以上650℃以下とすることが望ましい。
第二の実施形態においては、Alを含むCu-Al系ろう材を用いてセラミックス基板11と回路層12(銅板22)とを接合しており、このCu-Al系ろう材中のAlがCuと共晶反応することで、低温条件下で液相が生じ、上述のCu-Al共晶層131が形成されることになる。 The power module substrate manufacturing method according to the second embodiment is different from the power module substrate manufacturing method according to the first embodiment in that a Cu—Al based brazing material is used instead of the Cu—P based brazing
In the second embodiment, a Cu—Al brazing material containing Al in the range of 45 mass% to 95 mass% is used as the Cu—Al based brazing material. Furthermore, the thickness of the Cu—Al based brazing material is preferably in the range of 5 μm to 50 μm.
Note that the heating temperature at the time of bonding is preferably 580 ° C. or more and 650 ° C. or less.
In the second embodiment, the
また、活性元素酸化物層130と銅板22(回路層12)との間にCu-Al共晶層131が形成されているので、共晶反応によって低温条件で液相が生じ、セラミックス基板11と回路層12とを確実に接合することができる。
ここで、Cu-Al共晶層131の厚さteが10μm以上とされているので、上述のように液相が十分に形成され、セラミックス基板11と回路層12とを確実に接合することができる。また、Cu-Al共晶層131の厚さteが60μm以下とされているので、接合界面近傍が脆くなることを抑制でき、高い冷熱サイクル信頼性を確保することが可能となる。 According to the copper / ceramic bonding body (power module substrate) of the second embodiment configured as described above, an active element oxide is formed at the bonding interface between the
In addition, since the Cu—
Here, since the thickness t e of the Cu-
例えば、銅部材としての銅板(回路層)とセラミックス部材としてのセラミックス基板とを接合したパワーモジュール用基板を例に挙げて説明したが、これに限定されることはなく、銅又は銅合金からなる銅部材と、窒化物セラミックスからなるセラミックス部材とが接合された銅/セラミックス接合体であればよい。 The first and second embodiments according to the first aspect of the present invention have been described above. However, the present invention is not limited to this, and may be changed as appropriate without departing from the technical idea of the present invention. Is possible.
For example, a power module substrate in which a copper plate (circuit layer) as a copper member and a ceramic substrate as a ceramic member are joined has been described as an example, but the present invention is not limited thereto, and is made of copper or a copper alloy. Any copper / ceramic bonded body in which a copper member and a ceramic member made of nitride ceramics are bonded may be used.
さらに、銅板を、無酸素銅又はタフピッチ銅の圧延板として説明したが、これに限定されることはなく、他の銅又は銅合金で構成されたものであってもよい。
また、金属層を構成するアルミニウム板を、純度99.99mass%の純アルミニウムの圧延板として説明したが、これに限定されることはなく、純度99mass%のアルミニウム(2Nアルミニウム)等、他のアルミニウム又はアルミニウム合金で構成されたものであってもよい。
さらに、金属層は、アルミニウム板で構成したものに限定されることはなく、その他の金属で構成したものであってもよい。 Moreover, although demonstrated as what forms a circuit layer by joining a copper plate, it is not limited to this, You may form a metal layer by joining a copper plate.
Furthermore, although the copper plate was demonstrated as a rolled plate of an oxygen free copper or a tough pitch copper, it is not limited to this, You may be comprised with another copper or copper alloy.
Moreover, although the aluminum plate which comprises a metal layer was demonstrated as a rolled plate of pure aluminum of purity 99.99 mass%, it is not limited to this, Other aluminum, such as aluminum (2N aluminum) of purity 99mass% Alternatively, it may be made of an aluminum alloy.
Furthermore, a metal layer is not limited to what was comprised with the aluminum plate, and may be comprised with the other metal.
さらに、活性元素としてTiを例に挙げて説明したが、これに限定されることはなく、Zr,Hf,Nb等の他の活性元素を適用してもよい。
また、本発明の第一及び第二の実施形態では、接合界面に形成された活性元素酸化物層にPが含有されたものとして説明したが、これに限定されることはない。 Further, although AlN has been described as an example of the nitride ceramic, the present invention is not limited thereto, and other nitride ceramics such as Si 3 N 4 may be applied.
Furthermore, although Ti has been described as an example of the active element, the present invention is not limited to this, and other active elements such as Zr, Hf, and Nb may be applied.
Moreover, in 1st and 2nd embodiment of this invention, although demonstrated as what contained P in the active element oxide layer formed in the joining interface, it is not limited to this.
また、本発明の第一及び第二の実施形態では、セラミックス基板と銅板との間にCu-P-Sn-Ni系ろう材及びCu-Al系ろう材、Ti箔を介在させるものとして説明したが、これに限定されることはなく、Cu-P-Sn-Niペースト及びCu-Alペースト、Tiペースト等を介在させてもよい。 Further, in the first and second embodiments of the present invention, the description has been made on the assumption that the ceramic substrate and the copper plate are bonded using the Cu—P—Sn—Ni brazing material and the Cu—Al brazing material. However, other brazing materials may be used.
In the first and second embodiments of the present invention, it has been described that a Cu—P—Sn—Ni brazing material, a Cu—Al based brazing material, and a Ti foil are interposed between the ceramic substrate and the copper plate. However, the present invention is not limited to this, and Cu—P—Sn—Ni paste, Cu—Al paste, Ti paste, or the like may be interposed.
また、ヒートシンクの天板部や放熱板と金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けてもよい。 Furthermore, the heat sink is not limited to those exemplified in the first and second embodiments of the present invention, and the structure of the heat sink is not particularly limited.
Further, a buffer layer made of aluminum, an aluminum alloy, or a composite material containing aluminum (for example, AlSiC) may be provided between the top plate portion of the heat sink or the heat radiating plate and the metal layer.
[第三の実施形態]
以下に、本発明の第2の態様に係る、第三の実施形態について添付した図面を参照して説明する。
第一の実施形態と同じ構成を有する部材については、同じ符号を用い、詳細な説明を省略する。
第三の実施形態に係る銅/セラミックス接合体は、アルミナからなるセラミックス部材としてのセラミックス基板211と、銅または銅合金からなる銅部材としての銅板22(回路層12)とが接合されることにより構成されたパワーモジュール用基板210とされている。
図8に、本発明の第三の実施形態であるパワーモジュール用基板210及びこのパワーモジュール用基板210を用いたパワーモジュール201を示す。 [Second embodiment]
[Third embodiment]
Below, 3rd embodiment based on the 2nd aspect of this invention is described with reference to attached drawing.
About the member which has the same structure as 1st embodiment, the same code | symbol is used and detailed description is abbreviate | omitted.
The copper / ceramic bonding body according to the third embodiment is obtained by bonding a
FIG. 8 shows a
はんだ層2では、第一の実施形態と同様のはんだ材を用いることができる。 The
In the
セラミックス基板211は、回路層12と金属層13との間の電気的接続を防止するものであって、第三の実施形態のセラミックス基板211は、アルミナの1種である98%アルミナ(Al2O3純度98mass%以上)で構成されている。ここで、セラミックス基板211の厚さは、0.2~1.5mmの範囲内に設定されることが好ましく、第三の実施形態では、0.38mmに設定されている。 The
The
なお、この第三の実施形態のアルミニウム板23は、第一の実施形態のアルミニウム板23と同様の構成(耐力、厚み等)を有する。 As shown in FIG. 10, the
The
第三の実施形態においては、活性元素としてTiを有しており、上述の活性元素酸化物層230は、Tiと酸素(O)と燐(P)とを含むTi-P-O層とされている。
なお、活性元素としてZrを用いた場合には、活性元素酸化物層230はZr-P-O層とされ、Nbを用いた場合にはNb-P-O層とされ、Hfを用いた場合にはHf-P-O層とされている。
活性元素酸化物層230における活性元素の濃度は35at%~70at%の範囲内とされている。なお、ここでの活性元素の濃度は活性元素とPとOの合計量を100とした時の濃度である。
また、第三の実施形態においては、活性元素酸化物層230におけるPの含有量が1.5mass%以上10mass%以下の範囲内とされていることが好ましく、より好ましくは3mass%以上8mass%以下の範囲内である。なお、ここでのPの含有量は活性金属とPとOの合計量を100とした含有量である。
Pの含有量が1.5mass%以上とされているので、確実に活性元素酸化物層230を形成することができ、セラミックス基板211と回路層12とを確実に接合することができる。また、Pの含有量が10mass%以下とされているので、活性元素酸化物層230が過剰に硬くなることがなく、例えば冷熱サイクル負荷時の熱応力によるセラミックス基板への負荷を低減でき、接合界面の信頼性低下を防ぐことができる。
活性元素酸化物層230の活性元素の濃度及び厚み、並びにP含有量は、第一の実施形態の活性元素酸化物層30の活性元素の濃度及び厚み、並びにP含有量と同様の方法で測定される。 Here, as shown in FIG. 9, an active
In the third embodiment, Ti is used as an active element, and the active
When Zr is used as the active element, the active
The concentration of the active element in the active
In the third embodiment, the P content in the active
Since the P content is 1.5 mass% or more, the active
The concentration and thickness of the active element of the active
Cu-P系ろう材224としては、他にCu-P-Znろう材等を用いることが出来る。 Here, in the third embodiment, the Cu—
As the Cu—
さらに、第三の実施形態では、アルミニウム板23をセラミックス基板211に接合する接合材27として、融点降下元素であるSiを含有したAl-Si系ろう材(例えばAl-7.5mass%Siろう材)を用いることが好ましい。接合材27としては、他に第一の実施形態で挙げたろう材と同じものを用いることが出来る。 In the third embodiment, the thickness of the
Further, in the third embodiment, as the
以上の工程S01~S03により、第三の実施形態であるパワーモジュール用基板210が製造される。 Next, vacuum heating is performed in a state where the
Through the steps S01 to S03, the
パワーモジュール用基板210とヒートシンク51とを、ろう材28を介して積層し、積層方向に加圧するとともに真空炉内に装入してろう付けを行う。これにより、パワーモジュール用基板210の金属層13とヒートシンク51の天板部52とを接合する。このとき、ろう材28としては、例えば、厚さ20~110μmのAl-Si系ろう材箔(例えばAl-10mass%Siろう材箔)を用いることができ、ろう付け温度は、加熱処理工程S03における温度条件よりも低温に設定する。 Next, the
The
以上の工程S01~S05により、図8に示すパワーモジュール201が製出される。 Next, the
Through the above steps S01 to S05, the
なお、上述の作用効果を奏するためには、活性元素酸化物層230(Ti-P-O層)の厚さtを10nm以上、220nm以下とすることが好ましい。 In the third embodiment, since the thickness t of the active element oxide layer 230 (Ti—PO layer) is 5 nm or more, the
In order to achieve the above-described effects, it is preferable that the thickness t of the active element oxide layer 230 (Ti—PO layer) be 10 nm or more and 220 nm or less.
これにより、セラミックス基板211と銅板22(回路層12)とを確実に接合することが可能となる。すなわち、活性元素であるTiと反応しやすく、かつ、酸素とも反応しやすい元素であるPを界面に介在させることで、上述の活性元素酸化物層230(Ti-P-O層)の形成が促進され、低温の条件でもセラミックス基板211と銅板22とが確実に接合されるのである。 Furthermore, in the third embodiment, since bonding is performed using the Cu—P based
Thereby, the
例えば、銅部材としての銅板(回路層)とセラミックス部材としてのセラミックス基板とを接合したパワーモジュール用基板を例に挙げて説明したが、これに限定されることはなく、銅又は銅合金からなる銅部材と、アルミナからなるセラミックス部材とが接合された銅/セラミックス接合体であればよい。 As mentioned above, although 3rd embodiment of this invention was described, this invention is not limited to this, In the range which does not deviate from the technical idea of the invention, it can change suitably.
For example, a power module substrate in which a copper plate (circuit layer) as a copper member and a ceramic substrate as a ceramic member are joined has been described as an example, but the present invention is not limited thereto, and is made of copper or a copper alloy. Any copper / ceramic bonded body in which a copper member and a ceramic member made of alumina are bonded may be used.
さらに、銅板を、無酸素銅又はタフピッチ銅の圧延板として説明したが、これに限定されることはなく、他の銅又は銅合金で構成されたものであってもよい。
また、金属層を構成するアルミニウム板を、純度99.99mass%以上の純アルミニウムの圧延板として説明したが、これに限定されることはなく、純度99mass%以上のアルミニウム(2Nアルミニウム)等、他のアルミニウム又はアルミニウム合金で構成されたものであってもよい。
さらに、金属層は、アルミニウム板で構成したものに限定されることはなく、その他の金属で構成したものであってもよい。 Moreover, although demonstrated as what forms a circuit layer by joining a copper plate, it is not limited to this, You may form a metal layer by joining a copper plate.
Furthermore, although the copper plate was demonstrated as a rolled plate of an oxygen free copper or a tough pitch copper, it is not limited to this, You may be comprised with another copper or copper alloy.
Moreover, although the aluminum plate which comprises a metal layer was demonstrated as a rolled plate of pure aluminum of purity 99.99 mass% or more, it is not limited to this, Aluminum (2N aluminum) of purity 99 mass% or more, etc. It may be composed of aluminum or an aluminum alloy.
Furthermore, a metal layer is not limited to what was comprised with the aluminum plate, and may be comprised with the other metal.
さらに、活性元素としてTiを例に挙げて説明したが、これに限定されることはなく、Zr,Hf等の他の活性元素を適用してもよい。 Further, although 98% alumina (Al 2 O 3 purity of 98 mass% or more) has been described as an example of the nitride ceramic, the present invention is not limited to this, and 92% alumina (Al 2 O 3 purity of 92 mass% or more) is used. Other aluminas such as 96% alumina (Al 2 O 3 purity 96 mass% or more) and zirconia reinforced alumina may be applied.
Furthermore, although Ti has been described as an example of the active element, the present invention is not limited to this, and other active elements such as Zr and Hf may be applied.
また、第三の実施形態では、セラミックス基板と銅板との間にCu-P-Sn-Ni系ろう材、Ti箔を介在させるものとして説明したが、これに限定されることはなく、Cu-P-Sn-Niペースト、Tiペースト等を介在させてもよい。 Further, in the third embodiment, the Cu—P—Sn—Ni-based brazing material has been described as joining the ceramic substrate and the copper plate. However, the present invention is not limited to this, and other brazing materials may be used. It may be used.
In the third embodiment, the Cu—P—Sn—Ni brazing material and the Ti foil are interposed between the ceramic substrate and the copper plate. However, the present invention is not limited to this. P-Sn-Ni paste, Ti paste or the like may be interposed.
また、ヒートシンクの天板部や放熱板と金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けてもよい。 Furthermore, the heat sink is not limited to those exemplified in the third embodiment, and the structure of the heat sink is not particularly limited.
Further, a buffer layer made of aluminum, an aluminum alloy, or a composite material containing aluminum (for example, AlSiC) may be provided between the top plate portion of the heat sink or the heat radiating plate and the metal layer.
表1に示すセラミックス基板、ろう材、活性元素、銅板を用いて、銅/セラミックス接合体(パワーモジュール用基板)を形成した。
詳述すると、40mm角で厚さ0.635mmのセラミックス基板の一方の面及び他方の面に、表1に示すろう材及び活性元素を介在させて、38mm角の厚さ0.3mmの銅板(無酸素銅の圧延板)を積層し、これらを積層方向に圧力6kgf/cm2で加圧した状態で真空加熱炉内(真空度5×10-4Pa)に装入し、加熱することによってパワーモジュール用基板を作製した。なお、加熱処理工程の条件を表2に示す。
なお、本発明例A4については、Cu-7mass%P-15mass%Sn-10mass%Ni粉末とTi粉末からなるペーストをろう材及び活性元素として用いた。なお、ペーストの塗布厚は85μmとした。 <Example 1>
Using the ceramic substrate, brazing material, active element, and copper plate shown in Table 1, a copper / ceramic bonded body (power module substrate) was formed.
More specifically, a 40 mm square, 0.635 mm thick ceramic substrate having a 38 mm square 0.3 mm thick copper plate with one side and the other side of the brazing material and active elements shown in Table 1 interposed therebetween. An oxygen-free copper rolled sheet) is stacked, charged in a stacking direction at a pressure of 6 kgf / cm 2 , charged in a vacuum heating furnace (vacuum degree 5 × 10 −4 Pa), and heated. A power module substrate was prepared. Table 2 shows the conditions of the heat treatment process.
For Invention Example A4, a paste comprising Cu-7 mass% P-15 mass% Sn-10 mass% Ni powder and Ti powder was used as the brazing filler metal and the active element. The paste coating thickness was 85 μm.
銅板とセラミックス基板との接合界面を、透過型電子顕微鏡(日本電子株式会社製JEM-2010F)を用いて観察した。
本発明例A1の界面観察結果、及び、元素マッピングを図6に示す。
活性元素酸化物層の厚さは、倍率20万倍で接合界面を観察し、活性元素の濃度が35at%~70at%の範囲内にある箇所を活性元素酸化物層とみなし、その厚さを測定した。なお、活性元素の濃度(at%)は、P濃度(at%)、活性元素濃度(at%)及びO濃度(at%)を透過型電子顕微鏡付属のEDSで測定し、P濃度、活性元素濃度及びO濃度の合計を100とした時の活性元素の濃度とした。活性元素酸化物層の厚さは、5視野の平均値とした。
P濃度(mass%)は、活性元素酸化物層中のP濃度(mass%)、Ti濃度(mass%)及びO濃度(mass%)を透過型電子顕微鏡付属のEDSで測定し、P濃度、Ti濃度及びO濃度の合計を100とした時のP濃度を算出し、活性元素酸化物層中のP濃度とした。また、P濃度については、測定点を5点とし、その平均値とした。
結果を表2に示す。 (Joint interface observation)
The bonding interface between the copper plate and the ceramic substrate was observed using a transmission electron microscope (JEM-2010F manufactured by JEOL Ltd.).
FIG. 6 shows the interface observation results and element mapping of Example A1 of the present invention.
As for the thickness of the active element oxide layer, the bonding interface is observed at a magnification of 200,000 times, and the portion where the concentration of the active element is in the range of 35 at% to 70 at% is regarded as the active element oxide layer. It was measured. The active element concentration (at%) was determined by measuring the P concentration (at%), the active element concentration (at%), and the O concentration (at%) with an EDS attached to a transmission electron microscope. The concentration of the active element when the sum of the concentration and the O concentration was 100 was used. The thickness of the active element oxide layer was an average value of five fields of view.
P concentration (mass%) is measured by EDS attached to a transmission electron microscope by measuring P concentration (mass%), Ti concentration (mass%) and O concentration (mass%) in the active element oxide layer. The P concentration when the total of the Ti concentration and the O concentration was set to 100 was calculated and used as the P concentration in the active element oxide layer. Moreover, about P density | concentration, the measurement point was made into 5 points | pieces and it was set as the average value.
The results are shown in Table 2.
冷熱サイクル試験は、冷熱衝撃試験機エスペック社製TSB-51を使用し、パワーモジュール用基板に対して、液相(フロリナート)で、-40℃×5分←→150℃×5分の2000サイクルを実施した。 (Cooling cycle test)
The thermal cycle test uses TSB-51, a thermal shock tester, Espec Corp., and -40 ° C x 5 minutes ← → 150 ° C x 5 minutes 2000 cycles in the liquid phase (Fluorinert) for the power module substrate Carried out.
銅板とセラミックス基板との接合率は、超音波探傷装置を用いて以下の式を用いて求めた。ここで、初期接合面積とは、接合前における接合すべき面積、すなわち銅板の面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
(接合率)={(初期接合面積)-(剥離面積)}/(初期接合面積) (Joining rate)
The bonding rate between the copper plate and the ceramic substrate was determined using the following equation using an ultrasonic flaw detector. Here, the initial bonding area is the area to be bonded before bonding, that is, the area of the copper plate. In the ultrasonic flaw detection image, peeling is indicated by a white portion in the joint, and thus the area of the white portion was taken as the peeling area.
(Bonding rate) = {(initial bonding area) − (peeling area)} / (initial bonding area)
活性元素酸化物層の厚さが220nmを超える比較例A2では、冷熱サイクル後にセラミックス基板に割れが生じた。接合界面に活性元素酸化物層が厚く形成されたためにセラミックス基板にかかる熱応力が増加したためと推測される。 In Comparative Example A1 in which the thickness of the active element oxide layer was less than 5 nm, the initial bonding rate was low and bonding was insufficient.
In Comparative Example A2 where the thickness of the active element oxide layer exceeded 220 nm, the ceramic substrate was cracked after the cooling and heating cycle. It is presumed that the thermal stress applied to the ceramic substrate increased because the active element oxide layer was formed thick at the bonding interface.
表3に示すセラミックス基板、ろう材、活性元素、銅板を用いて、銅/セラミックス接合体(パワーモジュール用基板)を形成した。
詳述すると、40mm角で厚さ0.635mmのセラミックス基板の一方の面及び他方の面に、表1に示すろう材及び活性元素を介在させて、38mm角の厚さ0.3mmの銅板(無酸素銅の圧延板)を積層し、これらを積層方向に圧力6kgf/cm2で加圧した状態で真空加熱炉内(真空度5×10-4Pa)に装入し、加熱することによってパワーモジュール用基板を作製した。なお、加熱処理工程の条件を表4に示す。 <Example 2>
Using the ceramic substrate, brazing material, active element, and copper plate shown in Table 3, a copper / ceramic bonded body (power module substrate) was formed.
More specifically, a 40 mm square, 0.635 mm thick ceramic substrate having a 38 mm square 0.3 mm thick copper plate with one side and the other side of the brazing material and active elements shown in Table 1 interposed therebetween. An oxygen-free copper rolled sheet) is stacked, charged in a stacking direction at a pressure of 6 kgf / cm 2 , charged in a vacuum heating furnace (vacuum degree 5 × 10 −4 Pa), and heated. A power module substrate was prepared. Table 4 shows the conditions of the heat treatment process.
なお、接合界面観察では、活性元素酸化物層の厚さと、Cu-Al共晶層の厚さ及び組成分析を、透過型電子顕微鏡付属のEDSを用いて実施した。
Cu-Al共晶層は、組成がCu濃度とAl濃度を合わせて100at%としたときのCu濃度が60at%~90at%である箇所をCu-Al共晶層とみなし、その厚さを測定した。
なお、Cu-Al共晶層の組成は、測定点を5点とし、その平均値とした。観察結果を図7に示す。また、評価結果を表4に示す。 For the power module substrate thus obtained, the bonding interface between the circuit layer (copper plate) and the ceramic substrate was observed, and the initial bonding rate and the bonding rate after the thermal cycle were evaluated. The evaluation method was the same as in Example 1.
In the bonding interface observation, the thickness of the active element oxide layer, the thickness of the Cu—Al eutectic layer, and the composition analysis were performed using an EDS attached to a transmission electron microscope.
The Cu—Al eutectic layer is considered to be a Cu—Al eutectic layer where the Cu concentration is 60 at% to 90 at% when the composition is 100 at% of the combined Cu concentration and Al concentration, and the thickness is measured. did.
Note that the composition of the Cu—Al eutectic layer was measured at 5 points and the average value thereof. The observation results are shown in FIG. The evaluation results are shown in Table 4.
本発明の第三の実施形態の有効性を確認するために行った確認実験について説明する。
表5に示すセラミックス基板(株式会社MARUWA社製)、ろう材、活性元素、銅板を用いて、銅/セラミックス接合体(パワーモジュール用基板)を形成した。
詳述すると、40mm角で厚さ0.38mmのセラミックス基板の一方の面及び他方の面に、表5に示すろう材及び活性元素を介在させて、38mm角の厚さ0.3mmの銅板(無酸素銅の圧延板)を積層し、これらを積層方向に圧力7kgf/cm2で加圧した状態で真空加熱炉内(真空度5×10-4Pa)に装入し、加熱することによってパワーモジュール用基板を作製した。なお、加熱処理工程の条件を表6に示す。
なお、本発明例B4については、Cu-7mass%P-15mass%Sn-10mass%Ni粉末とTi粉末からなるペーストをろう材及び活性元素として用いた。なお、ペーストの塗布厚は80μmとした。 <Example 3>
A confirmation experiment performed to confirm the effectiveness of the third embodiment of the present invention will be described.
A copper / ceramic bonding body (power module substrate) was formed using a ceramic substrate (manufactured by MARUWA Co., Ltd.), a brazing material, an active element, and a copper plate shown in Table 5.
More specifically, a 40 mm square, 0.38 mm thick ceramic substrate with a brazing material and active elements shown in Table 5 interposed between one side and the other side, a 38 mm square 0.3 mm thick copper plate ( An oxygen-free copper rolled sheet) is stacked, charged in a stacking direction at a pressure of 7 kgf / cm 2 , charged in a vacuum heating furnace (vacuum degree 5 × 10 −4 Pa), and heated. A power module substrate was prepared. Table 6 shows the conditions for the heat treatment step.
In the invention sample B4, a paste made of Cu-7 mass% P-15 mass% Sn-10 mass% Ni powder and Ti powder was used as a brazing material and an active element. The paste coating thickness was 80 μm.
評価結果を表6に示す。本発明例B2の界面観察結果を図11に示す。 For the power module substrate thus obtained, the bonding interface between the circuit layer (copper plate) and the ceramic substrate was observed, and the initial bonding rate and the bonding rate after the thermal cycle were evaluated. Each layer shown at the bonding interface in Table 6 is an active element oxide layer. The evaluation method was the same as in Example 1.
The evaluation results are shown in Table 6. FIG. 11 shows the interface observation result of Example B2.
活性元素酸化物層の厚さが220nmを超える比較例B2では、冷熱サイクル後にセラミックス基板に割れが生じた。接合界面に活性元素酸化物層が厚く形成されたためにセラミックス基板にかかる熱応力が増加したためと推測される。 In Comparative Example B1 in which the thickness of the active element oxide layer was less than 5 nm, the initial bonding rate was low and bonding was insufficient.
In Comparative Example B2 where the thickness of the active element oxide layer exceeds 220 nm, the ceramic substrate was cracked after the cooling and heating cycle. It is presumed that the thermal stress applied to the ceramic substrate increased because the active element oxide layer was formed thick at the bonding interface.
11、211 セラミックス基板
12 回路層
13 金属層
22 銅板
24、224 Cu-P系ろう材
25、225 Ti箔
30、130、230 活性元素酸化物層
131 Cu-Al共晶層 10, 210
Claims (7)
- 銅又は銅合金からなる銅部材と、窒化物セラミックスからなるセラミックス部材とが接合された銅/セラミックス接合体であって、
前記銅部材と前記セラミックス部材との接合界面には、活性元素と酸素を含有する活性元素酸化物層が形成されており、
この活性元素酸化物層の厚さが5nm以上220nm以下の範囲内とされていることを特徴とする銅/セラミックス接合体。 A copper / ceramic bonding body in which a copper member made of copper or a copper alloy and a ceramic member made of nitride ceramics are joined,
An active element oxide layer containing an active element and oxygen is formed at the bonding interface between the copper member and the ceramic member,
A copper / ceramic bonding article, wherein the active element oxide layer has a thickness in a range of 5 nm to 220 nm. - 前記活性元素酸化物層は、Pを含有していることを特徴とする請求項1に記載の銅/セラミックス接合体。 The copper / ceramic bonding article according to claim 1, wherein the active element oxide layer contains P.
- 前記活性元素酸化物層と前記銅部材との間に、Cu-Al共晶層が形成されていることを特徴とする請求項1又は請求項2に記載の銅/セラミックス接合体。 3. The copper / ceramic bonding article according to claim 1, wherein a Cu—Al eutectic layer is formed between the active element oxide layer and the copper member.
- 窒化物セラミックスからなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されたパワーモジュール用基板であって、
請求項1から請求項3のいずれか一項に記載の銅/セラミックス接合体で構成されていることを特徴とするパワーモジュール用基板。 A power module substrate in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate made of nitride ceramics,
A power module substrate comprising the copper / ceramic bonding article according to any one of claims 1 to 3. - 銅又は銅合金からなる銅部材と、アルミナからなるセラミックス部材とが接合された銅/セラミックス接合体であって、
前記銅部材と前記セラミックス部材との接合界面には、活性元素と酸素と燐とを含有する活性元素酸化物層が形成されており、
この活性元素酸化物層の厚さが5nm以上220nm以下の範囲内とされていることを特徴とする銅/セラミックス接合体。 A copper / ceramic bonded body in which a copper member made of copper or a copper alloy and a ceramic member made of alumina are bonded,
An active element oxide layer containing an active element, oxygen and phosphorus is formed at the bonding interface between the copper member and the ceramic member,
A copper / ceramic bonding article, wherein the active element oxide layer has a thickness in a range of 5 nm to 220 nm. - 前記活性元素酸化物層における燐濃度が、1.5mass%以上10mass%以下の範囲内とされていることを特徴とする請求項5に記載の銅/セラミックス接合体。 The copper / ceramic bonding article according to claim 5, wherein a phosphorus concentration in the active element oxide layer is in a range of 1.5 mass% to 10 mass%.
- アルミナからなるセラミックス基板の表面に、銅又は銅合金からなる銅板が接合されたパワーモジュール用基板であって、
請求項5または請求項6に記載の銅/セラミックス接合体で構成されていることを特徴とするパワーモジュール用基板。 A power module substrate in which a copper plate made of copper or a copper alloy is bonded to the surface of a ceramic substrate made of alumina,
A power module substrate comprising the copper / ceramic bonding article according to claim 5.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580008014.0A CN105980334B (en) | 2014-02-12 | 2015-02-12 | Copper ceramic joined article and power module substrate |
EP15749540.9A EP3106447B1 (en) | 2014-02-12 | 2015-02-12 | Copper-ceramic bonded body and power module substrate |
US15/117,935 US10103035B2 (en) | 2014-02-12 | 2015-02-12 | Copper-ceramic bonded body and power module substrate |
KR1020167021843A KR101758586B1 (en) | 2014-02-12 | 2015-02-12 | Copper/ceramic bond and power module substrate |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014024410 | 2014-02-12 | ||
JP2014-024410 | 2014-02-12 | ||
JP2014052594A JP5825380B2 (en) | 2014-03-14 | 2014-03-14 | Copper / ceramic bonding body and power module substrate |
JP2014-052594 | 2014-03-14 | ||
JP2014136567A JP5828352B2 (en) | 2014-02-12 | 2014-07-02 | Copper / ceramic bonding body and power module substrate |
JP2014-136567 | 2014-07-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015122446A1 true WO2015122446A1 (en) | 2015-08-20 |
Family
ID=53800188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053792 WO2015122446A1 (en) | 2014-02-12 | 2015-02-12 | Copper/ceramic bond and power module substrate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015122446A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019081690A (en) * | 2017-10-27 | 2019-05-30 | 三菱マテリアル株式会社 | Joint body and insulating circuit substrate |
JP2019085327A (en) * | 2017-11-02 | 2019-06-06 | 三菱マテリアル株式会社 | Bonded body and dielectric circuit board |
EP3702341A4 (en) * | 2017-10-27 | 2021-07-21 | Mitsubishi Materials Corporation | Bonded body and insulated circuit board |
US20230071498A1 (en) * | 2020-03-13 | 2023-03-09 | Mitsubishi Materials Corporation | Heat sink integrated insulating circuit board |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239166A (en) * | 1987-03-27 | 1988-10-05 | 株式会社東芝 | Ceramic joined body |
JPH0570259A (en) * | 1991-09-13 | 1993-03-23 | Ngk Spark Plug Co Ltd | Production of metal-nonmetal joined body |
JPH0624854A (en) * | 1992-07-03 | 1994-02-01 | Toshiba Corp | Ceramics-metal joining body |
-
2015
- 2015-02-12 WO PCT/JP2015/053792 patent/WO2015122446A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63239166A (en) * | 1987-03-27 | 1988-10-05 | 株式会社東芝 | Ceramic joined body |
JPH0570259A (en) * | 1991-09-13 | 1993-03-23 | Ngk Spark Plug Co Ltd | Production of metal-nonmetal joined body |
JPH0624854A (en) * | 1992-07-03 | 1994-02-01 | Toshiba Corp | Ceramics-metal joining body |
Non-Patent Citations (1)
Title |
---|
See also references of EP3106447A4 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019081690A (en) * | 2017-10-27 | 2019-05-30 | 三菱マテリアル株式会社 | Joint body and insulating circuit substrate |
EP3702341A4 (en) * | 2017-10-27 | 2021-07-21 | Mitsubishi Materials Corporation | Bonded body and insulated circuit board |
US11177186B2 (en) * | 2017-10-27 | 2021-11-16 | Mitsubishi Materials Corporation | Bonded body and insulated circuit board |
JP7124633B2 (en) | 2017-10-27 | 2022-08-24 | 三菱マテリアル株式会社 | Joined body and insulating circuit board |
JP2019085327A (en) * | 2017-11-02 | 2019-06-06 | 三菱マテリアル株式会社 | Bonded body and dielectric circuit board |
EP3705464A4 (en) * | 2017-11-02 | 2021-03-24 | Mitsubishi Materials Corporation | Joint body and insulating circuit substrate |
US10998250B2 (en) | 2017-11-02 | 2021-05-04 | Mitsubishi Materials Corporation | Bonded body and insulating circuit substrate |
JP7230432B2 (en) | 2017-11-02 | 2023-03-01 | 三菱マテリアル株式会社 | Joined body and insulating circuit board |
US20230071498A1 (en) * | 2020-03-13 | 2023-03-09 | Mitsubishi Materials Corporation | Heat sink integrated insulating circuit board |
US12068219B2 (en) * | 2020-03-13 | 2024-08-20 | Mitsubishi Materials Corporation | Heat sink integrated insulating circuit board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101758586B1 (en) | Copper/ceramic bond and power module substrate | |
KR102459745B1 (en) | Copper/ceramic bonded body, insulated circuit board, and copper/ceramic bonded body manufacturing method, insulated circuit board manufacturing method | |
JP6904088B2 (en) | Copper / ceramic joints and insulated circuit boards | |
JP6079505B2 (en) | Bonded body and power module substrate | |
TWI746807B (en) | Copper/ceramic bonded body, insulating circuit substrate, method of manufacturing copper/ceramic bonded body and method of manufacturing insulating circuit substrate | |
WO2015141295A1 (en) | Bonded body, substrate for power modules, power module and method for producing bonded body | |
WO2015046280A1 (en) | Cu/ceramic material joint, method for manufacturing cu/ceramic material joint, and substrate for power module | |
TWI772597B (en) | Copper/ceramic bonded body, insulated circuit board, method for producing copper/ceramic bonded body, and method for producing insulated circuit board | |
KR101676230B1 (en) | Assembly and power-module substrate | |
CN111566074B (en) | Copper-ceramic joined body, insulated circuit board, method for producing copper-ceramic joined body, and method for producing insulated circuit board | |
TW202016048A (en) | Copper/ceramic bonded body, insulated circuit board, method for producing copper/ceramic bonded body, and method for producing insulated circuit board | |
WO2021085451A1 (en) | Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board | |
KR102330134B1 (en) | Process for producing united object and process for producing substrate for power module | |
WO2015122446A1 (en) | Copper/ceramic bond and power module substrate | |
JP5828352B2 (en) | Copper / ceramic bonding body and power module substrate | |
JP5825380B2 (en) | Copper / ceramic bonding body and power module substrate | |
JP6645368B2 (en) | Joint body, power module substrate, method of manufacturing joined body, and method of manufacturing power module substrate | |
TW201739725A (en) | Bonded body, power module substrate, method of producing bonded body and method of producing power module substrate | |
CN108701659B (en) | Bonded body, substrate for power module, method for manufacturing bonded body, and method for manufacturing substrate for power module | |
TWI708754B (en) | Bonded body, power module substrate, power mosule, method of producing bonded body and method of producing power module substrate | |
JP5359942B2 (en) | Power module substrate, power module, and method of manufacturing power module substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15749540 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167021843 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117935 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015749540 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015749540 Country of ref document: EP |