WO2015120741A1 - 一种通告集群系统带宽的方法及控制器 - Google Patents

一种通告集群系统带宽的方法及控制器 Download PDF

Info

Publication number
WO2015120741A1
WO2015120741A1 PCT/CN2014/094681 CN2014094681W WO2015120741A1 WO 2015120741 A1 WO2015120741 A1 WO 2015120741A1 CN 2014094681 W CN2014094681 W CN 2014094681W WO 2015120741 A1 WO2015120741 A1 WO 2015120741A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
transmission
edge node
cluster system
transmission path
Prior art date
Application number
PCT/CN2014/094681
Other languages
English (en)
French (fr)
Inventor
罗巍
李泓锟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14882200.0A priority Critical patent/EP3094054B1/en
Publication of WO2015120741A1 publication Critical patent/WO2015120741A1/zh
Priority to US15/235,420 priority patent/US10250477B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/125Shortest path evaluation based on throughput or bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers

Definitions

  • the present invention relates to a network clustering technology, and in particular, to a method and a controller for advertising a cluster system bandwidth.
  • edge node There are multiple nodes in the cluster system, only some of the nodes can be presented externally, and this part of the nodes presented to the outside is called an edge node. If multiple edge nodes support Multi-Protocol Label Switching (MPLS) traffic engineering (TE), the TE topology between these nodes can be externally presented through the TE link between the nodes.
  • MPLS Multi-Protocol Label Switching
  • TE traffic engineering
  • the controller in the cluster system calculates a transmission path capable of providing the service according to the information carried in the data, so that the data Can be transferred to the next node through the cluster system. Therefore, it is necessary to release the maximum bandwidth that the cluster system can provide to other nodes outside the cluster system, so as to release the bearer capability of the cluster system when carrying data to other nodes outside the cluster system.
  • the maximum bandwidth that the cluster system can provide is obtained by simply superimposing the bandwidths of all the transmission links directly connected to the edge nodes in the cluster system.
  • FIG. 1 is a schematic diagram of obtaining the maximum bandwidth of the cluster system in the prior art.
  • the bandwidth of the transmission link directly connected to the edge node A2 is equal to 50 G, and therefore,
  • the maximum bandwidth that the cluster system can provide is 50G, and the bandwidth required for data transmitted between node A1 and edge node A2 cannot exceed 50G.
  • the calculation method of the maximum bandwidth of the cluster system is low in accuracy. If the maximum bandwidth obtained by the method is advertised to the nodes outside the cluster system, the bandwidth required for the transmitted data may exceed the capacity of the cluster system. The cluster system will not be able to transfer this data.
  • the embodiments of the present invention provide a method and a controller for advertising the bandwidth of a cluster system, which can improve the accuracy of the maximum bandwidth advertised by the cluster system to nodes external to the cluster system.
  • an embodiment of the present invention provides a method for advertising a bandwidth of a cluster system, where the cluster system includes a controller, a first edge node, and a second edge node, the first edge node and the second edge node. Between the at least two transmission paths, each of the transmission paths includes at least two transmission links;
  • the controller obtains at least two transmission paths between the first edge node and the second edge node;
  • the controller obtains a maximum bandwidth provided by the cluster system according to a bandwidth of the at least two transmission paths, where a bandwidth of each of the transmission paths is equal to a minimum bandwidth of bandwidths of all transmission links in the transmission path.
  • the maximum bandwidth is less than a sum of bandwidths of at least two transmission links connected to the first edge node;
  • the controller notifies the maximum bandwidth to nodes outside the cluster system through the first edge node and/or the second edge node.
  • the controller obtains at least two transmission paths between the first edge node and the second edge node, including:
  • the controller obtains all transmission paths between the first edge node and the second edge node;
  • the controller obtains an overhead value of each of the transmission paths and a bandwidth of each of the transmission paths;
  • the controller obtains a bandwidth according to the cost value and the bandwidth, and sequentially obtains a bandwidth according to the first order. a transmission path other than 0, and deducting the bandwidth of the obtained transmission path from the bandwidth of each transmission link in the obtained transmission path until each of the transmission paths except for the obtained transmission path In the middle, there is a transmission link with a current bandwidth of zero.
  • the first sequence includes an order in which the cost value is from small to large, and the bandwidth is from a large
  • the controller obtains a transmission path with a bandwidth other than 0 according to the cost value and the bandwidth, and includes:
  • the controller obtains at least one transmission path whose bandwidth value is minimum and whose bandwidth is not 0;
  • the controller obtains, by the controller, at least one transmission path whose bandwidth is not 0 and whose bandwidth is not 0, and whose bandwidth is not 0.
  • the controller is The bandwidth of at least two transmission paths obtains the maximum bandwidth provided by the cluster system, including:
  • the controller obtains a maximum bandwidth provided by the cluster system according to a sum of bandwidths of the at least two transmission paths.
  • an embodiment of the present invention provides a controller for advertising a bandwidth of a cluster system, where the cluster system includes a first edge node and a second edge node, and between the first edge node and the second edge node Include at least two transmission paths, each of the transmission paths including at least two transmission links; the controller includes:
  • a path obtaining unit configured to obtain at least two transmission paths between the first edge node and the second edge node
  • a bandwidth acquiring unit configured to obtain a maximum bandwidth provided by the cluster system according to a bandwidth of the at least two transmission paths, where a bandwidth of each of the transmission paths is equal to a bandwidth of all transmission links in the transmission path a minimum bandwidth; the maximum bandwidth is less than a sum of bandwidths of at least two transmission links connected to the first edge node;
  • a bandwidth advertising unit configured to advertise the maximum bandwidth to a node outside the cluster system by using the first edge node and/or the second edge node.
  • the path obtaining unit is specifically configured to:
  • a transmission link with a current bandwidth of 0 exists in every transmission path except for the obtained transmission path in all transmission paths.
  • the first sequence includes an order in which the cost value is from small to large, and the bandwidth is from a large
  • the path obtaining unit obtains a transmission path whose bandwidth is not 0 according to the cost value and the bandwidth, and is specifically:
  • the one of the transmission paths whose bandwidth is not 0 is the transmission channel whose bandwidth is not 0.
  • the bandwidth acquiring unit is specifically used And obtaining a maximum bandwidth provided by the cluster system according to a sum of bandwidths of the at least two transmission paths.
  • the maximum bandwidth provided by the cluster system is smaller than the bandwidth of at least two transmission links connected to the edge node, and is not equal to the bandwidth of the transmission link directly connected to the edge node. Therefore, the maximum bandwidth of the externally announced cluster system is compared. Accurate, which can reduce the problem that the bandwidth required for the transmitted data exceeds the carrying capacity of the cluster system due to the lower accuracy of the maximum bandwidth of the externally announced cluster system.
  • FIG. 1 is a schematic diagram of obtaining a maximum bandwidth of a cluster system in the prior art
  • FIG. 2 is a schematic flowchart of a method for advertising a bandwidth of a cluster system according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of an embodiment of a method for advertising a bandwidth of a cluster system according to an embodiment of the present invention
  • FIG. 4 is a schematic topological diagram of an embodiment of a method for advertising a cluster system bandwidth according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of functions of a controller for advertising a cluster system bandwidth according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a controller for advertising a cluster system bandwidth according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method for advertising the bandwidth of the cluster system.
  • FIG. 2 it is a schematic flowchart of a method for advertising the bandwidth of the cluster system according to an embodiment of the present invention. As shown in the figure, the method includes the following steps:
  • Step 201 The controller obtains at least between the first edge node and the second edge node Two transmission paths.
  • the cluster system in the embodiment of the present invention includes a controller, a first edge node, and a second edge node, where the first edge node and the second edge node include at least two transmission paths, each of which is The transmission path includes at least two transmission links.
  • the controller obtains at least two transmission paths between the first edge node and the second edge node, which may be:
  • the controller obtains all transmission paths between the first edge node and the second edge node.
  • the controller obtains a cost value of each transmission path between the first edge node and the second edge node and a bandwidth of each of the transmission paths.
  • the controller obtains a transmission path whose bandwidth is not 0 according to the cost value and the bandwidth, and sequentially deducts the bandwidth of each transmission link in the obtained transmission path.
  • the bandwidth of the obtained transmission path is up to the transmission link of the current bandwidth of 0 in every transmission path except the obtained transmission path in all transmission paths.
  • the first sequence may include an order in which the cost values are small to large and an order in which the bandwidth is from large to small, such that the controller according to the cost value and the bandwidth, and according to the first
  • the method of sequentially obtaining a transmission path with a bandwidth other than 0 is: the controller searches for at least one transmission path whose bandwidth value is the least between the first edge node and the second edge node, and then the controller is in the current overhead. In the transmission path with the smallest value of at least one bandwidth not being 0, the transmission path with the largest bandwidth is not 0, and all the transmission paths except the obtained transmission path are present in all the transmission paths.
  • the cost value refers to an overhead value based on an Interior Gateway Protocol (IGP).
  • IGP Interior Gateway Protocol
  • Step 202 The controller obtains a maximum bandwidth provided by the cluster system according to a bandwidth of the at least two transmission paths, where a bandwidth of each of the transmission paths is equal to a bandwidth of all transmission links in the transmission path. Minimum bandwidth; the maximum bandwidth is less than the sum of the bandwidths of at least two transmission links connected to the first edge node.
  • the controller obtains a maximum bandwidth between the first edge node and the second edge node according to the obtained sum of bandwidths of the at least two transmission paths, that is, the maximum that the cluster system can provide. bandwidth.
  • the bandwidth of each of the transmission paths is equal to the minimum bandwidth of the bandwidths of all the transmission links in the transmission path, for example, the transmission path includes a first transmission link and a second transmission link, where the first The bandwidth of the transmission link is 10G, and the bandwidth of the second transmission link is 20G.
  • the bandwidth of the transmission path is equal to the minimum bandwidth of the bandwidth of the two transmission links, that is, the bandwidth of the transmission path is equal to 10G.
  • the reason why the maximum bandwidth that the cluster system can provide is less than the sum of the bandwidths of the at least two transmission links connected to the first edge node, and the reason may include: if a transmission link belongs to two at the same time, according to the description of step 201 For the transmission path, after obtaining one of the transmission paths, some or all of the bandwidth needs to be deducted on the transmission link, so that when the other transmission path is obtained, the partially deducted bandwidth is not utilized, because this part of the bandwidth Has been occupied by a transmission path. If the entire bandwidth of the transmission link is deducted, the transmission path including the transmission link will not be available to the controller and cannot be used to calculate the maximum bandwidth of the cluster system.
  • the cluster is not All transmissions in the system
  • the bandwidth of the path is simply superimposed to obtain the maximum bandwidth of the cluster system. Therefore, the maximum bandwidth of the cluster system is smaller than the sum of the bandwidths of at least two transmission links connected to the first edge node, so as to avoid the data entering the cluster system. The bandwidth exceeds the carrying capacity of the cluster system.
  • Step 203 The controller notifies the maximum bandwidth to a node outside the cluster system by using the first edge node and/or the second edge node.
  • the maximum bandwidth that the cluster system can provide is advertised to the node outside the cluster system by using the first edge node and/or the second edge node, so that the nodes outside the cluster system know the cluster.
  • the edge node of the path is the first edge node and the second edge node, and the maximum bandwidth of the cluster system is obtained; the maximum bandwidth that the cluster system can provide is the bandwidth of the path, thereby implementing the The path between the first edge node and the second edge node and the bandwidth of the path are advertised to nodes outside the cluster system.
  • the identifier of the first edge node needs to be simultaneously
  • the identifier of the second edge node is simultaneously advertised to a node outside the cluster system for indicating to the node outside the cluster system which of the two edge nodes the maximum bandwidth is.
  • FIG. 3 and FIG. 4 are respectively a schematic flowchart and a topology diagram of an embodiment of a method for advertising a bandwidth of a cluster system according to an embodiment of the present invention.
  • a transmission link between each two nodes is used.
  • the cost value is equal to 10.
  • the edge node A1 (corresponding to the first edge node) and the edge node A6 (corresponding to the second edge node) have two endpoints A1 ⁇ A6 of the transmission path, and the transmission path A1 ⁇ A6 carries the maximum bandwidth that can be provided between two edge nodes in the cluster system.
  • the maximum bandwidth is released outside the group system so that the transmission path can support data transmission; as shown, the method includes the following steps:
  • the transmission path with the lowest cost and the largest bandwidth of the current IGP between the edge node A1 and the edge node A6 is selected.
  • the "the minimum cost value and the largest bandwidth" refers to the selection of the transmission path. When the cost is the smallest, consider the one with the largest bandwidth. If there are multiple transmission paths with the smallest cost, select the one with the largest bandwidth.
  • A1 ⁇ A5 ⁇ A6 is selected, and the cost value of the transmission path is equal to the sum of the cost value 10 of the transmission link A1 ⁇ A5 and the cost value 10 of the transmission link A5 ⁇ A6, and the transmission link A1 ⁇ A5 ⁇ A6
  • the cost of the TE link is equal to 20, and the bandwidth of the TE link is 10G.
  • the bandwidth of the transmission path refers to the smallest value of the bandwidth supported by each transmission link on the transmission path, such as the transmission link A1 ⁇ A5.
  • the bandwidth is 10G, and the bandwidth of the transmission link A5 ⁇ A6 is 40G, and the bandwidth of the transmission path A1 ⁇ A5 ⁇ A6 is 10G.
  • step 302 the bandwidth of the transmission path A1 ⁇ A5 ⁇ A6 is deducted from the transmission link A1 ⁇ A5 and the transmission link A5 ⁇ A6, so that the bandwidth of the transmission link A1 ⁇ A5 is 0, and the bandwidth of the transmission link A5 ⁇ A6 is transmitted. The remaining 30G.
  • Step 303 as shown in FIG. 4, repeating step 301, that is, selecting a transmission path with the smallest current cost value and the largest bandwidth between the edge node A1 and the edge node A6, and the transmission link A1 ⁇ A5 in the transmission path A1 ⁇ A5 ⁇ A6
  • the bandwidth is 0. Therefore, when the transmission path is selected again, the transmission path including the transmission link A1 ⁇ A5 will not be selected to avoid the bandwidth of the transmission link A1 ⁇ A5 being reused; therefore, the edge node A1 and the edge node A6 are selected.
  • the transmission path of the current IGP with the smallest overhead value and the largest bandwidth that is, A1 ⁇ A2 ⁇ A5 ⁇ A6, the IGP cost value of the transmission path is equal to the cost value 10 of the transmission link A1 ⁇ A2, and the transmission link A2 ⁇ A5
  • the sum of the cost value 10 and the cost value 10 of the transmission link A5 ⁇ A6, the cost value of the transmission path A1 ⁇ A2 ⁇ A5 ⁇ A6 is equal to 30, and the bandwidth of the transmission path is 30G because of the bandwidth of the transmission link A1 ⁇ A2.
  • the bandwidth of the transmission link A2 ⁇ A5 is 30G
  • the bandwidth of the transmission link A5 ⁇ A6 is 30G. Therefore, the bandwidth of the transmission path A1 ⁇ A2 ⁇ A5 ⁇ A6 is 30G.
  • the cost of the A1 ⁇ A4 ⁇ A5 ⁇ A6 is equal to 30, but the bandwidth of the transmission path is 10G, which is smaller than the bandwidth of the transmission path A1 ⁇ A2 ⁇ A5 ⁇ A6.
  • the maximum bandwidth of the cluster system is required in the embodiment of the present invention. Therefore, the transmission path with a larger bandwidth is preferentially selected. Therefore, these other transmission paths with an overhead value of 30 but a small bandwidth are not selected in this step.
  • Step 304 deducting the bandwidth 30G of the transmission path A1 ⁇ A2 ⁇ A5 ⁇ A6 in the transmission link A1 ⁇ A2, the transmission link A2 ⁇ A5, and the transmission link A5 ⁇ A6, thereby, the bandwidth remaining of the transmission link A1 ⁇ A2 50G, the bandwidth of the transmission link A2 ⁇ A5 is 0, and the bandwidth of the transmission link A5 ⁇ A6 is 0.
  • Step 305 repeat step 301, that is, select the transmission path with the smallest IGP overhead value and the largest bandwidth between the edge node A1 and the edge node A6, that is, A1 ⁇ A4 ⁇ A7 ⁇ A6 and A1 ⁇ A2 ⁇ A3 ⁇ A6, here, a transmission path can be randomly selected in A1 ⁇ A4 ⁇ A7 ⁇ A6 and A1 ⁇ A2 ⁇ A3 ⁇ A6.
  • the transmission path A1 ⁇ A4 ⁇ A7 ⁇ A6 is selected as an example for description.
  • the cost value of the transmission path A1 ⁇ A4 ⁇ A7 ⁇ A6 is equal to the sum of the cost value 10 of the transmission link A1 ⁇ A2, the cost value 10 of the transmission link A4 ⁇ A7, and the cost value 10 of the transmission link A7 ⁇ A6.
  • the cost value of the transmission path A1 ⁇ A4 ⁇ A7 ⁇ A6 is equal to 30
  • the bandwidth of the transmission path A1 ⁇ A4 ⁇ A7 ⁇ A6 is 10G
  • the cost of the transmission path A1 ⁇ A2 ⁇ A3 ⁇ A6 is equal to the overhead of the transmission link A1 ⁇ A2.
  • the value 10 the sum of the overhead value 10 of the transmission link A2 ⁇ A3 and the overhead value 10 of the transmission link A3 ⁇ A6, the cost value of the transmission path A1 ⁇ A2 ⁇ A3 ⁇ A6 is equal to 30, and the transmission path A1 ⁇ A2 ⁇ A3 ⁇ The bandwidth of A6 is 10G.
  • Step 306 deducting the bandwidth 10G of the transmission path A1 ⁇ A4 ⁇ A7 ⁇ A6 in the transmission link A1 ⁇ A4, the transmission link A4 ⁇ A7 and the transmission link A7 ⁇ A6, thereby, the bandwidth remaining of the transmission link A1 ⁇ A4 0, the bandwidth of the transmission link A4 ⁇ A7 remains 10G, and the bandwidth of the transmission link A7 ⁇ A6 remains 10G.
  • Step 307 repeat step 301, that is, select the transmission path with the smallest IGP overhead value and the largest bandwidth between the edge node A1 and the edge node A6, that is, A1 ⁇ A2 ⁇ A3 ⁇ A6.
  • Step 308 deducting the bandwidth 10G of the transmission path A1 ⁇ A2 ⁇ A3 ⁇ A6 in the transmission link A1 ⁇ A2, the transmission link A2 ⁇ A3, and the transmission link A3 ⁇ A6, thereby, the bandwidth remaining of the transmission link A1 ⁇ A2 40G, the bandwidth of the transmission link A2 ⁇ A3 is 0, and the bandwidth of the transmission link A3 ⁇ A6 is 0.
  • Step 309 as shown in FIG. 4, since the remaining transmission paths include a transmission link with a bandwidth of 0, the transmission path between the edge node A1 and the edge node A6 cannot be selected again. Therefore, the selection process ends.
  • the selected three transmission paths namely A1 ⁇ A5 ⁇ A6, A1 ⁇ A2 ⁇ A5 ⁇ A6, A1 ⁇ A4 ⁇ A7 ⁇ A6 and A1 ⁇ A2 ⁇ A3 ⁇ A6, are added together to obtain the maximum provided by the cluster system.
  • the maximum bandwidth 60G provided by the cluster system obtained by the technical solution of the present invention is smaller than that of the prior art.
  • the cluster system obtained by the prior art provides a maximum bandwidth of 100G.
  • Embodiments of the present invention further provide an apparatus embodiment for implementing the steps and methods in the foregoing method embodiments.
  • FIG. 5 is a functional block diagram of a controller for reporting bandwidth of a cluster system according to an embodiment of the present invention.
  • the cluster system includes a first edge node and a second edge node, and the first edge node and The second edge nodes include at least two transmission paths, and each of the transmission paths includes at least two transmission links.
  • the controller includes:
  • a path obtaining unit 501 configured to obtain at least two transmission paths between the first edge node and the second edge node;
  • the bandwidth obtaining unit 502 is configured to obtain, according to the bandwidth of the at least two transmission paths, a maximum bandwidth provided by the cluster system, where a bandwidth of each of the transmission paths is equal to a bandwidth of all transmission links in the transmission path. Minimum bandwidth; the maximum bandwidth is less than a sum of bandwidths of at least two transmission links connected to the first edge node;
  • the bandwidth advertising unit 503 is configured to advertise the maximum bandwidth to the node outside the cluster system by using the first edge node and/or the second edge node.
  • the path obtaining unit 501 is specifically configured to:
  • a transmission link with a current bandwidth of 0 exists in every transmission path except for the obtained transmission path in all transmission paths.
  • the first sequence includes an order in which the cost values are small to large, and an order in which the bandwidth is from large to small.
  • the path obtaining unit 501 is configured according to the cost value and the bandwidth according to the first order. Obtain a transmission path with a bandwidth other than 0, specifically:
  • the one of the transmission paths whose bandwidth is not 0 is the transmission channel whose bandwidth is not 0.
  • the bandwidth obtaining unit 502 is specifically configured to: obtain a maximum bandwidth provided by the cluster system according to a sum of bandwidths of the at least two transmission paths.
  • FIG. 6 is a schematic structural diagram of a controller for reporting bandwidth of a cluster system according to an embodiment of the present invention. As shown, the device includes:
  • a memory 601 configured to store one or more sets of program codes
  • the processor 602 is coupled to the memory 601 and the transmitter 603, respectively, for calling the program code stored in the memory 601 to execute the method shown in FIG. 2, specifically, comprising: obtaining the first edge node and the second At least two transmission paths between the edge nodes; obtaining a maximum bandwidth provided by the cluster system according to bandwidths of the at least two transmission paths; wherein each of the transmission paths has a bandwidth equal to all transmission links in the transmission path The minimum bandwidth of the bandwidth; the maximum bandwidth is less than the sum of the bandwidths of the at least two transmission links connected to the first edge node.
  • the transmitter 603 is configured to advertise the maximum bandwidth to a node outside the cluster system by using the first edge node and/or the second edge node.
  • the processor 602 obtains at least two transmission paths between the first edge node and the second edge node, specifically:
  • a transmission link having a current bandwidth of 0 exists in every transmission path except for the obtained transmission path in all transmission paths.
  • the first sequence includes an order in which the cost values are small to large, and an order in which the bandwidth is from large to small.
  • the processor 602 sequentially follows the first step in accordance with the cost value and the bandwidth. Obtain a transmission path with a bandwidth other than 0, specifically:
  • the one of the transmission paths whose bandwidth is not 0 is the transmission channel whose bandwidth is not 0.
  • the processor 602 obtains the maximum bandwidth provided by the cluster system according to the bandwidth of the at least two transmission paths, specifically: obtaining the cluster system according to the sum of the bandwidths of the at least two transmission paths. Maximum bandwidth.
  • processors and the transmitter in this embodiment are capable of performing the method shown in FIG. 2, and the portions not described in detail in this embodiment, reference may be made to the related description of FIG. 2.
  • the maximum bandwidth of the cluster system can be automatically calculated, and the calculated maximum bandwidth provided by the cluster system is smaller than the sum of the bandwidths of at least two transmission links connected to the edge node, and the bandwidth of all the transmission paths is not simply superimposed, and therefore, the externally announced
  • the maximum bandwidth of the cluster system is relatively accurate, which can reduce the problem that the bandwidth required for the transmitted data exceeds the carrying capacity of the cluster system due to the low accuracy of the maximum bandwidth of the cluster system that is externally announced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种通告集群系统带宽的方法及控制器,该方法包括:所述控制器获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径;所述控制器依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和;所述控制器通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。根据本发明实施例提供的技术方案,可以提高集群系统对集群系统的外部的节点所通告的最大带宽的准确性。

Description

一种通告集群系统带宽的方法及控制器
本申请要求于2014年2月12日提交中国专利局、申请号为CN 201410049343.7、发明名称为“一种通告集群系统带宽的方法及控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络集群技术,尤其涉及一种通告集群系统带宽的方法及控制器。
背景技术
目前,随着通信技术的快速发展,用户对于网络的资源利用效率要求越来越高,随之出现了集群系统。
在集群系统中有多个节点,只有部分节点可以对外呈现,并将对外呈现的此部分节点称之为边缘节点。如果多个边缘节点均支持多协议标签交换(Multi-Protocol Label Switching,MPLS)流量工程(Traffic Engineer,TE),则这些节点之间的TE拓扑结构,可以通过节点间的TE链路对外呈现。
当从集群系统外部某一节点传输来的数据需要通过集群系统内部转发到下一节点时,集群系统内的控制器会依据该数据中携带的信息计算出一条能够提供服务的传输路径,使得数据能够穿越集群系统传输到下一节点。因此需要向集群系统外其他节点发布集群系统能够提供的最大带宽,以实现向集群系统外其他节点发布集群系统在承载数据时的承载能力。
现有技术中,采用将集群系统中与边缘节点直接连接的所有传输链路的带宽简单叠加的方式,获得集群系统能够提供的最大带宽。请参考图1,其为现有技术中获得集群系统的最大带宽的示意图,如图1所示,集群系统中,与边缘节点A2直接连接的传输链路的带宽相加等于50G,因此,该集群系统能够提供的最大带宽为50G,节点A1与边缘节点A2之间传输的数据所需要的带宽不能超过50G。 这种集群系统的最大带宽的计算方式的准确性较低,若向集群系统的外部的节点通告该方式获得的最大带宽,将可能导致当传输的数据需要的带宽超出集群系统的承载能力时,集群系统将无法对该数据进行传输。
发明内容
有鉴于此,本发明实施例提供了一种通告集群系统带宽的方法及控制器,可以提高集群系统对集群系统的外部的节点所通告的最大带宽的准确性。
第一方面,本发明实施例提供了一种通告集群系统带宽的方法,所述集群系统包括控制器、第一边缘节点和第二边缘节点,所述第一边缘节点和所述第二边缘节点之间包括至少两条传输路径,每条所述传输路径包括至少两条传输链路;包括:
所述控制器获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径;
所述控制器依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和;
所述控制器通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。
在第一方面的第一种可能的实现方式中,所述控制器获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径,包括:
所述控制器获得所述第一边缘节点与所述第二边缘节点之间的所有传输路径;
所述控制器获得每条所述传输路径的开销值和每条所述传输路径的带宽;
所述控制器依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽 不为0的传输路径,并在获得的传输路径中的每条传输链路的带宽中,扣除获得的传输路径的带宽,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一顺序包括所述开销值由小到大的顺序和所述带宽由大到小的顺序,所述控制器依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,包括:
所述控制器获得当前开销值最小的至少一条带宽不为0的传输路径;
所述控制器获得所述当前开销值最小的至少一条带宽不为0的传输路径中带宽最大的一条带宽不为0的传输路径。
结合第一方面、第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述控制器依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽,包括:
所述控制器依据所述至少两条传输路径的带宽之和,获得所述集群系统提供的最大带宽。
第二方面,本发明实施例提供了一种通告集群系统带宽的控制器,所述集群系统包括第一边缘节点和第二边缘节点,所述第一边缘节点和所述第二边缘节点之间包括至少两条传输路径,每条所述传输路径包括至少两条传输链路;所述控制器包括:
路径获取单元,用于获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径;
带宽获取单元,用于依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和;
带宽通告单元,用于通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。
在第二方面的第一种可能的实现方式中,所述路径获取单元具体用于:
获得所述第一边缘节点与所述第二边缘节点之间的所有传输路径;
获得每条所述传输路径的开销值和每条所述传输路径的带宽;
依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,并在获得的传输路径中的每条传输链路的带宽中,扣除获得的传输路径的带宽,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第一顺序包括所述开销值由小到大的顺序和所述带宽由大到小的顺序,所述路径获取单元依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,具体为:
获得当前开销值最小的至少一条带宽不为0的传输路径;
获得所述当前开销值最小的至少一条带宽不为0的传输路径中带宽最大的一条带宽不为0的传输路径。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述带宽获取单元具体用于:依据所述至少两条传输路径的带宽之和,获得所述集群系统提供的最大带宽。
由以上技术方案可以看出,本发明实施例具有以下有益效果:
集群系统提供的最大带宽小于与边缘节点连接的至少两条传输链路的带宽之和,不等于与边缘节点所直接连接的传输链路带宽简单叠加,因此,对外通告的集群系统的最大带宽比较准确,从而可以减少由于对外通告的集群系统的最大带宽的准确性较低而带来的传输的数据需要的带宽超出集群系统的承载能力的问题。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是现有技术中获得集群系统的最大带宽的示意图;
图2是本发明实施例所提供的通告集群系统带宽的方法的流程示意图;
图3是本发明实施例所提供的通告集群系统带宽的方法的实施例的流程示意图;
图4是本发明实施例所提供的通告集群系统带宽的方法的实施例的拓扑示意图;
图5是本发明实施例所提供的通告集群系统带宽的控制器的功能示意图;
图6是本发明实施例所提供的通告集群系统带宽的控制器的结构示意图。
具体实施方式
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例给出一种通告集群系统带宽的方法,请参考图2,其为本发明实施例所提供的通告集群系统带宽的方法的流程示意图,如图所示,该方法包括以下步骤:
步骤201,所述控制器获得所述第一边缘节点与所述第二边缘节点之间至少 两条传输路径。
具体的,本发明实施例中的集群系统包括控制器、第一边缘节点和第二边缘节点,所述第一边缘节点和所述第二边缘节点之间包括至少两条传输路径,每条所述传输路径包括至少两条传输链路。
举例来说,控制器获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径的步骤,可以是:
首先,所述控制器获得所述第一边缘节点与所述第二边缘节点之间的所有传输路径。
然后,控制器获得第一边缘节点与第二边缘节点之间每条传输路径的开销(Cost)值和每条所述传输路径的带宽。
最后,所述控制器依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,并在获得的传输路径中的每条传输链路的带宽中,扣除获得的传输路径的带宽,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路。
例如,所述第一顺序可以包括所述开销值由小到大的顺序和所述带宽由大到小的顺序,这样,所述控制器依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径的方法是:控制器查找第一边缘节点与第二边缘节点之间当前开销值最小的至少一条带宽不为0的传输路径,然后控制器在当前开销值最小的至少一条带宽不为0的传输路径中,获得带宽最大的一条带宽不为0的传输路径,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路;即若开销值最小的传输路径包括至少两条带宽不为0的传输路径,则获得开销值最小的至少两条带宽不为0的传输路径中带宽最大的一条带宽不为0的传输路径,若存在带宽最大的至少两条带宽不为0的传输路径,可以获取其中任意一条传输路径,而其余的传输路径可以后续被获取到。当所有传输路径中除已获得的传输路径以外的所有传输路径中都包含带 宽为0的传输链路时,控制器停止查找传输路径的流程。控制器每次获得传输路径后,在获得的每条传输路径中的每条传输链路的带宽中,扣除该传输路径的带宽,这样,在下一次查找所述第一边缘节点与所述第二边缘节点之间当前开销值最小的传输路径时,不重复获得相同的传输链路,可以避免同一条传输链路的带宽被多次计算。
其中,所述开销值指的是基于内部网关协议(Interior Gateway Protocol,IGP)的开销值。
步骤202,所述控制器依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和。
举例来说,控制器依据获得的所述至少两条传输路径的带宽之和,获得所述第一边缘节点与所述第二边缘节点之间的最大带宽,即所述集群系统能够提供的最大带宽。
本发明实施例中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽,例如,传输路径包括第一传输链路和第二传输链路,其中第一传输链路的带宽是10G,第二传输链路的带宽是20G,则该传输路径的带宽等于两个传输链路的带宽中的最小带宽,即该传输路径的带宽等于10G。
其中,集群系统能够提供的最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和,其原因可以包括:基于步骤201的描述,若一个传输链路同时属于两个传输路径,则在获得其中一个传输路径后,就需要在该传输链路上扣除部分或全部的带宽,这样在获得另一个传输路径时,不会再利用这部分扣除的带宽,因为这部分带宽已经被一个传输路径占用。如果该传输链路的全部带宽被扣除,则包含该传输链路的传输路径将不能被控制器获得,不能用于计算集群系统的最大带宽,因此,本发明实施例中,并不是通过将集群系统中全部传输 路径的带宽进行简单叠加,来获得集群系统的最大带宽,因此,集群系统的最大带宽小于与第一边缘节点连接的至少两个传输链路的带宽之和,以避免进入集群系统的数据所需要的带宽超出集群系统的承载能力。
步骤203,所述控制器通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。
具体的,通过所述第一边缘节点和/或所述第二边缘节点,将所述集群系统能够提供的最大带宽通告到所述集群系统外的节点,这样,集群系统外的节点就知道集群系统中,存在一条路径,该路径的边缘节点是第一边缘节点和第二边缘节点,并获知该集群系统的最大带宽;集群系统能够提供的最大带宽就是所述路径的带宽,从而实现将所述第一边缘节点与所述第二边缘节点之间的路径以及该路径的带宽,通告到集群系统外的节点。其中,若通过所述第一边缘节点和/或所述第二边缘节点,将所述集群系统能够提供的最大带宽通告到集群系统外的节点,则还需要同时将第一边缘节点的标识和第二边缘节点的标识同时通告到集群系统外的节点,用于向集群系统外的节点指示该最大带宽是哪两个边缘节点之间的最大带宽。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
实施例
请参考图3和图4,其分别为本发明实施例所提供的通告集群系统带宽的方法的实施例的流程示意图和拓扑示意图,本实施例中,每两个节点之间的传输链路的开销值等于10,集群系统中,边缘节点A1(相当于上述第一边缘节点)与边缘节点A6(相当于上述第二边缘节点)之间存在传输路径的两个端点A1→A6,该传输路径A1→A6携带集群系统中两个边缘节点间能够提供的最大带宽,向集 群系统外发布最大带宽,以使得该传输路径能够支持数据传输;如图所示,该方法包括以下步骤:
步骤301,如图4所示,选择边缘节点A1与边缘节点A6之间当前IGP的开销值最小且带宽最大的传输路径,本实施例中“开销值最小且带宽最大”是指在选择传输路径时,优先考虑开销值最小的,再考虑带宽最大的,如果满足开销值最小的传输路径如果有多条,则选择其中带宽最大的一条。因此,选择出A1→A5→A6,该传输路径的开销值等于传输链路A1→A5的开销值10与传输链路A5→A6的开销值10之和,该传输链路A1→A5→A6的开销值等于20,该TE链路的带宽为10G;其中,传输路径的带宽指的是传输路径上每条传输链路所支持的带宽中数值最小的带宽,如传输链路A1→A5的带宽是10G,传输链路A5→A6的带宽是40G,则传输路径A1→A5→A6的带宽是10G。
步骤302,在传输链路A1→A5和传输链路A5→A6中扣除传输路径A1→A5→A6的带宽,从而,传输链路A1→A5的带宽剩余0,传输链路A5→A6的带宽剩余30G。
步骤303,如图4所示,重复步骤301,即选择边缘节点A1与边缘节点A6之间当前开销值最小且带宽最大的传输路径,传输路径A1→A5→A6中传输链路A1→A5的带宽为0,因此再选择传输路径时,将不会选择包含传输链路A1→A5的传输路径,以避免传输链路A1→A5的带宽被重复利用;因此,选择边缘节点A1与边缘节点A6之间当前IGP的开销值最小且带宽最大的传输路径,即A1→A2→A5→A6,该传输路径的IGP的开销值等于传输链路A1→A2的开销值10、传输链路A2→A5的开销值10与传输链路A5→A6的开销值10之和,传输路径A1→A2→A5→A6的开销值等于30,该传输路径的带宽为30G,因为传输链路A1→A2的带宽为80G,传输链路A2→A5的带宽为30G,传输链路A5→A6的带宽为30G,因此,传输路径A1→A2→A5→A6的带宽为30G。这里,传输路径A1→A2→A3→A6、传输路径A1→A4→A7→A6和传输路径 A1→A4→A5→A6的开销值都等于30,但是这些传输路径的带宽都为10G,小于传输路径A1→A2→A5→A6的带宽30G,本发明实施例需要获得集群系统的最大带宽,因此,优先选择带宽较大的传输路径,因此本步骤中没有选择这些其他开销值为30但是带宽较小的传输路径。
步骤304,在传输链路A1→A2、传输链路A2→A5和传输链路A5→A6中扣除传输路径A1→A2→A5→A6的带宽30G,从而,传输链路A1→A2的带宽剩余50G,传输链路A2→A5的带宽剩余0,传输链路A5→A6的带宽剩余0。
步骤305,如图4所示,重复步骤301,即选择边缘节点A1与边缘节点A6之间当前IGP的开销值最小且带宽最大的传输路径,即A1→A4→A7→A6和A1→A2→A3→A6,这里,可以在A1→A4→A7→A6和A1→A2→A3→A6随机选出一个传输路径,本实施例以选出传输路径A1→A4→A7→A6为例进行说明。其中,传输路径A1→A4→A7→A6的开销值等于传输链路A1→A2的开销值10、传输链路A4→A7的开销值10与传输链路A7→A6的开销值10之和,传输路径A1→A4→A7→A6的开销值等于30,传输路径A1→A4→A7→A6的带宽为10G,传输路径A1→A2→A3→A6的开销值等于传输链路A1→A2的开销值10、传输链路A2→A3的开销值10与传输链路A3→A6的开销值10之和,传输路径A1→A2→A3→A6的开销值等于30,传输路径A1→A2→A3→A6的带宽为10G。
步骤306,在传输链路A1→A4、传输链路A4→A7和传输链路A7→A6中扣除传输路径A1→A4→A7→A6的带宽10G,从而,传输链路A1→A4的带宽剩余0,传输链路A4→A7的带宽剩余10G,传输链路A7→A6的带宽剩余10G。
步骤307,如图4所示,重复步骤301,即选择边缘节点A1与边缘节点A6之间当前IGP的开销值最小且带宽最大的传输路径,即A1→A2→A3→A6。
步骤308,在传输链路A1→A2、传输链路A2→A3和传输链路A3→A6中扣除传输路径A1→A2→A3→A6的带宽10G,从而,传输链路A1→A2的带宽剩余40G,传输链路A2→A3的带宽剩余0,传输链路A3→A6的带宽剩余0。
步骤309,如图4所示,由于其余的传输路径中都包括带宽为0的传输链路,因此无法再选出边缘节点A1与边缘节点A6之间的传输路径,因此,选择过程结束,将选出的上述三个传输路径,即A1→A5→A6、A1→A2→A5→A6、A1→A4→A7→A6和A1→A2→A3→A6的带宽相加,获得集群系统提供的最大带宽,即10G+30G+10G+10G=60G。如果利用现有技术中,将与边缘节点A1相连的三个传输链路的带宽简单叠加后获得带宽80G+10G+10G=100G,因此,本发明技术方案获得的集群系统提供的最大带宽60G小于现有技术获得的集群系统提供的最大带宽100G。
本发明实施例进一步给出实现上述方法实施例中各步骤及方法的装置实施例。
请参考图5,其为本发明实施例所提供的一种告集群系统带宽的控制器的功能方块图,所述集群系统包括第一边缘节点和第二边缘节点,所述第一边缘节点和所述第二边缘节点之间包括至少两条传输路径,每条所述传输路径包括至少两条传输链路。如图所示,该控制器包括:
路径获取单元501,用于获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径;
带宽获取单元502,用于依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和;
带宽通告单元503,用于通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。
其中,所述路径获取单元501具体用于:
获得所述第一边缘节点与所述第二边缘节点之间的所有传输路径;
获得每条所述传输路径的开销值和每条所述传输路径的带宽;
依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,并在获得的传输路径中的每条传输链路的带宽中,扣除获得的传输路径的带宽,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路。
其中,所述第一顺序包括所述开销值由小到大的顺序和所述带宽由大到小的顺序,所述路径获取单元501依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,具体为:
获得当前开销值最小的至少一条带宽不为0的传输路径;
获得所述当前开销值最小的至少一条带宽不为0的传输路径中带宽最大的一条带宽不为0的传输路径。
其中,所述带宽获取单元502具体用于:依据所述至少两条传输路径的带宽之和,获得所述集群系统提供的最大带宽。
请参考图6,其为本发明实施例所提供的一种告集群系统带宽的控制器的结构示意图。如图所示,该设备包括:
存储器601,用于存储一组或多组程序代码;
处理器602,与存储器601、发射器603分别耦合,用于调用存储器601中存储的程序代码,以执行以上图2所示的方法,具体包括:获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径;依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和。
发射器603,用于通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。
其中,所述处理器602获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径,具体为:
获得所述第一边缘节点与所述第二边缘节点之间的所有传输路径;
获得每条所述传输路径的开销值和每条所述传输路径的带宽;
依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,并在获得的传输路径中的每条传输链路的带宽中扣除获得的传输路径的带宽,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路。
其中,所述第一顺序包括所述开销值由小到大的顺序和所述带宽由大到小的顺序,所述处理器602依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,具体为:
获得当前开销值最小的至少一条带宽不为0的传输路径;
获得所述当前开销值最小的至少一条带宽不为0的传输路径中带宽最大的一条带宽不为0的传输路径。
其中,所述处理器602依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽,具体为:依据所述至少两条传输路径的带宽之和,获得所述集群系统提供的最大带宽。
由于本实施例中的处理器和发射器能够执行图2所示的方法,本实施例未详细描述的部分,可参考对图2的相关说明。
本发明的技术方案具有以下有益效果:
能够自动计算集群系统的最大带宽,计算获得的集群系统提供的最大带宽小于与边缘节点连接的至少两条传输链路的带宽之和,不等于所有传输路径的带宽简单叠加,因此,对外通告的集群系统的最大带宽比较准确,从而可以减少由于对外通告的集群系统的最大带宽的准确性较低而带来的传输的数据需要的带宽超出集群系统的承载能力的问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保 护的范围之内。

Claims (8)

  1. 一种通告集群系统带宽的方法,其特征在于,所述集群系统包括控制器、第一边缘节点和第二边缘节点,所述第一边缘节点和所述第二边缘节点之间包括至少两条传输路径,每条所述传输路径包括至少两条传输链路;所述方法包括:
    所述控制器获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径;
    所述控制器依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和;
    所述控制器通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。
  2. 根据权利要求1所述的方法,其特征在于,所述控制器获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径,包括:
    所述控制器获得所述第一边缘节点与所述第二边缘节点之间的所有传输路径;
    所述控制器获得每条所述传输路径的开销值和每条所述传输路径的带宽;
    所述控制器依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,并在获得的传输路径中的每条传输链路的带宽中,扣除获得的传输路径的带宽,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路。
  3. 根据权利要求2所述的方法,其特征在于,所述第一顺序包括所述开销值由小到大的顺序和所述带宽由大到小的顺序,所述控制器依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,包括:
    所述控制器获得当前开销值最小的至少一条带宽不为0的传输路径;
    所述控制器获得所述当前开销值最小的至少一条带宽不为0的传输路径中带宽最大的一条带宽不为0的传输路径。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述控制器依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽,包括:
    所述控制器依据所述至少两条传输路径的带宽之和,获得所述集群系统提供的最大带宽。
  5. 一种通告集群系统带宽的控制器,其特征在于,所述集群系统包括第一边缘节点和第二边缘节点,所述第一边缘节点和所述第二边缘节点之间包括至少两条传输路径,每条所述传输路径包括至少两条传输链路;所述控制器包括:
    路径获取单元,用于获得所述第一边缘节点与所述第二边缘节点之间至少两条传输路径;
    带宽获取单元,用于依据所述至少两条传输路径的带宽,获得所述集群系统提供的最大带宽;其中,每条所述传输路径的带宽等于该传输路径中所有传输链路的带宽中的最小带宽;所述最大带宽小于与所述第一边缘节点连接的至少两条传输链路的带宽之和;
    带宽通告单元,用于通过所述第一边缘节点和/或所述第二边缘节点,将所述最大带宽通告到所述集群系统外的节点。
  6. 根据权利要求5所述的控制器,其特征在于,所述路径获取单元具体用于:
    获得所述第一边缘节点与所述第二边缘节点之间的所有传输路径;
    获得每条所述传输路径的开销值和每条所述传输路径的带宽;
    依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,并在获得的传输路径中的每条传输链路的带宽中,扣除获得的传输路径的带宽,直到所有传输路径中除已获得的传输路径以外的其他每条传输路径中,都存在当前带宽为0的传输链路。
  7. 根据权利要求6所述的控制器,其特征在于,所述第一顺序包括所述开销值由小到大的顺序和所述带宽由大到小的顺序,所述路径获取单元依据所述开销值和所述带宽,并按照第一顺序依次获得一条带宽不为0的传输路径,具体为:
    获得当前开销值最小的至少一条带宽不为0的传输路径;
    获得所述当前开销值最小的至少一条带宽不为0的传输路径中带宽最大的一条带宽不为0的传输路径。
  8. 根据权利要求5至7中任一项所述的控制器,其特征在于,所述带宽获取单元具体用于:依据所述至少两条传输路径的带宽之和,获得所述集群系统提供的最大带宽。
PCT/CN2014/094681 2014-02-12 2014-12-23 一种通告集群系统带宽的方法及控制器 WO2015120741A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14882200.0A EP3094054B1 (en) 2014-02-12 2014-12-23 Method and controller for notifying bandwidth of cluster system
US15/235,420 US10250477B2 (en) 2014-02-12 2016-08-12 Method and controller for announcing bandwidth of cluster system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410049343.7A CN103780515B (zh) 2014-02-12 2014-02-12 一种通告集群系统带宽的方法及控制器
CN201410049343.7 2014-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/235,420 Continuation US10250477B2 (en) 2014-02-12 2016-08-12 Method and controller for announcing bandwidth of cluster system

Publications (1)

Publication Number Publication Date
WO2015120741A1 true WO2015120741A1 (zh) 2015-08-20

Family

ID=50572359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094681 WO2015120741A1 (zh) 2014-02-12 2014-12-23 一种通告集群系统带宽的方法及控制器

Country Status (4)

Country Link
US (1) US10250477B2 (zh)
EP (1) EP3094054B1 (zh)
CN (1) CN103780515B (zh)
WO (1) WO2015120741A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103780515B (zh) 2014-02-12 2017-02-08 华为技术有限公司 一种通告集群系统带宽的方法及控制器
CN113141277B (zh) * 2021-05-19 2022-11-22 北京安信智通科技有限公司 传输带宽的确定方法、装置以及存储介质
CN113162869B (zh) * 2021-05-19 2023-03-28 北京安信智通科技有限公司 传输流量的控制方法、装置以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105554A1 (en) * 2003-11-18 2005-05-19 Michael Kagan Method and switch system for optimizing the use of a given bandwidth in different network connections
CN1649315A (zh) * 2004-01-30 2005-08-03 富士通株式会社 网络控制设备及其路径控制方法
CN101631034A (zh) * 2008-07-15 2010-01-20 华为技术有限公司 对等网络中节点管理和接入方法、装置及系统
CN101997770A (zh) * 2009-08-14 2011-03-30 株式会社日立制作所 传输控制服务器、传输控制系统及预备路径设定方法
CN103780515A (zh) * 2014-02-12 2014-05-07 华为技术有限公司 一种通告集群系统带宽的方法及控制器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538416B1 (en) * 1999-03-09 2003-03-25 Lucent Technologies Inc. Border gateway reservation protocol for tree-based aggregation of inter-domain reservations
US6363319B1 (en) * 1999-08-31 2002-03-26 Nortel Networks Limited Constraint-based route selection using biased cost
JP3769544B2 (ja) * 2003-01-31 2006-04-26 富士通株式会社 伝送帯域制御装置
US9306831B2 (en) * 2005-02-14 2016-04-05 Cisco Technology, Inc. Technique for efficient load balancing of TE-LSPs
JP4606249B2 (ja) * 2005-05-18 2011-01-05 富士通株式会社 情報処理方法及びルータ
EP2371094B1 (en) * 2008-12-03 2015-02-18 Telefonaktiebolaget L M Ericsson (PUBL) Method and communication apparatus for generating summarised network topology parameters
US20120102228A1 (en) * 2009-03-16 2012-04-26 Filippo Cugini Inter-domain advertisements in multi-domain networks
CN101583057B (zh) * 2009-06-11 2013-08-07 中兴通讯股份有限公司 网络选路方法及装置
CN101990135B (zh) * 2009-07-30 2013-08-21 中兴通讯股份有限公司 一种基于最大带宽约束的路径查询方法和装置
CN102143066B (zh) * 2011-02-17 2014-12-24 华为技术有限公司 建立标签交换路径的方法、节点设备和系统
JP5771832B2 (ja) * 2012-02-14 2015-09-02 株式会社日立製作所 伝送システム、管理計算機、及び論理パス構築方法
US9071541B2 (en) * 2012-04-25 2015-06-30 Juniper Networks, Inc. Path weighted equal-cost multipath
US8787400B1 (en) * 2012-04-25 2014-07-22 Juniper Networks, Inc. Weighted equal-cost multipath
US9503378B2 (en) * 2013-06-07 2016-11-22 The Florida International University Board Of Trustees Load-balancing algorithms for data center networks
CN103441936B (zh) 2013-08-22 2017-02-22 华为技术有限公司 转发邻接链路的发布方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050105554A1 (en) * 2003-11-18 2005-05-19 Michael Kagan Method and switch system for optimizing the use of a given bandwidth in different network connections
CN1649315A (zh) * 2004-01-30 2005-08-03 富士通株式会社 网络控制设备及其路径控制方法
CN101631034A (zh) * 2008-07-15 2010-01-20 华为技术有限公司 对等网络中节点管理和接入方法、装置及系统
CN101997770A (zh) * 2009-08-14 2011-03-30 株式会社日立制作所 传输控制服务器、传输控制系统及预备路径设定方法
CN103780515A (zh) * 2014-02-12 2014-05-07 华为技术有限公司 一种通告集群系统带宽的方法及控制器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3094054A4 *

Also Published As

Publication number Publication date
EP3094054A4 (en) 2017-01-11
CN103780515B (zh) 2017-02-08
EP3094054A1 (en) 2016-11-16
CN103780515A (zh) 2014-05-07
US10250477B2 (en) 2019-04-02
US20160352607A1 (en) 2016-12-01
EP3094054B1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
CN1973486B (zh) 在采用受保护链路的数据网络中避免微环的方法和装置
WO2017070970A1 (zh) 一种确定路由的方法、对应装置及系统
US20180375744A1 (en) Method and system of providing quality of experience visibility in an sd-wan
CN108471629B (zh) 传输网络中业务服务质量的控制方法、设备及系统
EP3528439A1 (en) Service routing method and system
CN100372337C (zh) 一种实现跨域约束路由的选路方法
CN109756430A (zh) 一种规则的处理方法及装置
CN102823205A (zh) 聚合来自接入域的数据业务
JP2017517978A5 (zh)
US10862735B2 (en) Method and apparatus for implementing operation, administration, and maintenance function
CN105791169A (zh) 软件定义网络中交换机转发控制、转发方法及相关设备
EP3900269A1 (en) Hardware-friendly mechanisms for in-band oam processing
CN108353022A (zh) 一种数据报文的处理方法、装置及系统
WO2018006305A1 (zh) 生成转发表的方法和转发设备
WO2015120741A1 (zh) 一种通告集群系统带宽的方法及控制器
JP2010533328A5 (zh)
US20210281507A1 (en) Parameter notification and obtaining methods and devices, and storage medium
JP2017533643A (ja) コンピュータ・プログラム、装置及び記憶媒体
EP3063969B1 (en) System and method for traffic engineering using link buffer status
CN104639557A (zh) 一种建立pcep会话的方法、系统及设备
JP3801581B2 (ja) OSPFプロトコルのtype5LSAの分離セットによるフラッシング方法
WO2014127633A1 (zh) Lldp报文传输方法及dcb设备
EP3020163B1 (en) Interworking between first protocol entity of stream reservation protocol and second protocol entity of routing protocol
EP4250669A1 (en) Packet forwarding method, electronic device, and storage medium
WO2016000481A1 (zh) 路径切换的方法和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014882200

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882200

Country of ref document: EP