WO2015033579A1 - 通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム - Google Patents

通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム Download PDF

Info

Publication number
WO2015033579A1
WO2015033579A1 PCT/JP2014/004588 JP2014004588W WO2015033579A1 WO 2015033579 A1 WO2015033579 A1 WO 2015033579A1 JP 2014004588 W JP2014004588 W JP 2014004588W WO 2015033579 A1 WO2015033579 A1 WO 2015033579A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
quality information
packet
communication device
quality
Prior art date
Application number
PCT/JP2014/004588
Other languages
English (en)
French (fr)
Inventor
暢彦 伊藤
一平 秋好
康博 水越
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/916,789 priority Critical patent/US10206137B2/en
Priority to JP2015535323A priority patent/JP6477476B2/ja
Publication of WO2015033579A1 publication Critical patent/WO2015033579A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2408Traffic characterised by specific attributes, e.g. priority or QoS for supporting different services, e.g. a differentiated services [DiffServ] type of service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2491Mapping quality of service [QoS] requirements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the present invention relates to a communication system that communicates between communication devices via a communication path, and more particularly to QoS control corresponding to the communication path.
  • a communication terminal such as a mobile phone can connect to a base station and access the Internet via a core network.
  • the communication terminal communicates with a device (for example, a gateway) provided in the core network via a communication path (for example, a bearer) established.
  • a device for example, a gateway
  • a communication path for example, a bearer
  • Base stations and gateways construct tunnels by encapsulating packets to construct bearers.
  • the base station and the gateway add QoS (Quality of Service) information to the packet in order to construct a tunnel.
  • QoS Quality of Service
  • a communication device of a mobile communication system can execute packet transfer control (for example, communication quality control) based on QoS information given to a packet.
  • Non-Patent Document 1 discloses a technique related to QoS control in a mobile communication system.
  • Table 6.1.7 of Non-Patent Document 1 discloses a correspondence relationship between a communication service and a QCI (QoS Class Identifier).
  • QCI QoS Class Identifier
  • a gateway device or a base station constructs a GTP (GPRS Tunneling Protocol) tunnel corresponding to a bearer
  • QoS information for example, DSCP (Differentiated Service Code Point)
  • the gateway device and the base station execute packet communication quality control by adding QoS information to the packet.
  • Non-Patent Document 1 a communication service is paired with a specific QCI. Since specific QoS information is associated with the QCI, the communication quality control for the communication service depends on the QCI that is a pair of the communication service. As a result, it is difficult to provide various communication quality controls for the communication service.
  • An object of the present invention is to provide a technology capable of various communication quality control for a communication service.
  • a communication apparatus is a communication apparatus that communicates via a communication path set in a network, the first means for identifying the communication path corresponding to a packet, and the quality class of the identified communication path And second means for assigning the quality information selected from the plurality of quality information associated with the packet to the packet.
  • the control device of the present invention includes a communication interface with a communication device that communicates through a communication path set in a network, and a plurality of quality information associated with the quality class of the communication path through the interface. Control means for transmitting to the communication device, wherein the communication device identifies a communication path corresponding to the packet and gives the packet quality information selected from the plurality of quality information The communication device is controlled.
  • the communication system of the present invention includes a communication device that communicates via a communication path set in a network, the communication device including first means for identifying the communication path corresponding to a packet, and the identified communication And second means for assigning the packet with quality information selected from a plurality of quality information associated with the quality class of the path.
  • the communication system of the present invention is a communication system including a communication device that communicates with a communication path set in a network, and a control device that controls the communication device. A plurality of quality information associated with a class is transmitted to the communication device, and the communication device identifies a communication path corresponding to the packet and adds the quality information selected from the plurality of quality information to the packet. It is characterized by giving.
  • the communication method of the present invention is a communication method of a communication device that communicates via a communication path set in a network, and identifies the communication path corresponding to a packet and associates it with the identified quality class of the communication path Quality information selected from a plurality of quality information items is added to the packet.
  • the control method of the present invention is a method for controlling a communication device that transmits data via a communication path set in a network, and a plurality of quality information associated with a quality class of the communication path is transmitted to the communication device. And the communication device controls the communication device to identify the communication path corresponding to the packet and add the quality information selected from the plurality of quality information to the packet.
  • the program according to the present invention transmits a plurality of pieces of quality information associated with a communication path quality class associated with a process for communicating with a communication apparatus that transmits data via a communication path set in a network to the communication apparatus.
  • the program of the present invention is a program that causes a computer to function as a communication device that communicates via a communication path set in a network, the function for identifying the communication path corresponding to a packet, and the identified communication
  • the computer is caused to realize a function of assigning, to the packet, quality information selected from a plurality of quality information associated with a quality class of a path.
  • FIG. 1 is a diagram showing an example of a system configuration according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the communication apparatus according to the first embodiment.
  • FIG. 3 is a schematic configuration diagram illustrating a first example of the QoS information database according to the first embodiment.
  • FIG. 4 is a schematic configuration diagram illustrating a second example of the QoS information database according to the first embodiment.
  • FIG. 5 is a schematic diagram showing a first example of the communication quality control operation in the first embodiment.
  • FIG. 6 is a schematic diagram showing a second example of the communication quality control operation in the first embodiment.
  • FIG. 7 is a sequence diagram showing an operation example of the communication system according to the first embodiment.
  • FIG. 1 is a diagram showing an example of a system configuration according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the communication apparatus according to the first embodiment.
  • FIG. 3 is a schematic configuration diagram illustrating
  • FIG. 8 is a diagram showing an example of a system configuration according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a configuration example of a control device according to the second embodiment.
  • FIG. 10 is a sequence diagram illustrating an operation example of the communication system according to the second embodiment.
  • FIG. 11 is a schematic configuration diagram showing a first example of a QoS information database according to the third embodiment of the present invention.
  • FIG. 12 is a schematic configuration diagram illustrating a second example of the QoS information database according to the third embodiment.
  • FIG. 13 is a schematic diagram illustrating a first example of the communication quality control operation in the third embodiment.
  • FIG. 14 is a schematic diagram showing a second example of the communication quality control operation in the third embodiment.
  • FIG. 15 is a diagram illustrating a configuration example of a communication system according to the third embodiment.
  • FIG. 16 is a block diagram illustrating a configuration example of a communication device according to the third embodiment.
  • FIG. 17 is a sequence diagram illustrating a first example of a user attribute acquisition operation in the communication system according to the third embodiment.
  • FIG. 18 is a sequence diagram illustrating a second example of the user attribute acquisition operation in the communication system according to the third embodiment.
  • FIG. 19 is a sequence diagram illustrating a third example of the user attribute acquisition operation in the communication system according to the third embodiment.
  • FIG. 20 is a schematic configuration diagram showing an example of the QoS information / QoS policy database according to the fourth embodiment of the present invention.
  • FIG. 20 is a schematic configuration diagram showing an example of the QoS information / QoS policy database according to the fourth embodiment of the present invention.
  • FIG. 21 is a schematic diagram illustrating an example of a communication quality control operation in the fourth embodiment.
  • FIG. 22 is a diagram illustrating a configuration example of a communication system according to the fourth embodiment.
  • FIG. 23 is a sequence diagram showing an operation example of the communication system according to the fourth embodiment.
  • FIG. 24 is a diagram showing a configuration example of a communication system according to the fifth embodiment of the present invention.
  • FIG. 25 is a block diagram illustrating a configuration example of a control device according to the fifth embodiment.
  • FIG. 26 is a schematic configuration diagram illustrating a first example of the QoS information / QoS policy database according to the fifth embodiment.
  • FIG. 27 is a schematic configuration diagram illustrating a second example of the QoS information / QoS policy database according to the fifth embodiment.
  • FIG. 28 is a sequence diagram showing an operation example of the communication system according to the fifth embodiment.
  • FIG. 29 is a schematic configuration diagram illustrating a third example of the QoS information / QoS policy database according to the fifth embodiment.
  • FIG. 30 is a schematic configuration diagram illustrating a fourth example of the QoS information / QoS policy database according to the fifth embodiment.
  • FIG. 31 is a diagram showing a configuration example of a communication system according to the sixth embodiment of the present invention.
  • FIG. 32 is a schematic diagram showing an example of subscriber information in the sixth embodiment.
  • FIG. 33 is a schematic configuration diagram illustrating an example of a QoS information / QoS policy database according to the sixth embodiment.
  • FIG. 29 is a schematic configuration diagram illustrating a third example of the QoS information / QoS policy database according to the fifth embodiment.
  • FIG. 30 is a schematic configuration diagram illustrating a fourth example of the QoS information / QoS policy database according to the fifth embodiment.
  • FIG. 34 is a diagram showing a configuration example of a communication system according to the seventh embodiment of the present invention.
  • FIG. 35 is a schematic configuration diagram illustrating a first example of the QoS information / QoS policy database according to the seventh embodiment.
  • FIG. 36 is a schematic configuration diagram illustrating a second example of the QoS information / QoS policy database according to the seventh embodiment.
  • FIG. 37 is a sequence diagram showing an operation example of the communication system according to the seventh embodiment.
  • FIG. 38 is a diagram showing a configuration example of a communication system according to the eighth embodiment of the present invention.
  • FIG. 39 is a block diagram illustrating a configuration example of a control device according to the eighth embodiment.
  • FIG. 35 is a schematic configuration diagram illustrating a first example of the QoS information / QoS policy database according to the seventh embodiment.
  • FIG. 36 is a schematic configuration diagram illustrating a second example of the QoS information / QoS policy database according to the seventh embodiment.
  • FIG. 40 is a schematic configuration diagram illustrating an example of a bearer information database according to the eighth embodiment.
  • FIG. 41 is a schematic configuration diagram illustrating an example of a parameter database according to the eighth embodiment.
  • FIG. 42 is a diagram illustrating an example of a correspondence relationship between bearer identification information and parameters according to the eighth embodiment.
  • FIG. 43 is a block diagram showing a first example of a management device according to the ninth embodiment of the present invention.
  • FIG. 44 is a block diagram showing a second example of the management apparatus according to the ninth embodiment.
  • FIG. 45 is a flowchart showing an operation example of the ninth embodiment.
  • FIG. 1 shows an overview of a communication system according to the present invention.
  • the communication system includes a terminal 1 such as a mobile phone, a PC (Personal Computer), and a mobile router, and a communication device 2 such as a base station and a gateway device.
  • a terminal 1 such as a mobile phone, a PC (Personal Computer), and a mobile router
  • a communication device 2 such as a base station and a gateway device.
  • the base station provides a radio access function to the terminal 1.
  • the gateway device provides, for example, a function as a connection point with an external network (for example, the Internet).
  • the terminal 1 transmits and receives data via a communication path (for example, a bearer) established between the terminal 1 and the communication device 2.
  • the communication path includes, for example, a wireless channel established between the terminal 1 and the base station, a GTP tunnel that terminates at the gateway device (end point), and the like.
  • the QoS attribute of the communication path is defined by, for example, QCI.
  • QCI is a scalar value for identifying the QoS class of the communication path.
  • the QCI defines the priority level, packet delay, packet loss rate, etc. of packets belonging to the communication path.
  • the gateway device and the base station have a function of encapsulating packets in order to construct a GTP tunnel.
  • QoS information for example, DSCP
  • the gateway device and the base station execute packet communication quality control by adding QoS information corresponding to the bearer to the packet.
  • the QoS information is not limited to DSCP, and may be other QoS-related information such as CoS (Class of Service) and PCP (Priority Code Point) of VLAN (Virtual Local Network) tag.
  • a communication device such as a switch or a router on the packet transfer path executes packet order control, communication bandwidth limitation, and the like according to the priority corresponding to the QoS information given to the packet.
  • the communication device 2 (gateway device, base station) according to the present embodiment can add QoS information selected from a plurality of QoS information associated with the QCI of the communication path to the packet. Since the QoS information assigned to the packet is selected from a plurality of QoS information associated with the QCI, the communication system according to the present embodiment can execute various communication quality controls without depending only on the QCI. It is.
  • FIG. 2 shows a configuration example of the communication device 2 according to the first embodiment.
  • the communication device 2 includes a communication path identification unit 20, a QoS information DB (DataBase) 21, a packet processing unit 22, and a control unit 24.
  • a communication path identification unit 20 a communication path identification unit 20
  • a QoS information DB (DataBase) 21 a packet processing unit 22
  • a control unit 24 a control unit 24.
  • the communication path identification unit 20 identifies the communication path to which the received packet belongs.
  • the communication path identification unit 20 identifies the communication path to which the packet belongs by referring to, for example, information included in the packet (for example, layer 3 / layer 4 information of the OSI reference model such as an IP address and a port number). .
  • the packet processing unit 22 assigns QoS information selected from a plurality of QoS information associated with the identified communication path to the packet. For example, the packet processing unit 22 assigns QoS information selected according to the bearer type to the packet. For example, the packet processing unit 22 identifies the type of bearer according to a preset condition. For example, the packet processing unit 22 identifies the bearer type based on the transmission source IP address and the destination IP address of the packet, and adds QoS information selected according to the identified type to the packet.
  • the packet processing unit 22 selects the QoS information from the QoS information DB 21 based on the QCI of the identified communication path and the parameter serving as an index for selecting the QoS information, and assigns the selected QoS information to the packet. May be.
  • the packet processing unit 22 may select QoS information based on a preset parameter. Further, the packet processing unit 22 may receive a parameter corresponding to the communication path identified by the communication path identifying unit 20 from the communication path identifying unit 20, and select QoS information based on the received parameter.
  • the parameter is, for example, a parameter related to packet priority.
  • the control unit 24 can execute a function corresponding to the type of the communication device 2. For example, when the communication device 2 is a base station, the control unit 24 executes a wireless communication function with the terminal 1 and the like. When the communication device 2 has a gateway function, the control unit 24 executes a function of communicating with another communication device 2 in order to set a communication path.
  • 3 and 4 show a first configuration example and a second configuration example of the QoS information DB 21, respectively. 3 and 4 show examples in which QoS information is selected based on QCI and parameters, but the present invention is not limited to this example.
  • a plurality of QoS information (here, DSCP) is associated with the QCI, and each of the plurality of QoS information associated with the QCI includes the QoS information. It is associated with a parameter for selection.
  • the first example shown in FIG. 3 shows a table arranged with priority on QCI values
  • the second example shown in FIG. 4 shows a table arranged with priority on parameter values.
  • the DSCP values “48” and “47” are associated with the QCI value “5”.
  • the QCI value is “5”
  • the parameter value “A” is associated with the parameter value “B” and the DSCP value “47”.
  • the DCI value “46” and “28” are associated with the QCI value “3”, and even if the same QCI value “3”, the parameter value “A” Is associated with the DSCP value “46”, and the parameter value “B” is associated with the DSCP value “28”.
  • the QoS information is selected based on the QCI value and the parameter value.
  • a plurality of QoS informations need not be associated with all the QCIs, and a plurality of QoS informations may be associated with some QCIs. The same applies to other embodiments described later.
  • the packet processing unit 22 searches the QoS information DB 22 for the DSCP using the communication path QCI and the parameter notified from the communication path identification unit 20 as keys. For example, in the example of FIG. 3, the packet processing unit 22 searches for the DSCP value “48” when the QCI is “5” and the parameter is “A”. The packet processing unit 22 assigns the found DSCP value to the packet and transfers it.
  • the communication device 2 can execute various communication quality controls according to the configuration of the QoS information DB 21 as described above. 5 and 6 show examples of communication quality control by the communication device 2. FIG.
  • 5 shows an example of communication quality control in which QCI is prioritized over parameters.
  • Priority is set for each QCI and parameter. For example, a packet with a QCI value “5” has the highest priority, and a packet with a QCI value “9” has the lowest priority. A packet with a parameter “A” has a higher priority than a packet with a parameter “B”.
  • the communication device 2 prioritizes the priority of the QCI among the priorities of the QCI and the parameter, and performs communication quality control so as to follow the parameter priority if the QCI priority is the same. . More specifically, if a higher DSCP value is assigned to a higher priority QCI value packet and there are multiple packets for the same QCI priority, then a higher DSCP value for a higher priority parameter packet. A value is assigned. For example, a packet having a QCI value “5” is assigned a DSCP value larger than that of a packet having a QCI value “4”. If the QCI value is “5”, the packet having the parameter “A” has the parameter “B”. A DSCP value larger than the packet is assigned.
  • FIG 6 shows an example of communication quality control in which parameters are prioritized over QCI.
  • the communication device 2 prioritizes the parameter priority out of the priorities of the QCI and the parameter, and performs communication quality control so as to follow the QCI priority when the parameter priority is the same. . More specifically, a higher DSCP value is assigned to a higher priority parameter value packet, and if there are multiple packets for the same parameter priority, it is higher for a higher priority QCI value packet. A DSCP value is assigned. For example, a packet having a parameter value “A” is assigned a larger DSCP value than a packet having a parameter value “B”. If the parameter value is “A”, a packet having a QCI value “5” is assigned a QCI value “4”. A DSCP value larger than the packet "" is assigned.
  • the communication device 2 can execute various communication quality controls that do not depend only on the QCI, as in the above-described example.
  • FIG. 7 shows an operation example according to the first embodiment.
  • the base station When receiving the packet from the terminal 1 (operation S1), the base station identifies the communication path to which the packet belongs (operation S2).
  • the base station adds QoS information (for example, DSCP value) selected based on the QCI corresponding to the identified communication path and the packet priority parameter to the packet (operation S3), and the QoS information is added.
  • QoS information for example, DSCP value
  • the packet is transferred to the gateway device (operation S4).
  • the gateway device When the gateway device receives the packet (operation S5), it identifies the communication path to which the packet belongs (operation S6).
  • the gateway device assigns QoS information (for example, DSCP value) selected based on the QCI corresponding to the identified communication path and the packet priority parameter to the packet (operation S7), and the QoS information is assigned.
  • QoS information for example, DSCP value
  • the packet is transferred to the base station (operation S8).
  • Second Embodiment A second embodiment of the present invention will be described.
  • the second embodiment can be applied to the technique disclosed in the first embodiment.
  • the control device can centrally control the communication quality control by the communication device, and the operation efficiency of the system can be improved.
  • an LTE (Long Term Evolution) system is shown as an example, but the present invention is not limited to this.
  • the system according to the second embodiment includes a terminal 1, a communication device 2, and a control device 3.
  • the communication apparatus 2 basically has the configuration shown in FIG. 2 and is one of an eNB (eNodeB), a serving gateway (S-GW), and a packet data network gateway (P-GW).
  • eNB eNodeB
  • S-GW serving gateway
  • P-GW packet data network gateway
  • the eNB is a base station that communicates with the terminal 1 by radio.
  • the S-GW has a function of routing and transferring data packets and a function of being an anchor when the terminal 1 performs handover between eNBs.
  • the P-GW has a function of connecting to an external network (PDN).
  • PDN external network
  • control device 3 controls the execution of communication quality control by the communication device 2. Moreover, the control apparatus 3 can operate the QoS information DB 21 of the communication apparatus 2 by transmitting a control signal related to the bearer to the communication apparatus 2, for example.
  • the control device 3 can be configured using, for example, a PCRF (Policy and Charging Rule Function), an MME (Mobility Management Entity), or the like of the LTE communication system. Moreover, the control apparatus 3 can also be comprised using NMS (Network Management System).
  • the MME has a function of controlling establishment and deletion of bearers.
  • the MME also has functions such as mobility control such as handover of the terminal 1 and user authentication of the terminal 1.
  • the PCRF has functions such as charging control for data transfer.
  • the NMS has functions such as network traffic monitoring and network device alive monitoring.
  • FIG. 9 shows a configuration example of the control device 3.
  • the control device 3 includes an interface 30, a control unit 31, and a QoS policy DB (Data Base) 32.
  • the interface 30 has a function of communicating with the communication device 2.
  • the control unit 31 refers to the QoS policy DB 32 and operates the QoS information DB 21 of the communication device 2.
  • the control unit 31 operates the QoS information DB 21 of the communication device 2 via the interface 30.
  • the QoS policy DB 32 is a database set by a system operator, for example.
  • the QoS policy DB 32 includes, for example, a database having the configuration illustrated in FIG. 3 or FIG.
  • the system operator determines a parameter related to packet priority and a DSCP value associated with the QCI, and sets the DSCP value in the QoS policy DB 32.
  • the control unit 31 may set the QoS policy DB 32 according to a predetermined communication quality control policy without depending on the operation of the operator.
  • the control unit 31 refers to the database set in the QoS policy DB 32 and operates the QoS information DB 21 of the communication device 2. For example, according to the update of the QoS policy DB 32, the control unit 31 operates the QoS information DB 21 of the communication device 2 to reflect the update. For example, the control unit 31 notifies the communication device 2 of the content stored in the QoS policy DB 32 or updated information (for example, a plurality of QoS information associated with QCI according to parameters). The QoS information DB 21 may be operated.
  • FIG. 10 shows an example of an operation in which the control device 3 sets parameters for communication quality control for the communication device 2 in the second embodiment.
  • the terminal 1 transmits an attach request to the control device 3 through a nearby eNB when the power is turned on (operation S40).
  • the control device 3 transmits a bearer setting request to the S-GW (operation S42).
  • the control unit 31 of the control device 3 selects an S-GW and a P-GW that are bearer setting destinations, and transmits a bearer setting request to the selected S-GW.
  • the control unit 31 of the control device 3 notifies the S-GW of a parameter (for example, “parameter” illustrated in FIG. 3 or FIG. 4) for the communication device 2 to select QoS information in the bearer setting request. To do.
  • the control unit 24 of the communication device 2 (S-GW) transmits a bearer setting request including a parameter for selecting QoS information to the P-GW (operation S43).
  • the control unit 24 of the communication device 2 (S-GW) and the control unit 24 of the communication device 2 (P-GW) respectively execute processing for bearer setting between the S-GW and the P-GW. (Operation S44).
  • the control unit 24 of the communication device 2 (S-GW) transmits a bearer setting response to the control device 3 (operation S45).
  • the bearer setting response includes information (including parameters for selecting QoS information) to be notified to the eNB.
  • the control unit 31 of the control device 3 transmits a bearer setting request to the eNB together with the information notified from the S-GW (operation S46).
  • the bearer setting request includes a parameter for the eNB to select QoS information.
  • the control unit 24 of the communication device 2 sets a bearer between the terminal 1 and a bearer between the S-GW and the eNB based on the information notified from the control device 3 (operation S47).
  • the communication device performs communication quality control based on the QCI and the parameters related to the user attribute (User Property) of the terminal 1.
  • the user attribute is, for example, a parameter related to user privileges (for example, information indicating whether or not the user is a premium user).
  • a premium user is, for example, a user who has signed a contract with a network operator that is more expensive than a general user, and is a subscriber (“Privable-Subscriber”) who is more privileged than a general user in communication quality.
  • the premium user may be a user (for example, VIP (Very Imperson Person) etc.) to which privileges are given regardless of a contract with the network operator.
  • the communication device 2 executes the communication quality control based on the user attribute, so that the QoE (Quality of Experience) of the user of the terminal 1 is improved.
  • QoE Quality of Experience
  • the communication apparatus 2 can select a DSCP value to be given to a packet based on the QoS information DB 21 illustrated in FIG. 11 or FIG. As illustrated in FIGS. 11 and 12, the communication device 2 can use a user attribute as a parameter.
  • the user attribute is either “premium user” or “general user”, but the present invention is not limited to this example.
  • the user attribute may include attributes other than “premium user” and “general user”, and may be a parameter indicating a billing contract between the user and the operator (pay-for-use billing, prepaid billing, etc.).
  • the communication device 2 can execute communication quality control that gives priority to QCI over user attributes, as illustrated in FIG. Moreover, the communication apparatus 2 can perform communication quality control that prioritizes user attributes over QCI, as illustrated in FIG. 14, using the QoS information DB 21 illustrated in FIG. 12.
  • FIG. 15 is an example of a system configuration according to the third embodiment, and here shows a system configuration of LTE (Long Term Evolution).
  • LTE Long Term Evolution
  • the present embodiment is not limited to LTE, and can be applied to other communication systems such as UMTS (Universal Mobile Telecommunications System) and WiMAX (Worldwide Interoperability Access).
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability Access
  • the system according to the third embodiment includes, as communication devices 2, an eNB (eNodeB), an S-GW (Serving Gateway), and a P-GW (PDN (Packet Data Network) Gateway), and MME (Mobility Management Entity). 200, HSS (Home Subscriber Server) 201, PCRF 202, and SPR (Subscriber Profile Repository) 203.
  • eNB eNodeB
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • the eNB is a base station that communicates with the terminal 1 by radio.
  • the S-GW has a function of routing and transferring data packets, a function of being an anchor when the terminal 1 performs handover between eNBs, and the like.
  • P-GW serves as an interface with an external network (PDN).
  • PDN external network
  • a plurality of P-GWs are arranged in the system, and the terminal 1 can be simultaneously connected to the plurality of P-GWs to access a plurality of PDNs.
  • the MME 200 is a control node of the LTE system and has a function of executing processing related to paging of the terminal 1. Further, the MME 200 has a function related to bearer activation / deactivation, and can select an S-GW to be accessed by the terminal 1 when the terminal 1 is initially attached to the system, at the time of handover, or the like. The MME 200 has a function of performing user authentication in cooperation with the HSS 201.
  • the HSS 201 is a node that manages subscriber information.
  • the HSS 201 can manage user attributes of each subscriber as subscriber information.
  • the PCRF 202 is a node that performs QoS for data transfer and control for charging.
  • the SPR 203 is a node that manages information related to a subscriber of the communication system (Subscriber).
  • FIG. 16 shows a configuration example of the communication device 2. Note that the communication device 2 includes functions not shown in FIG. For example, if the communication device 2 is an eNB, the eNB should have a function.
  • the communication device 2 includes a parameter management unit 23 in addition to the functions of the communication device 2 illustrated in FIG.
  • the parameter management unit 23 manages the correspondence between bearers and user attributes. For example, the parameter management unit 23 acquires user attributes managed by the HSS 201 from the MME 200 or another device, and uses the acquired user attributes to identify bearer identification information corresponding to each user (for example, RB (Radio Bearer) -ID, TEID (Tunnel Endpoint ID) etc.) and managed. Further, the parameter management unit 23 may manage bearer identification information, the QCI of the bearer, and user attributes in association with each other.
  • bearer identification information for example, RB (Radio Bearer) -ID, TEID (Tunnel Endpoint ID) etc.
  • the communication path identification unit 20 identifies the bearer to which the received packet belongs.
  • the communication path identification unit 20 identifies the communication path to which the packet belongs by referring to, for example, information included in the packet (for example, layer 3 / layer 4 information of the OSI reference model such as the IP address and port number). .
  • the communication path identifying unit 20 retrieves the user attribute corresponding to the bearer from the parameter management unit 23 based on the information related to the identified bearer (for example, the identification information of the bearer or the QCI corresponding to the bearer). The user attribute is notified to the packet processing unit 22.
  • the packet processing unit 22 retrieves QoS information (DSCP value) corresponding to the bearer from the QoS information DB 21 based on, for example, the QCI of the bearer identified by the packet identifying unit 20 and the notified user attribute.
  • the packet processing unit 22 assigns the searched QoS information to the packet and transfers it.
  • the packet processing unit 22 uses the DSCP value “48” as the QoS information corresponding to the bearer whose QCI is “5” and whose user attribute is “Premium User”. "Is added to the packet.
  • FIG. 17 illustrates an example of an operation in which the communication device 2 acquires a user attribute corresponding to a bearer.
  • the function of the MME 200 is executed by the control unit 31 of the control device 3.
  • the functions of P-GW, S-GW, and eNB are executed by the control unit 24 of each communication device 2.
  • an attach procedure is executed in the system (Operation S11).
  • the attach procedure of operation S11 is, for example, a procedure described in a 3GPP (3rd Generation Partnership Project) specification (TS23.401 v12.1.0), and detailed description thereof is omitted.
  • an authentication process of the terminal 1 by the MME 200 and the HSS 201 is executed.
  • the MME 200 transmits an “update location request” message to the HSS 201.
  • the MME 200 does not have valid subscriber information (Subscription Data) related to the terminal 1
  • the MME 200 sets “update location request 201 HSS” when an IMSI (International Mobile Subscriber Identity) is provided from the terminal 1. Send to.
  • IMSI International Mobile Subscriber Identity
  • the HSS 201 In response to the request from the MME 200, the HSS 201 returns an “update location ack” message (operation S13).
  • the “update location ack” message includes subscriber information (Subscription Data).
  • the HSS 201 includes user attributes (for example, information indicating “premium user” or “general user”) in the subscriber information (Subscription Data).
  • the HSS 201 can include the information “EPS Subscription QoS Profile” in the subscriber information.
  • a user attribute may be included in the “EPS Subscription QoS Profile”.
  • the MME 200 transmits a “create session request” message for requesting bearer setting to the selected S-GW (operation S14). At that time, the MME 200 assigns an EPS bearer ID corresponding to the bearer related to the terminal 1 to the selected S-GW, and responds to the bearer ID assigned to the S-GW by the “create session request” message. Information on QoS (QCI, etc.) is notified to the S-GW. In the third embodiment, information related to user attributes is included in the “create session request” message, and for example, a bearer ID and user attributes are associated with each other and transmitted to the S-GW.
  • the S-GW When the S-GW receives the “create session request” message from the MME 200, the S-GW associates the information (for example, bearer ID) related to the bearer notified from the MME 200 with the user attribute, and stores it in the parameter management unit 23. For example, the S-GW creates a new entry that defines the correspondence between the bearer ID and the user attribute in “EPS Bearer Table” managed by the parameter management unit 23.
  • the S-GW notifies the P-GW of the bearer ID, information on QoS (QCI, etc.) corresponding to the bearer, etc., by a “create session request” message (operation S15).
  • the S-GW can be transmitted to the P-GW by including information related to user attributes in the “create session request”.
  • the S-GW associates the bearer ID with the user attribute and notifies the P-GW.
  • the P-GW stores the correspondence relationship between the bearer ID and the user attribute in the parameter management unit 23 based on the information notified from the S-GW.
  • the attach procedure is executed by the P-GW or the like (operation S16).
  • the details of the attach procedure are the same as the procedures disclosed in TS23.401 v12.1.0, and thus detailed description is omitted.
  • the S-GW performs bearer setting processing for the P-GW.
  • the P-GW cooperates with the PCRF to execute connection processing to the PDN.
  • bearer setup between the S-GW and the P-GW is completed.
  • the S-GW notifies the MME 200 of information to be transmitted to the eNB.
  • the MME 200 transmits an “Attach Accept” message to the eNB (operation S17).
  • the MME 200 notifies the eNB of a bearer ID, information (QoS or the like) regarding QoS corresponding to the bearer, and the like.
  • the MME 200 can include information related to user attributes in an “Attach Accept” message and transmit the information to the eNB.
  • the MME 200 associates the bearer ID with the user attribute and notifies the eNB.
  • the MME 200 having the function of the control device 3 sets the QoS information DB 21 of the communication device 2.
  • the QoS information DB 21 is set in the communication device 2 before the above-described sequence of FIG. 17 is executed.
  • the sequence illustrated in FIG. 17 described above indicates a procedure in which a “default bearer” is set when the terminal 1 attaches to the network.
  • a “Dedicated Bearer” may be set to transmit traffic related to a predetermined communication service.
  • a plurality of bearers are established for the terminal 1.
  • FIG. 18 shows an example of a sequence in which the communication device 2 acquires the user attribute when the Dedicated bearer is established.
  • the Dedicated bearer is executed, for example, after the default bearer is established in the procedure of FIG.
  • the function of the MME 200 is executed by the control unit 31 of the control device 3.
  • the functions of P-GW, S-GW, and eNB are executed by the control unit 24 of each communication device 2.
  • the P-GW When there is an instruction from the PCRF 202 (“IP-CAN Session Modification”) (operation S70), the P-GW notifies the S-GW of a bearer setting request in accordance with the instruction (operation S71).
  • the P-GW includes the user attribute acquired in the default bearer establishment procedure in the bearer setting request. For example, the bearer setting request is notified to the S-GW in association with identification information (eg, TEID) of the Dedicated bearer and the user attribute.
  • identification information eg, TEID
  • the S-GW stores the user attribute notified from the P-GW in the parameter management unit 23, and includes it in the bearer setting request and notifies the MME 200 (operation S72).
  • the bearer setting request is notified to the MME 200 in association with bearer identification information (for example, TEID) and a user attribute.
  • the MME 200 includes the user attribute notified from the S-GW in the bearer setting request and notifies the eNB (Operation S73).
  • the bearer setting request is notified to the eNB in association with bearer identification information (for example, TEID) and a user attribute.
  • the eNB stores the user attribute notified from the MME 200 in the parameter management unit 23.
  • the communication device 2 acquires user attributes by the above sequence.
  • FIG. 19 shows another example of an operation in which the communication apparatus 2 acquires a user attribute.
  • the PCRF 202 has the function of the control device 3 shown in FIG.
  • the terminal 1 starts communication by the IP session (bearer) (operation S100).
  • the P-GW When the communication session is started, the P-GW requests the application policy to the PCRF based on the identification information (for example, IP address) of the terminal 1 (operation S101).
  • the PCRF 202 requests the user profile related to the terminal 1 from the SPR 203 (operation S102).
  • the SPR 203 In response to a request from the PCRF 202, the SPR 203 notifies the PCRF 202 of user attribute information related to the user of the terminal 1 (Operation S103).
  • the PCRF 202 refers to the user attribute information notified from the SPR 203 and determines a QoS policy to be applied to the P-GW and S-GW.
  • the PCRF 202 notifies the determined QoS policy to the P-GW and S-GW as a PCC (Policy Control and Charging) rule (operation S104).
  • the PCC rule is a rule indicating that QoS information is given to a packet based on, for example, the QCI of the bearer to which the terminal 1 belongs and the user attribute.
  • the P-GW and the S-GW execute communication quality control based on the QCI and user attributes as described above in accordance with the PCC rules.
  • each communication device 2 can acquire the user attribute and execute communication quality control considering the user attribute.
  • control device 3 having a function as an NMS that manages the communication device 2 or the like may notify the communication device 2 of the user attribute. That is, the communication device 2 can also acquire the user attribute from a device other than a device compliant with a standard standardized by 3GPP or the like.
  • the communication device can execute communication quality control based on a parameter relating to a user's communication characteristics as a user attribute.
  • the user's communication characteristic is, for example, the user's communication amount within a predetermined period (for example, a unit such as day, week, month).
  • a predetermined period for example, a unit such as day, week, month.
  • the system operator defines the user attribute of a user whose traffic volume within a predetermined period is larger than the assumed average traffic volume as “Heavy User”, and is a “heavy user”.
  • Communication quality control can be executed based on whether or not.
  • the communication apparatus executes communication quality control based on the QCI and user attributes related to the communication characteristics of the user of the terminal 1. For example, when both a heavy user and a general user have a flat-rate contract with an operator, the fees paid to the operator for both the heavy user and the general user are substantially the same. Although the communication fee is almost the same, it is assumed that the heavy user presses the communication band of the system, so that the QoE of the general user is lowered. Therefore, the communication device 2 executes communication quality control based on user communication characteristics, thereby ensuring fairness among users.
  • the communication device basically has the same configuration as the communication device 2 shown in FIG. 16, but the information stored in the QoS information DB 21 is different.
  • the QoS information DB 21 illustrated in FIG. 20 will be described.
  • FIG. 20 shows a configuration example of the QoS information DB 21 and the QoS policy DB 32 used in the fourth embodiment.
  • a parameter indicating whether the user is a general user or a baby user is used as a parameter relating to the user attribute.
  • the QoS information (for example, the DSCP value) differs depending on the communication characteristics (for example, general users or heavy users) of the users corresponding to the bearers.
  • the priority of heavy users is set to be lower than that of general users, as schematically shown in FIG.
  • FIG. 22 shows an example of the system configuration of the fourth embodiment.
  • the system of the fourth embodiment includes an OCS (Online Charging System) 204 in addition to the system configuration shown in the third embodiment.
  • OCS Online Charging System
  • the OCS 204 has a function for the system operator to perform online accounting processing according to the user's traffic.
  • the OCS 204 has a function of monitoring a user's communication amount via, for example, a P-GW having a PCEF (Policy and Charging Enforcement Function) function.
  • PCEF Policy and Charging Enforcement Function
  • the communication characteristics of the user can be determined using the traffic monitoring function of the OCS 204.
  • FIG. 23 shows an operation example of the fourth embodiment.
  • the PCRF 202 has the function of the control device 3.
  • the OCS 204 monitors the communication volume of the terminal 1 via, for example, a P-GW having a PCEF function (operation S20).
  • the OCS 204 may notify the PCRF 202 when the communication amount of the terminal 1 exceeds a predetermined threshold within a predetermined period, or periodically notifies the PCRF 202 of the communication amount of the terminal 1. (Operation S21).
  • the PCRF 202 calculates the communication amount of the terminal 1 within a predetermined period, and whether or not the communication amount exceeds a predetermined threshold value. Determine whether.
  • the PCRF 202 When the communication amount of the terminal 1 exceeds a predetermined threshold, the PCRF 202 notifies the communication device 2 (S-GW and P-GW) that the user attribute of the terminal 1 is a heavy user (operation S22). ).
  • the communication device 2 stores the correspondence between the bearer ID and the user attribute in the parameter management unit 23 based on the information notified from the PCRF 202. Further, the information illustrated in FIG. 20 is set in the QoS information DB 21 of the communication device 2. Therefore, the communication device 2 can execute communication quality control based on the parameter management unit 23 and the QoS information DB 21 under the control of the PCRF 202 having the function of the control device 3.
  • the communication device can execute communication quality control based on parameters related to the status of the communication system.
  • the system operator can control the communication quality in a unit larger than the user traffic unit.
  • FIG. 24 shows an example of a system configuration according to the fifth embodiment.
  • the communication system according to the fifth embodiment includes a control device 3A having an NMS function.
  • the control device 3A has a function of monitoring the status of the communication system (for example, the system congestion state). Since other configurations are the same as those of the above-described embodiment, detailed description thereof is omitted.
  • FIG. 25 shows a configuration example of the control device 3A.
  • 3 A of control apparatuses contain the monitoring part 33 in addition to the function shown in FIG. Since other functions and configurations are the same as those of the above-described embodiment, detailed description thereof is omitted.
  • the monitoring unit 33 monitors system communication status, such as mobile backhaul, core network congestion status, and the like.
  • the monitoring unit 33 notifies the monitoring result to the communication device 2 via the interface 30. For example, the congestion level of the system is notified as the monitoring result.
  • the monitoring unit 33 may identify a time zone in which congestion is likely to occur based on a statistical value of the communication status (for example, a change in communication volume with respect to time), and notify the time zone as a monitoring result.
  • the communication device 2 stores the information notified from the monitoring unit 33 (the above-described congestion level, time zone in which congestion is likely to occur, etc.) in the parameter management unit 23.
  • the communication path identification unit 20 of the communication device 2 refers to a parameter stored in the parameter management unit 23 and notifies the packet processing unit 22 of the parameter together with information on the identified bearer.
  • the packet processing unit 22 assigns a DSCP value to the packet based on the notified parameter and the QCI.
  • the communication path identification unit 20 performs packet processing on a parameter indicating whether or not the current time corresponds to the time zone notified from the control device 3A. Notification to the unit 22. If the notified parameter indicates a time zone in which congestion is likely to occur, the packet processing unit 22 assigns a DSCP value corresponding to the time zone to the packet.
  • FIG. 26 shows a configuration example of the QoS information DB 21 and the QoS policy DB 32 used in the fifth embodiment.
  • the system congestion level is used as a parameter relating to the communication status of the system.
  • the larger the congestion level value the greater the degree of congestion.
  • the QoS information DB 21 and the QoS policy DB 32 illustrated in FIG. 26 are set such that, even if the bearers have the same QCI, the higher the congestion level, the lower the priority, and the lower the QCI, the higher the congestion level. In such a case, the lowering of the DSCP value is set to be large. For example, when the QCI is “5”, the DSCP value is decremented by 1 each time the congestion level increases. On the other hand, in the case of QCI “6” having a lower priority than QCI “5”, the decrease in the DSCP value accompanying the increase in the congestion level is larger than in the case of QCI “5”.
  • the congestion level is used as a parameter, but a parameter indicating whether or not it is a time zone in which congestion is likely to occur may be used.
  • the DSCP value corresponding to the time zone in which congestion is likely to occur can have a lower priority than the DSCP values in other time zones.
  • the communication device 2 can execute communication quality control based on the information in the QoS information DB 21 illustrated in FIG. 26 and the congestion level notified from the control device 3A. By executing the communication quality control in this way, the communication device 2 can communicate with a communication band for traffic having a high QCI priority at the expense of traffic having a low QCI priority even if the congestion level becomes high. Can be accommodated.
  • FIG. 27 shows another configuration example of the QoS information DB 21 and the QoS policy DB 32 used in the fifth embodiment.
  • DSCP values based on a plurality of parameters are set in the QoS information DB 21 and the QoS policy DB 32.
  • the communication apparatus according to the present embodiment can execute communication quality control based on a plurality of parameters, and the same applies to not only the present embodiment but also the above-described embodiment.
  • the parameter management unit 23 stores the bearer ID and the user attribute corresponding to each user in association with each other, and Information (for example, congestion level, time zone in which congestion is likely to occur) notified from the monitoring unit 33 as the communication status is stored.
  • the communication path identification unit 20 of the communication device 2 refers to the parameter stored in the parameter management unit 23 and notifies the packet processing unit 22 of the user attribute and the congestion level corresponding to the identified bearer.
  • the packet processing unit 22 assigns a DSCP value to the packet based on the notified parameters (user attribute and congestion level) and the QCI.
  • the amount of decrease in the DSCP value accompanying an increase in the congestion level differs depending on the user attribute.
  • the DSCP value reduction range is greater for general users than for premium users.
  • the communication device 2 can execute communication quality control based on the information in the QoS information DB 21 illustrated in FIG. 27 and the congestion level notified from the control device 3A. By executing the communication quality control in this way, the communication device 2 can maintain the communication quality of the traffic related to the premium user with a high priority as much as possible even if the congestion level becomes high.
  • FIG. 28 shows an operation example of the communication system according to the fifth embodiment.
  • the control device 3A having the NMS function monitors the communication status of the system (operation S30).
  • the control device 3A notifies the communication device 2 such as P-GW of a parameter (for example, congestion level) related to the communication status based on the monitored result (operation S31).
  • a parameter for example, congestion level
  • the communication device 2 executes communication quality control based on the parameter notified from the control device 3A (operation S32).
  • parameters relating to disasters such as earthquakes may be used.
  • DSCP values are set according to the disaster level corresponding to the severity of the disaster. For example, the DSCP value is set so that the priority becomes lower as the disaster level becomes higher (that is, the more serious the disaster is). Further, for example, the lower the priority QCI, the larger the DSCP value decrease rate when the disaster level becomes higher.
  • the communication device can execute communication quality control based on the content of a contract between a user and a service provider (for example, a moving picture distributor).
  • the communication carrier can provide a new service based on the communication quality control according to the sixth embodiment.
  • the communication carrier can provide a service based on the communication quality control to the service provider.
  • the telecommunications carrier can provide the service to the provider and obtain a service fee from the provider.
  • FIG. 31 shows a configuration example of a communication system according to the sixth embodiment. It is assumed that the user of the terminal 1 has signed a contract with the service provider 4 (for example, a moving image distribution company). Since other system configurations are the same as those of the above-described embodiment, detailed description thereof is omitted.
  • the service provider 4 for example, a moving image distribution company
  • the service provider 4 concludes a service contract based on communication quality control with, for example, a telecommunications carrier, and provides the telecommunications carrier with information related to the contract concluded with the user. It is assumed that the contract between the service provider 4 and the user includes, for example, a “normal contract” and a “premium contract” according to a fee paid by the user to the service provider 4.
  • the service provider 4 may conclude a contract for each QCI with the communication carrier. For example, the service provider 4 can conclude a “premium contract” for services corresponding to QCI “6” and “7”, and can conclude a “regular contract” for other services corresponding to QCI. .
  • FIG. 32 shows an example of information provided from the service provider 4 to the carrier, and an example in which the carrier manages parameters related to the contract between the provider 4 and the user based on the information provided from the provider 4. Show.
  • the service provider 4 acquires the telephone number of the terminal 1 from the user, for example, in a contract with the user. For example, the service provider 4 manages the telephone number and the content of the contract as the service contractor information 40.
  • the service provider 4 provides the service contractor information 40 to the communication carrier.
  • the communication carrier adds a parameter related to the contract contents between the service provider 4 and the user to the subscriber information 2010 included in the HSS 201 and the SPR 203.
  • the telecommunications carrier may manage the parameters in the subscriber information 2010 for each service provider.
  • FIG. 33 shows an example of data set in the QoS information DB 21 and the QoS policy DB 32.
  • the priority of QoS information is set according to a parameter (provider attribute) related to the contract content between the user and the service provider 4.
  • a parameter provider attribute
  • the QoS information with the parameter “Premium Contract” has a higher priority than the QoS information with the “General Contract”.
  • the parameter “N / A” corresponds to QoS information for other users who have not concluded a contract with the service provider 4.
  • the parameter is notified to the communication device 2 in the sequence illustrated in FIG. 17, FIG. 18, or FIG. 19, for example.
  • the communication device 2 stores the notified parameter in the parameter management unit 23 in association with the bearer ID.
  • the control device 3 or 3A having a function as an NMS that manages the communication device 2 or the like may notify the communication device 2 of the parameters. That is, the communication device 2 can also acquire parameters from devices other than devices that comply with standards standardized by 3GPP or the like.
  • the communication path identifying unit 20 of the communication device 2 that is a P-GW receives a packet addressed to the terminal 1 from the service provider 4, information (for example, an OSI reference model such as an IP address and a port number) included in the received packet.
  • information for example, an OSI reference model such as an IP address and a port number
  • the communication path to which the packet belongs is identified.
  • the communication path identification unit 20 receives a packet whose source address and destination address are the IP address of the provider 4 and the IP address of the terminal 1, respectively, the communication service is provided to the terminal 1 from the service provider 4 It belongs to the bearer regarding.
  • the communication path identification unit 20 refers to the parameter management unit 23, identifies the parameter associated with the bearer related to the communication service provided by the provider 4 to the terminal 1, and is selected based on the parameter and the QCI corresponding to the bearer. QoS information is added to the packet.
  • the communication device can execute communication quality control based on a parameter related to an MVNO (Mobile Network Network Operator) that uses a network operated by the carrier.
  • MVNO Mobile Network Network Operator
  • the MVNO operator is a service provider that borrows a network owned by a communication operator from a communication operator who is a network operator and provides a communication service to the user.
  • a communication carrier can execute communication quality control according to the contents of a contract between an MVNO carrier and a communication carrier. For example, when a MVNO operator has concluded a “premium contract” with a telecommunications carrier, which is more expensive than a normal contract, the telecommunications carrier will give priority to communications related to the MVNO carrier that has concluded a “premium contract”. Communication quality control can be executed so as to increase the degree. That is, a communication service based on communication quality control for each MVNO carrier can be a new revenue source for the carrier.
  • FIG. 34 shows a configuration example of a communication system according to the seventh embodiment.
  • the communication system according to the seventh embodiment includes an authentication server 205 operated by an MVNO operator, and other configurations are the same as those in the above-described embodiment, and thus detailed description thereof is omitted.
  • the authentication server 205 authenticates the terminal 1 when the terminal 1 accesses a network such as the Internet.
  • the authentication server 205 has a function of executing, for example, RADIUS (Remote Authentication Dial-In User Service) authentication.
  • FIG. 35 and FIG. 36 show a configuration example of information stored in the QoS information DB 21 and the QoS policy DB 32.
  • the communication device 2 can execute communication quality control according to the MVNO provider ID.
  • communication quality control according to a parameter (MVNO operator attribute) related to a contract between an MVNO operator and a communication operator can be executed.
  • the MVNO operator attribute corresponds to, for example, an attribute (“premium”) corresponding to an MVNO operator that has concluded a “premium contract” with a telecommunications carrier, or an MVNO operator that has concluded a “general contract” with a telecommunications carrier. Attribute ("general").
  • the priority corresponding to MVNO (A) is set lower than the priority corresponding to MVNO (B).
  • the parameter “N / A” indicates that the communication related to the bearer identified by the communication path identifying unit 20 is not communication related to the MVNO carrier. For example, if the communication related to the bearer identified by the communication path identifying unit 20 is not a MVNO carrier but a user who has contracted with a carrier, the parameter is indicated by “N / A”.
  • the same priority (DSCP value “25”) as the communication related to the telecommunications carrier is set as the communication priority regarding the MVNO carrier that has concluded the “premium contract” with the telecommunications carrier.
  • the present embodiment is not limited to the example of FIG. 36.
  • the priority of communication related to the MVNO carrier that has concluded the “premium contract” with the communication carrier may be set lower than the communication related to the communication carrier, or You may set it high.
  • an attach procedure is executed in the system (operation S51).
  • the attach procedure of the operation S50 is, for example, a procedure described in a 3GPP (3rd Generation Partnership Project) specification (TS23.401 v12.1.0), and detailed description thereof is omitted.
  • the MME 200 (the control unit 31 of the control device 3) selects the S-GW, assigns an EPS bearer ID corresponding to the bearer related to the terminal 1 to the selected S-GW, and corresponds to the bearer ID and the bearer.
  • Information on QoS (QCI, etc.) is notified to the S-GW by a bearer setting request (operation S52).
  • the S-GW (the control unit 24 of the communication device 2) notifies the P-GW of the bearer ID, information about QoS (QCI, etc.) corresponding to the bearer, etc. by a bearer setting request (operation S53).
  • the P-GW (the control unit 24 of the communication device 2) transmits an authentication request to the authentication server 205 (operation S54).
  • the authentication server 205 executes an authentication process and returns an authentication response to the P-GW (operation S55).
  • the authentication server 205 includes a parameter related to the MVNO operator in the authentication response and returns it to the P-GW.
  • the parameters relating to the MVNO operator include, for example, a parameter relating to a contract between the MVNO operator and the telecommunications carrier (MVNO operator attribute), and the like.
  • the P-GW stores the parameter received from the authentication server 205 in the parameter management unit 23 in association with the bearer ID.
  • the P-GW and S-GW execute bearer setting processing (operation S56).
  • the S-GW executes a bearer setting process for the P-GW
  • the P-GW executes, for example, a connection process to the PDN in cooperation with the PCRF.
  • the P-GW (the control unit 24 of the communication device 2) transmits a bearer setting response to the S-GW (operation S57).
  • the P-GW (the control unit 24 of the communication device 2) notifies the S-GW of the bearer setting response including the parameter received from the authentication server 205.
  • the P-GW (the control unit 24 of the communication device 2), for example, associates the bearer ID and the parameter and notifies the S-GW.
  • the S-GW stores the parameter received from the P-GW in the parameter management unit 23 in association with the bearer ID.
  • the S-GW (the control unit 24 of the communication device 2) notifies the MME 200 of a bearer setting response including the parameters received from the P-GW (Operation S58).
  • the MME 200 (the control unit 31 of the control device 3) transmits a bearer setting request including parameters related to the MVNO operator to the eNB (Operation S59). For example, the MME 200 associates the bearer ID with the parameter and notifies the eNB. The eNB stores the received parameter in the parameter management unit 23 in association with the bearer ID.
  • ENB control unit 24 of communication device 2 sets a radio bearer with terminal 1 in response to the bearer setting request (operation S60).
  • Each communication device 2 acquires parameters for communication quality control by the sequence described above.
  • the communication path identification unit 20 of the communication device 2 that is the P-GW determines that, for example, a packet whose destination address is the IP address of the terminal 1 subscribed to the MVNO operator belongs to the bearer related to the MVNO operator.
  • the communication path identification unit 20 refers to the parameter management unit 23 and identifies a parameter associated with the identified bearer.
  • the packet processing unit 22 assigns QoS information selected based on the parameters related to the MVNO operator and the QCI corresponding to the bearer to the packet.
  • control device 3 or 3A having a function as an NMS that manages the communication device 2 or the like may notify the communication device 2 of the parameters. That is, the communication device 2 can also acquire parameters from devices other than devices that comply with standards standardized by 3GPP or the like.
  • a device serving as an end point of a bearer for example, a device that terminates a bearer like eNB, S-GW, or P-GW
  • a device different from the bearer endpoint performs communication quality control.
  • the telecommunications carrier can perform the above-described communication quality control without adding a change / modification by adding a function that is not defined by standard specifications such as 3GPP to a device serving as a bearer endpoint. Can be executed.
  • FIG. 38 shows a configuration example of a communication system according to the eighth embodiment.
  • the communication system according to the eighth embodiment includes a terminal 1, an eNB, an S-GW, a P-GW, a communication device 2, and a control device 3B. Note that in the eighth embodiment, the eNB, S-GW, and P-GW do not have to have the function of the communication device 2 illustrated in FIG. 2 or FIG.
  • the communication device 2 is arranged in a network between the P-GW and the S-GW or a network between the eNB and the S-GW. Note that the communication device 2 does not need to be arranged in both the network between the P-GW and the S-GW and the network between the eNB and the S-GW, and the communication device 2 is arranged in at least one of the networks. It only has to be.
  • the communication device 2 is arranged between devices serving as bearer endpoints. Therefore, the communication path identifying unit 20 of the communication device 2 identifies the bearer of the packet transmitted from the bearer endpoint.
  • the packet processing unit 22 of the communication device 2 gives QoS information to the packet transmitted from the bearer endpoint.
  • Packets related to bearers may be encrypted by the IPsec gateway.
  • the communication device 2 is arranged at a position before the packet reaches the IPsec gateway.
  • the communication device 2 is arranged between the P-GW and the IPsec gateway.
  • the control device 3B transmits a control signal to the communication device 2.
  • the communication device 2 executes communication quality control based on the control signal transmitted from the control device 3B.
  • FIG. 39 shows an example of the configuration of the control device 3B.
  • the control device 3B includes a bearer information DB 34 and a parameter DB 35.
  • the other blocks, which are the interface 30, the control unit 31, and the QoS policy DB 32, are as described above.
  • FIG. 40 shows a configuration example of a database included in the bearer information DB 34.
  • the bearer information DB 34 is a database that manages the correspondence between bearer identification information, QCI, and terminal ID.
  • the bearer information DB 34 may be a database that manages the correspondence between the bearer identification information and the terminal ID.
  • the bearer identification information is, for example, TEID.
  • the terminal ID is, for example, IMSI (International Mobile Subscriber Identity).
  • the control device 3B acquires information related to the bearer information DB 34 from the MME 200, for example. Further, the control device 3B may acquire information related to the bearer information DB 34 from each of the S-GW, the P-GW, and the eNB.
  • FIG. 41 shows a configuration example of the parameter DB 35.
  • the parameter DB 35 manages the correspondence between parameters and terminal IDs (for example, IMSI), for example.
  • the communication carrier network operator
  • a provider that provides a network operation service to a telecommunications carrier may input the correspondence between the terminal ID and the parameter to the parameter DB 35.
  • the control unit 31 of the control device 3B associates the bearer identification information with the parameters based on the bearer information DB 34 and the parameter DB 35. For example, the control unit 31 searches the bearer information DB 34 for bearer identification information corresponding to the terminal ID using the terminal ID as a key. The control unit 31 searches the parameter DB 35 for a parameter corresponding to the terminal ID using the terminal ID as a key. By this operation, the control unit 31 grasps the correspondence relationship between the bearer identification information and the parameters as illustrated in FIG.
  • the parameter DB 35 is a database indicating a correspondence relationship between the terminal ID and the parameter, but information associated with the parameter in the parameter DB 35 is not limited to the terminal ID.
  • the information associated with the parameter may be information for linking the bearer identification information included in the bearer information DB 34 and the parameter included in the parameter DB 35.
  • the control unit 31 notifies the communication device 2 of information stored in the QoS policy DB 32, for example.
  • the communication device 2 stores the notified information in the QoS information DB 21.
  • the control unit 31 notifies the communication device 2 of the correspondence between the bearer identification information and the parameters.
  • the communication device 2 stores the communicated information in the parameter management unit 23.
  • the communication device 2 receives a packet transmitted by the eNB, S-GW or P-GW, and gives QoS information to the packet.
  • a packet transmitted by the S-GW or P-GW is encapsulated with bearer identification information or the like.
  • the communication path identifying unit 20 of the communication device 2 identifies the bearer based on the bearer identification information given to the packet. Further, the communication path identification unit 20 acquires a parameter from the parameter management unit 23 based on the bearer identification information.
  • the packet processing unit 22 of the communication device 2 searches the QoS information DB 21 for QoS information to be added to the packet based on the parameters.
  • the packet processing unit 22 adds the searched QoS information to the packet.
  • the communication device 2 arranged in the network between the P-GW and the S-GW and the network between the eNB and the S-GW performs communication quality control. Therefore, in the eighth embodiment, as in the above-described embodiment, the eNB, S-GW, and P-GW do not have to execute communication quality control based on parameters.
  • a telecommunications carrier network operator
  • a carrier that provides a network operation service to the telecommunications carrier, etc. perform network operation for communication quality control to be described later.
  • FIG. 43 shows a configuration example of the management device 4 used by a network operator who is an operation manager, a business operator who provides a network operation service, and the like.
  • the management device 4 includes a UI (User Interface) display unit 40, a QoS policy generation unit 41, an interface 42, and a control unit (not shown) that controls the management operation of the management device 4.
  • UI User Interface
  • QoS policy generation unit 41 QoS policy generation unit 41
  • interface 42 interface 42
  • control unit not shown
  • the UI display unit 40 displays a user interface (hereinafter referred to as UI) for the operation manager to input a QoS policy for communication quality control into the system.
  • UI user interface
  • the operation manager inputs a plurality of quality information (eg, DSCP value, CoS value, etc.) associated with the QCI using the UI.
  • the QoS policy generation unit 41 generates a QoS policy based on information input by the operation manager using the UI display unit 40. For example, the QoS policy generation unit 41 generates a QoS policy in which a plurality of pieces of quality information are associated with the QCI.
  • the QoS policy generation unit 41 may generate a QoS policy based on a preset policy without depending on the input of the operation manager.
  • the QoS policy generation unit 41 may generate a QoS policy based on the policy described with reference to FIG. 5 or FIG. 6 in the above-described embodiment.
  • the operation manager may input a policy used for generating a QoS policy using the UI display unit 40.
  • the management device 4 notifies the QoS policy generated by the QoS policy generation unit 41 to the control device 3, 3A or 3B via the interface 42.
  • the control device 3, 3 ⁇ / b> A or 3 ⁇ / b> B stores the QoS policy notified from the management device 4 in the QoS policy DB 32.
  • the QoS policy DB 32 stores a plurality of QoS information in association with the QCI.
  • the management device 4 notifies the control device 3, 3A or 3B of a condition (condition based on the transmission source / destination IP address) for selecting the corresponding quality information from the plurality of quality information associated with the QCI. May be.
  • the control device 3, 3A or 3B notifies the communication device 2 of the conditions for selecting quality information.
  • FIG. 44 shows another configuration example of the management apparatus 4.
  • the management device 4 may notify the control device 3B of parameters for selecting quality information.
  • the parameter generation unit 43 generates, for example, a database for managing the correspondence between terminal IDs and parameters based on information input by the operation manager using the UI display unit 40.
  • the operation manager uses the UI display unit 40 to input parameters such as user attributes corresponding to each terminal and service provider attributes corresponding to each terminal.
  • the operation manager can also input information to the management apparatus 4 from a database that manages user attributes, service provider attributes, and the like.
  • the parameter generation unit 43 generates a database indicating the correspondence between terminal IDs and parameters as exemplified in FIG.
  • the information associated with the parameters is not limited to the terminal ID.
  • the information associated with the parameter may be information for linking the bearer identification information included in the bearer information DB 34 of the control device 3B and the parameter.
  • the information that the parameter generation unit 43 associates with the parameter may be information related to the bearer such as bearer identification information.
  • the parameters notified to the control device 3B by the parameter generation unit 43 are, for example, the parameters exemplified in the above third to seventh embodiments.
  • the parameter generation unit 43 notifies the control device 3B of information indicating the correspondence between the terminal ID and the parameter via the interface 42.
  • the control device 3B constructs the parameter DB 35 based on the notified information.
  • the control device 3B generates information (for example, information illustrated in FIG. 42) to be notified to the parameter management unit 23 of the communication device 2 based on the parameter DB 35 and the bearer information DB 34.
  • FIG. 45 is a flowchart showing an operation example of the ninth embodiment.
  • the operation administrator inputs QoS information associated with the QCI using the UI displayed by the UI display unit 40 (operation S80).
  • the QoS policy generation unit 41 generates a QoS policy based on the input information (S81).
  • the management device 4 notifies the control device of the generated QoS policy via the interface 42 (operation S82).
  • Terminal 2 Communication Device 20 Communication Path Identification Unit 21
  • QoS Information DB 22 Packet processing unit 23
  • Parameter management unit 24 Control unit 200 MME 201 HSS 2010 subscriber information 202 PCRF 203 SPR 204 OCS 205 Authentication Server 3
  • Control Device 30 Interface 31
  • Control Unit 32 QoS Policy DB 33
  • Monitoring unit 34
  • Bearer information DB 35
  • Parameter DB 4 management device 40
  • UI display unit 41

Abstract

【課題】通信サービスに対して多様な通信品質制御が可能な技術を提供する。 【解決手段】本発明の通信装置は、ネットワークに設定される通信パスを介して通信する通信装置であって、パケットに対応する前記通信パスを識別する第一の手段と、識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する第二の手段とを含む。

Description

通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム
 本発明は、通信装置間で通信パスを介して通信する通信システムに係り、特に、通信パスに対応するQoS制御に関する。
 モバイル通信システムにおいて、携帯電話等の通信端末は、基地局と接続し、コアネットワークを経由してインターネットにアクセスすることができる。通信端末は、コアネットワークに設けられた装置(例えば、ゲートウェイ)との間に確立された通信パス(例えばベアラ)を介して通信する。
 基地局やゲートウェイは、ベアラを構築するため、パケットをカプセル化することによってトンネルを構築する。基地局やゲートウェイは、トンネルを構築するため、パケットにQoS(Quality of Service)情報を付与する。モバイル通信システムの通信装置は、パケットに付与されたQoS情報に基づいて、パケット転送の制御(例えば、通信品質制御)を実行することができる。
 非特許文献1は、モバイル通信システムにおけるQoS制御に関する技術を開示する。非特許文献1のTable 6.1.7には、通信サービスとQCI(QoS Class Identifier)との対応関係が開示されている。例えば、ゲートウェイ装置や基地局は、ベアラに対応するGTP(GPRS Tunneling Protocol)トンネルを構築する場合に、ベアラのQCIに対応付けられたQoS情報(例えば、DSCP(Differentiated Service Code Point))をパケットに付与する。ゲートウェイ装置や基地局は、パケットにQoS情報を付与することにより、パケットの通信品質制御を実行する。
3GPP TS23.203 V12.1.0 "Technical Specification Group Services and System Aspects; Policy and charging control architecture"、[2013年8月30日検索]インターネット <http://www.3gpp.org/ftp/Specs/html-info/23203.htm>
 非特許文献1のTable 6.1.7では、通信サービスは、特定のQCIと対になっている。QCIには特定のQoS情報が対応付けられているため、通信サービスに対する通信品質制御は、通信サービスの対となるQCIに依存する。その結果、通信サービスに対して多様な通信品質制御を提供することが困難となる。
 本発明の目的は、通信サービスに対して多様な通信品質制御が可能な技術を提供することである。
 本発明の通信装置は、ネットワークに設定される通信パスを介して通信する通信装置であって、パケットに対応する前記通信パスを識別する第一の手段と、識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する第二の手段とを含むことを特徴とする。
 本発明の制御装置は、ネットワークに設定される通信パスを介して通信する通信装置との間の通信インターフェースと、前記インターフェースを介して、通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信する制御手段と、を有し、前記通信装置がパケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与するように前記通信装置を制御することを特徴とする。
 本発明の通信システムは、ネットワークに設定される通信パスを介して通信する通信装置を含み、前記通信装置は、パケットに対応する前記通信パスを識別する第一の手段と、識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する第二の手段とを含むことを特徴とする。
 また、本発明の通信システムは、ネットワークに設定される通信パスにより通信する通信装置と、前記通信装置を制御する制御装置と、を含む通信システムであって、前記制御装置が、通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信し、前記通信装置が、パケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与する、ことを特徴とする。
 本発明の通信方法は、ネットワークに設定される通信パスを介して通信する通信装置の通信方法であって、パケットに対応する前記通信パスを識別し識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与することを特徴とする。
 本発明の制御方法は、ネットワークに設定される通信パスを介してデータを伝送する通信装置を制御する方法であって、通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信し、前記通信装置がパケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与するように前記通信装置を制御することを特徴とする。
 本発明のプログラムは、ネットワークに設定される通信パスを介してデータを伝送する通信装置と通信する処理と、通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信することで、前記通信装置がパケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与するように前記通信装置を制御する処理と、
 をコンピュータに実行させることを特徴とする。
 また、本発明のプログラムは、ネットワークに設定される通信パスを介して通信する通信装置としてコンピュータを機能させるプログラムであって、パケットに対応する前記通信パスを識別する機能と、識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する機能と、を前記コンピュータに実現させることを特徴とする。
 本発明により、通信サービスに対して多様な通信品質制御が可能な技術を提供することができる。
図1は本発明の第1の実施形態によるシステム構成の例を示す図である。 図2は第1の実施形態による通信装置の構成例を示すブロック図である。 図3は第1の実施形態におけるQoS情報データベースの第1例を示す模式的構成図である。 図4は第1の実施形態におけるQoS情報データベースの第2例を示す模式的構成図である。 図5は第1の実施形態における通信品質制御動作の第1例を示す模式図である。 図6は第1の実施形態における通信品質制御動作の第2例を示す模式図である。 図7は第1の実施形態による通信システムの動作例を示すシーケンス図である。 図8は本発明の第2の実施形態によるシステム構成の例を示す図である。 図9は第2の実施形態による制御装置の構成例を示すブロック図である。 図10は第2の実施形態による通信システムの動作例を示すシーケンス図である。 図11は本発明の第3の実施形態におけるQoS情報データベースの第1例を示す模式的構成図である。 図12は第3の実施形態におけるQoS情報データベースの第2例を示す模式的構成図である。 図13は第3の実施形態における通信品質制御動作の第1例を示す模式図である。 図14は第3の実施形態における通信品質制御動作の第2例を示す模式図である。 図15は第3の実施形態による通信システムの構成例を示す図である。 図16は第3の実施形態による通信装置の構成例を示すブロック図である。 図17は第3の実施形態による通信システムにおけるユーザ属性取得動作の第1例を示すシーケンス図である。 図18は第3の実施形態による通信システムにおけるユーザ属性取得動作の第2例を示すシーケンス図である。 図19は第3の実施形態による通信システムにおけるユーザ属性取得動作の第3例を示すシーケンス図である。 図20は本発明の第4の実施形態におけるQoS情報/QoSポリシデータベースの一例を示す模式的構成図である。 図21は第4の実施形態における通信品質制御動作の一例を示す模式図である。 図22は第4の実施形態による通信システムの構成例を示す図である。 図23は第4の実施形態による通信システムの動作例を示すシーケンス図である。 図24は本発明の第5の実施形態による通信システムの構成例を示す図である。 図25は第5の実施形態による制御装置の構成例を示すブロック図である。 図26は第5の実施形態におけるQoS情報/QoSポリシデータベースの第1例を示す模式的構成図である。 図27は第5の実施形態におけるQoS情報/QoSポリシデータベースの第2例を示す模式的構成図である。 図28は第5の実施形態による通信システムの動作例を示すシーケンス図である。 図29は第5の実施形態におけるQoS情報/QoSポリシデータベースの第3例を示す模式的構成図である。 図30は第5の実施形態におけるQoS情報/QoSポリシデータベースの第4例を示す模式的構成図である。 図31は本発明の第6の実施形態による通信システムの構成例を示す図である。 図32は第6の実施形態における加入者情報の例を示す模式図である。 図33は第6の実施形態におけるQoS情報/QoSポリシデータベースの一例を示す模式的構成図である。 図34は本発明の第7の実施形態による通信システムの構成例を示す図である。 図35は第7の実施形態におけるQoS情報/QoSポリシデータベースの第1例を示す模式的構成図である。 図36は第7の実施形態におけるQoS情報/QoSポリシデータベースの第2例を示す模式的構成図である。 図37は第7の実施形態による通信システムの動作例を示すシーケンス図である。 図38は本発明の第8の実施形態による通信システムの構成例を示す図である。 図39は第8の実施形態による制御装置の構成例を示すブロック図である。 図40は第8の実施形態におけるベアラ情報データベースの一例を示す模式的構成図である。 図41は第8の実施形態におけるパラメータデータベースの一例を示す模式的構成図である。 図42は第8の実施形態におけるベアラ識別情報とパラメータとの対応関係の一例を示す図である。 図43は本発明の第9の実施形態による管理装置の第1例を示すブロック構成図である。 図44は第9の実施形態による管理装置の第2例を示すブロック構成図である。 図45は第9の実施形態の動作例を示すフローチャートである。
 以下、本発明の実施形態を説明する。各実施形態は例示であり、本発明は、各実施形態に限定されるものではない。
1.第1の実施形態
 本発明の第1の実施形態を説明する。
 1.1)システム
 図1は、本発明に関する通信システムの概要を示す。
 通信システムは、携帯電話、PC(Personal Computer)、モバイルルータ等の端末1と、基地局、ゲートウェイ装置等の通信装置2を含む。基地局は、例えば、端末1に対して、無線アクセス機能を提供する。ゲートウェイ装置は、例えば、外部ネットワーク(例えばインターネット)との接続点としての機能を提供する。
 端末1は、端末1と通信装置2との間に構築された通信パス(例えばベアラ)を介して、データを送受信する。通信パスは、例えば、端末1と基地局との間に構築される無線チャネル、ゲートウェイ装置を終端(エンドポイント)とするGTPトンネル等で構成される。
 通信パスのQoS属性は、例えば、QCIにより定義される。QCIは、通信パスのQoSクラスを識別するためのスカラー値である。QCIは、通信パスに属するパケットの優先レベル、パケット遅延、パケットロス率等を規定する。
 ゲートウェイ装置および基地局は、GTPトンネルを構築するために、パケットをカプセル化する機能を有する。ゲートウェイ装置および基地局は、パケットをカプセル化する際、QCIに対応するQoS情報(例えば、DSCP)をパケットに付与することが可能である。ゲートウェイ装置および基地局は、ベアラに対応するQoS情報をパケットに付与することで、パケットの通信品質制御を実行する。なお、QoS情報は、DSCPに限らず、例えばCoS(Class of Service)やVLAN(Virtual Local Area Network)タグのPCP(Priority Code Point)等、他のQoSに関する情報であってもよい。パケットの転送経路上のスイッチやルータ等の通信機器は、パケットに付与されたQoS情報に対応する優先度に応じてパケットの順序制御、通信帯域の制限等を実行する。
 本実施形態による通信装置2(ゲートウェイ装置、基地局)は、通信パスのQCIに対応付けられた複数のQoS情報から選択されたQoS情報をパケットに付与することが可能である。パケットに付与するQoS情報がQCIに対応付けられた複数のQoS情報から選択されるため、本実施形態による通信システムは、QCIのみに依存することなく、多様な通信品質制御を実行することが可能である。
 1.2)通信装置
 図2は、第1の実施形態による通信装置2の構成例を示す。
 通信装置2は、通信パス識別部20、QoS情報DB(DataBase)21、パケット処理部22および制御部24を含む。
 通信パス識別部20は、受信したパケットが属する通信パスを識別する。通信パス識別部20は、例えば、パケットに含まれる情報(例えば、IPアドレスやポート番号などのOSI参照モデルのレイヤ3/レイヤ4の情報)を参照することで、パケットが属する通信パスを識別する。
 パケット処理部22は、識別された通信パスに対応付けられた複数のQoS情報から選択されたQoS情報を、パケットに付与する。パケット処理部22は、例えば、ベアラの種別に応じて選択されたQoS情報をパケットに付与する。パケット処理部22は、例えば、予め設定された条件に応じてベアラの種別を識別する。パケット処理部22は、例えば、パケットの送信元IPアドレスと宛先IPアドレスに基づいてベアラの種別を識別し、識別された種別に応じて選択されたQoS情報をパケットに付与する。
 パケット処理部22は、識別された通信パスのQCIと、QoS情報を選択するための指標となるパラメータとに基づいて、QoS情報DB21からQoS情報を選択し、選択されたQoS情報をパケットに付与してもよい。パケット処理部22は、予め設定されたパラメータに基づいて、QoS情報を選択してもよい。また、パケット処理部22は、通信パス識別部20から、通信パス識別部20が識別した通信パスに対応するパラメータを受信し、受信したパラメータに基づいてQoS情報を選択してもよい。なお、パラメータは、例えば、パケットの優先度に関するパラメータである。
 制御部24は、通信装置2の種別に応じた機能を実行することが可能である。例えば、通信装置2が基地局である場合、制御部24は、端末1との無線通信機能等を実行する。また、通信装置2がゲートウェイ機能である場合、制御部24は、通信パスを設定するために他の通信装置2との間で通信する機能等を実行する。
 図3および図4は、QoS情報DB21の第1構成例および第2構成例をそれぞれ示す。なお、図3および図4は、QCIとパラメータとに基づいてQoS情報が選択される場合の例であるが、本発明はこの例に限定されない。
 図3および図4に例示するように、QoS情報DB21では、QCIに対して複数のQoS情報(ここではDSCP)が対応付けられ、QCIに対応付けられた複数のQoS情報の各々がQoS情報を選択するためのパラメータに対応付けられている。図3に示す第1例はQCI値を優先してアレンジされたテーブルを示し、図4に示す第2例はパラメータ値を優先してアレンジされたテーブルを示す。たとえば、図3に示す第1例では、QCI値“5”に対して、DSCP値“48”と“47”が対応付けられ、さらにQCI値“5”の場合、パラメータ値“A”に対してDSCP値“48”が、パラメータ値“B”に対してDSCP値“47”が、それぞれ対応付けられている。図4に示す第2例でも同様に、たとえばQCI値“3”に対して、DSCP値“46”と“28”が対応付けられ、同じQCI値“3”であっても、パラメータ値“A”に対してDSCP値“46”が、パラメータ値“B”に対してDSCP値“28”が、それぞれ対応付けられている。このように、QCI値とパラメータ値とに基づいて、QoS情報のが選択される。
 なお、全てのQCIに対して複数のQoS情報が対応付けられている必要はなく、一部のQCIに対して複数のQoS情報が対応付けられてもよい。後述の他の実施形態でも同様である。
 パケット処理部22は、通信パスのQCIと、通信パス識別部20から通知されたパラメータとをキーにして、QoS情報DB22からDSCPを検索する。例えば、図3の例では、パケット処理部22は、QCIが“5”でパラメータが“A”の場合、DSCP値“48”が検索される。パケット処理部22は、検索されたDSCP値をパケットに付与して転送する。
 1.3)通信品質制御 通信装置2は、上述したようなQoS情報DB21の構成に応じて、多様な通信品質制御を実行することが可能である。図5および図6は、通信装置2による通信品質制御の例を示す。
 図5の例では、パラメータよりもQCIを優先した通信品質制御の例を示す。
 QCIとパラメータには、それぞれ優先度が設定されている。例えば、QCI値が“5”のパケットは最も優先度が高く、QCI値が“9”のパケットが最も優先度が低い。また、パラメータが“A”であるパケットは、パラメータが“B”であるパケットよりも優先度が高い。
 図5に例示するように、通信装置2は、QCIとパラメータの各々の優先度のうち、QCIの優先度を優先し、同じQCI優先度であればパラメータ優先度に従うように通信品質制御を行う。より詳しくは、優先度がより高いQCI値のパケットに対してより大きいDSCP値が割り当てられ、同じQCI優先度に複数のパケットがあれば、より高い優先度のパラメータのパケットに対してより大きいDSCP値が割り当てられる。たとえば、QCI値“5”のパケットには、QCI値“4”のパケットよりも大きなDSCP値が割り当てられ、同じQCI値“5”であれば、パラメータ“A”のパケットがパラメータ“B”のパケットよりも大きなDSCP値が割り当てられる。
 図6の例では、QCIよりもパラメータを優先した通信品質制御の例を示す。
 図6に例示するように、通信装置2は、QCIとパラメータの各々の優先度のうち、パラメータの優先度を優先し、同じパラメータ優先度であればQCI優先度に従うように通信品質制御を行う。より詳しくは、優先度がより高いパラメータ値のパケットに対してより大きいDSCP値が割り当てられ、同じパラメータ優先度に複数のパケットがあれば、より高い優先度のQCI値のパケットに対してより大きいDSCP値が割り当てられる。たとえば、パラメータ値“A”のパケットには、パラメータ値“B”のパケットよりも大きなDSCP値が割り当てられ、同じパラメータ値“A”であれば、QCI値“5”のパケットがQCI値“4”のパケットよりも大きなDSCP値が割り当てられる。
 通信装置2は、上述の例のように、QCIのみに依存しない多様な通信品質制御を実行することができる。
 1.4)動作
 図7は、第1の実施形態による動作例を示す。
 基地局は、端末1からパケットを受信すると(動作S1)、当該パケットが属する通信パスを識別する(動作S2)。
 基地局は、識別された通信パスに対応するQCIとパケットの優先度に関するパラメータとに基づいて選択されたQoS情報(例えばDSCP値)をパケットに付与し(動作S3)、QoS情報が付与されたパケットをゲートウェイ装置へ転送する(動作S4)。
 ゲートウェイ装置はパケットを受信すると(動作S5)、当該パケットが属する通信パスを識別する(動作S6)。
 ゲートウェイ装置は、識別された通信パスに対応するQCIとパケットの優先度に関するパラメータとに基づいて選択されたQoS情報(例えばDSCP値)をパケットに付与し(動作S7)、QoS情報が付与されたパケットを基地局へ転送する(動作S8)。
 2.第2の実施形態
 本発明の第2の実施形態を説明する。第2の実施形態は、上述の第1の実施形態で開示された技術に適用可能である。
 第2の実施形態によれば、制御装置が通信装置による通信品質制御を集中制御でき、システムの運用効率を向上させることができる。本実施形態では、一例として、LTE(Long Term Evolution)のシステムを示すが、これに限定されない。
 2.1)システム
 図8に示すように、第2の実施形態によるシステムは、端末1、通信装置2および制御装置3を含む。通信装置2は、基本的に図2に示す構成を有し、eNB(eNodeB)、サービングゲートウェイ(S-GW:Serving Gateway)およびパケットデータネットワークゲートウェイ(P-GW:Packet Data Network Gateway)のいずれかであるものとする。eNBは端末1と無線通信する基地局である。S-GWは、データパケットをルーティングして転送する機能および端末1がeNB間をハンドオーバする際にアンカとなる機能を有する。P-GWは、外部ネットワーク(PDN)と接続する機能を有する。
 本実施形態において、制御装置3は、通信装置2による通信品質制御の実行を制御する。また、制御装置3は、例えば、ベアラに関する制御信号を通信装置2に送信し通信装置2のQoS情報DB21を操作することが可能である。
 制御装置3は、例えば、LTE通信システムのPCRF(Policy and Charging Rule Function)、MME(Mobility Management Entity)等を用いて構成することが可能である。また、制御装置3は、NMS(Network Management System)を用いて構成することも可能である。MMEは、ベアラの確立や削除を制御する機能を有する。また、MMEは、端末1のハンドオーバ等の移動制御や、端末1のユーザ認証等の機能を有する。PCRFは、データ転送に対する課金制御等の機能を有する。NMSは、ネットワークトラフィックの監視や、ネットワーク機器の死活監視等の機能を有する。
 図9は、制御装置3の構成例を示す。
 制御装置3は、インターフェース30、制御部31およびQoSポリシDB(Data Base)32を含む。
 インターフェース30は、通信装置2と通信する機能を有する。
 制御部31は、QoSポリシDB32を参照し、通信装置2のQoS情報DB21を操作する。制御部31は、インターフェース30を介して、通信装置2のQoS情報DB21を操作する。
 QoSポリシDB32は、例えば、システムのオペレータにより設定されるデータベースである。QoSポリシDB32は、例えば、図3もしくは図4に例示された構成のデータベースを有する。例えば、システムのオペレータは、パケットの優先度に関するパラメータおよびQCIに対応付けるDSCP値を決定し、QoSポリシDB32に設定する。あるいは、オペレータの操作に依存せず、制御部31が、所定の通信品質制御ポリシに従ってQoSポリシDB32を設定してもよい。
 制御部31は、QoSポリシDB32に設定されたデータベースを参照し、通信装置2のQoS情報DB21を操作する。例えば、制御部31は、QoSポリシDB32の更新に応じて、当該更新を反映するように通信装置2のQoS情報DB21を操作する。例えば、制御部31は、通信装置2に対して、QoSポリシDB32に記憶された内容あるいは更新された情報(例えば、パラメータに応じてQCIに対応付けられた複数のQoS情報)を通知することで、QoS情報DB21を操作してもよい。
 2.2)動作
 図10は、第2の実施形態において、制御装置3が通信装置2に対して、通信品質制御のためのパラメータを設定する動作の例を示す。
 端末1は、電源がONになったとき等に、近傍のeNBを通して制御装置3に対してアタッチ要求を送信する(動作S40)。
 アタッチ要求を契機に、例えば端末1の認証処理等を含むアタッチ手順が実行される(動作S41)。
 制御装置3は、S-GWに対してベアラ設定要求を送信する(動作S42)。例えば、制御装置3の制御部31は、ベアラ設定先となるS-GWとP-GWを選択し、選択したS-GWに対してベアラ設定要求を送信する。制御装置3の制御部31は、通信装置2がQoS情報を選択するためのパラメータ(例えば、図3あるいは図4に例示された“パラメータ”)を、ベアラ設定要求に含めてS-GWに通知する。
 通信装置2(S-GW)の制御部24は、P-GWに対して、QoS情報を選択するためのパラメータを含むベアラ設定要求を送信する(動作S43)。
 通信装置2(S-GW)の制御部24と、通信装置2(P-GW)の制御部24は、それぞれ、S-GWとP-GWとの間のベアラ設定のための処理を実行する(動作S44)。
 通信装置2(S-GW)の制御部24は、制御装置3に対して、ベアラ設定応答を送信する(動作S45)。当該ベアラ設定応答には、eNBに通知すべき情報(QoS情報を選択するためのパラメータを含む)が含まれる。
 制御装置3の制御部31は、S-GWから通知された情報と共に、eNBに対してベアラ設定要求を送信する(動作S46)。当該ベアラ設定要求には、eNBがQoS情報を選択するためのパラメータが含まれる。
 通信装置2(eNB)の制御部24は、制御装置3から通知された情報に基づいて、端末1との間のベアラおよびS-GWとeNBとの間のベアラを設定する(動作S47)。
 3.第3の実施形態
 本発明の第3の実施形態を説明する。第3の実施形態は、上述の第1の実施形態、第2の実施形態で開示された技術のいずれにも適用可能である。
 第3の実施形態によれば、通信装置は、QCIと端末1のユーザ属性(User Property)に関するパラメータとに基づいて、通信品質制御を実行する。ユーザ属性は、例えば、ユーザ特権に関するパラメータ(例えば、プレミアムユーザか否かを示す情報)である。プレミアムユーザは、例えば、ネットワークオペレータとの間で、一般ユーザよりも高額な契約を締結したユーザであり、通信品質において、一般ユーザよりも特権のある加入者(“Privileged-Subscriber”)である。また、例えば、プレミアムユーザは、ネットワークオペレータとの契約に関わらずに特権が付与されたユーザ(例えば、VIP(Very Important Person)等)であってもよい。
 通信装置2がユーザ属性に基づく通信品質制御を実行することで、端末1のユーザのQoE(Quality of Experience)が向上する。
 3.1)システム
 通信装置2は、図11あるいは図12に例示するQoS情報DB21に基づいて、パケットに付与するDSCP値を選択することが可能である。図11および図12に例示するように、通信装置2は、パラメータとしてユーザ属性を用いることが可能である。第3の実施形態では、ユーザ属性は、“プレミアムユーザ”もしくは“一般ユーザ”のいずれかであるが、本発明はこの例に限定されない。例えば、ユーザ属性は、“プレミアムユーザ”、“一般ユーザ”以外の属性を含んでもよく、また、ユーザとオペレータとの間の課金契約(従量課金、プリペイド課金等)を示すパラメータでもよい。
 通信装置2は、図11に示すQoS情報DB21を用いて、図13に例示するように、ユーザ属性よりもQCIを優先した通信品質制御を実行することが可能である。また、通信装置2は、図12に示すQoS情報DB21を用いて、図14に例示するように、QCIよりもユーザ属性を優先した通信品質制御を実行することが可能である。
 図15は、第3の実施形態によるシステム構成の一例であり、ここではLTE(Long Term Evolution)のシステム構成を示す。但し、本実施形態は、LTEに限定されず、例えば、UMTS(Universal Mobile Telecommunications System)やWiMAX(Worldwide Interoperability for Microwave Access)等の他の通信システムにも適用可能である。
 第3の実施形態によるシステムは、通信装置2として、eNB(eNodeB)、S-GW(Serving Gateway)、P-GW(PDN(Packet Data Network) Gateway)を含み、さらに、MME(Mobility Management Entity)200、HSS(Home Subscriber Server)201、PCRF202、SPR(Subscriber Profile Repository)203を含むものとする。
 eNBは、端末1と無線通信する基地局である。
 S-GWは、データパケットをルーティングして転送する機能、端末1がeNB間をハンドオーバする際にアンカとなる機能等を有する。
 P-GWは、外部ネットワーク(PDN)とのインターフェースとなる。図15には図示されていないが、システムには複数のP-GWが配置され、端末1は複数のP-GWと同時に接続し、複数のPDNにアクセスすることも可能である。
 MME200は、LTEシステムのコントロールノードであり、端末1のページングに関する処理を実行する機能を有する。また、MME200は、ベアラのアクティベート/ディアクティベートに関する機能を有し、端末1がシステムに初期アタッチした時、ハンドオーバ時などに、端末1がアクセスするS-GWを選択することが可能である。また、MME200は、HSS201と連携し、ユーザ認証を行う機能を有する。
 HSS201は、加入者情報を管理するノードである。例えば、HSS201は、加入者情報として、各加入者のユーザ属性を管理することが可能である。
 PCRF202は、データ転送のためのQoSおよび課金のための制御を行うノードである。
 SPR203は、通信システムの加入者(Subscriber)に関する情報を管理するノードである。
 3.2)通信装置
 図16は、通信装置2の構成例を示す。なお、通信装置2は、図16に図示されていない機能も含む。例えば、通信装置2がeNBであればeNBが備えるべき機能を、S-GW、P-GWであればS-GW、P-GWが備えるべき機能をそれぞれ有する。
 通信装置2は、図2で例示された通信装置2が有する機能に加え、パラメータ管理部23を含む。
 パラメータ管理部23は、ベアラとユーザ属性との対応関係を管理する。例えば、パラメータ管理部23は、HSS201が管理するユーザ属性をMME200あるいは他の装置から取得し、取得したユーザ属性を各ユーザに対応するベアラの識別情報(例えば、RB(Radio Bearer)-ID、TEID(Tunnel Endpoint ID)等)と対応付けて管理する。また、パラメータ管理部23は、ベアラの識別情報及び当該ベアラのQCIと、ユーザ属性とを対応付けて管理してもよい。
 通信パス識別部20は、受信したパケットが属するベアラを識別する。通信パス識別部20は、例えば、パケットに含まれる情報(例えば、IPアドレスやポート番号などのOSI参照モデルのレイヤ3/レイヤ4の情報)を参照することで、パケットが属する通信パスを識別する。通信パス識別部20は、例えば、識別したベアラに関する情報(例えば、ベアラの識別情報やベアラに対応するQCI)に基づいて、パラメータ管理部23から、ベアラに対応するユーザ属性を検索し、検索したユーザ属性をパケット処理部22に通知する。
 パケット処理部22は、例えば、パケット識別部20により識別されたベアラのQCIと、通知されたユーザ属性とに基づいて、QoS情報DB21からベアラに対応するQoS情報(DSCP値)を検索する。パケット処理部22は、検索したQoS情報をパケットに付与して転送する。QoS情報DB21が図11に例示するように構成されている場合、パケット処理部22は、QCIが“5”で、ユーザ属性が“プレミアムユーザ”のベアラに対応するQoS情報として、DSCP値“48”をパケットに付与する。
 3.3)ユーザ属性取得動作(第1例)
 図17は、通信装置2が、ベアラに対応するユーザ属性を取得する動作の例を示す。なお、図17の例では、MME200の機能は、制御装置3の制御部31により実行される。また、P-GW、S-GW、eNBのそれぞれの機能は、それぞれの通信装置2の制御部24により実行される。
 MME200が、eNBを介して端末1からアタッチ要求を受信すると(動作S10)、システムにおいてアタッチ手順が実行される(動作S11)。動作S11のアタッチ手順は、例えば、3GPP(3rd Generation Partnership Project)の仕様書(TS23.401 v12.1.0)に記載された手順であり、詳細な説明は省略される。動作S11のアタッチ手順では、MME200とHSS201による端末1の認証処理等が実行される。
 動作S12において、MME200は、“update location request”メッセージをHSS201に送信する。例えば、端末1に関する有効な加入者情報(Subscription Data)をMME200が有していない場合、端末1からIMSI(International Mobile Subscriber Identity)が提供された場合等に、MME200が“update location request”をHSS201に送信する。
 HSS201は、MME200からの要求に対して、“update location ack”メッセージを返す(動作S13)。“update location ack”メッセージは、加入者情報(Subscription Data)を含む。第3の実施形態では、HSS201は、例えば、加入者情報(Subscription Data)にユーザ属性(例えば、“プレミアムユーザ”あるいは“一般ユーザ”を示す情報)を含める。
 また、HSS201は、加入者情報に、“EPS Subscription QoS Profile”という情報を含めることが可能である。第3の実施形態では、 当該“EPS Subscription QoS Profile”にユーザ属性を含めることもできる。
 MME200は、選択したS-GWに対して、ベアラ設定を要求するための“create session request”メッセージを送信する(動作S14)。その際、MME200は、選択したS-GWに対して、端末1に関するベアラに対応するEPSベアラIDを割り当て、“create session request”メッセージにより、S-GWに割り当てたベアラID、当該ベアラに対応するQoSに関する情報(QCI等)をS-GWに通知する。第3の実施形態では、 “create session request”メッセージにユーザ属性に関する情報を含め、例えばベアラIDとユーザ属性とを対応付けてS-GWに送信する。
 S-GWは、MME200から“create session request”メッセージを受信すると、MME200から通知されたベアラに関する情報(例えば、ベアラID)とユーザ属性とを対応付けて、パラメータ管理部23に記憶する。S-GWは、例えば、パラメータ管理部23で管理される“EPS Bearer Table”に、ベアラIDとユーザ属性との対応を規定した新たなエントリを作成する。S-GWは、P-GWに対して、ベアラID、当該ベアラに対応するQoSに関する情報(QCI等)等を、“create session request”メッセージにより通知する(動作S15)。第3の実施形態では、S-GWは、“create session request”にユーザ属性に関する情報を含めて、P-GWに送信することが可能である。例えば、S-GWは、ベアラIDとユーザ属性を対応付けて、P-GWに通知する。P-GWは、例えば、S-GWから通知された情報に基づいて、パラメータ管理部23に、ベアラIDとユーザ属性との対応関係を記憶する。
 上記手順の後、P-GW等により、アタッチ手順が実行される(動作S16)。アタッチ手順の詳細は、TS23.401 v12.1.0に開示されている手順と同様なので、詳細な説明は省略する。例えば、S-GWは、P-GWに対してベアラ設定処理を実行する。P-GWは、例えば、PCRFと連携し、PDNへの接続処理を実行する。これらの手順により、S-GWとP-GWとの間のベアラ設定が完了する。ベアラ設定が完了すると、S-GWは、eNBに対して伝達すべき情報をMME200に通知する。
 続いて、MME200は、eNBに対して、“Attach Accept”メッセージを送信する(動作S17)。例えば、MME200は、eNBに対して、ベアラID、当該ベアラに対応するQoSに関する情報(QCI等)等を通知する。第3の実施形態では、MME200は、ユーザ属性に関する情報を“Attach Accept”メッセージに含めて、eNBに対して送信することが可能である。例えば、MME200は、ベアラIDとユーザ属性とを対応付けて、eNBに通知する。eNBは、例えば、MME200から通知された情報に基づいて、パラメータ管理部23に、ベアラIDとユーザ属性との対応関係を記憶する。
 上記手順の後、アタッチ手順の残りの手順が実行され、端末1からP-GWとの間にベアラが構築される(動作S18)。
 上述の図17の例では、制御装置3の機能を有するMME200が通信装置2のQoS情報DB21を設定する。例えば、上述の図17のシーケンスが実行される前に、通信装置2にQoS情報DB21が設定される。
 上述の図17で例示されたシーケンスは、端末1がネットワークにアタッチすることで “デフォルトベアラ(Default Bearer)”が設定される手順を示す。このデフォルトベアラが設定された後、例えば所定の通信サービスに関するトラフィックを伝送するために“デディケイテッドベアラ(Dedicated Bearer)”が設定される場合がある。Dedicatedベアラが確立されることで、端末1に対して複数のベアラが確立される。
 3.4)ユーザ属性取得動作(第2例)
 図18は、Dedicatedベアラが確立される際に、通信装置2がユーザ属性を取得するシーケンスの例を示す。Dedicatedベアラは、例えば、図17の手順でデフォルトベアラが確立された後に実行される。図18の例では、MME200の機能は、制御装置3の制御部31により実行される。また、図18の例において、P-GW、S-GW、eNBのそれぞれの機能は、それぞれの通信装置2の制御部24により実行される。
 P-GWは、PCRF202からの指示(“IP-CAN Session Modification”)があると(動作S70)、当該指示に応じて、S-GWにベアラ設定要求を通知する(動作S71)。P-GWは、デフォルトベアラの確立手順において取得したユーザ属性をベアラ設定要求に含める。例えば、ベアラ設定要求は、Dedicatedベアラの識別情報(例えば、TEID)とユーザ属性とを対応付けて、S-GWに通知される。
 S-GWは、P-GWから通知されたユーザ属性を、パラメータ管理部23に記憶し、ベアラ設定要求に含めてMME200に通知する(動作S72)。例えば、ベアラ設定要求は、ベアラ識別情報(例えば、TEID)とユーザ属性とを対応付けて、MME200に通知される。
 MME200は、S-GWから通知されたユーザ属性をベアラ設定要求に含めてeNBに通知する(動作S73)。例えば、ベアラ設定要求は、ベアラ識別情報(例えば、TEID)とユーザ属性を対応付けてeNBに通知される。eNBは、MME200から通知されたユーザ属性をパラメータ管理部23に記憶する。
 続いて、eNB、S-GW、P-GWおよびMME200は、ベアラ設定応答に関する制御信号を交換する(動作S74)。
 上記のシーケンスにより、通信装置2は、ユーザ属性を取得する。
 3.5)ユーザ属性取得動作(第3例) 図19は、通信装置2が、ユーザ属性を取得する動作の他の例を示す。なお、図19の例では、PCRF202が図9に示す制御装置3の機能を有する。
 端末1は、IPセッション(ベアラ)による通信を開始する(動作S100)。
 P-GWは、通信セッションが開始されると、PCRFに対して、端末1の識別情報(例えば、IPアドレスなど)に基づき、適用ポリシを要求する(動作S101)。
 PCRF202は、SPR203に対して、端末1に関するユーザプロファイルを要求する(動作S102)。
 SPR203は、PCRF202からの要求に応じて、端末1のユーザに関するユーザ属性情報をPCRF202に通知する(動作S103)。PCRF202は、SPR203から通知されたユーザ属性情報を参照し、P-GWおよびS-GWに適用するQoSポリシを決定する。
 PCRF202は、決定したQoSポリシを、PCC(Policy Control and Charging)ルールとして、P-GWおよびS-GWに通知する(動作S104)。PCCルールは、例えば、端末1が属するベアラのQCIとユーザ属性とに基づいて、パケットにQoS情報を付与することを示すルールである。
 P-GWおよびS-GWは、PCCルールに従って、既に述べたようにQCIとユーザ属性に基づいた通信品質制御を実行する。
 上述の例(例えば、図17、図18又は図19に例示されたシーケンス)により、各通信装置2が、ユーザ属性を取得し、ユーザ属性を考慮した通信品質制御が実行可能となる。
 また、例えば、通信装置2等を管理するNMSとしての機能を有する制御装置3が、通信装置2にユーザ属性を通知してもよい。つまり、通信装置2は、3GPP等で標準化された規格に準拠した装置以外からユーザ属性を取得することも可能である。
 4.第4の実施形態
 本発明の第4の実施形態を説明する。第4の実施形態は、上述の第1-3の実施形態で開示された技術のいずれにも適用可能である。
 第4の実施形態によれば、通信装置は、ユーザ属性としてユーザの通信特性に関するパラメータに基づいて通信品質制御を実行することが可能である。ユーザの通信特性は、例えば、所定の期間内(例えば、日、週、月等の単位)でのユーザの通信量である。例えば、システムのオペレータは、所定の期間内での通信量が、想定される平均の通信量よりも多いユーザのユーザ属性を“ヘビーユーザ(Heavy User)”と規定し、“ヘビーユーザ”であるか否かに基づいて通信品質制御を実行可能である。
 第4の実施形態による通信装置は、QCIと、端末1のユーザの通信特性に関連するユーザ属性とに基づいて、通信品質制御を実行する。例えば、ヘビーユーザと一般ユーザの双方がオペレータとの間で定額制の契約を締結している場合、ヘビーユーザと一般ユーザ共に、オペレータに支払う料金は、ほぼ同一となる。通信料金がほぼ同一であるにも関わらず、ヘビーユーザがシステムの通信帯域を圧迫することで、一般ユーザのQoEが低下することが想定される。そこで、通信装置2がユーザの通信特性に基づく通信品質制御を実行することで、ユーザ間の公平性を担保することが可能となる。
 4.1)システム
 第4の実施形態による通信装置は、基本的に図16に示す通信装置2と同様の構成を有するが、QoS情報DB21に格納される情報が異なっている。以下、図20に例示するQoS情報DB21について説明する。
 図20は、第4の実施形態で用いられるQoS情報DB21やQoSポリシDB32の構成例を示す。図20の例では、ユーザ属性に関するパラメータとして、一般ユーザかベビーユーザかを示すパラメータが用いられる。
 図20の例では、例えば、QCIが同一のベアラであっても、当該ベアラに対応するユーザの通信特性(例えば、一般ユーザ若しくはヘビーユーザ)に応じて、QoS情報(例えばDSCP値)が異なる。図20に例示されたQoS情報DB21あるいはQoSポリシDB32のQoS情報では、図21に模式的に示すように、ヘビーユーザの優先度が一般ユーザよりも低くなるように設定されている。
 図22は、第4の実施形態のシステム構成の例を示す。第4の実施形態のシステムは、第3の実施形態で示されたシステム構成に加え、OCS(Online Charging System)204を含む。
 OCS204は、システムのオペレータがオンラインでユーザの通信量に応じた課金処理を行うための機能を有する。OCS204は、例えば、PCEF(Policy and Charging Enforcement Function)の機能を有するP-GW等を介して、ユーザの通信量をモニタする機能を有する。第4の実施形態では、OCS204が有する通信量モニタ機能を利用してユーザの通信特性を判定することができる。
 4.2)動作
 図23は、第4の実施形態の動作例を示す。なお、図23の例では、PCRF202が制御装置3の機能を有する。
 OCS204は、例えば、PCEFの機能を有するP-GWを介して、端末1の通信量をモニタする(動作S20)。OCS204は、所定の期間内に端末1の通信量が所定のしきい値を超過した場合に、そのことをPCRF202に通知してもよいし、端末1の通信量を定期的にPCRF202に通知してもよい(動作S21)。OCS204から端末1の通信量が定期的に通知される場合には、PCRF202は、所定の期間内での端末1の通信量を算出し、当該通信量が所定のしきい値を超過したか否かを判定する。
 PCRF202は、端末1の通信量が所定のしきい値を超過した場合、当該端末1のユーザ属性がヘビーユーザであることを通信装置2(S-GWおよびP-GW)に通知する(動作S22)。
 通信装置2は、PCRF202から通知された情報に基づいて、パラメータ管理部23にベアラIDとユーザ属性との対応関係を記憶する。また、通信装置2のQoS情報DB21には図20に例示された情報が設定されている。したがって、通信装置2は、制御装置3の機能を有するPCRF202の制御により、パラメータ管理部23とQoS情報DB21とに基づいて、通信品質制御を実行することができる。
 5.第5の実施形態
 本発明の第5の実施形態を説明する。第5の実施形態は、上述の第1-4の実施形態で開示された技術のいずれにも適用可能である。
 第5の実施形態による通信装置は、通信システムの状況に関するパラメータに基づく通信品質制御を実行することが可能である。第5の実施形態により、システムのオペレータは、ユーザトラフィック単位よりも大きい単位での通信品質制御が可能となる。
 5.1)システム
 図24は第5の実施形態によるシステム構成の例を示す。第5の実施形態による通信システムは、NMSの機能を有する制御装置3Aを含む。制御装置3Aは、通信システムの状況(例えば、システムの輻輳状態)をモニタする機能を有する。その他の構成は上述の実施形態と同様なので、詳細な説明は省略される。
 図25は制御装置3Aの構成例を示す。制御装置3Aは、図9に示す機能に加えて、監視部33を含む。その他の機能および構成は、上述した実施形態と同様なので、詳細な説明は省略される。監視部33は、システムの通信状況、例えば、モバイルバックホール、コアネットワークの輻輳状況等をモニタする。監視部33は、インターフェース30を介して、通信装置2にモニタ結果を通知する。例えば、システムの輻輳レベルが当該モニタ結果として通知される。監視部33は、通信状況の統計値(たとえば、時間に対する通信量の推移)に基づき、輻輳が発生しやすい時間帯を特定し、当該時間帯をモニタ結果として通知してもよい。
 通信装置2は、監視部33から通知された情報(上述した輻輳レベル、輻輳が発生しやすい時間帯等)を、パラメータ管理部23に記憶する。通信装置2の通信パス識別部20は、例えば、パラメータ管理部23に記憶されたパラメータを参照し、識別したベアラに関する情報と共に当該パラメータをパケット処理部22に通知する。パケット処理部22は、例えば、通知されたパラメータとQCIとに基づいて、パケットにDSCP値を付与する。通信状況に関するパラメータとして、輻輳が発生しやすい時間帯が用いられる場合、通信パス識別部20は、現在の時間が制御装置3Aから通知された時間帯に該当するか否かを示すパラメータをパケット処理部22に通知する。通知されたパラメータが輻輳が発生しやすい時間帯であることを示している場合には、パケット処理部22は当該時間帯に対応するDSCP値をパケットに付与する。
 5.2)QoS情報/QoSポリシDB 図26は、第5の実施形態で用いられるQoS情報DB21およびQoSポリシDB32の構成例を示す。図26の例では、システムの通信状況に関するパラメータとして、システムの輻輳レベルが用いられ、ここでは、輻輳レベルの値が大きいほど、輻輳の度合いが大きいことを示す。
 図26に例示するQoS情報DB21やQoSポリシDB32は、QCIが同一のベアラであっても輻輳レベルが高いほど優先度が低くなるように設定され、また、優先度が低いQCIほど輻輳レベルが高くなった場合のDSCP値の下げ幅が大きくなるように設定される。例えば、QCIが“5”の場合、DSCP値は輻輳レベルが上がる毎に1ずつデクリメントされる。これに対して、QCI“5”よりも優先度が低いQCI“6”の場合には、輻輳レベルの増加に伴うDSCP値の下げ幅がQCI“5”の場合よりも大きい。
 図26の例ではパラメータとして輻輳レベルが用いられているが、輻輳が発生しやすい時間帯であるか否かを示すパラメータが用いられてもよい。この場合、輻輳が発生しやすい時間帯に対応するDSCP値は、その他の時間帯のDSCP値よりも優先度を低くすることができる。
 通信装置2は、図26に例示されたQoS情報DB21の情報と、制御装置3Aから通知された輻輳レベルとに基づいて、通信品質制御を実行することが可能である。このように通信品質制御を実行することにより、通信装置2は、たとえ輻輳レベルが高くなったとしても、QCIの優先度が低いトラフィックを犠牲にしてQCIの優先度が高いトラフィックのための通信帯域を融通することが可能となる。
 図27は、第5の実施形態で用いられるQoS情報DB21およびQoSポリシDB32の他の構成例を示す。
 図27の例では、QoS情報DB21およびQoSポリシDB32に、複数のパラメータ(ユーザ属性と輻輳レベル)に基づくDSCP値が設定されている。本実施形態による通信装置は、複数のパラメータに基づく通信品質制御を実行することが可能であり、本実施形態のみではなく、上述の実施形態でも同様である。例えば、通信装置2が輻輳レベルとユーザ属性とを用いて通信品質制御を行う場合、パラメータ管理部23は、各ユーザに対応するベアラIDとユーザ属性とを対応付けて記憶し、また、システムの通信状況として監視部33から通知された情報(例えば、輻輳レベル、輻輳が発生しやすい時間帯等)を記憶する。通信装置2の通信パス識別部20は、例えば、パラメータ管理部23に記憶されたパラメータを参照し、識別したベアラに対応するユーザ属性と輻輳レベルをパケット処理部22に通知する。パケット処理部22は、例えば、通知されたパラメータ(ユーザ属性および輻輳レベル)とQCIとに基づいて、パケットにDSCP値を付与する。
 図27の例では、例えば、輻輳レベルの増加に伴うDSCP値の下げ幅が、ユーザ属性に応じて異なっている。例えば、DSCP値の下げ幅は、一般ユーザの下げ幅の方が、プレミアムユーザの下げ幅よりも大きい。
 通信装置2は、図27に例示されたQoS情報DB21の情報と、制御装置3Aから通知された輻輳レベルとに基づいて、通信品質制御を実行することが可能である。このように通信品質制御を実行することで、通信装置2は、たとえ輻輳レベルが高くなったとしても、優先度の高いプレミアムユーザに関するトラフィックの通信品質をできる限り維持することが可能となる。
 5.3)動作
 図28は、第5の実施形態による通信システムの動作例を示す。
 NMSの機能を有する制御装置3Aは、システムの通信状況をモニタする(動作S30)。
 制御装置3Aは、モニタした結果に基づいて、P-GW等の通信装置2に対して通信状況に関するパラメータ(例えば、輻輳レベル)を通知する(動作S31)。
 通信装置2は、制御装置3Aから通知されたパラメータに基づいて、通信品質制御を実行する(動作S32)。
 第5の実施形態において、地震等の災害に関するパラメータが用いられてもよい。この場合、QoS情報DB21およびQoSポリシDB32は、図29および図30に例示されるように、災害の深刻度に対応した災害レベルに応じて、DSCP値が設定される。例えば、災害レベルが大きくなるほど(即ち、災害の程度が深刻になるほど)、優先度が低くなるようにDSCP値が設定される。また、例えば、優先度が低いQCIほど、災害レベルが高くなった場合のDSCP値の下げ幅が大きくなるように設定される。
 6.第6の実施形態
 本発明の第6の実施形態を説明する。第6の実施形態は、上述の第1-5の実施形態で開示された技術のいずれにも適用可能である。
 第6の実施形態によれば、通信装置は、ユーザとサービスプロバイダ(例えば、動画配信事業者)との間の契約内容に基づく通信品質制御を実行することが可能である。言い換えれば、通信事業者は、第6の実施形態による通信品質制御に基づいて、新たなサービスを提供することが可能となる。例えば、通信事業者は、サービスプロバイダに対して、上記通信品質制御に基づくサービスを提供することが可能となる。通信事業者は、当該サービスをプロバイダに提供し、プロバイダからサービス料金を得ることが可能となる。
 図31は、第6の実施形態による通信システムの構成例を示す。端末1のユーザは、サービスプロバイダ4(例えば、動画配信事業者)と契約を締結しているものとする。その他のシステム構成は、上述した実施形態と同様なので、詳細な説明は省略される。
 サービスプロバイダ4は、例えば、通信事業者との間で、通信品質制御に基づくサービス契約を締結し、通信事業者に対して、ユーザとの間で締結された契約に関する情報を提供する。サービスプロバイダ4とユーザとの間の契約は、例えば、ユーザがサービスプロバイダ4に支払う料金に応じて、“通常契約”と“プレミアム契約”とが存在するものとする。なお、サービスプロバイダ4は、通信事業者との間で、QCI毎に契約を締結してもよい。例えば、サービスプロバイダ4は、QCIが“6”と“7”に対応するサービスについて“プレミアム契約”を締結し、その他のQCIに対応するサービスについては“通常契約”を締結することも可能である。
 図32は、サービスプロバイダ4から通信事業者に提供される情報の例と、通信事業者が、プロバイダ4から提供された情報に基づいて、プロバイダ4とユーザとの契約に関するパラメータを管理する例を示す。
 サービスプロバイダ4は、例えば、ユーザとの契約において、ユーザから、端末1の電話番号を取得する。サービスプロバイダ4は、例えば、電話番号と契約の内容とをサービス契約者情報40として管理する。サービスプロバイダ4は、サービス契約者情報40を、通信事業者に提供する。通信事業者は、例えば、提供されたサービス契約者情報40を基づいて、サービスプロバイダ4とユーザとの契約内容に関するパラメータをHSS201およびSPR203が有する加入者情報2010に追加する。通信事業者は、複数種類のプロバイダ4にサービスを提供する場合、加入者情報2010におけるパラメータをサービスプロバイダ毎に管理すればよい。
 図33は、QoS情報DB21およびQoSポリシDB32に設定されるデータの例を示す。
 第6の実施形態では、ユーザとサービスプロバイダ4との間の契約内容に関するパラメータ(プロバイダ属性)に応じて、QoS情報の優先度が設定される。例えば、パラメータが“プレミアム契約”のQoS情報は、“一般契約”のQoS情報よりも優先度が高い。なお、図33において、パラメータ“N/A”は、サービスプロバイダ4との間で契約を締結していないその他のユーザ用のQoS情報に対応する。
 パラメータは、例えば、図17、図18又は図19に例示されたシーケンスで、通信装置2に通知される。通信装置2は、通知されたパラメータを、ベアラIDと関連付けて、パラメータ管理部23に記憶する。また、例えば、通信装置2等を管理するNMSとしての機能を有する制御装置3若しくは3Aが、通信装置2にパラメータを通知してもよい。つまり、通信装置2は、3GPP等で標準化された規格に準拠した装置以外からパラメータを取得することも可能である。
 例えば、P-GWである通信装置2の通信パス識別部20は、サービスプロバイダ4から端末1宛のパケットを受信すると、受信パケットに含まれる情報(例えば、IPアドレスやポート番号などのOSI参照モデルのレイヤ3/レイヤ4の情報)を参照することで、パケットが属する通信パスを識別する。例えば、通信パス識別部20は、送信元アドレスおよび宛先アドレスがそれぞれプロバイダ4のIPアドレスおよび端末1のIPアドレスであるパケットを受信すると、当該パケットがサービスプロバイダ4から端末1に提供される通信サービスに関するベアラに属する、と判定する。通信パス識別部20は、パラメータ管理部23を参照し、プロバイダ4が端末1に提供する通信サービスに関するベアラに対応付けられたパラメータを特定し、パラメータとベアラに対応するQCIとに基づいて選択されたQoS情報を当該パケットに付与する。
 7.第7の実施形態
 本発明の第7の実施形態を説明する。第7の実施形態は、上述の第1-6の実施形態で開示された技術のいずれにも適用可能である。
 第7の実施形態によれば、通信装置は、通信事業者が運営するネットワークを利用するMVNO(Mobile Virtual Network Operator)事業者に関するパラメータに基づいて通信品質制御を実行することが可能である。MVNO事業者は、ネットワークオペレータである通信事業者から、通信事業者が所有するネットワークを借りて、ユーザに通信サービスを提供するサービスプロバイダである。
 第7の実施形態により、通信事業者は、例えば、MVNO事業者と通信事業者との間の契約内容に応じた通信品質制御を実行することが可能となる。例えば、MVNO事業者が、通常契約よりも料金が高額な“プレミアム契約”を通信事業者との間で締結した場合、通信事業者は、“プレミアム契約”を締結したMVNO事業者に関する通信の優先度が高くなるように通信品質制御を実行できる。つまり、MVNO事業者毎の通信品質制御による通信サービスは、通信事業者にとって新たな収入源となり得る。
 7.1)システム
 図34は、第7の実施形態による通信システムの構成例を示す。第7の実施形態による通信システムは、MVNO事業者が運営する認証サーバ205を含み、その他の構成は上述した実施形態と同様であるから詳細な説明は省略される。
 認証サーバ205は、端末1がインターネット等のネットワークにアクセスする際に、端末1を認証する。認証サーバ205は、例えば、RADIUS(Remote Authentication Dial-In User Service)認証を実行する機能を有する。
 図35および図36はQoS情報DB21およびQoSポリシDB32に記憶される情報の構成例を示す。図35の例では、通信装置2は、MVNO事業者IDに応じた通信品質制御を実行可能である。また、図36の例では、MVNO事業者と通信事業者との間の契約に関するパラメータ(MVNO事業者属性)に応じた通信品質制御を実行可能である。MVNO事業者属性は、例えば、通信事業者と“プレミアム契約”を締結したMVNO事業者に対応する属性(“プレミアム”)や、通信事業者と“一般契約”を締結したMVNO事業者に対応する属性(“一般”)である。
 図35の例では、MVNO(A)に対応する優先度は、MVNO(B)に対応する優先度よりも低く設定されている。また、図35の例で、パラメータ“N/A”は、通信パス識別部20により識別されたベアラに関する通信がMVNO事業者に関する通信ではないことを示す。例えば、通信パス識別部20により識別されたベアラに関する通信がMVNO事業者ではなく通信事業者と契約しているユーザの通信であれば、そのパラメータが“N/A”で示される。
 図36の例では、MVNO事業者属性が“プレミアム”の場合、優先度はMVNO事業者属性が“一般”の場合よりも高く設定されている。パラメータ“N/A”の意味は、図35の例と同様である。
 図36の例では、通信事業者と“プレミアム契約”を締結したMVNO事業者に関する通信の優先度は、通信事業者に関する通信と同一の優先度(DSCP値“25”)が設定されている。本実施形態は、図36の例に限定されず、例えば、通信事業者と“プレミアム契約”を締結したMVNO事業者に関する通信の優先度を通信事業者に関する通信よりも低く設定しても、あるいは高く設定してもよい。
 7.2)動作
 図37に例示するように、MVNO事業者に関するパラメータが通信装置2に通知される。なお、図37の例では、MME200の機能は、制御装置3の制御部31により実行される。また、P-GW、S-GW、eNBのそれぞれの機能は、それぞれの通信装置2の制御部24により実行される。
 図37において、MME200が、端末1からeNBを介してアタッチ要求を受信すると(動作S50)、システムにおいてアタッチ手順が実行される(動作S51)。動作S50のアタッチ手順は、例えば、3GPP(3rd Generation Partnership Project)の仕様書(TS23.401 v12.1.0)に記載された手順であり、詳細な説明は省略される。
 MME200(制御装置3の制御部31)は、S-GWを選択し、選択したS-GWに対して、端末1に関するベアラに対応するEPSベアラIDを割り当て、当該ベアラIDおよび当該ベアラに対応するQoSに関する情報(QCI等)をベアラ設定要求によりS-GWに通知する(動作S52)。
 S-GW(通信装置2の制御部24)は、P-GWに対して、ベアラID、当該ベアラに対応するQoSに関する情報(QCI等)等をベアラ設定要求により通知する(動作S53)。
 P-GW(通信装置2の制御部24)は、認証サーバ205に対して、認証要求を送信する(動作S54)。認証サーバ205は、認証処理を実行し、認証応答をP-GWに返信する(動作S55)。本実施形態では、認証サーバ205は、MVNO事業者に関するパラメータを認証応答に含めてP-GWに返信する。MVNO事業者に関するパラメータは、例えば、MVNO事業者ID、MVNO事業者と通信事業者との契約に関するパラメータ(MVNO事業者属性)などである。P-GWは、例えば、認証サーバ205から受信したパラメータを、ベアラIDと対応付けて、パラメータ管理部23に記憶する。
 上記手順の後、P-GWとS-GWは、ベアラ設定処理を実行する(動作S56)。例えば、S-GWはP-GWに対してベアラ設定処理を実行し、P-GWは、例えば、PCRFと連携しPDNへの接続処理を実行する。
 P-GW(通信装置2の制御部24)は、ベアラ設定処理が完了すると、S-GWにベアラ設定応答を送信する(動作S57)。本実施形態では、P-GW(通信装置2の制御部24)は、ベアラ設定応答に、認証サーバ205から受信したパラメータを含めて、S-GWに通知する。P-GW(通信装置2の制御部24)は、例えば、ベアラIDとパラメータとを対応付けて、S-GWに通知する。S-GWは、例えば、P-GWから受信したパラメータを、ベアラIDと対応付けて、パラメータ管理部23に記憶する。
 S-GW(通信装置2の制御部24)は、P-GWから受信したパラメータを含めて、ベアラ設定応答をMME200に通知する(動作S58)。
 MME200(制御装置3の制御部31)は、eNBに対して、MVNO事業者に関するパラメータを含めたベアラ設定要求を送信する(動作S59)。MME200は、例えば、ベアラIDとパラメータとを対応付けて、eNBに通知する。eNBは、受信したパラメータを、ベアラIDと対応付けて、パラメータ管理部23に記憶する。
 eNB(通信装置2の制御部24)は、ベアラ設定要求に応じて、端末1との間に無線ベアラを設定する(動作S60)。
 上述のシーケンスにより、各通信装置2(P-GW、S-GW、eNB)は、通信品質制御のためのパラメータを取得する。
P-GWである通信装置2の通信パス識別部20は、例えば、宛先アドレスがMVNO事業者に加入している端末1のIPアドレスであるパケットをMVNO事業者に関するベアラに属する、と判定する。通信パス識別部20は、パラメータ管理部23を参照し、識別されたベアラに対応付けられたパラメータを特定する。パケット処理部22は、MVNO事業者に関するパラメータとベアラに対応するQCIとに基づいて選択されたQoS情報をパケットに付与する。
 また、通信装置2等を管理するNMSとしての機能を有する制御装置3若しくは3Aが、通信装置2にパラメータを通知してもよい。つまり、通信装置2は、3GPP等で標準化された規格に準拠した装置以外からパラメータを取得することも可能である。
 8.第8の実施形態
 本発明の第8の実施形態を説明する。第8の実施形態は、上述の第1-7の実施形態で開示された技術のいずれにも適用可能である。
 上述の実施形態では、ベアラのエンドポイントとなる装置(例えば、eNB、S-GW、P-GWのように、ベアラを終端する装置)が通信品質制御を実行する例が示されている。第8の実施形態では、ベアラのエンドポイントとは異なる装置が、通信品質制御を実行する。
 第8の実施形態により、通信事業者は、ベアラのエンドポイントとなる装置に、3GPP等の標準仕様により規定されていない機能を追加することによる変更・改造を加えなくとも上述した通信品質制御を実行できる。
 図38は、第8の実施形態による通信システムの構成例を示す。第8の実施形態による通信システムは、端末1、eNB、S-GW、P-GW、通信装置2、および制御装置3Bを含む。なお、第8の実施形態において、eNB、S-GW、P-GWは、図2や図16に例示された通信装置2の機能を持たなくてもよい。
 図38の例では、P-GWとS-GWの間のネットワークや、eNBとS-GWの間のネットワークに、通信装置2が配置される。なお、P-GWとS-GWの間のネットワークや、eNBとS-GWの間のネットワークの双方に通信装置2が配置される必要はなく、少なくともいずれかのネットワークに通信装置2が配置されていればよい。
 上述のように、通信装置2は、ベアラのエンドポイントとなる装置の間に配置される。よって、通信装置2の通信パス識別部20は、ベアラのエンドポイントから送信されたパケットのベアラを識別する。通信装置2のパケット処理部22は、ベアラのエンドポイントから送信されたパケットにQoS情報を付与する。
 ベアラに関するパケットは、IPsecゲートウェイで暗号化される場合がある。このような場合、例えば、通信装置2は、パケットがIPsecゲートウェイに到達する前の位置に配置される。例えば、ダウンリンクの通信経路であれば、通信装置2は、P-GWとIPsecゲートウェイの間に配置される。
 制御装置3Bは、通信装置2に対して制御信号を送信する。通信装置2は、制御装置3Bから送信された制御信号に基づいて、通信品質制御を実行する。
 図39は、制御装置3Bの構成の例を示す。制御装置3Bは、制御装置3の構成に加え、ベアラ情報DB34およびパラメータDB35を含む。その他のブロックであるインターフェース30、制御部31およびQoSポリシDB32については,既に説明した通りである。
 図40は、ベアラ情報DB34が有するデータベースの構成例を示す。ベアラ情報DB34は、ベアラ識別情報、QCIおよび端末IDの対応関係を管理するデータベースである。なお、ベアラ情報DB34は、ベアラ識別情報と端末IDとの対応関係を管理するデータベースでもよい。ベアラ識別情報は、例えば、TEIDである。端末IDは、例えば、IMSI(International Mobile Subscriber Identity)である。制御装置3Bは、例えば、MME200から、ベアラ情報DB34に関する情報を取得する。また、制御装置3Bは、S-GW、P-GW、eNBの各々から、ベアラ情報DB34に関する情報を取得してもよい。
 図41は、パラメータDB35の構成例を示す。パラメータDB35は、例えば、パラメータと端末ID(例えばIMSI)との対応関係を管理する。例えば、通信事業者(ネットワークのオペレータ)が端末IDとパラメータとの対応関係をパラメータDB35に入力する。また、例えば、通信事業者にネットワークのオペレーションサービスを提供する事業者が端末IDとパラメータとの対応関係をパラメータDB35に入力してもよい。
 制御装置3Bの制御部31は、ベアラ情報DB34とパラメータDB35とに基づいて、ベアラ識別情報とパラメータを対応付ける。例えば、制御部31は、端末IDをキーとして、ベアラ情報DB34から、端末IDに対応するベアラ識別情報を検索する。制御部31は、その端末IDをキーとして、パラメータDB35から、端末IDに対応するパラメータを検索する。この動作により、制御部31は、図42に例示されるように、ベアラ識別情報とパラメータとの対応関係を把握する。
 図41の例では、パラメータDB35は、端末IDとパラメータとの対応関係を示すデータベースであるが、パラメータDB35において、パラメータに対応付けられる情報は端末IDに限定されない。パラメータに対応付けられる情報は、ベアラ情報DB34が有するベアラ識別情報と、パラメータDB35が有するパラメータとをリンクさせるための情報であればよい。
 制御部31は、例えば、QoSポリシDB32に記憶された情報を通信装置2に通知する。通信装置2は通知された情報をQoS情報DB21に記憶する。
 制御部31はベアラ識別情報とパラメータとの対応関係を通信装置2に通知する。通信装置2は通信された情報をパラメータ管理部23に記憶する。通信装置2は、eNB、S-GWもしくはP-GWが送信したパケットを受信し、当該パケットにQoS情報を付与する。S-GWもしくはP-GWが送信したパケットは、ベアラ識別情報等でカプセル化されている。通信装置2の通信パス識別部20は、パケットに付与されたベアラ識別情報に基づいてベアラを識別する。また、通信パス識別部20は、ベアラ識別情報に基づいて、パラメータ管理部23からパラメータを取得する。通信装置2のパケット処理部22は、パラメータに基づいて、パケットに付与するQoS情報をQoS情報DB21から検索する。パケット処理部22は、検索されたQoS情報をパケットに付与する。
 上述のように、P-GWとS-GWの間のネットワークおよびeNBとS-GWの間のネットワークに配置された通信装置2が通信品質制御を実行する。よって、第8の実施形態では、上述の実施形態のように、eNB、S-GW、P-GWがパラメータに基づく通信品質制御を実行しなくてもよい。
 9.第9の実施形態
 本発明の第9の実施形態を説明する。第9の実施形態は、上述の第1-8の実施形態で開示された技術のいずれにも適用可能である。
 第9の実施形態では、通信事業者(ネットワークオペレータ)、通信事業者にネットワークオペレーションサービスを提供する事業者等が後述する通信品質制御のためのネットワーク運用を行う。
 9.1)管理装置
 <第1例>
 図43は、運用管理者であるネットワークオペレータ、ネットワークのオペレーションサービスを提供する事業者等が利用する管理装置4の構成例を示す。
 管理装置4は、UI(User Interface)表示部40、QoSポリシ生成部41、インターフェース42、および管理装置4の管理動作を制御する制御部(図示せず。)を含む。
 UI表示部40は、運用管理者が、通信品質制御のためのQoSポリシをシステムに入力するためのユーザインタフェース(以下、UIと記す。)を表示する。運用管理者は、例えば、QCIに対して関連付ける複数の品質情報(例えば、DSCP値、CoS値等)を、UIを利用して入力する。
 QoSポリシ生成部41は、運用管理者がUI表示部40を用いて入力した情報に基づいて、QoSポリシを生成する。QoSポリシ生成部41は、例えば、QCIに複数の品質情報を対応付けたQoSポリシを生成する。
 なお、QoSポリシ生成部41は、運用管理者の入力に依存せずに、予め設定されたポリシに基づいて、QoSポリシを生成してもよい。例えば、QoSポリシ生成部41は、上述の実施形態において図5もしくは図6を参照して説明されたポリシに基づいて、QoSポリシを生成してもよい。この場合、例えば、運用管理者は、UI表示部40を用いて、QoSポリシの生成に用いるポリシを入力してもよい。
 管理装置4は、QoSポリシ生成部41により生成されたQoSポリシをインターフェース42を介して制御装置3、3A若しくは3Bに通知する。制御装置3、3A若しくは3Bは、管理装置4から通知されたQoSポリシを、QoSポリシDB32に記憶する。QoSポリシDB32は、QCIに対して複数のQoS情報を対応付けて記憶する。
 管理装置4は、QCIに対応付けられた複数の品質情報から、対応する品質情報を選択するための条件(送信元/宛先IPアドレスに基づく条件)を、制御装置3、3Aもしくは3Bに通知してもよい。制御装置3、3A若しくは3Bは、品質情報を選択するための条件を、通信装置2に通知する。
 <第2例>
 図44は管理装置4の他の構成例を示す。管理装置4は、第8の実施形態で述べたように、品質情報を選択するためのパラメータを制御装置3Bに通知してもよい。
 図44において、パラメータ生成部43は、運用管理者がUI表示部40を用いて入力した情報に基づいて、例えば、端末IDとパラメータとの対応関係を管理するためのデータベースを生成する。運用管理者は、例えば、UI表示部40を用いて、各端末に対応するユーザ属性、各端末に対応するサービスプロバイダ属性等のパラメータを入力する。運用管理者は、ユーザ属性、サービスプロバイダ属性等を管理するデータベースから、管理装置4に対して情報を入力することも可能である。例えば、パラメータ生成部43は、図41に例示されるような端末IDとパラメータとの対応関係を示すデータベースを生成する。
 但し、パラメータに対応付けられる情報は、端末IDに限定されない。パラメータに対応付けられる情報は、制御装置3Bのベアラ情報DB34が有するベアラ識別情報とパラメータとをリンクさせるための情報であればよい。例えば、パラメータ生成部43がパラメータに対応付ける情報は、ベアラ識別情報のようにベアラに関連する情報であればよい。
 パラメータ生成部43が制御装置3Bに通知するパラメータは、例えば、上述の第3-第7の実施形態に例示されたパラメータである。
 パラメータ生成部43は、インターフェース42を介して、端末IDとパラメータとの対応関係を示す情報を、制御装置3Bに通知する。制御装置3Bは、通知された情報に基づいて、パラメータDB35を構築する。制御装置3Bは、パラメータDB35とベアラ情報DB34とに基づいて、通信装置2のパラメータ管理部23に通知する情報(例えば、図42に例示された情報)を生成する。
 9.2)動作
 図45は、第9の実施形態の動作例を示すフローチャートである。
 運用管理者は、UI表示部40により表示されたUIを用いて、QCIに対応付けるQoS情報を入力する(動作S80)。
 QoSポリシ生成部41は、入力された情報に基づいて、QoSポリシを生成する(S81)。
 管理装置4は、インターフェース42を介して、生成されたQoSポリシを制御装置に通知する(動作S82)。
 以上、本発明の実施形態を説明したが、本発明は、上記したそれぞれの実施形態に限定されるものではない。本発明は、各実施形態の変形・置換・調整に基づいて実施できる。また、本発明は、各実施形態を任意に組み合わせて実施することもできる。即ち、本発明は、本明細書の全ての開示内容、技術的思想に従って実現できる各種変形、修正を含む。
1            端末
2            通信装置
20           通信パス識別部
21           QoS情報DB
22           パケット処理部
23           パラメータ管理部
24           制御部
200          MME
201          HSS
2010         加入者情報
202          PCRF
203          SPR
204          OCS
205          認証サーバ
3            制御装置
30           インターフェース
31           制御部
32           QoSポリシDB
33           監視部
34           ベアラ情報DB
35           パラメータDB
4            管理装置
40           UI表示部
41           QoSポリシ生成部
42           インターフェース
43           パラメータ生成部
 

Claims (32)

  1.  ネットワークに設定される通信パスを介して通信する通信装置であって、
     パケットに対応する前記通信パスを識別する第一の手段と、
     識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する第二の手段と、
     を含むことを特徴とする通信装置。
  2.  前記第二の手段は、前記品質クラスに対応付けられた前記複数の品質情報から前記品質クラス以外のパラメータに基づいて選択された品質情報を、前記パケットに付与することを特徴とする請求項1に記載の通信装置。
  3.  前記第二の手段は、前記品質クラスに対応付けられた前記複数の品質情報から通信の優先度に応じて選択された品質情報を、前記パケットに付与することを特徴とする請求項1または2に記載の通信装置。
  4.  前記第二の手段は、前記品質クラスに対応付けられた前記複数の品質情報から通信の優先度に関するパラメータに基づいて選択された品質情報を、前記パケットに付与することを特徴とする請求項1-3のいずれか1項に記載の通信装置。
  5.  前記第二の手段は、前記品質クラスに対応付けられた前記複数の品質情報から、通信端末の利用者の属性に関するパラメータに基づいて選択された品質情報を、前記パケットに付与する
     ことを特徴とする請求項1または2に記載の通信装置。
  6.  前記第二の手段は、前記品質クラスに対応付けられた前記複数の品質情報から、通信端末の通信量に関するパラメータに基づいて選択された品質情報を、前記パケットに付与する
     ことを特徴とする請求項1または2に記載の通信装置。
  7.  前記第二の手段は、前記品質クラスに対応付けられた前記複数の品質情報から、前記ネットワークの通信状況に関するパラメータに基づいて選択された品質情報を、前記パケットに付与する
     ことを特徴とする請求項1または2に記載の通信装置。
  8.  前記第二の手段は、前記品質クラスに対応付けられた前記複数の品質情報から、時刻に関するパラメータに基づいて選択された品質情報を、前記パケットに付与する
     ことを特徴とする請求項1または2に記載の通信装置。
  9.  前記第二の手段は、複数種類の前記パラメータに基づいて前記複数の品質情報から選択された品質情報を、前記パケットに付与することを特徴とする請求項2-8のいずれか1項に記載の通信装置。
  10.  前記第二の手段は、前記品質クラスの優先度と前記パラメータの優先度とに基づいて順位付けされた前記複数の品質情報から選択された品質情報を、前記パケットに付与することを特徴とする請求項2-9のいずれか1項に記載の通信装置。
  11.  前記第二の手段は、前記品質クラスの優先度よりも前記パラメータの優先度を優先して順位付けされた前記複数の品質情報から選択された品質情報を、前記パケットに付与することを特徴とする請求項10に記載の通信装置。
  12.  前記第二の手段は、前記パラメータの優先度よりも前記品質クラスの優先度を優先して順位付けされた前記複数の品質情報から選択された品質情報を、前記パケットに付与することを特徴とする請求項10に記載の通信装置。
  13.  前記第二の手段は、前記通信パスを終端する装置から送信されたパケットに、前記複数の品質情報から選択された品質情報を付与することを特徴とする請求項1-12のいずれか1項に記載の通信装置。
  14.  ネットワークに設定される通信パスを介して通信する通信装置との間の通信インターフェースと、
     前記インターフェースを介して、通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信する制御手段と、
     を有し、前記通信装置がパケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与するように前記通信装置を制御することを特徴とする制御装置。
  15.  前記制御手段は、前記通信装置が前記品質クラスに対応付けられた前記複数の品質情報から前記パケットに付与する品質情報を選択するために用いる前記品質クラス以外のパラメータを、前記前記通信装置に対して送信することを特徴とする請求項14に記載の制御装置。
  16.  前記制御手段は、通信の優先度に応じて設定された複数の品質情報を、前記通信装置に送信することを特徴とする請求項14または15に記載の制御装置。
  17.  前記制御手段は、通信の優先度に関するパラメータに応じて設定された複数の品質情報を、前記通信装置に送信することを特徴とする請求項14-16のいずれか1項に記載の制御装置。
  18.  前記制御手段は、通信端末の利用者の属性に関するパラメータに応じて設定された前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項14または15に記載の制御装置。
  19.  前記制御手段は、通信端末の通信量に関するパラメータに応じて設定された前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項14または15に記載の制御装置。
  20.  前記制御手段は、前記ネットワークの通信状況に関するパラメータに応じて設定された前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項14または15に記載の制御装置。
  21.  前記制御手段は、時刻に関するパラメータに応じて設定された前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項14または15の制御装置。
  22.  前記制御手段は、複数種類の前記パラメータに基づいて設定された前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項15-21のいずれか1項に記載の制御装置。
  23.  前記制御手段は、前記品質クラスの優先度と前記パラメータの優先度とに基づいて順位付けされた前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項15-22のいずれか1項に記載の制御装置。
  24.  前記制御手段は、前記品質クラスの優先度よりも前記パラメータの優先度を優先して順位付けされた前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項23に記載の制御装置。
  25.  前記制御手段は、前記パラメータの優先度よりも前記品質クラスの優先度を優先して順位付けされた前記複数の品質情報を、前記通信装置に送信することを特徴とする請求項23に記載の制御装置。
  26.  前記制御手段は、前記通信パスの識別情報と当該識別情報に対応する前記パラメータとを前記通信装置に通知することを特徴とする請求項15-25のいずれか1項に記載の制御装置。
  27.  ネットワークに設定される通信パスにより通信する通信装置を含み、
     前記通信装置は、
     パケットに対応する前記通信パスを識別する第一の手段と、
     識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する第二の手段とを含む
     ことを特徴とする通信システム。
  28.  ネットワークに設定される通信パスにより通信する通信装置と、前記通信装置を制御する制御装置と、を含む通信システムであって、
     前記制御装置が、通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信し、
     前記通信装置が、パケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与する、
     ことを特徴とする通信システム。
  29.  ネットワークに設定される通信パスを介して通信する通信装置の通信方法であって、
     パケットに対応する前記通信パスを識別し
     識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する
     ことを特徴とする通信方法。
  30.  ネットワークに設定される通信パスを介してデータを伝送する通信装置を制御する方法であって、
     通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信し、
     前記通信装置がパケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与するように前記通信装置を制御することを特徴とする制御方法。
  31.  ネットワークに設定される通信パスを介してデータを伝送する通信装置と通信する処理と、
     通信パスの品質クラスに対応付けられた複数の品質情報を前記通信装置に対して送信することで、前記通信装置がパケットに対応する通信パスを識別して前記複数の品質情報から選択された品質情報を当該パケットに付与するように前記通信装置を制御する処理と、
     をコンピュータに実行させることを特徴とするプログラム。
  32.  ネットワークに設定される通信パスを介して通信する通信装置としてコンピュータを機能させるプログラムであって、
     パケットに対応する前記通信パスを識別する機能と、
     識別された前記通信パスの品質クラスに対応付けられた複数の品質情報から選択された品質情報を、前記パケットに付与する機能と、
     を前記コンピュータに実現させることを特徴とするプログラム。
PCT/JP2014/004588 2013-09-05 2014-09-05 通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム WO2015033579A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/916,789 US10206137B2 (en) 2013-09-05 2014-09-05 Communication apparatus, control apparatus, communication system, communication method, control method, and program
JP2015535323A JP6477476B2 (ja) 2013-09-05 2014-09-05 通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013183982 2013-09-05
JP2013-183982 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033579A1 true WO2015033579A1 (ja) 2015-03-12

Family

ID=52628075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004588 WO2015033579A1 (ja) 2013-09-05 2014-09-05 通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム

Country Status (3)

Country Link
US (1) US10206137B2 (ja)
JP (1) JP6477476B2 (ja)
WO (1) WO2015033579A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153644B2 (ja) 2016-12-16 2022-10-14 オラクル・インターナショナル・コーポレイション Diameterメッセージの優先度ルーティングのための方法、システム、およびコンピュータ読取可能媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932040B (zh) * 2009-06-26 2014-01-01 华为技术有限公司 寻呼处理方法、通信装置及通信系统
JP6778875B2 (ja) * 2017-02-27 2020-11-04 パナソニックIpマネジメント株式会社 通信制御装置およびQoS制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181003A (ja) * 2005-12-28 2007-07-12 Kddi Corp 通信スケジューリング方法
JP2010028422A (ja) * 2008-07-18 2010-02-04 Hitachi Kokusai Electric Inc ゲートウェイ装置
WO2012081215A1 (ja) * 2010-12-13 2012-06-21 日本電気株式会社 移動通信システムにおけるゲートウェイリロケーション制御方法および制御装置
JP2013516094A (ja) * 2009-12-23 2013-05-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) モバイル通信ネットワークにおけるエネルギ制御

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8665724B2 (en) * 2009-06-12 2014-03-04 Cygnus Broadband, Inc. Systems and methods for prioritizing and scheduling packets in a communication network
US20120327779A1 (en) * 2009-06-12 2012-12-27 Cygnus Broadband, Inc. Systems and methods for congestion detection for use in prioritizing and scheduling packets in a communication network
CN101932040B (zh) * 2009-06-26 2014-01-01 华为技术有限公司 寻呼处理方法、通信装置及通信系统
US8498208B2 (en) * 2009-07-20 2013-07-30 Qualcomm Incorporated Turning on flows in network initiated QoS
CN101998531B (zh) * 2009-08-11 2013-04-24 华为技术有限公司 策略和计费控制规则授权方法、装置及系统
WO2013123467A1 (en) * 2012-02-17 2013-08-22 Vid Scale, Inc. Hierarchical traffic differentiation to handle congestion and/or manage user quality of experience
CN103369594B (zh) * 2012-04-06 2016-10-05 华为技术有限公司 一种标记业务数据包的方法、装置及系统
CN104137624B (zh) * 2012-12-31 2018-10-30 华为技术有限公司 无线通信系统的寻呼方法及设备
US9973966B2 (en) * 2013-01-11 2018-05-15 Interdigital Patent Holdings, Inc. User-plane congestion management
CN103974325B (zh) * 2013-01-31 2018-04-27 华为技术有限公司 多制式网络融合的方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181003A (ja) * 2005-12-28 2007-07-12 Kddi Corp 通信スケジューリング方法
JP2010028422A (ja) * 2008-07-18 2010-02-04 Hitachi Kokusai Electric Inc ゲートウェイ装置
JP2013516094A (ja) * 2009-12-23 2013-05-09 テレフオンアクチーボラゲット エル エム エリクソン(パブル) モバイル通信ネットワークにおけるエネルギ制御
WO2012081215A1 (ja) * 2010-12-13 2012-06-21 日本電気株式会社 移動通信システムにおけるゲートウェイリロケーション制御方法および制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TELECOM ITALIA ET AL.: "New key issue on differentiated treatment for non-deducible service data flows in case of RAN user plane congestion", 3GPP TSG-SA WG2#96, pages 2 - 131491, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_96_San_Diego/Docs/S2-131491.zip> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153644B2 (ja) 2016-12-16 2022-10-14 オラクル・インターナショナル・コーポレイション Diameterメッセージの優先度ルーティングのための方法、システム、およびコンピュータ読取可能媒体

Also Published As

Publication number Publication date
US10206137B2 (en) 2019-02-12
JP6477476B2 (ja) 2019-03-06
US20160205585A1 (en) 2016-07-14
JPWO2015033579A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6406259B2 (ja) 通信装置、制御装置、通信方法、制御方法およびプログラム
US11818608B2 (en) Third party charging in a wireless network
US11083033B2 (en) Small data usage enablement in 3GPP networks
EP3424231B1 (en) A method and a base station for controlling user data traffic between the wireless device and a local cloud
JP5481001B2 (ja) 加入サービス組合せシナリオにおいてQoSパラメータを処理する方法と装置
EP2785105B1 (en) Bearer mode selection method, packet gateway and policy and charging control function entity
JP6477476B2 (ja) 通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム
US9615390B2 (en) PCRN session architecture for roaming
EP4358576A1 (en) Service quality processing method and apparatus, and communication system
WO2015033581A1 (ja) 通信装置、制御装置、管理装置、通信方法、制御方法、管理方法およびプログラム
CN103369501A (zh) 一种资源管理方法、系统和资源管理网元
JP2015530765A (ja) 通信ネットワークにおける課金制御方法およびシステム
EP3235314B1 (en) Controlling wireless local area network access
WO2014110923A1 (zh) 一种网络信息处理方法、装置和系统
US8843128B2 (en) Roaming session termination triggered by roaming agreement/partner deletion
US11902892B2 (en) Systems and methods for providing on-demand quality of service with radio access network control
US10588057B2 (en) Methods and systems for communicating between base stations of two different wireless communication networks
KR20190143305A (ko) 어플리케이션별 실시간 서비스 품질 관리가 가능한 서비스 제공 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535323

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916789

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841582

Country of ref document: EP

Kind code of ref document: A1