WO2015121996A1 - Electric insulation resin - Google Patents

Electric insulation resin Download PDF

Info

Publication number
WO2015121996A1
WO2015121996A1 PCT/JP2014/053573 JP2014053573W WO2015121996A1 WO 2015121996 A1 WO2015121996 A1 WO 2015121996A1 JP 2014053573 W JP2014053573 W JP 2014053573W WO 2015121996 A1 WO2015121996 A1 WO 2015121996A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
polar
elastomer
cold environment
fine
Prior art date
Application number
PCT/JP2014/053573
Other languages
French (fr)
Japanese (ja)
Inventor
大嶽 敦
昌宏 川崎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/053573 priority Critical patent/WO2015121996A1/en
Publication of WO2015121996A1 publication Critical patent/WO2015121996A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/28Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances natural or synthetic rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are a resin adapted to a cold environment that is capable of improving the resin strength and simultaneously prolonging the insulation life time before failure, and a magnetic resonance imaging device and electric equipment using the same. An elastomer in a fine particle-state having a short diameter of 200 nm or less and fine polar particles having a short diameter of 200 nm or less are included in a polar resin. Thus, it is possible to improve crack resistance and electric insulation characteristics of the resin at low temperatures, and improve the adhesive property of the resin onto a base material.

Description

電気絶縁樹脂Electrical insulating resin
 本発明は寒冷条件で用いる電気機器向けの樹脂材に関し、特に磁気共鳴イメージング装置、超伝導関連機器、寒冷地受変電設備など寒冷環境における電気機器向けの絶縁樹脂材に関する。
The present invention relates to a resin material for electrical equipment used in cold conditions, and more particularly to an insulating resin material for electrical equipment in a cold environment such as a magnetic resonance imaging apparatus, a superconducting related device, and a cold district receiving / transforming facility.
 近年、電気絶縁樹脂の高機能化、高性能化を目指して様々な添加物を樹脂中に混在させる手法がとられており、その中でも特に小さな微粒子(ナノ粒子)を充填材として用い、新たな効果を狙う手法が発展してきている。 In recent years, a method has been adopted in which various additives are mixed in the resin with the aim of increasing the functionality and performance of the electrical insulating resin. Among them, a particularly small particle (nanoparticle) is used as a filler. Techniques aiming for effects have been developed.
 本技術分野の背景技術として、次に述べる特許文献1~6が知られている。
As background arts in this technical field, Patent Documents 1 to 6 described below are known.
特開平08-251881号公報Japanese Patent Laid-Open No. 08-251881 特表2013-144746号公報Special Table 2013-144746 特開2002-338790号公報JP 2002-338790 A 特開2002-294035号公報Japanese Patent Laid-Open No. 2002-294035 特開平09-283326号公報JP 09-283326 A 特開平08-335510号公報Japanese Unexamined Patent Publication No. 08-335510
 特許文献1-6においては、短径200nmという観点での記載はなくそれを示す記載式も無い。また、特許文献2における粒子径の限定は本発明の範囲内となるものではあるが、短径という観点からの記載ではない。また、微量の微細(すなわち短径が200nm以下の)極性粒子を加えることについて記載がない。 In Patent Documents 1-6, there is no description from the viewpoint of a minor axis of 200 nm, and there is no description formula indicating it. Moreover, although limitation of the particle diameter in patent document 2 is in the range of this invention, it is not a description from a viewpoint of a short diameter. Moreover, there is no description about adding a very small amount of fine particles (that is, the minor axis is 200 nm or less).
 我々の知見によれば、微粒子状疎水性エラストマーの短径はその微粒子の分散にきわめて重要な寄与をする。すなわち、分子間力と静電力のつり合いの上で、通常は短径が二つの力の優劣を決める。また微量に微粒子状疎水性エラストマーに加え、極性微粒子を添加すると微粒子状疎水性エラストマーとの相互作用をする中で、極性微粒子が徐々に極性を持つ壁面(繊維強化プラスチックもしくは金属類)に近寄ったうえ、強い接着力を発揮する原因となる。また、微粒子の短径が200nmという条件で分子間力と静電力がつり合い、短径200nm以下では疎水性粒子であっても極性液中に分散を起こすことが判明した。通常、極性液中では疎水性の物質は分散を起こさない上に、沈降を起こす。一方で疎水性エラストマーは、シリコーン等、寒冷特性に優れるものが多い。課題として樹脂中に疎水性エラストマーを分散させ、特性を生かすことが挙げられる。この課題に対処するには疎水性エラストマーの表面を極性基で修飾する方法があるが、一般的にコストが高くなる問題がある。 According to our knowledge, the minor axis of the particulate hydrophobic elastomer makes a very important contribution to the dispersion of the particulates. That is, the minor axis usually determines the superiority or inferiority of the two forces on the balance between intermolecular force and electrostatic force. In addition to the minute amount of the fine hydrophobic elastomer, when the polar fine particles are added, the fine particles gradually approach the wall (fiber reinforced plastic or metal) with polarity while interacting with the fine particle hydrophobic elastomer. In addition, it causes a strong adhesion. It was also found that the intermolecular force and the electrostatic force are balanced under the condition that the minor axis of the fine particle is 200 nm, and that the hydrophobic particle is dispersed in the polar liquid when the minor axis is 200 nm or less. Usually, in a polar liquid, a hydrophobic substance does not cause dispersion but also causes sedimentation. On the other hand, many hydrophobic elastomers such as silicone have excellent cold characteristics. The problem is to disperse the hydrophobic elastomer in the resin and take advantage of the characteristics. In order to deal with this problem, there is a method of modifying the surface of the hydrophobic elastomer with a polar group, but there is a problem that the cost is generally increased.
 そこで、本発明は、疎水性エラストマーの特性を修飾基なしに発現させ、なおかつ付加的な効果によって特性を向上し、特に寒冷環境での特性に優れる電気絶縁樹脂を提供することを目的とする。
Accordingly, an object of the present invention is to provide an electrically insulating resin that exhibits the characteristics of a hydrophobic elastomer without a modifying group, improves the characteristics by an additional effect, and is excellent particularly in a cold environment.
 本発明によれば短径200nm以下の平均粒子径を持つ微粒子状疎水性エラストマーを含有し、なおかつ、前記微粒子状疎水性エラストマーに加えて、極性微粒子が同時に含まれることを特徴とする寒冷環境向け樹脂およびそれを用いた電気機器が提供される。 According to the present invention, it contains a particulate hydrophobic elastomer having an average particle diameter of 200 nm or less in the minor axis, and in addition to the particulate hydrophobic elastomer, polar particulates are included at the same time. A resin and an electric device using the resin are provided.
 短径200nm以下において、粒子は沈降と粒子の熱運動が均衡するために、沈降速度がきわめて遅くなるかほぼ無視できる。このような領域では、重力よりも微粒子間、樹脂間、粒子樹脂間に働く力の方が大きくなる。極性樹脂の場合には、極性を持つ(すなわち極性)微粒子と樹脂の相互作用が強くなり、十分なせん断力の下で撹拌すればほぼ均一に微粒子の分散が起きる。一方で、疎水性粒子間には”疎水性相互作用”と呼ばれる一種の静電力的な見かけ上の力が働くため、粒子同士が近づく傾向が表れる。たとえ粒子が近づいたとしてもブラウン運動が働く上に重力の影響が少ないために沈降しない。このため、樹脂中には微粒子状疎水性エラストマーの集団が網目様の骨格状に形成される。上記のような骨格状網目構造と、極性微粒子の孤立微粒子が樹脂内部に共存することとなる。我々の新たな検討によれば、左記にのべた骨格状網目構造は硬化後樹脂の破壊靱性や破壊強度を増大させる役目を果たし、また極性の孤立粒子は電気トリーの進展を阻害して絶縁破壊寿命を向上させることが明らかになった。また、それぞれの粒子の添加量は極性微粒子1wt%,微粒子状疎水性エラストマー2wt%のごく少量の添加でよく、最大でも計15wt%程度まで添加しても十分な効果を発揮することが判明している。また、この時、短径が分子間力と静電力の大きさが入れ替わる短径のおおきさも200nmであり、この大きさを境として粒子と樹脂が接着するかどうかが決まる。粒子と樹脂が接着をしない場合、剥離が生じ、最大で30%もの強度低下が起こることが我々の検討により判明している。
At a minor axis of 200 nm or less, the sedimentation rate becomes very slow or almost negligible because the sedimentation and thermal motion of the particles are balanced. In such a region, the force acting between the fine particles, between the resins, and between the particle resins is greater than that of gravity. In the case of a polar resin, the interaction between the polar (that is, polar) fine particles and the resin becomes stronger, and if the agitation is performed under a sufficient shearing force, the fine particles are dispersed almost uniformly. On the other hand, since a kind of electrostatic force called “hydrophobic interaction” acts between the hydrophobic particles, the particles tend to approach each other. Even if the particles approach, the Brownian motion works and the gravity does not affect so much that it does not settle. For this reason, a group of fine-particle hydrophobic elastomers are formed in a resin-like skeleton in the resin. The skeleton network structure as described above and isolated fine particles of polar fine particles coexist inside the resin. According to our new study, the skeleton network structure shown on the left serves to increase the fracture toughness and fracture strength of the resin after curing, and the polar isolated particles inhibit the progress of the electrical tree and cause dielectric breakdown. It has been shown to improve lifespan. The addition amount of each particle can be as small as 1 wt% polar fine particles and 2 wt% fine particle hydrophobic elastomer, and it has been found that adding up to a total of about 15 wt% exhibits a sufficient effect. ing. Also, at this time, the size of the minor axis where the size of the minor axis interchanges between the intermolecular force and the electrostatic force is also 200 nm, and whether or not the particle and the resin are bonded is determined by this size as a boundary. Our study has shown that if the particles do not adhere to the resin, delamination occurs and the strength is reduced by as much as 30%.
 好ましくは上記における樹脂が、極性を持つ熱硬化性樹脂であることを特徴とする寒冷環境向け樹脂およびそれを用いた高電圧機器が提供される。 Preferably, a resin for a cold environment, characterized in that the resin described above is a thermosetting resin having polarity, and a high-voltage device using the same are provided.
 上記までに述べたように樹脂は、できることであれば極性樹脂であり熱硬化性樹脂である方が効果をより発揮しやすい。その理由として、多くの酸化物系充填材は極性を持っており、その性質として極性樹脂に表面を処理しなくとも分散しやすい特性を持っていることが挙げられる。また、熱硬化性樹脂では、樹脂内部にできた構造を保持しやすく、熱可塑性樹脂に比較して温度に対して安定的に性能を発揮することができるためである。
As described above, if possible, the resin is a polar resin and a thermosetting resin is more effective. The reason is that many oxide-based fillers have polarity, and the property is that they are easily dispersed without treating the surface of the polar resin. In addition, the thermosetting resin can easily maintain the structure formed inside the resin, and can exhibit performance stably with respect to temperature as compared with the thermoplastic resin.
 好ましくは上記における微粒子状疎水エラストマーに加え極性微粒子としてシリカ、アルミナ、層状シリケート化合物あるいはこれらが組み合わされることを特徴とする絶縁樹脂およびそれを用いた電気機器が提供される。 Preferably, an insulating resin characterized by silica, alumina, a layered silicate compound or a combination thereof as polar fine particles in addition to the fine particle hydrophobic elastomer described above and an electric device using the same are provided.
 上記に述べたシリカはごくありふれた物質でありコストが低い上、純度を高くすること、形状、表面処理剤の豊富さのいずれをとっても自由度が高いため分散性、粒子径など望む性能が得られやすい。従って、樹脂性状の制御には最も適したものである。一方、アルミナはシリカに比較して薬品に侵されにくい特徴を有しておりそのような環境下では用いるべきである。また層状シリケート化合物はnmサイズの厚さに薄層分離するため、樹脂内部にカードハウス型構造を形成し、複合化された樹脂の強度と絶縁破壊寿命を向上させる効果がある。
Silica mentioned above is a very common substance and is low in cost, and has high flexibility, high purity, shape, and abundant surface treatment agent, so the desired performance such as dispersibility and particle size can be obtained. It is easy to be done. Therefore, it is most suitable for control of resin properties. On the other hand, alumina has a characteristic that it is less susceptible to chemicals compared to silica and should be used in such an environment. In addition, since the layered silicate compound is separated into thin layers having a thickness of nm, a card house type structure is formed inside the resin, and there is an effect of improving the strength and dielectric breakdown life of the composite resin.
 好ましくは上記において微粒子状疎水性エラストマーおよび微粒子極性粒子に加え、平均粒子径5μmを越える無機、有機充填材を加えることを特徴とする寒冷環境向け樹脂およびそれを用いた樹脂および機器が提供される。 Preferably, in addition to the fine particle hydrophobic elastomer and the fine particle polar particles described above, an inorganic or organic filler having an average particle diameter exceeding 5 μm is added, and a resin for cold environment and a resin and an apparatus using the same are provided. .
 平均粒子径5μmを越えるいわゆるマイクロ粒子を同時に用いることにより、寒冷環境向け樹脂の物性を更にコントロールしやすくなる。例えば、線膨張係数は複合樹脂に含まれる樹脂成分と充填材の体積加重平均でほぼ説明することができる。一方、ナノサイズ充填材は樹脂の粘度を増大させてしまうため、線膨張率を有意に変化させるほど添加量を増大させることができない。このような用途のため、マイクロ粒子を同時に用いることができ、微細粒子の与える特性、すなわち絶縁特性や強度といったものに加え、線膨張率のように体積分率で変わる物性についても制御が可能となる。
By simultaneously using so-called microparticles having an average particle diameter of more than 5 μm, it becomes easier to control the physical properties of the resin for cold environments. For example, the linear expansion coefficient can be almost explained by the volume weighted average of the resin component and the filler contained in the composite resin. On the other hand, since the nano-size filler increases the viscosity of the resin, the amount added cannot be increased as the linear expansion coefficient is significantly changed. For such applications, microparticles can be used at the same time, and in addition to the properties given by fine particles, that is, insulation properties and strength, it is possible to control physical properties that change with volume fraction such as linear expansion coefficient. Become.
 好ましくは上記において熱硬化性樹脂がエポキシ樹脂、不飽和ポリエステル樹脂、ノボラック樹脂あるいはこれらの複合材であることを特徴とする特徴とする寒冷環境向け樹脂およびそれを用いた高電圧機器が提供される。 Preferably, in the above, a resin for a cold environment and a high voltage device using the same are provided, wherein the thermosetting resin is an epoxy resin, an unsaturated polyester resin, a novolac resin, or a composite material thereof. .
 樹脂の種類は用いられる環境、要求されるコストによって変える必要が生じる。上記までに述べた特性を維持した上でこれらの母材樹脂を変えることで、要求に応じた寒冷環境向け樹脂を提供することが可能となる。
The type of resin needs to be changed depending on the environment used and the required cost. It is possible to provide a resin for a cold environment according to requirements by changing these matrix resins while maintaining the above-described characteristics.
 本発明により、微粒子状疎水性エラストマーの集団が網目状に形成されることになる。また、極性樹脂中に添加された微粒子が疎水性エラストマーであっても界面の樹脂材との接着性は維持される。その結果微粒子状疎水性エラストマー集団から形成される骨格状網目構造が形成される。また、極性微粒子を少量加えることにより、流動状態の(硬化前)樹脂中では、極性微粒子の濃度が親水的な基材や金属の周辺で濃度が高くなることが期待できる。 According to the present invention, a group of fine-particle hydrophobic elastomers is formed in a network. Further, even when the fine particles added in the polar resin are hydrophobic elastomers, the adhesion with the resin material at the interface is maintained. As a result, a skeletal network structure formed from the particulate hydrophobic elastomer population is formed. Further, by adding a small amount of polar fine particles, it can be expected that the concentration of polar fine particles increases in the vicinity of a hydrophilic base material or metal in the fluidized resin (before curing).
 我々の新たな検討によれば、左記にのべた骨格状網目構造は硬化後樹脂の破壊靱性や破壊強度を増大させる役目を果たし、また極性の孤立粒子は電気トリーの進展を阻害して絶縁破壊寿命を向上させることが明らかになった。また、それぞれの粒子の添加量は微粒子状疎水性エラストマー3wt%,極性微粒子2wt%のごく少量の添加でよく、最大でも計15wt%あれば十分な効果を発揮することが判明している。また、少量加えた極性微粒子は基材や金属線などとの接着性を改善し、樹脂との剥離を防止する効果を果たす。
According to our new study, the skeleton network structure shown on the left serves to increase the fracture toughness and fracture strength of the resin after curing, and the polar isolated particles inhibit the progress of the electrical tree and cause dielectric breakdown. It has been shown to improve lifespan. Further, it has been found that the addition amount of each particle may be a very small amount of addition of 3 wt% of fine particle hydrophobic elastomer and 2 wt% of polar fine particles, and if the total amount is 15 wt% at the maximum, a sufficient effect is exhibited. Moreover, the polar fine particles added in a small amount improve the adhesiveness with a base material, a metal wire, etc., and fulfill the effect of preventing peeling from the resin.
 本発明において用いる樹脂は極性でなくともよいが、できることであれば極性樹脂であり熱硬化性樹脂である方が効果をより発揮しやすい。その理由として、多くの酸化物系充填材は極性を持っており、その性質として極性樹脂に表面を処理しなくとも分散しやすい特性を持っていることが挙げられる。また、熱硬化性樹脂では、樹脂内部にできた構造を保持しやすく、熱可塑性樹脂に比較して温度に対して安定的に性能を発揮することができる効果がある。
The resin used in the present invention does not have to be polar. However, if possible, a polar resin and a thermosetting resin are more effective. The reason is that many oxide-based fillers have polarity, and the property is that they are easily dispersed without treating the surface of the polar resin. In addition, the thermosetting resin has an effect that it is easy to maintain the structure formed inside the resin, and can stably exhibit the performance with respect to the temperature as compared with the thermoplastic resin.
 微粒子状疎水性エラストマーがシリコーン、変性シリコーン、スチレンブタジエンゴム、エチレンプロピレンゴム、あるいはこの共重合体、化合物あるいはこれらの組み合わせであることを特徴とする寒冷環境向け樹脂およびそれを用いた高電圧機器が提供される。シリコーンはその重合長さの制御が可能であり、可とう性をもっているため、樹脂性状の制御には適したものである。
Resin for cold environment, and high voltage equipment using the same, characterized in that the fine particle hydrophobic elastomer is silicone, modified silicone, styrene butadiene rubber, ethylene propylene rubber, or a copolymer, compound or a combination thereof. Provided. Silicone can control the polymerization length and has flexibility, so it is suitable for control of resin properties.
 平均粒子径5μmを越えるいわゆるマイクロ粒子を同時に用いることにより、寒冷環境向け樹脂の物性を更にコントロールしやすくなる。例えば、線膨張係数は複合樹脂に含まれる樹脂成分と充填材の体積加重平均でほぼ説明することができる。一方、ナノサイズ充填材は樹脂の粘度を増大させてしまうため、線膨張率を有意に変化させるほど添加量を増大させることができない。このような問題は、マイクロ粒子を同時に用いることで回避できる。よって、樹脂には微粒子状疎水性エラストマーおよび微粒子の与える特性、すなわち絶縁特性や強度といったものに加え、線膨張率のように体積分率で変わる物性についても制御が可能となる。
By simultaneously using so-called microparticles having an average particle diameter of more than 5 μm, it becomes easier to control the physical properties of the resin for cold environments. For example, the linear expansion coefficient can be almost explained by the volume weighted average of the resin component and the filler contained in the composite resin. On the other hand, since the nano-size filler increases the viscosity of the resin, the amount added cannot be increased as the linear expansion coefficient is significantly changed. Such a problem can be avoided by using microparticles simultaneously. Therefore, in addition to the properties given by the fine particle hydrophobic elastomer and the fine particles, that is, the insulating properties and strength, the physical properties such as the linear expansion coefficient can be controlled.
 更に微粒子状疎水性エラストマー粒子を加えることにより次のような効果が得られる。 Furthermore, the following effects can be obtained by adding fine particles of hydrophobic elastomer particles.
 微粒子状疎水性エラストマー粒子には樹脂の靱性を向上させる効果があり、上記に述べた複合樹脂のクラック耐性を向上させることができる。従って、破壊靱性、絶縁寿命および機械的強度を両立することが可能な寒冷環境向け樹脂を提供できる。
The particulate hydrophobic elastomer particles have the effect of improving the toughness of the resin, and can improve the crack resistance of the composite resin described above. Therefore, it is possible to provide a resin for a cold environment that can achieve both fracture toughness, insulation life and mechanical strength.
 本発明の熱硬化性樹脂がエポキシ樹脂、不飽和ポリエステル樹脂、ノボラック樹脂あるいはこれらの複合材であった場合の効果について述べる。 The effect when the thermosetting resin of the present invention is an epoxy resin, an unsaturated polyester resin, a novolac resin, or a composite material thereof will be described.
 樹脂の種類は用いられる環境、特性、要求されるコストによって変える必要が生じる。上記までに述べた特性を維持した上でこれらの母材樹脂を変えることで、市場要求に応じた寒冷環境向け樹脂を提供することが可能となる。
The type of resin needs to be changed according to the environment used, characteristics, and required cost. It is possible to provide a resin for a cold environment according to market requirements by changing these base resin while maintaining the characteristics described above.
本発明にかかる化学構造式(1)Chemical structural formula (1) according to the present invention 本発明にかかる極性樹脂中における微粒子状疎水性エラストマー(1)Particulate hydrophobic elastomer (1) in the polar resin according to the present invention 本発明にかかる極性樹脂中における微粒子状疎水性エラストマー(2)Particulate hydrophobic elastomer (2) in the polar resin according to the present invention 本発明にかかる複合樹脂中粒子径の安定性Stability of particle diameter in composite resin according to the present invention 本発明にかかる樹脂のクラック例(1)Example of resin crack according to the present invention (1) 本発明にかかる樹脂のクラック例(2)Example of resin crack according to the present invention (2) 本発明にかかる樹脂の接着性を示す概念図The conceptual diagram which shows the adhesiveness of resin concerning this invention 本発明にかかる磁気共鳴イメージング装置Magnetic resonance imaging apparatus according to the present invention 本発明にかかる電気機器Electrical device according to the present invention
 以下、本発明における実施例を説明する。
Examples of the present invention will be described below.
 本発明による実施例について以下に説明する。 Embodiments according to the present invention will be described below.
 本実施例では、微粒子状疎水性エラストマーとしてシリコーンゴムを用い、樹脂としてビスフェノールA型エポキシプレポリマー、無水フタル酸系酸無水物硬化剤を用い、かつ反応促進剤を混合した液を複合樹脂材の原料として用いる。シリコーンゴムの表面構造を部分的に取り出したものを図1の化学構造式に示す。図1に示すように、表面にはアルキル基Rが存在している。結合しているSi原子の電子吸引性が小さいため、Rがアルキル基であればほぼ帯電していない。アルキル基の種類は化学的に変換可能であり、様々なタイプのシリコーンが存在する。このような特性は分子軌道計算や各種の実験により明らかになっている。 In this example, a silicone rubber is used as the particulate hydrophobic elastomer, a bisphenol A type epoxy prepolymer and a phthalic anhydride acid anhydride curing agent are used as a resin, and a mixture of a reaction accelerator is used as a composite resin material. Used as a raw material. A partially extracted surface structure of silicone rubber is shown in the chemical structural formula of FIG. As shown in FIG. 1, an alkyl group R exists on the surface. Since the bonded Si atom has a small electron withdrawing property, it is almost uncharged if R is an alkyl group. The type of alkyl group can be chemically converted, and there are various types of silicones. Such characteristics have been revealed by molecular orbital calculations and various experiments.
 なお、実際に用いたシリコーンの平均一次粒子径(短径)は700nmおよび20nmであった。サンプル試験片、次のようなものを作成した。この試験片は3点曲げ破壊強度および長期課電劣化寿命を測定する試験片を作成するためのものである。サンプル作製手順を次に述べる。
 
Note that the average primary particle diameter (short diameter) of the actually used silicone was 700 nm and 20 nm. Sample specimens were prepared as follows. This test piece is for preparing a test piece for measuring the three-point bending fracture strength and the long-term electrical degradation life. The sample preparation procedure is described next.
 (1)エポキシプレポリマー、酸無水物硬化剤をプラネタリーミキサーで混合し硬化前樹脂液を作成。エポキシはビスフェノールA型のものを使用。 (1) An epoxy prepolymer and an acid anhydride curing agent are mixed with a planetary mixer to prepare a resin solution before curing. Epoxy is bisphenol A type.
 (2)短径100nmのシリコーン粒子を3wt%加えプラネタリーミキサーで混合。 (2) Add 3wt% of silicone particles with a short diameter of 100nm and mix with a planetary mixer.
 (3)上記液を一軸回転翼撹拌機で混合。 (3) The above liquid is mixed with a uniaxial rotating blade stirrer.
 (4)上記液に反応促進剤添加、全量に対し0.5wt%の極性微粒子としてシリカ(短径の平均粒子径200nm)を添加し、一軸回転翼撹拌機で混合。 (4) Add reaction accelerator to the above solution, add silica (short average particle diameter 200nm) as 0.5wt% polar fine particles with respect to the total amount, and mix with uniaxial rotating blade stirrer.
 (5)上記液を80℃に予熱した金型に流し入れ、80℃で5時間、更に130℃で8時間加熱。 (5) Pour the above solution into a mold preheated to 80 ° C and heat at 80 ° C for 5 hours and further at 130 ° C for 8 hours.
 (6)加熱後、3時間徐冷、型から取り外す。
(6) After heating, slowly cool for 3 hours and remove from mold.
 このようにして硬化させた寒冷環境向け樹脂について断面SEM観察を実施した。この結果を図2に示す。比較のため、表面をサブミクロンサイズのシリコーンを入れた場合図2(A)と短径200nm以下のシリコーン粒子を入れた場合図2(B)のSEM(走査型電子顕微鏡写真)を示した。シリコーンの樹脂全体重量比に対する添加量は3wt%ずつである。 The cross-sectional SEM observation was performed about the resin for cold environments cured in this way. The results are shown in FIG. For comparison, the SEM (scanning electron micrograph) of FIG. 2 (A) when submicron-sized silicone is put on the surface and FIG. 2 (B) when silicone particles with a short diameter of 200 nm or less are put is shown. The amount of silicone added to the total resin weight ratio is 3 wt%.
 図2(B)にて、シリコーンの粒子群は網目状の構造を形成する。この理由として次のことが考えられる。すなわち、比較的極性の高いエポキシ樹脂の中で、微粒子状疎水性エラストマーであるシリコーンは分散が起こりにくく凝集しようとはするものの、プラネタリーミキサーで撹拌することで引っ張り応力が働き、繊維状のネットワーク構造が形成される。また、同時に添加したシリカは粒子サイズが小さいためにブラウン運動の力が働き、沈降することはない。このような構造が複合樹脂内部に形成されたまま硬化することで、強度が高くなる。この場合では約30%の曲げ強度向上が見られた。一方で、樹脂の長期絶縁破壊寿命は疎水化シリカを添加しない場合に比較して20%程度の延長が見られたにすぎなかった。一方、図2(A)の構造を持つ樹脂はシリコーンの周辺に空隙が発生し、強度がシリコーン無添加樹脂に対し30%低下することが確認された。 Referring to FIG. 2B, the silicone particle group forms a network structure. The following can be considered as the reason. That is, among the relatively polar epoxy resins, silicone, which is a fine particle hydrophobic elastomer, is difficult to disperse and tends to agglomerate, but when it is stirred with a planetary mixer, a tensile stress is applied, resulting in a fibrous network. A structure is formed. Further, since the silica added at the same time has a small particle size, the power of Brownian motion acts and does not settle. By hardening such a structure as it is formed inside the composite resin, the strength is increased. In this case, the bending strength was improved by about 30%. On the other hand, the long-term dielectric breakdown lifetime of the resin was only about 20% longer than when no hydrophobic silica was added. On the other hand, it was confirmed that the resin having the structure of FIG. 2 (A) had voids around the silicone, and the strength was reduced by 30% relative to the silicone-free resin.
 このことについて図3を用いて説明する。図3は横軸に粒子径(短径のことを指す)、縦軸に相互作用の強さ(エネルギー)をプロットしたものである。粒子がある大きさ(短径で200nm以上)では双極子相互作用が強く働き、電気的な力で物質が離れたり接近したりする現象が起こる。ところが、粒子径(短径)が小さくなってくると、粒子のうち、表面に露出している原子の数が増え、また、これにより樹脂と最接近する原子も増えることからこれによる分子間力がより強く働くようになる。われわれが調査した系では「短径200nm」というのが分子間力と静電相互作用が逆転する領域であった。 This will be described with reference to FIG. In FIG. 3, the horizontal axis plots the particle diameter (refers to the minor axis), and the vertical axis plots the strength of the interaction (energy). When a particle has a certain size (shorter than 200 nm), dipole interaction works strongly, causing a phenomenon in which substances are separated or approached by electrical force. However, as the particle size (shorter diameter) becomes smaller, the number of atoms exposed on the surface of the particle increases, and the number of atoms closest to the resin also increases. Will work harder. In the system we investigated, the “shorter axis 200nm” was the region where intermolecular forces and electrostatic interactions were reversed.
  次に図2(A)樹脂中のシリコーンフィラーの分布状態について述べる。図2(A)では、シリコーンの周囲に間隙が発生していることが分かる。この間隙が原因となって、図2(A)の樹脂は靱性において、フィラー無添加樹脂の70%程度の値となり、また強度も低下していた。すなわち、樹脂とフィラーの接着は強度をあげる上で必須である。図2(B)はさらにシリコーンフィラーの大きさを小さくし、16nmとしている。この大きさでは、シリコーンと樹脂の界面は消え、接着状態になっている。また、先に述べたネットワーク構造の影響も相まって、靱性は50%以上(室温)、曲げ強度は20%向上することが分かった。また、電気特性(長期破壊寿命)についての我々の新たな検討によれば、左記にのべた図2(A)の骨格状網目構造は硬化後樹脂の破壊靱性や破壊強度を増大させる役目を果たし、また極性の孤立粒子は電気トリーの進展を阻害して絶縁破壊寿命を向上させることが明らかになった。すなわち、曲げ強度はシリカ無添加の樹脂に比較して45%向上し、長期絶縁破壊寿命においても100%、すなわち二倍になることが分かった。 Next, the distribution state of the silicone filler in the resin in FIG. 2 (A) will be described. In FIG. 2A, it can be seen that a gap is generated around the silicone. Due to this gap, the resin shown in FIG. 2 (A) has a toughness value of about 70% of the resin with no filler added, and the strength is also reduced. That is, the adhesion between the resin and the filler is essential for increasing the strength. In FIG. 2 (B), the size of the silicone filler is further reduced to 16 nm. At this size, the interface between the silicone and the resin disappears and is in an adhesive state. In addition, combined with the effects of the network structure described above, it was found that toughness improved by 50% or more (room temperature) and bending strength improved by 20%. In addition, according to our new study on electrical characteristics (long-term fracture life), the skeletal network structure shown in Fig. 2 (A) on the left serves to increase the fracture toughness and fracture strength of the cured resin. It was also found that polar isolated particles hinder the development of electrical trees and improve the breakdown lifetime. That is, it was found that the bending strength was improved by 45% compared to the resin without addition of silica, and the long-term dielectric breakdown life was 100%, that is, doubled.
 また、更に、耐寒性の試験を最後に実施した。この結果、無添加の樹脂は-20℃に達する以前に割れを起こした。また、図2(A)の樹脂はこれとほぼ同温度で割れを起こした。図2(B)の樹脂は-70℃に至っても割れは発生せず、-120℃において亀甲状の割れが発生し次第にそれが増えていくことがわかった。割れの様子を比較すると図4のようになる。 In addition, a cold resistance test was finally conducted. As a result, the additive-free resin cracked before reaching -20 ° C. In addition, the resin in FIG. 2 (A) cracked at almost the same temperature. It was found that the resin shown in Fig. 2 (B) did not crack even when it reached -70 ° C, and a turtle-shell-like crack occurred and gradually increased at -120 ° C. Figure 4 shows a comparison of cracks.
 図4は樹脂をステンレスの周りにモールドし、割れの様子を観察したものである。図4(A)はサブミクロンサイズのシリコーンフィラーを入れた樹脂であるが、大きな割れを発生させる。これに対して図4(B)は小さな亀甲状の割れが入り、徐々に進展していく。図4(B)はまた、-120℃までは確認できる割れは発生しない。このようなことから、超電導機器たとえば、磁気共鳴イメージング装置等で用いる場合、樹脂クラックによる衝撃が溶媒温度を上げ、クエンチにつながるという問題があった。この場合、樹脂クラックの大きさは小さいほど解放されるエネルギーが小さくなり、クエンチ発生抑止につながることになる。従って、図4(B)の方がクエンチを起こしにくい樹脂素材であるということができる。 Fig. 4 shows the state of cracking after resin is molded around stainless steel. FIG. 4 (A) shows a resin containing a submicron-sized silicone filler, but generates large cracks. On the other hand, in Fig. 4 (B), a small turtle-shaped crack enters and gradually progresses. In FIG. 4 (B), no cracks that can be observed until -120 ° C. For this reason, when used in a superconducting apparatus such as a magnetic resonance imaging apparatus, there has been a problem that an impact caused by a resin crack raises the solvent temperature and leads to quenching. In this case, the smaller the size of the resin crack, the smaller the released energy, leading to quenching suppression. Therefore, it can be said that FIG. 4B is a resin material that is less prone to quench.
 また、図5には、シリコーンに加え、ニトリルブタジエンゴムをシリコーン重量比0.5wt%加えた例である。ニトリルブタジエンゴムの短径は200nmとしたが、極性エラストマーであるため、更に大きくても分散性は良好である。この二種のエラストマーを混合した硬化前樹脂を良く混練し、樹脂注入を実施すると、当初は均一に混合していた二種のエラストマーのうち、極性を持つニトリルブタジエンゴムのみが極性を持つ基板付近に集積してくる。エネルギー的に安定となるからこのような動きは自発的に起きる。さらに、極性エラストマーが基板表面と接触すると、樹脂本体との接着性を向上させる。このために、低温化で樹脂内部に蓄えられた歪エネルギーが解放されたとしても、基板-樹脂界面に大きな剥離が発生することがない。従って放出されるエネルギーが抑制され、磁気共鳴イメージング装置におけるクエンチを起こしにくくなる。 FIG. 5 shows an example in which, in addition to silicone, nitrile butadiene rubber is added at 0.5 wt% of silicone weight ratio. Nitrile butadiene rubber has a short diameter of 200 nm, but since it is a polar elastomer, its dispersibility is good even if it is larger. When the pre-curing resin mixed with these two types of elastomers is well kneaded and the resin is injected, the two types of elastomers that were initially mixed uniformly, but only the polar nitrile butadiene rubber is near the substrate with the polarity. It accumulates in. Such a movement occurs spontaneously because it becomes stable in terms of energy. Further, when the polar elastomer comes into contact with the substrate surface, the adhesion with the resin body is improved. For this reason, even if the strain energy stored inside the resin is released at a low temperature, no large peeling occurs at the substrate-resin interface. Therefore, the released energy is suppressed, and it is difficult to cause quenching in the magnetic resonance imaging apparatus.
 以上のように本発明により、絶縁特性(長期絶縁破壊寿命)と機械的強度両方の向上が効果として得られ、機器内部で発生するクエンチ現象の抑制に役立つことが分かった。また、一般的電気機器についても寒冷環境における割れ不良の抑制に効果的であり、役立つことが分かった。
As described above, according to the present invention, it has been found that both the insulation characteristics (long-term dielectric breakdown life) and the mechanical strength can be effectively improved, and that the quench phenomenon occurring inside the device can be suppressed. It was also found that general electric devices are effective and useful in suppressing cracking defects in cold environments.
 上記実施例1において、熱硬化性樹脂として不飽和ポリエステル、ポリフェノール、ノボラック樹脂においても同様の機械的強度と絶縁特性の向上が効果として得られることが判明している。またこれに限らず、極性を持つ樹脂については上記実施例1に述べた効果が期待できる。
In Example 1 above, it has been found that the same improvement in mechanical strength and insulation characteristics can be obtained as an effect even with unsaturated polyester, polyphenol, and novolac resin as thermosetting resins. In addition, the effects described in Example 1 can be expected for a resin having polarity.
 実施例1、2における極性微粒子としてシリカあるいは腐食性の高いアルミナ、また、耐トリーイング特性を向上させる層状シリケート化合物あるいはこれらの組み合わせであっても同様の効果を呈する。特にアルミナおよび層状シリケート化合物において疎水性の表面処理をしたものとそうでないものを混合させて使うことで前者においては絶縁破壊寿命の向上が顕著であり、後者においては絶縁破壊寿命と強度がともに顕著に向上する。
The same effect can be obtained by using silica or highly corrosive alumina as the polar fine particles in Examples 1 and 2 and the layered silicate compound for improving the anti-treeing property or a combination thereof. In particular, the use of a mixture of a surface-treated alumina and layered silicate compound with and without a hydrophobic surface significantly improves the dielectric breakdown life in the former, while the latter has a significant increase in both dielectric breakdown life and strength. To improve.
 上記請求項において微細充填材に加え、平均粒子径5μmを越える無機、有機充填材を加えてもよい。このような大きなサイズの充填剤は硬化前の樹脂の粘度をナノサイズ粒子のように上昇させない。このため、75wt%程度までは添加することができる。このように大量の充填物を入れることにより、複合樹脂材のコスト抑制と、線膨脹係数を金属に近い値にできるという効果が得られる。
In the above claims, in addition to the fine filler, an inorganic or organic filler having an average particle diameter exceeding 5 μm may be added. Such large size fillers do not increase the viscosity of the resin before curing as nano-sized particles. Therefore, it can be added up to about 75 wt%. By putting a large amount of fillers in this way, it is possible to obtain the effects that the cost of the composite resin material can be reduced and the linear expansion coefficient can be made close to that of metal.
 上記請求項において、更にエラストマー粒子を加えても良い。エラストマー粒子には樹脂の破壊靱性を向上させる効果があり、割れにくくなる。その一方で曲げ強度は低下する短所を持つ。エラストマー粒子の種類としてはニトリルブタジエンゴム、ブタジエゴム、シリコーンゴムあるいは上市されているコアシェル型靱性向上用ゴム材料が挙げられる。
In the above claims, elastomer particles may be further added. Elastomer particles have the effect of improving the fracture toughness of the resin and are less likely to break. On the other hand, the bending strength has a disadvantage. Examples of the elastomer particles include nitrile butadiene rubber, butadiene rubber, silicone rubber, and commercially available core-shell type toughness improving rubber materials.
 上記実施例までに述べた寒冷環境向け樹脂を用いることで、強度と絶縁特性の両立が可能となり、発電機などの高電圧機器に用いた場合そのサイズを小型化することが可能となる。単に強度のみ、絶縁特性のみの向上では機器の小型化は不可能であるが、両者特性を両立して向上させることが可能となり機器小型化を可能にする効果を奏する。
By using the resin for the cold environment described up to the above embodiments, it is possible to achieve both strength and insulation characteristics, and it is possible to reduce the size when used in a high voltage device such as a generator. Although it is impossible to reduce the size of the device simply by improving only the strength and the insulating properties, it is possible to improve both properties at the same time, and it is possible to reduce the size of the device.
 添加エラストマー粒子の表面修飾基として、以下のものであっても同様の効果を奏する。以下列挙する。アルキル基、アルコキシ基、エポキシ基、フェニル基、ビニル基、ハロゲン類、ハロゲン化アルキル基、有機酸類、酸無水物類、無機酸類、フェノール類、共役ポリエン類、ポリエーテル類、ポリフェノール類、脂肪族多環構造、芳香族類。 The same effect can be obtained with the following surface modification groups of the added elastomer particles. Listed below. Alkyl group, alkoxy group, epoxy group, phenyl group, vinyl group, halogens, halogenated alkyl group, organic acids, acid anhydrides, inorganic acids, phenols, conjugated polyenes, polyethers, polyphenols, aliphatic Polycyclic structure, aromatics.
 また、エポキシ樹脂としては、以下に示すものがあり、これらは、単独あるいは2種類以上を混合して用いることもできる。ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート型エポキシ樹脂などである。
Moreover, as an epoxy resin, there exists a thing shown below, and these can also be used individually or in mixture of 2 or more types. Bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, Orthocresol novolac type epoxy resins, alicyclic epoxy resins, triglycidyl isocyanurate type epoxy resins, and the like.
 本発明における寒冷環境向け樹脂を磁気共鳴イメージング装置のコイル固定用ワニスとして用いた例について図6を用いて説明する。コイルはボビン6c、樹脂6b、コイル電線6cから構成される。ボビン6cはFRPやステンレスなどが素材となっている。 An example in which the resin for cold environment according to the present invention is used as a varnish for fixing a coil of a magnetic resonance imaging apparatus will be described with reference to FIG. The coil includes a bobbin 6c, a resin 6b, and a coil wire 6c. Bobbin 6c is made of FRP or stainless steel.
 樹脂6bは前公知例までに述べてきた本発明適用の樹脂であり、低温下での大きな割れを抑制する構造を内部にもつ樹脂である。この樹脂の割れが機会となって、ボビンとの剥離が生ずる。したがって、このような樹脂を用いることにより、割れの衝撃によってクエンチを起こす機会を圧倒的に削減することができる。
The resin 6b is a resin to which the present invention has been described up to the previously known examples, and has a structure that suppresses large cracks at low temperatures. This cracking of the resin becomes an opportunity and peeling from the bobbin occurs. Therefore, by using such a resin, it is possible to overwhelmingly reduce the chance of quenching due to the impact of cracking.
 上記実施例にて述べた寒冷環境向け樹脂を用いたモールド変圧器について説明する図7は本発明で述べた寒冷環境向け樹脂を用いたモールド変圧器の断面模擬図である。モールド変圧器は一次コイル、二次コイル、それを納めるモールド体71,72に収められており、電源一相分では図7のような構成となっている。図7において一次コイル、二次コイルを固めるために、エポキシ等の熱硬化性樹脂が使われている。また、このエポキシ樹脂の靱性が不足すると内部の配線やその他絶縁物との線膨脹係数の差が生じ割れの原因となる。 FIG. 7 for explaining the mold transformer using the resin for the cold environment described in the above embodiment is a cross-sectional simulation view of the mold transformer using the resin for the cold environment described in the present invention. The mold transformer is housed in a primary coil, a secondary coil, and mold bodies 71 and 72 for housing the coil, and has a configuration as shown in FIG. In FIG. 7, a thermosetting resin such as epoxy is used to harden the primary coil and the secondary coil. If the epoxy resin has insufficient toughness, a difference in coefficient of linear expansion from the internal wiring and other insulators will occur, causing cracks.
 モールド変圧器においては、日本のような温暖地で使われるだけでなく、今後、高山地域や寒帯地域など極寒地域でも使われていく可能性があり、そのような用途にも本発明の樹脂を用いることができる。一般的に、モールド変圧器のモールド樹脂はエポキシ樹脂等の熱硬化性樹脂が用いられているが、先に述べたとおり、基材と樹脂の間で熱応力が発生し、またそれが外気温が低くなるほど増大する。このために、クラックが発生するといった問題が起こり得る。一方で、本発明で提供する樹脂は低温でのクラック性を非常に低く抑えることができ、クラックが起きる可能性を著しく低減させる。 Mold transformers are not only used in temperate regions such as Japan, but may also be used in extremely cold regions such as Takayama and cold regions in the future. The resin of the present invention is also used for such applications. Can be used. Generally, the mold resin of the mold transformer is a thermosetting resin such as an epoxy resin, but as described above, a thermal stress is generated between the base material and the resin, and this is the outside air temperature. The lower the value, the larger it. For this reason, the problem that a crack generate | occur | produces may arise. On the other hand, the resin provided in the present invention can keep the cracking property at a low temperature very low, and remarkably reduce the possibility of cracking.
 以上のように本発明における樹脂を、モールド変圧器のコイルモールド材としてつかうことにより寒冷環境でのクラック発生を抑制することが可能となる。
As described above, by using the resin according to the present invention as a coil mold material for a mold transformer, it is possible to suppress the occurrence of cracks in a cold environment.
60………磁気共鳴イメージング装置
61………被検体
613……コイル
6c…基板
6b…コイル電線
6a…フィラー
71…一次コイルモールド体
72…二次コイルモールド体
73…硬化モールド樹脂
74…コイル線束
60 ... Magnetic Resonance Imaging System
61 ……… Subject
613 …… Coil
6c… Board
6b ... Coil wire
6a… Filler
71 ... Primary coil mold body
72 ... Secondary coil mold body
73… Curing mold resin
74 ... Coil wire bundle

Claims (6)

  1.  電気絶縁樹脂において、短径200nm以下の微粒子状エラストマーを含有し、なおかつその表面が疎水性であり、左記微細エラストマーの総重量より少ない重量の短径が200nm以下である極性微粒子が同時に含まれることを特徴とする寒冷環境向け電気絶縁樹脂およびそれを用いた機器。 
    The electrical insulating resin contains a fine particle elastomer having a minor axis of 200 nm or less, and the surface thereof is hydrophobic, and polar fine particles whose minor axis is less than the total weight of the fine elastomer on the left and whose minor axis is 200 nm or less are simultaneously included. Electrical insulation resin for cold environment and equipment using it.
  2.  上記、請求項1において、粒子を混合する前の樹脂が、極性を持つ熱硬化性樹脂であることを特徴とする寒冷環境向け電気絶縁樹脂およびそれを用いた機器。
    The electric insulation resin for cold environment according to claim 1, wherein the resin before mixing the particles is a thermosetting resin having polarity, and an apparatus using the same.
  3.  請求項1における微粒子状疎水性エラストマーがシリコーンもしくはシリコーン誘導体、スチレンブタジエンゴム、エチレンプロピレンゴムであることを特徴とする寒冷環境向け電気絶縁樹脂およびそれを用いた機器。
    An electrically insulating resin for cold environment, and an apparatus using the same, wherein the fine particle hydrophobic elastomer according to claim 1 is silicone or a silicone derivative, styrene butadiene rubber, or ethylene propylene rubber.
  4.  請求項1において、微粒子状疎水性エラストマーの総重量の値を1とした場合に、極性微粒子の総重量が0.10~1.0であることを特徴とする寒冷環境向け電気絶縁樹脂およびそれを用いた機器。
    2. The electrically insulating resin for cold environment and a device using the same according to claim 1, wherein the total weight of the polar fine particles is 0.10 to 1.0 when the total weight value of the particulate hydrophobic elastomer is 1. .
  5.  請求項1において、平均粒子径5μmを越える無機、有機充填材を追加することを特徴とする電気絶縁樹脂およびそれを用いた電気機器。
    2. The electrically insulating resin according to claim 1, wherein an inorganic or organic filler having an average particle diameter exceeding 5 μm is added, and an electric device using the same.
  6.  請求項2における熱硬化性樹脂がエポキシ樹脂であることを特徴とする特徴とする寒冷環境向け絶縁樹脂およびそれを用いた電気機器。 3. An insulating resin for a cold environment, characterized in that the thermosetting resin in claim 2 is an epoxy resin, and an electric device using the same.
PCT/JP2014/053573 2014-02-17 2014-02-17 Electric insulation resin WO2015121996A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053573 WO2015121996A1 (en) 2014-02-17 2014-02-17 Electric insulation resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053573 WO2015121996A1 (en) 2014-02-17 2014-02-17 Electric insulation resin

Publications (1)

Publication Number Publication Date
WO2015121996A1 true WO2015121996A1 (en) 2015-08-20

Family

ID=53799759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053573 WO2015121996A1 (en) 2014-02-17 2014-02-17 Electric insulation resin

Country Status (1)

Country Link
WO (1) WO2015121996A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002819A (en) * 2016-06-30 2018-01-11 倉持 浩 Thermoplastic elastomer mixture and continuum forming method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075069A (en) * 2006-08-23 2008-04-03 Toshiba Corp Casting resin composition and insulating material and insulating structure using the same
JP2011001424A (en) * 2009-06-17 2011-01-06 Hitachi Industrial Equipment Systems Co Ltd Insulated casting resin for electric appliance, and high voltage electric appliance using the same
WO2013121571A1 (en) * 2012-02-17 2013-08-22 株式会社日立製作所 Resin composition for electric insulation, cured product thereof, methods for manufacturing same, and high-voltage devices and electric power transmission and distribution devices using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075069A (en) * 2006-08-23 2008-04-03 Toshiba Corp Casting resin composition and insulating material and insulating structure using the same
JP2011001424A (en) * 2009-06-17 2011-01-06 Hitachi Industrial Equipment Systems Co Ltd Insulated casting resin for electric appliance, and high voltage electric appliance using the same
WO2013121571A1 (en) * 2012-02-17 2013-08-22 株式会社日立製作所 Resin composition for electric insulation, cured product thereof, methods for manufacturing same, and high-voltage devices and electric power transmission and distribution devices using same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Nanocomposite -Aratana Sangyo Needs ni Kotaeru Zairyo to Sono Sekkei", THE SOCIETY OF POLYMER SCIENCE, 14 December 2007 (2007-12-14), pages 90 - 93 *
B.T. MAROUF ET AL.: "Anomalous fracture behavior in an epoxy-based hybrid composite", MATERIALS SCIENCE AND ENGINEERING A, vol. 515, 2009, pages 49 - 58, XP026096270, doi:10.1016/j.msea.2009.03.028 *
GONG-TAO WANG ET AL.: "Cyclic fatigue of polymer nanocomposites", ENGINEERING FAILURE ANALYSIS, vol. 16, 2009, pages 2635 - 2645, XP026559958, doi:10.1016/j.engfailanal.2009.04.022 *
HONG-YUAN LIU ET AL.: "Cyclic fatigue crack propagation of nanoparticle modified epoxy", COMPOSITES SCIENCE AND TECHNOLOGY, vol. 72, 2012, pages 1530 - 1538 *
HONG-YUAN LIU ET AL.: "On fracture toughness of nano-particle modified epoxy", COMPOSITES: PART B, vol. 42, 2011, pages 2170 - 2175, XP028299318, doi:10.1016/j.compositesb.2011.05.014 *
N.Y. YUHANA ET AL.: "Transmission electron microscopy study of room temperature cured PMMA grafted natural rubber toughened epoxy/layered silicate nanocomposite", PLASTICS, RUBBER AND COMPOSITES, vol. 41, no. 9, 2012, pages 390 - 395 *
TAMON OZAKI: "Functional Insulating Materials Using Nanoparticle Dispersion Technique", TOSHIBA REVIEW, vol. 59, no. 7, 2004, pages 48 - 51, Retrieved from the Internet <URL:http://www.toshiba.co.jp/tech/review/2004/07/5907pdf/f04.pdf> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018002819A (en) * 2016-06-30 2018-01-11 倉持 浩 Thermoplastic elastomer mixture and continuum forming method using the same

Similar Documents

Publication Publication Date Title
JP5185890B2 (en) Insulating casting resin for high-voltage electrical equipment and high-voltage electrical equipment using the same
KR101119945B1 (en) Cast resin composition, insulator material and insulating structure therewith
Huang et al. Role of interface in highly filled epoxy/BaTiO 3 nanocomposites. Part I-correlation between nanoparticle surface chemistry and nanocomposite dielectric property
US8735469B2 (en) Resin material and high voltage equipment using the resin material
EP2532010A1 (en) Electrical insulation system
JP2009073933A (en) Epoxy resin composition having thermal degradation resistance
JP2007056049A (en) Resin composition, method for producing the same and electric apparatus by using the same
MX2013013272A (en) Insulation formulations.
JP6101122B2 (en) Epoxy resin composition for mold transformer, mold transformer, and method for producing mold transformer
JP2020145328A (en) Mold apparatus
WO2015121996A1 (en) Electric insulation resin
JP5994023B2 (en) Composite insulating resin material for high voltage equipment and high voltage equipment using the same
JP6209403B2 (en) Electrical insulating resin and high voltage equipment using it
JP5359008B2 (en) Method for producing insulating polymer material composition
JP5986647B2 (en) Insulating material for electrical equipment and electrical equipment using the same
Park Effect of nano-silicate on the mechanical, electrical and thermal properties of epoxy/micro-silica composite
JP2023010288A (en) Resin composition for power apparatus
JP2005251543A (en) Insulating resin composite for high voltage equipment, insulating material and its manufacturing method, and insulating structure
JP2020050828A (en) Epoxy resin composition for cast, and ignition coil
JP2005179568A (en) Epoxy resin composition and cast insulator
JP2015040274A (en) Epoxy resin composition for electric power apparatus
Elanseralathan et al. Effect of filler concentration on breakdown in polymer nano-composites
Park Effect of silica particle size on the mechanical properties in an epoxy/silica composite for HV insulation
JP2016060898A (en) Two-pack casting epoxy resin composition, and coil component
JPS61127722A (en) Epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP