WO2015121730A1 - Способ и устройство оптического мониторинга процесса спекания объемных изделий из порошков - Google Patents

Способ и устройство оптического мониторинга процесса спекания объемных изделий из порошков Download PDF

Info

Publication number
WO2015121730A1
WO2015121730A1 PCT/IB2015/000124 IB2015000124W WO2015121730A1 WO 2015121730 A1 WO2015121730 A1 WO 2015121730A1 IB 2015000124 W IB2015000124 W IB 2015000124W WO 2015121730 A1 WO2015121730 A1 WO 2015121730A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
sintering
control
scanner
sintered
Prior art date
Application number
PCT/IB2015/000124
Other languages
English (en)
French (fr)
Inventor
Юрий Александрович ЧИВЕЛЬ
Original Assignee
Юрий Александрович ЧИВЕЛЬ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юрий Александрович ЧИВЕЛЬ filed Critical Юрий Александрович ЧИВЕЛЬ
Publication of WO2015121730A1 publication Critical patent/WO2015121730A1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the invention relates to the field of measuring equipment and can be used in monitoring and control of processes for producing bulk products from powders.
  • the disadvantage of this method is the lack of control of the size of the heating region to the sintering temperature and the lack of control of the size of the sintered region, which does not allow to measure shrinkage and adjust the process.
  • the temperature is averaged over an unknown site, the dimensions of which vary due to aberrations of the optical system, since a wide range of wavelengths is used.
  • Closest to the claimed method is a method for optical monitoring and control of the process of selective sintering of bulk powder products [2] consisting in recording the nature and level of the surface glow signal in the melting region, the sizes of the melting region, comparing them with the software set and maintaining the signal level at a given level by controlling the parameters of laser radiation.
  • the disadvantage of this method is to register the level of the surface-averaged signal of surface glow, and not the level of a physical quantity — the surface temperature and its distribution in the treatment zone.
  • there is no control of the geometric dimensions and quality of the sintered sections which does not allow to take into account the shrinkage and the presence of defects in the layer and to adjust the process.
  • the objective of the invention is the development of a method for optical monitoring and control of the process of selective sintering of bulk products from powders and a device for its implementation, allowing to obtain complete and accurate information about the process of selective sintering of bulk products and to carry out process adjustment in real time.
  • Method for optical monitoring and control of selective bulk sintering process powder products consists in registering the surface temperature and its distribution in the area of influence of the concentrated energy flux in several spectral intervals near the operating wavelength of the scanner optical system and registering the surface image in the light of radiation from an external surface illumination source.
  • the novelty lies in the fact that during sintering, the maximum surface temperature in the impact area and the dimensions of the melting zone are maintained at a predetermined level, and images of sintered sections or fragments thereof are recorded by scanning, sizes of sintered sections of a bulk product or fragments thereof are compared with programmed ones, determined size deviation and the presence of defects in the sintered layer and adjust the exposure parameters and the process flow.
  • the temperature and size of the melting region are measured in the spectral range near the calculated wavelength of the optical system of the scanner [3,4] in order to avoid aberrations.
  • the maximum temperature is measured using a multichannel pyrometer in a spot with a diameter of Ymkm much smaller than the melting region, which allows you to determine the maximum thermodynamic temperature and having the brightness temperature distribution from the video camera, obtain the distribution of thermodynamic temperature and, as a result, obtain the exact dimensions of the melting or sintering region.
  • the process of manufacturing a volumetric product is controlled by maintaining at a programmed power level the acting energy source, the size of the melting (sintering) region, the scanning speed and the geometric parameters of the scanning region in each section of the volumetric product.
  • the construction scheme of the control system is shown in FIG. 1.
  • the system includes: a computer 21, a control module 32, comprising a control controller 33 of the scanner 3 and a control controller 34 of the energy source 1, a pyrometer 10, and a video camera with an image analyzer 13, optically coupled through optical systems 19 and 20 to the cross-section manufacturing area bulk products on the surface of the powder bed 35.
  • Regulators 33 and 34 built on the principles of PID-controllers, maintain at a given level the power of the source, the size of the spot of exposure and the speed of scanning the spot along the surface of the powder bulk using appropriate feedbacks.
  • the image is injected into a computer and compared with the programmed one. Based on the comparison results, the scanner control program and the parameters of the impact of the energy source are adjusted.
  • Such a complete control system makes it possible to manufacture the product with micron accuracy, while without such control the geometric accuracy is not better than 1.5-2%.
  • a device for optical monitoring and control of the process of selective sintering of bulk powder products [1] containing a galvanic scanner with a lens, a pyrometer with a lens, and a device for maintaining the average temperature level in a laser exposure spot.
  • the disadvantage of this device is the lack of control of the size of the sintering area and control of the size of the sintered sections.
  • a device for optical monitoring and control of the process of selective sintering of bulk powder products [2] containing a galvanic scanner with a lens, a photodiode with a lens, a video camera with a lens and PID controllers to maintain the signal level from the photodiode and the size of the melting region.
  • the disadvantage of this device is the inability to determine the physical parameters of the sintering process - the temperature and its distribution in the sintering area, as well as the inability to control the size of the sintered areas in the cross sections of the bulk product during sintering and thereby adjust the scanner bypass program.
  • a device for optical monitoring and control of the process of selective sintering of bulk powder products contains a scanner with a lens, an optical system, an optical pyrometer with a lens, a video camera with a lens, and a surface illumination source.
  • the device additionally contains a 2D image scanner located on the carriage for applying and stacking the powder and a control module including two control knobs.
  • the device diagram is presented in figure 2, Fig.Z.
  • the device contains a gradient mirror 2, a scanner 3 with a lens 6,
  • optical system consisting of dividing and rotary mirrors 7.14, fiber
  • an optical pyrometer 10 with a lens 4 a video camera with an image analyzer 13 with a lens 12 and filters 11, a surface illumination source 16 with a telescope 17 and a swivel mirror 18, carriage for filling and stacking of powder 24, 2D of the image scanner 23 placed on the carriage, or ZD of the image scanner located in the upper part of the working chamber 27.
  • the elements of the device 2-18 are placed in an insulated box 25.
  • the radiation from the laser 1 of the selective sintering plant, consisting of a working chamber 27 with an optical window 26, a working hopper 29 with a piston 22 and the device for moving it 30, is inserted on the scanner 3 and focuses on the surface of the powder filling 5.
  • the device operates as follows:
  • the carriage is filled with powder and, as it moves, layers of powder are periodically applied to the piston 22 during its vertical movement.
  • the programmed areas are fused.
  • the maximum thermodynamic temperature in the center of the irradiation spot is measured.
  • the programmed temperature is maintained by introducing the temperature through the feedback circuit to the controller 34 and then the laser power 1 is changed according to the mismatch signal.
  • the scanning signal the size of the focus spot and the speed — changes the mismatch signal scanning axis.
  • the inventive device and method allows to provide a given technological mode of sintering and to provide micron accuracy in the manufacture of bulk products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Powder Metallurgy (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано при мониторинге и контроле процессов селективного лазерного спекания объемных изделий из порошков. Способ заключается в регистрации температуры поверхности и ее распределения в области воздействия концентрированного потока энергии в нескольких спектральных интервалах вблизи рабочей длины волны оптической системы сканнера и регистрации изображения поверхности в свете излучения источника внешней подсветки поверхности. В процессе спекания поддерживают на заданном уровне максимальную температуру поверхности в области воздействия и размеры зоны плавления. Регистрируют изображения спеченных сечений или их фрагментов, сравнивают размеры спеченных сечений или их фрагментов с программно заданными, определяют наличие дефектов в спеченном слое и корректируют параметры воздействия и ход технологического процесса. Устройство содержит сканнер с объективом, оптический пирометр с объективом, видеокамеру с объективом и источник подсветки поверхности. В устройстве по первому варианту 2D сканнер изображений размещен на каретке нанесения и укладки порошка. Модуль управления включает два регулятора управления. 3D сканнер изображений в устройстве по второму варианту размещен в рабочей камере. В результате получают полную информацию о процессе селективного спекания объемного изделия, что позволяет управлять технологическим процессом в режиме реального времени.

Description

СПОСОБ И УСТРОЙСТВО ОПТИЧЕСКОГО МОНИТОРИНГА ПРОЦЕССА
СПЕКАНИЯ ОБЪЕМНЫХ ИЗДЕЛИЙ ИЗ ПОРОШКОВ
Изобретение относится к области измерительной техники и может быть использовано при мониторинге и контроле процессов получения объемных изделий из порошков .
Известен способ оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошка [1] состоящий в регистрации средней температуры поверхности в области спекания и ее поддержания на заданном уровне в процессе спекания.
Недостаток данного способа состоит в отсутствии контроля размеров области нагрева до температуры спекания и отсутствии контроля размеров спеченной области , что не позволяет измерять усадку и корректировать ход процесса. Кроме того температура усредняется по неизвестной площадке, размеры которой меняются вследствие аббераций оптической системы, так как используется широкий диапазон длин волн.
Наиболее близким к заявляемому способу является способ оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошка [ 2] состоящий в регистрации характера и уровня сигнала свечения поверхности в области плавления, размеров области плавления, сравнения их с программно заданным и поддержания уровня сигнала на заданном уровне путем управления параметрами лазерного излучения. Недостаток данного способа состоит в регистрации уровня усредненного по площади сигнала свечения поверхности , а не уровня физической величины - температуры поверхности и ее распределения в зоне обработки. Кроме того отсутствует контроль геометрических размеров и качества спеченных сечений, что не позволяет учесть усадку и наличие дефектов в слое и откорректировать ход технологического процесса .
Задачей заявляемого изобретения является разработка способа оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков и устройства для его осуществления, позволяющих получать полную и точную информацию о процессе селективного спекания объемного изделия и осуществлять корректировку технологического процесса в режиме реального времени.
Способ оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков, состоит в регистрации температуры поверхности и ее распределения в области воздействия концентрированного потока энергии в нескольких спектральных интервалах вблизи рабочей длины волны оптической системы сканнера и регистрации изображения поверхности в свете излучения источника внешней подсветки поверхности.
Новизна состоит в том, что в процессе спекания поддерживают на заданном уровне максимальную температуру поверхности в области воздействия и размеры зоны плавления, а также путем сканирования регистрируют изображения спеченных сечений или их фрагментов, сравнивают размеры спеченных сечений объемного изделия или их фрагментов с программно заданными, определяют отклонение размеров и наличие дефектов в спеченном слое и корректируют параметры воздействия и ход технологического процесса. Измерения температуры и размеров области плавления проводят в спектральном интервале вблизи расчетной длины волны оптической системы сканнера [3,4] во- избежании аббераций . Измерения максимальной температуры проводят с помощью многоканального пирометра в пятне диаметром Юмкм, значительно меньшем размеров области плавления, что позволяет определить максимальную термодинамическую температуру и имея распределение яркостной температуры с видеокамеры получить распределение термодинамической температуры и, как следствие, получить точные размеры области плавления или спекания.
Контроль процесса изготовления объемного изделия осуществляется посредством поддержания на программно заданном уровне мощности воздействующего источника энергии , размера области плавления ( спекания), скорости сканирования и геометрических параметров области сканирования в каждом сечении объемного изделия. Схема построения системы контроля приведена на Фиг. 1. Система включает в себя : компьютер 21 , модуль управления 32 , в составе регулятора управления 33 сканнером 3 и регулятора управления 34 источником энергии 1, пирометр 10 и видеокамеру с анализатором изображения 13 , оптически связанные через оптические системы 19 и 20 с областью изготовления сечения объемного изделия на поверхности порошковой насыпки 35. Регуляторы 33 и 34 , построенные на принципах PID -контроллеров поддерживают на заданном уровне мощность источника , размер пятна воздействия и скорость сканирования пятна по поверхности порошковой насыпки с помощью соответствующих обратных связей . По окончании изготовления сечения изделия с помощью 2Д или ЗД сканнера изображений сканируют всю площадь порошковой насыпки и полученное с высоким пространственным разрешением, 1 мкм для 2Д сканнера и 5-10мкм для ЗД сканнера, изображение вводят в компьютер и сравнивают с программно заданным. По результатам сравнения корректируют программу управления сканнером и параметры воздействия источника энергии. Такая полная система контроля позволяет изготовить изделие с микронной точностью, в то время как без такого контроля геометрическая точность не лучше 1,5-2%.
Известно устройство для оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков [1 ] содержащее гальваносканнер с объективом, пирометр с объективом и устройство поддержания уровня средней температуры в пятне воздействия лазера.
Недостаток этого устройства состоит в отсутствии контроля размеров области спекания и контроля размеров спеченных сечений .
Известно устройство для оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков [2 ] содержащее гальваносканнер с объективом, фотодиод с объективом, видеокамеру с объективом и PID контроллеры поддержания уровня сигнала с фотодиода и размеров области плавления.
Недостатком данного устройства является невозможность определения физических параметров процесса спекания - температуры и ее распределения в области спекания, а также невозможность контролировать размеры спеченных областей в сечениях объемного изделия в процессе его спекания и тем самым корректировать программу обхода сечения сканнером.
Для получения полной информации о процессе селективного спекания объемного изделия и управления технологическим процессом в режиме реального времени предложены новые устройства.
Устройство для оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков содержит сканнер с объективом , оптическую систему ,оптический пирометр с объективом, видеокамеру с объективом и источник подсветки поверхности.
Устройство дополнительно содержит 2D сканнер изображений, размещенный на каретке нанесения и укладки порошка и модуль управления, включающий два регулятора управления. Схема устройства представлена на Фиг.2 , Фиг.З.
Устройство содержит градиентное зеркало 2, сканнер 3 с объективом 6 ,
оптическую систему, состоящую из делительных и поворотных зеркал 7,14 , волоконного
з кабеля 9, оптического пирометра 10 с объективом 4, видеокамеры с анализатором изображения 13 с объективом 12 и фильтрами 11, источника подсветки поверхности 16 с телескопом 17 и поворотным зеркалом 18, каретки насыпки и укладки порошка 24, 2Д сканнера изображений 23, размещенного на каретке, либо ЗД сканнера изображений, размещенного в верхней части рабочей камеры 27. Элементы устройства 2-18 размещены в изолированном боксе 25. Излучение лазера 1 установки селективного спекания, состоящей из рабочей камеры 27 с оптическим окном 26 , рабочего бункера 29 с поршнем 22 и устройством его перемещения 30, вводится на сканнер 3 и фокусируется на поверхность порошковой насыпки 5. Устройство работает следующим образом :
Каретка заполняется порошком и при ее движении слои порошка наносятся периодически на поршень 22 при его вертикальном перемещении. При сканировании лазерным лучом по поверхности порошковой насыпки 5 программно заданные области сплавляются При этом в процессе сканирования пирометром 10 измеряется максимальная термодинамическая температура в центре пятна облучения. Программно заданная температура поддерживается путем введения значения температуры через цепь обратной связи на регулятор 34 и далее по сигналу рассогласования изменяется мощность лазера 1. Аналогично размеры области плавления, регистрируемые видеокамерой с анализатором изображений 13, как по тепловому излучению с определением температурного поля , так и по изображению в свете излучения источника подсветки вводятся на регулятор управления 33 и сигналом рассогласования изменяются параметры сканирования - размер пятна фокусировки и скорость сканирования. По окончании спекания сечения ЗД объекта при нанесении следующего слоя при движении каретки 24 сканнером изображений 23 снимается изображение спеченного сечения с разрешением 1мкм. Альтернативно с помощью ЗД сканера 28 получают изображение спеченного сечения. Изображение вводится в компьютер 21 сравнивается с программно заданным и движение сканнера 3 корректируется при спекании следующего слоя .
Таким образом заявляемое устройство и способ позволяют обеспечивать заданный технологический режим спекания и обеспечить микронную точность изготовления объемного изделия.
Литература
[1] Shen J. et al. // US Patent Jfe 6,600,129 . (2003).
[2] Kruth J-P., P. Mercelis // US Patent Application M»2009/020606 ( 2009).
[3] Чивель Ю/А/ // Патент РФ iNb2460992. (2010).
[4] Chivel Yu. // Physics Procedia , v.41, pp. 897 - 903, 2013

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ.
1. Способ оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков, состоящий в регистрации температуры поверхности и ее распределения в области воздействия концентрированного потока энергии путем регистрации теплового излучения поверхности в нескольких спектральных интервалах вблизи рабочей длины волны оптической системы сканнера и регистрации изображения поверхности в свете излучения источника внешней подсветки поверхности отличающийся тем, что в процессе спекания поддерживают на программно-заданном уровне максимальную температуру поверхности в области воздействия и размеры зоны плавления, а также регистрируют изображения спеченных сечений или их фрагментов, сравнивают размеры спеченных сечений объемного изделия или их фрагментов с программно - заданными, определяют наличие дефектов в спеченном слое и корректируют параметры воздействия и ход технологического процесса.
2. Устройство для оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков , содержащее сканнер с объективом , оптический пирометр с объективом, видеокамеру с объективом, источник подсветки поверхности и компьютер отличающееся тем, что дополнительно содержит 2D сканнер изображений размещенный на каретке нанесения и укладки порошка и модуль управления, включающий два регулятора управления.
3. Устройство для оптического мониторинга и контроля процесса селективного спекания объемных изделий из порошков , содержащее сканнер с объективом , оптический пирометр с объективом, видеокамеру с объективом, источник подсветки поверхности и компьютер отличающееся тем, что дополнительно содержит 3D сканнер изображений, размещенный в рабочей камере установки селективного спекания и модуль управления, включающий два регулятора управления.
PCT/IB2015/000124 2014-02-14 2015-02-06 Способ и устройство оптического мониторинга процесса спекания объемных изделий из порошков WO2015121730A1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014105366/02A RU2595072C2 (ru) 2014-02-14 2014-02-14 Способ управления процессом селективного лазерного спекания объемного изделия из порошков и устройство для его осуществления
RU2014105366 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015121730A1 true WO2015121730A1 (ru) 2015-08-20

Family

ID=53799640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/000124 WO2015121730A1 (ru) 2014-02-14 2015-02-06 Способ и устройство оптического мониторинга процесса спекания объемных изделий из порошков

Country Status (2)

Country Link
RU (1) RU2595072C2 (ru)
WO (1) WO2015121730A1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039858A1 (en) * 2015-08-28 2017-03-09 Intel IP Corporation Facilitating intelligent calibration and efficient performance of three-dimensional printers
US10479020B2 (en) * 2017-08-01 2019-11-19 Sigma Labs, Inc. Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
US10639745B2 (en) 2018-02-21 2020-05-05 Sigma Labs, Inc. Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
US10786850B2 (en) 2018-02-21 2020-09-29 Sigma Labs, Inc. Photodetector array for additive manufacturing operations
CN113409315A (zh) * 2021-08-19 2021-09-17 深圳市信润富联数字科技有限公司 工件缺陷检测方法、电子装置、装置及可读存储介质
US11260454B2 (en) 2017-11-07 2022-03-01 Sigma Labs, Inc. Correction of non-imaging thermal measurement devices
CN115049673A (zh) * 2022-08-17 2022-09-13 山东马勒铝业科技有限公司 一种铝锭熔炼温度控制方法及系统
CN117454451A (zh) * 2023-10-26 2024-01-26 东北林业大学 一种激光烧结3d打印过程温度场数值模拟方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2559579B (en) * 2017-02-08 2021-08-11 Reliance Prec Limited Method of and apparatus for additive layer manufacture
WO2019112580A1 (en) * 2017-12-06 2019-06-13 Hewlett-Packard Development Company, L.P. Ancillary objects in object generation
RU185518U1 (ru) * 2018-05-19 2018-12-07 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Устройство контроля и адаптивного управления при прямом лазерном выращивании
RU2696121C1 (ru) * 2018-07-13 2019-07-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Способ 3D печати на оборудовании с ЧПУ с интеллектуальной оптимизацией режимов
US11858041B2 (en) 2019-01-15 2024-01-02 Hewlett-Packard Development Company, L.P. Electrical measurement of a green object during sintering
RU2750994C1 (ru) * 2020-06-02 2021-07-07 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ управления процессом наплавки

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299787C2 (ru) * 2004-10-21 2007-05-27 Государственное научное учреждение "Институт порошковой металлургии" (ГНУ ИПМ) Установка порошковой лазерной стереолитографии
RU2371704C1 (ru) * 2008-07-25 2009-10-27 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Устройство для контроля лазерных технологических процессов
RU2009144636A (ru) * 2009-12-01 2011-06-10 Общество с ограниченной ответственностью "Люмента" (RU) Устройство и способ бесконтактного измерения профиля фаски торца трубы
RU118737U1 (ru) * 2011-12-02 2012-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Устройство лазерного контроля заготовок деталей машин
US20130168902A1 (en) * 2010-07-28 2013-07-04 Katholieke Universiteit Leuven Method for producing a three-dimensional component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10007711C1 (de) * 2000-02-19 2001-08-16 Daimler Chrysler Ag Vorrichtung und Verfahren zum Sintern eines Pulvers mit einem Laserstrahl

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299787C2 (ru) * 2004-10-21 2007-05-27 Государственное научное учреждение "Институт порошковой металлургии" (ГНУ ИПМ) Установка порошковой лазерной стереолитографии
RU2371704C1 (ru) * 2008-07-25 2009-10-27 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Устройство для контроля лазерных технологических процессов
RU2009144636A (ru) * 2009-12-01 2011-06-10 Общество с ограниченной ответственностью "Люмента" (RU) Устройство и способ бесконтактного измерения профиля фаски торца трубы
US20130168902A1 (en) * 2010-07-28 2013-07-04 Katholieke Universiteit Leuven Method for producing a three-dimensional component
RU118737U1 (ru) * 2011-12-02 2012-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Устройство лазерного контроля заготовок деталей машин

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039858A1 (en) * 2015-08-28 2017-03-09 Intel IP Corporation Facilitating intelligent calibration and efficient performance of three-dimensional printers
US10479020B2 (en) * 2017-08-01 2019-11-19 Sigma Labs, Inc. Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
US11390035B2 (en) 2017-08-01 2022-07-19 Sigma Labs, Inc. Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
US11938560B2 (en) 2017-08-01 2024-03-26 Divergent Technologies, Inc. Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
US11260454B2 (en) 2017-11-07 2022-03-01 Sigma Labs, Inc. Correction of non-imaging thermal measurement devices
US10639745B2 (en) 2018-02-21 2020-05-05 Sigma Labs, Inc. Systems and methods for measuring radiated thermal energy during an additive manufacturing operation
US10786850B2 (en) 2018-02-21 2020-09-29 Sigma Labs, Inc. Photodetector array for additive manufacturing operations
US11260456B2 (en) 2018-02-21 2022-03-01 Sigma Labs, Inc. Photodetector array for additive manufacturing operations
CN113409315A (zh) * 2021-08-19 2021-09-17 深圳市信润富联数字科技有限公司 工件缺陷检测方法、电子装置、装置及可读存储介质
CN115049673A (zh) * 2022-08-17 2022-09-13 山东马勒铝业科技有限公司 一种铝锭熔炼温度控制方法及系统
CN117454451A (zh) * 2023-10-26 2024-01-26 东北林业大学 一种激光烧结3d打印过程温度场数值模拟方法及系统
CN117454451B (zh) * 2023-10-26 2024-05-10 东北林业大学 一种激光烧结3d打印过程温度场数值模拟方法及系统

Also Published As

Publication number Publication date
RU2014105366A (ru) 2015-08-20
RU2595072C2 (ru) 2016-08-20

Similar Documents

Publication Publication Date Title
WO2015121730A1 (ru) Способ и устройство оптического мониторинга процесса спекания объемных изделий из порошков
EP3351323B1 (en) Additive manufacturing apparatus with systems of in-build assessment and correction of laser pointing accuracy for multiple-laser apparatus
US20210039167A1 (en) Additive manufacturing apparatus and method
US10464262B2 (en) Systems and methods for monitoring a melt pool using a dedicated scanning device
JP6771076B2 (ja) 三次元の部材の生成的な製造の為の装置
CN107877855B (zh) 用于校准制造三维物体的装置的方法和实施该方法的装置
JP7126012B2 (ja) 校正デバイスを備えた製品の付加製造のための装置及びこの装置の校正方法
KR20200051594A (ko) 적층식 제조 작업 중 방사 열 에너지를 측정하는 시스템 및 방법
US20180185959A1 (en) System and methods for fabricating a component based on local thermal conductivity of a build material
US20170242424A1 (en) Laser power monitoring in additive manufacturing
JP6880135B2 (ja) 3次元の物体を付加製造する装置
CN109421275B (zh) 用于制造三维物体的设备
US11904545B2 (en) Apparatus for additively manufacturing three-dimensional objects
JP2019137912A (ja) 3次元の物体を付加製造する装置
Chivel et al. Temperature monitoring in selective laser sintering/melting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749438

Country of ref document: EP

Kind code of ref document: A1