WO2015122174A1 - Methacrylic resin and molded article - Google Patents

Methacrylic resin and molded article Download PDF

Info

Publication number
WO2015122174A1
WO2015122174A1 PCT/JP2015/000596 JP2015000596W WO2015122174A1 WO 2015122174 A1 WO2015122174 A1 WO 2015122174A1 JP 2015000596 W JP2015000596 W JP 2015000596W WO 2015122174 A1 WO2015122174 A1 WO 2015122174A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylic resin
alkyl methacrylate
elastic modulus
acrylate
mpa
Prior art date
Application number
PCT/JP2015/000596
Other languages
French (fr)
Japanese (ja)
Inventor
修二 磯井
正和 亀田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2015562736A priority Critical patent/JP6592364B2/en
Publication of WO2015122174A1 publication Critical patent/WO2015122174A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate

Definitions

  • the present invention relates to a methacrylic resin and a molded product using the same.
  • a methacrylic resin is a resin containing an alkyl methacrylate polymer polymerized using at least one monomer containing an alkyl methacrylate such as methyl methacrylate.
  • Methacrylic resins are excellent in transparency, colorability, moldability, weather resistance, etc., making use of these properties as signboards, decoration materials, lighting covers, automobile parts, glazing materials, etc. in various fields. Widely used. Furthermore, in recent years, with the expansion of the use of methacrylic resin, it has come to be used in the sanitary field such as a bathtub, a bathroom, and a bathroom, and the kitchen field such as a top plate of a system kitchen.
  • methacrylic resin is originally a thermoplastic resin, it can be bent by heating, but it is easy to flow and difficult to deep-draw.
  • a cross-linked alkyl methacrylate polymer By using a cross-linked alkyl methacrylate polymer, molding processability is improved, and deep drawing or the like becomes possible.
  • Patent Documents 1 and 2 at least one monomer containing an alkyl methacrylate is polymerized in the presence of a polymerization initiator to obtain a prepolymerized syrup, and the resulting syrup further contains at least one kind of alkyl methacrylate.
  • a method for producing a methacrylic resin in which a monomer, a polymerization initiator, a crosslinking agent and the like are added and polymerized in a mold is disclosed.
  • Patent Document 3 A crosslinked alkyl methacrylate polymer molded product containing an inorganic filler, (I) the ⁇ dispersion peak temperature of the loss elastic modulus (E ′′) in the dynamic viscoelastic properties is 100 ° C. or higher; (Ii) the peak value of tan ⁇ in the dynamic viscoelastic property is 0.8 or more; and, (Iii) The storage elastic modulus in a rubber-like flat region 160 ° C. is 30 MPa or less; There is disclosed a crosslinked alkyl methacrylate-based polymer molded article characterized by having the following characteristics (i) to (iii): (Claim 1)
  • a curved portion is formed by performing a bending process or a deep drawing process using a methacrylic resin containing a cross-linked alkyl methacrylate polymer obtained by a conventional manufacturing method
  • thickness unevenness may occur in the curved part. It is preferable that bending or deep drawing can be performed with higher dimensional accuracy.
  • the present invention has been made in view of the above circumstances, and a methacrylic resin capable of increasing the dimensional accuracy of a bending portion obtained when a bending portion or deep drawing is performed to form the bending portion. It is intended to provide.
  • the methacrylic resin of the present invention is suitably used when a bending process or a deep drawing process is performed to form a curved portion, it can be used for any application.
  • the methacrylic resin of the present invention is A methacrylic resin containing a cross-linked alkyl methacrylate polymer,
  • the storage elastic modulus in the rubber-like flat region is 1.6 MPa or higher at 210 ° C., 3.0 MPa or lower at 170 ° C., and 6.0 MPa or lower at 140 ° C.
  • the peak value of tan ⁇ in the dynamic viscoelastic property is 1.5 or more, Methacrylic resin.
  • the storage elastic modulus of a methacrylic resin in a rubber-like flat region is measured by a dynamic thermomechanical property analysis method (DMTA method). That is, applying a sinusoidal stress to the sample in a mode such as bending, shearing, or tension (tensile mode in the present invention), measuring the storage modulus of the sample as a function of temperature, The storage elastic modulus at 170 ° C., 200 ° C., and 210 ° C. is determined.
  • the storage elastic modulus is an elastic response and corresponds to energy that can be completely recovered. For specific measurement examples, see the section “Examples” below.
  • the tan ⁇ peak value and peak temperature of the methacrylic resin are measured by a dynamic thermomechanical property analysis method (DMTA method). That is, a sinusoidal stress is applied to a sample in a mode such as bending, shearing, or tension (in the present invention, a tensile mode), and the loss tangent of the sample, that is, tan ⁇ , is measured as a function of temperature. Find the temperature.
  • DMTA method dynamic thermomechanical property analysis method
  • the molded product of the present invention is a molded product made of the above methacrylic resin of the present invention.
  • the molded product of the present invention includes a primary molded product such as a resin plate, and a secondary molded product molded using the primary molded product.
  • Example 2 is a graph (DMTA curve) showing the relationship between temperature and storage elastic modulus obtained in Example 1, Comparative Example 1, and Comparative Example 2.
  • 6 is a graph showing the relationship between temperature and tan ⁇ obtained in Example 1 and Comparative Example 2.
  • the present invention relates to a methacrylic resin.
  • the methacrylic resin is a resin containing at least one alkyl methacrylate polymer obtained by polymerizing at least one monomer containing alkyl methacrylate.
  • the methacrylic resin of the present invention contains at least one crosslinked alkyl methacrylate polymer.
  • the methacrylic resin of the present invention preferably contains at least one crosslinked alkyl methacrylate polymer and at least one non-crosslinked linear alkyl methacrylate polymer.
  • the methacrylic resin of the present invention has the following physical properties. That is, the storage elastic modulus in the rubber-like flat region is 1.6 MPa or more at 210 ° C., 3.0 MPa or less at 170 ° C., and 6.0 MPa or less at 140 ° C. Moreover, the peak value of tan ⁇ in the dynamic viscoelastic property is 1.5 or more.
  • DMTA method dynamic thermomechanical property analysis method yields a DMTA curve showing the relationship between temperature and storage modulus (see FIG. 1).
  • the storage elastic modulus greatly decreases, but thereafter, a rubber-like flat region where the storage elastic modulus does not change greatly even when the temperature is raised appears.
  • the rubber-like flat region the polymer molecular chain moves but does not melt completely.
  • the storage elastic modulus is greatly lowered.
  • the molding process is performed within the temperature of the rubber-like flat region. In a methacrylic resin, for example, it is heated to a relatively high temperature within the temperature of the rubber-like flat region, and molding is performed within a temperature between this heating temperature and the lower limit temperature of the rubber-like flat region.
  • 140 ° C. is the reference temperature on the low temperature side of the rubber-like flat region
  • 210 ° C. is the reference temperature on the high temperature side of the rubber-like flat region
  • 170 ° C. is the reference temperature of the intermediate region of the rubber-like flat region. It is preferable that the difference in storage elastic modulus at these three reference temperatures is small.
  • the storage elastic modulus in a rubber-like flat region is 1.6 MPa or more at 210 ° C., 3.0 MPa or less at 170 ° C., and 6.0 MPa or less at 140 ° C.
  • the storage elastic modulus at 140 ° C. exceeds 6.0 MPa, the storage elastic modulus on the low temperature side of the rubber-like flat region is higher than the preferred range, and when there is temperature unevenness during molding, the thickness of the low temperature portion is from the desired thickness. There is a risk of shifting. Since the difference in storage elastic modulus at the three reference temperatures is smaller, the thickness unevenness is smaller, and a curved portion with higher dimensional accuracy can be formed, the storage elastic modulus at 140 ° C.
  • the storage elastic modulus at 210 ° C. is 4.3 MPa or less. Is preferred.
  • the storage elastic modulus at 210 ° C. is less than 1.6 MPa, the storage elastic modulus on the high temperature side of the rubber-like flat region is lower than the preferred range, and when there is temperature unevenness during molding, the thickness of the high temperature portion is from the desired thickness. There is a risk of shifting.
  • the storage elastic modulus at 210 ° C. is 1.65 MPa or more because the difference in storage elastic modulus at the three reference temperatures is smaller, the thickness unevenness is smaller, and a curved portion with higher dimensional accuracy can be formed. Is preferred. Since the molding processability of the methacrylic resin is good, the storage elastic modulus at 170 ° C. is preferably 3.0 MPa or less, and more preferably 2.5 MPa or less.
  • the storage elastic modulus at each temperature of the rubber-like flat region can be adjusted to a preferable range by appropriately selecting the type and blending amount of raw materials used for the production of the methacrylic resin.
  • the storage elastic modulus at each temperature of the rubber-like flat region can be adjusted by appropriately selecting the type and amount of the monomer and crosslinking agent used. More specifically, the storage elastic modulus at each temperature of the rubber-like flat region is adjusted by the mass average molecular weight (MW) and blending amount of the linear alkyl methacrylate polymer and the kind and blending amount of the crosslinking agent. can do.
  • MW mass average molecular weight
  • the peak value of tan ⁇ in the dynamic viscoelastic property is 1.5 or more. More preferably, it is 1.55 or more. If the peak value of tan ⁇ in the dynamic viscoelastic properties is less than 1.5, the ratio of the viscosity term of the obtained methacrylic resin is too low, and it is not suitable for thermoforming such as bending.
  • the peak value of tan ⁇ in the dynamic viscoelastic properties is preferably 1.8 or less because the molding processability of the methacrylic resin becomes good.
  • the peak value of tan ⁇ in the dynamic viscoelastic characteristics is more than 1.8, there is a possibility that a poor appearance due to thickness unevenness in the stretched part may occur in a molding process such as a bending process.
  • the tan ⁇ peak temperature in the dynamic viscoelastic property is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and preferably 130 ° C. or lower because the molding processability of the methacrylic resin is improved.
  • the tan ⁇ peak value of the methacrylic resin tends to increase as the proportion of the linear polymer portion in the resin increases and as the crosslink density in the resin decreases.
  • the tan ⁇ peak value and peak temperature of the methacrylic resin can be adjusted within a preferred range. More specifically, the peak value and peak value of tan ⁇ are adjusted within a preferred range depending on the mass average molecular weight (MW) and blending amount of the linear alkyl methacrylate polymer and the type and blending amount of the crosslinking agent. be able to.
  • the method for producing the methacrylic resin of the present invention is not particularly limited.
  • Alkyl methacrylate is added to prepolymerized syrup or dissolved syrup (S) containing at least one non-crosslinked linear alkyl methacrylate polymer (P) and at least one monomer (M1) containing alkyl methacrylate.
  • S prepolymerized syrup or dissolved syrup
  • M1 monomer containing alkyl methacrylate.
  • M2 monomer
  • prepolymerized syrup or dissolved syrup (S), at least one monomer (M2) comprising an alkyl methacrylate, at least one polymerization initiator (A), at least one crosslinking agent (B),
  • at least one optional additive is blended to prepare a liquid raw material mixture, the liquid raw material mixture is poured into a mold, a polymerization reaction is performed, and a primary molded product such as a resin plate is formed.
  • a methacrylic resin can be produced.
  • the prepolymerized syrup is obtained by prepolymerizing at least one monomer (M1) containing an alkyl methacrylate in the presence of a polymerization initiator, and is obtained from an uncrosslinked linear alkyl methacrylate polymer (P) and an unpolymerized syrup. And the monomer (M1) of the reaction.
  • the dissolved syrup is obtained by converting a non-crosslinked linear alkyl methacrylate polymer (P) polymerized using at least one monomer containing alkyl methacrylate into at least one monomer (M1) containing alkyl methacrylate. ).
  • the non-crosslinked linear alkyl methacrylate polymer (P) may be a homopolymer or copolymer of at least one alkyl methacrylate, or at least one other alkyl methacrylate and at least one other copolymerizable copolymer.
  • a copolymer with an unsaturated monomer may be used.
  • the alkyl methacrylate used as a raw material for the non-crosslinked linear alkyl methacrylate polymer (P) is preferably an alkyl ester of 1 to 20 carbon atoms of methacrylic acid, and an alkyl ester of 1 to 12 carbon atoms of methacrylic acid. More preferred.
  • the alkyl methacrylate include methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, and cyclohexyl methacrylate. It is preferable to use at least methyl methacrylate (MMA) as a raw material for the non-crosslinked linear alkyl methacrylate polymer (P).
  • Alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, and cyclohexyl acrylate; Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-chloropropyl (meth) acrylate; (Meth) acrylic acid; (Meth) acrylic acid metal salts; Vinyl monomers such as vinyl chloride, vinyl acetate, and vinyl toluene; Acrylonitonyl; Acrylamide; Styrenic monomers such as styrene and ⁇ -methylstyrene; and, And maleic
  • the polymerization rate in the prepolymerized syrup is not particularly limited, preferably 5 to 40%, more preferably 5 to 30%. If the polymerization rate is less than 5%, the peak value of tan ⁇ is lowered, and there is a possibility that bending or deep drawing with a desired high dimensional accuracy may be difficult.
  • the “polymerization rate” is the ratio of the amount (mass) of the monomer used in the polymerization reaction to the amount (mass) of the charged monomer.
  • the concentration of the non-crosslinked linear alkyl methacrylate polymer (P) in the prepolymerized syrup or dissolved syrup (S) is not particularly limited, and is preferably 5 to 40% by mass, and 5 to 30% by mass. More preferably.
  • the mass average molecular weight (MW) of the non-crosslinked linear alkyl methacrylate polymer (P) in the prepolymerized syrup or dissolved syrup (S) is not particularly limited, but is preferably 100,000 to 1,500,000, preferably 700,000 to 120. Ten thousand is more preferable. When the mass average molecular weight (MW) is less than 100,000, durability such as chemical resistance may be lowered.
  • a partially crosslinked alkyl methacrylate-based gel polymer can also be used.
  • the partially crosslinked alkyl methacrylate-based gel polymer refer to Patent Document 3 listed in the “Background Art” section.
  • the monomer (M2) at least one alkyl methacrylate can be used.
  • the monomer (M2) at least one alkyl methacrylate and another copolymerizable unsaturated monomer can be used in combination.
  • alkyl methacrylate used as the monomer (M2) examples include methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl methacrylate, and lauryl methacrylate. And cyclohexyl methacrylate. It is preferable to use at least methyl methacrylate (MMA) as the monomer (M2).
  • the monomer (M2) other copolymerizable unsaturated monomers that can be used in combination with alkyl methacrylate, Alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, and cyclohexyl acrylate; Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-chloropropyl (meth) acrylate; (Meth) acrylic acid; (Meth) acrylic acid metal salts; Vinyl monomers such as vinyl chloride, vinyl acetate, and vinyl toluene; Acrylonitonyl; Acrylamide; Styrenic monomers such as styrene and ⁇ -methylstyrene; and, And maleic anhydride.
  • Alkyl acrylates such as methyl acryl
  • the polymerization initiator (A) is not particularly limited.
  • 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), acetylcyclohexylsulfonyl peroxide, isobutyryl peroxide, Cumyl peroxyneodecanoate, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxycarbonate, di- (2-ethoxyethyl) peroxydicarbonate, di- (methoxyisopropyl) per Examples thereof include oxydicarbonate and di- (2-ethylhexyl) peroxydicarbonate.
  • the crosslinking agent (B) is not particularly limited, and a monomer having at least two (meth) acryloyl groups in the molecule is preferably used.
  • a monomer having at least two (meth) acryloyl groups in the molecule is preferably used.
  • n is an integer of 4 or more, preferably 4 to 14.
  • the temperature range of the rubber-like flat region in the DMTA curve can be adjusted by appropriately selecting the type and amount of the crosslinking agent.
  • 1,3-butane has a wide temperature range in the rubber-like flat region, and a methacrylic resin having a small difference in storage elastic modulus at 140 ° C., 170 ° C. and 210 ° C. is easily obtained.
  • Diol di (meth) acrylate, neopentyl glycol dimethacrylate, and polyethylene glycol di (meth) acrylate represented by the above formula (X) are preferable.
  • a chain transfer agent (C) and / or an ultraviolet absorber (D) can be used as an additive. These can be used alone or in combination of two or more.
  • the chain transfer agent (C) is not particularly limited.
  • Styrene dimers such as ⁇ -methyl-styrene dimer
  • mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan, and hyophenol
  • Thioglycolic acid or esters thereof such as thioglycolic acid, ethyl thioglycolate, and butyl thioglycolate
  • ⁇ -mercaptopropionic acid methyl ⁇ -mercaptopropionate
  • ⁇ -mercaptopropionic acid such as octyl ⁇ -mercaptopropionate, and esters thereof.
  • chain transfer agent (C) styrene dimers such as ⁇ -methyl-styrene dimer are preferable.
  • a styrene dimer such as ⁇ -methyl-styrene dimer is used as the chain transfer agent (C)
  • the ultraviolet absorber (D) is not particularly limited, and examples thereof include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole.
  • additives are not particularly limited, other types of resins, antioxidants, colorants such as pigments and dyes, dispersants, fillers, pattern materials such as resin granules and natural stone granules, plasticizers, and the like
  • a mold release agent or the like can be added within a range not impairing the object of the present invention.
  • the mixing ratio of the raw materials is not particularly limited. Let the total amount of raw materials other than a polymerization initiator (A) and a ultraviolet absorber (D) be 100 mass parts.
  • the amount of prepolymerized syrup or dissolved syrup (S) is preferably 30 to 98 parts by mass, and more preferably 50 to 95 parts by mass.
  • the amount of monomer (M2) (total amount in the case of plural types) is preferably 2 to 70 parts by mass, and more preferably 5 to 50 parts by mass.
  • the amount of the crosslinking agent (B) (the total amount in the case of plural kinds) is preferably 0.01 to 1.5 parts by mass, more preferably 0.3 to 0.8 parts by mass.
  • the amount of the chain transfer agent (C) (the total amount in the case of a plurality of types) is 0 to 1 kg per 1 kg of the total amount of raw materials other than the polymerization initiator (A), the chain transfer agent (C), and the ultraviolet absorber (D). 2.0 g is preferable, and 0 to 0.5 g is more preferable. When the amount of the chain transfer agent (C) exceeds 2.0 g, the durability such as chemical resistance of the methacrylic resin plate obtained by primary molding may be lowered.
  • the amount of the polymerization initiator (A) (the total amount in the case of plural types) is 0.00 per kg of the total amount of raw materials other than the polymerization initiator (A), the chain transfer agent (C), and the ultraviolet absorber (D).
  • the range of 05 to 3.0 g is preferable, and it is more preferable that the amount be adjusted within the optimum range in accordance with the blending ratio of the raw materials.
  • the amount of the ultraviolet absorber (D) (the total amount in the case of plural types) is 0 to 1 per kg of the total amount of raw materials other than the polymerization initiator (A), the chain transfer agent (C), and the ultraviolet absorber (D). 2.0 g is preferable, and 0 to 1.0 g is more preferable. If the amount of the ultraviolet absorber (D) exceeds 2.0 g, the methacrylic resin plate may be colored.
  • the concentration of the crosslinked alkyl methacrylate polymer in the methacrylic resin is preferably 60 to 95% by mass, and more preferably 75 to 95% by mass.
  • the concentration of the non-crosslinked linear alkyl methacrylate polymer (P) in the methacrylic resin is preferably 5 to 40% by mass, and more preferably 5 to 25% by mass.
  • the mass average molecular weight (MW) of the non-crosslinked linear alkyl methacrylate polymer (P) is preferably 100,000 to 1,500,000, more preferably 700,000 to 1,200,000. When the mass average molecular weight (MW) is less than 100,000, durability such as chemical resistance may be lowered.
  • the method for measuring the concentration of the cross-linked alkyl methacrylate polymer is as follows. A sample is taken from the methacrylic resin and crushed to a particle size of 2 to 3 mm, and the crushed sample is weighed on a balance having an accuracy of 0.1 mg. Thereafter, the crushed sample is put into a cylindrical filter paper, and a solute is extracted with chloroform as a solvent by a Soxhlet extractor. The cylindrical filter paper containing the extraction residue is vacuum-dried for 48 hours, and the mass of the insoluble matter is measured with a balance. Thereby, the density
  • the molded product of the present invention comprises the methacrylic resin of the present invention.
  • the molded product of the present invention includes a primary molded product such as a resin plate, and a secondary molded product molded using the primary molded product.
  • a primary molded product made of the methacrylic resin of the present invention a secondary molded product having a curved portion can be obtained by performing bending or deep drawing.
  • the methacrylic resin of the present invention it is possible to obtain a secondary molded product having a small thickness unevenness of the curved portion and high dimensional accuracy.
  • This secondary molded product can be preferably used in the sanitary field such as a bathtub, a bathroom, and a bathroom, and the kitchen field such as a top plate of a system kitchen.
  • the primary molded product and the secondary molded product can be produced by a known method.
  • a mold composed of a pair of plate-like bodies such as tempered glass, a chrome-plated plate, or a stainless plate and a soft vinyl chloride gasket
  • examples include a mold formed of a pair of endless belts that travel in the same direction and at the same speed, and a gasket that travels at the same speed as both endless belts on opposite sides of the pair of endless belts.
  • the thickness is generally preferably in the range of 1 to 10 mm depending on the intended use.
  • a methacrylic resin capable of increasing the dimensional accuracy of the bending portion obtained when the bending portion is formed by performing bending processing or deep drawing processing, and the like.
  • a molded article using can be provided.
  • the methacrylic resin of the present invention is suitably used when a bending process or a deep drawing process is performed to form a curved portion, it can be used for any application.
  • Measurement methods in Examples and Comparative Examples are as follows. (1) Measurement of mass average molecular weight (MW): A 5 g sample was extracted with 200 ml of chloroform, filtered to collect the filtrate, and methanol was added to form a precipitate. The precipitate was vacuum-dried, and then 0.12 g thereof was dissolved in 20 ml of tetrahydrofuran to obtain a measurement sample. “LC-9A” manufactured by Shimadzu Corporation is used as a molecular weight measuring device, “GPC-802”, “HSG-30” and “HSG-50” manufactured by Shimadzu Corporation and “Shedex A-806” manufactured by Showa Denko KK Was used to measure the molecular weight by GPC.
  • MW mass average molecular weight
  • Each data such as storage elastic modulus, loss elastic modulus, and tan ⁇ was plotted with respect to the temperature in the measurement region by an arithmetic expression based on the linear viscoelasticity theory to obtain a DMTA curve or the like.
  • the main measurement conditions were set as follows. From this, the storage elastic modulus in 140 degreeC, 170 degreeC, 200 degreeC, and 210 degreeC of the rubber-like flat area
  • M2 Methyl methacrylate (MMA), Ethylhexyl acrylate, Butyl acrylate.
  • chain transfer agent (C) the following one kind of material was prepared. ⁇ -methyl-styrene dimer.
  • UV absorber (D) As the ultraviolet absorber (D), the following one material was prepared. 2- (2′-hydroxy-5′-methylphenyl) benzotriazole.
  • the following 1 type of material was prepared as a pigment.
  • White pigment titanium oxide paste
  • Table 1 shows the prepolymerized syrup, monomer (M2), polymerization initiator (A), crosslinking agent (B), chain transfer agent (C), ultraviolet absorber (D), and pigment.
  • a liquid raw material mixture having a composition was prepared.
  • the unit of the blending amount of the raw materials other than the polymerization initiator (A) and the ultraviolet absorber (D) is “part by mass”, and the raw materials other than the polymerization initiator (A) and the ultraviolet absorber (D) The total amount is 100 parts by mass.
  • the blending amount of the polymerization initiator (A) and the ultraviolet absorber (D) is indicated by the added amount [g] per 1 kg of the total amount of raw materials other than the polymerization initiator (A) and the ultraviolet absorber (D).
  • the obtained raw material mixture was defoamed, poured into a mold composed of a pair of tempered glass and a soft vinyl chloride gasket, and heated at 60 ° C. for 2 hours for primary curing. Further, it was heated at 120 ° C. for 2 hours to be secondarily cured, cooled to about 60 ° C., and then taken out from the mold to obtain a methacrylic resin plate (primary molded product) having a length of 1250 mm, a width of 2500 mm, and a thickness of 3 mm.
  • FIG. 1 shows a graph (DMTA curve) showing the relationship between the temperature and the storage elastic modulus obtained in the evaluation of dynamic viscoelastic properties for Example 1, Comparative Example 1, and Comparative Example 2.
  • FIG. 2 shows a graph showing the relationship between the temperature obtained by evaluating the dynamic viscoelastic properties and tan ⁇ for Example 1 and Comparative Example 2.
  • Table 2 shows the evaluation results of the evaluation of dynamic viscoelastic properties for the resin plates obtained in each example.
  • a methacrylic resin plate (length 1250 mm, width 2500 mm, thickness 3 mm) obtained in each example was heated to 180 ° C. with a heater of a vacuum forming machine, and then a bowl-shaped mold (external dimension, having an opening on the upper surface) The entire circumference of the resin plate was held with a clamp. After pushing up the mold in this state, using a vacuum pump, the air in the space between the mold and the resin plate is evacuated so that the resin plate follows the inner shape of the bowl-shaped mold, and an opening is formed on the upper surface. Secondary forming into a box shape having. This was cooled to about 70 ° C. using a blower, and the cooled and solidified secondary molded product was removed from the mold.
  • Example 2 the above-mentioned evaluation result A
  • Example 5 the above-mentioned evaluation result B
  • Comparative Example 1 the above-mentioned evaluation result C
  • thickness unevenness was evaluated as follows. One portion was selected from the four corners of the obtained secondary molded product, and the bent portion and the stretched portion were cut to obtain fragments. Of the obtained fragments, 10 locations in the depth direction of the secondary molded product are arbitrarily selected within the region where the appearance defect is seen (the region corresponding to the secondary molded product with good appearance), and the micrometer Was used to measure the thickness of each part. A total of nine values were calculated as the absolute value of the difference in thickness between two measurement points adjacent to each other, and the average value was obtained.
  • Example 2 0.018 mm
  • Example 5 0.020 mm
  • Comparative Example 1 0.022 mm. From the above results, it was found that in Examples 2 and 5 in which there was no appearance defect or few, the thickness unevenness was small compared to Comparative Example 1 in which the appearance defect was present.
  • the storage elastic modulus in the rubber-like flat region is 1.6 MPa or more at 210 ° C., 3.0 MPa or less at 170 ° C., 6.0 MPa or less at 140 ° C., and tan ⁇
  • a methacrylic resin plate having a peak value of 1.5 or more could be produced.
  • a methacrylic resin plate having the above characteristics and having a tan ⁇ peak temperature of 130 ° C. or less in the dynamic viscoelastic characteristics could be produced.
  • Examples 1 to 4, and 6 there was no appearance defect due to thickness unevenness of the bent portion and the stretched portion, and a secondary molded product with high mold reproducibility could be obtained.
  • the methacrylic resin plate obtained in Comparative Example 1 had a storage elastic modulus at 210 ° C. in a rubber-like flat region lower than that in Examples 1-7.
  • the methacrylic resin plate obtained in Comparative Example 2 had a storage elastic modulus at 140 ° C. higher than those in Examples 1-7.
  • Comparative Examples 1 and 2 secondary molded products having poor appearance due to thickness unevenness in the bent portion and the stretched portion, no mold reproducibility, and poor appearance aesthetics were obtained.
  • the methacrylic resin of the present invention can be suitably used for molded products used in sanitary fields such as bathtubs, bathrooms, and toilets, and kitchen fields such as the tops of system kitchens.

Abstract

The present invention provides a methacrylic resin which can be formed into a curved part having improved dimensional accuracy when the methacrylic resin is subjected to a bending or deep drawing processing to form the curved part. The methacrylic resin according to the present invention is a methacrylic resin which comprises a crosslinked alkyl methacrylate polymer, and has a storage modulus of 1.6 MPa or more at 210ºC, 3.0 MPa or less at 170ºC and 6.0 MPa or less at 140ºC in a rubbery flat area thereof, and has a peak value of tanδ in a viscoelastic property of 1.5 or more.

Description

メタクリル系樹脂および成形品Methacrylic resin and molded products
 本発明は、メタクリル系樹脂およびこれを用いた成形品に関するものである。 The present invention relates to a methacrylic resin and a molded product using the same.
 メタクリル系樹脂は、メチルメタクリレート等のアルキルメタクリレートを含む少なくとも1種の単量体を用いて重合されたアルキルメタクリレート系重合体を含む樹脂である。
 メタクリル系樹脂は、透明性、着色性、成形性、および耐候性などに優れており、それらの特性を活かして、看板、装飾材、照明カバー、自動車部品、およびグレージング材等として、種々の分野で広く用いられている。
 さらに、近年ではメタクリル系樹脂の用途拡大に伴って、浴槽、浴室、および洗面所等のサニタリー分野、並びにシステムキッチンの天板等の厨房分野等でも使用されるようになっている。
A methacrylic resin is a resin containing an alkyl methacrylate polymer polymerized using at least one monomer containing an alkyl methacrylate such as methyl methacrylate.
Methacrylic resins are excellent in transparency, colorability, moldability, weather resistance, etc., making use of these properties as signboards, decoration materials, lighting covers, automobile parts, glazing materials, etc. in various fields. Widely used.
Furthermore, in recent years, with the expansion of the use of methacrylic resin, it has come to be used in the sanitary field such as a bathtub, a bathroom, and a bathroom, and the kitchen field such as a top plate of a system kitchen.
 サニタリー分野および厨房分野等に用いられる成形品は、平面から構成されることの多い看板などとは異なり、湾曲部が多い。そのため、これらの用途に用いられるメタクリル系樹脂に対しては、曲げ加工あるいは深絞り加工等が容易に行えるより高度な成形加工性が要求される。 成形 Molded products used in the sanitary field and kitchen field have many curved parts, unlike signboards that are often composed of flat surfaces. For this reason, methacrylic resins used in these applications are required to have higher moldability that allows easy bending or deep drawing.
 メタクリル系樹脂はもともと熱可塑性樹脂であるため、加熱により曲げ加工は可能であるが、流動しやすく、深絞り加工等が難しい樹脂である。
 架橋アルキルメタクリレート系重合体を用いることで、成形加工性が改善され、深絞り加工等が可能となる。
Since methacrylic resin is originally a thermoplastic resin, it can be bent by heating, but it is easy to flow and difficult to deep-draw.
By using a cross-linked alkyl methacrylate polymer, molding processability is improved, and deep drawing or the like becomes possible.
 特許文献1、2には、アルキルメタクリレートを含む少なくとも1種の単量体を重合開始剤の存在下で重合させて予備重合シラップを得、得られたシラップにさらにアルキルメタクリレートを含む少なくとも1種の単量体と重合開始剤と架橋剤等を添加して鋳型中で重合するメタクリル系樹脂の製造方法が開示されている。 In Patent Documents 1 and 2, at least one monomer containing an alkyl methacrylate is polymerized in the presence of a polymerization initiator to obtain a prepolymerized syrup, and the resulting syrup further contains at least one kind of alkyl methacrylate. A method for producing a methacrylic resin in which a monomer, a polymerization initiator, a crosslinking agent and the like are added and polymerized in a mold is disclosed.
 本発明の関連技術としては、特許文献3がある。
 特許文献3には、
 無機充填剤を含有する架橋アルキルメタクリレート系重合体成形品であって、
(i)動的粘弾性特性における損失弾性率(E”)のα分散ピーク温度が100℃以上である;
(ii) 動的粘弾性特性におけるtanδのピーク値が0.8以上である;
および、
(iii)ゴム状平坦領域160℃における貯蔵弾性率が30MPa以下である;
という特性(i)~(iii)を備えていることを特徴とする、架橋アルキルメタクリレート系重合体成形品が開示されている(請求項1)。
As a related technique of the present invention, there is Patent Document 3.
In Patent Document 3,
A crosslinked alkyl methacrylate polymer molded product containing an inorganic filler,
(I) the α dispersion peak temperature of the loss elastic modulus (E ″) in the dynamic viscoelastic properties is 100 ° C. or higher;
(Ii) the peak value of tan δ in the dynamic viscoelastic property is 0.8 or more;
and,
(Iii) The storage elastic modulus in a rubber-like flat region 160 ° C. is 30 MPa or less;
There is disclosed a crosslinked alkyl methacrylate-based polymer molded article characterized by having the following characteristics (i) to (iii): (Claim 1)
特開平10-237260号公報Japanese Patent Laid-Open No. 10-237260 特開平10-237132号公報Japanese Patent Laid-Open No. 10-237132 特開平9-302100号公報Japanese Patent Laid-Open No. 9-302100
 従来の製造方法により得られる架橋アルキルメタクリレート系重合体を含むメタクリル系樹脂を用いて曲げ加工あるいは深絞り加工等を実施して湾曲部を形成した場合、湾曲部に厚みムラが生じる場合がある。より高い寸法精度で曲げ加工あるいは深絞り加工等を実施できることが好ましい。 When a curved portion is formed by performing a bending process or a deep drawing process using a methacrylic resin containing a cross-linked alkyl methacrylate polymer obtained by a conventional manufacturing method, thickness unevenness may occur in the curved part. It is preferable that bending or deep drawing can be performed with higher dimensional accuracy.
 本発明は上記事情に鑑みてなされたものであり、曲げ加工あるいは深絞り加工等を実施して湾曲部を形成したときに、得られる湾曲部の寸法精度を高めることが可能なメタクリル系樹脂を提供することを目的とするものである。
 なお、本発明のメタクリル系樹脂は、曲げ加工あるいは深絞り加工等を実施して湾曲部を形成する場合に好適に用いられるが、任意の用途に使用できる。
The present invention has been made in view of the above circumstances, and a methacrylic resin capable of increasing the dimensional accuracy of a bending portion obtained when a bending portion or deep drawing is performed to form the bending portion. It is intended to provide.
In addition, although the methacrylic resin of the present invention is suitably used when a bending process or a deep drawing process is performed to form a curved portion, it can be used for any application.
 本発明のメタクリル系樹脂は、
 架橋アルキルメタクリレート系重合体を含むメタクリル系樹脂であって、
 ゴム状平坦領域における貯蔵弾性率が、210℃で1.6MPa以上であり、170℃で3.0MPa以下であり、140℃で6.0MPa以下であり、
 かつ、
 動的粘弾性特性におけるtanδのピーク値が1.5以上である、
 メタクリル系樹脂である。
The methacrylic resin of the present invention is
A methacrylic resin containing a cross-linked alkyl methacrylate polymer,
The storage elastic modulus in the rubber-like flat region is 1.6 MPa or higher at 210 ° C., 3.0 MPa or lower at 170 ° C., and 6.0 MPa or lower at 140 ° C.,
And,
The peak value of tan δ in the dynamic viscoelastic property is 1.5 or more,
Methacrylic resin.
[ゴム状平坦領域における貯蔵弾性率の測定法]
 本発明において、メタクリル系樹脂のゴム状平坦領域における貯蔵弾性率は、動的熱機械特性分析法(DMTA法)により測定される。すなわち、曲げ、剪断、または引っ張りなどのモード(本発明においては引っ張りモード)において試料に正弦曲線応力を加え、温度の関数として試料の貯蔵弾性率を測定し、そのゴム状平坦領域の140℃、170℃、200℃、および210℃における貯蔵弾性率を求める。ここで、貯蔵弾性率は弾性応答であり、完全に回復可能なエネルギーに相当する。
 具体的な測定例については、後記[実施例]の項を参照されたい。
[Method for measuring storage elastic modulus in rubbery flat region]
In the present invention, the storage elastic modulus of a methacrylic resin in a rubber-like flat region is measured by a dynamic thermomechanical property analysis method (DMTA method). That is, applying a sinusoidal stress to the sample in a mode such as bending, shearing, or tension (tensile mode in the present invention), measuring the storage modulus of the sample as a function of temperature, The storage elastic modulus at 170 ° C., 200 ° C., and 210 ° C. is determined. Here, the storage elastic modulus is an elastic response and corresponds to energy that can be completely recovered.
For specific measurement examples, see the section “Examples” below.
[tanδのピーク値およびピーク温度の測定法]
 本発明において、メタクリル系樹脂のtanδのピーク値およびピーク温度は、動的熱機械特性分析法(DMTA法)により測定される。すなわち、曲げ、剪断、または引っ張りなどのモード(本発明においては引っ張りモード)において試料に正弦曲線応力を加え、温度の関数として試料の損失角の正接、すなわちtanδを測定し、そのピーク値およびピーク温度を求める。ここで、tanδは無次元数であり、サイクルあたりの貯蔵弾性率に対する損失弾性率の割合に等しいものである。
 具体的な測定例については、後記[実施例]の項を参照されたい。
[Method of measuring tan δ peak value and peak temperature]
In the present invention, the tan δ peak value and peak temperature of the methacrylic resin are measured by a dynamic thermomechanical property analysis method (DMTA method). That is, a sinusoidal stress is applied to a sample in a mode such as bending, shearing, or tension (in the present invention, a tensile mode), and the loss tangent of the sample, that is, tan δ, is measured as a function of temperature. Find the temperature. Here, tan δ is a dimensionless number and is equal to the ratio of the loss elastic modulus to the storage elastic modulus per cycle.
For specific measurement examples, see the section “Examples” below.
 本発明の成形品は、上記の本発明のメタクリル系樹脂からなる成形品である。
 本発明の成形品には、樹脂板等の一次成形品、および一次成形品を用いて成形加工された二次成形品が含まれる。
The molded product of the present invention is a molded product made of the above methacrylic resin of the present invention.
The molded product of the present invention includes a primary molded product such as a resin plate, and a secondary molded product molded using the primary molded product.
 本発明によれば、曲げ加工あるいは深絞り加工等を実施して湾曲部を形成したときに、得られる湾曲部の寸法精度を高めることが可能なメタクリル系樹脂を提供することができる。 According to the present invention, it is possible to provide a methacrylic resin capable of increasing the dimensional accuracy of the obtained bending portion when the bending portion is formed by performing bending or deep drawing.
実施例1、比較例1、および比較例2において得られた、温度と貯蔵弾性率との関係を示すグラフ(DMTA曲線)である。2 is a graph (DMTA curve) showing the relationship between temperature and storage elastic modulus obtained in Example 1, Comparative Example 1, and Comparative Example 2. 実施例1および比較例2において得られた、温度とtanδとの関係を示すグラフである。6 is a graph showing the relationship between temperature and tan δ obtained in Example 1 and Comparative Example 2.
 本発明は、メタクリル系樹脂に関する。
 メタクリル系樹脂は、アルキルメタクリレートを含む少なくとも1種の単量体を重合して得られた少なくとも1種のアルキルメタクリレート系重合体を含む樹脂である。
 本発明のメタクリル系樹脂は、少なくとも1種の架橋アルキルメタクリレート系重合体を含む。
 本発明のメタクリル系樹脂は好ましくは、少なくとも1種の架橋アルキルメタクリレート系重合体と、少なくとも1種の非架橋の直鎖状アルキルメタクリレート系重合体とを含む。
The present invention relates to a methacrylic resin.
The methacrylic resin is a resin containing at least one alkyl methacrylate polymer obtained by polymerizing at least one monomer containing alkyl methacrylate.
The methacrylic resin of the present invention contains at least one crosslinked alkyl methacrylate polymer.
The methacrylic resin of the present invention preferably contains at least one crosslinked alkyl methacrylate polymer and at least one non-crosslinked linear alkyl methacrylate polymer.
 本発明のメタクリル系樹脂は、以下の物性を有する。
 すなわち、ゴム状平坦領域における貯蔵弾性率が、210℃で1.6MPa以上であり、170℃で3.0MPa以下であり、140℃で6.0MPa以下である。
 また、動的粘弾性特性におけるtanδのピーク値が1.5以上である。
The methacrylic resin of the present invention has the following physical properties.
That is, the storage elastic modulus in the rubber-like flat region is 1.6 MPa or more at 210 ° C., 3.0 MPa or less at 170 ° C., and 6.0 MPa or less at 140 ° C.
Moreover, the peak value of tan δ in the dynamic viscoelastic property is 1.5 or more.
 「発明が解決しようとする課題」の項で説明したように、従来の製造方法により得られる架橋アルキルメタクリレート系重合体を含むメタクリル系樹脂を用いて曲げ加工あるいは深絞り加工等を実施して湾曲部を形成した場合、湾曲部に厚みムラが生じる場合がある。
 上記厚みムラは成形加工時の樹脂の温度ムラによる貯蔵弾性率のムラの影響が大きいと考えられる。
 動的熱機械特性分析法(DMTA法)により、温度と貯蔵弾性率との関係を示すDMTA曲線が得られる(図1を参照)。
 DMTA曲線においては、ガラス転移点Tgを超えると貯蔵弾性率が大きく低下するが、その後、温度を上げても貯蔵弾性率が大きく変化しないゴム状平坦領域が現れる。ゴム状平坦領域では、重合体の分子鎖は動くが、完全には溶融しない領域である。その後、さらに温度を上げて流動領域に入ると、また貯蔵弾性率が大きく低下する。
 メタクリル系樹脂では、上記ゴム状平坦領域の温度内で成形加工が行われる。メタクリル系樹脂では例えば、ゴム状平坦領域の温度内の比較的高い温度に加熱し、この加熱温度とゴム状平坦領域の下限温度との間の温度内で成形加工が行われる。
 加工成形時に樹脂の温度ムラがあったとしても、ゴム状平坦領域の温度範囲が広ければ、貯蔵弾性率のムラが少なく、延伸部における厚みムラの小さい、寸法精度の高い湾曲部を形成することができる。
As described in the section “Problems to be Solved by the Invention”, bending or deep drawing using a methacrylic resin containing a cross-linked alkyl methacrylate polymer obtained by a conventional manufacturing method is performed and curved. When the portion is formed, thickness unevenness may occur in the curved portion.
It is considered that the thickness unevenness is greatly affected by the storage elastic modulus unevenness due to the resin temperature unevenness during the molding process.
A dynamic thermomechanical property analysis method (DMTA method) yields a DMTA curve showing the relationship between temperature and storage modulus (see FIG. 1).
In the DMTA curve, when the glass transition point Tg is exceeded, the storage elastic modulus greatly decreases, but thereafter, a rubber-like flat region where the storage elastic modulus does not change greatly even when the temperature is raised appears. In the rubber-like flat region, the polymer molecular chain moves but does not melt completely. Thereafter, when the temperature is further raised and the flow region is entered, the storage elastic modulus is greatly lowered.
In the methacrylic resin, the molding process is performed within the temperature of the rubber-like flat region. In a methacrylic resin, for example, it is heated to a relatively high temperature within the temperature of the rubber-like flat region, and molding is performed within a temperature between this heating temperature and the lower limit temperature of the rubber-like flat region.
Even if there is uneven temperature of the resin during processing and molding, if the temperature range of the rubber-like flat region is wide, there will be little unevenness of storage elastic modulus, small thickness unevenness in the stretched part, and forming a curved part with high dimensional accuracy. Can do.
 140℃はゴム状平坦領域の低温側の基準温度であり、210℃はゴム状平坦領域の高温側の基準温度であり、170℃はゴム状平坦領域の中間領域の基準温度である。これら3つの基準温度における貯蔵弾性率の差が小さいことが好ましい。 140 ° C. is the reference temperature on the low temperature side of the rubber-like flat region, 210 ° C. is the reference temperature on the high temperature side of the rubber-like flat region, and 170 ° C. is the reference temperature of the intermediate region of the rubber-like flat region. It is preferable that the difference in storage elastic modulus at these three reference temperatures is small.
 本発明のメタクリル系樹脂では、ゴム状平坦領域における貯蔵弾性率が、210℃で1.6MPa以上であり、170℃で3.0MPa以下であり、140℃で6.0MPa以下である。
 140℃における貯蔵弾性率が6.0MPa超では、ゴム状平坦領域の低温側の貯蔵弾性率が好ましい範囲より高く、成形加工時に温度ムラがあった場合に、低温部分の厚みが所望の厚みからずれてしまう恐れがある。
 上記3つの基準温度における貯蔵弾性率の差がより小さく、厚みムラがより小さく、寸法精度のより高い湾曲部を形成することができることから、140℃における貯蔵弾性率は4.3MPa以下であることが好ましい。
 210℃における貯蔵弾性率が1.6MPa未満では、ゴム状平坦領域の高温側の貯蔵弾性率が好ましい範囲より低く、成形加工時に温度ムラがあった場合に、高温部分の厚みが所望の厚みからずれてしまう恐れがある。
 上記3つの基準温度における貯蔵弾性率の差がより小さく、厚みムラがより小さく、寸法精度のより高い湾曲部を形成することができることから、210℃における貯蔵弾性率は1.65MPa以上であることが好ましい。
メタクリル系樹脂の成形加工性が良好であることから、170℃における貯蔵弾性率は、3.0MPa以下であることが好ましく、2.5MPa以下であることがより好ましい。
In the methacrylic resin of the present invention, the storage elastic modulus in a rubber-like flat region is 1.6 MPa or more at 210 ° C., 3.0 MPa or less at 170 ° C., and 6.0 MPa or less at 140 ° C.
When the storage elastic modulus at 140 ° C. exceeds 6.0 MPa, the storage elastic modulus on the low temperature side of the rubber-like flat region is higher than the preferred range, and when there is temperature unevenness during molding, the thickness of the low temperature portion is from the desired thickness. There is a risk of shifting.
Since the difference in storage elastic modulus at the three reference temperatures is smaller, the thickness unevenness is smaller, and a curved portion with higher dimensional accuracy can be formed, the storage elastic modulus at 140 ° C. is 4.3 MPa or less. Is preferred.
When the storage elastic modulus at 210 ° C. is less than 1.6 MPa, the storage elastic modulus on the high temperature side of the rubber-like flat region is lower than the preferred range, and when there is temperature unevenness during molding, the thickness of the high temperature portion is from the desired thickness. There is a risk of shifting.
The storage elastic modulus at 210 ° C. is 1.65 MPa or more because the difference in storage elastic modulus at the three reference temperatures is smaller, the thickness unevenness is smaller, and a curved portion with higher dimensional accuracy can be formed. Is preferred.
Since the molding processability of the methacrylic resin is good, the storage elastic modulus at 170 ° C. is preferably 3.0 MPa or less, and more preferably 2.5 MPa or less.
 メタクリル系樹脂の製造に用いる原料の種類と配合量等を適宜選択することにより、ゴム状平坦領域の上記各温度における貯蔵弾性率を好ましい範囲に調整することができる。
 例えば、用いる単量体と架橋剤の種類と量等を適宜選択することによって、ゴム状平坦領域の上記各温度における貯蔵弾性率を調整することができる。
 より具体的には、直鎖状アルキルメタクリレート系重合体の質量平均分子量(MW)と配合量、および、架橋剤の種類と配合量により、ゴム状平坦領域の上記各温度における貯蔵弾性率を調整することができる。
The storage elastic modulus at each temperature of the rubber-like flat region can be adjusted to a preferable range by appropriately selecting the type and blending amount of raw materials used for the production of the methacrylic resin.
For example, the storage elastic modulus at each temperature of the rubber-like flat region can be adjusted by appropriately selecting the type and amount of the monomer and crosslinking agent used.
More specifically, the storage elastic modulus at each temperature of the rubber-like flat region is adjusted by the mass average molecular weight (MW) and blending amount of the linear alkyl methacrylate polymer and the kind and blending amount of the crosslinking agent. can do.
 本発明において、メタクリル系樹脂の成形加工性が良好となることから、動的粘弾性特性におけるtanδのピーク値が1.5以上である。より好ましくは1.55以上である。動的粘弾性特性におけるtanδのピーク値が1.5未満だと、得られるメタクリル系樹脂の粘性項の比が低くすぎて、曲げ加工等の加熱成形加工に適さない。 In the present invention, since the processability of the methacrylic resin is improved, the peak value of tan δ in the dynamic viscoelastic property is 1.5 or more. More preferably, it is 1.55 or more. If the peak value of tan δ in the dynamic viscoelastic properties is less than 1.5, the ratio of the viscosity term of the obtained methacrylic resin is too low, and it is not suitable for thermoforming such as bending.
 メタクリル系樹脂の成形加工性が良好となることから、動的粘弾性特性におけるtanδのピーク値は1.8以下であることが好ましい。動的粘弾性特性におけるtanδのピーク値が1.8超では、曲げ加工等の成形加工で延伸部における厚みムラに起因する外観不良が発生する恐れがある。 The peak value of tan δ in the dynamic viscoelastic properties is preferably 1.8 or less because the molding processability of the methacrylic resin becomes good. When the peak value of tan δ in the dynamic viscoelastic characteristics is more than 1.8, there is a possibility that a poor appearance due to thickness unevenness in the stretched part may occur in a molding process such as a bending process.
 メタクリル系樹脂の成形加工性が良好となることから、動的粘弾性特性におけるtanδのピーク温度は100℃以上が好ましく、120℃以上であることがより好ましく、130℃以下であることが好ましい。 The tan δ peak temperature in the dynamic viscoelastic property is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and preferably 130 ° C. or lower because the molding processability of the methacrylic resin is improved.
 メタクリル系樹脂のtanδのピーク値は、樹脂中における直鎖状重合体部分の割合が多くなるにつれて、また樹脂中における架橋密度が減少するにつれて高くなる傾向がある。樹脂中における直鎖状アルキルメタクリレート系重合体と架橋剤の量等を調整することによって、メタクリル系樹脂のtanδのピーク値およびピーク温度を好ましい範囲内に調整することができる。
 より具体的には、直鎖状アルキルメタクリレート系重合体の質量平均分子量(MW)と配合量、および、架橋剤の種類と配合量により、tanδのピーク値およびピーク値を好ましい範囲内に調整することができる。
The tan δ peak value of the methacrylic resin tends to increase as the proportion of the linear polymer portion in the resin increases and as the crosslink density in the resin decreases. By adjusting the amount of the linear alkyl methacrylate polymer and the crosslinking agent in the resin, the tan δ peak value and peak temperature of the methacrylic resin can be adjusted within a preferred range.
More specifically, the peak value and peak value of tan δ are adjusted within a preferred range depending on the mass average molecular weight (MW) and blending amount of the linear alkyl methacrylate polymer and the type and blending amount of the crosslinking agent. be able to.
 本発明のメタクリル系樹脂の製造方法は特に制限されない。
 少なくとも1種の非架橋の直鎖状アルキルメタクリレート系重合体(P)とアルキルメタクリレートを含む少なくとも1種の単量体(M1)とを含む予備重合シラップまたは溶解シラップ(S)に、アルキルメタクリレートを含む少なくとも1種の単量体(M2)を添加し、重合および架橋を行う方法が好ましい。
 この方法では、予備重合シラップまたは溶解シラップ(S)、アルキルメタクリレートを含む少なくとも1種の単量体(M2)、少なくとも1種の重合開始剤(A)、少なくとも1種の架橋剤(B)、および必要に応じて少なくとも1種の任意の添加剤を配合して、液状の原料混合物を調製し、この液状の原料混合物を鋳型に流し込み、重合反応を行って、樹脂板等の一次成形品のメタクリル系樹脂を製造することができる。
The method for producing the methacrylic resin of the present invention is not particularly limited.
Alkyl methacrylate is added to prepolymerized syrup or dissolved syrup (S) containing at least one non-crosslinked linear alkyl methacrylate polymer (P) and at least one monomer (M1) containing alkyl methacrylate. A method in which at least one monomer (M2) is added and polymerization and crosslinking are performed is preferred.
In this method, prepolymerized syrup or dissolved syrup (S), at least one monomer (M2) comprising an alkyl methacrylate, at least one polymerization initiator (A), at least one crosslinking agent (B), In addition, if necessary, at least one optional additive is blended to prepare a liquid raw material mixture, the liquid raw material mixture is poured into a mold, a polymerization reaction is performed, and a primary molded product such as a resin plate is formed. A methacrylic resin can be produced.
 予備重合シラップは、アルキルメタクリレートを含む少なくとも1種の単量体(M1)を重合開始剤の存在下で予備重合して得られ、非架橋の直鎖状アルキルメタクリレート系重合体(P)と未反応の単量体(M1)とを含む。
 溶解シラップは、アルキルメタクリレートを含む少なくとも1種の単量体を用いて重合された非架橋の直鎖状アルキルメタクリレート系重合体(P)を、アルキルメタクリレートを含む少なくとも1種の単量体(M1)に溶解したものである。
The prepolymerized syrup is obtained by prepolymerizing at least one monomer (M1) containing an alkyl methacrylate in the presence of a polymerization initiator, and is obtained from an uncrosslinked linear alkyl methacrylate polymer (P) and an unpolymerized syrup. And the monomer (M1) of the reaction.
The dissolved syrup is obtained by converting a non-crosslinked linear alkyl methacrylate polymer (P) polymerized using at least one monomer containing alkyl methacrylate into at least one monomer (M1) containing alkyl methacrylate. ).
 非架橋の直鎖状アルキルメタクリレート系重合体(P)は、少なくとも1種のアルキルメタクリレートの単独重合体または共重合体でもよいし、少なくとも1種のアルキルメタクリレートと他の少なくとも1種の共重合性不飽和単量体との共重合体でもよい。 The non-crosslinked linear alkyl methacrylate polymer (P) may be a homopolymer or copolymer of at least one alkyl methacrylate, or at least one other alkyl methacrylate and at least one other copolymerizable copolymer. A copolymer with an unsaturated monomer may be used.
 非架橋の直鎖状アルキルメタクリレート系重合体(P)の原料として用いられるアルキルメタクリレートとしては、メタクリル酸の炭素数1~20のアルキルエステルが好ましく、メタクリル酸の炭素数1~12のアルキルエステルがより好ましい。
 アルキルメタクリレートとしては、メチルメタクリレート(MMA)、エチルメタクリレート、n-プロピルメタクリレート、i-プロピルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、およびシクロヘキシルメタクリレート等が挙げられる。
 非架橋の直鎖状アルキルメタクリレート系重合体(P)の原料として、少なくともメチルメタクリレート(MMA)を用いることが好ましい。
The alkyl methacrylate used as a raw material for the non-crosslinked linear alkyl methacrylate polymer (P) is preferably an alkyl ester of 1 to 20 carbon atoms of methacrylic acid, and an alkyl ester of 1 to 12 carbon atoms of methacrylic acid. More preferred.
Examples of the alkyl methacrylate include methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, and cyclohexyl methacrylate.
It is preferable to use at least methyl methacrylate (MMA) as a raw material for the non-crosslinked linear alkyl methacrylate polymer (P).
 非架橋の直鎖状アルキルメタクリレート系重合体(P)の原料として、アルキルメタクリレートと併用し得る他の共重合性不飽和単量体としては、
 メチルアクリレート、エチルアクリレート、プロピルアクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、およびシクロヘキシルアクリレート等のアルキルアクリレート;
 2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、および2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;
 (メタ)アクリル酸;
 (メタ)アクリル酸金属塩;
 塩化ビニル、酢酸ビニル、およびビニルトルエン等のビニル系単量体;
 アクリロニトニル;
 アクリルアミド;
 スチレンおよびα-メチルスチレン等のスチレン系単量体;
 および、
 無水マレイン酸等が挙げられる。
As a raw material of the non-crosslinked linear alkyl methacrylate polymer (P), as other copolymerizable unsaturated monomers that can be used in combination with alkyl methacrylate,
Alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, and cyclohexyl acrylate;
Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-chloropropyl (meth) acrylate;
(Meth) acrylic acid;
(Meth) acrylic acid metal salts;
Vinyl monomers such as vinyl chloride, vinyl acetate, and vinyl toluene;
Acrylonitonyl;
Acrylamide;
Styrenic monomers such as styrene and α-methylstyrene;
and,
And maleic anhydride.
 予備重合シラップにおける重合率は特に制限されず、5~40%が好ましく、5~30%がより好ましい。
 重合率が5%未満では、tanδのピーク値が低下して、目的とする高い寸法精度での曲げ加工あるいは深絞り加工等が困難となる恐れがある。
 ここで、「重合率」とは、仕込みの単量体の量(質量)に対する、重合反応に使用された単量体の量(質量)の割合である。
 予備重合シラップまたは溶解シラップ(S)中における非架橋の直鎖状アルキルメタクリレート系重合体(P)の濃度は特に制限されず、5~40質量%であることが好ましく、5~30質量%であることがより好ましい。
 予備重合シラップまたは溶解シラップ(S)中における非架橋の直鎖状アルキルメタクリレート系重合体(P)の質量平均分子量(MW)は特に制限されず、10万~150万が好ましく、70万~120万がより好ましい。
 質量平均分子量(MW)が10万未満では、耐薬品性等の耐久性が低下する恐れがある。
The polymerization rate in the prepolymerized syrup is not particularly limited, preferably 5 to 40%, more preferably 5 to 30%.
If the polymerization rate is less than 5%, the peak value of tan δ is lowered, and there is a possibility that bending or deep drawing with a desired high dimensional accuracy may be difficult.
Here, the “polymerization rate” is the ratio of the amount (mass) of the monomer used in the polymerization reaction to the amount (mass) of the charged monomer.
The concentration of the non-crosslinked linear alkyl methacrylate polymer (P) in the prepolymerized syrup or dissolved syrup (S) is not particularly limited, and is preferably 5 to 40% by mass, and 5 to 30% by mass. More preferably.
The mass average molecular weight (MW) of the non-crosslinked linear alkyl methacrylate polymer (P) in the prepolymerized syrup or dissolved syrup (S) is not particularly limited, but is preferably 100,000 to 1,500,000, preferably 700,000 to 120. Ten thousand is more preferable.
When the mass average molecular weight (MW) is less than 100,000, durability such as chemical resistance may be lowered.
 予備重合シラップまたは溶解シラップ(S)の代わりに、部分架橋アルキルメタクリレート系ゲル状重合体を用いることもできる。
 部分架橋アルキルメタクリレート系ゲル状重合体については、「背景技術」の項に挙げた特許文献3を参照されたい。
Instead of the prepolymerized syrup or dissolved syrup (S), a partially crosslinked alkyl methacrylate-based gel polymer can also be used.
For the partially crosslinked alkyl methacrylate-based gel polymer, refer to Patent Document 3 listed in the “Background Art” section.
 単量体(M2)としては、少なくとも1種のアルキルメタクリレートを用いることができる。単量体(M2)として、少なくとも1種のアルキルメタクリレートと他の共重合性不飽和単量体とを併用できる。 As the monomer (M2), at least one alkyl methacrylate can be used. As the monomer (M2), at least one alkyl methacrylate and another copolymerizable unsaturated monomer can be used in combination.
 単量体(M2)として用いられるアルキルメタクリレートとしては、メチルメタクリレート(MMA)、エチルメタクリレート、n-プロピルメタクリレート、i-プロピルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、およびシクロヘキシルメタクリレート等が挙げられる。
 単量体(M2)として、少なくともメチルメタクリレート(MMA)を用いることが好ましい。
Examples of the alkyl methacrylate used as the monomer (M2) include methyl methacrylate (MMA), ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl methacrylate, and lauryl methacrylate. And cyclohexyl methacrylate.
It is preferable to use at least methyl methacrylate (MMA) as the monomer (M2).
 単量体(M2)として、アルキルメタクリレートと併用し得る他の共重合性不飽和単量体としては、
 メチルアクリレート、エチルアクリレート、プロピルアクリレート、2-エチルヘキシルアクリレート、ラウリルアクリレート、およびシクロヘキシルアクリレート等のアルキルアクリレート;
 2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、および2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;
 (メタ)アクリル酸;
 (メタ)アクリル酸金属塩;
 塩化ビニル、酢酸ビニル、およびビニルトルエン等のビニル系単量体;
 アクリロニトニル;
 アクリルアミド;
 スチレンおよびα-メチルスチレン等のスチレン系単量体;
 および、
 無水マレイン酸等が挙げられる。
As the monomer (M2), other copolymerizable unsaturated monomers that can be used in combination with alkyl methacrylate,
Alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, and cyclohexyl acrylate;
Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-chloropropyl (meth) acrylate;
(Meth) acrylic acid;
(Meth) acrylic acid metal salts;
Vinyl monomers such as vinyl chloride, vinyl acetate, and vinyl toluene;
Acrylonitonyl;
Acrylamide;
Styrenic monomers such as styrene and α-methylstyrene;
and,
And maleic anhydride.
 重合開始剤(A)としては特に制限されない。
 例えば、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アセチルシクロヘキシルスホニルパーオキサイド、イソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジミリスチルパーオキシカーボネート、ジ-(2-エトキシエチル)パーオキシジカーボネート、ジ-(メトキシイソプロピル)パーオキシジカーボネート、およびジ-(2-エチルヘキシル)パーオキシジカーボネート等が挙げられる。
The polymerization initiator (A) is not particularly limited.
For example, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), acetylcyclohexylsulfonyl peroxide, isobutyryl peroxide, Cumyl peroxyneodecanoate, diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxycarbonate, di- (2-ethoxyethyl) peroxydicarbonate, di- (methoxyisopropyl) per Examples thereof include oxydicarbonate and di- (2-ethylhexyl) peroxydicarbonate.
 架橋剤(B)としては特に制限されず、分子内に少なくとも2個の(メタ)アクリロイル基を有する単量体が好ましく用いられる。
 例えば、
 エチレングリコールジ(メタ)アクリレート、1,3-プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート(1,3-ブタンジオールジ(メタ)アクリレート)、1,4-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、
 ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、
 ジメチロールエタンジ(メタ)アクリレート、1,1-ジメチロールプロパンジ(メタ)アクリレート、2,2-ジメチロールプロパンジ(メタ)アクリレート、
 トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、
 テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、
 テトラエチレングリコールジ(メタ)アクリレート、
 2,2-ビス〔4-((メタ)アクリロキシエトキシ)フェニル〕プロパン、2,2-ビス〔4-((メタ)アクリロキシペンテノキシ)フェニル〕プロパン、
 1,4-ビス((メタ)アクリロイルオキシメチル)シクロヘキシルジ(メタ)アクリレート、
 および下記一般式(X)で表されるポリエチレングリコールジ(メタ)アクリレート等が挙げられる。
The crosslinking agent (B) is not particularly limited, and a monomer having at least two (meth) acryloyl groups in the molecule is preferably used.
For example,
Ethylene glycol di (meth) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate (1,3-butanediol di (meth) acrylate), 1,4-butylene Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate,
Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate,
Dimethylolethane di (meth) acrylate, 1,1-dimethylolpropane di (meth) acrylate, 2,2-dimethylolpropane di (meth) acrylate,
Trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate,
Tetramethylol methane tri (meth) acrylate, tetramethylol methane di (meth) acrylate,
Tetraethylene glycol di (meth) acrylate,
2,2-bis [4-((meth) acryloxyethoxy) phenyl] propane, 2,2-bis [4-((meth) acryloxypentenoxy) phenyl] propane,
1,4-bis ((meth) acryloyloxymethyl) cyclohexyl di (meth) acrylate,
And polyethylene glycol di (meth) acrylate represented by the following general formula (X).
Figure JPOXMLDOC01-appb-C000001
 上記式(X)中、nは4以上の整数であり、4~14が好ましい。
Figure JPOXMLDOC01-appb-C000001
In the above formula (X), n is an integer of 4 or more, preferably 4 to 14.
 ジ(メタ)アクリレート系の架橋剤の場合、ジ(メタ)アクリレート間の炭素数が多い程、得られる樹脂は柔らかめになり、ゴム状平坦領域における貯蔵弾性率の値が低くなる傾向がある。
 架橋剤の種類と量等を適宜選択することで、DMTA曲線におけるゴム状平坦領域の温度範囲を調整することができる。
 上記の架橋剤の中で、ゴム状平坦領域の温度範囲が広く、140℃、170℃、および210℃における貯蔵弾性率の差の小さいメタクリル系樹脂が得られやすいことから、1,3-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジメタクリレート、および上記式(X)で表されるポリエチレングリコールジ(メタ)アクリレート等が好ましい。
In the case of a di (meth) acrylate-based cross-linking agent, the greater the number of carbons between the di (meth) acrylates, the softer the resulting resin tends to be and the lower the storage elastic modulus in the rubbery flat region. .
The temperature range of the rubber-like flat region in the DMTA curve can be adjusted by appropriately selecting the type and amount of the crosslinking agent.
Among the above crosslinking agents, 1,3-butane has a wide temperature range in the rubber-like flat region, and a methacrylic resin having a small difference in storage elastic modulus at 140 ° C., 170 ° C. and 210 ° C. is easily obtained. Diol di (meth) acrylate, neopentyl glycol dimethacrylate, and polyethylene glycol di (meth) acrylate represented by the above formula (X) are preferable.
 必要に応じて、添加剤として連鎖移動剤(C)および/または紫外線吸収剤(D)を用いることができる。これらは1種または2種以上用いることができる。 If necessary, a chain transfer agent (C) and / or an ultraviolet absorber (D) can be used as an additive. These can be used alone or in combination of two or more.
 連鎖移動剤(C)としては特に制限されず、例えば、
 αメチル-スチレンダイマー等のスチレンダイマー類;
 n-オクチルメルカプタン、n-ドデシルメルカプタン、およびヒオフェノール等のメルカプタン類;
 チオグリコール酸、チオグリコール酸エチル、およびチオグリコール酸ブチル等のチオグリコール酸またはそのエステル類;
 β-メルカプトプロピオン酸、β-メルカプトプロピオン酸メチル、およびβ-メルカプトプロピオン酸オクチル等のβ-メルカプトプロピオン酸およびそのエステル類等が挙げられる。
 連鎖移動剤(C)としては、αメチル-スチレンダイマー等のスチレンダイマー類が好ましい。
 連鎖移動剤(C)として、αメチル-スチレンダイマー等のスチレンダイマー類を使用する場合、その使用量が多い程、得られる樹脂は柔らかめになり、ゴム状平坦領域における貯蔵弾性率の値が低くなる傾向がある。
The chain transfer agent (C) is not particularly limited. For example,
Styrene dimers such as α-methyl-styrene dimer;
mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan, and hyophenol;
Thioglycolic acid or esters thereof such as thioglycolic acid, ethyl thioglycolate, and butyl thioglycolate;
β-mercaptopropionic acid, methyl β-mercaptopropionate, β-mercaptopropionic acid such as octyl β-mercaptopropionate, and esters thereof.
As the chain transfer agent (C), styrene dimers such as α-methyl-styrene dimer are preferable.
When a styrene dimer such as α-methyl-styrene dimer is used as the chain transfer agent (C), the greater the amount used, the softer the resin obtained, and the value of the storage elastic modulus in the rubbery flat region Tend to be lower.
 紫外線吸収剤(D)としては特に制限されず、例えば、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール等が挙げられる。 The ultraviolet absorber (D) is not particularly limited, and examples thereof include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole.
 必要に応じて、1種または2種以上の他の添加剤を用いることができる。
 他の添加剤としては特に制限なく、種類の異なる他の樹脂、酸化防止剤、顔料および染料等の着色剤、分散剤、充填剤、樹脂粒状物および天然石粒状等の模様材、可塑剤、および離型剤等を、本発明の目的を損なわない範囲で添加することができる。
If necessary, one or more other additives can be used.
Other additives are not particularly limited, other types of resins, antioxidants, colorants such as pigments and dyes, dispersants, fillers, pattern materials such as resin granules and natural stone granules, plasticizers, and the like A mold release agent or the like can be added within a range not impairing the object of the present invention.
 原料の配合比は特に制限されない。
 重合開始剤(A)および紫外線吸収剤(D)以外の原料の合計量を100質量部とする。
 予備重合シラップまたは溶解シラップ(S)の量は、30~98質量部が好ましく、50~95質量部がより好ましい。
 単量体(M2)の量(複数種の場合は合計量)は、2~70質量部が好ましく、5~50質量部がより好ましい。
 架橋剤(B)の量(複数種の場合は合計量)は、0.01~1.5質量部が好ましく、0.3~0.8質量部がより好ましい。架橋剤(B)の量が1.5質量部超では、tanδのピーク値が低下して、目的とする高い寸法精度での曲げ加工あるいは深絞り加工等が困難となる恐れがある。
 連鎖移動剤(C)の量(複数種の場合は合計量)は、重合開始剤(A)、連鎖移動剤(C)、および紫外線吸収剤(D)以外の原料の合計量1kg当たり0~2.0gが好ましく、0~0.5gがより好ましい。連鎖移動剤(C)の量が2.0g超では一次成形で得られるメタクリル系樹脂板の耐薬品性等の耐久性が低下する恐れがある。
 重合開始剤(A)の量(複数種の場合は合計量)は、重合開始剤(A)、連鎖移動剤(C)、および紫外線吸収剤(D)以外の原料の合計量1kg当たり0.05~3.0gが好ましく、この範囲内で原料の配合比に応じて最適な範囲内に調整することがより好ましい。
 紫外線吸収剤(D)の量(複数種の場合は合計量)は、重合開始剤(A)、連鎖移動剤(C)、および紫外線吸収剤(D)以外の原料の合計量1kg当たり0~2.0gが好ましく、0~1.0gがより好ましい。紫外線吸収剤(D)の量が2.0g超では、メタクリル系樹脂板が着色する恐れがある。
The mixing ratio of the raw materials is not particularly limited.
Let the total amount of raw materials other than a polymerization initiator (A) and a ultraviolet absorber (D) be 100 mass parts.
The amount of prepolymerized syrup or dissolved syrup (S) is preferably 30 to 98 parts by mass, and more preferably 50 to 95 parts by mass.
The amount of monomer (M2) (total amount in the case of plural types) is preferably 2 to 70 parts by mass, and more preferably 5 to 50 parts by mass.
The amount of the crosslinking agent (B) (the total amount in the case of plural kinds) is preferably 0.01 to 1.5 parts by mass, more preferably 0.3 to 0.8 parts by mass. If the amount of the cross-linking agent (B) exceeds 1.5 parts by mass, the peak value of tan δ may be lowered, and it may be difficult to perform bending processing or deep drawing processing with a desired high dimensional accuracy.
The amount of the chain transfer agent (C) (the total amount in the case of a plurality of types) is 0 to 1 kg per 1 kg of the total amount of raw materials other than the polymerization initiator (A), the chain transfer agent (C), and the ultraviolet absorber (D). 2.0 g is preferable, and 0 to 0.5 g is more preferable. When the amount of the chain transfer agent (C) exceeds 2.0 g, the durability such as chemical resistance of the methacrylic resin plate obtained by primary molding may be lowered.
The amount of the polymerization initiator (A) (the total amount in the case of plural types) is 0.00 per kg of the total amount of raw materials other than the polymerization initiator (A), the chain transfer agent (C), and the ultraviolet absorber (D). The range of 05 to 3.0 g is preferable, and it is more preferable that the amount be adjusted within the optimum range in accordance with the blending ratio of the raw materials.
The amount of the ultraviolet absorber (D) (the total amount in the case of plural types) is 0 to 1 per kg of the total amount of raw materials other than the polymerization initiator (A), the chain transfer agent (C), and the ultraviolet absorber (D). 2.0 g is preferable, and 0 to 1.0 g is more preferable. If the amount of the ultraviolet absorber (D) exceeds 2.0 g, the methacrylic resin plate may be colored.
 メタクリル系樹脂中の架橋アルキルメタクリレート系重合体の濃度は、60~95質量%が好ましく、75~95質量%がより好ましい。
 メタクリル系樹脂中の非架橋の直鎖状アルキルメタクリレート系重合体(P)の濃度は、5~40質量%であることが好ましく、5~25質量%であることがより好ましい。
 また、非架橋の直鎖状アルキルメタクリレート系重合体(P)の質量平均分子量(MW)は10万~150万が好ましく、70万~120万がより好ましい。質量平均分子量(MW)が10万未満では、耐薬品性等の耐久性が低下する恐れがある。
The concentration of the crosslinked alkyl methacrylate polymer in the methacrylic resin is preferably 60 to 95% by mass, and more preferably 75 to 95% by mass.
The concentration of the non-crosslinked linear alkyl methacrylate polymer (P) in the methacrylic resin is preferably 5 to 40% by mass, and more preferably 5 to 25% by mass.
Further, the mass average molecular weight (MW) of the non-crosslinked linear alkyl methacrylate polymer (P) is preferably 100,000 to 1,500,000, more preferably 700,000 to 1,200,000. When the mass average molecular weight (MW) is less than 100,000, durability such as chemical resistance may be lowered.
 なお、架橋アルキルメタクリレート系重合体の濃度の測定法については次の通りである。メタクリル系樹脂から試料を採取し、2~3mmの粒状に砕き、砕いた試料を0.1mgの精度を持つ天秤にて計量する。その後、砕いた試料を円筒ろ紙に入れてソックスレー抽出器でクロロホルムを溶媒に溶質分を抽出し、抽出残渣含む円筒ろ紙を48時間真空乾燥し、不溶分の質量を天秤にて計量する。これにより、架橋アルキルメタクリレート系重合体の濃度を算出できる。
 また、同様の手法で、非架橋の直鎖状アルキルメタクリレート系重合体(P)を抽出し、それにより、その濃度および質量平均分子量(MW)を測定することができる。
The method for measuring the concentration of the cross-linked alkyl methacrylate polymer is as follows. A sample is taken from the methacrylic resin and crushed to a particle size of 2 to 3 mm, and the crushed sample is weighed on a balance having an accuracy of 0.1 mg. Thereafter, the crushed sample is put into a cylindrical filter paper, and a solute is extracted with chloroform as a solvent by a Soxhlet extractor. The cylindrical filter paper containing the extraction residue is vacuum-dried for 48 hours, and the mass of the insoluble matter is measured with a balance. Thereby, the density | concentration of a bridge | crosslinking alkylmethacrylate polymer can be calculated.
Further, the non-crosslinked linear alkyl methacrylate polymer (P) can be extracted by the same method, and the concentration and mass average molecular weight (MW) can be measured.
「成形品」
 本発明の成形品は、上記の本発明のメタクリル系樹脂からなる。
 本発明の成形品には、樹脂板等の一次成形品、および一次成形品を用いて成形加工された二次成形品が含まれる。
 本発明のメタクリル系樹脂からなる一次成形品を用い、曲げ加工あるいは深絞り加工等を実施して、湾曲部を有する二次成形品を得ることができる。
 本発明のメタクリル系樹脂を用いることにより、湾曲部の厚みムラが小さく、寸法精度の高い二次成形品が得られる。この二次成形品は、浴槽、浴室、および洗面所等のサニタリー分野、並びにシステムキッチンの天板等の厨房分野等に好ましく利用できる。
 一次成形品および二次成形品は公知方法によって製造できる。
"Molding"
The molded product of the present invention comprises the methacrylic resin of the present invention.
The molded product of the present invention includes a primary molded product such as a resin plate, and a secondary molded product molded using the primary molded product.
Using the primary molded product made of the methacrylic resin of the present invention, a secondary molded product having a curved portion can be obtained by performing bending or deep drawing.
By using the methacrylic resin of the present invention, it is possible to obtain a secondary molded product having a small thickness unevenness of the curved portion and high dimensional accuracy. This secondary molded product can be preferably used in the sanitary field such as a bathtub, a bathroom, and a bathroom, and the kitchen field such as a top plate of a system kitchen.
The primary molded product and the secondary molded product can be produced by a known method.
 一次成形に用いられる鋳型としては、特に限定されない。
 例えば、強化ガラス、クロムメッキ板、またはステンレス板等の一対の板状体と軟質塩化ビニル製ガスケットで構成される鋳型、
 同一方向へ同一速度で走行する一対のエンドレスベルトの相対する面とその両側辺部において両エンドレスベルトと同一速度で走行するガスケットとで構成される鋳型等が挙げられる。
 一次成形品として樹脂板を製造する場合、目的とする用途によるが、一般的に厚さは1~10mmの範囲であることが好ましい。
It does not specifically limit as a casting_mold | template used for primary shaping | molding.
For example, a mold composed of a pair of plate-like bodies such as tempered glass, a chrome-plated plate, or a stainless plate and a soft vinyl chloride gasket,
Examples include a mold formed of a pair of endless belts that travel in the same direction and at the same speed, and a gasket that travels at the same speed as both endless belts on opposite sides of the pair of endless belts.
When a resin plate is produced as a primary molded product, the thickness is generally preferably in the range of 1 to 10 mm depending on the intended use.
 以上説明したように、本発明によれば、曲げ加工あるいは深絞り加工等を実施して湾曲部を形成したときに、得られる湾曲部の寸法精度を高めることが可能なメタクリル系樹脂、およびこれを用いた成形品を提供することができる。
 なお、本発明のメタクリル系樹脂は、曲げ加工あるいは深絞り加工等を実施して湾曲部を形成する場合に好適に用いられるが、任意の用途に使用できる。
As described above, according to the present invention, a methacrylic resin capable of increasing the dimensional accuracy of the bending portion obtained when the bending portion is formed by performing bending processing or deep drawing processing, and the like. A molded article using can be provided.
In addition, although the methacrylic resin of the present invention is suitably used when a bending process or a deep drawing process is performed to form a curved portion, it can be used for any application.
 本発明に係る実施例および比較例について説明する。 Examples and comparative examples according to the present invention will be described.
 実施例および比較例における測定法は以下の通りである。
(1)質量平均分子量(MW)の測定:
 試料5gをクロロホルム200mlで抽出処理し、濾過して採取した濾液にメタノールを添加して沈殿物を生成させた。この沈殿物を真空乾燥した後、その0.12gをテトラヒドロフラン20mlに溶解して、測定サンプルを得た。分子量測定装置として、島津製作所製「LC-9A」を用い、カラムとして島津製作所製「GPC-802」、「HSG-30」および「HSG-50」および昭和電工株式会社製「Shedex A-806」を用いて、GPCによる分子量の測定を行った。
Measurement methods in Examples and Comparative Examples are as follows.
(1) Measurement of mass average molecular weight (MW):
A 5 g sample was extracted with 200 ml of chloroform, filtered to collect the filtrate, and methanol was added to form a precipitate. The precipitate was vacuum-dried, and then 0.12 g thereof was dissolved in 20 ml of tetrahydrofuran to obtain a measurement sample. “LC-9A” manufactured by Shimadzu Corporation is used as a molecular weight measuring device, “GPC-802”, “HSG-30” and “HSG-50” manufactured by Shimadzu Corporation and “Shedex A-806” manufactured by Showa Denko KK Was used to measure the molecular weight by GPC.
(2)動的粘弾性特性の評価:
 JIS K7244-1及びJIS 7244-4に準拠して行った。
 まず、樹脂板(縦1250mm、横2500mm、厚さ3mm)を切断して、縦20mm、横1.5mm、厚さ2mmのサンプルを得た。
 動的粘弾性測定装置(UBM社製「Rheogel-E4000」)を用いて、測定を実施した。
 試料に昇温下で周波数と振幅が設定された正弦波振動を加えて、その時に発生する応力レスポンスを検出し、動的応力波形、および動的変位波形の位相差を求めた。線形粘弾性理論に基づく演算式により、測定領域の温度に対して、貯蔵弾性率、損失弾性率、およびtanδ等の各データをプロットして、DMTA曲線等を得た。なお、主な測定条件は下記の通り設定した。これより、ゴム状平坦領域の140℃、170℃、200℃、および210℃における貯蔵弾性率を求めた。また、tanδのピーク値とピーク温度を求めた。
<測定条件>
測定周波数:1Hz
荷重:1kg
測定モード:温度依存性
測定温度:30~250℃
昇温条件:3℃/分
(2) Evaluation of dynamic viscoelastic properties:
This was carried out in accordance with JIS K7244-1 and JIS 7244-4.
First, a resin plate (length 1250 mm, width 2500 mm, thickness 3 mm) was cut to obtain a sample 20 mm long, 1.5 mm wide, and 2 mm thick.
Measurement was carried out using a dynamic viscoelasticity measuring apparatus (“Rheogel-E4000” manufactured by UBM).
A sinusoidal vibration having a set frequency and amplitude was applied to the sample at elevated temperature, the stress response generated at that time was detected, and the phase difference between the dynamic stress waveform and the dynamic displacement waveform was obtained. Each data such as storage elastic modulus, loss elastic modulus, and tan δ was plotted with respect to the temperature in the measurement region by an arithmetic expression based on the linear viscoelasticity theory to obtain a DMTA curve or the like. The main measurement conditions were set as follows. From this, the storage elastic modulus in 140 degreeC, 170 degreeC, 200 degreeC, and 210 degreeC of the rubber-like flat area | region was calculated | required. Further, the peak value and peak temperature of tan δ were determined.
<Measurement conditions>
Measurement frequency: 1Hz
Load: 1kg
Measurement mode: Temperature dependence Measurement temperature: 30-250 ° C
Temperature rising condition: 3 ° C / min
「予備重合シラップの製造」
 メチルメタクリレート(MMA)に重合開始剤として2,2’-アゾビスイソブチロニトリルを添加し、撹拌しながら加熱し、直鎖状メチルメタクリレート(MMA)重合体の質量平均分子量(MW)が約80万となるまで重合を行った。その後冷却し、MMAにより追加希釈して、粘度10ポイズの予備重合シラップを製造した。
 なお、粘度はB型粘度計(NDJ-5S 回転粘度計、回転数:12rpm、回転子:L型2番)にて測定し、質量平均分子量(MW)は上記(1)に記載した方法で測定した。
"Preparation of pre-polymerized syrup"
2,2′-Azobisisobutyronitrile as a polymerization initiator is added to methyl methacrylate (MMA) and heated with stirring, so that the weight average molecular weight (MW) of the linear methyl methacrylate (MMA) polymer is about Polymerization was carried out until reaching 800,000. Thereafter, the mixture was cooled and further diluted with MMA to prepare a prepolymerized syrup having a viscosity of 10 poise.
The viscosity was measured with a B-type viscometer (NDJ-5S rotational viscometer, rotation speed: 12 rpm, rotor: L-type No. 2), and the mass average molecular weight (MW) was determined by the method described in (1) above. It was measured.
 単量体(M2)として、以下の3種の単量体を用意した。
メチルメタクリレート(MMA)、
エチルヘキシルアクリレート、
ブチルアクリレート。
The following three types of monomers were prepared as the monomer (M2).
Methyl methacrylate (MMA),
Ethylhexyl acrylate,
Butyl acrylate.
 重合開始剤(A)として、以下の2種の材料を用意した。
2,2’-アゾビス(イソブチロニトリル)、
2,2’-アゾビス(2,4-ジメチルバレロニトリル)。
The following two materials were prepared as the polymerization initiator (A).
2,2′-azobis (isobutyronitrile),
2,2'-azobis (2,4-dimethylvaleronitrile).
 架橋剤(B)として、以下の4種の材料を用意した。
1,3-ブタンジオールジメタクリレート、
エチレングリコールジメタクリレート、
上記一般式(X)で表され、n=4であるポリエチレングリコールジメタクリレート、
ネオペンチルグリコールジメタクリレート。
The following four materials were prepared as the crosslinking agent (B).
1,3-butanediol dimethacrylate,
Ethylene glycol dimethacrylate,
Polyethylene glycol dimethacrylate represented by the above general formula (X) and n = 4,
Neopentyl glycol dimethacrylate.
 連鎖移動剤(C)として、以下の1種の材料を用意した。
αメチル-スチレンダイマー。
As the chain transfer agent (C), the following one kind of material was prepared.
α-methyl-styrene dimer.
 紫外線吸収剤(D)として、以下の1種の材料を用意した。
2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール。
As the ultraviolet absorber (D), the following one material was prepared.
2- (2′-hydroxy-5′-methylphenyl) benzotriazole.
 顔料として、以下の1種の材料を用意した。
白色顔料(酸化チタンペースト)。
The following 1 type of material was prepared as a pigment.
White pigment (titanium oxide paste).
 上記の予備重合シラップ、単量体(M2)、重合開始剤(A)、架橋剤(B)、連鎖移動剤(C)、紫外線吸収剤(D)、および顔料を用いて、表1に示す組成で液状の原料混合物を調製した。
 表1において、重合開始剤(A)および紫外線吸収剤(D)以外の原料の配合量の単位は「質量部」であり、重合開始剤(A)および紫外線吸収剤(D)以外の原料の合計量が100質量部である。
 重合開始剤(A)および紫外線吸収剤(D)の配合量は、重合開始剤(A)および紫外線吸収剤(D)以外の原料の合計量1kg当たりの添加量[g]で示してある。
Table 1 shows the prepolymerized syrup, monomer (M2), polymerization initiator (A), crosslinking agent (B), chain transfer agent (C), ultraviolet absorber (D), and pigment. A liquid raw material mixture having a composition was prepared.
In Table 1, the unit of the blending amount of the raw materials other than the polymerization initiator (A) and the ultraviolet absorber (D) is “part by mass”, and the raw materials other than the polymerization initiator (A) and the ultraviolet absorber (D) The total amount is 100 parts by mass.
The blending amount of the polymerization initiator (A) and the ultraviolet absorber (D) is indicated by the added amount [g] per 1 kg of the total amount of raw materials other than the polymerization initiator (A) and the ultraviolet absorber (D).
 得られた原料混合物を脱泡処理した後、一対の強化ガラスと軟質塩化ビニル製ガスケットで構成された鋳型に流し込み、60℃で2時間加熱して一次硬化させた。更に120℃で2時間加熱して二次硬化させ、約60℃に冷却後、鋳型から取り出して縦1250mm、横2500mm、厚さ3mmのメタクリル系樹脂板(一次成形品)を得た。 The obtained raw material mixture was defoamed, poured into a mold composed of a pair of tempered glass and a soft vinyl chloride gasket, and heated at 60 ° C. for 2 hours for primary curing. Further, it was heated at 120 ° C. for 2 hours to be secondarily cured, cooled to about 60 ° C., and then taken out from the mold to obtain a methacrylic resin plate (primary molded product) having a length of 1250 mm, a width of 2500 mm, and a thickness of 3 mm.
 各例において得られた樹脂板について、上記(2)に記載した動的粘弾性特性の評価を実施した。
 代表例として、実施例1、比較例1、および比較例2について、動的粘弾性特性の評価で得られた温度と貯蔵弾性率との関係を示すグラフ(DMTA曲線)を図1に示す。
 代表例として、実施例1および比較例2について、動的粘弾性特性の評価で得られた温度とtanδとの関係を示すグラフを図2に示す。なお、比較例1については、tanδのピーク値が実施例1とほぼ同等であったので、温度とtanδとの関係を示すグラフの図示を省略してある。
 各例において得られた樹脂板について、動的粘弾性特性の評価の評価結果を表2に示す。
About the resin board obtained in each case, the dynamic viscoelastic property described in the above (2) was evaluated.
As a representative example, FIG. 1 shows a graph (DMTA curve) showing the relationship between the temperature and the storage elastic modulus obtained in the evaluation of dynamic viscoelastic properties for Example 1, Comparative Example 1, and Comparative Example 2.
As a representative example, FIG. 2 shows a graph showing the relationship between the temperature obtained by evaluating the dynamic viscoelastic properties and tan δ for Example 1 and Comparative Example 2. In Comparative Example 1, since the peak value of tan δ was almost the same as that in Example 1, the graph showing the relationship between the temperature and tan δ is omitted.
Table 2 shows the evaluation results of the evaluation of dynamic viscoelastic properties for the resin plates obtained in each example.
 各例において得られたメタクリル系樹脂板(縦1250mm、横2500mm、厚さ3mm)を真空成形機のヒータで180℃に加熱した後、上面に開口部を有する枡状の型(外寸で、縦775mm、横1350mm、高さ530mm)の上に載せ、樹脂板の全周をクランプで把持した。この状態で型を押し上げた後、真空ポンプを用いて型と樹脂板との間の空間内の空気を抜くことで、樹脂板を枡状の型の内形状に沿わせ、上面に開口部を有する箱型に二次成形した。これを送風機を用いて約70℃まで冷却し、冷えて固まった二次成形品を型から取り外した。
 以上のようにして、外寸で、縦775mm、横1350mm、高さ530mmの箱型の二次成形品を得た。
 得られた二次成形品の外観を肉眼で確認し、下記基準に基づいて、曲げ加工部およびそこに繋がる延伸部における厚みムラに起因する外観状態、および型再現性(型に忠実な成形品が得られるか)を評価した。評価結果を表2に示す。
判定基準
A(良好):型再現性が良好であり、厚みムラに起因する外観不良がない。
B(可):型再現性が良好であるが、僅かながら厚みムラに起因する外観不良がある。
C(不良):型再現性が悪く、厚みムラに起因する外観不良がある。
A methacrylic resin plate (length 1250 mm, width 2500 mm, thickness 3 mm) obtained in each example was heated to 180 ° C. with a heater of a vacuum forming machine, and then a bowl-shaped mold (external dimension, having an opening on the upper surface) The entire circumference of the resin plate was held with a clamp. After pushing up the mold in this state, using a vacuum pump, the air in the space between the mold and the resin plate is evacuated so that the resin plate follows the inner shape of the bowl-shaped mold, and an opening is formed on the upper surface. Secondary forming into a box shape having. This was cooled to about 70 ° C. using a blower, and the cooled and solidified secondary molded product was removed from the mold.
As described above, a box-shaped secondary molded product having outer dimensions of 775 mm in length, 1350 mm in width, and 530 mm in height was obtained.
Confirm the appearance of the obtained secondary molded product with the naked eye, and based on the following criteria, the appearance state due to thickness unevenness in the bent part and the stretched part connected there, and mold reproducibility (molded product faithful to the mold) Was obtained). The evaluation results are shown in Table 2.
Criteria A (good): mold reproducibility is good and there is no appearance defect due to thickness unevenness.
B (possible): The mold reproducibility is good, but there is a slight appearance defect due to thickness unevenness.
C (defect): The mold reproducibility is poor and there is an appearance defect caused by thickness unevenness.
 実施例2(上記評価結果A)、実施例5(上記評価結果B)および比較例1(上記評価結果C)の二次成形品について、以下のようにして、厚みムラを評価した。
 得られた二次成形品の四隅部のうち1箇所を選択し、その曲げ加工部および延伸部を切断して、断片を得た。得られた断片のうち外観不良が見られた領域(外観が良好な二次成形品についてはそれに対応する領域)内において二次成形品の深さ方向に10箇所を任意に選択し、マイクロメーターを用いて各箇所の厚みを測定した。互いに隣接する2点の測定箇所の厚みの差の絶対値として計9つの値を算出し、それらの平均値を求めた。厚み差の平均値の測定結果は以下の通りであった。
 実施例2:0.018mm、
 実施例5:0.020mm、
 比較例1:0.022mm。
 上記結果により、外観不良がない/または僅かな実施例2、5では、外観不良がある比較例1に比べ、厚みムラが小さいことが分かった。
About the secondary molded product of Example 2 (the above-mentioned evaluation result A), Example 5 (the above-mentioned evaluation result B), and Comparative Example 1 (the above-mentioned evaluation result C), thickness unevenness was evaluated as follows.
One portion was selected from the four corners of the obtained secondary molded product, and the bent portion and the stretched portion were cut to obtain fragments. Of the obtained fragments, 10 locations in the depth direction of the secondary molded product are arbitrarily selected within the region where the appearance defect is seen (the region corresponding to the secondary molded product with good appearance), and the micrometer Was used to measure the thickness of each part. A total of nine values were calculated as the absolute value of the difference in thickness between two measurement points adjacent to each other, and the average value was obtained. The measurement result of the average value of the thickness difference was as follows.
Example 2: 0.018 mm
Example 5: 0.020 mm
Comparative Example 1: 0.022 mm.
From the above results, it was found that in Examples 2 and 5 in which there was no appearance defect or few, the thickness unevenness was small compared to Comparative Example 1 in which the appearance defect was present.
 実施例1~7では、ゴム状平坦領域における貯蔵弾性率が、210℃で1.6MPa以上であり、170℃で3.0MPa以下であり、140℃で6.0MPa以下であり、かつ、tanδのピーク値が1.5以上であるメタクリル系樹脂板を製造することができた。これら実施例1~7では、曲げ加工部および延伸部の厚みムラに起因する外観不良がなく/または僅かであり、型再現性の高い二次成形品を得ることができた。
 実施例1~4、6、7では、上記特性を有し、さらに、動的粘弾性特性におけるtanδのピーク温度が130℃以下であるメタクリル系樹脂板を製造することができた。これら実施例1~4、6では、曲げ加工部および延伸部の厚みムラに起因する外観不良がなく、型再現性の高い二次成形品を得ることができた。
 比較例1で得られたメタクリル系樹脂板は、ゴム状平坦領域における210℃の貯蔵弾性率が実施例1~7よりも低いものであった。比較例2で得られたメタクリル系樹脂板は、140℃における貯蔵弾性率が実施例1~7よりも高いものであった。これら比較例1、2では、曲げ加工部および延伸部に厚みムラに起因する外観不良があり、型再現性がなく、外観の美観性に乏しい二次成形品が得られた。
































In Examples 1 to 7, the storage elastic modulus in the rubber-like flat region is 1.6 MPa or more at 210 ° C., 3.0 MPa or less at 170 ° C., 6.0 MPa or less at 140 ° C., and tan δ A methacrylic resin plate having a peak value of 1.5 or more could be produced. In these Examples 1 to 7, there was no / or slight appearance defect due to uneven thickness of the bent portion and the stretched portion, and a secondary molded product with high mold reproducibility could be obtained.
In Examples 1 to 4, 6, and 7, a methacrylic resin plate having the above characteristics and having a tan δ peak temperature of 130 ° C. or less in the dynamic viscoelastic characteristics could be produced. In Examples 1 to 4, and 6, there was no appearance defect due to thickness unevenness of the bent portion and the stretched portion, and a secondary molded product with high mold reproducibility could be obtained.
The methacrylic resin plate obtained in Comparative Example 1 had a storage elastic modulus at 210 ° C. in a rubber-like flat region lower than that in Examples 1-7. The methacrylic resin plate obtained in Comparative Example 2 had a storage elastic modulus at 140 ° C. higher than those in Examples 1-7. In Comparative Examples 1 and 2, secondary molded products having poor appearance due to thickness unevenness in the bent portion and the stretched portion, no mold reproducibility, and poor appearance aesthetics were obtained.
































Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001





Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002




 この出願は、2014年2月14日に出願された日本出願特願2014-026435号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-026435 filed on Feb. 14, 2014, the entire disclosure of which is incorporated herein.
 本発明のメタクリル系樹脂は、浴槽、浴室、および洗面所等のサニタリー分野、並びにシステムキッチンの天板等の厨房分野等に用いられる成形品に好適に利用することができる。 The methacrylic resin of the present invention can be suitably used for molded products used in sanitary fields such as bathtubs, bathrooms, and toilets, and kitchen fields such as the tops of system kitchens.

Claims (5)

  1.  架橋アルキルメタクリレート系重合体を含むメタクリル系樹脂であって、
     ゴム状平坦領域における貯蔵弾性率が、210℃で1.6MPa以上であり、170℃で3.0MPa以下であり、140℃で6.0MPa以下であり、
     かつ、
     動的粘弾性特性におけるtanδのピーク値が1.5以上である、
     メタクリル系樹脂。
    A methacrylic resin containing a cross-linked alkyl methacrylate polymer,
    The storage elastic modulus in the rubber-like flat region is 1.6 MPa or higher at 210 ° C., 3.0 MPa or lower at 170 ° C., and 6.0 MPa or lower at 140 ° C.,
    And,
    The peak value of tan δ in the dynamic viscoelastic property is 1.5 or more,
    Methacrylic resin.
  2.  動的粘弾性特性におけるtanδのピーク温度が130℃以下である、請求項1に記載のメタクリル系樹脂。 The methacrylic resin according to claim 1, wherein the peak temperature of tan δ in the dynamic viscoelastic property is 130 ° C or lower.
  3.  ゴム状平坦領域における貯蔵弾性率が140℃で4.3MPa以下である、請求項1または2に記載のメタクリル系樹脂。 The methacrylic resin according to claim 1 or 2, wherein a storage elastic modulus in a rubber-like flat region is 4.3 MPa or less at 140 ° C.
  4.  顔料を含む、請求項1~3のいずれか1項に記載のメタクリル系樹脂。 The methacrylic resin according to any one of claims 1 to 3, comprising a pigment.
  5.  請求項1~4のいずれか1項にメタクリル系樹脂からなる成形品。 A molded article made of a methacrylic resin according to any one of claims 1 to 4.
PCT/JP2015/000596 2014-02-14 2015-02-10 Methacrylic resin and molded article WO2015122174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562736A JP6592364B2 (en) 2014-02-14 2015-02-10 Manufacturing method of molded products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-026435 2014-02-14
JP2014026435 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015122174A1 true WO2015122174A1 (en) 2015-08-20

Family

ID=53799925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000596 WO2015122174A1 (en) 2014-02-14 2015-02-10 Methacrylic resin and molded article

Country Status (2)

Country Link
JP (1) JP6592364B2 (en)
WO (1) WO2015122174A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188313A (en) * 2015-03-30 2016-11-04 株式会社日本触媒 Acrylic resin composition, film formed of the resin composition, polarizing plate comprising the film and image display device comprising the polarizing plate
JP2019072857A (en) * 2017-10-12 2019-05-16 三菱ケミカル株式会社 Molded body and working method
CN110418818A (en) * 2017-03-17 2019-11-05 株式会社可乐丽 Cast sheet and its manufacturing method and secondary forming product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302100A (en) * 1996-05-17 1997-11-25 Kuraray Co Ltd Crosslinked alkyl methacrylate polymer molding
JPH10237132A (en) * 1997-02-28 1998-09-08 Kuraray Co Ltd Methacrylic resin material and its production
JP2001131296A (en) * 1999-08-20 2001-05-15 Sumitomo Chem Co Ltd Methacrylic resin plate for manufacturing sanitary supplies and its making method
JP2001335382A (en) * 2000-05-24 2001-12-04 Mrc Du Pont Kk Composition for lightweight artificial marble, and lightweight artificial marble
JP2005132864A (en) * 2003-10-28 2005-05-26 Du Pont-Mrc Co Ltd Grained artificial marble
JP2006028224A (en) * 2004-07-12 2006-02-02 Three M Innovative Properties Co Acrylic viscoelastic material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501333B2 (en) * 1997-02-28 2004-03-02 株式会社クラレ Methacrylic resin molded product and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302100A (en) * 1996-05-17 1997-11-25 Kuraray Co Ltd Crosslinked alkyl methacrylate polymer molding
JPH10237132A (en) * 1997-02-28 1998-09-08 Kuraray Co Ltd Methacrylic resin material and its production
JP2001131296A (en) * 1999-08-20 2001-05-15 Sumitomo Chem Co Ltd Methacrylic resin plate for manufacturing sanitary supplies and its making method
JP2001335382A (en) * 2000-05-24 2001-12-04 Mrc Du Pont Kk Composition for lightweight artificial marble, and lightweight artificial marble
JP2005132864A (en) * 2003-10-28 2005-05-26 Du Pont-Mrc Co Ltd Grained artificial marble
JP2006028224A (en) * 2004-07-12 2006-02-02 Three M Innovative Properties Co Acrylic viscoelastic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188313A (en) * 2015-03-30 2016-11-04 株式会社日本触媒 Acrylic resin composition, film formed of the resin composition, polarizing plate comprising the film and image display device comprising the polarizing plate
CN110418818A (en) * 2017-03-17 2019-11-05 株式会社可乐丽 Cast sheet and its manufacturing method and secondary forming product
JP2019072857A (en) * 2017-10-12 2019-05-16 三菱ケミカル株式会社 Molded body and working method
JP7085330B2 (en) 2017-10-12 2022-06-16 三菱ケミカルインフラテック株式会社 Molded body and processing method

Also Published As

Publication number Publication date
JPWO2015122174A1 (en) 2017-03-30
JP6592364B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
RU2591150C2 (en) Cross-linked nanostructured sheets produced by irrigation
JP6592364B2 (en) Manufacturing method of molded products
JP2016121273A (en) Antistatic acrylic resin composition and molded article
KR100855634B1 (en) Acrylate syrup and manufacturing method thereof
JP2019522710A (en) Composition comprising a multi-stage polymer and two different (meth) acrylic polymers, a process for its production, and an article comprising said composition
JP2017179342A (en) Resin composition, molded body and manufacturing method of molded body
CN107848161B (en) Resin plate with pearl pattern and method for producing same, and molded article and method for producing same
KR102311951B1 (en) Thermoplastic resin composition
CN113227221A (en) Acrylic laminated film, method for preparing same, and decorative sheet prepared using same
JP4519421B2 (en) Resin composition and vehicle lamp lens using the same
EP3613714A1 (en) Composition for artificial marble, and artificial marble
JP3817993B2 (en) Methyl methacrylate resin composition
WO2018168954A1 (en) Cast sheet, method for manufacturing same, and secondary molded article
JP2001038724A (en) Acrylic sheet molding compound (smc), acrylic resin molded product using the smc, and its manufacture
WO2003061937A1 (en) Acrylic cast sheet and process for its manufacture
AU773365B2 (en) Methacrylic resin board used for producing sanitary goods and process for producing said board
JP7268057B2 (en) Base film for decorative film and decorative film containing the same
CN112689658B (en) Thermoplastic resin composition
JPS61151212A (en) Methacrylate copolymer and its production
JP5099250B2 (en) Molded product and method for producing molded product
JP2022138994A (en) Methacrylic resin cast plate
JP3501333B2 (en) Methacrylic resin molded product and method for producing the same
JP2000226405A (en) Fine form-transfer molded product and preparation thereof
JP2001040164A (en) Acrylic resin composition for sheet molding compound
JP2021507086A (en) (Meta) acrylic polymer composition, its preparation method and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748540

Country of ref document: EP

Kind code of ref document: A1