WO2015122115A1 - Production method for semiconductor packages - Google Patents

Production method for semiconductor packages Download PDF

Info

Publication number
WO2015122115A1
WO2015122115A1 PCT/JP2015/000118 JP2015000118W WO2015122115A1 WO 2015122115 A1 WO2015122115 A1 WO 2015122115A1 JP 2015000118 W JP2015000118 W JP 2015000118W WO 2015122115 A1 WO2015122115 A1 WO 2015122115A1
Authority
WO
WIPO (PCT)
Prior art keywords
die
meth
semiconductor package
attach paste
semiconductor
Prior art date
Application number
PCT/JP2015/000118
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 江夏
ゆい 小澤
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015562713A priority Critical patent/JPWO2015122115A1/en
Publication of WO2015122115A1 publication Critical patent/WO2015122115A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/27312Continuous flow, e.g. using a microsyringe, a pump, a nozzle or extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2731Manufacturing methods by local deposition of the material of the layer connector in liquid form
    • H01L2224/2732Screen printing, i.e. using a stencil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • H01L2224/27418Spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29349Manganese [Mn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29357Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/2936Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29366Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29371Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29372Vanadium [V] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29373Rhodium [Rh] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29376Ruthenium [Ru] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29378Iridium [Ir] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/2938Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29384Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29387Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29386Base material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/29388Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83874Ultraviolet [UV] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83885Combinations of two or more hardening methods provided for in at least two different groups from H01L2224/83855 - H01L2224/8388, e.g. for hybrid thermoplastic-thermosetting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a semiconductor package manufacturing method using a semiconductor die attach paste.
  • Au—Si As a bonding material for manufacturing a semiconductor package by bonding a semiconductor chip such as an IC or LSI (hereinafter referred to as “die”) and a support member such as a lead frame or an insulating support substrate, and sealing them, Au—Si
  • a bonding material for manufacturing a semiconductor package by bonding a semiconductor chip such as an IC or LSI (hereinafter referred to as “die”) and a support member such as a lead frame or an insulating support substrate, and sealing them.
  • Au—Si In addition to eutectic alloys and solder, pastes, films, and the like that are mainly made of resin are conventionally known.
  • the Au—Si eutectic alloy has high heat resistance and high moisture resistance, but has a large elastic modulus, and therefore is easily cracked by the stress of expansion and contraction of other members due to thermal history, and is expensive.
  • Solder is inexpensive, but does not have sufficient heat resistance, has a high elastic modulus, and is easily
  • die attach paste mainly made of resin
  • multi-chip package a package in which a plurality of dies are mounted on the same package
  • B-stage conversion has been proposed as a method for solving the drawbacks of such a die attach paste.
  • B-stage is to increase the viscosity or impart thixotropy of the die-attach paste after application by a method such as volatilizing the solvent contained in the die-attach paste or curing only a part of the curing component, or This is a process of preventing the spread of wetness after applying the die attach paste by making the solid solid that can retain its shape.
  • Patent Document 1 a connecting material for electronic parts containing a curable compound, a photo radical initiator, and a thermal radical initiator is used, and the connecting material for electronic parts is B-staged and thermally cured by heat compression.
  • a method for obtaining a connection structure is disclosed.
  • the present invention has been made in view of the above-described problems of the prior art, and it is possible to suppress the spread of wetting after coating by making a B stage while maintaining the coating property, and without heating during die bonding.
  • the present inventors have used a die attach paste for semiconductor containing a photopolymerization initiator, a thermal radical generator, a polyolefin structure-containing resin, and a radical polymerizable compound, and a B stage.
  • a die attach paste for semiconductor containing a photopolymerization initiator, a thermal radical generator, a polyolefin structure-containing resin, and a radical polymerizable compound, and a B stage.
  • a semiconductor package manufacturing method including a die bonding step of bonding a die and a support member supporting the die, In the die bonding step, a die attach paste for semiconductor containing a photopolymerization initiator (1), a thermal radical generator (2), a polyolefin structure-containing resin (3), and a radical polymerizable compound (4)
  • the semiconductor die attach paste is applied to one of the support members, irradiated with light to form a B-stage, and then the die and the support member are placed on the B-stage semiconductor die attach paste.
  • a method of manufacturing a semiconductor package comprising a step of arranging the other and pressing and joining the die and the support member.
  • the photopolymerization initiator (1) is at least one of a compound represented by the following formula (1) and a compound represented by the following formula (2) [1] to [3] The manufacturing method of the semiconductor package as described in any one of these.
  • R 1 in the following formula (1) is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • thermal radical generator (2) is an organic peroxide.
  • thermal radical generator (2) is a dialkyl peroxide or a peroxy ester.
  • the manufacturing method of the semiconductor package of the present invention can suppress the spread of wetness after coating by making the B stage while maintaining the coating property of the die attach paste for semiconductors, and also provides sufficient adhesion without heating during die bonding. Thus, a highly reliable semiconductor package can be obtained.
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • Die attach paste for semiconductors comprises a photopolymerization initiator (1), a thermal radical generator (2), a polyolefin structure-containing resin (3), and a radical polymerizable compound (4 )including.
  • the photopolymerization initiator (1) is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization of the radical polymerizable compound (4) by irradiation with light such as near infrared rays, visible rays, and ultraviolet rays. Absent.
  • a metallocene compound can also be used as a photoinitiator (1).
  • the metallocene compound a compound whose central metal is a transition element represented by Fe, Ti, V, Cr, Mn, Co, Ni, Mo, Ru, Rh, Lu, Ta, W, Os, Ir, or the like is used. Examples thereof include bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis [2,6-difluoro-3- (pyrrol-1-yl) phenyl] titanium.
  • photopolymerization initiator (1) used in the present invention are an alkylphenone photopolymerization initiator and an acylphosphine oxide photopolymerization initiator. These photopolymerization initiators are used alone. Alternatively, two or more kinds may be used in appropriate combination.
  • Alkylphenone photopolymerization initiators include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1,2-hydroxy-2-methyl-1-phenylpropane-1 -One, ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropanone, 2-hydroxy-2-methyl-1- (4-isopropylphenyl) propanone, 2-hydroxy-2-methyl- 1- (4-dodecylphenyl) propanone, 2-hydroxy-2-methyl-1-[(2-hydroxyethoxy) phenyl] propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1 -Butanone, 2- (dimethylamino) -2- (4-Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1
  • acylphosphine oxide photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6 -Trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, Bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -4-propylphenylphosphine Oxide, bis- (2,6-dichlorobenzoyl) -1-n
  • More preferable examples of the photopolymerization initiator used in the present invention are ⁇ -aminoalkylphenone photopolymerization initiators and monoacylphosphine oxide photopolymerization initiators.
  • Examples of the ⁇ -aminoalkylphenone photopolymerization initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone and a compound represented by the formula (1).
  • the compound represented by the formula (1) is particularly preferable.
  • R 1 in the following formula (1) is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. These may be used alone or in appropriate combination of two or more.
  • Examples of the compound represented by the formula (1) include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-[(4-methyl Phenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2- (dimethylamino) -2-[(4-ethylphenyl) methyl] -1- [4- (4-morpholinyl) ) Phenyl] -1-butanone, 2- (dimethylamino) -2-[(4-n-propynylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone and 2- ( Mention may be made of dimethylamino) -2-[(4-isopropylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-but
  • Monoacylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4, Examples include 6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, and 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide.
  • monoacylphosphine oxide polymerization initiators most preferred is 2,4,6-trimethylbenzoyldiphenylphosphine oxide represented by the following formula (2). And when the storage stability of the die attach paste for semiconductors is taken into consideration, the compound represented by the formula (2) is more preferable than the compound represented by the formula (1).
  • Examples of commercially available ⁇ -aminoalkylphenone photopolymerization initiators include Irgacure 369, Irgacure 379EG (both manufactured by BASF). Moreover, as a commercial item of a monoacylphosphine oxide photopolymerization initiator, DAROCUR TPO (manufactured by BASF), Micure TPO (manufactured by MIWON) and the like can be mentioned.
  • the amount of the photopolymerization initiator (1) used in the die attach paste for semiconductor is 0.01 to 5 mass with respect to 100 mass parts of the total radical polymerizable compound (4) (for example, (meth) acryloyl group-containing compound). The range of parts is preferable, more preferably 0.05 to 3 parts by mass, and still more preferably 0.1 to 1 part by mass.
  • the amount of the photopolymerization initiator (1) used is 0.01 to 5 parts by mass with respect to 100 parts by mass of the total radical polymerizable compound (4) (for example, (meth) acryloyl group-containing compound), Suppression of wetting and spreading due to the B-stage of the die attach paste is easily exhibited, and the B-stage product of the die attach paste for semiconductors does not become too hard, and die bonding can be easily performed by pressure bonding.
  • the total radical polymerizable compound (4) for example, (meth) acryloyl group-containing compound
  • the thermal radical generator (2) is not particularly limited as long as it is a compound that generates a radical that contributes to initiation of radical polymerization of the radical polymerizable compound (4) by heating.
  • thermal radical generators include azo compounds and organic peroxides, and organic peroxides are preferred as thermal radical generators used in semiconductor die attach pastes.
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester.
  • those having a one-minute half-life temperature of 120 to 200 ° C. are preferable.
  • dialkyl peroxides and peroxyesters having a 1-minute half-life temperature of 120 to 200 ° C. are compounds represented by the general formula (3).
  • R 2 and R 3 in the following formula (3) are alkylene groups having 1 to 3 carbon atoms.
  • Examples of commercially available dialkyl peroxides and peroxyesters having a 1-minute half-life temperature of 120 to 200 ° C. include perocta O (manufactured by NOF Corporation), perbutyl O (manufactured by NOF Corporation), and perhexa 25Z (day Oil Mill Co., Ltd.), Park Mill D (manufactured by NOF Corporation), etc.
  • the amount of the thermal radical generator (2) used in the die attach paste for semiconductor is 0.1 to 10 parts by mass with respect to 100 parts by mass of the total radical polymerizable compound (4) (for example, (meth) acryloyl group-containing compound). The range of parts is preferred, more preferably 0.5 to 6 parts by weight, and still more preferably 1 to 3 parts by weight.
  • the usage-amount of a thermal radical generating agent (2) is 0.1 mass part or more with respect to 100 mass parts of all radically polymerizable compounds (4), the elasticity modulus of the hardened
  • the polyolefin structure-containing resin (3) is not particularly limited as long as it includes a structure obtained by polymerization of unsaturated hydrocarbons.
  • unsaturated hydrocarbon include olefins such as ⁇ -olefins and diolefins.
  • ⁇ -olefin examples include ethylene, propylene, and 1-butene.
  • diolefin examples include butadiene and isoprene. Two or more kinds of copolymers selected from these may be used.
  • the polyolefin structure-containing resin (3) is a hydroxyl group, It preferably has a carboxyl group, an acid anhydride group, an epoxy group, an ester structure, and the like.
  • the acid anhydride group can be introduced into the polyolefin structure-containing resin (3) by grafting maleic anhydride, phthalic anhydride, itaconic anhydride, or the like onto the polymer of the olefin.
  • the polyolefin structure-containing resin (3) include maleic anhydride-modified polyolefin which is a copolymer of unsaturated hydrocarbon and maleic anhydride.
  • the unsaturated hydrocarbon copolymerized with maleic anhydride is preferably a compound having a conjugated double bond from the viewpoint of stress relaxation of the cured product of the die attach paste for semiconductor, and further prepolymerized with butadiene or isoprene. Or what copolymerized butadiene and isoprene previously is preferable.
  • the maleic anhydride-modified polyolefin preferably has an unsaturated divalent hydrocarbon group.
  • the maleic anhydride-modified polyolefin contains a compound obtained by grafting maleic anhydride onto a polymer obtained by previously polymerizing butadiene or isoprene or a copolymer obtained by copolymerizing butadiene and isoprene in advance.
  • Examples of commercially available maleic anhydride-modified polyolefin include Diacarna (manufactured by Mitsubishi Chemical Co., Ltd.), M-1000-80 (manufactured by Nippon Petrochemical Co., Ltd.), and Riccon MA (manufactured by CRAYVALLEY).
  • the number average molecular weight of the polyolefin structure-containing resin (3) is preferably larger than 2000, and more preferably larger than 5000. When the number average molecular weight of the polyolefin structure-containing resin (3) is larger than 2000, the stress relaxation property of the cured product of the die attach paste for semiconductor is improved.
  • the amount of the polyolefin structure-containing resin (3) used in the die attach paste for semiconductor is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the total cured components.
  • the amount of the polyolefin structure-containing resin (3) used is 20% by mass or more based on the total amount of the cured components, the stress relaxation property of the cured product of the die attach paste for semiconductor is good.
  • the usage-amount of polyolefin structure containing resin (3) is 80 mass% or less with respect to all the hardening components, the viscosity of the die-attach paste for semiconductors will become favorable, and handling will become easy.
  • the radical polymerizable compound (4) is not particularly limited as long as it is a compound having radical polymerizability, and examples thereof include a compound having a vinyl group and a compound having a (meth) acryloyl group, and a (meth) acryloyl group. Containing compounds are more preferred. However, the thing which has a (meth) acryloyl group among the silane coupling agents mentioned later is excluded.
  • the die attach paste for semiconductor contains a silane coupling agent
  • the silane coupling agent contains a (meth) acryloyl group
  • the silane coupling agent having a (meth) acryloyl group is And included in the silane coupling agent and not included in the radical polymerizable compound (4).
  • Examples of the (meth) acryloyl group-containing compound include polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylate monomer.
  • Polyol poly (meth) acrylate is an ester compound of polyol and acrylic acid or methacrylic acid. The polyol selected here is not particularly limited.
  • chain hydrogenated dimer diol 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, Neopentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butyl-1,
  • chain aliphatic polyols such as 3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,10-decanediol, 1,12-dodecanediol, polyolefin polyol, and hydrogenated polyolefin polyol.
  • the polyol further includes hydrogenated dimer diol having an alicyclic structure, hydrogenated bisphenol A olefin oxide adduct, hydrogenated bisphenol F olefin oxide adduct, hydrogenated biphenol olefin oxide adduct, 1,4-cyclohexanedimethanol.
  • polyols having an alicyclic structure such as 1,3-cyclohexanedimethanol, tricyclo [5.2.1.02,6] decandimethanol, 2-methylcyclohexane-1,1-dimethanol and the like.
  • polyol further include a polyol having an aromatic ring such as trimer triol, p-xylylene glycol, bisphenol A olefin oxide adduct, bisphenol F olefin oxide adduct, biphenol olefin oxide adduct, and polyethylene.
  • polyether polyols such as glycol, polypropylene glycol, and polytetramethylene glycol
  • polyester polyols such as polyhexamethylene adipate, polyhexamethylene succinate, and polycaprolactone.
  • polyester polyols having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol can be mentioned. These polyols may be used alone or in combination of two or more.
  • a polyol having an alicyclic structure a polyol having an aromatic ring, (poly) carbonate diol, and a polyester polyol are preferred. More preferred is a polyol having an aromatic ring.
  • examples of commercially available polyol poly (meth) acrylates derived from polyols having an aromatic ring include M-208 (manufactured by Toa Gosei Co., Ltd.), M-211B (manufactured by Toa Gosei Co., Ltd.), FA-321A (Hitachi).
  • epoxy (meth) acrylate is a compound obtained by adding acrylic acid or methacrylic acid to the terminal epoxy group of an epoxy resin.
  • an epoxy resin selected in this case.
  • examples thereof include an epoxy resin, a biphenyl type epoxy resin, and a hydrogenated biphenyl type epoxy resin.
  • These epoxy (meth) acrylates may be used alone or in appropriate combination of two or more.
  • Examples of commercially available products of epoxy (meth) acrylate include epoxy ester 3000A (manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL600 (manufactured by Daicel-Cytec Co., Ltd.), EBECRYL6040 (manufactured by Daicel-Cytech Co., Ltd.) and the like.
  • Urethane (meth) acrylate is a compound obtained by reacting polyol, polyisocyanate, and hydroxyl group-containing (meth) acrylate, or reacting polyol and isocyanato group-containing (meth) acrylate. There are no particular restrictions on the polyol, polyisocyanate, hydroxyl group-containing (meth) acrylate, and isocyanato group-containing (meth) acrylate selected at this time.
  • the polyol is the same as the polyol used in the polyol poly (meth) acrylate.
  • the polyisocyanate include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane
  • hydroxyl group-containing (meth) acrylate examples include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate 2-hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl Methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl Pill methacrylate, and the like. These may be used alone or in appropriate combination of two or more.
  • isocyanato group-containing (meth) acrylate examples include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate. These may be used alone or in appropriate combination of two or more.
  • Urethane (meth) acrylate is a polyol and a polyisocyanate and a hydroxyl group-containing (meth) acrylate, or a polyol and an isocyanate group in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate or dioctyltin dilaurate.
  • the synthesis can be performed by reacting the contained (meth) acrylate, but the reaction in the presence of a catalyst is preferable in terms of shortening the reaction time.
  • the die attach paste for semiconductor is used as a cured film in the final actual use, but if too much catalyst is used, the physical property value of the cured film may be adversely affected. Therefore, the amount of the catalyst used is 0.001 to 1 part by mass with respect to the total amount of polyol, polyisocyanate, and hydroxyl group-containing (meth) acrylate, or 100 parts by mass of polyol and isocyanato group-containing (meth) acrylate. It is preferable.
  • the urethanization catalyst catalyzes the hydrolysis reaction of the alkoxysilyl group when the die attach paste for semiconductor contains an alkoxysilyl group.
  • the amounts used are polyol and polyisocyanate. It is preferably 0.003 to 0.2 parts by mass with respect to 100 parts by mass of the total amount of styrene and hydroxyl group-containing (meth) acrylate, or 100 parts by mass of polyol and isocyanato group-containing (meth) acrylate. More preferably, it is 15 parts by mass. If the amount of the catalyst is 0.001 part by mass or more, the effect of addition of the catalyst is suitably expressed, and if it is 1 part by mass or less, as described above, the final cured product at the time of actual use is used. Good physical properties.
  • the (meth) acrylate monomer in this specification is a compound obtained by removing the polyol poly (meth) acrylate, the epoxy (meth) acrylate, and the urethane (meth) acrylate from the (meth) acryloyl group-containing compound.
  • Examples of (meth) acrylate monomers include (meth) acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate, tetrahydrofurfuryl acrylate, glycidyl methacrylate, and tetrahydrofurfuryl methacrylate, cyclohexyl acrylate, isobornyl acrylate, and dicyclopentenyl.
  • the monofunctional (meth) acryloyl group-containing compound means a (meth) acryloyl group-containing compound containing one (meth) acryloyl group, and the polyfunctional (meth) acryloyl group-containing compound is a plurality of The (meth) acryloyl group containing compound of (meth) acryloyl group of this is meant.
  • the amount of the radical polymerizable compound (4) used in the die attach paste for semiconductor is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, and still more preferably based on the total curing component. Is 15 to 50% by mass. If the usage-amount of a radically polymerizable compound (4) is 80 mass% or less with respect to all the hardening components, the adhesiveness to the support member of the hardened
  • the “curing component” described in the present specification means a compound that can be polymerized by radical polymerization and / or a ring structure-containing compound and / or an oxirane ring structure or oxetane ring containing an oxirane ring structure or oxetane ring structure described later. It means a compound that can react with the structure, and “total curing component” means the total amount of the curing component.
  • the radical polymerizable compound (4) for example, a (meth) acryloyl group-containing compound), a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, and a maleic anhydride-modified polyolefin are all included in the curing component.
  • a silane coupling agent having a saturated group is also included in the curing component.
  • the (meth) acryloyl group-containing compound used in the present invention includes a (meth) acryloyl group-containing compound (5) containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule. It is preferable.
  • the (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is composed of the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure. If it is a compound which contains both in the same molecule, there will be no restriction
  • the (meth) acryloyl group-containing compound (5) containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule is a ring containing an oxirane ring structure or an oxetane ring structure described later. Not included in structure-containing compounds.
  • the die attach paste for semiconductor contains a (meth) acryloyl group-containing compound (5) containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule
  • the (meth) acryloyl group-containing compound (5) containing both an acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule shall be included in the (meth) acryloyl group-containing compound, It is not included in a ring structure-containing compound containing an oxetane ring structure.
  • the (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is the above-mentioned polyol poly (meth) acrylate, epoxy (meth) acrylate , Urethane (meth) acrylate, and (meth) acrylate monomers containing an oxirane ring structure or an oxetane ring structure.
  • a polyol poly (meth) acrylate or urethane (meth) acrylate derived from a polyol containing an oxirane ring structure or oxetane ring structure, or an epoxy derived from an epoxy resin containing an oxirane ring structure or oxetane ring structure (meta ) Acrylate and the like.
  • Examples of (meth) acrylate monomers containing an oxirane ring structure or an oxetane ring structure include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, and the like.
  • the amount of the (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule in the semiconductor die attach paste is It is preferable to set it as 10 mass parts or more with respect to 100 mass parts of acryloyl group containing compounds, More preferably, it is 20 mass parts or more, More preferably, it is 30 mass parts or more.
  • the amount of the (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is 100 parts by mass of the total (meth) acryloyl group-containing compound. On the other hand, if it is 10 parts by mass or more, the elastic modulus of the cured product of the die attach paste for semiconductor will be good.
  • the die attach paste for semiconductor preferably contains a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure
  • a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure is added.
  • the ring structure-containing compound containing an oxirane ring structure or oxetane ring structure is not particularly limited as long as it is a compound containing an oxirane ring structure or oxetane ring structure.
  • Examples of the compound containing an oxirane ring structure or an oxetane ring structure include epichlorohydrin adducts such as alcohols, amines, and carboxylic acids, olefin oxides, cycloadditions of ketones and olefins, oxetane alcohol derivatives, and the like.
  • Examples thereof include epoxy resins used in the above-mentioned epoxy (meth) acrylate, 2-ethylhexyl oxetane, xylylene bisoxetane, and oxetane resins.
  • the ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure is preferably bifunctional or more, and an epoxy resin is particularly preferable.
  • the amount of the ring structure-containing compound containing the oxirane ring structure or oxetane ring structure in the die attach paste for semiconductors is derived from the total number of oxirane ring structures or oxetane ring structures and the maleic anhydride-derived maleic anhydride-modified polyolefin described later.
  • the amount is preferably such that the ratio to the total number of carboxylic anhydride structures is 2.8 to 0.4, more preferably 2.0 to 1.2.
  • the elastic modulus of the cured product of the die attach paste for semiconductor is good. It will be something.
  • thermosetting accelerator is not particularly limited as long as it is a compound that promotes the reaction between the oxirane ring structure or the oxetane ring structure and a compound capable of reacting with them.
  • thermosetting accelerator include alkyl phosphine compounds, imidazole compounds, aliphatic amines, alicyclic amines, cyclic amidines, block compounds such as tetraphenylborate salts, compounds having phenolic hydroxyl groups, polyamides, and carboxylic acids.
  • Anhydride, dicyandiamide, organic acid dihydrazide and the like can be mentioned.
  • an imidazole compound, a block compound thereof, and a block compound of cyclic amidine are preferred.
  • these commercially available products include Curazole 2E4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole 2PZ-PW (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole 2P4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole C11Z-CNS (Shikoku Kasei Kogyo Co., Ltd.), U-CAT SA102 (San Apro Co., Ltd.), U-CAT SA506 (San Apro Co., Ltd.), U-CAT 5002 (San Apro Co., Ltd.), and the like.
  • the amount of the thermosetting accelerator used in the die attach paste for semiconductor is determined based on the ring structure-containing compound containing the oxirane ring structure or oxetane ring structure, and both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure.
  • the range of 0.5 parts by mass or more and 10 parts by mass or less is preferable with respect to 100 parts by mass of the total of (meth) acryloyl group-containing compound (5) contained in the same molecule, more preferably 1 part by mass or more and 6 parts by mass. Or less.
  • thermosetting accelerator contains a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, and a (meth) acryloyl group and an oxirane ring structure or oxetane ring structure in the same molecule ( If it is 0.5 mass part or more with respect to 100 mass parts of the sum total of (meth) acryloyl group containing compound (5), the elasticity modulus of the hardened
  • the amount of the thermosetting accelerator used is a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, and a (meth) acryloyl group and an oxirane ring structure or oxetane ring structure are contained in the same molecule. If the total amount of the (meth) acryloyl group-containing compound (5) is 10 parts by mass or less, outgas is generated during the thermosetting of the die attach paste for semiconductor or in the semiconductor package manufacturing process. Hateful.
  • the die-attach paste for semiconductors contains a polymerization inhibitor in order to increase storage stability
  • a polymerization inhibitor may be added.
  • the polymerization inhibitor is not particularly limited.
  • hydroquinone, p-methoxyphenol, p-benzoquinone, naphthoquinone, phenanthraquinone, tolquinone, 2,5-diacetoxy-p-benzoquinone, 2, 5-dicaproxy-p-benzoquinone, 2,5-acyloxy-p-benzoquinone, p-tert-butylcatechol, 2,5-di-tert-butylhydroquinone, p-tert-butylcatechol, mono-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, di-tert-butyl-p-cresol hydroquinone monomethyl ether and phenothiazine are examples of the polymerization inhibitor in order to increase
  • the die attach paste for a semiconductor can further contain a silane coupling agent for the purpose of imparting adhesion to the support member.
  • a silane coupling agent is an organosilicon compound having both a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule, and its structure is generally represented by the following formula (4). Shown in
  • Y is a functional group that reacts with an organic material, and representative examples thereof include a vinyl group, an epoxy group, an amino group, a substituted amino group, a (meth) acryloyl group, and a mercapto group.
  • X is a functional group that reacts with the inorganic material and is hydrolyzed by water or moisture to produce silanol, which reacts with the inorganic material. Representative examples of X include an alkoxy group, an acetoxy group, a chloro atom, and the like.
  • R 4 is a divalent organic group, and R 5 represents an alkyl group.
  • i represents an integer of 1 to 3
  • j represents an integer of 0 to 2. However, the sum of i and j is 3.
  • Y is a radically polymerizable compound (4) (for example, a (meth) acryloyl group-containing compound) and / or a ring structure containing an oxirane ring structure or an oxetane ring structure.
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl which are easily incorporated into the cured product during the heat curing reaction.
  • the amount of the silane coupling agent relative to the total curing component in the die attach paste for semiconductor is preferably in the range of 0.01% by mass to 8% by mass, and more preferably 0.1% by mass. % Or more and 5% by mass or less. If it is 0.01 mass% or more with respect to all the hardening components in the die-attach paste for semiconductors, the adhesiveness to a supporting member will fully express. Moreover, if it is 8 mass% or less with respect to all the hardening components in the die-attach paste for semiconductors, storage stability will become favorable irrespective of the kind of silane coupling agent to be used.
  • the die-attach paste for semiconductors contains a filler
  • a filler may be added.
  • the filler is, for example, a metal filler such as silver powder, gold powder, copper powder, nickel powder, alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide
  • examples include inorganic fillers such as aluminum oxide, aluminum nitride, crystalline silica, amorphous silica, boron nitride, titania, glass, iron oxide, and ceramics, and organic fillers such as carbon and rubber fillers. There is no restriction in particular. These may be used alone or in appropriate combination of two or more.
  • fillers can be used properly according to the purpose.
  • metal fillers are added mainly for the purpose of imparting conductivity to semiconductor die attach pastes
  • inorganic fillers are added mainly for the purpose of imparting low thermal expansion to semiconductor die attach pastes
  • organic fillers are for semiconductors. It is added mainly for the purpose of imparting stress relaxation properties to the die attach paste, and other types of fillers such as thermal conductivity, low hygroscopicity, and insulating properties can be added depending on the purpose.
  • the filler preferably has an average particle size of 20 ⁇ m or less and a maximum particle size of 60 ⁇ m or less, more preferably an average particle size of 10 ⁇ m or less and a maximum particle size of 30 ⁇ m or less.
  • the average particle size is 20 ⁇ m or less and the maximum particle size is 60 ⁇ m or less, the storage stability and the coating property of the die attach paste for semiconductor are good.
  • the compounding quantity of a filler is 5 to 80 mass parts with respect to 100 mass parts of all the hardening components in the die-attach paste for semiconductors.
  • the blending amount of the filler is 5 parts by mass or more, the elastic modulus of the cured product of the die attach paste for semiconductor is good, and the control of the thermal expansion / contraction rate is easy.
  • the blending amount of the filler is 80 parts by mass or less, the viscosity of the die attach paste for semiconductor is appropriate.
  • the die attach paste for semiconductor in the present invention preferably has a viscosity at 25 ° C. of 50000 mPa ⁇ s or less. More preferably, the viscosity at 25 ° C. is 25000 mPa ⁇ s or less. When the viscosity at 25 ° C. is 50000 mPa ⁇ s or less, it becomes easy to apply the die attach paste for a semiconductor with good quantitativeness according to the size of the die.
  • the shear viscosity of the semiconductor die attach paste was measured using a viscoelasticity measuring device. The typical conditions when performing viscosity measurement using a viscoelasticity measuring device will be described.
  • a sample of a die attach paste for semiconductor was loaded into a viscoelasticity measuring device (manufactured by Anton-Paar, model: MCR301) and sheared using a cone plate spindle of model number CP-25 at a temperature of 25.0 ° C. The shear viscosity is measured at a speed of 10 s- 1 .
  • the semiconductor package manufacturing method of the present invention is generated from a photopolymerization initiator (1) by applying a semiconductor die attach paste to a die or a support member, and then irradiating, for example, ultraviolet rays to an application portion of the semiconductor die attach paste.
  • a part of the curing component such as the radically polymerizable compound (4) is photopolymerized by the radical thus produced, and the die attach paste for semiconductor is made into B stage.
  • thermosetting of a B-staged semiconductor die attach paste (such as radical polymerizable compound (4) due to radicals generated from thermal radical generator (2))
  • the remainder of the curing component is thermally polymerized) and further sealed.
  • a highly reliable semiconductor package with high reliability can be obtained.
  • the coating method of the die attach paste for semiconductor is not particularly limited, and examples thereof include dipping method, brush coating method, spray method, drawing method, stamping method, printing method, jet dispensing method, and ink jet method.
  • the method of irradiating the application part of the semiconductor die attach paste with light such as ultraviolet rays is not particularly limited, but the method of irradiating the application part of the semiconductor die attach paste by holding and operating the flexible light guide tube by hand or machine, And a method of placing a die or a support member coated with a die attach paste for semiconductor on a conveyor and passing through a region irradiated with light such as ultraviolet rays.
  • the B-stage of the die attach paste for semiconductors is applied so that the complex viscosity at 25 ° C. measured at a frequency of 1 Hz using the vibration mode of the viscoelasticity measuring device is 100 Pa ⁇ s to 1000 Pa ⁇ s. Is preferred. If the complex viscosity is 100 Pa ⁇ s or more and 1000 Pa ⁇ s or less, wetting and spreading of the B-stage product of the die attach paste for semiconductors is suppressed in the thermosetting process, and high integration of the semiconductor package is easily achieved. Heating in bonding becomes unnecessary, and it becomes easy to improve reliability without giving an extra heat history to the die.
  • a semiconductor die attach paste is applied to a thickness of 50 ⁇ m, irradiated with ultraviolet light having a wavelength of 365 nm to form a B stage, and this B stage semiconductor die attach paste is scraped off with a spatula or the like.
  • the viscoelasticity is measured using the sample as a sample.
  • the viscoelasticity measurement uses a vibration mode of a viscoelasticity measuring device and measures complex viscosity under conditions of a temperature of 25 ° C. and a frequency of 1 Hz.
  • an ultraviolet ray irradiation amount in which the complex viscosity is in the range of 100 to 1000 Pa ⁇ s, and to use it as the ultraviolet ray irradiation dose when the semiconductor die attach paste is B-staged.
  • the B-stage product of the die attach paste for semiconductors is preferably suppressed from spreading during heating so that it does not spread during the thermosetting process.
  • the piece is put into an oven, heated to 170 ° C. at a heating rate of 4 ° C./min, and cured as it is for 1 hour.
  • the cured die attach paste for semiconductor on the test piece after curing is observed with a microscope to measure the diameter, and the rate of increase in diameter immediately after irradiation with 1000 mJ / cm 2 of ultraviolet rays is calculated.
  • the increasing rate of the diameter is preferably less than 10%, and more preferably less than 5%.
  • the amount of ultraviolet irradiation at the time of forming the B stage is such that the rate of change between the diameter of the die attach paste for semiconductor immediately after the ultraviolet irradiation for forming the B stage and the diameter of the cured die attach paste for semiconductor after heat curing is It is preferable that the ultraviolet irradiation amount be less than 10%.
  • the method of thermosetting after die bonding is performed after the die attach paste for a semiconductor is changed to the B stage is not particularly limited, but a method in which a die and a support member bonded to each other are put into an oven, or a die and a support.
  • a method in which a die-bonded member is placed on a conveyor and passed through a region heated to a predetermined temperature For example, a method in which a die-bonded member is placed on a conveyor and passed through a region heated to a predetermined temperature.
  • a method for evaluating die shear strength when die bonding and thermosetting are performed according to the semiconductor package manufacturing method of the present invention will be described. The die shear strength is evaluated according to standards such as MIL-STD-883G, IEC-60749-22, and EIAJ-ED-4703.
  • the side of the bonded die is pushed with a jig with a sensor, and the bond between the die and the support member is broken. Measure the force required.
  • the die shear strength is preferably 58.8 N or more when the square chip of 2 mm square and the support member are joined. If the bonding material or bonding method is 58.8 N or more, the reliability of the semiconductor package is good.
  • An aspect of the present invention also includes a semiconductor package manufactured using a semiconductor die attach paste.
  • Semiconductor packages include DO insertion (Pin insertion type) DO package (Diode Outline), TO package (Transistor Outline), DIP (Dual Inline Package), SIP (Single Inline Package), ZIP (Zigzag Inline Package).
  • a semiconductor die attach paste is applied to a die or a support member, and then an application part of the semiconductor die attach paste is irradiated with, for example, ultraviolet rays to form a B stage, and then die bonding and thermosetting are performed, followed by sealing. It can be manufactured by stopping.
  • the semiconductor package manufactured in this way has high reliability.
  • Example 1 10.3 g of bisphenol A olefin oxide adduct diacrylate (BP-4EAL, compound name is 2,2′-bis [4- (acryloxypolyethoxy) phenyl] propane manufactured by Kyoeisha Chemical Co., Ltd.), maleic anhydride 41.4 g of modified polybutadiene (Ricon 131 MA17 manufactured by CRAYVALLEY), 6.9 g of glycidyl methacrylate (Blenmer GH manufactured by NOF CORPORATION), 10.3 g of hydrogenated bisphenol A type epoxy resin (YX-8000 manufactured by Mitsubishi Chemical Corporation) , 2,4,6-trimethylbenzoyldiphenylphosphine oxide (BASF DAROCUR TPO) 0.1 g, dicumyl peroxide (NOF Corporation Park Mill D) 0.3 g, diazabicycloundecene-t
  • BP-4EAL bisphenol A olefin oxide adduct diacrylate
  • Examples 2 to 4 Comparative Examples 1 to 5
  • a die attach paste was obtained in the same manner as in Example 1 except that the type and amount of each component were changed as shown in Table 1.
  • Acryester M is methyl methacrylate manufactured by Mitsubishi Rayon Co., Ltd.
  • SR-349 is ethoxylated bisphenol A diacrylate manufactured by Sartomer
  • FA-512M is dicyclopentenyloxyethyl methacrylate manufactured by Hitachi Chemical Co., Ltd.
  • EBECRYL 3702 is an epoxy acrylate manufactured by Daicel-Cytec
  • CTBN-1300X8 is a carboxy-terminated acrylonitrile butadiene copolymer manufactured by Ube Industries, Ltd.
  • EXA-4850-150 is an epoxy manufactured by Dainippon Ink & Chemicals, Inc.
  • a resin (epoxy equivalent 450), PB-4700 is an epoxidized polybutadiene manufactured by Daicel Chemical Industries, and UC-203 is a methacryl-modified polyisoprene manufactured by Kuraray Co., Ltd.
  • Irgacure (registered trademark) 369 is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 manufactured by BASF, and V-65 is 2,2′- manufactured by Wako Pure Chemical Industries, Ltd.
  • Azobis-2,4-dimethylvaleronitrile, DICY is dicyandiamide, AEROSIL R972 is a hydrophobic silica filler surface-treated with dimethyldichlorosilane manufactured by Nippon Aerosil Co., Ltd.
  • SFP-20M is Electrochemical Industry Co., Ltd.
  • Spherical silica gel, ASFP-20 is spherical alumina manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Micropearl AU is gold-plated conductive particles manufactured by Sekisui Chemical Co., Ltd.
  • the suppression of wetting and spreading of the die attach paste was evaluated by the following method.
  • the die attach paste was applied on a silicon substrate in a circular shape having a thickness of 200 ⁇ m and a diameter of 2 mm, and irradiated with 1000 mJ / cm 2 of ultraviolet rays to form a B stage, thereby obtaining a test piece. Thereafter, the test piece was put into an oven, heated to 170 ° C. at a heating rate of 4 ° C./min, and allowed to cure for 1 hour.
  • the die attach paste on the cured test piece was observed with a microscope, the diameter was measured, the increase rate of the diameter from the time of application was calculated, and the wetting spread suppression was evaluated by the increase rate of the diameter.
  • the results are shown in Table 1.
  • the increase rate of the diameter was less than 5%, it was evaluated that the wetting and spreading suppression was very good. Further, when the rate of increase in diameter was 5% or more and less than 10%, it was evaluated that the wetting and spreading suppression was good. Further, when the rate of increase in diameter was 10% or more, it was evaluated that the suppression of wetting and spreading was bad, and in Table 1, it was indicated by x.
  • the die shear strength was evaluated by the following method.
  • a die attach paste was applied in a square shape (thickness of 80 ⁇ m) with a side of 2 mm on a square PPF lead frame with a side of 5 mm (three layers plated in the order of Ni, Pd, and Au on a Cu substrate), Ultraviolet rays were irradiated at 1000 mJ / cm 2 to make a B stage.
  • a square silicon chip (thickness 0.7 mm) with a side of 2 mm was placed on the die attach paste under conditions of a temperature of 25 ° C., a load of 10 N, and a time of 1 second. Bonded. Thereafter, it was cured in an oven at 170 ° C. for 1 hour.
  • the shear strength (N / chip) at 25 ° C. of the product thus obtained was measured using a shear adhesion tester Series 4000 (manufactured by Dage). The results are shown in Table 1. When the measured value of the shear strength was 58.8 N / chip or more, it was evaluated that the die shear strength was good. Moreover, when the measured value of the shear strength was less than 58.8 N / chip, the die shear strength was evaluated to be poor.
  • the complex viscosity of the B-staged product of the die attach paste was evaluated by the following method.
  • the die attach paste was applied so as to have a thickness of 50 ⁇ m, and irradiated with ultraviolet rays under the condition of 1000 mJ / cm 2 to form a B stage.
  • the die attach paste made to the B stage was scraped off with a spatula to obtain a sample.
  • the complex viscosity of this sample was measured under the conditions of a temperature of 25 ° C. and a frequency of 1 Hz using the vibration mode of the viscoelasticity measuring device.
  • the complex viscosity is in the range of 100 to 1000 Pa ⁇ s, it is indicated as “A” in Table 1.
  • the die attach paste was B-staged well, and both wet spread and die shear strength were good.
  • the complex viscosity exceeds 1000 Pa ⁇ s, it is indicated as “B” in Table 1.
  • bonding without heating became difficult, and the wet spread of the die attach paste was good, but the die shear strength was inferior.
  • the complex viscosity is less than 100 Pa ⁇ s, it is indicated as “C” in Table 1. In this case, it becomes difficult to suppress wetting and spreading of the die attach paste.
  • the storage stability of the die attach paste was evaluated by the following method.
  • the die attach paste was left at a temperature of 25 ° C. for 3 days.
  • the shear viscosity of the die attach paste in the initial stage and after 3 days was measured under the conditions of a temperature of 25 ° C. and a shear rate of 10 s ⁇ 1 using the rotation mode of the viscoelasticity measuring apparatus.
  • the viscosity increase rate was calculated from the shear viscosity at the initial stage of standing after 3 days of standing, and the storage stability of the die attach paste was evaluated based on this thickening rate.
  • Table 1 When the thickening rate was less than 40%, it was evaluated that the storage stability of the die attach paste was very good. Moreover, when the viscosity increase rate was 40% or more and less than 100%, it was evaluated that the storage stability was good. Furthermore, when the viscosity increase rate was 100% or more, it was evaluated that the storage stability of the die attach paste was poor.
  • Examples 1 to 4 which are die attach pastes containing a photopolymerization initiator, a thermal radical generator, a polyolefin structure-containing resin, and a radical polymerizable compound, have high die shear strength while suppressing wetting and spreading. I understand that. Further, Example 1 using an acylphosphine oxide photopolymerization initiator (DAROCUR TPO) is more storage stable than Examples 2 to 4 using an alkylphenone photopolymerization initiator (Irgacure (registered trademark) 369). Was good.
  • DAROCUR TPO acylphosphine oxide photopolymerization initiator
  • Comparative Examples 1 and 2 which are die attach pastes that do not contain a thermal radical generator, are inferior in die shear strength because they are not bonded to the support member when die bonded at 25 ° C.
  • the comparative example 3 which is the die attach paste which does not contain polyolefin structure containing resin also has low die shear strength. That is, the die attach paste containing the photopolymerization initiator, the thermal radical generator, the polyolefin structure-containing resin, and the radical polymerizable compound can suppress the spread of wetting by the B-stage and is higher than the conventional die attach paste. It was found to have die shear strength.
  • Tetrahydrophthalic anhydride (B-570H manufactured by DIC Corporation) is used instead of the polyolefin structure-containing resin in such an amount that the acid anhydride structure has the same molar amount. Except for these points, the second embodiment is the same as the first embodiment. Tetrahydrophthalic anhydride has an acid anhydride structure similar to maleic anhydride-modified polybutadiene, which is a polyolefin structure-containing resin of Example 1, but does not contain a polyolefin structure, so that the die shear strength is insufficient. Further, the die attach paste of Comparative Example 5 is the same as Example 1 except that the polyolefin structure-containing resin is not blended, but since it does not contain the polyolefin structure-containing resin, the die shear strength is insufficient. It was.
  • the method for manufacturing a semiconductor package of the present invention it is possible to manufacture a highly integrated multi-chip package because the spread of wetting after application can be suppressed by the B-stage while maintaining the applicability of the die attach paste for semiconductor. It is.
  • sufficient adhesiveness can be obtained without heating during die bonding, there is no need for thermocompression bonding, and a highly reliable semiconductor package can be manufactured. Therefore, the semiconductor package manufactured by the semiconductor package manufacturing method of the present invention is useful for various devices.

Abstract

Provided is a production method for semiconductor packages whereby a semiconductor package can be produced that: maintains coating properties; is capable of suppressing bleeding after coating by B-staging; is capable of obtaining sufficient adhesiveness even without heating during die-bonding; and has high reliability. A die-attach paste for semiconductors, that includes a photopolymerization initiator (1), a thermal radical generator (2), a polyolefin structure-containing resin (3), and a radical polymerizable compound (4), is coated on a support member and B-staged by irradiating ultraviolet light on the coated die-attach paste for semiconductors. Then a die is arranged and pressure-bonded upon the B-staged die-attach paste for semiconductors, the die and the support member are joined, and die-bonding is performed.

Description

半導体パッケージの製造方法Manufacturing method of semiconductor package
 本発明は、半導体用ダイアタッチペーストを用いた半導体パッケージの製造方法に関する。 The present invention relates to a semiconductor package manufacturing method using a semiconductor die attach paste.
 IC、LSI等の半導体チップ(以下「ダイ」と記す)と、リードフレームや絶縁性支持基板等の支持部材を接合し、封止して半導体パッケージを製造する際の接合材料として、Au-Si共晶合金、半田の他、樹脂を主な原料とするペースト、フィルム等が従来から知られている。
 Au-Si共晶合金は耐熱性および耐湿性は高いが、弾性率が大きいため、熱履歴による他部材の膨張、収縮の応力で割れ易く、また高価である。半田は安価であるが、耐熱性が十分ではなく、弾性率も高く同様に割れ易い。
As a bonding material for manufacturing a semiconductor package by bonding a semiconductor chip such as an IC or LSI (hereinafter referred to as “die”) and a support member such as a lead frame or an insulating support substrate, and sealing them, Au—Si In addition to eutectic alloys and solder, pastes, films, and the like that are mainly made of resin are conventionally known.
The Au—Si eutectic alloy has high heat resistance and high moisture resistance, but has a large elastic modulus, and therefore is easily cracked by the stress of expansion and contraction of other members due to thermal history, and is expensive. Solder is inexpensive, but does not have sufficient heat resistance, has a high elastic modulus, and is easily cracked.
 樹脂を主な原料とするペースト(以下「ダイアタッチペースト」と記す)は、十分な耐熱性と耐湿性、弾性率を備えつつ、熱履歴による膨張、収縮の応力を緩和できることで、広く用いられている。しかし、ダイアタッチペーストは塗布性を考慮した粘度にすると濡れ広がり易く、同一パッケージに複数のダイを実装するパッケージ(以下「マルチチップパッケージ」と記す)の場合はダイ同士の距離をとる必要があるため、マルチチップパッケージの高集積化に対応しにくいという欠点がある。 Paste mainly made of resin (hereinafter referred to as “die attach paste”) is widely used because it has sufficient heat resistance, moisture resistance and elastic modulus, and can relieve the stress of expansion and contraction due to thermal history. ing. However, the die attach paste tends to spread out when the viscosity is set in consideration of the coating property, and in the case of a package in which a plurality of dies are mounted on the same package (hereinafter referred to as “multi-chip package”), it is necessary to keep a distance between the dies. Therefore, there is a drawback that it is difficult to cope with high integration of multichip packages.
 このようなダイアタッチペーストの持つ欠点を解決する方法として、Bステージ化が提案されている。Bステージ化とは、ダイアタッチペーストに含まれる溶剤を揮発させる、硬化成分の一部だけを硬化させるなどの方法により、塗布後のダイアタッチペーストの増粘もしくはチクソ性付与を行うか、または、形状保持可能な硬さの固体にすることによって、ダイアタッチペースト塗布後の濡れ広がりを防止するプロセスである。 B-stage conversion has been proposed as a method for solving the drawbacks of such a die attach paste. B-stage is to increase the viscosity or impart thixotropy of the die-attach paste after application by a method such as volatilizing the solvent contained in the die-attach paste or curing only a part of the curing component, or This is a process of preventing the spread of wetness after applying the die attach paste by making the solid solid that can retain its shape.
 例えば特許文献1には、硬化性化合物、光ラジカル開始剤、および熱ラジカル開始剤を含有する電子部品用接続材料を用い、電子部品用接続材料をBステージ化した後に加熱圧縮にて熱硬化させて接続構造体を得る方法が開示されている。しかしながら、特許文献1に開示の方法では、接続構造体を得る際に電子部品用接続材料を加熱圧縮(熱圧着)する必要があるため、この加熱圧縮での熱的負荷によってダイに熱履歴が与えられて半導体パッケージの信頼性が低下するという問題があった。 For example, in Patent Document 1, a connecting material for electronic parts containing a curable compound, a photo radical initiator, and a thermal radical initiator is used, and the connecting material for electronic parts is B-staged and thermally cured by heat compression. Thus, a method for obtaining a connection structure is disclosed. However, in the method disclosed in Patent Document 1, since it is necessary to heat-compress (thermocompression) the connection material for electronic components when obtaining the connection structure, a thermal history is generated in the die due to the thermal load in this heat-compression. As a result, there is a problem that the reliability of the semiconductor package is lowered.
特開2013-001712号公報JP 2013-001712 A
 本発明は、上記の従来技術の有する課題を鑑みてなされたものであり、塗布性を維持しつつBステージ化により塗布後の濡れ広がりの抑制が可能で、しかもダイボンディングの際に加熱しなくても十分な接着性が得られ、信頼性の高い半導体パッケージを製造することが可能な半導体パッケージの製造方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and it is possible to suppress the spread of wetting after coating by making a B stage while maintaining the coating property, and without heating during die bonding. However, it is an object of the present invention to provide a method for manufacturing a semiconductor package that can provide a highly reliable semiconductor package with sufficient adhesion.
 本発明者らは、上記課題を解決すべく研究を重ねた結果、光重合開始剤、熱ラジカル発生剤、ポリオレフィン構造含有樹脂、およびラジカル重合性化合物を含む半導体用ダイアタッチペーストを用い、Bステージ化を経てダイボンディングを行うことにより、塗布後の濡れ広がり抑制が可能で、しかもダイボンディングの際に加熱しなくても十分な接着性が得られ、信頼性の高い半導体パッケージを得ることができることを見出し、本発明を完成するに至った。 As a result of repeated researches to solve the above problems, the present inventors have used a die attach paste for semiconductor containing a photopolymerization initiator, a thermal radical generator, a polyolefin structure-containing resin, and a radical polymerizable compound, and a B stage. By performing die bonding through fabrication, wetting suppression after coating is possible, and sufficient adhesion can be obtained without heating during die bonding, and a highly reliable semiconductor package can be obtained. As a result, the present invention has been completed.
 即ち本発明の態様は、以下の[1]~[11]の通りである。
[1] ダイと該ダイを支持する支持部材とを接合するダイボンディング工程を含む半導体パッケージの製造方法であって、
 前記ダイボンディング工程は、光重合開始剤(1)、熱ラジカル発生剤(2)、ポリオレフィン構造含有樹脂(3)、およびラジカル重合性化合物(4)を含む半導体用ダイアタッチペーストを、前記ダイおよび前記支持部材の一方に塗布し、塗布された前記半導体用ダイアタッチペーストに光を照射してBステージ化した後、Bステージ化された前記半導体用ダイアタッチペースト上に前記ダイおよび前記支持部材の他方を配し圧着して、前記ダイと前記支持部材とを接合する工程であることを特徴とする半導体パッケージの製造方法。
That is, the embodiments of the present invention are as follows [1] to [11].
[1] A semiconductor package manufacturing method including a die bonding step of bonding a die and a support member supporting the die,
In the die bonding step, a die attach paste for semiconductor containing a photopolymerization initiator (1), a thermal radical generator (2), a polyolefin structure-containing resin (3), and a radical polymerizable compound (4) The semiconductor die attach paste is applied to one of the support members, irradiated with light to form a B-stage, and then the die and the support member are placed on the B-stage semiconductor die attach paste. A method of manufacturing a semiconductor package, comprising a step of arranging the other and pressing and joining the die and the support member.
[2] 前記ラジカル重合性化合物(4)が(メタ)アクリロイル基含有化合物であることを特徴とする[1]に記載の半導体パッケージの製造方法。
[3] 前記(メタ)アクリロイル基含有化合物の少なくとも一部が、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物であることを特徴とする[2]に記載の半導体パッケージの製造方法。
[2] The method for producing a semiconductor package according to [1], wherein the radical polymerizable compound (4) is a (meth) acryloyl group-containing compound.
[3] At least a part of the (meth) acryloyl group-containing compound is a (meth) acryloyl group-containing compound containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule. The method for producing a semiconductor package according to [2], wherein:
[4] 前記光重合開始剤(1)がアルキルフェノン系光重合開始剤およびアシルホスフィンオキサイド系光重合開始剤の少なくとも一方であることを特徴とする[1]~[3]のいずれか一項に記載の半導体パッケージの製造方法。
[5] 前記光重合開始剤(1)がα-アミノアルキルフェノン系光重合開始剤およびモノアシルホスフィンオキサイド系光重合開始剤の少なくとも一方であることを特徴とする[1]~[3]のいずれか一項に記載の半導体パッケージの製造方法。
[4] Any one of [1] to [3], wherein the photopolymerization initiator (1) is at least one of an alkylphenone photopolymerization initiator and an acylphosphine oxide photopolymerization initiator. The manufacturing method of the semiconductor package of description.
[5] The photopolymerization initiator (1) according to any one of [1] to [3], wherein the photopolymerization initiator (1) is at least one of an α-aminoalkylphenone photopolymerization initiator and a monoacylphosphine oxide photopolymerization initiator. The manufacturing method of the semiconductor package as described in any one.
[6] 前記光重合開始剤(1)が下記式(1)で表される化合物および下記式(2)で表される化合物の少なくとも一方であることを特徴とする[1]~[3]のいずれか一項に記載の半導体パッケージの製造方法。ただし、下記式(1)中のRは水素原子または炭素数1~3のアルキル基である。 [6] The photopolymerization initiator (1) is at least one of a compound represented by the following formula (1) and a compound represented by the following formula (2) [1] to [3] The manufacturing method of the semiconductor package as described in any one of these. However, R 1 in the following formula (1) is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[7] 前記熱ラジカル発生剤(2)が有機過酸化物であることを特徴とする[1]~[6]のいずれか一項に記載の半導体パッケージの製造方法。
[8] 前記熱ラジカル発生剤(2)がジアルキルパーオキサイドまたはパーオキシエステルであることを特徴とする[7]に記載の半導体パッケージの製造方法。
[7] The method for manufacturing a semiconductor package according to any one of [1] to [6], wherein the thermal radical generator (2) is an organic peroxide.
[8] The method for manufacturing a semiconductor package according to [7], wherein the thermal radical generator (2) is a dialkyl peroxide or a peroxy ester.
[9] 前記熱ラジカル発生剤(2)が下記式(3)で表される化合物であることを特徴とする[7]に記載の半導体パッケージの製造方法。ただし、下記式(3)中のRおよびRは炭素数1~3のアルキレン基である。 [9] The method for producing a semiconductor package according to [7], wherein the thermal radical generator (2) is a compound represented by the following formula (3). However, R 2 and R 3 in the following formula (3) are alkylene groups having 1 to 3 carbon atoms.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[10] 前記熱ラジカル発生剤(2)の1分間半減期温度が120℃以上200℃以下であることを特徴とする[7]~[9]のいずれか一項に記載の半導体パッケージの製造方法。
[11] 前記Bステージ化における前記光の照射量が、Bステージ化させた前記半導体用ダイアタッチペーストの温度25℃、周波数1Hzの条件で測定した複素粘度が100~1000Pa・sの範囲になる量であることを特徴とする[1]~[10]のいずれか一項に記載の半導体パッケージの製造方法。
[10] The production of a semiconductor package according to any one of [7] to [9], wherein the thermal radical generator (2) has a one-minute half-life temperature of 120 ° C. or higher and 200 ° C. or lower. Method.
[11] The irradiation amount of the light in the B-stage is a complex viscosity measured in the condition of a temperature of 25 ° C. and a frequency of 1 Hz of the die-attach paste for semiconductor B-stage is in a range of 100 to 1000 Pa · s. The method of manufacturing a semiconductor package according to any one of [1] to [10], wherein the method is a quantity.
 本発明の半導体パッケージの製造方法は、半導体用ダイアタッチペーストの塗布性を維持しつつBステージ化により塗布後の濡れ広がり抑制が可能で、しかもダイボンディングの際に加熱しなくても十分な接着性が得られ、信頼性の高い半導体パッケージを得ることができる。 The manufacturing method of the semiconductor package of the present invention can suppress the spread of wetness after coating by making the B stage while maintaining the coating property of the die attach paste for semiconductors, and also provides sufficient adhesion without heating during die bonding. Thus, a highly reliable semiconductor package can be obtained.
 以下、本発明の実施の形態を詳細に説明する。なお、本発明においては、「(メタ)アクリロイル基」とは、アクリロイル基および/またはメタクリロイル基を意味する。
<半導体用ダイアタッチペースト>
 本発明の半導体パッケージの製造方法において使用される半導体用ダイアタッチペーストは、光重合開始剤(1)、熱ラジカル発生剤(2)、ポリオレフィン構造含有樹脂(3)、およびラジカル重合性化合物(4)を含む。
Hereinafter, embodiments of the present invention will be described in detail. In the present invention, “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
<Die attach paste for semiconductors>
The die attach paste for semiconductor used in the method for producing a semiconductor package of the present invention comprises a photopolymerization initiator (1), a thermal radical generator (2), a polyolefin structure-containing resin (3), and a radical polymerizable compound (4 )including.
 まず、光重合開始剤(1)について説明する。
 光重合開始剤(1)は、近赤外線、可視光線、紫外線等の光の照射により、ラジカル重合性化合物(4)のラジカル重合の開始に寄与するラジカルを発生する化合物であれば、特に制限はない。
 また、光重合開始剤(1)として、メタロセン化合物を使用することもできる。メタロセン化合物としては、中心金属がFe、Ti、V、Cr、Mn、Co、Ni、Mo、Ru、Rh、Lu、Ta、W、Os、Irなどに代表される遷移元素であるものを用いることができ、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス[2,6-ジフルオロ-3-(ピロール-1-イル)フェニル]チタニウムを挙げることができる。
First, the photopolymerization initiator (1) will be described.
The photopolymerization initiator (1) is not particularly limited as long as it is a compound that generates radicals that contribute to the initiation of radical polymerization of the radical polymerizable compound (4) by irradiation with light such as near infrared rays, visible rays, and ultraviolet rays. Absent.
Moreover, a metallocene compound can also be used as a photoinitiator (1). As the metallocene compound, a compound whose central metal is a transition element represented by Fe, Ti, V, Cr, Mn, Co, Ni, Mo, Ru, Rh, Lu, Ta, W, Os, Ir, or the like is used. Examples thereof include bis (η5-2,4-cyclopentadien-1-yl) -bis [2,6-difluoro-3- (pyrrol-1-yl) phenyl] titanium.
 本発明に使用される光重合開始剤(1)としてより好ましいものは、アルキルフェノン系光重合開始剤、アシルホスフィンオキサイド系光重合開始剤であり、これらの光重合開始剤は単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。アルキルフェノン系光重合開始剤としては、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1,2-ヒドロオキシ-2-メチル-1-フェニルプロパン-1-オン、α-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパノン、2-ヒドロキシ-2-メチル-1-(4-イソプロピルフェニル)プロパノン、2-ヒドロキシ-2-メチル-1-(4-ドデシルフェニル)プロパノン、2-ヒドロキシ-2-メチル-1-[(2-ヒドロキシエトキシ)フェニル]プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノン、ベンゾイン、ベンゾインエーテル類(例えばベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)等が挙げられる。
 また、アシルホスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等が挙げられる。
More preferable as the photopolymerization initiator (1) used in the present invention are an alkylphenone photopolymerization initiator and an acylphosphine oxide photopolymerization initiator. These photopolymerization initiators are used alone. Alternatively, two or more kinds may be used in appropriate combination. Alkylphenone photopolymerization initiators include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 1,2-hydroxy-2-methyl-1-phenylpropane-1 -One, α-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropanone, 2-hydroxy-2-methyl-1- (4-isopropylphenyl) propanone, 2-hydroxy-2-methyl- 1- (4-dodecylphenyl) propanone, 2-hydroxy-2-methyl-1-[(2-hydroxyethoxy) phenyl] propanone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1 -Butanone, 2- (dimethylamino) -2- (4-Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone, benzoin Benzoin ethers (for example, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin phenyl ether, benzyl dimethyl ketal) and the like.
Examples of the acylphosphine oxide photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4,6 -Trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, Bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -4-propylphenylphosphine Oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,4,4- Trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6-trimethylbenzoyl) phenylphosphine oxide, (2,5,6-trimethylbenzoyl) ) -2,4,4-trimethylpentylphosphine oxide and the like.
 本発明に使用される光重合開始剤としてさらに好ましいものは、α-アミノアルキルフェノン系光重合開始剤、モノアシルホスフィンオキサイド系光重合開始剤である。α-アミノアルキルフェノン系光重合開始剤としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパノンおよび式(1)で表される化合物等が挙げられるが、式(1)で表される化合物が特に好ましい。ただし、下記式(1)中のRは水素原子または炭素数1~3のアルキル基である。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 式(1)で表される化合物としては、例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-(ジメチルアミノ)-2-[(4-エチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2-(ジメチルアミノ)-2-[(4-n-プロピチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン及び2-(ジメチルアミノ)-2-[(4-イソプロピルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンを挙げることができる。
More preferable examples of the photopolymerization initiator used in the present invention are α-aminoalkylphenone photopolymerization initiators and monoacylphosphine oxide photopolymerization initiators. Examples of the α-aminoalkylphenone photopolymerization initiator include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone and a compound represented by the formula (1). The compound represented by the formula (1) is particularly preferable. However, R 1 in the following formula (1) is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. These may be used alone or in appropriate combination of two or more.
Examples of the compound represented by the formula (1) include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 2- (dimethylamino) -2-[(4-methyl Phenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2- (dimethylamino) -2-[(4-ethylphenyl) methyl] -1- [4- (4-morpholinyl) ) Phenyl] -1-butanone, 2- (dimethylamino) -2-[(4-n-propynylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone and 2- ( Mention may be made of dimethylamino) -2-[(4-isopropylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、モノアシルホスフィンオキサイド系光重合開始剤としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、2,6-ジメトキシベンゾイルジフェニルホスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルメトキシフェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルエトキシフェニルホスフィンオキサイド、2,3,5,6-テトラメチルベンゾイルジフェニルホスフィンオキサイドが挙げられる。これらのモノアシルホスフィンオキサイド系重合開始剤系開始剤の中で最も好ましいものは、下記式(2)で表される2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドである。
 そして、半導体用ダイアタッチペーストの保存安定性を考慮する場合には、式(1)で表される化合物よりも式(2)で表される化合物の方が好ましい。
Monoacylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,4, Examples include 6-trimethylbenzoylmethoxyphenylphosphine oxide, 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide, and 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide. Among these monoacylphosphine oxide polymerization initiators, most preferred is 2,4,6-trimethylbenzoyldiphenylphosphine oxide represented by the following formula (2).
And when the storage stability of the die attach paste for semiconductors is taken into consideration, the compound represented by the formula (2) is more preferable than the compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 α-アミノアルキルフェノン系光重合開始剤の市販品としては、例えば、Irgacure 369、Irgacure 379EG(共にBASF社製)等が挙げられる。また、モノアシルホスフィンオキサイド系光重合開始剤の市販品としては、例えば、DAROCUR TPO(BASF社製)、Micure TPO(MIWON社製)等が挙げられる。
 半導体用ダイアタッチペースト中の光重合開始剤(1)の使用量は、全ラジカル重合性化合物(4)(例えば(メタ)アクリロイル基含有化合物)100質量部に対して、0.01~5質量部の範囲が好ましく、より好ましくは0.05~3質量部であり、さらに好ましくは0.1~1質量部である。
Examples of commercially available α-aminoalkylphenone photopolymerization initiators include Irgacure 369, Irgacure 379EG (both manufactured by BASF). Moreover, as a commercial item of a monoacylphosphine oxide photopolymerization initiator, DAROCUR TPO (manufactured by BASF), Micure TPO (manufactured by MIWON) and the like can be mentioned.
The amount of the photopolymerization initiator (1) used in the die attach paste for semiconductor is 0.01 to 5 mass with respect to 100 mass parts of the total radical polymerizable compound (4) (for example, (meth) acryloyl group-containing compound). The range of parts is preferable, more preferably 0.05 to 3 parts by mass, and still more preferably 0.1 to 1 part by mass.
 光重合開始剤(1)の使用量が、全ラジカル重合性化合物(4)(例えば(メタ)アクリロイル基含有化合物)100質量部に対して、0.01~5質量部であれば、半導体用ダイアタッチペーストのBステージ化による濡れ広がり抑制が発現されやすく、また、半導体用ダイアタッチペーストのBステージ化物が硬くなり過ぎず圧着により容易にダイボンディングを行うことができる。 If the amount of the photopolymerization initiator (1) used is 0.01 to 5 parts by mass with respect to 100 parts by mass of the total radical polymerizable compound (4) (for example, (meth) acryloyl group-containing compound), Suppression of wetting and spreading due to the B-stage of the die attach paste is easily exhibited, and the B-stage product of the die attach paste for semiconductors does not become too hard, and die bonding can be easily performed by pressure bonding.
 次に、熱ラジカル発生剤(2)について説明する。
 熱ラジカル発生剤(2)は、ラジカル重合性化合物(4)のラジカル重合の開始に寄与するラジカルを加熱により発生する化合物であれば、特に制限はない。熱ラジカル発生剤としては、例えば、アゾ系化合物、有機過酸化物が挙げられ、半導体用ダイアタッチペーストに用いる熱ラジカル発生剤としては、有機過酸化物が好ましい。
Next, the thermal radical generator (2) will be described.
The thermal radical generator (2) is not particularly limited as long as it is a compound that generates a radical that contributes to initiation of radical polymerization of the radical polymerizable compound (4) by heating. Examples of thermal radical generators include azo compounds and organic peroxides, and organic peroxides are preferred as thermal radical generators used in semiconductor die attach pastes.
 有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル等が挙げられる。これらの中でも、1分間半減期温度が120~200℃の物が好ましい。より好ましくは、1分間半減期温度が120~200℃のジアルキルパーオキサイド、パーオキシエステルであり、さらに好ましくは一般的に式(3)で表される化合物である。ただし、下記式(3)中のRおよびRは炭素数1~3のアルキレン基である。 Examples of the organic peroxide include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester. Among these, those having a one-minute half-life temperature of 120 to 200 ° C. are preferable. More preferred are dialkyl peroxides and peroxyesters having a 1-minute half-life temperature of 120 to 200 ° C., and even more preferred are compounds represented by the general formula (3). However, R 2 and R 3 in the following formula (3) are alkylene groups having 1 to 3 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 1分間半減期温度が120~200℃のジアルキルパーオキサイド、パーオキシエステルの市販品としては、例えば、パーオクタO(日油株式会社製)、パーブチルO(日油株式会社製)、パーヘキサ25Z(日油株式会社製)、パークミルD(日油株式会社製)等が挙げられる。
 半導体用ダイアタッチペースト中の熱ラジカル発生剤(2)の使用量は、全ラジカル重合性化合物(4)(例えば(メタ)アクリロイル基含有化合物)100質量部に対して、0.1~10質量部の範囲が好ましく、より好ましくは0.5~6質量部であり、さらに好ましくは1~3質量部である。熱ラジカル発生剤(2)の使用量が、全ラジカル重合性化合物(4)100質量部に対して、0.1質量部以上であれば、半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。また、熱ラジカル発生剤(2)の使用量が、全ラジカル重合性化合物(4)100質量部に対して、10質量部以下であれば、半導体用ダイアタッチペーストの熱硬化時や半導体パッケージ製造工程の中でアウトガスが発生しにくい。
Examples of commercially available dialkyl peroxides and peroxyesters having a 1-minute half-life temperature of 120 to 200 ° C. include perocta O (manufactured by NOF Corporation), perbutyl O (manufactured by NOF Corporation), and perhexa 25Z (day Oil Mill Co., Ltd.), Park Mill D (manufactured by NOF Corporation), etc.
The amount of the thermal radical generator (2) used in the die attach paste for semiconductor is 0.1 to 10 parts by mass with respect to 100 parts by mass of the total radical polymerizable compound (4) (for example, (meth) acryloyl group-containing compound). The range of parts is preferred, more preferably 0.5 to 6 parts by weight, and still more preferably 1 to 3 parts by weight. If the usage-amount of a thermal radical generating agent (2) is 0.1 mass part or more with respect to 100 mass parts of all radically polymerizable compounds (4), the elasticity modulus of the hardened | cured material of the die attach paste for semiconductors is favorable. It will be something. Moreover, if the usage-amount of a thermal radical generating agent (2) is 10 mass parts or less with respect to 100 mass parts of all radically polymerizable compounds (4), at the time of thermosetting of the die attach paste for semiconductors, or semiconductor package manufacture Outgas is unlikely to occur during the process.
 次に、ポリオレフィン構造含有樹脂(3)について説明する。
 ポリオレフィン構造含有樹脂(3)は、不飽和炭化水素の重合によって得られる構造を含む樹脂であれば、特に制限されない。不飽和炭化水素としては、例えば、α-オレフィンやジオレフィンなどのオレフィンを挙げることができる。α-オレフィンとしてはエチレン、プロピレン、1-ブテンを挙げることができ、ジオレフィンとしてはブタジエン、イソプレンを挙げることができ、これらの中から選ばれた2種以上の共重合物でもよい。
 また、接着性や他の成分との反応性、特に後述のオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物との反応性を付与するために、ポリオレフィン構造含有樹脂(3)は水酸基、カルボキシル基、酸無水物基、エポキシ基、エステル構造などを有することが好ましい。例えば、酸無水物基は、前記のオレフィンの重合物に無水マレイン酸、無水フタル酸、無水イタコン酸などをグラフトすることによって、ポリオレフィン構造含有樹脂(3)に導入することができる。
Next, the polyolefin structure-containing resin (3) will be described.
The polyolefin structure-containing resin (3) is not particularly limited as long as it includes a structure obtained by polymerization of unsaturated hydrocarbons. Examples of the unsaturated hydrocarbon include olefins such as α-olefins and diolefins. Examples of the α-olefin include ethylene, propylene, and 1-butene. Examples of the diolefin include butadiene and isoprene. Two or more kinds of copolymers selected from these may be used.
In order to impart adhesiveness and reactivity with other components, particularly reactivity with a ring structure-containing compound containing an oxirane ring structure or oxetane ring structure described later, the polyolefin structure-containing resin (3) is a hydroxyl group, It preferably has a carboxyl group, an acid anhydride group, an epoxy group, an ester structure, and the like. For example, the acid anhydride group can be introduced into the polyolefin structure-containing resin (3) by grafting maleic anhydride, phthalic anhydride, itaconic anhydride, or the like onto the polymer of the olefin.
 ポリオレフィン構造含有樹脂(3)のより好ましい例としては、不飽和炭化水素と無水マレイン酸との共重合体である無水マレイン酸変性ポリオレフィンが挙げられる。無水マレイン酸と共重合する不飽和炭化水素は、半導体用ダイアタッチペーストの硬化物の応力緩和性の観点から、共役二重結合を持つ化合物が好ましく、さらにはブタジエンまたはイソプレンを予め重合したもの、または、ブタジエンとイソプレンを予め共重合したものが好ましい。また、この無水マレイン酸変性ポリオレフィンは、不飽和の2価炭化水素基を有するものが好ましい。そして、この無水マレイン酸変性ポリオレフィンは、ブタジエンまたはイソプレンを予め重合したもの、または、ブタジエンとイソプレンを予め共重合したものに、無水マレイン酸をグラフトさせた化合物を含む。 More preferred examples of the polyolefin structure-containing resin (3) include maleic anhydride-modified polyolefin which is a copolymer of unsaturated hydrocarbon and maleic anhydride. The unsaturated hydrocarbon copolymerized with maleic anhydride is preferably a compound having a conjugated double bond from the viewpoint of stress relaxation of the cured product of the die attach paste for semiconductor, and further prepolymerized with butadiene or isoprene. Or what copolymerized butadiene and isoprene previously is preferable. The maleic anhydride-modified polyolefin preferably has an unsaturated divalent hydrocarbon group. The maleic anhydride-modified polyolefin contains a compound obtained by grafting maleic anhydride onto a polymer obtained by previously polymerizing butadiene or isoprene or a copolymer obtained by copolymerizing butadiene and isoprene in advance.
 無水マレイン酸変性ポリオレフィンの市販品としては、ダイヤカルナ(三菱化学株式会社製)、M-1000-80(日本石油化学株式会社製)、Ricon MA(CRAYVALLEY社製)等が挙げられる。
 ポリオレフィン構造含有樹脂(3)の数平均分子量は、2000よりも大きいことが好ましく、5000よりも大きいことがより好ましい。ポリオレフィン構造含有樹脂(3)の数平均分子量が2000よりも大きければ、半導体用ダイアタッチペーストの硬化物の応力緩和性が良好なものとなる。
Examples of commercially available maleic anhydride-modified polyolefin include Diacarna (manufactured by Mitsubishi Chemical Co., Ltd.), M-1000-80 (manufactured by Nippon Petrochemical Co., Ltd.), and Riccon MA (manufactured by CRAYVALLEY).
The number average molecular weight of the polyolefin structure-containing resin (3) is preferably larger than 2000, and more preferably larger than 5000. When the number average molecular weight of the polyolefin structure-containing resin (3) is larger than 2000, the stress relaxation property of the cured product of the die attach paste for semiconductor is improved.
 半導体用ダイアタッチペースト中のポリオレフィン構造含有樹脂(3)の使用量は、全硬化成分に対して20~80質量%であることが好ましく、より好ましくは30~70質量%である。ポリオレフィン構造含有樹脂(3)の使用量が、全硬化成分に対して20質量%以上であれば、半導体用ダイアタッチペーストの硬化物の応力緩和性が良好なものとなる。また、ポリオレフィン構造含有樹脂(3)の使用量が、全硬化成分に対して80質量%以下であれば、半導体用ダイアタッチペーストの粘度が良好なものとなり、ハンドリングが容易となる。 The amount of the polyolefin structure-containing resin (3) used in the die attach paste for semiconductor is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, based on the total cured components. When the amount of the polyolefin structure-containing resin (3) used is 20% by mass or more based on the total amount of the cured components, the stress relaxation property of the cured product of the die attach paste for semiconductor is good. Moreover, if the usage-amount of polyolefin structure containing resin (3) is 80 mass% or less with respect to all the hardening components, the viscosity of the die-attach paste for semiconductors will become favorable, and handling will become easy.
 次に、ラジカル重合性化合物(4)について説明する。
 ラジカル重合性化合物(4)は、ラジカル重合性を有する化合物であれば、特に制限はなく、例えば、ビニル基を有する化合物、(メタ)アクリロイル基を有する化合物等が挙げられ、(メタ)アクリロイル基含有化合物がより好ましい。ただし、後述するシランカップリング剤のうち(メタ)アクリロイル基を有するものを除く。すなわち、半導体用ダイアタッチペーストがシランカップリング剤を含む場合において、シランカップリング剤の中に(メタ)アクリロイル基を有するものが含まれる時は、(メタ)アクリロイル基を有するシランカップリング剤は、シランカップリング剤に含まれるものとし、ラジカル重合性化合物(4)には含まれないものとする。
Next, the radical polymerizable compound (4) will be described.
The radically polymerizable compound (4) is not particularly limited as long as it is a compound having radical polymerizability, and examples thereof include a compound having a vinyl group and a compound having a (meth) acryloyl group, and a (meth) acryloyl group. Containing compounds are more preferred. However, the thing which has a (meth) acryloyl group among the silane coupling agents mentioned later is excluded. That is, when the die attach paste for semiconductor contains a silane coupling agent, when the silane coupling agent contains a (meth) acryloyl group, the silane coupling agent having a (meth) acryloyl group is And included in the silane coupling agent and not included in the radical polymerizable compound (4).
 (メタ)アクリロイル基含有化合物としては、ポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、(メタ)アクリレートモノマー等が挙げられる。
 ポリオールポリ(メタ)アクリレートとは、ポリオールと、アクリル酸またはメタクリル酸とのエステル化合物である。ここで選ばれるポリオールに特に制限はないが、例えば、鎖状の水添ダイマージオール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ポリオレフィンポリオール、水添ポリオレフィンポリオール等の鎖状脂肪族ポリオールが挙げられる。
Examples of the (meth) acryloyl group-containing compound include polyol poly (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, and (meth) acrylate monomer.
Polyol poly (meth) acrylate is an ester compound of polyol and acrylic acid or methacrylic acid. The polyol selected here is not particularly limited. For example, chain hydrogenated dimer diol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, Neopentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 2-ethyl-2-butyl-1, Examples thereof include chain aliphatic polyols such as 3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,10-decanediol, 1,12-dodecanediol, polyolefin polyol, and hydrogenated polyolefin polyol.
 ポリオールとしては、さらには、脂環構造を有する水添ダイマージオール、水添ビスフェノールAオレフィンオキサイド付加物、水添ビスフェノールFオレフィンオキサイド付加物、水添ビフェノールオレフィンオキサイド付加物、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、トリシクロ[5.2.1.02,6]デカンジメタノール、2-メチルシクロヘキサン-1,1-ジメタノール等の脂環構造を有するポリオールが挙げられる。 The polyol further includes hydrogenated dimer diol having an alicyclic structure, hydrogenated bisphenol A olefin oxide adduct, hydrogenated bisphenol F olefin oxide adduct, hydrogenated biphenol olefin oxide adduct, 1,4-cyclohexanedimethanol. And polyols having an alicyclic structure such as 1,3-cyclohexanedimethanol, tricyclo [5.2.1.02,6] decandimethanol, 2-methylcyclohexane-1,1-dimethanol and the like.
 ポリオールとしては、さらには、トリマートリオール、p-キシリレングリコール、ビスフェノールAオレフィンオキサイド付加物、ビスフェノールFオレフィンオキサイド付加物、ビフェノールオレフィンオキサイド付加物等の芳香環を有するポリオールが挙げられ、さらには、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールが挙げられ、さらには、ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオールが挙げられる。 Examples of the polyol further include a polyol having an aromatic ring such as trimer triol, p-xylylene glycol, bisphenol A olefin oxide adduct, bisphenol F olefin oxide adduct, biphenol olefin oxide adduct, and polyethylene. Examples include polyether polyols such as glycol, polypropylene glycol, and polytetramethylene glycol, and polyester polyols such as polyhexamethylene adipate, polyhexamethylene succinate, and polycaprolactone.
 ポリオールとしては、さらには、α,ω-ポリ(1,6-ヘキシレンカーボネート)ジオール、α,ω-ポリ(3-メチル-1,5-ペンチレンカーボネート)ジオール、α,ω-ポリ[(1,6-ヘキシレン:3-メチル-ペンタメチレン)カーボネート]ジオール、α,ω-ポリ[(1,9-ノニレン:2-メチル-1,8-オクチレン)カーボネート]ジオール等の(ポリ)カーボネートジオールが挙げられ、さらには、水添ダイマー酸から誘導される構造単位および水添ダイマージオールから誘導される構造単位を有するポリエステルポリオールが挙げられる。これらのポリオールは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。 As the polyol, α, ω-poly (1,6-hexylene carbonate) diol, α, ω-poly (3-methyl-1,5-pentylene carbonate) diol, α, ω-poly [( (Poly) carbonate diols such as 1,6-hexylene: 3-methyl-pentamethylene) carbonate] diol, α, ω-poly [(1,9-nonylene: 2-methyl-1,8-octylene) carbonate] diol Furthermore, polyester polyols having a structural unit derived from a hydrogenated dimer acid and a structural unit derived from a hydrogenated dimer diol can be mentioned. These polyols may be used alone or in combination of two or more.
 また、主に硬化後の弾性率確保の観点から、脂環構造を有するポリオール、芳香環を有するポリオール、(ポリ)カーボネートジオール、ポリエステルポリオールが好ましい。更に好ましくは、芳香環を有するポリオールである。芳香環を有するポリオールから誘導されるポリオールポリ(メタ)アクリレートの市販品としては、例えば、M-208(東亜合成株式会社製)、M-211B(東亜合成株式会社製)、FA-321A(日立化成株式会社製)、FA-324A(日立化成株式会社製)、ライトアクリレートBP-4EAL(共栄社化学株式会社製)、ライトアクリレートBP-4PA(共栄社化学株式会社製)等が挙げられる。 Also, from the viewpoint of securing the elastic modulus after curing, a polyol having an alicyclic structure, a polyol having an aromatic ring, (poly) carbonate diol, and a polyester polyol are preferred. More preferred is a polyol having an aromatic ring. Examples of commercially available polyol poly (meth) acrylates derived from polyols having an aromatic ring include M-208 (manufactured by Toa Gosei Co., Ltd.), M-211B (manufactured by Toa Gosei Co., Ltd.), FA-321A (Hitachi). Kasei Co., Ltd.), FA-324A (Hitachi Chemical Co., Ltd.), Light acrylate BP-4EAL (Kyoeisha Chemical Co., Ltd.), Light acrylate BP-4PA (Kyoeisha Chemical Co., Ltd.), and the like.
 また、エポキシ(メタ)アクリレートとは、エポキシ樹脂の末端エポキシ基にアクリル酸またはメタクリル酸を付加させることで得られる化合物である。この際に選ばれるエポキシ樹脂に、特に制限は無い。具体的には、例えば、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ビフェニル型エポキシ樹脂、水添ビフェニル型エポキシ樹脂等が挙げられる。これらのエポキシ(メタ)アクリレートは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。 Moreover, epoxy (meth) acrylate is a compound obtained by adding acrylic acid or methacrylic acid to the terminal epoxy group of an epoxy resin. There is no restriction | limiting in particular in the epoxy resin selected in this case. Specifically, for example, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol F type epoxy resin, novolac type epoxy resin, hydrogenated novolac type epoxy resin, glycidyl ester type Examples thereof include an epoxy resin, a biphenyl type epoxy resin, and a hydrogenated biphenyl type epoxy resin. These epoxy (meth) acrylates may be used alone or in appropriate combination of two or more.
 エポキシ(メタ)アクリレートの市販品としては、例えば、エポキシエステル3000A(共栄社化学株式会社製)、EBECRYL600(ダイセル・サイテック株式会社製)、EBECRYL6040(ダイセル・サイテック株式会社製)等が挙げられる。
 また、ウレタン(メタ)アクリレートとは、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートを反応させるか、またはポリオールとイソシアナト基含有(メタ)アクリレートを反応させることで得られる化合物である。この際に選ばれるポリオール、ポリイソシアネート、水酸基含有(メタ)アクリレート、およびイソシアナト基含有(メタ)アクリレートに特に制限は無い。
Examples of commercially available products of epoxy (meth) acrylate include epoxy ester 3000A (manufactured by Kyoeisha Chemical Co., Ltd.), EBECRYL600 (manufactured by Daicel-Cytec Co., Ltd.), EBECRYL6040 (manufactured by Daicel-Cytech Co., Ltd.) and the like.
Urethane (meth) acrylate is a compound obtained by reacting polyol, polyisocyanate, and hydroxyl group-containing (meth) acrylate, or reacting polyol and isocyanato group-containing (meth) acrylate. There are no particular restrictions on the polyol, polyisocyanate, hydroxyl group-containing (meth) acrylate, and isocyanato group-containing (meth) acrylate selected at this time.
 ポリオールは、ポリオールポリ(メタ)アクリレートにおいて使用されるポリオールと同様である。ポリイソシアネートとしては、例えば、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-4,4′-ジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、リシントリイソシアネート、リシンジイソシアネート、ヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサンメチレンジイソシアネートおよびノルボルナンジイソシアネート等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。 The polyol is the same as the polyol used in the polyol poly (meth) acrylate. Examples of the polyisocyanate include 1,4-cyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, lysine triisocyanate, lysine diisocyanate, hexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexanemethylene diisocyanate, norbornane diisocyanate, etc. And the like. These may be used alone or in appropriate combination of two or more.
 水酸基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルアクリレート、2-ヒドロキシエチルアクリルアミド、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピルメタクリレート等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。 Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate 2-hydroxy-3- (o-phenylphenoxy) propyl acrylate, 2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 4-hydroxybutyl Methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl Pill methacrylate, and the like. These may be used alone or in appropriate combination of two or more.
 イソシアナト基含有(メタ)アクリレートとしては、2-イソシアナトエチルアクリレート、2-イソシアナトエチルメタクリレート等が挙げられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 ウレタン(メタ)アクリレートは、ジブチル錫ジラウレート、ジオクチル錫ジラウレートのような公知のウレタン化触媒の存在下または非存在下で、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートを、または、ポリオールとイソシアナト基含有(メタ)アクリレートを反応させることにより合成ができるが、触媒の存在下で反応させたほうが、反応時間を短縮する意味では好ましい。ただし、半導体用ダイアタッチペーストは最終的な実使用時には硬化膜として使用されるが、触媒を多く使用しすぎると、硬化膜の物性値に悪影響を及ぼす可能性がある。よって、触媒の使用量は、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートの総量、または、ポリオールとイソシアナト基含有(メタ)アクリレートの総量100質量部に対して0.001~1質量部であることが好ましい。
Examples of the isocyanato group-containing (meth) acrylate include 2-isocyanatoethyl acrylate and 2-isocyanatoethyl methacrylate. These may be used alone or in appropriate combination of two or more.
Urethane (meth) acrylate is a polyol and a polyisocyanate and a hydroxyl group-containing (meth) acrylate, or a polyol and an isocyanate group in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurate or dioctyltin dilaurate. The synthesis can be performed by reacting the contained (meth) acrylate, but the reaction in the presence of a catalyst is preferable in terms of shortening the reaction time. However, the die attach paste for semiconductor is used as a cured film in the final actual use, but if too much catalyst is used, the physical property value of the cured film may be adversely affected. Therefore, the amount of the catalyst used is 0.001 to 1 part by mass with respect to the total amount of polyol, polyisocyanate, and hydroxyl group-containing (meth) acrylate, or 100 parts by mass of polyol and isocyanato group-containing (meth) acrylate. It is preferable.
 また、前記ウレタン化触媒は、半導体用ダイアタッチペースト中にアルコキシシリル基を含む場合には、アルコキシシリル基の加水分解反応を触媒する。そのような場合には、半導体用ダイアタッチペーストの経時安定性と支持部材(例えばリードフレームや基板)への密着性のバランスを考慮する必要があり、その際の使用量は、ポリオールとポリイソシアネートと水酸基含有(メタ)アクリレートの総量、または、ポリオールとイソシアナト基含有(メタ)アクリレートの総量100質量部に対して0.003~0.2質量部であることが好ましく、0.005~0.15質量部であることがより好ましい。触媒量が0.001質量部以上であれば、触媒の添加効果が好適に発現され、1質量部以下であれば、先にも述べたように、最終的な硬化物としての実使用時の物性値が良好なものとなる。 The urethanization catalyst catalyzes the hydrolysis reaction of the alkoxysilyl group when the die attach paste for semiconductor contains an alkoxysilyl group. In such a case, it is necessary to consider the balance between the stability over time of the die attach paste for semiconductors and the adhesion to the support member (for example, a lead frame or a substrate), and the amounts used are polyol and polyisocyanate. It is preferably 0.003 to 0.2 parts by mass with respect to 100 parts by mass of the total amount of styrene and hydroxyl group-containing (meth) acrylate, or 100 parts by mass of polyol and isocyanato group-containing (meth) acrylate. More preferably, it is 15 parts by mass. If the amount of the catalyst is 0.001 part by mass or more, the effect of addition of the catalyst is suitably expressed, and if it is 1 part by mass or less, as described above, the final cured product at the time of actual use is used. Good physical properties.
 本明細書における(メタ)アクリレートモノマーは、前記の(メタ)アクリロイル基含有化合物から、前記ポリオールポリ(メタ)アクリレート、前記エポキシ(メタ)アクリレートおよび前記ウレタン(メタ)アクリレートを除いた化合物である。
 (メタ)アクリレートモノマーとしては、例えば、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート等の環状エーテル基を有する(メタ)アクリロイル含有化合物、シクロヘキシルアクリレート、イソボルニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタニルエチルアクリレート、4-tert-ブチルシクロヘキシルアクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンタニルメタクリレート、ジシクロペンタニルエチルメタクリレート、4-tert-ブチルシクロヘキシルメタクリレート等の環状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物、ラウリルアクリレート、イソノニルアクリレート、2-エチルヘキシルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、イソオクチルアクリレート、イソアミルアクリレート、ラウリルメタクリレート、イソノニルメタクリレート、2-エチルヘキシルメタクリレート、イソブチルメタクリレート、tert-ブチルメタクリレート、イソオクチルメタクリレート、イソアミルメタクリレート等の鎖状脂肪族基を有する単官能(メタ)アクリロイル基含有化合物、ベンジルアクリレート、フェノキシエチルアクリレート、ベンジルメタクリレート、フェノキシエチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート等の芳香環を有する単官能(メタ)アクリロイル基含有化合物、ポリエチレングリコールジアクリレート、デカンジオールジアクリレート、ノナンジオールジアクリレート、ヘキサンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート等の多官能(メタ)アクリロイル基含有化合物を挙げることができる。なお、上記単官能(メタ)アクリロイル基含有化合物とは、1つの(メタ)アクリロイル基を含有する(メタ)アクリロイル基含有化合物を意味し、上記多官能(メタ)アクリロイル基含有化合物とは、複数の(メタ)アクリロイル基を含有する(メタ)アクリロイル基含有化合物を意味する。
The (meth) acrylate monomer in this specification is a compound obtained by removing the polyol poly (meth) acrylate, the epoxy (meth) acrylate, and the urethane (meth) acrylate from the (meth) acryloyl group-containing compound.
Examples of (meth) acrylate monomers include (meth) acryloyl-containing compounds having a cyclic ether group such as glycidyl acrylate, tetrahydrofurfuryl acrylate, glycidyl methacrylate, and tetrahydrofurfuryl methacrylate, cyclohexyl acrylate, isobornyl acrylate, and dicyclopentenyl. Acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentanyl ethyl acrylate, 4-tert-butylcyclohexyl acrylate, cyclohexyl methacrylate, isobornyl methacrylate, dicyclopentenyl methacrylate, dicyclopentenyloxyethyl methacrylate, Dicyclopentanyl methacrylate, dicyclopentanyl ester Monofunctional (meth) acryloyl group-containing compounds having a cyclic aliphatic group such as methacrylate, 4-tert-butylcyclohexyl methacrylate, lauryl acrylate, isononyl acrylate, 2-ethylhexyl acrylate, isobutyl acrylate, tert-butyl acrylate, isooctyl Monofunctional (meth) acryloyl group-containing compounds having a chain aliphatic group such as acrylate, isoamyl acrylate, lauryl methacrylate, isononyl methacrylate, 2-ethylhexyl methacrylate, isobutyl methacrylate, tert-butyl methacrylate, isooctyl methacrylate, isoamyl methacrylate, Benzyl acrylate, phenoxyethyl acrylate, benzyl methacrylate, phenoxyethyl methacrylate Monofunctional (meth) acryloyl group-containing compounds having an aromatic ring such as acrylate, 2-hydroxy-3-phenoxypropyl methacrylate, polyethylene glycol diacrylate, decanediol diacrylate, nonanediol diacrylate, hexanediol diacrylate, tricyclode Mention may be made of polyfunctional (meth) acryloyl group-containing compounds such as candimethanol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate and the like. The monofunctional (meth) acryloyl group-containing compound means a (meth) acryloyl group-containing compound containing one (meth) acryloyl group, and the polyfunctional (meth) acryloyl group-containing compound is a plurality of The (meth) acryloyl group containing compound of (meth) acryloyl group of this is meant.
 半導体用ダイアタッチペースト中のラジカル重合性化合物(4)の使用量は、全硬化成分に対して、5~80質量%含有することが好ましく、より好ましくは10~60質量%であり、さらに好ましくは15~50質量%である。ラジカル重合性化合物(4)の使用量が、全硬化成分に対して80質量%以下であれば、半導体用ダイアタッチペーストの硬化物の支持部材への密着性が良好なものとなる。また、ラジカル重合性化合物(4)の使用量が、全硬化成分に対して5質量%以上であれば、半導体用ダイアタッチペーストの粘度が良好なものとなり、ハンドリングが容易となる。 The amount of the radical polymerizable compound (4) used in the die attach paste for semiconductor is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, and still more preferably based on the total curing component. Is 15 to 50% by mass. If the usage-amount of a radically polymerizable compound (4) is 80 mass% or less with respect to all the hardening components, the adhesiveness to the support member of the hardened | cured material of the die-attach paste for semiconductors will become favorable. Moreover, if the usage-amount of a radically polymerizable compound (4) is 5 mass% or more with respect to all the hardening components, the viscosity of the die-attach paste for semiconductors will become favorable, and handling will become easy.
 なお、本明細書に記載の「硬化成分」とは、ラジカル重合により重合可能な化合物および/または後述するオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物および/またはオキシラン環構造またはオキセタン環構造と反応し得る化合物を意味し、「全硬化成分」とは硬化成分の総量を意味する。ラジカル重合性化合物(4)(例えば(メタ)アクリロイル基含有化合物)、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物、無水マレイン酸変性ポリオレフィンは、すべて硬化成分に含まれる。 The “curing component” described in the present specification means a compound that can be polymerized by radical polymerization and / or a ring structure-containing compound and / or an oxirane ring structure or oxetane ring containing an oxirane ring structure or oxetane ring structure described later. It means a compound that can react with the structure, and “total curing component” means the total amount of the curing component. The radical polymerizable compound (4) (for example, a (meth) acryloyl group-containing compound), a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, and a maleic anhydride-modified polyolefin are all included in the curing component.
 後述のシランカップリング剤中のp-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシランのラジカル重合性不飽和基を有するシランカップリング剤も硬化成分に含まれる。 P-styryltrimethoxysilane, p-styryltriethoxysilane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3 in the silane coupling agent described below -No radical polymerization of methacryloyloxypropyltriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane A silane coupling agent having a saturated group is also included in the curing component.
 本発明に使用される(メタ)アクリロイル基含有化合物は、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)を含むことが好ましい。(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)は、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する化合物であれば特に制限はない。 The (meth) acryloyl group-containing compound used in the present invention includes a (meth) acryloyl group-containing compound (5) containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule. It is preferable. The (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is composed of the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure. If it is a compound which contains both in the same molecule, there will be no restriction | limiting in particular.
 ただし、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)は、後述するオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物には含まれない。すなわち、半導体用ダイアタッチペーストに、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)が含まれる時は、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)は、(メタ)アクリロイル基含有化合物に含まれるものとし、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物には含まれないものとする。 However, the (meth) acryloyl group-containing compound (5) containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule is a ring containing an oxirane ring structure or an oxetane ring structure described later. Not included in structure-containing compounds. That is, when the die attach paste for semiconductor contains a (meth) acryloyl group-containing compound (5) containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule, The (meth) acryloyl group-containing compound (5) containing both an acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule shall be included in the (meth) acryloyl group-containing compound, It is not included in a ring structure-containing compound containing an oxetane ring structure.
 (メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)とは、前述のポリオールポリ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、(メタ)アクリレートモノマーの内、オキシラン環構造またはオキセタン環構造を含有するもの等が挙げられる。 The (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is the above-mentioned polyol poly (meth) acrylate, epoxy (meth) acrylate , Urethane (meth) acrylate, and (meth) acrylate monomers containing an oxirane ring structure or an oxetane ring structure.
 例えば、オキシラン環構造またはオキセタン環構造を含有するポリオールから誘導されるポリオールポリ(メタ)アクリレートまたはウレタン(メタ)アクリレートや、オキシラン環構造またはオキセタン環構造を含有するエポキシ樹脂から誘導されるエポキシ(メタ)アクリレート等が挙げられる。これらは例えば、含有するオキシラン環構造またはオキセタン環構造の総数と、反応させるアクリル酸またはメタクリル酸の総数の比を1よりも大きくすることで得ることができる。また例えば、オキシラン環構造またはオキセタン環構造を含有する(メタ)アクリレートモノマーとしては、グリシジルアクリレート、グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等が挙げられる。 For example, a polyol poly (meth) acrylate or urethane (meth) acrylate derived from a polyol containing an oxirane ring structure or oxetane ring structure, or an epoxy derived from an epoxy resin containing an oxirane ring structure or oxetane ring structure (meta ) Acrylate and the like. These can be obtained, for example, by making the ratio of the total number of oxirane ring structure or oxetane ring structure contained and the total number of acrylic acid or methacrylic acid to be reacted larger than 1. Examples of (meth) acrylate monomers containing an oxirane ring structure or an oxetane ring structure include glycidyl acrylate, glycidyl methacrylate, 4-hydroxybutyl acrylate glycidyl ether, and the like.
 半導体用ダイアタッチペースト中の、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)の使用量は、全(メタ)アクリロイル基含有化合物100質量部に対して、10質量部以上とすることが好ましく、より好ましくは20質量部以上であり、さらに好ましくは30質量部以上である。(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)の使用量が、全(メタ)アクリロイル基含有化合物100質量部に対して10質量部以上であれば、半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。 The amount of the (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule in the semiconductor die attach paste is It is preferable to set it as 10 mass parts or more with respect to 100 mass parts of acryloyl group containing compounds, More preferably, it is 20 mass parts or more, More preferably, it is 30 mass parts or more. The amount of the (meth) acryloyl group-containing compound (5) containing both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure in the same molecule is 100 parts by mass of the total (meth) acryloyl group-containing compound. On the other hand, if it is 10 parts by mass or more, the elastic modulus of the cured product of the die attach paste for semiconductor will be good.
 本発明においては、半導体用ダイアタッチペーストは、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物を含むことが好ましいため、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物が添加されることがある。オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物は、オキシラン環構造またはオキセタン環構造を含有する化合物であれば、特に制限はない。 In the present invention, since the die attach paste for semiconductor preferably contains a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure is added. Sometimes. The ring structure-containing compound containing an oxirane ring structure or oxetane ring structure is not particularly limited as long as it is a compound containing an oxirane ring structure or oxetane ring structure.
 オキシラン環構造またはオキセタン環構造を含有する化合物としては、アルコール、アミン、カルボン酸等のエピクロルヒドリン付加物、オレフィンオキサイド、ケトンとオレフィンの環状付加物、オキセタンアルコール誘導体等が挙げられ、具体的には、前述のエポキシ(メタ)アクリレートに使用されるエポキシ樹脂や、2-エチルヘキシルオキセタン、キシリレンビスオキセタン、オキセタン樹脂が挙げられる。半導体用ダイアタッチペーストの硬化物の架橋密度の観点から、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物は2官能以上であることが好ましく、中でもエポキシ樹脂が好ましい。 Examples of the compound containing an oxirane ring structure or an oxetane ring structure include epichlorohydrin adducts such as alcohols, amines, and carboxylic acids, olefin oxides, cycloadditions of ketones and olefins, oxetane alcohol derivatives, and the like. Examples thereof include epoxy resins used in the above-mentioned epoxy (meth) acrylate, 2-ethylhexyl oxetane, xylylene bisoxetane, and oxetane resins. From the viewpoint of the crosslinking density of the cured product of the die attach paste for semiconductor, the ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure is preferably bifunctional or more, and an epoxy resin is particularly preferable.
 半導体用ダイアタッチペースト中のオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物の使用量は、オキシラン環構造またはオキセタン環構造の総数と、後述する無水マレイン酸変性ポリオレフィンの無水マレイン酸由来のカルボン酸無水物構造の総数との比が2.8~0.4となる量であることが好ましく、2.0~1.2となる量であることがより好ましい。オキシラン環構造またはオキセタン環構造の総数と無水マレイン酸由来のカルボン酸無水物構造の総数との比が2.8~0.4であれば、半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。 The amount of the ring structure-containing compound containing the oxirane ring structure or oxetane ring structure in the die attach paste for semiconductors is derived from the total number of oxirane ring structures or oxetane ring structures and the maleic anhydride-derived maleic anhydride-modified polyolefin described later. The amount is preferably such that the ratio to the total number of carboxylic anhydride structures is 2.8 to 0.4, more preferably 2.0 to 1.2. If the ratio of the total number of oxirane ring structures or oxetane ring structures to the total number of carboxylic anhydride structures derived from maleic anhydride is 2.8 to 0.4, the elastic modulus of the cured product of the die attach paste for semiconductor is good. It will be something.
 また、本発明においては、半導体用ダイアタッチペーストは、熱硬化促進剤を含むことが好ましいため、熱硬化促進剤が添加されることがある。熱硬化促進剤は、オキシラン環構造またはオキセタン環構造と、それらと反応し得る化合物との反応を促進する化合物であれば、特に制限はない。
 熱硬化促進剤としては、例えば、アルキルホスフィン化合物、イミダゾール化合物、脂肪族アミン、脂環族アミン、環状アミジン、これらのテトラフェニルボレート塩等のブロック化合物、フェノール性水酸基を有する化合物、ポリアミド、カルボン酸無水物、ジシアンジアミド、有機酸ジヒドラジド等が挙げられる。
Moreover, in this invention, since it is preferable that the die-attach paste for semiconductors contains a thermosetting accelerator, a thermosetting accelerator may be added. The thermosetting accelerator is not particularly limited as long as it is a compound that promotes the reaction between the oxirane ring structure or the oxetane ring structure and a compound capable of reacting with them.
Examples of the thermosetting accelerator include alkyl phosphine compounds, imidazole compounds, aliphatic amines, alicyclic amines, cyclic amidines, block compounds such as tetraphenylborate salts, compounds having phenolic hydroxyl groups, polyamides, and carboxylic acids. Anhydride, dicyandiamide, organic acid dihydrazide and the like can be mentioned.
 硬化性と保存安定性のバランスの観点から、イミダゾール化合物およびそのブロック化合物、環状アミジンのブロック化合物が好ましい。これらの市販品の例としては、キュアゾール2E4MZ(四国化成工業株式会社製)、キュアゾール2PZ-PW(四国化成工業株式会社製)、キュアゾール2P4MZ(四国化成工業株式会社製)、キュアゾールC11Z-CNS(四国化成工業株式会社製)、U-CAT SA102(サンアプロ株式会社製)、U-CAT SA506(サンアプロ株式会社製)、U-CAT 5002(サンアプロ株式会社製)等が挙げられる。 From the viewpoint of balance between curability and storage stability, an imidazole compound, a block compound thereof, and a block compound of cyclic amidine are preferred. Examples of these commercially available products include Curazole 2E4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole 2PZ-PW (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole 2P4MZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), Curazole C11Z-CNS (Shikoku Kasei Kogyo Co., Ltd.), U-CAT SA102 (San Apro Co., Ltd.), U-CAT SA506 (San Apro Co., Ltd.), U-CAT 5002 (San Apro Co., Ltd.), and the like.
 半導体用ダイアタッチペースト中の熱硬化促進剤の使用量は、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物、および、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)の合計の100質量部に対して、0.5質量部以上10質量部以下の範囲が好ましく、より好ましくは1質量部以上6質量部以下である。 The amount of the thermosetting accelerator used in the die attach paste for semiconductor is determined based on the ring structure-containing compound containing the oxirane ring structure or oxetane ring structure, and both the (meth) acryloyl group and the oxirane ring structure or oxetane ring structure. The range of 0.5 parts by mass or more and 10 parts by mass or less is preferable with respect to 100 parts by mass of the total of (meth) acryloyl group-containing compound (5) contained in the same molecule, more preferably 1 part by mass or more and 6 parts by mass. Or less.
 熱硬化促進剤の使用量が、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物、および、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)の合計の100質量部に対して、0.5質量部以上であれば、半導体用ダイアタッチペーストの硬化物の弾性率が良好なものとなる。また、熱硬化促進剤の使用量が、オキシラン環構造またはオキセタン環構造を含有する環構造含有化合物、および、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物(5)の合計の100質量部に対して、10質量部以下であれば、半導体用ダイアタッチペーストの熱硬化時や半導体パッケージ製造工程の中でアウトガスが発生しにくい。 The use amount of the thermosetting accelerator contains a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, and a (meth) acryloyl group and an oxirane ring structure or oxetane ring structure in the same molecule ( If it is 0.5 mass part or more with respect to 100 mass parts of the sum total of (meth) acryloyl group containing compound (5), the elasticity modulus of the hardened | cured material of the die-attach paste for semiconductors will become favorable. In addition, the amount of the thermosetting accelerator used is a ring structure-containing compound containing an oxirane ring structure or an oxetane ring structure, and a (meth) acryloyl group and an oxirane ring structure or oxetane ring structure are contained in the same molecule. If the total amount of the (meth) acryloyl group-containing compound (5) is 10 parts by mass or less, outgas is generated during the thermosetting of the die attach paste for semiconductor or in the semiconductor package manufacturing process. Hateful.
 また、本発明においては、半導体用ダイアタッチペーストは、保存安定性を増すために重合禁止剤を含むことが好ましいため、重合禁止剤が添加されることがある。この重合禁止剤としては、特に限定されるものではないが、例えば、ヒドロキノン、p-メトキシフェノール、p-ベンゾキノン、ナフトキノン、フェナンスラキノン、トルキノン、2,5-ジアセトキシ-p-ベンゾキノン、2,5-ジカプロキシ-p-ベンゾキノン、2,5-アシロキシ-p-ベンゾキノン、p-tert-ブチルカテコール、2,5-ジ-tert-ブチルヒドロキノン、p-tert-ブチルカテコール、モノ-tert-ブチルヒドロキノン、2,5-ジ-tert-アミルヒドロキノン、ジ-tert-ブチル-p-クレゾールヒドロキノンモノメチルエーテルおよびフェノチアジンが好適に用いられる。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
 通常、この重合禁止剤は、全ラジカル重合性化合物(4)100質量部に対し、0.01~10質量部添加することが好ましい。
Moreover, in this invention, since it is preferable that the die-attach paste for semiconductors contains a polymerization inhibitor in order to increase storage stability, a polymerization inhibitor may be added. The polymerization inhibitor is not particularly limited. For example, hydroquinone, p-methoxyphenol, p-benzoquinone, naphthoquinone, phenanthraquinone, tolquinone, 2,5-diacetoxy-p-benzoquinone, 2, 5-dicaproxy-p-benzoquinone, 2,5-acyloxy-p-benzoquinone, p-tert-butylcatechol, 2,5-di-tert-butylhydroquinone, p-tert-butylcatechol, mono-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, di-tert-butyl-p-cresol hydroquinone monomethyl ether and phenothiazine are preferably used. These may be used alone or in appropriate combination of two or more.
Usually, this polymerization inhibitor is preferably added in an amount of 0.01 to 10 parts by mass with respect to 100 parts by mass of the total radical polymerizable compound (4).
 本発明において半導体用ダイアタッチペーストは、支持部材への密着性を付与する目的で、さらにシランカップリング剤を含むことが可能である。
 シランカップリング剤は、有機材料と反応結合する官能基、および無機材料と反応結合する官能基との両方を分子内に有する有機ケイ素化合物で、一般的にその構造は下記式(4)のように示される。
In the present invention, the die attach paste for a semiconductor can further contain a silane coupling agent for the purpose of imparting adhesion to the support member.
A silane coupling agent is an organosilicon compound having both a functional group reactively bonded to an organic material and a functional group reactively bonded to an inorganic material in the molecule, and its structure is generally represented by the following formula (4). Shown in
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ここで、Yは有機材料と反応結合する官能基であり、ビニル基、エポキシ基、アミノ基、置換アミノ基、(メタ)アクリロイル基、メルカプト基等がその代表例として挙げられる。また、Xは無機材料と反応する官能基であり、水あるいは湿気により加水分解を受けてシラノールを生成し、このシラノールが無機材料と反応結合する。Xの代表例としては、アルコキシ基、アセトキシ基、クロル原子などを挙げることができる。Rは、2価の有機基であり、Rはアルキル基を表す。iは1~3の整数を表し、jは0~2の整数を表す。ただし、iとjの和は3である。 Here, Y is a functional group that reacts with an organic material, and representative examples thereof include a vinyl group, an epoxy group, an amino group, a substituted amino group, a (meth) acryloyl group, and a mercapto group. X is a functional group that reacts with the inorganic material and is hydrolyzed by water or moisture to produce silanol, which reacts with the inorganic material. Representative examples of X include an alkoxy group, an acetoxy group, a chloro atom, and the like. R 4 is a divalent organic group, and R 5 represents an alkyl group. i represents an integer of 1 to 3, and j represents an integer of 0 to 2. However, the sum of i and j is 3.
 このようなシランカップリング剤の中で、好ましいものは、Yがラジカル重合性化合物(4)(例えば(メタ)アクリロイル基含有化合物)および/またはオキシラン環構造またはオキセタン環構造を含有する環構造含有化合物および/または無水マレイン酸変性ポリオレフィンと反応性を有する化合物であり、その中でも、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルメチルジエトキシシラン、3-メタクリロイルオキシプロピルメチルジエトキシシラン2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが好ましい。 Among such silane coupling agents, the preferable one is that Y is a radically polymerizable compound (4) (for example, a (meth) acryloyl group-containing compound) and / or a ring structure containing an oxirane ring structure or an oxetane ring structure. Compound and / or a compound having reactivity with maleic anhydride-modified polyolefin, among which p-styryltrimethoxysilane, p-styryltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriisopropoxysilane , Vinyltris (2-methoxyethoxy) silane, 3-acryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-acryloyloxypropyltriethoxysilane, 3-methacryloyloxypro Lutriethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane 2- (3,4-epoxycyclohexyl) ) Ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N-2 -(Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyl Liethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxy Silane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane are preferred.
 さらに好ましくは、熱硬化反応の際に硬化物中に容易に取り込まれる2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシランが好ましい。 More preferably, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl which are easily incorporated into the cured product during the heat curing reaction. Dimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl)- 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- ( 1,3-dimethyl-butylidene) propylamine, N-fur -3- aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyl triethoxysilane are preferred.
 本発明においては、半導体用ダイアタッチペースト中の全硬化成分に対するシランカップリング剤の量は、0.01質量%以上8質量%以下の範囲であることが好ましく、さらに好ましくは、0.1質量%以上5質量%以下の範囲である。半導体用ダイアタッチペースト中の全硬化成分に対して0.01質量%以上であれば、支持部材への密着性が十分に発現される。また、半導体用ダイアタッチペースト中の全硬化成分に対して8質量%以下であれば、使用するシランカップリング剤の種類によらず保存安定性が良好なものとなる。 In the present invention, the amount of the silane coupling agent relative to the total curing component in the die attach paste for semiconductor is preferably in the range of 0.01% by mass to 8% by mass, and more preferably 0.1% by mass. % Or more and 5% by mass or less. If it is 0.01 mass% or more with respect to all the hardening components in the die-attach paste for semiconductors, the adhesiveness to a supporting member will fully express. Moreover, if it is 8 mass% or less with respect to all the hardening components in the die-attach paste for semiconductors, storage stability will become favorable irrespective of the kind of silane coupling agent to be used.
 また、本発明においては、半導体用ダイアタッチペーストは、フィラーを含むことが好ましいため、フィラーが添加されることがある。
 フィラーは、例えば、銀粉、金粉、銅粉、ニッケル粉等の金属フィラーや、アルミナ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、結晶性シリカ、非晶性シリカ、窒化ホウ素、チタニア、ガラス、酸化鉄、セラミック等の無機フィラーや、カーボン、ゴム系フィラー等の有機フィラー等が挙げられ、種類、形状等も含めて特に制限はない。これらは単独で使用してもよいし、あるいは2種以上を適宜組み合わせて使用してもよい。
Moreover, in this invention, since it is preferable that the die-attach paste for semiconductors contains a filler, a filler may be added.
The filler is, for example, a metal filler such as silver powder, gold powder, copper powder, nickel powder, alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, Examples include inorganic fillers such as aluminum oxide, aluminum nitride, crystalline silica, amorphous silica, boron nitride, titania, glass, iron oxide, and ceramics, and organic fillers such as carbon and rubber fillers. There is no restriction in particular. These may be used alone or in appropriate combination of two or more.
 これらのフィラーは、目的に応じて使い分けることができる。例えば、金属フィラーは半導体用ダイアタッチペーストに主に導電性を付与する目的で添加され、無機フィラーは半導体用ダイアタッチペーストに主に低熱膨張性を付与する目的で添加され、有機フィラーは半導体用ダイアタッチペーストに主に応力緩和性を付与する目的で添加され、またそれ以外に熱伝導性、低吸湿性、絶縁性等、目的毎に異なる種類のフィラーの添加を行うことができる。 These fillers can be used properly according to the purpose. For example, metal fillers are added mainly for the purpose of imparting conductivity to semiconductor die attach pastes, inorganic fillers are added mainly for the purpose of imparting low thermal expansion to semiconductor die attach pastes, and organic fillers are for semiconductors. It is added mainly for the purpose of imparting stress relaxation properties to the die attach paste, and other types of fillers such as thermal conductivity, low hygroscopicity, and insulating properties can be added depending on the purpose.
 フィラーは、平均粒子径が20μm以下かつ最大粒子径が60μm以下であることが好ましく、より好ましくは平均粒子径が10μm以下かつ最大粒子径が30μm以下である。平均粒子径が20μm以下かつ最大粒子径が60μm以下であれば、半導体用ダイアタッチペーストの保存安定性および塗布性が良好なものとなる。
 フィラーの配合量は、半導体用ダイアタッチペースト中の全硬化成分100質量部に対して、5質量部以上80質量部以下であることが好ましい。フィラーの配合量が5質量部以上であると、半導体用ダイアタッチペーストの硬化物の弾性率が良好であり、熱膨張・収縮率の制御も容易である。一方、フィラーの配合量が80質量部以下であると、半導体用ダイアタッチペーストの粘度が適当である。
The filler preferably has an average particle size of 20 μm or less and a maximum particle size of 60 μm or less, more preferably an average particle size of 10 μm or less and a maximum particle size of 30 μm or less. When the average particle size is 20 μm or less and the maximum particle size is 60 μm or less, the storage stability and the coating property of the die attach paste for semiconductor are good.
It is preferable that the compounding quantity of a filler is 5 to 80 mass parts with respect to 100 mass parts of all the hardening components in the die-attach paste for semiconductors. When the blending amount of the filler is 5 parts by mass or more, the elastic modulus of the cured product of the die attach paste for semiconductor is good, and the control of the thermal expansion / contraction rate is easy. On the other hand, when the blending amount of the filler is 80 parts by mass or less, the viscosity of the die attach paste for semiconductor is appropriate.
 本発明における半導体用ダイアタッチペーストは、25℃での粘度が50000mPa・s以下であることが好ましい。さらに好ましくは、25℃での粘度が25000mPa・s以下である。25℃での粘度が50000mPa・s以下であれば、半導体用ダイアタッチペーストをダイのサイズに合わせて定量性良く塗布することが容易となる。
 本発明においては、粘弾性測定装置を用いて半導体用ダイアタッチペーストのせん断粘度を測定した。粘弾性測定装置を用いて粘度測定を行う際の代表的な条件を説明する。半導体用ダイアタッチペーストの試料を、粘弾性測定装置(Anton-Paar社製、型式:MCR301)に装入し、型番CP-25のコーンプレート型スピンドルを使用して、温度25.0℃、せん断速度10s-1の条件でせん断粘度を測定する。
The die attach paste for semiconductor in the present invention preferably has a viscosity at 25 ° C. of 50000 mPa · s or less. More preferably, the viscosity at 25 ° C. is 25000 mPa · s or less. When the viscosity at 25 ° C. is 50000 mPa · s or less, it becomes easy to apply the die attach paste for a semiconductor with good quantitativeness according to the size of the die.
In the present invention, the shear viscosity of the semiconductor die attach paste was measured using a viscoelasticity measuring device. The typical conditions when performing viscosity measurement using a viscoelasticity measuring device will be described. A sample of a die attach paste for semiconductor was loaded into a viscoelasticity measuring device (manufactured by Anton-Paar, model: MCR301) and sheared using a cone plate spindle of model number CP-25 at a temperature of 25.0 ° C. The shear viscosity is measured at a speed of 10 s- 1 .
<半導体パッケージの製造方法>
 本発明の半導体パッケージの製造方法は、半導体用ダイアタッチペーストをダイまたは支持部材に塗布し、次いで半導体用ダイアタッチペーストの塗布部に例えば紫外線を照射して、光重合開始剤(1)から発生したラジカルによりラジカル重合性化合物(4)等の硬化成分の一部を光重合させ、半導体用ダイアタッチペーストをBステージ化する。しかる後に、例えば25℃等の常温下でのダイボンディングと、Bステージ化した半導体用ダイアタッチペーストの熱硬化(熱ラジカル発生剤(2)から発生したラジカルによりラジカル重合性化合物(4)等の硬化成分の残部を熱重合させる)とを行い、さらに封止を行うというものである。これにより、信頼性が高く高集積化された半導体パッケージを得ることができる。なお、熱硬化と封止を同時に行ってもよい。
<Semiconductor package manufacturing method>
The semiconductor package manufacturing method of the present invention is generated from a photopolymerization initiator (1) by applying a semiconductor die attach paste to a die or a support member, and then irradiating, for example, ultraviolet rays to an application portion of the semiconductor die attach paste. A part of the curing component such as the radically polymerizable compound (4) is photopolymerized by the radical thus produced, and the die attach paste for semiconductor is made into B stage. After that, for example, die bonding at room temperature such as 25 ° C., and thermosetting of a B-staged semiconductor die attach paste (such as radical polymerizable compound (4) due to radicals generated from thermal radical generator (2)) The remainder of the curing component is thermally polymerized) and further sealed. As a result, a highly reliable semiconductor package with high reliability can be obtained. In addition, you may perform thermosetting and sealing simultaneously.
 半導体用ダイアタッチペーストの塗布方法は、特に限定されないが、浸漬法、ハケ塗り法、スプレー法、線引き塗布法、スタンピング法、印刷法、ジェットディスペンス法、インクジェット法等が挙げられる。半導体用ダイアタッチペーストの塗布部への紫外線等の光の照射方法は特に限定されないが、フレキシブル導光管を手または機械で保持・操作して半導体用ダイアタッチペーストの塗布部に照射する方法や、コンベアに半導体用ダイアタッチペーストを塗布したダイまたは支持部材を乗せ、紫外線等の光が照射される領域を通過させて照射する方法等が挙げられる。 The coating method of the die attach paste for semiconductor is not particularly limited, and examples thereof include dipping method, brush coating method, spray method, drawing method, stamping method, printing method, jet dispensing method, and ink jet method. The method of irradiating the application part of the semiconductor die attach paste with light such as ultraviolet rays is not particularly limited, but the method of irradiating the application part of the semiconductor die attach paste by holding and operating the flexible light guide tube by hand or machine, And a method of placing a die or a support member coated with a die attach paste for semiconductor on a conveyor and passing through a region irradiated with light such as ultraviolet rays.
 半導体用ダイアタッチペーストのBステージ化は、粘弾性測定装置の振動モードを用いて周波数1Hzの条件で測定した25℃における複素粘度が100Pa・s以上1000Pa・s以下となるように施されることが好ましい。複素粘度が100Pa・s以上1000Pa・s以下であれば、熱硬化の工程において半導体用ダイアタッチペーストのBステージ化物の濡れ広がりが抑制され半導体パッケージの高集積化が達成されやすくなり、さらにはダイボンディングにおける加熱が不要となり、ダイへ余分な熱履歴を与えることなく信頼性を向上させやすくなる。
 具体的には、半導体用ダイアタッチペーストを厚さ50μmになるよう塗布し、波長365nmの紫外線を照射してBステージ化させ、このBステージ化させた半導体用ダイアタッチペーストをスパチュラ等でかき取ったものをサンプルとして、粘弾性測定を行う。粘弾性測定は、粘弾性測定装置の振動モードを用い、温度25℃、周波数1Hzの条件で複素粘度を測定する。そして、複素粘度が100~1000Pa・sの範囲になる紫外線照射量を求め、それを半導体用ダイアタッチペーストのBステージ化の際の紫外線照射線量とすることが好ましい。
The B-stage of the die attach paste for semiconductors is applied so that the complex viscosity at 25 ° C. measured at a frequency of 1 Hz using the vibration mode of the viscoelasticity measuring device is 100 Pa · s to 1000 Pa · s. Is preferred. If the complex viscosity is 100 Pa · s or more and 1000 Pa · s or less, wetting and spreading of the B-stage product of the die attach paste for semiconductors is suppressed in the thermosetting process, and high integration of the semiconductor package is easily achieved. Heating in bonding becomes unnecessary, and it becomes easy to improve reliability without giving an extra heat history to the die.
Specifically, a semiconductor die attach paste is applied to a thickness of 50 μm, irradiated with ultraviolet light having a wavelength of 365 nm to form a B stage, and this B stage semiconductor die attach paste is scraped off with a spatula or the like. The viscoelasticity is measured using the sample as a sample. The viscoelasticity measurement uses a vibration mode of a viscoelasticity measuring device and measures complex viscosity under conditions of a temperature of 25 ° C. and a frequency of 1 Hz. Then, it is preferable to obtain an ultraviolet ray irradiation amount in which the complex viscosity is in the range of 100 to 1000 Pa · s, and to use it as the ultraviolet ray irradiation dose when the semiconductor die attach paste is B-staged.
 半導体用ダイアタッチペーストのBステージ化物は、熱硬化の工程において濡れ広がってしまわないように、加熱時の濡れ広がりが抑制されていることが好ましい。具体的には、支持部材であるシリコン基板上に半導体用ダイアタッチペーストを厚さ200μm、直径2mmの大きさの円状に塗布し、紫外線を1000mJ/cm照射してBステージ化させた試験片をオーブンに投入し、昇温速度4℃/分で170℃まで昇温し、そのまま1時間硬化させる。そして、硬化後の試験片上の半導体用ダイアタッチペースト硬化物を顕微鏡にて観察して直径を測定し、紫外線を1000mJ/cm照射した直後からの直径の増加率を算出する。このとき、直径の増加率が10%未満であることが好ましく、5%未満であることがより好ましい。
 さらには、Bステージ化の際の紫外線照射量は、Bステージ化のための紫外線照射直後の半導体用ダイアタッチペーストの直径と加熱硬化後の半導体用ダイアタッチペースト硬化物の直径との変化率が10%未満となるような紫外線照射量であることが好ましい。
The B-stage product of the die attach paste for semiconductors is preferably suppressed from spreading during heating so that it does not spread during the thermosetting process. Specifically, a test in which a die attach paste for semiconductor was applied in a circular shape with a thickness of 200 μm and a diameter of 2 mm on a silicon substrate as a support member, and was irradiated with ultraviolet rays at 1000 mJ / cm 2 to form a B stage. The piece is put into an oven, heated to 170 ° C. at a heating rate of 4 ° C./min, and cured as it is for 1 hour. Then, the cured die attach paste for semiconductor on the test piece after curing is observed with a microscope to measure the diameter, and the rate of increase in diameter immediately after irradiation with 1000 mJ / cm 2 of ultraviolet rays is calculated. At this time, the increasing rate of the diameter is preferably less than 10%, and more preferably less than 5%.
Furthermore, the amount of ultraviolet irradiation at the time of forming the B stage is such that the rate of change between the diameter of the die attach paste for semiconductor immediately after the ultraviolet irradiation for forming the B stage and the diameter of the cured die attach paste for semiconductor after heat curing is It is preferable that the ultraviolet irradiation amount be less than 10%.
 半導体用ダイアタッチペーストのBステージ化後、ダイボンディングを行ってからの熱硬化の方法は、特に限定されないが、ダイと支持部材とをダイボンディングしたものをオーブンに投入する方法や、ダイと支持部材とをダイボンディングしたものをコンベアに乗せ、所定温度に加熱された領域を通過させる方法等が挙げられる。
 本発明の半導体パッケージの製造方法に準じてダイボンディングおよび熱硬化を行った時の、ダイシェア強度の評価方法について説明する。ダイシェア強度の評価は、例えば、MIL-STD-883G、IEC-60749-22、EIAJ-ED-4703等の規格に従って行われる。具体的な例としては、Dage-4000(せん断接着力試験機、Dage社製)を用いて、接合されたダイの側面をセンサー付き治具で押し、ダイと支持部材の接合が破壊されるのに要する力を計測する。なお、ダイシェア強度は、2mm角の正方形のチップと支持部材が接合している場合において、58.8N以上であることが好ましい。58.8N以上となるような接合材料または接合法であれば、半導体パッケージの信頼性が良好なものとなる。
The method of thermosetting after die bonding is performed after the die attach paste for a semiconductor is changed to the B stage is not particularly limited, but a method in which a die and a support member bonded to each other are put into an oven, or a die and a support. For example, a method in which a die-bonded member is placed on a conveyor and passed through a region heated to a predetermined temperature.
A method for evaluating die shear strength when die bonding and thermosetting are performed according to the semiconductor package manufacturing method of the present invention will be described. The die shear strength is evaluated according to standards such as MIL-STD-883G, IEC-60749-22, and EIAJ-ED-4703. As a specific example, using Dage-4000 (shear adhesive strength tester, manufactured by Dage), the side of the bonded die is pushed with a jig with a sensor, and the bond between the die and the support member is broken. Measure the force required. The die shear strength is preferably 58.8 N or more when the square chip of 2 mm square and the support member are joined. If the bonding material or bonding method is 58.8 N or more, the reliability of the semiconductor package is good.
<半導体パッケージ>
 本発明の態様には、半導体用ダイアタッチペーストを用いて製造された半導体パッケージもある。半導体パッケージとしては、挿入形(Pin insertion type)であるDOパッケージ(Diode Outline)、TOパッケージ(Transistor Outline)、DIP(Dual Inline Package)、SIP(Single Inline Package)、ZIP(Zigzag Inline Package)、PGA(Pin Grid Array)、表面実装形であるSOP(Small Outline Package)、SOJ(Small Outline J-leaded)、CFP(Ceramic Flat Package)、SOT(Small Outline Transistor)、QFP(Quad Flat Package)、PLCC(Plastic Leaded Chip Carrier)、BGA(Ball Grid Array)、LGA(Land Grid Array)、LLCC(LeadLess Chip Carrier)、TCP(Tape Carrier Package)、LLP(Leadless Leadframe Package)、DFN(Dual Flatpack No-leaded)、COB(Chip On Board)等が挙げられる。
<Semiconductor package>
An aspect of the present invention also includes a semiconductor package manufactured using a semiconductor die attach paste. Semiconductor packages include DO insertion (Pin insertion type) DO package (Diode Outline), TO package (Transistor Outline), DIP (Dual Inline Package), SIP (Single Inline Package), ZIP (Zigzag Inline Package). (Pin Grid Array), surface mount type SOP (Small Outline Package), SOJ (Small Outline J-leaded), CFP (Ceramic Flat Package), SOT (Small Outline Transistor), QFP (Tu, QFP) Plastic Lead d Chip Carrier), BGA (Ball Grid Array), LGA (Land Grid Array), LLCC (Lead Less Chip Carrier), TCP (Tape Carrier Pack), LLP (Leadless Lead Frame) (Chip On Board) and the like.
 半導体パッケージは、半導体用ダイアタッチペーストをダイまたは支持部材に塗布し、次いで半導体用ダイアタッチペーストの塗布部に例えば紫外線を照射してBステージ化し、しかる後にダイボンディングと熱硬化を行い、さらに封止を行うことによって製造することができる。このようにして製造された半導体パッケージは、信頼性が高い。 In the semiconductor package, a semiconductor die attach paste is applied to a die or a support member, and then an application part of the semiconductor die attach paste is irradiated with, for example, ultraviolet rays to form a B stage, and then die bonding and thermosetting are performed, followed by sealing. It can be manufactured by stopping. The semiconductor package manufactured in this way has high reliability.
 以下、実施例により、本発明を更に具体的に説明するが、本発明は以下の実施例にのみ制限されるものではない。
(実施例1)
 ビスフェノールAオレフィンオキサイド付加物ジアクリレート(共栄社化学株式会社製BP-4EAL、化合物名称は2,2’-ビス[4-(アクリロキシポリエトキシ)フェニル]プロパンである)を10.3g、無水マレイン酸変性ポリブタジエン(CRAYVALLEY社製Ricon131MA17)を41.4g、グリシジルメタクリレート(日油株式会社製ブレンマーGH)を6.9g、水添ビスフェノールA型エポキシ樹脂(三菱化学株式会社製YX-8000)を10.3g、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド(BASF社製DAROCUR TPO)を0.1g、ジクミルパーオキサイド(日油株式会社製パークミルD)を0.3g、ジアザビシクロウンデセン-テトラフェニルボレート塩(サンアプロ株式会社製U-CAT5002)を0.7g、球状シリカゲル(三菱レイヨン株式会社製QS-2)を29.5g、3-グリシドキシプロピルトリメトキシシラン(信越シリコーン株式会社製KBM-403)を0.3g、自転・公転ミキサー(株式会社シンキー製あわとり練太郎ARE-310)に投入し混合して、ダイアタッチペーストを得た。
(実施例2~4、比較例1~5)
 各成分の種類および量を表1に示すように変更する以外は実施例1と同様の操作を行って、ダイアタッチペーストを得た。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
Example 1
10.3 g of bisphenol A olefin oxide adduct diacrylate (BP-4EAL, compound name is 2,2′-bis [4- (acryloxypolyethoxy) phenyl] propane manufactured by Kyoeisha Chemical Co., Ltd.), maleic anhydride 41.4 g of modified polybutadiene (Ricon 131 MA17 manufactured by CRAYVALLEY), 6.9 g of glycidyl methacrylate (Blenmer GH manufactured by NOF CORPORATION), 10.3 g of hydrogenated bisphenol A type epoxy resin (YX-8000 manufactured by Mitsubishi Chemical Corporation) , 2,4,6-trimethylbenzoyldiphenylphosphine oxide (BASF DAROCUR TPO) 0.1 g, dicumyl peroxide (NOF Corporation Park Mill D) 0.3 g, diazabicycloundecene-tetraphenyl Borate (U-CAT5002 manufactured by San Apro Co., Ltd.) 0.7 g, spherical silica gel (QS-2 manufactured by Mitsubishi Rayon Co., Ltd.) 29.5 g, 3-glycidoxypropyltrimethoxysilane (KBM-403 manufactured by Shin-Etsu Silicone Co., Ltd.) Was added to and mixed with a rotation / revolution mixer (Shinky Co., Ltd. Awatori Nertaro ARE-310) to obtain a die attach paste.
(Examples 2 to 4, Comparative Examples 1 to 5)
A die attach paste was obtained in the same manner as in Example 1 except that the type and amount of each component were changed as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、アクリエステルMは三菱レイヨン株式会社製メチルメタクリレートであり、SR-349はサートマー社製エトキシ化ビスフェノールAジアクリレートであり、FA-512Mは日立化成工業株式会社製ジシクロペンテニルオキシエチルメタクリレートであり、EBECRYL3702はダイセル・サイテック株式会社製エポキシアクリレートであり、CTBN-1300X8は宇部興産株式会社製カルボキシ末端アクリロニトリルブタジエン共重合体であり、EXA-4850-150は大日本インキ化学工業株式会社製エポキシ樹脂(エポキシ当量450)であり、PB-4700はダイセル化学株式会社製エポキシ化ポリブタジエンであり、UC-203はクラレ株式会社製メタクリル変性ポリイソプレンである。 In Table 1, Acryester M is methyl methacrylate manufactured by Mitsubishi Rayon Co., Ltd., SR-349 is ethoxylated bisphenol A diacrylate manufactured by Sartomer, and FA-512M is dicyclopentenyloxyethyl methacrylate manufactured by Hitachi Chemical Co., Ltd. EBECRYL 3702 is an epoxy acrylate manufactured by Daicel-Cytec, CTBN-1300X8 is a carboxy-terminated acrylonitrile butadiene copolymer manufactured by Ube Industries, Ltd., and EXA-4850-150 is an epoxy manufactured by Dainippon Ink & Chemicals, Inc. A resin (epoxy equivalent 450), PB-4700 is an epoxidized polybutadiene manufactured by Daicel Chemical Industries, and UC-203 is a methacryl-modified polyisoprene manufactured by Kuraray Co., Ltd.
 また、Irgacure(登録商標)369はBASF製2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1であり、V-65は和光純薬工業社製2,2’-アゾビス-2,4-ジメチルバレロニトリルであり、DICYはジシアンジアミドであり、AEROSIL R972は日本アエロジル株式会社製のジメチルジクロロシランで表面処理した疎水性シリカフィラーであり、SFP-20Mは電気化学工業株式会社製球状シリカゲルであり、ASFP-20は電気化学工業株式会社製球状アルミナであり、ミクロパールAUは積水化学工業株式会社製金メッキ導電性粒子である。 Irgacure (registered trademark) 369 is 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 manufactured by BASF, and V-65 is 2,2′- manufactured by Wako Pure Chemical Industries, Ltd. Azobis-2,4-dimethylvaleronitrile, DICY is dicyandiamide, AEROSIL R972 is a hydrophobic silica filler surface-treated with dimethyldichlorosilane manufactured by Nippon Aerosil Co., Ltd., and SFP-20M is Electrochemical Industry Co., Ltd. Spherical silica gel, ASFP-20 is spherical alumina manufactured by Denki Kagaku Kogyo Co., Ltd., and Micropearl AU is gold-plated conductive particles manufactured by Sekisui Chemical Co., Ltd.
<濡れ広がり抑制の評価>
 ダイアタッチペーストの濡れ広がり抑制は以下の方法により評価した。
 ダイアタッチペーストをシリコン基板上に厚さ200μm、直径2mmの大きさの円状に塗布し、紫外線を1000mJ/cm照射してBステージ化させ、試験片を得た。その後、試験片をオーブンに投入し、昇温速度4℃/分で170℃まで昇温し、そのまま1時間硬化させた。
<Evaluation of wetting spread suppression>
The suppression of wetting and spreading of the die attach paste was evaluated by the following method.
The die attach paste was applied on a silicon substrate in a circular shape having a thickness of 200 μm and a diameter of 2 mm, and irradiated with 1000 mJ / cm 2 of ultraviolet rays to form a B stage, thereby obtaining a test piece. Thereafter, the test piece was put into an oven, heated to 170 ° C. at a heating rate of 4 ° C./min, and allowed to cure for 1 hour.
 硬化後の試験片上のダイアタッチペーストを顕微鏡にて観察して直径を測定し、塗布時からの直径の増加率を算出し、直径の増加率によって濡れ広がり抑制を評価した。結果を表1に示す。直径の増加率が5%未満の場合は、濡れ広がり抑制が非常に良好と評価し、表1においては◎印で示した。また、直径の増加率が5%以上10%未満の場合は、濡れ広がり抑制が良好と評価し、表1においては○印で示した。さらに、直径の増加率が10%以上の場合は、濡れ広がり抑制が不良と評価し、表1においては×印で示した。 The die attach paste on the cured test piece was observed with a microscope, the diameter was measured, the increase rate of the diameter from the time of application was calculated, and the wetting spread suppression was evaluated by the increase rate of the diameter. The results are shown in Table 1. When the increase rate of the diameter was less than 5%, it was evaluated that the wetting and spreading suppression was very good. Further, when the rate of increase in diameter was 5% or more and less than 10%, it was evaluated that the wetting and spreading suppression was good. Further, when the rate of increase in diameter was 10% or more, it was evaluated that the suppression of wetting and spreading was bad, and in Table 1, it was indicated by x.
<ダイシェア強度の評価>
 ダイシェア強度は以下の方法により評価した。
 一辺5mmの正方形状のPPFリードフレーム(Cu基板上にNi,Pd,Auの順に3層メッキを施したもの)上に、ダイアタッチペーストを一辺2mmの正方形状(厚さ80μm)に塗布し、紫外線を1000mJ/cm照射してBステージ化させた。そして、ダイボンダーMD-P200(パナソニック株式会社製)を用い、ダイアタッチペースト上に一辺2mmの正方形状のシリコンチップ(厚さ0.7mm)を、温度25℃、荷重10N、時間1秒の条件でボンディングした。その後、170℃のオーブンで1時間硬化させた。
<Evaluation of die shear strength>
The die shear strength was evaluated by the following method.
A die attach paste was applied in a square shape (thickness of 80 μm) with a side of 2 mm on a square PPF lead frame with a side of 5 mm (three layers plated in the order of Ni, Pd, and Au on a Cu substrate), Ultraviolet rays were irradiated at 1000 mJ / cm 2 to make a B stage. Then, using a die bonder MD-P200 (manufactured by Panasonic Corporation), a square silicon chip (thickness 0.7 mm) with a side of 2 mm was placed on the die attach paste under conditions of a temperature of 25 ° C., a load of 10 N, and a time of 1 second. Bonded. Thereafter, it was cured in an oven at 170 ° C. for 1 hour.
 このようにして得られたものの温度25℃におけるせん断強さ(N/チップ)を、せん断接着力試験機Series4000(Dage社製)を用いて測定した。結果を表1に示す。せん断強さの測定値が58.8N/チップ以上の場合は、ダイシェア強度が良好と評価し、表1においては○印で示した。また、せん断強さの測定値が58.8N/チップ未満の場合は、ダイシェア強度が不良と評価し、表1においては×印で示した。 The shear strength (N / chip) at 25 ° C. of the product thus obtained was measured using a shear adhesion tester Series 4000 (manufactured by Dage). The results are shown in Table 1. When the measured value of the shear strength was 58.8 N / chip or more, it was evaluated that the die shear strength was good. Moreover, when the measured value of the shear strength was less than 58.8 N / chip, the die shear strength was evaluated to be poor.
<Bステージ化物の複素粘度の評価>
 ダイアタッチペーストのBステージ化物の複素粘度を、以下の方法により評価した。ダイアタッチペーストを厚さ50μmになるように塗布し、紫外線を1000mJ/cmの条件で照射してBステージ化させ、このBステージ化させたダイアタッチペーストをスパチュラでかき取り、サンプルとした。このサンプルの複素粘度を、粘弾性測定装置の振動モードを用いて温度25℃、周波数1Hzの条件で測定した。
 複素粘度が100~1000Pa・sの範囲の場合は、表1においては「A」と示した。この場合は、ダイアタッチペーストのBステージ化が良好に行われ、濡れ拡がりとダイシェア強度が共に良好であった。また、複素粘度が1000Pa・sを超える場合は、表1においては「B」と示した。この場合は、加熱無しでのボンディングが困難となり、ダイアタッチペーストの濡れ拡がりは良好であったが、ダイシェア強度が劣る結果となった。さらに、複素粘度が100Pa・s未満の場合は、表1においては「C」と示した。この場合は、ダイアタッチペーストの濡れ広がりの抑制が困難となる。
<Evaluation of complex viscosity of B-staged product>
The complex viscosity of the B-staged product of the die attach paste was evaluated by the following method. The die attach paste was applied so as to have a thickness of 50 μm, and irradiated with ultraviolet rays under the condition of 1000 mJ / cm 2 to form a B stage. The die attach paste made to the B stage was scraped off with a spatula to obtain a sample. The complex viscosity of this sample was measured under the conditions of a temperature of 25 ° C. and a frequency of 1 Hz using the vibration mode of the viscoelasticity measuring device.
When the complex viscosity is in the range of 100 to 1000 Pa · s, it is indicated as “A” in Table 1. In this case, the die attach paste was B-staged well, and both wet spread and die shear strength were good. Further, when the complex viscosity exceeds 1000 Pa · s, it is indicated as “B” in Table 1. In this case, bonding without heating became difficult, and the wet spread of the die attach paste was good, but the die shear strength was inferior. Further, when the complex viscosity is less than 100 Pa · s, it is indicated as “C” in Table 1. In this case, it becomes difficult to suppress wetting and spreading of the die attach paste.
<保存安定性の評価>
 ダイアタッチペーストの保存安定性を、以下の方法により評価した。ダイアタッチペーストを温度25℃で3日間静置した。そして、静置初期及び3日後のダイアタッチペーストのせん断粘度を、粘弾性測定装置の回転モードを用いて温度25℃、せん断速度10s-1の条件で測定した。静置3日後のせん断粘度の静置初期のせん断粘度からの増粘率を算出し、この増粘率によってダイアタッチペーストの保存安定性を評価した。結果を表1に示す。
 増粘率が40%未満の場合は、ダイアタッチペーストの保存安定性が非常に良好と評価し、表1においては◎印で示した。また、増粘率が40%以上100%未満の場合は、保存安定性が良好と評価し、表1においては○印で示した。さらに、増粘率が100%以上の場合は、ダイアタッチペーストの保存安定性が不良と評価し、表1においては×印で示した。
<Evaluation of storage stability>
The storage stability of the die attach paste was evaluated by the following method. The die attach paste was left at a temperature of 25 ° C. for 3 days. Then, the shear viscosity of the die attach paste in the initial stage and after 3 days was measured under the conditions of a temperature of 25 ° C. and a shear rate of 10 s −1 using the rotation mode of the viscoelasticity measuring apparatus. The viscosity increase rate was calculated from the shear viscosity at the initial stage of standing after 3 days of standing, and the storage stability of the die attach paste was evaluated based on this thickening rate. The results are shown in Table 1.
When the thickening rate was less than 40%, it was evaluated that the storage stability of the die attach paste was very good. Moreover, when the viscosity increase rate was 40% or more and less than 100%, it was evaluated that the storage stability was good. Furthermore, when the viscosity increase rate was 100% or more, it was evaluated that the storage stability of the die attach paste was poor.
 表1より、光重合開始剤と熱ラジカル発生剤とポリオレフィン構造含有樹脂とラジカル重合性化合物とを含有するダイアタッチペーストである実施例1~4は、濡れ広がりが抑制されつつ高いダイシェア強度を有することが判る。また、アシルホスフィンオキサイド系光重合開始剤(DAROCUR TPO)を使用した実施例1は、アルキルフェノン系光重合開始剤(Irgacure(登録商標)369)を使用した実施例2~4よりも保存安定性が良好であった。
 一方、熱ラジカル発生剤を含有しないダイアタッチペーストである比較例1~2は、25℃でダイボンディングすると支持部材に接合しないためダイシェア強度が劣ることが判る。また、ポリオレフィン構造含有樹脂を含有しないダイアタッチペーストである比較例3も、ダイシェア強度が低いことが判る。すなわち、光重合開始剤と熱ラジカル発生剤とポリオレフィン構造含有樹脂とラジカル重合性化合物とを含有するダイアタッチペーストは、従来のダイアタッチペーストに比べ、Bステージ化により濡れ広がりを抑制でき、また高いダイシェア強度を有することが判った。
From Table 1, Examples 1 to 4, which are die attach pastes containing a photopolymerization initiator, a thermal radical generator, a polyolefin structure-containing resin, and a radical polymerizable compound, have high die shear strength while suppressing wetting and spreading. I understand that. Further, Example 1 using an acylphosphine oxide photopolymerization initiator (DAROCUR TPO) is more storage stable than Examples 2 to 4 using an alkylphenone photopolymerization initiator (Irgacure (registered trademark) 369). Was good.
On the other hand, it can be seen that Comparative Examples 1 and 2, which are die attach pastes that do not contain a thermal radical generator, are inferior in die shear strength because they are not bonded to the support member when die bonded at 25 ° C. Moreover, it turns out that the comparative example 3 which is the die attach paste which does not contain polyolefin structure containing resin also has low die shear strength. That is, the die attach paste containing the photopolymerization initiator, the thermal radical generator, the polyolefin structure-containing resin, and the radical polymerizable compound can suppress the spread of wetting by the B-stage and is higher than the conventional die attach paste. It was found to have die shear strength.
 さらに、比較例4のダイアタッチペーストは、ポリオレフィン構造含有樹脂の代わりにテトラヒドロフタル酸無水物(DIC株式会社製 B-570H)を、酸無水物構造が同じモル量となるような配合量で使用した点以外は、実施例1と同様のものである。テトラヒドロフタル酸無水物は、実施例1のポリオレフィン構造含有樹脂である無水マレイン酸変性ポリブタジエンと同様の酸無水物構造を有するが、ポリオレフィン構造を含有しないので、ダイシェア強度が不十分であった。
 さらに、比較例5のダイアタッチペーストは、ポリオレフィン構造含有樹脂が配合されていない点以外は実施例1と同様のものであるが、ポリオレフィン構造含有樹脂を含有しないので、ダイシェア強度が不十分であった。
Further, in the die attach paste of Comparative Example 4, tetrahydrophthalic anhydride (B-570H manufactured by DIC Corporation) is used instead of the polyolefin structure-containing resin in such an amount that the acid anhydride structure has the same molar amount. Except for these points, the second embodiment is the same as the first embodiment. Tetrahydrophthalic anhydride has an acid anhydride structure similar to maleic anhydride-modified polybutadiene, which is a polyolefin structure-containing resin of Example 1, but does not contain a polyolefin structure, so that the die shear strength is insufficient.
Further, the die attach paste of Comparative Example 5 is the same as Example 1 except that the polyolefin structure-containing resin is not blended, but since it does not contain the polyolefin structure-containing resin, the die shear strength is insufficient. It was.
 本発明の半導体パッケージの製造方法によれば、半導体用ダイアタッチペーストの塗布性を維持しつつBステージ化により塗布後の濡れ広がりを抑制できるため、高集積のマルチチップパッケージを製造することが可能である。また、ダイボンディングの際に加熱しなくても十分な接着性が得られるため、熱圧着の必要が無く、信頼性が高い半導体パッケージを製造することが可能である。よって、本発明の半導体パッケージの製造方法により製造された半導体パッケージは、各種デバイスに有用である。 According to the method for manufacturing a semiconductor package of the present invention, it is possible to manufacture a highly integrated multi-chip package because the spread of wetting after application can be suppressed by the B-stage while maintaining the applicability of the die attach paste for semiconductor. It is. In addition, since sufficient adhesiveness can be obtained without heating during die bonding, there is no need for thermocompression bonding, and a highly reliable semiconductor package can be manufactured. Therefore, the semiconductor package manufactured by the semiconductor package manufacturing method of the present invention is useful for various devices.

Claims (11)

  1.  ダイと該ダイを支持する支持部材とを接合するダイボンディング工程を含む半導体パッケージの製造方法であって、
     前記ダイボンディング工程は、光重合開始剤(1)、熱ラジカル発生剤(2)、ポリオレフィン構造含有樹脂(3)、およびラジカル重合性化合物(4)を含む半導体用ダイアタッチペーストを、前記ダイおよび前記支持部材の一方に塗布し、塗布された前記半導体用ダイアタッチペーストに光を照射してBステージ化した後、Bステージ化された前記半導体用ダイアタッチペースト上に前記ダイおよび前記支持部材の他方を配し圧着して、前記ダイと前記支持部材とを接合する工程であることを特徴とする半導体パッケージの製造方法。
    A method of manufacturing a semiconductor package including a die bonding step of bonding a die and a support member that supports the die,
    In the die bonding step, a die attach paste for semiconductor containing a photopolymerization initiator (1), a thermal radical generator (2), a polyolefin structure-containing resin (3), and a radical polymerizable compound (4) The semiconductor die attach paste is applied to one of the support members, irradiated with light to form a B-stage, and then the die and the support member are placed on the B-stage semiconductor die attach paste. A method of manufacturing a semiconductor package, comprising a step of arranging the other and pressing and joining the die and the support member.
  2.  前記ラジカル重合性化合物(4)が(メタ)アクリロイル基含有化合物であることを特徴とする請求項1に記載の半導体パッケージの製造方法。 The method for producing a semiconductor package according to claim 1, wherein the radical polymerizable compound (4) is a (meth) acryloyl group-containing compound.
  3.  前記(メタ)アクリロイル基含有化合物の少なくとも一部が、(メタ)アクリロイル基とオキシラン環構造またはオキセタン環構造との両方を同一分子内に含有する(メタ)アクリロイル基含有化合物であることを特徴とする請求項2に記載の半導体パッケージの製造方法。 At least a part of the (meth) acryloyl group-containing compound is a (meth) acryloyl group-containing compound containing both a (meth) acryloyl group and an oxirane ring structure or an oxetane ring structure in the same molecule. A method of manufacturing a semiconductor package according to claim 2.
  4.  前記光重合開始剤(1)がアルキルフェノン系光重合開始剤およびアシルホスフィンオキサイド系光重合開始剤の少なくとも一方であることを特徴とする請求項1~3のいずれか一項に記載の半導体パッケージの製造方法。 4. The semiconductor package according to claim 1, wherein the photopolymerization initiator (1) is at least one of an alkylphenone photopolymerization initiator and an acylphosphine oxide photopolymerization initiator. Manufacturing method.
  5.  前記光重合開始剤(1)がα-アミノアルキルフェノン系光重合開始剤およびモノアシルホスフィンオキサイド系光重合開始剤の少なくとも一方であることを特徴とする請求項1~3のいずれか一項に記載の半導体パッケージの製造方法。 4. The photopolymerization initiator (1) according to any one of claims 1 to 3, wherein the photopolymerization initiator (1) is at least one of an α-aminoalkylphenone photopolymerization initiator and a monoacylphosphine oxide photopolymerization initiator. The manufacturing method of the semiconductor package of description.
  6.  前記光重合開始剤(1)が下記式(1)で表される化合物および下記式(2)で表される化合物の少なくとも一方であることを特徴とする請求項1~3のいずれか一項に記載の半導体パッケージの製造方法。ただし、下記式(1)中のRは水素原子または炭素数1~3のアルキル基である。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    The photopolymerization initiator (1) is at least one of a compound represented by the following formula (1) and a compound represented by the following formula (2). The manufacturing method of the semiconductor package of description. However, R 1 in the following formula (1) is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
  7.  前記熱ラジカル発生剤(2)が有機過酸化物であることを特徴とする請求項1~6のいずれか一項に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to any one of claims 1 to 6, wherein the thermal radical generator (2) is an organic peroxide.
  8.  前記熱ラジカル発生剤(2)がジアルキルパーオキサイドまたはパーオキシエステルであることを特徴とする請求項7に記載の半導体パッケージの製造方法。 The method for manufacturing a semiconductor package according to claim 7, wherein the thermal radical generator (2) is a dialkyl peroxide or a peroxy ester.
  9.  前記熱ラジカル発生剤(2)が下記式(3)で表される化合物であることを特徴とする請求項7に記載の半導体パッケージの製造方法。ただし、下記式(3)中のRおよびRは炭素数1~3のアルキレン基である。
    Figure JPOXMLDOC01-appb-C000010
    The method of manufacturing a semiconductor package according to claim 7, wherein the thermal radical generator (2) is a compound represented by the following formula (3). However, R 2 and R 3 in the following formula (3) are alkylene groups having 1 to 3 carbon atoms.
    Figure JPOXMLDOC01-appb-C000010
  10.  前記熱ラジカル発生剤(2)の1分間半減期温度が120℃以上200℃以下であることを特徴とする請求項7~9のいずれか一項に記載の半導体パッケージの製造方法。 10. The method of manufacturing a semiconductor package according to claim 7, wherein the one-minute half-life temperature of the thermal radical generator (2) is 120 ° C. or higher and 200 ° C. or lower.
  11.  前記Bステージ化における前記光の照射量が、Bステージ化させた前記半導体用ダイアタッチペーストの温度25℃、周波数1Hzの条件で測定した複素粘度が100~1000Pa・sの範囲になる量であることを特徴とする請求項1~10のいずれか一項に記載の半導体パッケージの製造方法。 The irradiation amount of the light in the B-stage is such that the complex viscosity measured under the conditions of a temperature of 25 ° C. and a frequency of 1 Hz of the B-staged die attach paste for semiconductor is in the range of 100 to 1000 Pa · s. The method of manufacturing a semiconductor package according to any one of claims 1 to 10, wherein:
PCT/JP2015/000118 2014-02-12 2015-01-13 Production method for semiconductor packages WO2015122115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562713A JPWO2015122115A1 (en) 2014-02-12 2015-01-13 Manufacturing method of semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014024679 2014-02-12
JP2014-024679 2014-02-12

Publications (1)

Publication Number Publication Date
WO2015122115A1 true WO2015122115A1 (en) 2015-08-20

Family

ID=53799869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000118 WO2015122115A1 (en) 2014-02-12 2015-01-13 Production method for semiconductor packages

Country Status (3)

Country Link
JP (1) JPWO2015122115A1 (en)
TW (1) TW201542730A (en)
WO (1) WO2015122115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079534A1 (en) * 2016-10-31 2018-05-03 住友ベークライト株式会社 Thermally conductive paste and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102267A (en) * 2010-11-11 2012-05-31 Denki Kagaku Kogyo Kk Pressure-sensitive adhesive, pressure-sensitive adhesive sheet and method for manufacturing electronic part
JP2012190846A (en) * 2011-03-08 2012-10-04 Hitachi Chem Co Ltd Adhesive agent composition for semiconductors, semiconductor device, and method of manufacturing semiconductor device
WO2012153846A1 (en) * 2011-05-11 2012-11-15 日立化成工業株式会社 Method for manufacturing semiconductor device, method for manufacturing semiconductor wafer with semiconductor element, method for manufacturing semiconductor wafer with adhesive layer, and method for manufacturing semiconductor wafer laminated body
WO2013094759A1 (en) * 2011-12-21 2013-06-27 三菱レイヨン株式会社 Polymer powder, curable resin composition, and cured product thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102267A (en) * 2010-11-11 2012-05-31 Denki Kagaku Kogyo Kk Pressure-sensitive adhesive, pressure-sensitive adhesive sheet and method for manufacturing electronic part
JP2012190846A (en) * 2011-03-08 2012-10-04 Hitachi Chem Co Ltd Adhesive agent composition for semiconductors, semiconductor device, and method of manufacturing semiconductor device
WO2012153846A1 (en) * 2011-05-11 2012-11-15 日立化成工業株式会社 Method for manufacturing semiconductor device, method for manufacturing semiconductor wafer with semiconductor element, method for manufacturing semiconductor wafer with adhesive layer, and method for manufacturing semiconductor wafer laminated body
WO2013094759A1 (en) * 2011-12-21 2013-06-27 三菱レイヨン株式会社 Polymer powder, curable resin composition, and cured product thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079534A1 (en) * 2016-10-31 2018-05-03 住友ベークライト株式会社 Thermally conductive paste and electronic device
JPWO2018079534A1 (en) * 2016-10-31 2018-10-25 住友ベークライト株式会社 Thermally conductive paste and electronic device

Also Published As

Publication number Publication date
JPWO2015122115A1 (en) 2017-03-30
TW201542730A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
US6750301B1 (en) Die attach adhesives with epoxy compound or resin having allyl or vinyl groups
JP5419318B2 (en) Resin composition and semiconductor device produced using resin composition
JP2011037981A (en) Resin composition and semiconductor device produced using resin composition
JP2016149393A (en) Adhesive for semiconductor, and semiconductor device and manufacturing method thereof
WO2017090659A1 (en) Adhesive composition for circuit connection, and structure
US20140243453A1 (en) Conductive resin composition and cured product thereof
JP7172991B2 (en) Adhesive composition and structure
JP5476839B2 (en) Resin composition and semiconductor device produced using resin composition
WO2015122115A1 (en) Production method for semiconductor packages
JP7124936B2 (en) Adhesive composition and structure
JP5032740B2 (en) Manufacturing method of semiconductor member
WO2015122114A1 (en) Die-attach paste for semiconductors and semiconductor package
JP5482077B2 (en) Resin composition and semiconductor device produced using resin composition
JP5604828B2 (en) Resin composition and semiconductor device produced using resin composition
JP2001257220A (en) Die attach paste and semiconductor device
JPH11269452A (en) Die attach paste
JP4892963B2 (en) Resin composition and semiconductor device produced using resin composition
JP5140929B2 (en) Resin composition and semiconductor device produced using resin composition
JP3705529B2 (en) Insulating die attach paste
KR20130119911A (en) Liquid resin composition and semiconductor device
JP3473944B2 (en) Die attach paste and semiconductor device
JP3473943B2 (en) Die attach paste and semiconductor device
JP4929688B2 (en) Resin composition and semiconductor device produced using resin composition
WO2017090693A1 (en) Adhesive composition and structure
JP7464198B2 (en) Conductive paste, hardened product and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749388

Country of ref document: EP

Kind code of ref document: A1