WO2015122143A1 - 通信システム、通信装置、通信方法及びプログラムが格納された非一時的なコンピュータ可読媒体 - Google Patents
通信システム、通信装置、通信方法及びプログラムが格納された非一時的なコンピュータ可読媒体 Download PDFInfo
- Publication number
- WO2015122143A1 WO2015122143A1 PCT/JP2015/000427 JP2015000427W WO2015122143A1 WO 2015122143 A1 WO2015122143 A1 WO 2015122143A1 JP 2015000427 W JP2015000427 W JP 2015000427W WO 2015122143 A1 WO2015122143 A1 WO 2015122143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virtualized
- signal
- identification information
- deleted
- response signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/14—Session management
- H04L67/148—Migration or transfer of sessions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/40—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/12—Setup of transport tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/30—Connection release
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/45595—Network integration; Enabling network access in virtual machine instances
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/22—Manipulation of transport tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/12—Access point controller devices
Definitions
- the present invention relates to a communication system, a communication device, a communication method, and a program, and more particularly, to a communication system, a communication device, a communication method, and a program including a communication device that relays communication between terminals.
- the communication network has a plurality of relay devices to execute communication between terminal devices.
- 3GPP 3rd Generation Partnership Project
- MME Mobility Management Entity
- SGW Serving Gateway
- PGW Packet Data Network Gateway
- a node device uses a VM (Virtual Machine) for each interface connected to another node device.
- VM Virtual Machine
- the traffic between the node device and the other node device is increased, a VM is added to the node device to communicate with the other node device, and the traffic with the other node device is decreased.
- the VM for communicating with another node device may be deleted, and the deleted VM may be added as a VM used for communicating with another node device.
- the VM may be a communication resource such as an internal memory in the apparatus.
- the VM is used as a partial element constituting the node device. That is, in the above-described example, it is assumed that a plurality of interfaces are used as partial elements in the node device, and the VM corresponds to a communication resource constituting one interface.
- Non-Patent Document 1 defines virtualization within a network or node device as NFV (Network Functions Virtualization).
- a main factor for adding a VM in the node device is a case where congestion may occur in the node device or in the entire network due to an increase in traffic or the like.
- congestion may occur in the node device or in the entire network due to an increase in traffic or the like.
- it is possible to cope with an increase in traffic by adding a VM.
- the terminal is turned on by the occurrence of an event such as handover that occurs when the terminal device is connected to the mobile communication network or the ATTACH connected to the mobile communication network or the terminal device moves.
- the traffic transmitted from the device flows into the newly added VM.
- the main factor for deleting the VM in the node device is to eliminate the waste of communication resources when the processing capacity in the node device greatly exceeds the traffic capacity. That is, by deleting the power supplied to the VM that has been used excessively, it is possible to reduce power consumption and communication resources.
- Subscriber-related data or session-related data is associated with VMs used in node devices such as MME, SGW, and PGW. Therefore, in order to delete a VM without interrupting the service for a subscriber who is provided with a mobile communication service, after moving the subscriber related data or session related data to another VM, although it is necessary to delete a VM that is not associated with subscriber-related data or the like, there is a problem that there is no operation rule in the standard defined in 3GPP or other communication standards.
- An object of the present invention is to provide a communication system, a communication apparatus, and a communication capable of preventing a large number of control signals from being generated in a mobile communication network when deleting a VM in a node apparatus without interrupting service. It is to provide a method and a program.
- a communication system is a second communication device that controls a plurality of sessions set between a first communication device and the first communication device using a plurality of VMs.
- the second communication device is included in the plurality of VMs, and includes a plurality of sessions for controlling between the first communication device and the first VM included in the plurality of VMs.
- the identification information used in the second VM is notified to the first communication device to update the session.
- the communication device controls a plurality of sessions set up with other communication devices using a plurality of VMs, and is included in the other communication devices and the plurality of VMs.
- a plurality of sessions to be controlled with the first VM are included in the plurality of VMs, and when the second VM different from the first VM is determined to be controlled, the second VM is triggered.
- a control unit for updating the session by notifying the other communication device of the identification information used in.
- the communication method controls a plurality of sessions set up with other communication devices using a plurality of VMs, and is included in the other communication devices and the plurality of VMs.
- a plurality of sessions to be controlled with the first VM are included in the plurality of VMs, and are determined to be controlled by a second VM different from the first VM, and are used in the second VM Information is notified to the other communication device, and the session is updated.
- a program controls a plurality of sessions set up with other communication devices using a plurality of VMs, and is included in the other communication devices and the plurality of VMs.
- a plurality of sessions controlled with one VM are included in the plurality of VMs and are determined to be controlled in a second VM different from the first VM, and identification information used in the second VM Is notified to the other communication device, and the computer is caused to update the session.
- a communication system capable of preventing a large number of control signals from being generated in a mobile communication network when deleting a VM in a node apparatus without interrupting service.
- a program can be provided.
- the present invention can be applied not only to the deletion of a VM but also to an operation when moving a plurality of sessions to an added VM when a VM is added.
- FIG. 1 is a configuration diagram of a communication system according to a first exemplary embodiment; It is a block diagram of EPS (Evolved
- FIG. 1 is a configuration diagram of an EPS (Evolved Packet System) according to a first embodiment; 1 is a configuration diagram of a 2G / 3G communication network in 3GPP according to a first embodiment;
- FIG. 3 is a configuration diagram of a communication network defined as PCC (Policy and Charging Control) in 3GPP according to the first embodiment. It is a block diagram of a communication network corresponding to CSFB (CircuitcuSwitched Fall Back) in 3GPP according to the second embodiment.
- FIG. 4 is a configuration diagram of a Virtualized MME 100 according to the second exemplary embodiment.
- FIG. 6 is a configuration diagram of a Virtualized SGW 120 according to the second exemplary embodiment.
- FIG. 6 is a configuration diagram of a Virtualized PGW 140 according to the second exemplary embodiment.
- FIG. 6 is a configuration diagram of a Virtualized SGSN 160 according to the second exemplary embodiment. It is a block diagram of Virtualized GGSN180 concerning Embodiment 2.
- FIG. FIG. 10 is a configuration diagram of a Virtualized eNodeB 200 according to the second exemplary embodiment;
- FIG. 6 is a configuration diagram of a Virtualized RNC 210 according to the second exemplary embodiment.
- FIG. 10 is a diagram for explaining a session moving process when deleting an S5 / S8-C ⁇ ⁇ ⁇ VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session moving process when deleting an S5 / S8-C ⁇ ⁇ ⁇ VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session moving process when deleting an S5 / S8-C ⁇ ⁇ ⁇ VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session moving process when deleting an S5 / S8-C ⁇ ⁇ ⁇ VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session moving process when deleting an S5 / S8-C ⁇ ⁇ ⁇ VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session move process when deleting an S5 / S8-U VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session move process when deleting an S5 / S8-U VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session move process when deleting an S5 / S8-U VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session move process when deleting an S5 / S8-U VM according to the second embodiment;
- FIG. 10 is a diagram for explaining a session move process when deleting an S5 / S8-U
- FIG. 10 is a diagram for explaining a session move process when deleting an S5 / S8-U VM according to the second embodiment; It is a figure which shows the flow of the process performed when VM of Virtualized MME concerning Embodiment 2 is deleted. It is a figure which shows the flow of the process performed when VM of Virtualized MME concerning Embodiment 2 is deleted. It is a figure which shows the flow of the process performed when VM of Virtualized MME concerning Embodiment 2 is deleted. It is a figure which shows the flow of the process performed when VM of Virtualized MME concerning Embodiment 2 is deleted. It is a figure which shows the flow of the process performed when VM of Virtualized MME concerning Embodiment 2 is deleted. It is a figure which shows the flow of the process performed when VM of Virtualized MME concerning Embodiment 2 is deleted.
- the MME activates MME-initiated Detach procedure (Non-Patent Document 2: section 5.3.8.3) (S1001). .
- MME-initiated Detach procedure When MME-initiated Detach procedure is activated, the UE (User Equipment) transitions to the Detach state (a state where the user leaves the network).
- the UE that has transitioned to the Detach state activates E-UTRAN Initial Attach (Non-Patent Document 2: section 5.3.2.1) (S1002).
- the MME receives the ATTACH signal
- the MME constructs an S11 session using an MME different from the MME to be deleted (S1003). In this way, the movement of the PDN connection is completed.
- step S1001 information related to the UE that has been retrieved from the MME can be deleted. Also, in the SGW, the PGW, and the like, information on the UE that has been deleted from each node device can be deleted by causing the UE to be deleted.
- the UE transmits an Attach request message to the MME (S1101).
- authentication related to the UE is executed (S1102).
- the MME transmits a Create Session Request (MME-S11 IP address, MME-S11 TEID) message to the SGW (S1103).
- the SGW transmits a Create Session Request (SGW-S5 IP address, SGW-S5 TEID) message to the PGW (S1104).
- a QoS negotiation process is executed between the PGW and the PCRF (S1105).
- the PGW sends a Create Session Response (PGW-S5 IP address, PGW-S5 TEID) message to the SGW (S1106).
- PGW-S5 IP address, PGW-S5 TEID a Create Session Response
- the tunnel information can be exchanged between the SGW and the PGW.
- the PDN connection used in the S5 interface is established.
- the SGW sends a Create Session Response (SGW-S11 IP address, SGW-S11 TEID, SGW-S1-U IP address, SGW-S1-U TEID) message to the MME (S1107).
- SGW-S11 IP address, SGW-S11 TEID, SGW-S1-U IP address, SGW-S1-U TEID a Create Session Response
- MME MME
- the MME transmits an Initial-context-setup-Request (SGW-S1-U IP address, SGW-S1-U TEID) message to the eNB (S1108).
- SGW-S1-U IP address SGW-S1-U TEID
- radio settings are performed between the UE and the eNB.
- the eNB transmits an Initial context setup Request (eNB-S1-U IP address, eNB-S1-U TEID) message to the MME (S1110).
- the MME transmits Modify Bearer Request (eNB-S1-U IP address, eNB-S1-U TEID) to the SGW (S1111).
- the tunnel information can be exchanged between the eNB and the SGW. This establishes a PDN connection used in the S1-U interface.
- the SGW sends a Modify Bearer Response message to the MME (S1112).
- the UE can set S5 PDN connection, S11 PDN connection, and S1-U PDN connection by executing steps S1101 to S1112 after making a transition to the Detach state.
- FIG. 1 includes a communication device 1 and a communication device 2.
- the communication device 1 and the communication device 2 operate by executing a program stored in the memory, or a computer device that operates by a CPU (Center Processing Unit) executing a program stored in the memory. It consists of multiple VMs.
- the communication device 1 and the communication device 2 may be MME, SGW, PGW, or the like, which is a node device defined in 3GPP. Further, the communication device 1 and the communication device 2 may be Node B or eNode B which is a base station device, and SGSN (Serving General packet radio service Support Node), GGSN (Network called so-called second generation) Gateway
- the communication device 2 sets a plurality of sessions with the communication device 1 and communicates with the communication device 1.
- the plurality of sessions may be sessions set for each terminal device, for example, or may be sessions set for each group when a plurality of terminal devices are grouped.
- the session may be composed of, for example, path information between the communication devices 1 and 2, information necessary for communicating with the opposite communication device, information regarding the terminal device, and the like.
- the information regarding the terminal device may be, for example, information regarding the identifier of the terminal and the communication speed permitted for the terminal device.
- the communication device 2 sets a plurality of sessions using the VM 3 or the VM 4.
- a state where the communication device 1 sets a plurality of sessions with the VM 3 is indicated by dotted arrows
- a state where a plurality of sessions are set with the VM 4 is indicated by a solid line. Shown with arrows. This indicates that the communication apparatus 1 moves the session set with the VM 3 to the VM 4.
- VM3 and VM4 are composed of a plurality of communication resources such as different CPUs, memories, and network interfaces.
- FIG. 1 shows a configuration in which the VM 3 has communication resources 5 and 6, and the VM 4 has communication resources 7 and 8.
- VM3 and VM4 are partial elements constituting the communication device 2 when the communication device 2 is virtualized.
- the resources corresponding to the VM3 and VM4 may be supplied with power. That is, power consumption can be reduced when only VM3 or only VM4 is used, compared to when VM3 and VM4 are used.
- the communication device 2 uses the VM 3 to control a plurality of sessions set with the communication device 1 from a state in which the VM 4 is used to control a plurality of sessions set with the communication device 1. Decide to control. For example, the communication device 2 may change a VM that controls a plurality of sessions set with the communication device 1 in accordance with an instruction input from an administrator or the like that manages the communication device 2. The VM that controls a plurality of sessions set with the communication device 1 may be changed in accordance with an instruction signal input from the operation device or the like.
- the communication device 2 uses the VM 3 to control a plurality of sessions set with the communication device 1 from a state in which the VM 4 is used to control a plurality of sessions set with the communication device 1.
- the communication apparatus 1 is notified of the identification information used in the VM 4 and the session is updated.
- the identification information is information that allows the communication device 2 to uniquely identify that it is controlled in the VM 4.
- the communication apparatus 2 moves a plurality of sessions set in the VM 3 to the VM 4 by deleting the VM 3.
- the communication device 2 moves a part or all of the plurality of sessions set in the VM 3 to the VM 4 by adding the VM 4.
- the communication apparatus 2 changes the VM that controls a plurality of sessions set with the communication apparatus 1, the communication apparatus 2 notifies the communication apparatus 1 of identification information used in the changed VM. can do.
- the communication device 1 is notified of the changed VM identification information from the communication device 2, the VM 4 can be designated as the destination when data is transmitted to the communication device 2 from the next time on. Thereby, the data transmitted from the communication apparatus 1 to the VM 3 can be moved to the VM 4.
- the VM 3 can be deleted and the traffic from the communication device 1 can be moved to the VM 4 by changing the session between the communication device 1 and the communication device 2 without performing a Detach or the like on the terminal device.
- the control signal generated by deleting the VM 3 is transmitted / received only between the communication device 1 and the communication device 2, it is possible to prevent a large amount of control signals from being communicated in the network.
- FIGS. 2 to 6 are configuration examples of communication networks defined in 3GPP.
- FIG. 2 is a configuration example of an EPS (Evolved Packet System) when the UE does not roam.
- the EPS in FIG. 2 includes UE (User (Equipment) 10, E-UTRAN (Evolved Terrestrial Radio Access Network) 11, MME12, SGW13, SGSN (Serving GPRS Support Node) 14, HSS (Home Subscriber Server) 15, PGW16, PCRF (Policy and Charging Rules Function) 17 and an operator network 18.
- the operator network 18 may be, for example, IMS (IP Multimedia Subsystem) or PSS (Packet Switch Streaming).
- Symbols defined between node devices such as LTE-Uu, S1-U, S3, and Gx shown in this figure indicate interface names between the node devices.
- the SGSN 14 is connected to UTRAN and GERAN (GSM (registered trademark) EDGE Radio Access Network), and the SGW 13 is connected to UTRAN.
- E-UTRAN11, UTRAN, and GERAN each indicate a wireless network, and includes a base station device and the like.
- FIG. 3 is a configuration example of the EPS when the UE is roaming.
- the EPS in FIG. 3 includes a UE 10, an E-UTRAN 11, an MME 12, an SGW 13, an SGSN 14, an HSS 21, a PGW 22, a PCRF 23, and an operator network 24.
- the UE 10 is located in VPLMN (Visited Public Land Mobile Network). Therefore, the MME 12 communicates with the HSS 21 arranged in HPLMN (Home Public Land Mobile Network), and the SGW 13 communicates with the PGW 22 arranged in the HPLMN.
- the interface between the SGW 13 and the PGW 22 is S8, whereas in FIG. 2, the interface between the SGW 13 and the PGW 16 is S5. This is the main difference from FIG. Detailed descriptions of FIGS. 2 and 3 are described in the 3GPP TS23.401 standard.
- FIG. 4 is a configuration example of a communication network called 2G or 3G in 3GPP.
- 4 includes a TE (Terminal4Equipment) 31, MT (Mobile Terminal) 32, UTRAN33, SGSN34, TE35, MT36, BSS (Base Station System) 37, SGSN38, GGSN (Gateway GPRS Support Node) 39, GGSN40, MSC (Mobile Switching Center) / VLR (Visitor Location Register) 41, SMS-GMSC, SMS-IWMSC (Inter-Working Mobile Switching Center) 42, SMS-SC43, gsm SCF (gsm Service Control Function 44), CGF (Charging Gateway Function) ) 45, EIR (Equipment Identity Register) 46, Billing System 47, TE48, and HLR49.
- TE Terminal4Equipment
- the dotted line in this figure indicates a Signaling interface that communicates control signals
- the solid line indicates a Signaling interface and Data data Transfer interface that communicates control signals and user data.
- the detailed description of FIG. 4 is described in the 3GPP TS23.060 standard.
- FIG. 5 is a configuration example of a communication network defined as PCC (Policy and Charging Control) in 3GPP.
- 5 includes a BBERF (Bearer Binding and Event Event Reporting Function) 51, a V (Visited) -PCRF 52, an SPR (Subscriber Profile Repository) 53, an H (Home) -PCRF 54, a PCEF (Policy and Charging Enforcement Function) 55, Gateway 56, AF (Application Function) 57, OCS (Online Charging System) 58, TDF (Traffic Detection Function) 59 and OFCS (Offline Charging System) 60.
- BBERF Bit Binding and Event Event Reporting Function
- V Vehicle
- SPR Subscriber Profile Repository
- H Home
- PCEF Policy and Charging Enforcement Function
- Gateway 56 Gateway 56
- AF Application Function
- OCS Online Charging System
- TDF Traffic Detection Function
- OFCS Offline Charging System
- FIG. 6 is a configuration example of a communication network corresponding to CSFB (Circuit Switched Fall) Back in 3GPP.
- the communication network in FIG. 6 includes UE 71, E-UTRAN 72, GERAN 73, UTRAN 74, SGSN 75, MME 76, and MSC Server 77.
- the detailed description of FIG. 6 is described in the 3GPP TS23.272 standard.
- Virtualized MME 100 is the name of an MME configured by a plurality of VMs.
- the Virtualized MME 100 is configured to use a VM for operations necessary for each interface in the MME 12 in FIG. 2 or the MME 76 in FIG. 6.
- the Virtualized MME 100 includes S6a VM 101 to S6a VM 103, S11 VM 104 to S11 VM 106, SGs VM 107, SGs VM 108, S1-MME VM 109 to S1-MME VM 111, and the control unit 15.
- the number of VMs used in each interface in this figure is an example, and an arbitrary number of VMs may be used. The same applies to other drawings described below.
- S6a VM 101 to S6a VM 103 have functions necessary for controlling the interface with the HSS 15 in FIG. 2 or the HSS 21 in FIG.
- An example of the function is acquisition of subscriber data.
- S11 to VM 104 to S11 to VM 106 have functions necessary for controlling a session set with SGW 13 in FIG. SGs VM 107 and SGs VM 108 have functions necessary for controlling a session set with MSC Server 77 in FIG. 6.
- S1-MME VM109 to S1-MME VM111 have functions necessary for controlling a session established with E-UTRAN11 in FIG.
- the E-UTRAN 11 may be, for example, an eNB (evolved NB) that is a base station device.
- eNB evolved NB
- Each VM allocates a predetermined memory area for each session, for example. Therefore, the maximum number of sessions that can be set for each VM may be determined according to the memory area or the memory capacity.
- the VM defined below is the same as the VM in this figure.
- the control unit 115 performs management of the number of sessions, determination of a destination of a session set in the VM to be deleted, communication control via each VM, and the like. In addition, the control unit 115 monitors the load status of each VM. For example, when a certain VM falls below the preset number of sessions at night, the remaining session in the VM is transferred to another VM. You may decide to move, decide the destination, or decide to distribute to a plurality of VMs considering the load status as the destination. The same applies to the control units of other devices described below.
- Virtualized SGW 120 is configured to use a VM as an interface in the SGW 13 of FIG. 2.
- Virtualized SGW120 includes Gxx VM121, Gxx VM122, S5 / S8-C VM123, S5 / S8-C VM124, S5 / S8-U VM125, S5 / S8-U VM126, S11 VM128, S29 VM128, S1 VM128, 1 -U VM130, S12 VM131, S12 VM132 and control unit 135 are provided.
- Gxx VM 121 and Gxx VM 122 are interfaces used for a session set up with V-PCRF 52 when Virtualized SGW 120 has the function of BBERF 51 in FIG. 5.
- S5 / S8-C VM 123 and S5 / S8-C VM 123 are interfaces used for a session set between the PGW 16 of FIG. 2 or the PGW 22 of FIG.
- S11 VM127 and S11 VM128 are interfaces used for a session set with the MME 12 in FIG.
- S1-U VM 129 and S1-U VM 130 are interfaces used for a session established with E-UTRAN 11 in FIG.
- the E-UTRAN 11 may be, for example, an eNB (evolved NB) that is a base station device.
- S12 VM 131 and S12 132 VM 132 are interfaces used for a session set up with UTRAN.
- the UTRAN may be, for example, a NodeB that is a base station device.
- the Virtualized PGW 140 is configured to use a VM as an interface in the PGW 16 of FIG. 2 or the PGW 22 of FIG. 3.
- Virtualized PGW140 is composed of Gx VM141 to Gx VM143, Gy / Gz VM144 to Gy / Gz VM146, SGi VM147, SGi VM148, S5 / S8-C VM149, S5 / S8-C S8-S8 / S5-S8-S8 It has a U VM 152 and a control unit 155.
- Gx VM 141 to Gx VM 143 are interfaces used for a session set between the PCRF 17 in FIG. 2 or the PCRF 23 in FIG. 3.
- Gy / Gz VM 144 to Gy / Gz VM 146 are interfaces used for sessions set up with OCS 58 or OFCS 60 in FIG. 5 when Virtualized PGW 140 has the function of PCEF55.
- SGi VM 147 and SGi VM 148 are interfaces used for a session set between the operator network 18 in FIG. 2 or the operator network 24 in FIG. 3.
- the S5 / S8-C VM 149 and the S5 / S8-C14VM 150 are interfaces used for a session set to communicate C-Plane data with the SGW 13.
- S5 / S8-U VM 151 and S5 / S8-U VM 152 are interfaces used for a session set to communicate U-Plane data with SGW 13 in FIG.
- the Virtualized SGSN 160 is configured to use a VM as an interface in the SGSN 14 of FIG. 2 or the SGSN 34 of FIG.
- Virtualized SGSN 160 includes S4-C VM161, S4-C VM162, Gn-C VM163, Gn-C VM164, Gn-U VM165, Gn-U VM166, Gr / S6d VM167, Gr / S6d M VM168V, -U VM170, Gs VM171, Gs VM172, Iu-C VM173, Iu-C VM174, Iu-U VM175, Iu-U VM176 and a control unit 177.
- S4-C VM 161 and S4-C VM 162 are interfaces used for a session set to communicate C-Plane data with the SGW 13 in FIG.
- the S4-U VM 169 and the S4-U VM 170 are interfaces used for a session set to communicate U-Plane data with the SGW 13.
- Gn-C VM 163 and Gn-C VM 164 are interfaces used for a session set for communicating C-Plane data with GGSN 40.
- Gn-U VM 165 and Gn-U VM 166 are interfaces used for a session set to communicate U-Plane data with GGSN 40 in FIG.
- Gr / S6d VM167 and Gr / S6d VM168 are interfaces used for a session set with the HLR 49 in FIG.
- Gs VM 171 and Gs VM 172 are interfaces used for sessions set up with the MSC / VLR 41.
- the Iu-C VM 173 and the Iu-C 17 VM 174 are interfaces used for a session set to communicate C-Plane data with the UTRAN 33.
- the Iu-U VM 175 and the Iu-U VM 176 are interfaces used for a session set to communicate U-Plane data with the UTRAN 33 in FIG.
- Virtualized GGSN 180 is configured to use VM as an interface in SGSN 14 in FIG. 2 or SGSN 34 in FIG. 4.
- Virtualized GGSN 180 is Gx VM181 ⁇ Gx VM183, Gy / Gz VM184 ⁇ Gy / Gz VM186, Gi VM187, Gi VM188, Gn-C VM189, Gn-C VM19, Gn-C VM19, Gn-M V19, Gn-M V19 Have.
- Gx VM 181 to Gx VM 183 are interfaces used for a session set with the H-PCRF 54 when the Virtualized GGSN 180 has the function of the PCEF 55.
- Gy / Gz VM 144 to Gy / Gz VM 146 are interfaces used for a session established between OCS 58 and OFCS 60 when Virtualized GGSN 180 has the function of PCEF 55 in FIG. 5.
- Gi VM 187 and Gi VM 188 are interfaces used for a session set between an IP network in which a communication carrier provides a unique service or a PDN (Packet Delivery Network) managed by another communication carrier.
- PDN Packet Delivery Network
- Gn-C VM189 and Gn-C VM190 are interfaces used for a session set to communicate C-Plane data with SGSN34.
- Gn-U VM 191 and Gn-U VM 192 are interfaces used for a session set to communicate U-Plane data with SGSN 34 in FIG.
- Virtualized eNodeB 200 is configured to use VM as an interface in eNodeB arranged in E-UTRAN 11 in FIG.
- the Virtualized eNodeB 200 includes S1-MME VM 201 to S1-MME VM 203, S1-U VM 204 to S1-U VM 206, LTE-Uu 207, and a control unit 208.
- S1-MME VM201 to S1-MME203VM203 are interfaces used for sessions set up with the MME12 in FIG.
- S1-U VM 204 to S1-U VM 206 are interfaces used for sessions established with the SGW 13 in FIG.
- the LTE-Uu 207 is an interface used for a session set up with the UE 10.
- the Virtualized RNC 210 is configured to use a VM as an interface in an RNC (Radio Network Controller) arranged in the UTRAN 33 of FIG.
- RNC Radio Network Controller
- the Virtualized RNC 210 includes Iu-C VM 211 to Iu-C VM 213, Iu-U VM 214 to Iu-U VM 216, Uu 217, and a control unit 218.
- the Iu-C VM 211 to Iu-C VM 213 are interfaces used for a session set to communicate C-Plane data with the SGSN 34 in FIG.
- the Iu-U VM 214 to Iu-U VM 216 are interfaces used for a session set to communicate U-Plane data with the SGSN 34.
- Uu 217 is an interface used for a session established with MT 32 in FIG.
- FIG. 14 shows that 60000 sessions are set in S11 VM 104, 80000 sessions are set in S11 VM 105, and 40000 sessions are set in S11 VM 106 with SGW13.
- the session may be a PDN connection.
- Virtualized MME100 may move the session of S11 VM106 by the control unit 115 in consideration of the load status of S11 VM104 and S11 VM105. For example, the virtualized MME 100 may move the session of the S11 VM VM 106 so that the number of sessions set in the S11 VM 104 and the S11 VM 105 is approximately the same.
- Virtualized MME 100 may move the 30000 session in S11 VM 106 to S11 VM 104 and move the 10,000 session to S11 VM 105. By doing so, as shown in FIG. 15, S11 VM 104 and S11 VM 105 each set 90000 sessions, and the load becomes equal.
- the Virtualized MME 100 may manage the new session generated during the operation of moving the session set in the S11 VM 104 and the S11 VM 104 and the S11 VM 105 so that the session is not set in the S11 VM 106.
- Control of the number of sessions set in each VM, determination of the destination of the session set in the VM to be deleted, and the like may be executed by a control unit such as a CPU mounted on the Virtualized MME 100.
- a control unit such as a CPU mounted on the Virtualized MME 100.
- FIG. 14 and FIG. 15 the example in which the S11 VM 106 of the Virtualized MME 100 is deleted has been described. Also in the case where a VM in GGSN or the like is deleted and added, the same control as in FIG. 14 and FIG. 15 is executed.
- FIG. 16 shows that the GTP-C signaling is set between the virtualized MME100 and the S11 ⁇ VM128 of the virtualized SGW120, and further between the virtualized PGW140 and the S5 / S8-C VM123 of the virtualized SGW120. ing.
- FIG. 17 shows that when deleting the S5 / S8-C VM 123, a Modify Bearer Request message and a Modify Bearer Response message are transmitted to and received from the Virtualized PGW 140.
- the Virtualized PGW 140 need not recognize that the S5 / S8-C VM123 is deleted by receiving the Modify Bearer Request.
- the GTP-C update signaling between the Virtualized SGW 120 and the Virtualized PGW 140 is performed by sending / receiving Modify / Bearer / Request and Modify / Bearer / Response between the S5 / S8-C VM 123 and the Virtualized PGW 140. Is done. That is, GTP-C signaling connection between Virtualized SGW120 and Virtualized PGW140 set between S5 / S8-C VM123 and Virtualized PGW140 is set between S5 / S8-C VM124 and Virtualized140PG.
- FIG. 19 shows that S5 / S8-C VM 123 is deleted after all the sessions set in S5 / S8-C VM 123 move to S5 / S8-C VM 124.
- FIG. 20 shows that GTP-U connection is set between VirtualizedVMME100 and S1-U VM129 of Virtualized SGW120, Furthermore, Virtualized ⁇ PGW140 and S5 / S8-U VM125 of Virtualized SGW120 Show.
- FIG. 21 shows that when deleting the S5 / S8-U VM 125, a Modify Bearer Request message and a Modify Bearer Response message are transmitted to and received from the Virtualized PGW 140.
- the Modify Bearer Request message and the Modify Bearer Response message are transmitted / received via the S5 / S8-C VM123.
- the Virtualized PGW 140 does not need to recognize that the S5 / S8-U VM 125 is deleted by receiving the Modify Bearer request.
- GTP-U connection between the Virtualized SGW 120 and the Virtualized PGW 140 is updated by sending and receiving ModifyMod Bearer Request and Modify Bearer Response between the S5 / S8-C VM 123 and the Virtualized PGW 140.
- FIG. 23 shows that S5 / S8-U VM 125 is deleted after all sessions set in S5 / S8-U VM 125 move to S5 / S8-U VM 126.
- FIG. 24 shows processing executed when any one of the VMs S11 to VM104 to S11 to VM106 of the Virtualized MME 100 is deleted.
- the Virtualized MME 100 transmits a Modify Bearer request message to the Virtualized SGW 120 (S11).
- the Virtualized MME 100 sets the IP address and TEID (Tunnel Endpoint ID) indicating the destination VM of the session in the Modify Bearer request message.
- the TEID is an identifier indicating the end of a path set between the VM of Virtualized MME100 and the VM of Virtualized SGW120.
- the Virtualized SGW 120 can establish a session with the VM designated by the Virtualized MME 100 by transmitting a message specifying the TEID notified from the Virtualized MME 100 to the Virtualized MME 100.
- the information indicating the VM to which the session is moved may be an IP address and a GRE key.
- the Virtualized SGW 120 transmits a Modify Bearer response message to the Virtualized MME 100 (S12).
- the Virtualized MME 100 transmits a Modify Bearer Request message for each session set in the S11 VM to be deleted.
- the session set between the Virtualized MME 100 and the Virtualized SGW 120 may be, for example, a PDN connection.
- the Virtualized MME 100 transmits a Modify Bearer request message to the plurality of Virtualized SGWs.
- the session set in the VM to be deleted can be moved by executing steps S11 and S12. Compared with the process described in the comparative example, the number of signals required for session movement can be significantly reduced by executing the process described in this figure.
- FIG. 25 shows processing that is executed when one of the VMs S11 to VM104 to S11 to VM106 of the Virtualized MME 100 is deleted, as in FIG. FIG. 24 illustrates the process of transmitting the ModifyModBearer Request message for each session, but FIG. 25 illustrates an example in which update processing is executed for each of a plurality of sessions. Executing update processing for each of a plurality of sessions is called bulk processing.
- Virtualized MME100 transmits a Create Session Request message to Virtualized SGW120 when establishing a session in the S11 interface with Virtualized SGW120 (S21).
- Virtualized MME 100 transmits CSIDs associated with a plurality of sessions set using S11 VM 106 to Virtualized ⁇ SGW 120.
- the CSID may be a different value for each VM for which a session is set.
- the Virtualized SGW 120 recognizes that a plurality of sessions in which the same CSID is set are all set to the same VM in the Virtualized MME 100.
- the Virtualized SGW 120 transmits a Create Session Response message as a response to the Create Session Request message (S22).
- the Virtualized MME 100 when the Virtualized MME 100 deletes S11 VM106, the Virtualized MME 100 transmits an Update PDN Connection Set Request message to the Virtualized SGW 120 (S31).
- the Virtualized MME 100 sets the CSID associated with the S11 VM 106, the IP address group indicating the destination VM of the session, and the TEID (Tunnel Endpoint ID) group in the Update PDN connection Connection Set request message.
- the information indicating the VM to which the session is moved may be an IP address group and a GRE key group.
- the Virtualized SGW 120 transmits an Update PDN Connection Connection Set Response message as a response to the Update PDN Connection Connection Set message (S32).
- a plurality of sessions can be transferred to a VM different from the currently set VM by simply transmitting and receiving one Update PDN Connection Set Request message and Update PDN Connection Response message. Can be moved.
- FIG. 24 it is necessary to transmit / receive Modify Bearer Request message and Modify Bearer Response message for the number of set sessions.
- FIG. 27 shows processing executed when any one of the S1-MME VM109 to S1-MME VM111 of the Virtualized MME100 is deleted.
- Virtualized MME 100 transmits an MME CONFIGURATION UPDATE message to eNodeB (S41).
- the Virtualized MME 100 sets an IP address or other identification information indicating the VM to which the session is moved in the MME CONFIGURATION UPDATE message.
- the eNodeB transmits an MME CONFIGURATION UPDATE ACKNOWLEDGE message as a response to the MME CONFIGURATION UPDATE message to the Virtualized MME 100 (S42).
- the Virtualized MME 100 transmits an MME CONFIGURATION UPDATE message for each session set in the S1-MME VM to be deleted.
- FIG. 28 shows processing executed when one of the VMs S6a to VM101 to S6a to VM103 of the Virtualized MME 100 is deleted.
- steps S51 and S52 in FIG. 28 are the same as those in FIG. 27 except that the communication partner of the virtualized MME 100 is the HSS 21 and the signal names to be transmitted and received are different, and thus detailed description thereof is omitted.
- a signal to be transmitted / received a Notify / Request message and a Notify / Answer message are used.
- FIG. 29 shows processing executed when the VMs of SGs VM 107 or SGs VM 108 of Virtualized MME 100 are deleted. Note that steps S61 and S62 in FIG. 29 are the same as those in FIG. 28 except that the communication partner of the Virtualized MME 100 is the VLR or the MSC Server 77, and thus detailed description thereof is omitted.
- FIG. 30 shows processing executed when S5 / S8-C VM 123 or S5 / S8-C VM 124 of Virtualized SGW 120 is deleted. Note that steps S71 and S72 of FIG. 30 are the same as FIG. 24 except that the communication partner of the Virtualized SGW 120 is the Virtualized PGW 140, and thus detailed description thereof is omitted.
- FIG. 31 shows processing executed when S5 / S8-C VM123 or S5 / S8-C VM124 of Virtualized SGW 120 is deleted, as in FIG.
- FIG. 30 illustrates the process of transmitting the Modify / Bearer / Request message for each session.
- FIG. 31 illustrates an example of executing the bulk process. Note that steps S81 and S82 in FIG. 31 are the same as those in FIG. 25 except that the communication partner of the Virtualized SGW 120 is the Virtualized PGW 140, and thus detailed description thereof is omitted.
- Steps S91 and S92 of FIG. 32 are the same as FIG. 26 except that the communication partner of the Virtualized SGW 120 is the Virtualized PGW 140, and thus detailed description thereof is omitted.
- FIG. 33 shows processing executed when S5 / S8-U VM 125 or S5 / S8-U VM 126 of Virtualized SGW 120 is deleted. Note that steps S101 and S102 in FIG. 33 are the same as those in FIG. 30 except that the session used when communicating the U-Plane data of the S5 / S8 interface, and thus detailed description thereof is omitted.
- FIG. 34 shows processing executed when S5 / S8-U VM 125 or S5 / S8-U VM 126 of Virtualized SGW 120 is deleted, as in FIG.
- FIG. 33 illustrates the process of sending the ModifyModBearer Request message for each session.
- FIG. 34 illustrates an example of executing the bulk process. Note that steps S111 and S112 in FIG. 34 are the same as those in FIG. 31 except that the session used when communicating the U-Plane data of the S5 / S8 interface, and thus detailed description thereof is omitted.
- Steps S121 and S122 in FIG. 35 are the same as those in FIG. 32 except that the session used when communicating the U-Plane data of the S5 / S8 interface, and detailed description thereof will be omitted.
- FIG. 36 illustrates processing executed when a VM that is an interface of S4C of Virtualized SGW 120 is deleted. Note that steps S131 and S132 in FIG. 36 are the same as those in FIG. 30 except that the communication partner of Virtualized SGW 120 is SGSN 14, and thus detailed description thereof is omitted.
- FIG. 37 shows processing that is executed when a VM that is an interface of S4C of Virtualized SGW 120 is deleted, as in FIG. 36.
- FIG. 36 describes the process of transmitting the Modify Bearer Request message for each session, but FIG. 37 illustrates an example of executing the bulk process. Note that steps S141 and S142 in FIG. 37 are the same as those in FIG. 34 except that the session set in the S4C interface is updated, and thus detailed description thereof is omitted.
- steps S151 and S152 in FIG. 38 are the same as those in FIG. 35 except that the session set in the S4C interface is updated, and thus detailed description thereof is omitted.
- FIG. 39 shows processing executed when a VM that is an interface of S4U of Virtualized SGW 120 is deleted.
- the Virtualized SGW 120 transmits a Modify Bearer Request message to the VirtualizedVSGSN 160 (S161).
- the Virtualized SGW 120 transmits / receives the Modify Bearer Request message and the subsequent Modify Bearer Response message via the interface of S4C (step S164).
- the Virtualized SGW 120 sets the IP address and TEID indicating the VM to which the session is moved in the Modify Bearer Request message.
- the Virtualized SGSN 160 notifies the Virtualized RNC 210 of update information of the VM that is the interface of the S4U in the Virtualized SGGW 120. Specifically, Virtualized SGSN 160 transmits a RELOCATION REQUEST message to Virtualized RNC 210 (S162). Virtualized SGSN 160 sets the content notified in step S161 in the RELOCATION REQUEST message. The Virtualized RNC 210 transmits a RELOCATION REQUEST ACKNOWLEDGE message to the Virtualized SGSN 160 as a response to the RELOCATION REQUEST message (S163).
- step S163 the Virtualized SGSN 160 receives the RELOCATION REQUEST ACKNOWLEDGE message, and transmits a Modify Bearer Response message to the Virtualized SGW 120 as a response to the Modify Bearer Request message (S164).
- the Virtualized SGW 120 transmits a Modify Bearer ⁇ Request message for each session set in the VM of the interface related to the S4U to be deleted.
- the Virtualized SGW 120 does not directly notify the Virtualized RNC 210 of the information regarding the deletion of the VM, but can notify the information regarding the deletion of the VM via the Virtualized SGSN 160. As a result, it is possible to reduce the signal processing load transmitted from the Virtualized SGW 120 to the Virtualized RNC 210.
- FIG. 40 shows processing that is executed when a VM that is an interface of S4U of Virtualized SGW 120 is deleted, as in FIG. 39. Also, FIG. 39 illustrates the process of sending the Modify Bearer Request message for each session, but FIG. 40 illustrates an example of executing the bulk process. Note that steps S171 and S172 in FIG. 40 are the same as those in FIG. 37 except that the session set in the S4U interface is updated, and thus detailed description thereof is omitted.
- steps S181 and S184 in FIG. 41 are the same as those in FIG. 38 except that the session set in the S4U interface is updated, and thus detailed description thereof is omitted.
- Virtualized SGSN 160 repeats steps S182 and S183 for the number of set sessions. In other words, Virtualized SGW 120 notifies Virtualized SGSN 160 that a plurality of sessions are moved to a new VM in a batch by using bulk processing. On the other hand, Virtualized SGSN 160 repeatedly executes steps S182 and S183 for the number of sessions without using bulk processing. The Virtualized SGSN 160 completes the notification regarding the deletion of the VM in the Virtualized SGW 120 to the Virtualized RNC 210 for all sessions, and transmits an Update PDN Connection Response message in step S184.
- FIG. 42 illustrates processing executed when S11 S VM 127 or S11 VM 128 of Virtualized 120 SGW 120 is deleted. 42, the communication partner of the Virtualized SGW 120 is the Virtualized MGW 100, and the Virtualized SGW 120 and the Virtualized MME 100 use the Update Bearer Request message and the Update Bearer Response message. Since the setting contents of each message are the same as those in FIG. 30, detailed description thereof is omitted.
- FIG. 43 shows the processing that is executed when S11 VM127 or S11 VM128 of Virtualized SGW 120 is deleted, as in FIG. Further, FIG. 42 describes the process of transmitting the Modify Bearer Request message for each session, but FIG. 43 describes an example of executing the bulk process.
- the Virtualized SGW 120 transmits a Create ⁇ Session Response message to the Virtualized MME 100 (S202).
- the Virtualized SGW 120 transmits, to the Virtualized SGW 120, CSIDs associated with a plurality of sessions set using S11 VM 128 in the Create Session Response message.
- Steps S211 and S212 in FIG. 44 are the same as those in FIG. 38 except that the session set in S11 and VM 128 is updated and the communication destination of Virtualized and SGW 120 is Virtualized and MME 100, and detailed description thereof will be omitted.
- FIG. 45 shows processing executed when S12 VM131 or S12 VM132 of Virtualized SGW 120 is deleted. 45 are the same as those in FIG. 39 except that the message used in steps S221 and S224 is an Update ⁇ ⁇ Bearer22Request message, and thus detailed description thereof is omitted.
- FIG. 46 shows processing that is executed when S12 VM131 or S12 VM132 of Virtualized SGW 120 is deleted, as in FIG.
- FIG. 45 describes the process of sending the Modify Bearer Request message for each session, but FIG. 46 describes an example of executing the bulk process. Note that steps S231 and S232 in FIG. 46 are the same as in FIG. 40 except that the session set in S12 VM 132 is updated, and thus detailed description thereof is omitted.
- steps S241 to S244 in FIG. 47 are the same as those in FIG. 41 except that the session set in the S12 VM 132 is updated, and thus detailed description thereof is omitted.
- FIG. 48 shows processing executed when S1-U VM 129 or S1-U VM 130 of Virtualized SGW 120 is deleted.
- steps S251 to S254 in FIG. 48 are different from FIG. 45 in that the communication destination of Virtualized SGW 120 is Virtualized MME100, and the communication destination of Virtualized MME100 is Virtualized eNodeB200.
- the messages used in steps S252 and S253 are E-RAB MODIFY REQUEST messages.
- the other contents such as the contents set in the message are the same as those in FIG.
- FIG. 49 shows processing that is executed when S1-U VM 129 or S1-U VM 130 of Virtualized SGW 120 is deleted, as in FIG. Further, FIG. 48 illustrates the process of sending the Modify Bearer Request message for each session, but FIG. 49 illustrates an example of executing the bulk process. Steps S261 and S262 in FIG. 49 are the same as steps S201 and S202 in FIG. 43 except that the CSID associated with the S1-U VM 130 is notified, and thus detailed description thereof is omitted.
- steps S272 to S274 in FIG. 50 are the same as those in FIG. 48 except that the bulk processing is performed in steps S271 and S274, and thus detailed description thereof is omitted.
- FIG. 51 shows processing executed when GxxxVM 121 and Gxx VM 122 of Virtualized SGW 120 are deleted. Note that step S281 in FIG. 51 notifies the V-PCRF 52 that Gxx VM is deleted using a CCR message. Further, the V-PCRF 52 transmits a CCA message as a response to the Virtualized SGW 120 (S282).
- FIG. 52 shows processing executed when S5 / S8-C VM 149 or S5 / S8-C VM 150 of Virtualized PGW 140 is deleted. Note that FIG. 52 is the same as the processing described in FIG. 30 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 53 shows processing executed when S5 / S8-C VM 149 or S5 / S8-C VM 150 of Virtualized PGW140 is deleted.
- Virtualized PGW 140 transmits a Create Session Response message to Virtualized SGW 120 as a response to the Create Session Request message transmitted in step S301 in order to execute bulk processing (S302).
- the Virtualized PGW 140 sets the CSID associated with the S5 / S8-C VM 150 in the Create Session Response message.
- FIG. 54 shows processing executed when S5 / S8-C VM 150 of Virtualized PGW140 is deleted. Note that FIG. 54 is the same as the processing described in FIG. 32 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 55 shows processing executed when the S5 / S8-U VM 151 or the S5 / S8-U VM 152 of the Virtualized140PGW 140 is deleted. Note that FIG. 55 is the same as the processing described in FIG. 33 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIGS. 56 and 57 show processing executed when the S5 / S8-U VM 152 of the Virtualized PGW 140 is deleted.
- FIG. 56 is the same as the processing described in FIG. 34 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 57 is the same as the processing described in FIG. 35 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 58 shows processing executed when SGi VM 147 or SGi VM 148 of Virtualized PGW 140 is deleted.
- the Virtualized PGW 140 sets the deletion of SGi VM1 in the Update routing table message, and transmits it to the TDF or SDN included in the operator network 18 (S351). Further, the Virtualized PGW 140 receives the Update routing acknowledge message as a response to the Update routing table message (S352).
- FIG. 59 shows processing executed when any of Gx VM 141 to Gx VM 143 of Virtualized PGW140 is deleted.
- the processing in FIG. 59 is the same as that in FIG. 51 except that any one of Gx VM 141 to Gx VM 143 is deleted, and thus detailed description thereof is omitted.
- FIG. 60 shows processing executed when any of Gy / Gz VM144 to Gy / Gz VM146 of Virtualized PGW140 is deleted.
- the Virtualized PGW 140 transmits a Notify Request request message in which the moved VM after deleting the VM is set to the OCS 58 (S371).
- the Virtualized PGW 140 receives the Notify Answer message from the OCS 58 as a response to the Notify Request message (S372).
- FIG. 61 shows processing executed when any of Gy / Gz VM144 to Gy / Gz VM146 of Virtualized PGW140 is deleted, as in FIG.60.
- the communication destination of Virtualized PGW140 is OFCS60.
- FIG. 62 shows a process executed when S4-C VM 161 or S4-C VM 162 of Virtualized SGSN 160 is deleted. Note that FIG. 62 is the same as the processing described in FIG. 36 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIGS. 63 and 64 show processing executed when the S4-C VM 162 of the Virtualized SGSN 160 is deleted.
- FIG. 63 is the same as the processing described in FIG. 37 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 64 is the same as the processing described in FIG. 38 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 65 shows processing executed when S4-U4-VM 169 or S4-U VM 170 of Virtualized SGSN 160 is deleted.
- FIG. 62 shows the same contents with respect to steps S161 and S164, except that the transmission source and the transmission destination of each signal are interchanged, regarding the communication between the virtualized SGSN 160 and the virtualized PGW 140 described in FIG. Therefore, detailed description is omitted.
- FIGS. 66 and 67 illustrate processing executed when the S4-U VM 170 of the Virtualized SGSN 160 is deleted.
- FIG. 66 is the same as the processing described in FIG. 40 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 67 shows the same contents except that the transmission source and the transmission destination of each signal are switched with respect to steps S181 and S184, which are the communication between Virtualized SGSN 160 and Virtualized PGW 140 described in FIG. Therefore, detailed description is omitted.
- FIG. 68 shows processing executed when the Iu-C VM 173 or the Iu-C VM 174 of the Virtualized SGSN 160 is deleted.
- the Virtualized SGSN 160 transmits an Iu UPDATE REQUEST message to the Virtualized RNC 210 (S451).
- the Virtualized SGSN 160 sets information on the destination VM of the session after deleting Iu-C VM 173 or Iu-C VM 174 in the Iu UPDATEREQUEST message.
- Virtualized SGSN 160 receives the Iu UPDATE ACKNOWLEDGE message as a response to the Iu UPDATE REQUEST message (S452).
- FIG. 69 shows processing executed when the Iu-U VM175 or Iu-U VM176 of the Virtualized SGSN 160 is deleted.
- the Virtualized SGSN 160 transmits a RELOCATION REQUEST message to the Virtualized RNC 210 (S461).
- the Virtualized SGSN 160 sets information on the migration destination VM of the session after deleting the Iu-U VM 175 or Iu-U VM 176 in the RELOCATION REQUEST message.
- Virtualized SGSN 160 receives the RELOCATION REQUEST ACKNOWLEDGE message as a response to the RELOCATION REQUEST message (S462).
- FIGS. FIG. 70 and FIG. 71 show the processing executed when the Iu-U VM 176 of the Virtualized SGSG 160 is deleted.
- the Virtualized SGSN 160 transmits a RAB ASSIGNMENT REQUEST message to the Virtualized RNC 210 (S471).
- the Virtualized SGSN 160 sets the CSID associated with the Iu-U VM 176 in the RAB ASSIGNMENT REQUEST message.
- the Virtualized SGSN 160 receives the RAB ASSIGNMENT RESPONSE message as a response to the RAB ASSIGNMENT REQUEST message (S472).
- FIG. 71 shows that the Virtualized SGSN 160 and the Virtualized RNC 210 are performing bulk processing related to the deletion of the Iu-U VM 176 using the Update PDN Connection Connection Set message and Update PDN Connection Response message.
- FIG. 72 shows a process executed when Gr / S6d VM167 or Gr / S6d VM168 of Virtualized SGSN 160 is deleted.
- FIG. 72 has the same contents as the processing described for Virtualized MME 100 in FIG. 28 as Virtualized SGSN 160, and thus detailed description thereof is omitted.
- FIG. 73 uses Any Time Modification Request message and Any Time Modification Response message instead of the Notify Request message and Notify Answer message used in FIG.
- FIG. 74 shows processing executed when Gn-C VM 163 or Gn-C VM 164 of Virtualized SGSN 160 is deleted.
- the Virtualized SGSN 160 transmits an Update PDP context request message to the Virtualized GGSN 180 (S511).
- the Virtualized SGSN 160 sets information on the destination VM of the session after deleting the Gn-C VM 163 or Gn-C VM 164 in the Update PDP context request message.
- SGSN160 receives an Update
- Request message (S512).
- FIGS. 75 and 76 show processing executed when the Gn-C VM 164 of the Virtualized SGSN 160 is deleted.
- the Virtualized SGSN 160 transmits a Create PDP context request message to the Virtualized GGSN 180 (S521).
- Virtualized SGSN 160 sets the CSID associated with Gn-C VM 164 in the Create PDP context request message.
- the Virtualized SGSN 160 receives the Create PDP context request message as a response to the Create PDP context request message (S522).
- FIG. 76 shows that Virtualized SGSN 160 and Virtualized GGSN 180 are performing bulk processing related to deletion of Gn-C VM 164 using Update PDN Connection Connection Set Request message and Update PDN Connection Response message.
- FIG. 77 shows processing executed when Gn-U VM165 or Gn-U VM166 of Virtualized SGSN 160 is deleted. Note that FIG. 77 is the same as the process of updating Gn-U VM instead of the process of updating Gn-C VM in the process of FIG.
- FIG. 78 and FIG. 79 show the processing executed when the Gn-U VM 166 of the Virtualized SGSG 160 is deleted. 78 and 79 are the same as FIGS. 75 and 76 except that Gn-U VM is updated, and thus detailed description thereof is omitted.
- FIG. 80 shows processing executed when Gs VM 171 or Gs VM 172 of Virtualized SGSN 160 is deleted. Note that FIG. 80 is the same as FIG. 29 except that Gs ⁇ ⁇ VM is updated, and thus detailed description thereof is omitted.
- FIG. 81 shows processing executed when Gn-C VM189 or Gn-C VM190 of Virtualized GGSN 180 is deleted. Note that FIG. 81 is the same as the processing described in FIG. 74 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIGS. FIG. 82 and FIG. 83 show processing that is executed when the Gn-C VM 190 of the Virtualized82GGSN 180 is deleted.
- the Virtualized SGSN 160 sends a Create PDP context request message to the Virtualized GGSN 180 (S591).
- Virtualized GGSN 180 transmits Create PDP context Response message as a response to Create PDP context Request message to Virtualized SGSN 160 (S592).
- the Virtualized GGSN 180 sets the CSID associated with the Gn-C VM 190 in the Create PDP context Response message.
- Virtualized SGSN 160 and Virtualized GGSN 180 are performing bulk processing related to deletion of Gn-C VM 190 using Update PDN Connection Connection Set message and Update PDN Connection Response message.
- FIG. 84 shows processing executed when Gn-U VM191 or Gn-U VM192 of Virtualized GGSN 180 is deleted. Note that FIG. 84 is the same as the processing described in FIG. 77 except that the transmission source and transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 85 and FIG. 86 show processing executed when the Gn-U VM 192 of the Virtualized GGSN 180 is deleted.
- FIG. 85 is the same as FIG. 82 except that the Virtualized GGSN 180 transmits the CSID relating to the Gn-U VM 192 to the Virtualized SGSN 160, and thus detailed description thereof is omitted.
- FIG. 86 shows that Virtualized SGSN 160 and Virtualized GGSN 180 are executing bulk processing related to deletion of Gn-U VM 192 using Update PDN Connection Connection Set message and Update PDN Connection Response message.
- FIG. 87 shows processing executed when GiGVM 187 or Gi VM 188 of Virtualized GGSN 180 is deleted. Note that FIG. 87 is the same as the processing described in FIG. 58 except that Virtualized GGSN 180 is used instead of Virtualized PGW 140, and thus detailed description thereof is omitted.
- FIG. 88 shows processing executed when any of Gx VM181 to Gx VM183 of Virtualized GGSN 180 is deleted. Note that FIG. 88 is the same as the processing described in FIG. 59 except that Virtualized GGSN 180 is used instead of Virtualized PGW 140, and thus detailed description thereof is omitted.
- FIG. 89 shows processing executed when any of Gy / Gz VM184 to Gy / Gz VM186 of Virtualized GGSN 180 is deleted. Note that FIG. 89 is the same as the processing described in FIG. 60 except that Virtualized GGSN 180 is used instead of Virtualized PGW 140, and thus detailed description thereof is omitted.
- FIG. 90 shows processing executed when any of Gy / Gz VM184 to Gy / Gz VM186 of Virtualized GGSN 180 is deleted. Note that FIG. 90 is the same as the process described in FIG. 61 except that Virtualized GGSN 180 is used instead of Virtualized PGGW 140, and thus detailed description thereof is omitted.
- FIG. 91 shows processing executed when one of S1-MME VM201 to S1-MME VM203 of Virtualized eNodeB 200 is deleted.
- Virtualized eNodeB 200 transmits an eNB CONFIGURATION UPDATE message to Virtualized MME 100 (S681).
- Virtualized eNodeB 200 sets information on the destination VM of the session after deleting any of S1-MME
- eNodeB200 receives eNB
- FIG. 92 shows processing executed when any of S1-U VM 204 to S1-U VM 206 of Virtualized eNodeB 200 is deleted.
- the Virtualized eNodeB 200 transmits an E-RAB MODIFY REQUEST message to the Virtualized MME 100 (S691).
- the Virtualized eNodeB 200 sets information on the destination VM of the session after deleting any of the S1-U VM 204 to S1-U VM 206 in the E-RAB MODIFY REQUEST message.
- the Virtualized eNodeB 200 transmits an E-RAB MODIFY REQUEST message via the S1-MME interface.
- the Virtualized MME 100 transmits a Modify Bearer request message in which the information notified from the Virtualized eNodeB 200 is set to the Virtualized SGW 120 (S692).
- the Virtualized MME 100 receives a Modify Bearer Response message as a response to the Modify Bearer ⁇ ⁇ Request message from the Virtualized SGW 120 (S693).
- Virtualized MME 100 transmits an E-RAB MODIFY ACKNOWLEDGE message to Virtualized eNodeB 200 as a response to the E-RAB MODIFY REQUEST message (S694).
- FIGS. 93 and 94 show processing executed when the S1-U VM 206 of the Virtualized eNodeB 200 is deleted.
- the Virtualized eNodeB 200 transmits an Initial Context Setup Response message to the Virtualized MME 100 as a response to the Initial Context Setup Request message received in step S701 (S702).
- the Virtualized eNodeB 200 sets the CSID associated with the S1-U VM 206 in the Initial Context Setup Response message.
- the Virtualized MME 100 notifies the Virtualized SGW 120 of the CSID notified from the Virtualized NodeB 200 by transmitting and receiving the Modify Bearer Request message (S703) and the Modify Bearer Response message (S704).
- the Virtualized eNodeB 200 when the Virtualized eNodeB 200 deletes the S1-U VM 206, it transmits an Update PDN Connection connection Set message to the Virtualized MME 100.
- the Virtualized eNodeB 200 sets the CSID associated with the S1-U VM 206 to be deleted in the Update PDN Connection Set Request message (S711).
- the Virtualized MME 100 transmits a Modify Bearer Request message to the Virtualized SGW 120 for each of a plurality of sessions associated with the CSID (S712). Then, the Modify7Bearer Response message is received (S713). That is, Virtualized MME 100 repeats Steps S712 and S713 until the processes related to all sessions are completed.
- the Virtualized MME 100 transmits an Update PDN Connection Response "message to the Virtualized eNodeB 200 (S714).
- FIG. 95 shows processing executed when any of Iu-C VM 211 to Iu-C VM 213 of Virtualized RNC 210 is deleted. Note that FIG. 95 is the same as the processing described in FIG. 68 except that the transmission source and transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 96 shows processing executed when any of Iu-U VM 214 to Iu-U VM 216 of Virtualized RNC 210 is deleted. Note that FIG. 96 is the same as the processing described in FIG. 69 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- FIG. 97 and FIG. 97 and 98 show processing executed when the Iu-U VM 216 of the Virtualized RNC 210 is deleted.
- the Virtualized RNC 210 transmits a RAB Assign Response message to the Virtualized SGSN 160 as a response to the RAB Assign Request message received in Step S741 (S742).
- the Virtualized RNC 210 sets the CSID associated with the Iu-U2VM 216 in the RAB Assign Response message.
- FIG. 98 shows a bulk process between the Virtualized RNC 210 and the Virtualized SGSN 160. Note that FIG. 98 is the same as the processing described in FIG. 71 except that the transmission source and the transmission destination of each signal are switched, and thus detailed description thereof is omitted.
- the communication processing according to the second embodiment of the present invention when deleting a certain VM, it is possible to notify the opposite node device of the VM after the session is moved. . As a result, the opposing node device can communicate with the VM after the session is moved to the node device whose VM has been changed. Therefore, since the VM migration process can be executed in the adjacent node device, it is not necessary to cause the terminal device to execute a process such as Detach as the VM moves. As a result, the number of control signals generated in the communication network can be reduced by the amount that there is no need to execute a process such as Detach.
- the present invention has been described as a hardware configuration, but the present invention is not limited to this.
- the present invention can also realize the processing flow described in each figure by causing a CPU (Central Processing Unit) to execute a computer program.
- a CPU Central Processing Unit
- Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
- Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (Random Access Memory)) are included.
- the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
- the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Telephonic Communication Services (AREA)
Abstract
Description
ここで、図99~図101を用いて、発明者等が実施の形態にかかる通信システムに想到するにあたり検討した比較例について説明する。比較例では、3GPPに現在規定されている手順を用いてMME内のVMを削除し、新たなセッションを構築する手順について説明する。また、図99~図101においては、3GPPにおいて規定されている装置である、UE(User Equipment)、eNB(evolved NB)、MME、SGW、PGW、PCRF(Policy and Charging Rules Function)及びHSS(Home Subscriber Server)を用いて、説明を行う。
以下、図面を参照して本発明の実施の形態について説明する。図1を用いて本発明の実施の形態1にかかる通信システムの構成例について説明する。図1の通信システムは、通信装置1及び通信装置2を有している。
続いて、図2~図6を用いて、本発明の実施の形態2にかかる通信ネットワークの構成例について説明する。図2~図6は、3GPPにおいて規定されている通信ネットワークの構成例である。
2 通信装置
3 VM
4 VM
5~8 通信リソース
10 UE
11 E-UTRAN
12 MME
13 SGW
14 SGSN
15 HSS
16 PGW
17 PCRF
18 オペレータネットワーク
21 HSS
22 PGW
23 PCRF
24 オペレータネットワーク
31 TE
32 MT
33 UTRAN
34 SGSN
35 TE
36 MT
37 BSS
38 SGSN
39 GGSN
40 GGSN
41 MSC/VLR
42 SMS-GMSC、SMS-IWMSC
43 SMS-SC
44 gsmSCF
45 CGF
46 EIR
47 Billing System
48 TE
49 HLR
51 BBERF
52 V-PCRF
53 SPR
54 H-PCRF
55 PCEF
56 Gateway
57 AF
58 OCS
59 TDF
60 OFCS
71 UE
72 E-UTRAN
73 GERAN
74 UTRAN
75 SGSN
76 MME
77 MSC Server
100 Virtualized MME
101~106 S6a VM
107、108 SGs VM
109~111 S1-MME VM
120 Virtualized SGW
121、122 Gxx VM
123、124 S5/S8-C VM
125、126 S5/S8-U VM
127、128 S11 VM
129、130 S1-U VM
131、132 S12 VM
140 Virtualized PGW
141~143 Gx VM
144、145 Gy/Gz VM
146 Gy/Gz VM
147、148 SGi VM
149、150 S5/S8-C VM
151、152 S5/S8-U VM
160 Virtualized SGSN
161、162 S4-C VM
163、164 Gn-C VM
165、166 Gn-U VM
167、168 Gr/S6d VM
169、170 S4-U VM
171、172 Gs VM
173、174 Iu-C VM
175、176 Iu-U VM
180 Virtualized GGSN
181~183 Gx VM
184、185 Gy/Gz VM
186 Gy/Gz VM
187、188 Gi VM
189、190 Gn-C VM
191、192 Gn-U VM
200 Virtualized eNodeB
201~203 S1-MME VM
204~206 S1-U VM
207 LTE-Uu
210 Virtualized RNC
211~213 Iu-C VM
214~216 Iu-U VM
217 Uu
Claims (41)
- 第1の通信装置と、
前記第1の通信装置との間に設定される複数のセッションを複数のVM(Virtual Machine)を用いて制御する第2の通信装置と、を備え、
前記第2の通信装置は、
前記第1の通信装置と前記複数のVMに含まれる第1のVMとの間において制御する複数のセッションを、前記複数のVMに含まれ、前記第1のVMとは異なる第2のVMにおいて制御すると決定したことを契機として、前記第2のVMにおいて用いられる識別情報を前記第1の通信装置へ通知し、セッションを更新する、通信システム。 - 前記第2の通信装置は、
前記複数のセッション毎に、前記第2のVMにおいて用いられる識別情報を前記第1の通信装置へ通知する、請求項1に記載の通信システム。 - 前記第2の通信装置は、
前記複数のセッションに共通のグループ識別情報を設定し、前記グループ識別情報が設定された前記複数のセッションを新たに制御する前記第2のVMにおいて用いられる識別情報を、前記グループ識別情報と関連づけて前記第1の通信装置へ通知する、請求項1に記載の通信システム。 - 前記複数のセッションは、U-Plane用セッションと、C-Plane用セッションを含み、
前記第2の通信装置は、
前記第1のVMが制御する前記U-Plane用セッションを、前記第2のVMが制御することを契機として、前記C-Plane用セッションを介して、前記第2のVMにおいて用いられる識別情報を前記第1の通信装置へ通知する、請求項1乃至3のいずれか1項に記載の通信システム。 - 前記C-Plane用セッションを介して前記第1の通信装置及び前記第2の通信装置と接続する第3の通信装置をさらに備え、
前記第2の通信装置は、
前記第1の通信装置との間に設定されている前記U-Plane用セッションを、前記第2のVMが制御することを契機として、前記第3の通信装置との間に設定されている前記C-Plane用セッションを介して、前記第2のVMにおいて用いられる識別情報を前記第1の通信装置へ通知する、請求項4に記載の通信システム。 - 前記第2のVMにおいて用いられる識別情報は、IPアドレスもしくはTEID(Tunnel Endpoint ID)である、請求項1乃至5のいずれか1項に記載の通信システム。
- 前記第2の通信装置は、
対向する装置と接続する際に用いられるインタフェース毎に異なるVMを有する、請求項1乃至6のいずれか1項に記載の通信システム。 - 前記VMは、
前記第2の通信装置において用いられる複数の通信リソースを有する、請求項7に記載の通信システム。 - 前記第1及び第2の通信装置は、3GPPにおいて規定された通信システムを構成する、請求項1乃至8のいずれか1項に記載の通信システム。
- 他の通信装置との間に設定される複数のセッションを複数のVMを用いて制御し、前記他の通信装置と前記複数のVMに含まれる第1のVMとの間において制御する前記複数のセッションを、前記複数のVMに含まれ、前記第1のVMとは異なる第2のVMにおいて制御すると決定したことを契機として、前記第2のVMにおいて用いられる識別情報を前記他の通信装置へ通知しセッションを更新する制御手段を備える、通信装置。
- 前記制御手段は、
前記複数のセッション毎に、前記第2のVMにおいて用いられる識別情報を前記他の通信装置へ通知する、請求項10に記載の通信装置。 - 前記制御手段は、
前記複数のセッションに共通のグループ識別情報を設定し、前記グループ識別情報が設定された前記複数のセッションを新たに制御する前記第2のVMにおいて用いられる識別情報を、前記グループ識別情報と関連づけて前記他の通信装置へ通知する、請求項11に記載の通信装置。 - 前記複数のセッションは、U-Plane用セッションと、C-Plane用セッションを含み、
前記制御手段は、
前記第1のVMが制御する前記U-Plane用セッションを、前記第2のVMが制御することを契機として、前記C-Plane用セッションを介して、前記第2のVMにおいて用いられる識別情報を前記他の通信装置へ通知する、請求項10乃至12のいずれか1項に記載の通信装置。 - 他の通信装置との間に設定される複数のセッションを複数のVMを用いて制御し、
前記他の通信装置と前記複数のVMに含まれる第1のVMとの間において制御する前記複数のセッションを、前記複数のVMに含まれ、前記第1のVMとは異なる第2のVMにおいて制御すると決定し、
前記第2のVMにおいて用いられる識別情報を前記他の通信装置へ通知し、セッションを更新する、通信方法。 - 他の通信装置との間に設定される複数のセッションを複数のVMを用いて制御し、
前記他の通信装置と前記複数のVMに含まれる第1のVMとの間において制御する前記複数のセッションを、前記複数のVMに含まれ、前記第1のVMとは異なる第2のVMにおいて制御すると決定し、
前記第2のVMにおいて用いられる識別情報を前記他の通信装置へ通知し、セッションを更新することをコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。 - 仮想化されたMME(Mobility Management Entity)からSGW(Serving Gateway)に識別情報をModify Bearer Request信号、Create Session Request信号、Update PDN Connection Set Request信号のいずれか1つを用いて送信し、
前記SGWから前記仮想化されたMMEに応答信号としてModify Bearer Response信号、Create Session Response信号、Update PDN Connection Response信号のいずれか1つを送信し、
前記仮想化されたMMEと前記SGW間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたeNodeBからMME(Mobility Management Entity)に識別情報をMME COFIGURATION UPDATE信号にて送信し、
前記MMEから前記仮想化されたeNodeBに応答信号としてMME COFIGURATION UPDATE ACKNOWLEDGE信号を送信し、
前記仮想化されたeNodeBと前記MME間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたMME(Mobility Management Entity)からHSS(Home Subscriber Server)に識別情報をNotify Request信号にて送信し、
前記HSSから前記仮想化されたMMEに応答信号としてNotify Answer信号を送信し、
前記仮想化されたMMEと前記HSS間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたMME(Mobility Management Entity)からVLR(Visitor Mobile Switching Center)に識別情報をNotify Request信号にて送信し、
前記VLRから前記仮想化されたMMEに応答信号としてNotify Answer信号を送信し、
前記仮想化されたMMEと前記VLR間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGW(Serving Gateway)からPGW(Packet Data Network Gateway)に識別情報をModify Bearer Request信号、Create Session Request信号、Update PDN Connection Set Request信号のいずれか1つを用いて送信し、
前記PGWから前記仮想化されたSGWに応答信号としてModify Bearer Response信号、Create Session Response信号、Update PDN Connection Response信号のいずれか1つを送信し、
前記仮想化されたSGWと前記PGW間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGW(Serving Gateway)からSGSN(Serving GPRS Support Node)に識別情報をModify Bearer Request信号、Create Session Request信号、Update PDN Connection Set Request信号のいずれか1つを用いて送信し、
前記SGSNから前記仮想化されたSGWに応答信号としてModify Bearer Response信号、Create Session Response信号、Update PDN Connection Responseのいずれか1つを送信し、
前記仮想化されたSGWと前記SGSN間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGW(Serving Gateway)からMME(Mobility Management Entity)に識別情報をUpdate Bearer Request信号にて送信し、
前記MMEから前記仮想化されたSGWに応答信号としてUpdate Bearer Response信号を送信し、
前記仮想化されたSGWと前記MME間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたPGW(Packet Data Network Gateway)からSGW(Serving Gateway)に識別情報をUpdate PDN Connection Set requst信号、Modify Bearer Request信号のいずれか1つを用いて送信し、
前記SGWは前記仮想化されたPGWに応答信号としてUpdate PDN Connection response信号、Modify Bearer Response信号のいずれか1つを送信し、
前記仮想化されたPGWと前記SGW間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGW(Serving Gateway)からPCRF(Policy andCharging Control)に識別情報をCCR信号にて送信し、
前記PCRFより前記仮想化されたSGWに応答信号としてCCA信号を送信し、
前記仮想化されたSGWと前記PCRF間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたPGW(Packet Data Network Gateway)からTDF(Traffic Detection Function)またはSDNに識別情報をUpdate routing table信号にて送信し、
前記TDFまたはSDNから前記仮想化されたPGWに応答信号としてUpdate routing acknowledge信号を送信し、
前記仮想化されたPGWと前記TDFまたはSDN間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたPGW(Packet Data Network Gateway)からPCRF(Policy andCharging Control)に識別情報をCCR信号にて送信し、
前記PCRFから前記仮想化されたPGWに応答信号としてCCA信号を送信し、
前記仮想化されたPGWと前記PCRF間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたPGW(Packet Data Network Gateway)からOCS(Online Charging System)に識別情報をNotify Request信号にて送信し、
前記OCSより前記仮想化されたPGWに応答信号としてNotify Answer信号を送信し、
前記仮想化されたPGWと前記OCS間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたPGW(Packet Data Network Gateway)からOFCS(Offline Charging System)に識別情報をNotify Request信号にて送信し、
前記OFCSより前記仮想化されたPGWに応答信号としてNotify Answer信号を送信し、
前記仮想化されたPGWと前記OFCS間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGSN(Serving GPRS Support Node)からSGW(Serving Gateway)に識別情報をModify Bearer Request信号、Create Session Request信号、Update PDN Connection Set Request信号のいずれか1つを用いて送信し、
前記SGWから前記仮想化されたSGSNに応答信号としてModify Bearer Response信号、Create Session Response信号、Update PDN Connection Response信号のいずれか1つを送信し、
前記仮想化されたSGSNと前記SGW間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたRNC(Radio Network Controller)またはBSC(Base Station Controller)からSGSNに識別情報をIu UPDATE REQUEST信号、RELOCATION REQUEST信号のいずれか1つを用いて送信し、
前記SGSNから前記仮想化されたRNCまたはBSCに応答信号としてIu UPDATE ACKNOWLEDGE信号、RELOCATION REQUEST ACKNOWLEDGE信号のいずれか1つを送信し、
前記仮想化されたRNCまたはBSCと前記SGSN間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGSN(Serving GPRS Support Node)からRNC(Radio Network Controller)またはBSC(Base Station Controller)に識別情報をRAB ASSIGNMENT REQUEST信号、Update PDN Connection Set Request信号のいずれか1つを用いて送信し、
前記RNCまたはBSCより前記仮想化されたSGSNに応答信号としてRAB ASSIGNMENT RESPONSE信号、Update PDN Connection Response信号のいずれか1つを送信し、
前記仮想化されたSGSNと前記RNCまたはBSC間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGSN(Serving GPRS Support Node)からHSS(Home Subscriber Server)に識別情報をNotify Request信号、Any Time Modification Request信号のいずれか1つを用いて送信し、
前記HSSより前記仮想化されたSGSNに応答信号としてNotify Answer信号、Any Time Modification response信号のいずれか1つを送信し、
前記仮想化されたSGSNと前記HSS間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGSN(Serving GPRS Support Node)からGGSN(Gateway GPRS Support Node)に識別情報をUpdate PDP context request信号、Update PDN connection Set Request信号、Create PDP context Request信号のいずれか1つを用いて送信し、
前記GGSNから前記仮想化されたSGSNに応答信号としてUpdate Context response信号、 Create PDP context Response信号、Create PDP context Response信号のいずれか1つを送信し、
前記仮想化されたSGSNと前記GGSN間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGSN(Serving GPRS Support Node)からVLR(Visitor Location Register)に識別情報をNotify Request信号を送信し、
前記VLRから前記仮想化されたSGSNに応答信号としてNotify Answerを送信し、
前記仮想化されたSGSNと前記VLR間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたGGSN(Gateway GPRS Support Node)からSGSN(Serving GPRS Support Node)に識別情報をUpdate PDP context request信号、Update PDN connection Set Request信号、Create PDP context Request信号のいずれか1つを用いて送信し、
前記SGSNから前記仮想化されたGGSNに応答信号としてUpdate Context response信号、 Create PDP context Response信号、Create PDP context Response信号のいずれか1つを送信し、
前記仮想化されたGGSNと前記SGSN間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたGGSN(Gateway GPRS Support Node)からTDF(Traffic Detection Function)またはSDNに識別情報をUpdate routing table信号を用いて送信し、
前記TDFまたはSDNから前記仮想化されたGGSNに応答信号としてUpdate routing acknowledge信号を送信し、
前記仮想化されたGGSNと前記TDFまたはSDN間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたGGSN(Gateway GPRS Support Node)からPCRF(Policy andCharging Control)に識別情報をCCR信号を用いて送信し、
前記PCRFから前記仮想化されたGGSNに応答信号としてCCA信号を送信し、
前記仮想化されたGGSNと前記PCRF間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたGGSN(Gateway GPRS Support Node)からOCS(Online Charging System)に識別情報をNotify Request信号を用いて送信し、
前記OCSより前記仮想化されたGGSNに応答信号としてNotify Answer信号を送信し、
前記仮想化されたGGSNと前記OCS間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたGGSN(Gateway GPRS Support Node)よりOFCS(Offline Charging System)に識別情報をNotify Request信号を用いて送信し、
前記OFCSより前記仮想化されたGGSNに応答信号としてNotify Answer信号を送信し、
前記仮想化されたGGSNと前記OFCS間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたMME(Mobility Management Entity)からeNodeBに識別情報をeNB configuration update信号を用いて送信し、
前記eNodeBから前記仮想化されたMMEに応答信号としてeNB configuration update acknowledge信号を送信し、
前記仮想化されたMMEと前記eNodeBとの間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。 - 仮想化されたSGSN(Serving GPRS Support Node)からRNC(Radio Network Controller)またはBSC(Base Station Controller)に識別情報をIu UPDATE REQUEST信号、RELOCATION REQUEST信号、RAB assign request信号、update PDN connection Set request信号のいずれか1つを用いて送信し、
前記RNCまたはBSCより前記仮想化されたSGSNに応答信号としてIu UPDATE ACKNOWLEDGE信号、RELOCATION REQUEST ACKNOWLEDGE信号、RAB assign response信号、update PDN connection信号のいずれか1つを送信し、
前記仮想化されたSGSNと前記RNCまたはBSC間のVM(Virtual Machine)を削除することを特徴とするモバイル通信ネットワークの制御方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2939468A CA2939468A1 (en) | 2014-02-13 | 2015-01-30 | Communication system, communication device, communication method, and non-transitory computer readable medium storing program |
US15/118,304 US10057355B2 (en) | 2014-02-13 | 2015-01-30 | Communication system, communication device, communication method, and non-transitory computer readable medium storing program |
RU2016136355A RU2697735C2 (ru) | 2014-02-13 | 2015-01-30 | Система связи, устройство связи, способ связи и энергонезависимый считываемый компьютером носитель, хранящий программу |
JP2015562720A JP6508063B2 (ja) | 2014-02-13 | 2015-01-30 | 通信システム、通信装置、及び通信方法 |
CN201580008540.7A CN106031140B (zh) | 2014-02-13 | 2015-01-30 | 通信系统、通信装置、通信方法和存储程序的非瞬时性计算机可读介质 |
KR1020167025322A KR20160122236A (ko) | 2014-02-13 | 2015-01-30 | 통신 시스템, 통신 장치, 통신 방법 및 프로그램을 저장한 비일시적인 컴퓨터 판독가능 매체 |
EP15749594.6A EP3107274B1 (en) | 2014-02-13 | 2015-01-30 | Communication device, communication system, and communication method |
US16/041,311 US20190190994A1 (en) | 2014-02-13 | 2018-07-20 | Communication system, communication device, communication method, and non-transitory computer readable medium storing program |
US16/590,792 US11303711B2 (en) | 2014-02-13 | 2019-10-02 | Communication system, communication device, communication method, and non-transitory compu ter readable medium storing program |
US17/686,753 US11778046B2 (en) | 2014-02-13 | 2022-03-04 | Virtualized communication device and method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-025566 | 2014-02-13 | ||
JP2014025566 | 2014-02-13 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/118,304 A-371-Of-International US10057355B2 (en) | 2014-02-13 | 2015-01-30 | Communication system, communication device, communication method, and non-transitory computer readable medium storing program |
US16/041,311 Continuation US20190190994A1 (en) | 2014-02-13 | 2018-07-20 | Communication system, communication device, communication method, and non-transitory computer readable medium storing program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015122143A1 true WO2015122143A1 (ja) | 2015-08-20 |
Family
ID=53799896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000427 WO2015122143A1 (ja) | 2014-02-13 | 2015-01-30 | 通信システム、通信装置、通信方法及びプログラムが格納された非一時的なコンピュータ可読媒体 |
Country Status (8)
Country | Link |
---|---|
US (4) | US10057355B2 (ja) |
EP (1) | EP3107274B1 (ja) |
JP (2) | JP6508063B2 (ja) |
KR (1) | KR20160122236A (ja) |
CN (1) | CN106031140B (ja) |
CA (1) | CA2939468A1 (ja) |
RU (1) | RU2697735C2 (ja) |
WO (1) | WO2015122143A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170133793A (ko) * | 2016-05-26 | 2017-12-06 | 한국전자통신연구원 | 이동통신 코어 망에서의 시그널링 방법 및 그 시스템 |
JP2021182168A (ja) * | 2016-01-06 | 2021-11-25 | グーグル エルエルシーGoogle LLC | 音声認識システム |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9596628B2 (en) | 2013-10-31 | 2017-03-14 | Intel Corporation | Gateway arrangements for wireless communication networks |
EP3322256B1 (en) * | 2015-08-28 | 2021-06-16 | Huawei Technologies Co., Ltd. | Method, device and system for processing user data |
EP3586492B1 (en) * | 2017-02-24 | 2021-10-27 | Telefonaktiebolaget LM Ericsson (publ.) | Dynamic reconfiguration of virtualized network function network connectivity |
JP2020516982A (ja) * | 2017-03-28 | 2020-06-11 | クラウドジャンパー コーポレーション | セッションサーバへのウェイクオンデマンド・アクセスを提供するための方法およびシステム |
US11122452B2 (en) * | 2019-04-15 | 2021-09-14 | Netscout Systems, Inc | System and method for load balancing of network packets received from a MME with smart filtering |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013161178A1 (ja) * | 2012-04-27 | 2013-10-31 | 日本電気株式会社 | 通信システム及び経路制御方法 |
WO2013164917A1 (ja) * | 2012-05-02 | 2013-11-07 | 株式会社エヌ・ティ・ティ・ドコモ | 移動体通信システム、呼処理ノード及び通信制御方法 |
JP2013258648A (ja) * | 2012-06-14 | 2013-12-26 | Nec Commun Syst Ltd | 移動通信システム、ゲートウェイ装置、セッション管理装置及び輻輳制御方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1151488C (zh) * | 1998-10-02 | 2004-05-26 | 国际商业机器公司 | 通过一般分层对象进行有效语音导航的结构框架 |
CA2554122C (en) * | 2003-01-21 | 2015-05-12 | Flarion Technologies, Inc. | Methods and apparatus for downlink macro-diversity in cellular networks |
EP1932329A1 (de) * | 2006-09-27 | 2008-06-18 | Siemens Home and Office Communication Devices GmbH & Co. KG | Verfahren zur erweiterung von telekommunikationsdiensten sowie zugehöriges telekommunikationssystem |
KR101375474B1 (ko) * | 2007-09-13 | 2014-03-20 | 삼성전자주식회사 | 인터넷 프로토콜을 이용하는 통신 장치 및 방법 |
JP5121624B2 (ja) | 2008-08-08 | 2013-01-16 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信方法及び回線交換局 |
CN101730124A (zh) | 2008-10-29 | 2010-06-09 | 华为技术有限公司 | 恢复业务的方法、装置和系统 |
CN102265676A (zh) * | 2008-12-26 | 2011-11-30 | 夏普株式会社 | 控制站、移动台和移动通信系统 |
US8264956B2 (en) | 2009-02-27 | 2012-09-11 | Cisco Technology, Inc. | Service redundancy in wireless networks |
US8984507B2 (en) * | 2010-04-26 | 2015-03-17 | International Business Machines Corporation | Cross architecture virtual machine migration |
US8468550B2 (en) * | 2010-06-18 | 2013-06-18 | At&T Intellectual Property I, L.P. | Mobile devices having plurality of virtual interfaces |
JP5795384B2 (ja) | 2010-12-09 | 2015-10-14 | サムスン エレクトロニクス カンパニー リミテッド | 映像処理装置、照明処理装置及びその方法 |
CN102612013A (zh) * | 2011-01-20 | 2012-07-25 | 华为终端有限公司 | 基于组的机器类型通信mtc设备的位置管理方法和设备 |
KR20120084641A (ko) | 2011-01-20 | 2012-07-30 | 엘지에릭슨 주식회사 | Mme 백업 장치 및 방법 |
CN102369688B (zh) | 2011-04-07 | 2013-08-07 | 华为技术有限公司 | 资源动态调整方法和调度设备 |
EP2716102B1 (en) * | 2011-06-01 | 2021-01-06 | Ntt Docomo, Inc. | Enhanced local access in mobile communications using small node devices |
US9235856B2 (en) * | 2011-11-10 | 2016-01-12 | Verizon Patent And Licensing Inc. | Providing overlay networks via elastic cloud networking |
CN104081808B (zh) | 2012-01-24 | 2019-07-26 | 瑞典爱立信有限公司 | Mme恢复 |
JP5862359B2 (ja) * | 2012-02-23 | 2016-02-16 | 日本電気株式会社 | シンクライアントシステム、接続管理サーバ、接続管理方法、及び接続管理プログラム |
US8782008B1 (en) * | 2012-03-30 | 2014-07-15 | Emc Corporation | Dynamic proxy server assignment for virtual machine backup |
JP5537600B2 (ja) * | 2012-05-15 | 2014-07-02 | 株式会社Nttドコモ | 制御ノード及び通信制御方法 |
US10231120B2 (en) * | 2012-10-16 | 2019-03-12 | Cisco Technology, Inc. | Offloaded security as a service |
WO2014067098A1 (zh) | 2012-10-31 | 2014-05-08 | 华为技术有限公司 | 一种基于移动管理实体池MME Pool的通信方法、设备及系统 |
CN103826326B (zh) * | 2012-11-19 | 2019-05-07 | 中兴通讯股份有限公司 | 本地ip访问连接释放的方法及装置、移动管理单元、无线侧网元 |
US9098322B2 (en) * | 2013-03-15 | 2015-08-04 | Bmc Software, Inc. | Managing a server template |
CN105340322B (zh) | 2013-04-16 | 2020-07-28 | 爱立信(中国)通信有限公司 | 处理通信网络中失效的方法、节点和计算机可读存储介质 |
US9973375B2 (en) * | 2013-04-22 | 2018-05-15 | Cisco Technology, Inc. | App store portal providing point-and-click deployment of third-party virtualized network functions |
US9781632B2 (en) * | 2013-04-22 | 2017-10-03 | Nokia Solutions And Networks Management International Gmbh | Interaction and migration of EPC towards virtualized mobile backhaul/sharing of RAT (eNB, RNC, BSC) |
US9642077B2 (en) | 2013-10-23 | 2017-05-02 | Cisco Technology, Inc. | Node selection in virtual evolved packet core |
-
2015
- 2015-01-30 RU RU2016136355A patent/RU2697735C2/ru active
- 2015-01-30 JP JP2015562720A patent/JP6508063B2/ja active Active
- 2015-01-30 KR KR1020167025322A patent/KR20160122236A/ko not_active Application Discontinuation
- 2015-01-30 WO PCT/JP2015/000427 patent/WO2015122143A1/ja active Application Filing
- 2015-01-30 CN CN201580008540.7A patent/CN106031140B/zh active Active
- 2015-01-30 EP EP15749594.6A patent/EP3107274B1/en active Active
- 2015-01-30 CA CA2939468A patent/CA2939468A1/en not_active Abandoned
- 2015-01-30 US US15/118,304 patent/US10057355B2/en active Active
-
2018
- 2018-07-20 US US16/041,311 patent/US20190190994A1/en not_active Abandoned
-
2019
- 2019-04-04 JP JP2019071835A patent/JP6819715B2/ja active Active
- 2019-10-02 US US16/590,792 patent/US11303711B2/en active Active
-
2022
- 2022-03-04 US US17/686,753 patent/US11778046B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013161178A1 (ja) * | 2012-04-27 | 2013-10-31 | 日本電気株式会社 | 通信システム及び経路制御方法 |
WO2013164917A1 (ja) * | 2012-05-02 | 2013-11-07 | 株式会社エヌ・ティ・ティ・ドコモ | 移動体通信システム、呼処理ノード及び通信制御方法 |
JP2013258648A (ja) * | 2012-06-14 | 2013-12-26 | Nec Commun Syst Ltd | 移動通信システム、ゲートウェイ装置、セッション管理装置及び輻輳制御方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021182168A (ja) * | 2016-01-06 | 2021-11-25 | グーグル エルエルシーGoogle LLC | 音声認識システム |
US11996103B2 (en) | 2016-01-06 | 2024-05-28 | Google Llc | Voice recognition system |
KR20170133793A (ko) * | 2016-05-26 | 2017-12-06 | 한국전자통신연구원 | 이동통신 코어 망에서의 시그널링 방법 및 그 시스템 |
KR102126223B1 (ko) | 2016-05-26 | 2020-06-24 | 한국전자통신연구원 | 이동통신 코어 망에서의 시그널링 방법 및 그 시스템 |
Also Published As
Publication number | Publication date |
---|---|
RU2016136355A (ru) | 2018-03-16 |
US20170195431A1 (en) | 2017-07-06 |
JP6508063B2 (ja) | 2019-05-08 |
EP3107274B1 (en) | 2020-12-16 |
US20190190994A1 (en) | 2019-06-20 |
US20220191293A1 (en) | 2022-06-16 |
US20200036800A1 (en) | 2020-01-30 |
US10057355B2 (en) | 2018-08-21 |
EP3107274A1 (en) | 2016-12-21 |
RU2016136355A3 (ja) | 2018-10-22 |
JP2019140690A (ja) | 2019-08-22 |
RU2697735C2 (ru) | 2019-08-19 |
JP6819715B2 (ja) | 2021-01-27 |
CN106031140B (zh) | 2019-05-14 |
US11303711B2 (en) | 2022-04-12 |
KR20160122236A (ko) | 2016-10-21 |
US11778046B2 (en) | 2023-10-03 |
EP3107274A4 (en) | 2017-09-20 |
CN106031140A (zh) | 2016-10-12 |
JPWO2015122143A1 (ja) | 2017-03-30 |
CA2939468A1 (en) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6819715B2 (ja) | 移動通信システム、通信装置、及び通信方法 | |
JP7481007B2 (ja) | ノード装置及び通信端末のユーザデータを中継するノード装置の方法 | |
TWI517725B (zh) | 使用用戶平面壅塞(upcon)容器報告用戶平面壅塞 | |
CN106255152B (zh) | 用流量负载减少指示器辅助移动性管理实体过载控制功能 | |
CN107005460B (zh) | 一种网关配置方法和网关设备 | |
WO2015029420A1 (ja) | 通信システムにおける通信装置、通信方法、制御装置および管理装置 | |
JP6406259B2 (ja) | 通信装置、制御装置、通信方法、制御方法およびプログラム | |
WO2015136875A1 (ja) | 通信装置およびトラフィック制御方法 | |
KR20160145741A (ko) | Ip 플로우 라우팅 법칙의 결정 방법 및 장치 | |
CN103796249A (zh) | 家庭基站系统中区域业务核心网流量卸载方法 | |
WO2015029417A1 (ja) | 通信システムにおける通信装置および方法、通信パスの制御装置および方法 | |
JP6414065B2 (ja) | 通信システムにおける通信装置および方法、通信パスの制御装置および方法 | |
KR20140075826A (ko) | 패킷 기반의 이동통신 시스템에서 데이터 트래픽을 제어하기 위한 장치 및 그 방법 | |
EP3364610B1 (en) | Method, device and system for deploying service stream forwarding function | |
JP6901278B2 (ja) | 通信システム、および、通信方法 | |
WO2015033579A1 (ja) | 通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム | |
Kimura | A scalable sdn-epc architecture based on openflow-enabled switches to support inter-domain handover | |
CN102611696A (zh) | 一种策略信息的传输方法和设备 | |
WO2015029418A1 (ja) | 通信システムにおける通信装置および方法、通信パスの制御装置および方法 | |
WO2015029419A1 (ja) | 通信システムにおける管理装置および方法 | |
WO2014125778A1 (ja) | 移動通信システム、制御装置、移動端末装置、通信制御方法、及び非一時的なコンピュータ可読媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15749594 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015562720 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2939468 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15118304 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015749594 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015749594 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167025322 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016136355 Country of ref document: RU Kind code of ref document: A |