WO2015120595A1 - 传输数据的方法和装置 - Google Patents

传输数据的方法和装置 Download PDF

Info

Publication number
WO2015120595A1
WO2015120595A1 PCT/CN2014/072025 CN2014072025W WO2015120595A1 WO 2015120595 A1 WO2015120595 A1 WO 2015120595A1 CN 2014072025 W CN2014072025 W CN 2014072025W WO 2015120595 A1 WO2015120595 A1 WO 2015120595A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
target
data
papr
data length
Prior art date
Application number
PCT/CN2014/072025
Other languages
English (en)
French (fr)
Inventor
朱俊
张佳胤
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/072025 priority Critical patent/WO2015120595A1/zh
Priority to CN201480048509.1A priority patent/CN105519065B/zh
Publication of WO2015120595A1 publication Critical patent/WO2015120595A1/zh
Priority to US15/235,484 priority patent/US9882754B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Embodiments of the present invention relate to the field of communications technology and, more particularly, to a method and apparatus for transmitting data. Background technique
  • the 802.11 standard has evolved from 802.11a/b to 802.11g, 802.11n, and 802.1 lac, requiring rigorous testing to verify interoperability between 802.11 versions.
  • MF Mixed Format
  • cartridge preamble a mixed format preamble
  • the traditional part of the preamble consists of the same traditional fields as 802.11a.
  • Figure 1 shows the structure of an existing preamble.
  • the traditional part of the preamble contains three fields, namely: Legacy-Short Training Field (L-STF), Traditional Long Training Field (L-LTF, Legacy-Long Training Field) Fields and legacy signaling (L-SIG, Legacy-Signal) fields, where L-STF fields are used for frame start detection, automatic gain control (AGC) settings, initial frequency offset estimation, and initial time synchronization
  • L-LTF is used for more accurate frequency offset estimation and time synchronization, and is also used to generate channel estimation for receiving and balancing L-SIG;
  • L-SIG field is mainly used to carry data rate information and data length information, so that The receiving end device can determine the length of the data carried in the same frame as the preamble according to the data rate information and the data length information, and can determine the appropriate time to remain idle.
  • the false positive error probability of the bits carried by the L-SIG field increases, resulting in the receiver not being able to obtain the correct length information, etc., possibly for a period of time.
  • the inability to receive or send valid frames can greatly reduce system throughput and seriously affect data transmission performance and user experience.
  • Embodiments of the present invention provide a method and apparatus for transmitting data, which can improve system throughput, improve data transmission performance, and user experience.
  • the first aspect provides a method for transmitting data, where the method includes: the sending end device determines, according to a preset rule and a system state, a target bit sequence according to a data length of the target data sent to the receiving end, where the preset The data length of the target data is smaller than the data length corresponding to the target bit sequence.
  • the peak-to-average power ratio PAPR corresponding to the target bit sequence is smaller than the bit sequence corresponding to the data length of the target data.
  • the PAPR corresponding to the target bit sequence is smaller than the transmit power amplification limit of the transmitting end; the target bit sequence is carried in the length bit in the traditional signaling field of the target preamble, according to the transmit power amplification limit,
  • the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble are subjected to transmission power enhancement processing, and are sent to the receiving end, where the target preamble and the target data are carried in the same data frame.
  • the sending end device determines, according to a preset rule and a system state, a target bit sequence according to a data length of the target data that is sent to the receiving end, and includes: the sending end Determining, according to the preset rule, a mapping entry, where the mapping entry records a mapping relationship between N data lengths and N bit sequences, where the N data lengths correspond to the N bit sequences, The data length of the target data belongs to the N data lengths; according to the system state, the PAPR corresponding to the N bit sequences is determined; and at least one bit sequence pair is determined according to a preset threshold, where one bit sequence pair includes one to be And modifying a bit sequence and a reference bit sequence, wherein the bit sequence to be modified is different from each other, and the PAPR corresponding to the bit sequence to be modified is greater than the preset threshold, and the PAPR corresponding to the reference bit sequence is less than or equal to the preset.
  • Threshold and in a bit sequence pair, the data corresponding to the bit sequence to be modified The degree is smaller than the data length corresponding to the reference bit sequence, and the preset threshold is smaller than the transmit power amplification limit of the transmitting end; according to the bit sequence pair, the mapping entry is modified to replace the bit sequence to be modified in each bit sequence pair with The reference bit sequence; according to the data length of the target data sent to the receiving end, the modified mapping table entry is searched to determine the target bit sequence.
  • the reference bit sequence is a bit sequence with the smallest data length corresponding to the at least two candidate bit sequences, where the candidate bit sequence corresponds to a PAPR less than or It is equal to the preset threshold, and the data length corresponding to the bit sequence to be modified is smaller than the data length corresponding to the candidate bit sequence.
  • the sending end device determines, according to a preset rule and a system state, a target bit sequence according to a data length of the target data that is sent to the receiving end,
  • the method includes: determining, by the sending end, a first bit sequence corresponding to a data length of the target data sent to the receiving end according to the preset rule; determining, from the at least one second bit sequence, the target bit sequence, where, in the system In the state, the PAPR corresponding to the first bit sequence is greater than the PAPR corresponding to the second bit sequence, and the PAPR corresponding to the second bit sequence is smaller than the transmit power amplification limit of the transmitting end, and in the preset rule, the first bit sequence The corresponding data length is smaller than the data length corresponding to the second bit sequence.
  • the method before determining the target bit sequence from the at least one second bit sequence, the method further includes: determining the first bit sequence The corresponding PAPR is greater than the preset threshold.
  • the preset threshold is smaller than the power amplification limit of the transmitting end, and the PAPR corresponding to the second bit sequence is less than or equal to the preset threshold.
  • the target bit sequence is the at least two second bit sequences, corresponding to The smallest bit sequence of data length.
  • the traditional short training domain field, the traditional long training domain field, and the target in the target preamble according to the transmit power amplification limit performs the transmit power enhancement process, including: according to the PAPR corresponding to the target bit sequence and the transmit power amplification limit, the traditional short training domain field, the traditional long training domain field, and the traditional signaling in the target preamble
  • the field performs transmission power enhancement processing.
  • the traditional short training domain field, the traditional long training domain field, and the target in the target preamble according to the transmit power amplification limit performs the transmit power enhancement process, including: transmitting, according to the preset threshold and the transmit power amplification limit, the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble Power enhancement processing.
  • the second aspect provides an apparatus for transmitting data, where the apparatus includes: a determining unit, configured to determine, according to a preset rule and a system state, a target bit sequence according to a data length of target data sent to the receiving end, where According to the rule, the data length of the target data is smaller than the data length corresponding to the target bit sequence, and in the system state, the peak average power corresponding to the target bit sequence
  • the PAPR corresponding to the bit sequence corresponding to the data length corresponding to the data length of the target data, the PAPR corresponding to the target bit sequence is smaller than the transmit power amplification limit of the transmitting end
  • the processing unit is configured to carry the target bit sequence to the target preamble a length bit in a traditional signaling field of the code, according to the transmit power amplification limit, performing a transmit power enhancement process on the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble, and Sending to the receiving end, where the target preamble and the target data are
  • the determining unit is specifically configured to determine, according to the preset rule, a mapping entry, where the mapping entry records N data lengths and N bit sequences a mapping relationship between the N data lengths and the N bit sequences, the data length of the target data belongs to the N data lengths, and is used to determine the N bit sequences according to the system state.
  • Corresponding PAPR configured to determine at least one bit sequence pair according to a preset threshold, where a bit sequence pair includes a bit sequence to be modified and a reference bit sequence, and the bit sequences to be modified included in each bit sequence pair are different from each other,
  • the PAPR corresponding to the bit sequence to be modified is greater than the preset threshold, and the PAPR corresponding to the reference bit sequence is less than or equal to the preset threshold, and in a bit sequence pair, the data length corresponding to the bit sequence to be modified is smaller than the reference bit sequence.
  • the preset threshold is smaller than a transmission power amplification limit of the transmitting end; And modifying the mapping entry according to the bit sequence pair to replace the to-be-modified bit sequence in each bit sequence pair with a reference bit sequence; and searching for the modified mapping table according to the data length of the target data sent to the receiving end. Item to determine the target bit sequence.
  • the reference bit sequence determined by the determining unit is the bit sequence with the smallest data length in the at least two candidate bit sequences, where the PAPR corresponding to the candidate bit sequence is less than or equal to the preset threshold. And the data length corresponding to the bit sequence to be modified is smaller than the data length corresponding to the candidate bit sequence.
  • the determining unit is specifically configured to determine, according to the preset rule, a first corresponding to a data length of the target data that is sent to the receiving end. a bit sequence; configured to determine the target bit sequence from the at least one second bit sequence, wherein, in the system state, the PAPR corresponding to the first bit sequence is greater than the PAPR corresponding to the second bit sequence, the second bit sequence Corresponding PAPR 'J, the transmission power amplification limit at the transmitting end, and in the preset rule, the data length corresponding to the first bit sequence is smaller than The length of the data corresponding to the second bit sequence.
  • the determining unit is further configured to determine that the PAPR corresponding to the first bit sequence is greater than a preset threshold, where the preset threshold is smaller than the The power amplification limit of the transmitting end, the PAPR corresponding to the second bit sequence is less than or equal to the preset threshold.
  • the target bit sequence determined by the determining unit is the at least two second bits In the sequence, the corresponding bit sequence with the smallest data length.
  • the processing unit is specifically configured to: according to the PAPR corresponding to the target bit sequence and the transmit power amplification limit, in the target preamble
  • the conventional short training domain field, the legacy long training domain field, and the legacy signaling field perform transmit power enhancement processing.
  • the processing unit is specifically configured to: perform traditional short training on the target preamble according to the preset threshold and the transmit power amplification limit
  • the domain field, the legacy long training domain field, and the legacy signaling field perform transmit power enhancement processing.
  • a bit sequence corresponding to a data length of a target data to be transmitted to a transmitting end is replaced by a transmitting end with a bit sequence having a longer data length and a lower PAPR.
  • the P-PR field of the L-SIG field can be effectively reduced in the L-SIG field of the preamble, so that the PAPR of the L-SIG field is in a linear interval of the power amplifier, so that the transmit power can be transmitted after the transmit power is amplified.
  • the receiving end can further improve the effect of obtaining accurate length information by the receiving end.
  • the transmission process can be ensured that the transmission process is not interfered. It also ensures the accuracy of the transmission, which can improve system throughput and improve data transmission performance and user experience.
  • Fig. 1 is a schematic diagram showing the structure of a preamble in the prior art.
  • FIG. 2 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • Fig. 3 is a diagram showing an example of bit allocation in the L-SIG field.
  • FIG. 4 is a schematic block diagram of an apparatus for transmitting data in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting data according to an embodiment of the present invention. detailed description
  • the technical solution of the present invention can be applied to various communication systems that need to notify the data rate and data length of data transmitted by the communication peer end through a preamble, for example, a wireless local area network (WLAN) system, Wireless Fidelity (Wi-Fi, Wireless Fidelity) system, etc.
  • WLAN wireless local area network
  • Wi-Fi Wireless Fidelity
  • Wireless Fidelity etc.
  • the sending end may be a user station (STA, Station) in the WLAN, and the user station may also be called a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user.
  • the STA can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), with wireless A handheld device of a local area network (eg, Wi-Fi) communication function, a computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the sending end may also be an access point (AP, Access Point) in the WLAN, and the access point may be used to communicate with the access terminal through the wireless local area network, and transmit the data of the access terminal to the network side, or Data from the network side is transmitted to the access terminal.
  • AP Access Point
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), such as a CD (Compact Disk), a DVD (Digital Versatile Disk) Etc.), smart cards and flash memory devices (eg 3 ⁇ 4 ports, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drives, etc.).
  • a storage medium may represent one or more devices and/or other machine readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the length of the bit is usually in the L-SIG field having 12 bits to 12 kinds of data represents a length by 212 bits binary string, and therefore L-SIG field, there may be a plurality of successive The data of the bit is repeated, which results in a higher peak-to-average power ratio (PAPR) of the L-SIG field, which is limited by the linear range of the power amplifier, and may not be used to improve the transmission of the L-SIG field.
  • PAPR peak-to-average power ratio
  • the way of power should cope with the above-mentioned poor transmission conditions. If only the transmit power of the L-STF field and the L-LTF field is enhanced, the device AGC setting may be incorrect, resulting in failure to correctly decode the L-SIG and loss of interoperability.
  • FIG. 2 is a schematic flowchart of a method 100 for transmitting data according to an embodiment of the present invention. As shown in FIG. 2, the method 100 includes:
  • the sending end device determines, according to the preset rule and the system state, the target bit sequence according to the data length of the target data sent to the receiving end, where, under the preset rule, the data length of the target data is smaller than the target bit sequence.
  • the peak-to-average power ratio PAPR corresponding to the target bit sequence is smaller than the PAPR corresponding to the bit sequence corresponding to the data length of the target data, and the PAPR 'J corresponding to the target bit sequence
  • the transmission power of the transmitting end is amplified by a limit;
  • the target bit sequence is carried in a length bit in a traditional signaling field of the target preamble, and the transmit power is transmitted to the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble.
  • the processing is enhanced and sent to the receiving end, where the target preamble and the target data are carried in the same data frame.
  • the L-SIG field is mainly used to carry data rate information and data length information, so that the receiving end device can determine the length of data carried in the same frame as the preamble according to the data rate information and the data length information. , in turn, can determine the appropriate time to remain idle.
  • FIG. 3 shows an example of bit allocation of the L-SIG field in the embodiment of the present invention.
  • the L-SIG field includes a rate bit, a reserved bit, a length bit, and a parity bit. And tail bits. among them:
  • a rate bit which is used to indicate a transmission rate, and may have 4 bits to carry 4 bits, so that 24 speeds can be identified;
  • a reserved bit of 1 bit usually set to 0
  • a length bit used to indicate a data length, or a payload length, may have 12 bits to carry 12 bits, thereby identifying 2 12 data lengths
  • the check bit is used to carry a check bit, and the check bit may include 1 bit as a check value of the first 17 bits;
  • the 6-bit tail bit is used to clear the encoder and decoder to clear the encoder and decoder, which is normally set to 000000.
  • bit allocation manner of the L-SIG field enumerated above is merely illustrative, and the present invention is not limited thereto, and the configuration of the L-SIG field and the length of each constituent unit, for example, a length bit, etc., may be arbitrarily changed. .
  • the length bit has 12 bits to pass 2 12 -bit binary string representing 2 12 data lengths.
  • the L-SIG field (specifically, the length bit), there may be a data repetition of a plurality of consecutive bits, which in turn results in a higher PAPR of the L-SIG field. Due to the limitation of the non-linear interval of the power amplifier, the higher PAPR may result in the inability to adopt the method of increasing the transmission power of the L-SIG field to cope with the above-mentioned poor transmission conditions.
  • the transmitting end replaces the bit sequence corresponding to the data length of the target data that needs to be transmitted to the transmitting end with the target bit sequence corresponding to the longer data length and lower PAPR, and carries In the L-SIG field of the preamble (specifically, the length bit), the PAPR of the L-SIG field can be effectively reduced, so that the transmit power of the preamble can be amplified and transmitted to the receiving end, thereby improving
  • the effect of obtaining the accurate length information by the receiving end because the data length corresponding to the bit sequence carried in the L-SIG field is larger than the data length of the actually transmitted data, the transmission process can be ensured without interference, and the transmission accuracy can be ensured. , which can improve system throughput and improve data transmission performance and user experience.
  • the sending end device determines, according to the preset rule and the system state, the target bit sequence according to the data length of the target data sent to the receiving end, including:
  • the mapping end determines, according to the preset rule, a mapping entry, where the mapping entry records a mapping relationship between N data lengths and N bit sequences, where the N data lengths and the N ratios are a special sequence-corresponding, the data length of the target data belongs to the length of the data; and according to the state of the system, determining the PAPR corresponding to the one bit sequence respectively;
  • the bit sequence pair includes a to-be-modified bit sequence and a reference bit sequence, and the bit sequence to be modified included in each bit sequence pair is different from each other, and the bit sequence to be modified is
  • the corresponding PAPR is greater than the preset threshold, and the PAPR corresponding to the reference bit sequence is less than or equal to the preset threshold, and in a bit sequence pair, the data length corresponding to the bit sequence to be modified is smaller than the data corresponding to the reference bit sequence.
  • the preset threshold is smaller than a transmission power amplification limit of the transmitting end;
  • the modified mapping entry is searched according to the data length of the target data sent to the receiving end to determine the target bit sequence.
  • each binary character string i.e., the bit sequence
  • mapping relationship between each binary character string and each data length can be negotiated.
  • the sender and the receiver may form a table 1 in which a mapping relationship between each binary string (ie, a bit sequence) and each data length is recorded based on the same preset rule, wherein, in order to avoid redundancy, without loss of generality Sexually, Table 1 shows only the mapping relationship between a part of the data length and a part of the binary string.
  • each binary character can be determined based on the system state (for example, system configuration parameters)
  • the PAPR corresponding to a bit sequence refers to the PAPR of the L-SIG field carrying the bit sequence in the length bit, in the embodiment of the present invention.
  • the process and method for determining the PAPR corresponding to each bit sequence based on the system state may be similar to the prior art. Here, in order to avoid redundancy, detailed description thereof is omitted.
  • the unit of the data length in the above Table 1 can be arbitrarily determined.
  • it may be a byte (Byte) or a bit (Bit), and the present invention is not particularly limited.
  • Table 2 below shows the PAPR of each bit sequence in Table 1 determined as described above.
  • the transmitting end can determine the transmission power amplification limit.
  • the transmit power amplification limit is determined based on the maximum output power of the power amplifier used by the transmitting end.
  • the power amplifier has a linear interval in which the ratio of the output power to the input power increases linearly, but when the input power exceeds a certain threshold, the power amplification effect is significantly weakened, and If the input power continues to increase, the output power will remain unchanged, that is, the power amplifier has a maximum output power (remembered, P max ). When the input power is greater than the maximum output power, the power distortionless amplification effect cannot be achieved.
  • the above-mentioned transmit power amplification limit may be determined according to the maximum output power described above.
  • the average transmitted power of the signal amplified by the power amplifier is P x .
  • the average power of the transmitted signal should conform to the standard, that is, less than or equal to the maximum average transmit power P standard specified by the standard , usually using full power transmission, ie
  • ⁇ ⁇ P max /P standar d can be obtained from the formulas (1), (2) and (3). Therefore, the transmitting end can determine the above-mentioned transmit power amplification limit according to the maximum output power of the power amplifier and the maximum average transmit power of the signal. For example, the value of P max /P standard can be used as the above-mentioned transmit power amplification limit. Also, the transmission power amplification limit can be, for example, 8 dB.
  • the method for determining the above-mentioned transmission power amplification limit and the value are merely exemplary descriptions, and the present invention is not limited thereto.
  • the value may be smaller than the value of P max /P standard or greater than the value of P max /P standarf .
  • the invention is not particularly limited.
  • the transmitting end may determine a threshold that is smaller than the transmission power amplification limit (ie, a preset threshold), and in Table 1, the corresponding bit sequence whose PAPR is greater than the preset threshold (ie, a bit sequence pair) The bit sequence to be modified in the middle) is replaced.
  • a threshold that is smaller than the transmission power amplification limit (ie, a preset threshold)
  • Table 1 the corresponding bit sequence whose PAPR is greater than the preset threshold (ie, a bit sequence pair) The bit sequence to be modified in the middle) is replaced.
  • the determined preset threshold is 5dB. You can find the corresponding one in Table 2.
  • a bit sequence with a PAPR greater than 5 dB for example, a bit sequence corresponding to a data length of 403 (hereinafter, the bit sequence 1) has a PAPR of 8.3056 dB, which is greater than the preset threshold.
  • bit sequence 3 a bit sequence corresponding to the data length of 404 (below)
  • bit sequence (2) and the bit sequence corresponding to the data length of 445 hereinafter, referred to as bit sequence 3).
  • bit sequence 1 and the bit sequence 2 may constitute a bit sequence pair, and thus, the bit sequence 2 may serve as a reference bit sequence with respect to the bit sequence 1.
  • bit sequence 1 and the bit sequence 3 may constitute a bit sequence pair, and thus the bit sequence 3 may be used as a reference bit sequence with respect to the bit sequence 1.
  • a bit sequence greater than the preset threshold when there are multiple bit sequences B (PAPR is less than or equal to the preset threshold and the corresponding data length is greater than the bit sequence A), a bit sequence ⁇ ij may be arbitrarily selected from the plurality of bit sequences B, and The bit sequence A constitutes a bit sequence pair, the bit sequence A as a bit sequence to be modified, and the selected bit sequence as a reference bit sequence.
  • the reference bit sequence is the at least two candidate bit sequences, a bit sequence with a minimum length of the data, wherein the PAPR corresponding to the candidate bit sequence is less than or equal to the preset threshold, and the data length corresponding to the bit sequence to be modified is smaller than the data length corresponding to the candidate bit sequence.
  • bit sequence A when there are a plurality of bit sequences B for the bit sequence A, a bit sequence (represented as a bit sequence B mm ;) having the smallest data length can be selected, and the bit sequence A A bit sequence pair is formed, the bit sequence A is used as a bit sequence to be modified, and the selected bit sequence B mm is used as a reference bit sequence.
  • the bit sequence B mm Since the data length corresponding to the selected bit sequence B mm is the smallest among the plurality of bit sequences B, the bit sequence B mm is subsequently transmitted to the receiving end after being carried in the length bit in the conventional signaling field.
  • the receiving end can determine that the time to remain idle (or use) is closest to the time required to actually obtain the data, thereby increasing the throughput of the system.
  • bit sequence to be modified in Table 2 may be replaced with a reference bit sequence corresponding thereto, and Table 3 below is formed by performing the above modification on Table 2.
  • the data length corresponding to each bit sequence is greater than or equal to the data length corresponding to it in Table 1, or the receiving end recognizes the bit sequence, according to Table 1.
  • the length of the data corresponding to the identified bit is greater than the length of the data actually transmitted by the transmitting end, thereby ensuring normal transmission of data.
  • the table 3 (or the table formed by removing one column of the PAPR value from the table 3) may be searched based on the data length of the data to obtain the bearer in the L-SIG field.
  • a bit sequence of length bits For example, if the length of data to be transmitted is 403, the bit sequence 001010011000 is selected and the bit sequence 001010011000 is carried in the length bit in the L-SIG field.
  • the PAPR of the L-SIG field generated according to Table 3 above is 4.4896 dB, which is less than the preset threshold (5 dB) and is also smaller than the PAPR (8.3056 dB) of the L-SIG field generated according to Table 1.
  • power enhancement can be performed simultaneously at the baseband with respect to the legacy portion of the preamble (i.e., the target preamble) (i.e., the L-STF field, the L-LTF field, and the L-SIG field).
  • the legacy portion of the preamble i.e., the target preamble
  • the L-STF field, the L-LTF field, and the L-SIG field i.e., the L-STF field, the L-LTF field, and the L-SIG field.
  • the PAPR of the L-STF field is usually 2.3 dB
  • the PAPR of the L-LTF field is usually 2.4 dB, which is much smaller than the PAPR of the L-SIG field, so the L-SIG can be used.
  • the PAPR of the field is used as a reference, and power enhancement is performed on the conventional portion of the preamble based on the above-described transmit power amplification limit (e.g., the maximum input power of the linear section of the power amplifier used).
  • the power enhancement (ie, Case A) may be performed based on a preset threshold, or may be based on a PAPR of the L-SIG field corresponding to the data length to be transmitted determined according to the foregoing Table 3 (ie, the target)
  • the PAPR corresponding to the bit sequence performs the above power enhancement (ie, Case B).
  • the above two cases are respectively described, and, for ease of understanding, as an example and not limited, an enhancement method when the system bandwidth is 20 MHz is used. For example, explain.
  • performing the transmit power enhancement process on the preamble and sending the transmit power to the receiving end including: performing transmit power enhancement processing on the preamble according to the preset threshold and the transmit power amplification limit, and sending the transmit preamble to the receive end .
  • the transmission power amplification limit determined as described above is 8 dB
  • Equation 1 is used to enhance the L-SIG field: Among them, the meaning of each parameter in formula 1 is as follows
  • T G1 indicates the guard interval value
  • K shlft ⁇ i) ⁇ N 20MHz - l - 2i) - 2
  • is the frequency domain rotation value
  • ⁇ ⁇ is the number of transmitting antennas at the transmitting end
  • N " e is the number of subcarriers used by the transmitting end
  • time domain window function is the time domain window function
  • the method for performing the transmission power enhancement according to the preset threshold and the transmission power amplification limit is merely illustrative, and the present invention is not limited thereto, for example, Let X be smaller than the transmit power amplification limit, or let Y be greater than the preset threshold.
  • N 2 can be adjusted according to the system bandwidth used when the system bandwidth is changed.
  • M3 ⁇ 4 parameters other processes can be similar to the above process.
  • formula 3 can be used to enhance the L-LTF field:
  • Equations 2 and 3 are similar to those in Equation 1. Here, in order to avoid redundancy, the repeated description is omitted.
  • the enhanced baseband signal can be used after the power enhancement of the baseband pair of the conventional portion of the preamble. Thereafter, a general-purpose letter such as up-conversion processing can be performed on the baseband signal. The signal is processed and sent to the power amplifier of the transmitting end. Since the power of the signal after the power enhancement processing is in the linear range of the power amplifier, a better power amplification effect can be obtained.
  • performing the transmit power enhancement process on the preamble and transmitting the transmit power to the receiving end including: according to the PAPR corresponding to the target bit sequence and the transmit power amplification limit, according to the PAPR corresponding to the target bit sequence,
  • the preamble performs transmission power enhancement processing and transmits to the receiving end.
  • the traditional portion of the target preamble can be made at the baseband in order to ensure that the power amplification is in the linear range of the power amplifier.
  • Enhanced 8dB-4.4896dB 3.5104dB.
  • the power enhancement can be simultaneously performed on the L-STF field, the L-LTF field, and the L-SIG field according to Equations 1 to 3 above.
  • the present invention is not limited thereto, and may be arbitrarily determined as long as the preset threshold is smaller than the transmission power amplification limit.
  • the above enumerated methods for performing transmit power enhancement ie, determining the transmit power enhancement factor
  • the PAPR and the transmit power amplification limit corresponding to the target bit sequence are merely exemplary, and the present invention is not limited thereto, for example, Alternatively, the X may be smaller than the transmission power amplification limit, or Y may be greater than the PAPR corresponding to the target bit sequence.
  • the bit sequence corresponding to the data length 403 (hereinafter, the bit sequence 1) has a PAPR of 8.3056 dB, which is larger than the bit sequence. Preset threshold.
  • bit sequence 1 and bit sequence 2 may constitute a bit sequence pair, and thus, the bit sequence 2 may serve as a reference bit sequence with respect to bit sequence 1.
  • bit sequence 1 and bit sequence 3 may form a bit sequence pair, such that bit sequence 3 may serve as a reference bit sequence relative to bit sequence 1.
  • bit sequence 1 and bit sequence 4 may form a bit sequence pair, such that bit sequence 4 may serve as a reference bit sequence relative to bit sequence 1.
  • bit sequence 2 having the smallest data length corresponding to the bit sequence 2-5 can be selected as the reference sequence of the bit sequence 1.
  • bit sequence to be modified in Table 2 may be replaced with a reference bit sequence corresponding thereto, and Table 4 below is formed by performing the above modification on Table 2.
  • the data length corresponding to each bit sequence is greater than or equal to the data length corresponding to it in Table 1, or the receiving end recognizes the bit sequence, according to Table 1.
  • the length of the data corresponding to the identified bit is greater than the length of the data actually transmitted by the transmitting end, thereby ensuring normal transmission of data.
  • the transmitting end needs to send data, based on the data length of the data, the above table 3 (or a table formed by removing one column of the PAPR value from Table 3) may be searched for acquiring the L-SIG.
  • the bit sequence of the length bits in the field For example, if the length of data to be transmitted is 403, the bit sequence 001010011000 is selected and the bit sequence 001010011000 is carried in the length bit in the L-SIG field.
  • the PAPR of the L-SIG field generated according to Table 4 above is 4.4896 dB, which is less than the preset threshold (5.5 dB), and is also smaller than the PAPR (8.3056 dB) of the L-SIG field generated according to Table 1.
  • power enhancement can be simultaneously performed on the legacy portion of the preamble (i.e., the target preamble) (i.e., the L-STF field, the L-LTF field, and the L-SIG field) at the baseband as described above.
  • the legacy portion of the preamble i.e., the target preamble
  • the L-STF field, the L-LTF field, and the L-SIG field i.e., the L-STF field, the L-LTF field, and the L-SIG field
  • the sending end device determines, according to the preset rule and the system state, the target bit sequence according to the data length of the target data sent to the receiving end, including:
  • the transmitting end determines, according to the preset rule, a first bit sequence corresponding to a data length of the target data sent to the receiving end;
  • the PAPR corresponding to the first bit sequence is greater than the PAPR corresponding to the second bit sequence, and the PAPR corresponding to the second bit sequence is smaller than the PAPR.
  • the transmit power amplification limit of the transmitting end, and in the preset rule, the data length corresponding to the first bit sequence is smaller than the data length corresponding to the second bit sequence.
  • each binary character string i.e., the bit sequence
  • mapping relationship between each binary character string and each data length can be negotiated.
  • the transmitting end and the receiving end may form a table 1 in which a mapping relationship between each binary character string (i.e., bit sequence) and each data length is recorded based on the same preset rule.
  • the PAPR corresponding to each binary string (that is, each bit sequence) may be determined.
  • the PAPR corresponding to a bit sequence refers to the length.
  • the bit carries the PAPR of the L-SIG field of the bit sequence.
  • the process and method for determining the PAPR corresponding to each bit sequence based on the system state may be similar to the prior art. Here, in order to avoid redundancy, the description is omitted. Its detailed description.
  • Table 2 above shows the PAPR corresponding to each bit sequence in Table 1 determined as described above.
  • the transmitting end can determine the transmission power amplification limit.
  • the transmit power amplification limit is determined based on a maximum output power of the power amplifier used by the transmitting end.
  • the power amplifier has a linear interval in which the ratio of the output power to the input power increases linearly, but when the input power exceeds a certain threshold, the power amplification effect is significantly weakened, and If the input power continues to increase, the output power will remain unchanged, that is, the power amplifier has a maximum output power (remembered, P max ).
  • P max maximum output power
  • the above-mentioned transmit power amplification limit may be determined according to the maximum output power described above.
  • the average transmitted power of the signal amplified by the power amplifier is P x .
  • the average power of the transmitted signal should conform to the standard, that is, less than or equal to the maximum average transmit power P standard specified by the standard , usually using full power transmission, ie
  • ⁇ ⁇ P max /P standard can be obtained from the formulas (1), (2) and (3). Therefore, the transmitting end can determine the above-mentioned transmit power amplification limit according to the maximum output power of the power amplifier and the maximum average transmit power of the signal. For example, the value of P max /P standard can be used as the above-mentioned transmit power amplification limit. Also, the transmission power amplification limit can be, for example, 8 dB.
  • the method for determining the above-mentioned transmission power amplification limit and the value are merely exemplary descriptions, and the present invention is not limited thereto.
  • the value may be smaller than the value of P max /P standard or greater than the value of P max /P standarf .
  • the invention is not particularly limited.
  • the transmitting end may determine the data length of the target data that needs to be sent to the receiving end, and based on the data length of the target data, look up the table 1 and determine a bit sequence corresponding to the data length of the target data (ie, the first bit) Sequence), and further look up Table 2 to determine the PAPR corresponding to the first bit sequence (ie, the length bit carries the PAPR of the L-SIG field of the first bit sequence)
  • the second bit sequence can be determined from Table 2, in time for the target bit sequence corresponding to
  • the PAPR is smaller than the PAPR corresponding to the first bit sequence, and the data corresponding to the second bit sequence
  • the length is greater than the data length corresponding to the first bit sequence, and the second bit sequence corresponds to
  • the PAPR is less than the above-mentioned transmit power amplification limit.
  • the data length of the target data is 403
  • there are 6 second bit sequences that is, a bit sequence corresponding to the data length 404 (the corresponding PAPR is 4.4896 dB is less than 8 dB), and the bit length corresponding to the data is 405.
  • the sequence (the corresponding PAPR is 7.3815dB less than 8dB), the bit length corresponding to the data length 406 (the corresponding PAPR is 6.9734dB less than 8dB), and the bit length corresponding to the data length 443 (the corresponding PAPR is 5.4535)
  • the bit sequence corresponding to the data length of 444 (the corresponding PAPR is 5.6522dB less than 8dB) and the bit length corresponding to the data length of 445 (the corresponding PAPR is 4.8945dB less than 8dB).
  • the transmitting end can select any one of the above six second bit sequences as the target bit sequence, and carry the target bit sequence in the length bit in the L-SIG field.
  • the target bit sequence is a bit sequence with the smallest data length corresponding to the at least two second bit sequences.
  • bit sequence A target bit sequence of A when there are a plurality of bit sequences B for the bit sequence A, a bit sequence (represented as a bit sequence B mm ;) having the smallest data length can be selected as the bit sequence A target bit sequence of A.
  • the bit sequence B mm Since the data length corresponding to the selected bit sequence B mm is the smallest among the plurality of bit sequences B, the bit sequence B mm is subsequently transmitted to the receiving end after being carried in the length bit in the conventional signaling field.
  • the receiving end can determine that the time to remain idle (or use) is closest to the time required to actually obtain the data, thereby increasing the throughput of the system. In other words, after the receiving end identifies the target bit sequence, the data length corresponding to the target bit identified according to Table 1 is greater than the data length actually transmitted by the transmitting end, thereby ensuring normal data transmission.
  • the PAPR of the generated L-SIG field is 4.4896 dB, which is smaller than the PAPR of the L-SIG field generated according to the target data and Table 1. (8.3056 dB ).
  • power enhancement can be performed simultaneously at the baseband with respect to the legacy portion of the preamble (i.e., the target preamble) (i.e., the L-STF field, the L-LTF field, and the L-SIG field).
  • the legacy portion of the preamble i.e., the target preamble
  • the L-STF field, the L-LTF field, and the L-SIG field i.e., the L-STF field, the L-LTF field, and the L-SIG field.
  • the PAPR of the L-STF field is usually 2.3 dB.
  • the PAPR of the L-LTF field is usually 2.3 dB, which is much smaller than the PAPR of the L-SIG field, so the PAPR of the L-SIG field can be used as a reference and based on the above-mentioned transmit power amplification limit (for example, the linear range of the power amplifier used) The maximum input power), for the traditional part of the preamble, for power enhancement.
  • the target bit sequence for the target data may be selected regardless of the data length of the target data, but, for example, the PAPR of the bit sequence corresponding to the data length of the target data is sufficiently small, and the above replacement is not required.
  • the preset threshold may be set, and the foregoing method is performed according to the preset threshold, that is,
  • the method before determining the target bit sequence from the at least one second bit sequence, the method further includes:
  • the PAPR corresponding to the first bit sequence is greater than a preset threshold, wherein the preset threshold is smaller than a power amplification limit of the transmitting end, and the PAPR corresponding to the second bit sequence is less than or equal to the preset threshold.
  • the sending end may determine a threshold that is smaller than the transmission power amplification limit (ie, a preset threshold), and find the target bit sequence only when the PAPR of the bit sequence corresponding to the data length of the target data is greater than the preset threshold. And, in this case, the PAPR corresponding to the target sequence needs to be smaller than the preset threshold.
  • a threshold that is smaller than the transmission power amplification limit (ie, a preset threshold)
  • the determined preset threshold is 5dB.
  • the PAPR of the corresponding bit sequence (hereinafter, the bit sequence 1) is 8.3056 dB, which is greater than the preset threshold, so that the corresponding data length is greater than 403 and the PAPR is smaller than A bit sequence equal to the preset threshold, as shown in Table 2, the bit sequence that satisfies the above condition is: a bit sequence corresponding to a data length of 404 (hereinafter, a bit sequence 2), and a data length of 445
  • the bit sequence (below, the cartridge is called bit sequence ⁇ ! 3).
  • bit sequence 2 can be used as a target bit sequence with respect to bit sequence 1.
  • bit sequence 3 can be used as a target bit sequence with respect to bit sequence 1.
  • bit sequence B l can be arbitrarily selected from the plurality of bit sequences B as a target bit sequence.
  • the target bit sequence is the at least two In the second bit sequence, the corresponding bit sequence with the smallest data length.
  • bit sequence B when there are a plurality of bit sequences B for the bit sequence A, a bit sequence (represented as a bit sequence B mm ;) having the smallest data length can be selected as the target bit sequence.
  • the bit sequence B mm Since the data length corresponding to the selected bit sequence B mm is the smallest among the plurality of bit sequences B, the bit sequence B mm is subsequently transmitted to the receiving end after being carried in the length bit in the conventional signaling field.
  • the receiving end can determine that the time to remain idle (or use) is closest to the time required to actually obtain the data, thereby increasing the throughput of the system.
  • the power enhancement may be performed based on a preset threshold (ie, Case C), or may be performed based on the PAPR corresponding to the target bit sequence (ie, Case D). A description will be given.
  • performing the transmit power enhancement process on the preamble and sending the transmit power to the receiving end including: performing transmit power enhancement processing on the preamble according to the preset threshold and the transmit power amplification limit, and sending the transmit preamble to the receive end .
  • the L-SIG field can be enhanced according to Equation 1 above.
  • the method for performing the transmission power enhancement according to the preset threshold and the transmission power amplification limit is merely illustrative, and the present invention is not limited thereto, for example, Let X be smaller than the transmit power amplification limit, or let Y be greater than the preset threshold.
  • the L-STF field can be enhanced according to Equation 2 above.
  • the enhanced baseband signal can be used after the power enhancement of the baseband pair of the conventional portion of the preamble. Thereafter, the baseband signal can be subjected to general-purpose signal processing such as up-conversion processing, and sent to the power amplifier at the transmitting end, due to the signal after the power enhancement processing.
  • the power of the number is in the linear range of the power amplifier or, therefore, a better power amplification effect can be obtained.
  • performing the transmit power enhancement process on the preamble and transmitting the transmit power to the receiving end including: according to the PAPR corresponding to the target bit sequence and the transmit power amplification limit, according to the PAPR corresponding to the target bit sequence,
  • the preamble performs transmission power enhancement processing and transmits to the receiving end.
  • the traditional portion of the target preamble can be made at the baseband in order to ensure that the power amplification is in the linear range of the power amplifier.
  • Enhanced 8dB-4.4896dB 3.5104dB.
  • the power enhancement can be simultaneously performed on the L-STF field, the L-LTF field, and the L-SIG field according to Equations 1 to 3 above.
  • the present invention is not limited thereto, and may be arbitrarily determined as long as the preset threshold is smaller than the transmission power amplification limit.
  • the above enumerated method for performing transmission power enhancement ie, determining the transmission power enhancement factor
  • the PAPR and the transmission power amplification limit corresponding to the target bit sequence is merely exemplary, and the present invention is not limited thereto, for example, Alternatively, the X may be smaller than the transmission power amplification limit, or Y may be greater than the PAPR corresponding to the target bit sequence.
  • a bit sequence corresponding to a data length of a target data that needs to be transmitted to a transmitting end is replaced by a transmitting end with a bit sequence having a longer data length and a lower PAPR.
  • the PAPR of the L-SIG field can be effectively reduced, and the PAPR of the L-SIG field is placed in the linear interval of the power amplifier, so that the transmit power can be amplified and transmitted to the preamble.
  • the effect of obtaining accurate length information by the receiving end can be improved, and the data length corresponding to the bit sequence carried in the L-SIG field is larger than the data length of the actually transmitted data, thereby ensuring that the transmission process is not interfered, and Ensure the accuracy of the transmission, which can improve system throughput, improve data transmission performance and user experience.
  • the method for transmitting data according to the embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 3.
  • an apparatus for transmitting data according to an embodiment of the present invention will be described in detail with reference to FIG.
  • FIG. 4 shows an apparatus 200 for transmitting data according to an embodiment of the present invention.
  • the apparatus 200 includes:
  • a determining unit 210 configured to determine, according to a preset rule and a system state, a target bit sequence according to a data length of the target data sent to the receiving end, where, under the preset rule, the data length of the target data is smaller than the target bit sequence
  • the peak-to-average power ratio PAPR corresponding to the target bit sequence is smaller than the PAPR corresponding to the bit sequence corresponding to the data length of the target data, and the PAPR 'J corresponding to the target bit sequence a transmission power amplification limit at the transmitting end;
  • the processing unit 220 is configured to carry the target bit sequence to a length bit in a traditional signaling field of the target preamble, according to the transmit power amplification limit, a traditional short training domain field in the target preamble, and a traditional long training
  • the domain field and the traditional signaling field are subjected to transmission power enhancement processing, and are sent to the receiving end, where the target preamble and the target data are carried in the same data frame.
  • the determining unit 210 is specifically configured to determine, according to the preset rule, a mapping entry, where the mapping entry records a mapping relationship between N data lengths and N bit sequences, where the N data lengths Corresponding to the N bit sequences, the data length of the target data belongs to the N data lengths;
  • the bit sequence pair includes a to-be-modified bit sequence and a reference bit sequence, and the bit sequence to be modified included in each bit sequence pair is different from each other, the bit to be modified
  • the PAPR corresponding to the sequence is greater than the preset threshold, and the PAPR corresponding to the reference bit sequence is less than or equal to the preset threshold, and in a bit sequence pair, the data length corresponding to the bit sequence to be modified is smaller than the data corresponding to the reference bit sequence.
  • the preset threshold is smaller than a transmission power amplification limit of the transmitting end;
  • mapping entry modifying the mapping entry according to the bit sequence pair to replace the to-be-modified bit sequence in each bit sequence pair with a reference bit sequence
  • the reference bit sequence determined by the determining unit 210 The column is the bit sequence with the smallest data length in the at least two candidate bit sequences, wherein the PAPR corresponding to the candidate bit sequence is less than or equal to the preset threshold, and the data corresponding to the bit sequence to be modified The length is less than the data length corresponding to the candidate bit sequence.
  • the determining unit 210 is specifically configured to determine, according to the preset rule, a first bit sequence corresponding to a data length of the target data sent to the receiving end;
  • the PAPR corresponding to the first bit sequence is greater than the PAPR corresponding to the second bit sequence, and the PAPR corresponding to the second bit sequence
  • the transmission power amplification limit is smaller than the transmission end, and in the preset rule, the data length corresponding to the first bit sequence is smaller than the data length corresponding to the second bit sequence.
  • the determining unit 210 is further configured to determine that the PAPR corresponding to the first bit sequence is greater than a preset threshold, where the preset threshold is smaller than a power amplification limit of the transmitting end, and the PAPR corresponding to the second bit sequence is less than or equal to The preset threshold.
  • the target bit sequence determined by the determining unit 210 is a bit sequence in which the corresponding data length is the smallest among the at least two second bit sequences.
  • the processing unit 220 is specifically configured to: according to the PAPR corresponding to the target bit sequence and the transmit power amplification limit, the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble.
  • the transmission power enhancement processing is performed.
  • the processing unit 220 is configured to perform transmit power on the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble according to the preset threshold and the transmit power amplification limit. Enhanced processing.
  • the device 200 for transmitting data may correspond to the transmitting device in the method of the embodiment of the present invention, and the modules and the other operations and/or functions in the device 200 for transmitting data are respectively
  • the corresponding process of the method 100 in FIG. 2 is implemented, and the details are not described herein.
  • the apparatus for transmitting data replaces, by the transmitting end, a bit sequence corresponding to the data length of the target data that needs to be transmitted to the transmitting end, and a bit sequence having a longer data length and a lower PAPR, which is carried on the bit sequence.
  • the PAPR of the L-SIG field can be effectively reduced, and the PAPR of the L-SIG field is placed in the linear interval of the power amplifier, so that the transmit power can be amplified and transmitted to the preamble.
  • the effect of obtaining the accurate length information at the receiving end is that the data length corresponding to the bit sequence carried in the L-SIG field is larger than the data length of the actually transmitted data, thereby ensuring that the transmission process is not interfered, and the accuracy of the transmission can be ensured. , which can improve system throughput and improve data transmission performance and user experience.
  • FIG. 5 shows an apparatus 300 for transmitting data according to an embodiment of the present invention. As shown in FIG. 7, the apparatus 300 includes:
  • processor 320 connected to the bus 310;
  • a memory 330 connected to the bus 310;
  • transceiver 340 connected to the bus 310;
  • the processor 320 calls, by using the bus 310, a program stored in the memory 330, for determining a target bit sequence according to a data length of the target data sent to the receiving end, based on a preset rule and a system state, where Under the preset rule, the data length of the target data is smaller than the data length corresponding to the target bit sequence. In the system state, the peak-to-average power ratio PAPR corresponding to the target bit sequence is smaller than the data length of the target data.
  • the PAPR corresponding to the corresponding bit sequence, the PAPR corresponding to the target bit sequence is smaller than the transmission power amplification limit of the transmitting end;
  • the traditional signaling field performs a transmission power enhancement process and is sent to the receiving end by the transceiver 340, where the target preamble and the target data are carried in the same data frame.
  • the processor 320 is configured to determine, according to the preset rule, a mapping entry, where the mapping entry records a mapping relationship between N data lengths and N bit sequences, where the N data lengths Corresponding to the N bit sequences, the data length of the target data belongs to the N data lengths;
  • the bit sequence pair includes a to-be-modified bit sequence and a reference bit sequence, and the bit sequence to be modified included in each bit sequence pair is different from each other, and the bit sequence to be modified corresponds to
  • the PAPR is greater than the preset threshold, the reference ratio
  • the PAPR corresponding to the special sequence is less than or equal to the preset threshold, and in a bit sequence pair, the data length corresponding to the bit sequence to be modified is smaller than the data length corresponding to the reference bit sequence, and the preset threshold is smaller than the transmit power of the transmitting end.
  • the modified mapping entry is searched according to the data length of the target data sent to the receiving end to determine the target bit sequence.
  • the reference bit sequence determined by the processor 320 is the at least two devices.
  • the corresponding bit length of the data length is the smallest, wherein the PAPR corresponding to the candidate bit sequence is less than or equal to the preset threshold, and the data length corresponding to the bit sequence to be modified is smaller than the candidate bit sequence. The corresponding data length.
  • the processor 320 is specifically configured to determine, according to the preset rule, a first bit sequence corresponding to a data length of the target data sent to the receiving end;
  • the PAPR corresponding to the first bit sequence is greater than the PAPR corresponding to the second bit sequence, and the PAPR corresponding to the second bit sequence is smaller than the PAPR.
  • the transmit power amplification limit of the transmitting end, and in the preset rule, the data length corresponding to the first bit sequence is smaller than the data length corresponding to the second bit sequence.
  • the processor 320 is further configured to determine that the PAPR corresponding to the first bit sequence is greater than a preset threshold, where the preset threshold is smaller than a power amplification limit of the transmitting end, and the PAPR corresponding to the second bit sequence is less than or equal to The preset threshold.
  • the target bit sequence determined by the processor 320 is a bit sequence with the smallest data length corresponding to the at least two second bit sequences.
  • the processor 320 is specifically configured to: according to the PAPR corresponding to the target bit sequence and the transmit power amplification limit, the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble.
  • the transmission power enhancement processing is performed.
  • the processor 320 is configured to perform transmit power on the traditional short training domain field, the traditional long training domain field, and the traditional signaling field in the target preamble according to the preset threshold and the transmit power amplification limit.
  • the processing unit may also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device for transmitting data may be embedded or may be a standard Ethernet communication device such as a personal computer.
  • the modules of the device for transmitting data are coupled together by a bus system, wherein the bus system includes a data bus.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the decoding unit or the processing unit reads the information in the memory, and completes the steps of the foregoing method in combination with the hardware.
  • the processor may be a central processing unit (Central)
  • the Processing Unit can also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable logic. Devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor execution, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the transmitting device in the device, and the modules in the device 300 for transmitting data and the other operations and/or functions described above are respectively implemented in order to implement the corresponding processes of the method 100 in FIG. 2, and are not described herein again. .
  • the lower bit sequence of the PAPR is carried in the L-SIG field of the preamble, which can effectively reduce the PAPR of the L-SIG field, so that the PAPR of the L-SIG field is in the linear interval of the power amplifier, so that the preamble can be
  • the code is transmitted to the receiving end and then transmitted to the receiving end, thereby improving the effect of obtaining accurate length information by the receiving end.
  • the length of the data corresponding to the bit sequence carried in the L-SIG field is greater than the data length of the actually transmitted data. Ensure that the transmission process is not disturbed and ensure the accuracy of the transmission, which can improve system throughput, improve data transmission performance and user experience.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in various embodiments of the present invention may be integrated into one processing unit
  • each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种传输数据的方法和装置的方法和装置,能够提高系统吞吐率,改善数据传输性能和用户体验,方法包括:基于预设规则和系统状态,根据发送给接收端的目标数据的数据长度,确定目标比特序列,在预设规则下,目标数据的数据长度小于目标比特序列所对应的数据长度,在系统状态下,目标比特序列对应的峰均功率比 PAPR小于与目标数据的数据长度相对应的比特序列对应的 PAPR,目标比特序列对应的 PAPR小于发送端的发射功率放大界限;将目标比特序列承载于目标前导码的传统信令字段中的长度比特位,根据发射功率放大界限,对目标前导码中的传统短训练域字段、传统长训练域字段和传统信令字段进行发射功率增强处理。

Description

传输数据的方法和装置 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及传输数据的方法 和装置。 背景技术
随着半导体技术的发展和 802.11标准对无线局域网络( WLAN, Wireless Local Area Networks )的标准化使得 WLAN技术的成本大大降低, 其应用也 日益广泛。 目前, 802.11标准的版本已从 802.11a/b演进到 802.11g、 802.11η 以及 802.1 lac ,需要通过严格的测试认证各 802.11版本产品之间的互操作性, 而。
为了保证不同 802.11标准版本的产品之间的后向兼容性与互操作性,从 802.11η开始, 定义了混合格式(MF, Mixed Format )前导码(一下, 筒称 前导码)。 前导码的传统部分是由与 802.11a相同的传统字段组成。
图 1示出了现有的前导码的结构。 如图 1所示, 前导码的传统部分包含 三个字段, 即: 传统短训练域(L-STF, Legacy-Short Training Field ) 字段, 传统长训练域 ( L-LTF, Legacy-Long Training Field ) 字段以及传统信令 ( L-SIG, Legacy-Signal ) 字段, 其中, L-STF 字段用于帧起始检测、 自动 增益控制 (AGC, Auto Gain Control )设置、 初始频率偏移估计以及初始时 间同步; L-LTF用于更精确的频率偏移估计和时间同步, 也用来为接收及匀 衡 L-SIG生成信道估计; L-SIG字段主要用于承载数据速率信息及数据长度 信息, 以使接收端设备能够根据该数据速率信息及数据长度信息, 确定与该 前导码承载于同一帧的数据的长度, 进而能够确定保持空闲的适当时间。
然而, 在传输条件恶劣 (例如, 在低信噪比) 的情况下, L-SIG字段所 承载的比特的假阳性错误概率增大, 导致接收端无法获取正确的长度信息 等,可能在一段时间内无法接收或者发送有效的帧,大大降低了系统吞吐率, 严重影响数据传输性能和用户体验。
因此, 希望提供一种技术, 能够提高系统吞吐率, 改善数据传输性能和 用户体验。 发明内容
本发明实施例提供一种传输数据的方法和装置的方法和装置, 能够提高 系统吞吐率, 改善数据传输性能和用户体验。
第一方面, 提供了一种传输数据的方法, 该方法包括: 发送端设备基于 预设规则和系统状态, 根据发送给接收端的目标数据的数据长度, 确定目标 比特序列, 其中, 在该预设规则下, 该目标数据的数据长度小于该目标比特 序列所对应的数据长度, 在该系统状态下, 该目标比特序列对应的峰均功率 比 PAPR小于与该目标数据的数据长度相对应的比特序列对应的 PAPR, 该 目标比特序列对应的 PAPR小于该发送端的发射功率放大界限; 将该目标比 特序列承载于目标前导码的传统信令字段中的长度比特位,根据该发射功率 放大界限, 对该目标前导码中的传统短训练域字段、 传统长训练域字段和该 传统信令字段进行发射功率增强处理, 并发送给该接收端, 其中, 该目标前 导码与该目标数据承载于同一数据帧。
结合第一方面, 在第一方面的第一种实现方式中, 该发送端设备基于预 设规则和系统状态, 根据发送给接收端的目标数据的数据长度, 确定目标比 特序列, 包括: 该发送端根据该预设规则, 确定映射表项, 该映射表项记录 有 N种数据长度与 N个比特序列之间的映射关系, 其中, 该 N种数据长度 与该 N个比特序列——对应, 该目标数据的数据长度属于该 N种数据长度; 根据该系统状态,确定该 N个比特序列所分别对应的 PAPR;根据预设门限, 确定至少一个比特序列对, 其中, 一个比特序列对包括一个待修改比特序列 和一个参考比特序列, 各比特序列对包括的待修改比特序列彼此相异, 该待 修改比特序列对应的 PAPR大于该预设门限, 该参考比特序列对应的 PAPR 小于或等于该预设门限, 且在一个比特序列对中, 待修改比特序列所对应的 数据长度小于参考比特序列所对应的数据长度, 该预设门限小于该发送端的 发射功率放大界限; 根据该比特序列对, 修改该映射表项, 以将各比特序列 对中的待修改比特序列替换为参考比特序列;根据发送给接收端的目标数据 的数据长度, 查找修改后的映射表项, 以确定目标比特序列。
结合第一方面及其上述实现方式, 在第一方面的第二种实现方式中, 如 果针对一个比特序列对中的待修改比特序列,在该 N个比特序列中存在至少 两个备选比特序列, 则该参考比特序列是该至少两个备选比特序列中, 所对 应的数据长度最小的比特序列, 其中, 该备选比特序列对应的 PAPR小于或 等于该预设门限,且该待修改比特序列所对应的数据长度小于该备选比特序 列所对应的数据长度。
结合第一方面及其上述实现方式, 在第一方面的第三种实现方式中, 该 发送端设备基于预设规则和系统状态,根据发送给接收端的目标数据的数据 长度, 确定目标比特序列, 包括: 该发送端根据该预设规则, 确定与发送给 接收端的目标数据的数据长度相对应的第一比特序列; 从至少一个第二比特 序列中, 确定该目标比特序列, 其中, 在该系统状态下, 第一比特序列对应 的 PAPR大于该第二比特序列对应的 PAPR, 该第二比特序列对应的 PAPR 小于该发送端的发射功率放大界限, 且在该预设规则中, 该第一比特序列所 对应的数据长度小于该第二比特序列所对应的数据长度。
结合第一方面及其上述实现方式, 在第一方面的第四种实现方式中, 在 该从至少一个第二比特序列中, 确定目标比特序列之前, 该方法还包括: 确 定该第一比特序列对应的 PAPR大于预设门限, 其中, 该预设门限小于该发 送端的功率放大界限,该第二比特序列对应的 PAPR小于或等于该预设门限。
结合第一方面及其上述实现方式, 在第一方面的第五种实现方式中, 当 存在至少两个第二比特序列时, 该目标比特序列是该至少两个第二比特序列 中, 所对应的数据长度最小的比特序列。
结合第一方面及其上述实现方式, 在第一方面的第六种实现方式中, 该 根据该发射功率放大界限, 对该目标前导码中的传统短训练域字段、 传统长 训练域字段和该传统信令字段进行发射功率增强处理, 包括: 根据该目标比 特序列对应的 PAPR和该发射功率放大界限, 对该目标前导码中的传统短训 练域字段、 传统长训练域字段和该传统信令字段进行发射功率增强处理。
结合第一方面及其上述实现方式, 在第一方面的第七种实现方式中, 该 根据该发射功率放大界限, 对该目标前导码中的传统短训练域字段、 传统长 训练域字段和该传统信令字段进行发射功率增强处理, 包括: 根据该预设门 限和该发射功率放大界限, 对该目标前导码中的传统短训练域字段、 传统长 训练域字段和该传统信令字段进行发射功率增强处理。
第二方面, 提供一种传输数据的装置, 该装置包括: 确定单元, 用于基 于预设规则和系统状态, 根据发送给接收端的目标数据的数据长度, 确定目 标比特序列, 其中, 在该预设规则下, 该目标数据的数据长度小于该目标比 特序列所对应的数据长度, 在该系统状态下, 该目标比特序列对应的峰均功 率比 PAPR小于与该目标数据的数据长度相对应的比特序列对应的 PAPR , 该目标比特序列对应的 PAPR小于该发送端的发射功率放大界限;处理单元, 用于将该目标比特序列承载于目标前导码的传统信令字段中的长度比特位, 根据该发射功率放大界限, 对该目标前导码中的传统短训练域字段、 传统长 训练域字段和该传统信令字段进行发射功率增强处理, 并发送给该接收端, 其中, 该目标前导码与该目标数据承载于同一数据帧。
结合第二方面, 在第一方面的第一种实现方式中, 该确定单元具体用于 根据该预设规则, 确定映射表项, 该映射表项记录有 N种数据长度与 N个 比特序列之间的映射关系, 其中, 该 N种数据长度与该 N个比特序列—— 对应, 该目标数据的数据长度属于该 N种数据长度; 用于根据该系统状态, 确定该 N个比特序列所分别对应的 PAPR; 用于根据预设门限, 确定至少一 个比特序列对, 其中, 一个比特序列对包括一个待修改比特序列和一个参考 比特序列, 各比特序列对包括的待修改比特序列彼此相异, 该待修改比特序 列对应的 PAPR大于该预设门限, 该参考比特序列对应的 PAPR小于或等于 该预设门限, 且在一个比特序列对中, 待修改比特序列所对应的数据长度小 于参考比特序列所对应的数据长度,该预设门限小于该发送端的发射功率放 大界限; 用于根据该比特序列对, 修改该映射表项, 以将各比特序列对中的 待修改比特序列替换为参考比特序列; 用于根据发送给接收端的目标数据的 数据长度, 查找修改后的映射表项, 以确定目标比特序列。
结合第二方面及其上述实现方式, 在第一方面的第二种实现方式中, 如 果针对一个比特序列对中的待修改比特序列,在该 N个比特序列中存在至少 两个备选比特序列, 则该确定单元确定的该参考比特序列是该至少两个备选 比特序列中, 所对应的数据长度最小的比特序列, 其中, 该备选比特序列对 应的 PAPR小于或等于该预设门限, 且该待修改比特序列所对应的数据长度 小于该备选比特序列所对应的数据长度。
结合第二方面及其上述实现方式, 在第一方面的第三种实现方式中, 该 确定单元具体用于根据该预设规则,确定与发送给接收端的目标数据的数据 长度相对应的第一比特序列; 用于从至少一个第二比特序列中, 确定该目标 比特序列, 其中, 在该系统状态下, 第一比特序列对应的 PAPR大于该第二 比特序列对应的 PAPR , 该第二比特序列对应的 PAPR 'J、于该发送端的发射 功率放大界限, 且在该预设规则中, 该第一比特序列所对应的数据长度小于 该第二比特序列所对应的数据长度。
结合第二方面及其上述实现方式, 在第一方面的第四种实现方式中, 该 确定单元还用于确定该第一比特序列对应的 PAPR大于预设门限, 其中, 该 预设门限小于该发送端的功率放大界限, 该第二比特序列对应的 PAPR小于 或等于该预设门限。
结合第二方面及其上述实现方式, 在第一方面的第五种实现方式中, 当 存在至少两个第二比特序列时, 该确定单元确定的该目标比特序列是该至少 两个第二比特序列中, 所对应的数据长度最小的比特序列。
结合第二方面及其上述实现方式, 在第一方面的第六种实现方式中, 该 处理单元具体用于根据该目标比特序列对应的 PAPR 和该发射功率放大界 限, 对该目标前导码中的传统短训练域字段、 传统长训练域字段和该传统信 令字段进行发射功率增强处理。
结合第二方面及其上述实现方式, 在第一方面的第七种实现方式中, 该 处理单元具体用于根据该预设门限和该发射功率放大界限,对该目标前导码 中的传统短训练域字段、传统长训练域字段和该传统信令字段进行发射功率 增强处理。
根据本发明实施例的传输数据的方法和装置,通过发送端将与需要传输 给发送端的目标数据的数据长度相对应的比特序列,替换为所对应数据长度 更长且 PAPR更低的比特序列, 承载于前导码的 L-SIG字段中, 能够有效降 低 L-SIG字段的 PAPR, 进而使该 L-SIG字段的 PAPR处于功率放大器的线 性区间, 从而能够在对该前导码进行发射功率放大后发送给接收端, 进而能 够提高接收端获得准确的长度信息的效果, 由于承载于 L-SIG字段的比特序 列所对应的数据长度, 大于实际发送的数据的数据长度, 能够确保传输过程 不被干扰, 并能够确保传输的准确性, 从而能够提高系统吞吐率, 改善数据 传输性能和用户体验。 附图说明
图 1是表示现有技术中前导码的结构的示意图。
图 2是根据本发明一实施例的传输数据的方法的示意性流程图。
图 3是表示 L-SIG字段中比特分配的一例的示意图。
图 4是根据本发明一实施例的传输数据的装置的示意性框图。 图 5是根据本发明一实施例的传输数据的设备的示意性结构图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案,可以应用于各种需要通过前导码来通知通信对端所 传输的数据的数据速率以及数据长度等信息的通信系统, 例如, 无线局域网 ( WLAN, Wireless Local Area Network ) 系统、 无线保真(Wi-Fi, Wireless Fidelity ) 系统等。
相对应的, 发送端可以是 WLAN中用户站点 ( STA , Station ), 该用户 站点也可以称为系统、 用户单元、 接入终端、 移动站、 移动台、 远方站、 远 程终端、 移动设备、 用户终端、 终端、 无线通信设备、 用户代理、 用户装置 或 UE ( User Equipment, 用户设备)。 该 STA可以是蜂窝电话、 无绳电话、 SIP ( Session Initiation Protocol, 会话启动十办议 )电话、 WLL ( Wireless Local Loop, 无线本地环路)站、 PDA ( Personal Digital Assistant, 个人数字处理)、 具有无线局域网 (例如 Wi-Fi )通信功能的手持设备、 计算设备或连接到无 线调制解调器的其它处理设备。
另夕卜, 发送端也可以是 WLAN中接入点 (AP, Access Point ), 接入点 可用于与接入终端通过无线局域网进行通信, 并将接入终端的数据传输至网 络侧, 或将来自网络侧的数据传输至接入终端。
以下, 为了便于理解和说明, 作为示例而非限定, 以将本发明的传输数 据的方法和装置在 Wi-Fi系统中的执行过程和动作进行说明。
此外, 本发明的各个方面或特征可以实现成方法、 装置或使用标准编程 和 /或工程技术的制品。本申请中使用的术语 "制品 "涵盖可从任何计算机可读 器件、 载体或介质访问的计算机程序。 例如, 计算机可读介质可以包括, 但 不限于:磁存储器件(例如,硬盘、软盘或磁带等 ),光盘(例如, CD ( Compact Disk, 压缩盘)、 DVD ( Digital Versatile Disk, 数字通用盘)等), 智能卡和 闪存器件(例: ¾口, EPROM ( Erasable Programmable Read-Only Memory, 可 擦写可编程只读存储器)、 卡、 棒或钥匙驱动器等)。 另外, 本文描述的各种 存储介质可代表用于存储信息的一个或多个设备和 /或其它机器可读介质。术 语"机器可读介质 "可包括但不限于, 无线信道和能够存储、 包含和 /或承载指 令和 /或数据的各种其它介质。
现有技术中, 通常 L-SIG字段中的长度比特位具有 12个比特位, 以通 过 212个位的二进制字符串表示 212种数据长度, 因此 L-SIG字段中, 可能存 在连续多个比特位的数据重复, 进而导致 L-SIG字段的峰均功率比(PAPR, Peak-to-Average Power Ratio )较高, 受到功率放大器的线性区间的限制, 可 能无法采用提高 L-SIG字段的发射功率的方式,应对上述传输条件恶劣的情 况。 如果仅增强 L-STF字段和 L-LTF字段的发射功率, 又会造成设备 AGC 设置不正确导致无法正确解码 L-SIG, 丧失互操作性。
图 2示出了本发明一实施例的传输数据的方法 100的示意性流程图,如 图 2所示, 该方法 100包括:
S110, 发送端设备基于预设规则和系统状态, 根据发送给接收端的目标 数据的数据长度, 确定目标比特序列, 其中, 在该预设规则下, 该目标数据 的数据长度小于该目标比特序列所对应的数据长度, 在该系统状态下, 该目 标比特序列对应的峰均功率比 PAPR小于与该目标数据的数据长度相对应的 比特序列对应的 PAPR , 该目标比特序列对应的 PAPR 'J、于该发送端的发射 功率放大界限;
S120,将该目标比特序列承载于目标前导码的传统信令字段中的长度比 特位, 对该目标前导码中的传统短训练域字段、 传统长训练域字段和该传统 信令字段进行发射功率增强处理并发送给该接收端, 其中, 该目标前导码与 该目标数据承载于同一数据帧。
在现有技术中, L-SIG字段主要用于承载数据速率信息及数据长度信息, 以接收端设备能够根据该数据速率信息及数据长度信息,确定与该前导码承 载于同一帧的数据的长度, 进而能够确定保持空闲的适当时间。
图 3示出了本发明实施例中的 L-SIG字段的比特分配的一例,在图 3所 示示例中, L-SIG字段包括速率比特位、 保留比特位、 长度比特位、 校验比 特位和尾部比特位。 其中:
速率比特位, 用于指示传输速率, 可以具有 4个比特位, 以承载 4个比 特, 从而, 可以标识 24种速率;
1个比特位的保留比特, 通常情况下置为 0; 长度比特位, 用于指示数据长度, 或者说有效载荷长度, 可以具有 12 个比特位, 以承载 12个比特, 从而, 可以标识 212种数据长度;
校验比特位用于承载校验比特, 该校验比特可以包括 1个比特, 作为之 前 17个比特的校验值;
6个比特位的尾部比特位, 用于清空编码器和解码器清空编码器和解码 器, 通常情况下置为 000000。
应理解, 以上列举的 L-SIG字段的比特分配方式仅为示例性说明, 本发 明并不限定于此, 该 L-SIG字段的构成以及各构成单元, 例如长度比特位等 的长度可以任意变更。
通常, 由于数据的长度多种多样, 为了增大长度比特位能够表达的长度 种类, 需要为长度比特位分配较多的比特, 例如, 如上所述, 长度比特位具 有 12个比特位, 以通过 212个位的二进制字符串表示 212种数据长度。
因此 L-SIG字段(具体地说, 是该长度比特位) 中, 可能存在连续多个 比特位的数据重复, 进而导致 L-SIG字段的 PAPR较高。 受到功率放大器非 线性区间的限制, 该较高的 PAPR, 可能导致无法采用提高 L-SIG字段的发 射功率的方式应对上述传输条件恶劣的情况。
与此相对, 在本发明实施例中, 发送端将与需要传输给发送端的目标数 据的数据长度相对应的比特序列, 替换为所对应数据长度更长且 PAPR更低 的目标比特序列,并承载于前导码的 L-SIG字段(具体地说,是长度比特位 ) 中, 能够有效降低 L-SIG字段的 PAPR, 从而能够在对该前导码进行发射功 率放大后发送给接收端, 进而能够提高接收端获得准确的长度信息的效果, 由于承载于 L-SIG字段的比特序列所对应的数据长度, 大于实际发送的数据 的数据长度, 能够确保传输过程不被干扰, 并能够确保传输的准确性, 从而 能够提高系统吞吐率, 改善数据传输性能和用户体验。
在本发明实施例中, 提供了两种确定上述目标比特序列的方式, 即方式
1和方式 2, 下面分别对上述两种方式进行详细说明
方式 1
可选地, 该发送端设备基于预设规则和系统状态, 根据发送给接收端的 目标数据的数据长度, 确定目标比特序列, 包括:
该发送端根据该预设规则,确定映射表项,该映射表项记录有 N种数据 长度与 N个比特序列之间的映射关系, 其中, 该 N种数据长度与该 N个比 特序列——对应, 该目标数据的数据长度属于该 Ν种数据长度; 才艮据该系统状态, 确定该 Ν个比特序列所分别对应的 PAPR;
根据预设门限, 确定至少一个比特序列对, 其中, 一个比特序列对包括 一个待修改比特序列和一个参考比特序列,各比特序列对包括的待修改比特 序列彼此相异, 该待修改比特序列所对应的 PAPR大于该预设门限, 该参考 比特序列所对应的 PAPR小于或等于该预设门限, 且在一个比特序列对中, 待修改比特序列所对应的数据长度小于参考比特序列所对应的数据长度, 该 预设门限小于该发送端的发射功率放大界限;
根据该比特序列对, 修改该映射表项, 以将各比特序列对中的待修改比 特序列替换为参考比特序列;
根据发送给接收端的目标数据的数据长度, 查找修改后的映射表项, 以 确定目标比特序列。
具体地说, 在发送端和接收端, 可以协商各二进制字符串 (即, 比特序 列)所表示的数据长度(即,各二进制字符串与各数据长度之间的映射关系)。
例如, 发送端和接收端可以基于相同的预设规则, 形成记录有各二进制 字符串 (即, 比特序列)与各数据长度之间的映射关系的表 1 , 其中, 为了 避免赘述, 不失一般性地, 表 1仅示出了一部分数据长度和一部分二进制字 符串的映射关系。
表 1 (映射表项的一例)
数据长度 承载于 L-SIG字段的长度比特位的二进制字符串 (12位)
... … … … …
403 110 010 011 000
404 001 010 011 000
405 101 010 011 000
406 011 010 011 000
... … … … …
443 110 111 011 000
444 001 111 011 000
445 101 111 011 000
... … … … …
其后, 可以基于系统状态 (例如, 系统配置参数), 确定各二进制字符 串 (即, 各比特序列)所对应的 PAPR, 在本发明实施例中, 一个比特序列 所对应的 PAPR是指在长度比特位承载该比特序列的 L-SIG字段的 PAPR, 在本发明实施例中, 基于系统状态确定各比特序列所对应的 PAPR的过程和 方法可以与现有技术相似, 这里, 为了避免赘述, 省略其详细说明。
需要说明的是, 上述表 1中数据长度的单位可以任意确定, 例如, 可以 是字节 (Byte ), 也可以是比特(Bit )本发明并未特别限定。
以下表 2示出了如上所述确定的表 1中各比特序列的 PAPR。
表 2 (映射表项的另一例)
数据长 承载于 L-SIG字段的长度比特位的二进制字 L-SIG字段的 PAPR 度 符串 (12位) ( dB )
... … … … … ...
403 110 010 011 000 8.3056
404 001 010 011 000 4.4896
405 101 010 011 000 7.3815
406 011 010 011 000 6.9734
... ... ... ... ... ...
443 110 111 011 000 5.4535
444 001 111 011 000 5.6522
445 101 111 011 000 4.8945
… … ... ... ... …
并且, 在本发明实施例中, 发送端可以确定发射功率放大界限。
可选地,该发射功率放大界限是根据该发送端使用的功率放大器的最大 输出功率确定的。
具体地说, 通常情况下, 功率放大器具有一个线性区间, 在该线性区间 内, 输出功率与输入功率的比值呈线性增长, 但是, 当输入功率超过一定阈 值时, 功率放大的效果明显减弱, 并且, 如果输入功率继续增大, 则输出功 率将保持不变, 即功率放大器存在一个最大输出功率(记做, Pmax ), 当输入 功率大于该最大输出功率时, 无法实现功率不失真放大的效果, 在本发明实 施例中, 作为示例而非限定, 可以根据上述最大输出功率确定上述, 发射功 率放大界限。
例如, 对于一个所选的参考比特序列, 在进入功率放大器之前设其平均 功率为 pl 峰值功率为 P2 , 则其 PAPR (记做 β ) 可以表示为 =?2/? , 即, Ρ2=Ρι · β . . . ( 1 )
设功率放大器的放大倍数为 X , 则经过功率放大器放大后的信号平均发 射功率为 P x。 并且, 在通信系统中, 发射信号的平均功率应符合标准规 定, 即, 小于或者等于标准所规定的最大平均发射功率 Pstandard , 通常情况下 采用满功率发射, 即
Pi · X=Pstandard … ( 2 )
根据前述功率放大器的限制, 需要满足
Figure imgf000013_0001
因此, 由公式(1 ) , ( 2 )和(3 )可得 β < Pmax/Pstandard。 因此, 发送端可 以根据其功率放大器的最大输出功率和信号最大平均发射功率,确定上述发 射功率放大界限, 例如, 可以将 Pmax/Pstandard的值, 作为上述发射功率放大界 限。 并且, 通常情况下该发射功率放大界限可以为例如, 8dB。
应理解, 上述发射功率放大界限的确定方法以及取值仅为示例性说明, 本发明并未限定于此,例如,还可以小于 Pmax/Pstandard的值或者大于 Pmax/Pstandarf 的值, 本发明并未特别限定。
其后, 发送端可以确定一个小于该发射功率放大界限的门限(即, 预设 门限), 并在表 1 中, 对所对应的 PAPR大于该预设门限的比特序列 (即, 一个比特序列对中的待修改比特序列)进行替换。
例如, 如果所确定的预设门限为 5dB。 则可以在表 2 中查找所对应的
PAPR大于 5dB的比特序列,例如,数据长度为 403时所对应的比特序列(以 下, 筒称比特序列 1 ) 的 PAPR为 8.3056dB , 大于该预设门限。
其后, 可以查找所对应的数据长度大于 403且 PAPR小于等于该预设门 限的比特序列, 如表 2所示, 符合上述条件的比特序列为: 数据长度为 404 时所对应的比特序列(以下, 筒称比特序列 2 )、数据长度为 445时所对应的 比特序列 (以下, 筒称比特序列 3 )。
在本发明实施例中,比特序列 1与比特序列 2可以构成一个比特序列对, 从而, 该比特序列 2可以作为相对于比特序列 1的参考比特序列。 或者, 比 特序列 1与比特序列 3可以构成一个比特序列对, 从而, 该比特序列 3可以 作为相对于比特序列 1的参考比特序列。
即, 在本发明实施例中, 当对于一个 PAPR大于上述预设门限的比特序 列 A, 存在多个比特序列 B ( PAPR小于等于该预设门限且所对应的数据长 度大于该比特序列 A )时, 可以从该多个比特序列 B中任意选择一个比特序 歹 ij , 与该比特序列 A构成一个比特序列对, 比特序列 A作为待修改比特 序列, 所选择的比特序列 作为参考比特序列。
可选地,如果针对一个比特序列对中的待修改比特序列,在该 N个比特 序列中存在至少两个备选比特序列, 则该参考比特序列是该至少两个备选比 特序列中, 所对应的数据长度最小的比特序列, 其中, 该备选比特序列所对 应的 PAPR小于或等于该预设门限, 且该待修改比特序列所对应的数据长度 小于该备选比特序列所对应的数据长度。
具体地说, 如上所述, 当对于比特序列 A, 存在多个比特序列 B时, 可 以选择一个所对应的数据长度最小的比特序列 (记做, 比特序列 Bmm;), 与 该比特序列 A构成一个比特序列对, 比特序列 A作为待修改比特序列, 所 选择的比特序列 Bmm作为参考比特序列。
由于所选择的比特序列 Bmm所对应的数据长度在多个比特序列 B 中最 小, 因此, 在随后描述的将比特序列 Bmm承载于传统信令字段中的长度比特 位而发送给接收端后, 接收端能够确定保持空闲 (或使用 )的时间距实际获 得数据所需要的时间最接近, 从而提高系统的吞吐量。
按照如上所述的方式, 可以确定 PAPR大于预设门限的所有待修改比特 序列所分别对应的参考比特序列。
并且,可以将表 2中的待修改比特序列替换为与其对应的参考比特序列, 以下表 3是对表 2进行上述修改后而形成的。
表 3 (修改后的映射表项的一例)
数据长 承载于 L-SIG字段的长度比特位的二进制字 L-SIG字段的 PAPR 度 符串 (12位) ( dB )
... ... ... ... ... ...
403 001 010 011 000 4.4896
404 001 010 011 000 4.4896
405 101 111 011 000 4.8945
406 101 111 011 000 4.8945
... … … … … ...
443 101 111 011 000 4.8945 444 101 Ill Oil 000 4.8945
445 101 111 Oil 000 4.8945
… … ... ... ... …
如表 3所示,经上述修改后各比特序列所对应的数据长度均大于或等于 其在表 1中所对应的数据长度, 或者说, 接收端在识别出该比特序列后, 根 据表 1而识别出的该比特所对应的数据长度大于其发送端实际发送的数据长 度, 从而, 能够确保数据的正常传输。
其后, 当发送端需要发送数据时, 可以基于该数据的数据长度, 查找上 述表 3(或者,从表 3中去除 PAPR值一列而形成的表),以获取承载于 L-SIG 字段中的长度比特位的比特序列。例如,如果所需要发送的数据长度为 403, 则选择比特序列 001010011000,并将该比特序列 001010011000承载于 L-SIG 字段中的长度比特位。
从而,根据上述表 3所生成的 L-SIG字段的 PAPR为 4.4896dB, 小于预 设门限( 5dB ) , 也小于根据表 1所生成的 L-SIG字段的 PAPR ( 8.3056 dB )。
其后,可以在基带,对前导码(即, 目标前导码)的传统部分(即, L-STF 字段、 L-LTF字段和 L-SIG字段) 同时进行功率增强。
具体地说, 例如, 在系统带宽为 20MHz时, L-STF字段的 PAPR通常 为 2.3dB, L-LTF字段的 PAPR通常为 2.4dB, 远小于 L-SIG字段的 PAPR, 因此可以将 L-SIG字段的 PAPR作为基准,并基于上述发射功率放大界限(例 如, 所使用的功率放大器的线性区间的最大输入功率), 对前导码的传统部 分, 进行功率增强。
在本发明实施例中,可以基于预设门限进行上述功率增强(即,情况 A ), 也可以基于根据上述表 3确定的与所要发送的数据长度对应的 L-SIG字段的 PAPR (即, 目标比特序列所对应的 PAPR )进行上述功率增强(即,情况 B ), 下面, 分别对以上两种情况进行说明, 并且, 为了便于理解, 作为示例而非 限定, 以系统带宽为 20MHz时的增强方法为例, 进行说明。
情况 A
可选地,该对该前导码进行发射功率增强处理并发送给该接收端,包括: 根据该预设门限和该发射功率放大界限,对该前导码进行发射功率增强 处理并发送给该接收端。
具体地说, 如果如上所述确定的发射功率放大界限为 8dB, 上述预设门 限为 5dB, 则为了确保功率放大处于功率放大器的线性区间, 或者说, 为了 能够实现功率不失真放大的效果, 可以在基带使目标前导码的传统部分增强 8dB-5dB = 3dB
以下公式 1用于对 L-SIG字段进行增强:
Figure imgf000016_0001
其中, 公式 1中各参数意义如下
¾表示循环延时值, TG1表示保护间隔值,
Kshlft {i) = {N20MHz - l - 2i) - 2 其中, ^ 为频域旋转值, Λ ^为发送端的发射天线数, N "e为发送端 使用的子载波数, 为时域窗函数。
在本发明实施中, "表示发射功率增强因子, 可以根据如上所述确定的 发射功率放大界限与上述预设门限的差值确定, 即《 = io^, 其中 X表示发 射功率放大界限, Y表示预设门限。
应理解, 以上列举的根据预设门限和发射功率放大界限确进行发射功率 增强 (即, 确定发射功率增强因子") 的方法仅为示例性说明, 本发明并不 限定于此, 例如, 也可以使上述 X小于发射功率放大界限, 或者使 Y大于 预设门限。
另外, 以上示出了带宽为 20MHz时的实现方法, 在系统带宽改变时可 以根据所使用的系统带宽, 调整 N2参数, 其他过程可以与上述过程相似。
Figure imgf000016_0002
并且, 可以以下公式 3用于对 L-LTF字段进行增强:
Figure imgf000016_0003
其中, 公式 2和公式 3中使用的参数与公式 1相似, 这里, 为了避免赘 述, 省略重复说明。
在如上所述, 在基带对前导码的传统部分, 进行功率增强后, 可以将增 强后的基带信号。 其后, 可以对该基带信号进行例如上变频处理等通用的信 号处理, 并将其送入发送端的功率放大器, 由于经上述功率增强处理后的信 号的功率处于功率放大器的线性区间或者说, 因此能够得到较好的功率放大 效果。
情况 B
可选地,该对该前导码进行发射功率增强处理并发送给该接收端,包括: 根据该目标比特序列对应的 PAPR和该发射功率放大界限, 根据该目标 比特序列所对应的 PAPR, 对该前导码进行发射功率增强处理并发送给该接 收端。
具体地说, 如果如上所述确定的发射功率放大界限为 8dB, 上述目标比 特序列对应的 PAPR为 4.4896dB,则为了确保功率放大处于功率放大器的线 性区间, 可以在基带使目标前导码的传统部分增强 8dB-4.4896dB = 3.5104dB。
从而可以根据上述公式 1至公式 3对 L-STF字段、 L-LTF字段和 L-SIG 字段同时进行功率增强, 需要说明的是, 此情况下, "表示发射功率增强因 子, 可以根据如上所述确定的发射功率放大界限与上述目标比特序列对应的 PAPR确定, 即《 = 10^ , 其中 X表示发射功率放大界限, Y表示目标比特 序列对应的 PAPR。
以上列举了预设门限为 5dB的实施方式,但本发明并不限定于此, 可以 任意确定, 只要该预设门限小于发射功率放大界限即可。
应理解, 以上列举的根据目标比特序列对应的 PAPR和发射功率放大界 限确进行发射功率增强 (即, 确定发射功率增强因子") 的方法仅为示例性 说明,本发明并不限定于此,例如,也可以使上述 X小于发射功率放大界限, 或者使 Y大于目标比特序列对应的 PAPR。
例如, 也可以设定该预设门限为 5.5dB。 此情况下, 可以在表 2中查找 所对应的 PAPR大于 5.5dB的比特序列, 例如, 数据长度为 403时所对应的 比特序列(以下, 筒称比特序列 1 )的 PAPR为 8.3056dB, 大于该预设门限。
其后, 可以查找所对应的数据长度大于 403且 PAPR小于等于该预设门 限的比特序列, 如表 2所示, 符合上述条件的比特序列为: 数据长度为 404 时所对应的比特序列(以下, 筒称比特序列 2 )、数据长度为 443时所对应的 比特序列(以下,筒称比特序歹l 4 )、数据长度为 445时所对应的比特序列(以 下, 筒称比特序列 3 )。 在本发明实施例中,比特序列 1与比特序列 2可以构成一个比特序列对, 从而, 该比特序列 2可以作为相对于比特序列 1的参考比特序列。 或者, 比 特序列 1与比特序列 3可以构成一个比特序列对, 从而, 该比特序列 3可以 作为相对于比特序列 1的参考比特序列。 或者, 比特序列 1与比特序列 4可 以构成一个比特序列对, 从而, 该比特序列 4可以作为相对于比特序列 1的 参考比特序列。
例如, 可以选择比特序列 2-5中, 所对应的数据长度最小的比特序列 2 作为比特序列 1的参考序列。
按照如上所述的方式, 可以确定 PAPR大于预设门限的所有待修改比特 序列所分别对应的参考比特序列。
并且,可以将表 2中的待修改比特序列替换为与其对应的参考比特序列, 以下表 4是对表 2进行上述修改后而形成的。
表 4 (修改后的映射表项的另一例)
数据长 承载于 L-SIG字段的长度比特位的二进制字 L-SIG字段的 PAPR 度 符串 (12位) ( dB )
... … … … … ...
403 001 010 011 000 4.4896
404 001 010 011 000 4.4896
405 110 111 011 000 5.4535
406 110 111 011 000 5.4535
... ... ... ... ... ...
443 110 111 011 000 5.4535
444 101 111 011 000 4.8945
445 101 111 011 000 4.8945
… … ... ... ... …
如表 4所示,经上述修改后各比特序列所对应的数据长度均大于或等于 其在表 1中所对应的数据长度, 或者说, 接收端在识别出该比特序列后, 根 据表 1而识别出的该比特所对应的数据长度大于其发送端实际发送的数据长 度, 从而, 能够确保数据的正常传输。
其后, 当发送端需要发送数据时, 可以基于该数据的数据长度, 查找上 述表 3(或者,从表 3中去除 PAPR值一列而形成的表),以获取承载于 L-SIG 字段中的长度比特位的比特序列。例如,如果所需要发送的数据长度为 403 , 则选择比特序列 001010011000,并将该比特序列 001010011000承载于 L-SIG 字段中的长度比特位。
从而,根据上述表 4所生成的 L-SIG字段的 PAPR为 4.4896dB, 小于预 设门限( 5.5dB ),也小于根据表 1所生成的 L-SIG字段的 PAPR( 8.3056 dB )。
其后, 可以按如上所述方法, 在基带, 对前导码(即, 目标前导码)的 传统部分(即, L-STF字段、 L-LTF字段和 L-SIG字段)同时进行功率增强。
方式 2
可选地, 该发送端设备基于预设规则和系统状态, 根据发送给接收端的 目标数据的数据长度, 确定目标比特序列, 包括:
该发送端根据该预设规则,确定与发送给接收端的目标数据的数据长度 相对应的第一比特序列;
从至少一个第二比特序列中, 确定该目标比特序列, 其中, 在该系统状 态下, 第一比特序列对应的 PAPR大于该第二比特序列对应的 PAPR, 该第 二比特序列对应的 PAPR小于该发送端的发射功率放大界限, 且在该预设规 则中, 该第一比特序列所对应的数据长度小于该第二比特序列所对应的数据 长度。
具体地说, 在发送端和接收端, 可以协商各二进制字符串 (即, 比特序 列)所表示的数据长度(即,各二进制字符串与各数据长度之间的映射关系)。
例如, 发送端和接收端可以基于相同的预设规则, 形成记录有各二进制 字符串 (即, 比特序列)与各数据长度之间的映射关系的表 1。
其后, 可以基于系统状态 (例如, 系统配置参数), 确定各二进制字符 串 (即, 各比特序列)所对应的 PAPR, 在本发明实施例中, 一个比特序列 所对应的 PAPR是指在长度比特位承载该比特序列的 L-SIG字段的 PAPR, 在本发明实施例中, 基于系统状态确定各比特序列所对应的 PAPR的过程和 方法可以与现有技术相似, 这里, 为了避免赘述, 省略其详细说明。
并且, 上述表 2 示出了如上所述确定的表 1 中各比特序列所对应的 PAPR„
并且, 在本发明实施例中, 发送端可以确定发射功率放大界限。
可选地,该发射功率放大界限是根据该发送端使用的功率放大器的最大 输出功率确定的。 具体地说, 通常情况下, 功率放大器具有一个线性区间, 在该线性区间 内, 输出功率与输入功率的比值呈线性增长, 但是, 当输入功率超过一定阈 值时, 功率放大的效果明显减弱, 并且, 如果输入功率继续增大, 则输出功 率将保持不变, 即功率放大器存在一个最大输出功率(记做, Pmax ), 当输入 功率大于该最大输出功率时, 无法实现功率不失真放大的效果, 在本发明实 施例中, 作为示例而非限定, 可以根据上述最大输出功率确定上述, 发射功 率放大界限。
例如, 对于一个所选的参考比特序列, 在进入功率放大器之前设其平均 功率为 pl 峰值功率为 P2, 则其 PAPR (记做 β ) 可以表示为 =?2^^ 即, Ρ2=Ρι · β . . . ( 1 )
设功率放大器的放大倍数为 X , 则经过功率放大器放大后的信号平均发 射功率为 P x。 并且, 在通信系统中, 发射信号的平均功率应符合标准规 定, 即, 小于或者等于标准所规定的最大平均发射功率 Pstandard, 通常情况下 采用满功率发射, 即
Pi X-Pstandard … ( 2 )
根据前述功率放大器的限制, 需要满足
Figure imgf000020_0001
因此, 由公式(1 ), ( 2 )和(3 )可得 β < Pmax/Pstandard。 因此, 发送端可 以根据其功率放大器的最大输出功率和信号最大平均发射功率,确定上述发 射功率放大界限, 例如, 可以将 Pmax/Pstandard的值, 作为上述发射功率放大界 限。 并且, 通常情况下该发射功率放大界限可以为例如, 8dB。
应理解, 上述发射功率放大界限的确定方法以及取值仅为示例性说明, 本发明并未限定于此,例如,还可以小于 Pmax/Pstandard的值或者大于 Pmax/Pstandarf 的值, 本发明并未特别限定。
其后, 发送端可以确定需要发送给接收端的目标数据的数据长度, 并基 于该目标数据的数据长度, 查找表 1 , 确定与该目标数据的数据长度相对应 的比特序列(即, 第一比特序列), 并进一步查找表 2, 以确定该第一比特序 列所对应的 PAPR (即, 长度比特位承载该第一比特序列的 L-SIG 字段的 PAPR )„
其后, 可以从表 2中确定第二比特序列, 以时该目标比特序列所对应的
PAPR 小于该第一比特序列所对应的 PAPR, 该第二比特序列所对应的数据 长度大于该第一比特序列所对应的数据长度, 并且, 该第二比特序列对应的
PAPR小于上述发射功率放大界限。
例如, 在目标数据的数据长度为 403, 存在 6个第二比特序列, 即, 数 据长度为 404所对应的比特序列 (所对应的 PAPR为 4.4896 dB小于 8dB )、 数据长度为 405所对应的比特序列(所对应的 PAPR为 7.3815dB小于 8dB )、 数据长度为 406所对应的比特序列(所对应的 PAPR为 6.9734dB小于 8dB )、 数据长度为 443所对应的比特序列(所对应的 PAPR为 5.4535dB小于 8dB )、 数据长度为 444所对应的比特序列(所对应的 PAPR为 5.6522dB小于 8dB )、 数据长度为 445所对应的比特序列(所对应的 PAPR为 4.8945dB小于 8dB )。
从而, 发送端可以从上述 6个第二比特序列中选择任意一个比特序列, 作为目标比特序列, 并将该目标比特序列承载于 L-SIG 字段中的长度比特 位。
可选地, 当存在至少两个第二比特序列时, 该目标比特序列是该至少两 个第二比特序列中, 所对应的数据长度最小的比特序列。
具体地说, 如上所述, 当对于比特序列 A, 存在多个比特序列 B时, 可 以选择一个所对应的数据长度最小的比特序列 (记做, 比特序列 Bmm;), 作 为针对该比特序列 A的目标比特序列。
由于所选择的比特序列 Bmm所对应的数据长度在多个比特序列 B 中最 小, 因此, 在随后描述的将比特序列 Bmm承载于传统信令字段中的长度比特 位而发送给接收端后, 接收端能够确定保持空闲 (或使用)的时间距实际获 得数据所需要的时间最接近, 从而提高系统的吞吐量。 或者说, 接收端在识别出该目标比特序列后, 根据表 1而识别出的该目标比 特所对应的数据长度大于其发送端实际发送的数据长度, 从而, 能够确保数 据的正常传输。
例如,在选择数据长度为 404所对应的比特序列作为目标比特序列的情 况下, 所生成的 L-SIG字段的 PAPR为 4.4896dB , 小于根据目标数据和表 1 所生成的 L-SIG字段的 PAPR ( 8.3056 dB )。
其后,可以在基带,对前导码(即, 目标前导码)的传统部分(即, L-STF 字段、 L-LTF字段和 L-SIG字段) 同时进行功率增强。
具体地说,在系统带宽为 20MHz时, L-STF字段的 PAPR通常为 2.3dB, L-LTF字段的 PAPR通常为 2.3dB,远小于 L-SIG字段的 PAPR, 因此可以将 L-SIG字段的 PAPR作为基准, 并基于上述发射功率放大界限(例如, 所使 用的功率放大器的线性区间的最大输入功率), 对前导码的传统部分, 进行 功率增强。
在本发明实施例中, 无论目标数据的数据长度如何, 均可以选择针对其 的目标比特序列, 但是, 例如, 当目标数据的数据长度所对应的比特序列的 PAPR足够小, 而无需进行上述替换时(例如, 目标数据的数据长度为 404 ), 执行上述步骤增大了发送端的负担, 因此, 在本发明实施例中, 可以设置预 设门限, 并根据该预设门限执行上述方法, 即
可选地, 在该从至少一个第二比特序列中, 确定目标比特序列之前, 该 方法还包括:
确定该第一比特序列对应的 PAPR大于预设门限, 其中, 该预设门限小 于该发送端的功率放大界限, 该第二比特序列对应的 PAPR小于或等于该预 设门限。
具体的, 发送端可以确定一个小于该发射功率放大界限的门限(即, 预 设门限 ), 并仅在目标数据的数据长度所对应的比特序列的 PAPR 大于该预 设门限时, 查找目标比特序列, 并且,此情况下,该目标序列所对应的 PAPR 需要小于该预设门限。
例如,如果所确定的预设门限为 5dB。当目标数据的数据长度为 403时, 其所对应的比特序列 (以下, 筒称比特序列 1 ) 的 PAPR为 8.3056dB, 大于 该预设门限, 则可以查找所对应的数据长度大于 403且 PAPR小于等于该预 设门限的比特序列, 如表 2所示, 符合上述条件的比特序列为: 数据长度为 404时所对应的比特序列 (以下, 筒称比特序列 2 )、 数据长度为 445时所对 应的比特序列 (以下, 筒称比特序歹! 3 )。
在本发明实施例中,该比特序列 2可以作为相对于比特序列 1的目标比 特序列。 或者, 该比特序列 3可以作为相对于比特序列 1的目标比特序列。
即, 在本发明实施例中, 当对于一个 PAPR大于上述预设门限的比特序 列 A, 存在多个比特序列 B ( PAPR小于等于该预设门限且所对应的数据长 度大于该比特序列 A )时, 可以从该多个比特序列 B中任意选择一个比特序 列 Bl 作为目标比特序列。
可选地, 当存在至少两个第二比特序列时, 该目标比特序列是该至少两 个第二比特序列中 , 所对应的数据长度最小的比特序列。
具体地说, 如上所述, 当对于比特序列 A, 存在多个比特序列 B时, 可 以选择一个所对应的数据长度最小的比特序列 (记做, 比特序列 Bmm;), 作 为目标比特序列。
由于所选择的比特序列 Bmm所对应的数据长度在多个比特序列 B 中最 小, 因此, 在随后描述的将比特序列 Bmm承载于传统信令字段中的长度比特 位而发送给接收端后, 接收端能够确定保持空闲 (或使用 )的时间距实际获 得数据所需要的时间最接近, 从而提高系统的吞吐量。
在本发明实施例中,可以基于预设门限进行上述功率增强(即,情况 C ), 也可以基于目标比特序列所对应的 PAPR进行上述功率增强 (即, 情况 D ), 下面, 分别对以上两种情况进行说明。
情况 C
可选地,该对该前导码进行发射功率增强处理并发送给该接收端,包括: 根据该预设门限和该发射功率放大界限,对该前导码进行发射功率增强 处理并发送给该接收端。
具体地说, 如果如上所述确定的发射功率放大界限为 8dB, 上述预设门 限为 5dB, 则为了确保功率放大处于功率放大器的线性区间, 可以在基带使 目标前导码的传统部分增强 8dB-5dB = 3dB。
例如, 可以根据上述公式 1对 L-SIG字段进行增强。 公式 1中的 "表示 发射功率增强因子, 可以根据如上所述确定的发射功率放大界限与上述预设 门限的差值确定, 即《 = io^, 其中 X表示发射功率放大界限, γ表示预设 门限。
应理解, 以上列举的根据预设门限和发射功率放大界限确进行发射功率 增强 (即, 确定发射功率增强因子") 的方法仅为示例性说明, 本发明并不 限定于此, 例如, 也可以使上述 X小于发射功率放大界限, 或者使 Y大于 预设门限。
并且, 可以根据上述公式 2对 L-STF字段进行增强。
并且, 可以根据上述公式 3用于对 L-LTF字段进行增强。
在如上所述, 在基带对前导码的传统部分, 进行功率增强后, 可以将增 强后的基带信号。 其后, 可以对该基带信号进行例如上变频处理等通用的信 号处理, 并将其送入发送端的功率放大器, 由于经上述功率增强处理后的信 号的功率处于功率放大器的线性区间或者说, 因此能够得到较好的功率放大 效果。
情况 D
可选地,该对该前导码进行发射功率增强处理并发送给该接收端,包括: 根据该目标比特序列对应的 PAPR和该发射功率放大界限, 根据该目标 比特序列所对应的 PAPR, 对该前导码进行发射功率增强处理并发送给该接 收端。
具体地说, 如果如上所述确定的发射功率放大界限为 8dB, 上述目标比 特序列对应的 PAPR为 4.4896dB,则为了确保功率放大处于功率放大器的线 性区间, 可以在基带使目标前导码的传统部分增强 8dB-4.4896dB = 3.5104dB。
从而可以根据上述公式 1至公式 3对 L-STF字段、 L-LTF字段和 L-SIG 字段同时进行功率增强, 需要说明的是, 此情况下, "表示发射功率增强因 子, 可以根据如上所述确定的发射功率放大界限与上述目标比特序列对应的 PAPR确定, 即《 = 10^ , 其中 X表示发射功率放大界限, Y表示目标比特 序列对应的 PAPR。
以上列举了预设门限为 5dB的实施方式,但本发明并不限定于此, 可以 任意确定, 只要该预设门限小于发射功率放大界限即可。
应理解, 以上列举的根据目标比特序列对应的 PAPR和发射功率放大界 限确进行发射功率增强 (即, 确定发射功率增强因子" ) 的方法仅为示例性 说明,本发明并不限定于此,例如,也可以使上述 X小于发射功率放大界限, 或者使 Y大于目标比特序列对应的 PAPR。
根据本发明实施例的传输数据的方法,通过发送端将与需要传输给发送 端的目标数据的数据长度相对应的比特序列,替换为所对应数据长度更长且 PAPR更低的比特序列,承载于前导码的 L-SIG字段中,能够有效降低 L-SIG 字段的 PAPR, 进而使该 L-SIG字段的 PAPR处于功率放大器的线性区间, 从而能够在对该前导码进行发射功率放大后发送给接收端, 进而能够提高接 收端获得准确的长度信息的效果, 由于承载于 L-SIG字段的比特序列所对应 的数据长度,大于实际发送的数据的数据长度,能够确保传输过程不被干扰, 并能够确保传输的准确性, 从而能够提高系统吞吐率, 改善数据传输性能和 用户体验。 以上, 结合图 1至图 3详细说明了本发明实施例的传输数据的方法, 下 面, 结合图 4, 详细说明本发明实施例的传输数据的装置。
图 4示出了本发明实施例的传输数据的装置 200, 如图 4所示, 该装置 200包括:
确定单元 210, 用于基于预设规则和系统状态, 根据发送给接收端的目 标数据的数据长度, 确定目标比特序列, 其中, 在该预设规则下, 该目标数 据的数据长度小于该目标比特序列所对应的数据长度, 在该系统状态下, 该 目标比特序列对应的峰均功率比 PAPR小于与该目标数据的数据长度相对应 的比特序列对应的 PAPR , 该目标比特序列对应的 PAPR 'J、于该发送端的发 射功率放大界限;
处理单元 220, 用于将该目标比特序列承载于目标前导码的传统信令字 段中的长度比特位, 根据该发射功率放大界限, 对该目标前导码中的传统短 训练域字段、 传统长训练域字段和该传统信令字段进行发射功率增强处理, 并发送给该接收端, 其中, 该目标前导码与该目标数据承载于同一数据帧。
可选地, 该确定单元 210具体用于根据该预设规则, 确定映射表项, 该 映射表项记录有 N种数据长度与 N个比特序列之间的映射关系,其中,该 N 种数据长度与该 N个比特序列——对应, 该目标数据的数据长度属于该 N 种数据长度;
用于 ^据该系统状态, 确定该 N个比特序列所分别对应的 PAPR;
用于根据预设门限, 确定至少一个比特序列对, 其中, 一个比特序列对 包括一个待修改比特序列和一个参考比特序列,各比特序列对包括的待修改 比特序列彼此相异, 该待修改比特序列对应的 PAPR大于该预设门限, 该参 考比特序列对应的 PAPR小于或等于该预设门限, 且在一个比特序列对中, 待修改比特序列所对应的数据长度小于参考比特序列所对应的数据长度, 该 预设门限小于该发送端的发射功率放大界限;
用于根据该比特序列对, 修改该映射表项, 以将各比特序列对中的待修 改比特序列替换为参考比特序列;
用于根据发送给接收端的目标数据的数据长度, 查找修改后的映射表 项, 以确定目标比特序列。
可选地,如果针对一个比特序列对中的待修改比特序列,在该 N个比特 序列中存在至少两个备选比特序列, 则该确定单元 210确定的该参考比特序 列是该至少两个备选比特序列中,所对应的数据长度最小的比特序列,其中, 该备选比特序列对应的 PAPR小于或等于该预设门限, 且该待修改比特序列 所对应的数据长度小于该备选比特序列所对应的数据长度。
可选地, 该确定单元 210具体用于根据该预设规则, 确定与发送给接收 端的目标数据的数据长度相对应的第一比特序列;
用于从至少一个第二比特序列中, 确定该目标比特序列, 其中, 在该系 统状态下, 第一比特序列对应的 PAPR大于该第二比特序列对应的 PAPR, 该第二比特序列对应的 PAPR小于该发送端的发射功率放大界限, 且在该预 设规则中, 该第一比特序列所对应的数据长度小于该第二比特序列所对应的 数据长度。
可选地, 该确定单元 210还用于确定该第一比特序列对应的 PAPR大于 预设门限, 其中, 该预设门限小于该发送端的功率放大界限, 该第二比特序 列对应的 PAPR小于或等于该预设门限。
可选地, 当存在至少两个第二比特序列时, 该确定单元 210确定的该目 标比特序列是该至少两个第二比特序列中, 所对应的数据长度最小的比特序 列。
可选地, 该处理单元 220具体用于根据该目标比特序列对应的 PAPR和 该发射功率放大界限, 对该目标前导码中的传统短训练域字段、 传统长训练 域字段和该传统信令字段进行发射功率增强处理。
可选地, 该处理单元 220具体用于根据该预设门限和该发射功率放大界 限, 对该目标前导码中的传统短训练域字段、 传统长训练域字段和该传统信 令字段进行发射功率增强处理。
根据本发明实施例的传输数据的装置 200可对应于本发明实施例的方法 中的发送端设备, 并且, 该传输数据的装置 200中的各单元即模块和上述其 他操作和 /或功能分别为了实现图 2中的方法 100的相应流程, 为了筒洁,在 此不再赘述。
根据本发明实施例的传输数据的装置,通过发送端将与需要传输给发送 端的目标数据的数据长度相对应的比特序列,替换为所对应数据长度更长且 PAPR更低的比特序列,承载于前导码的 L-SIG字段中,能够有效降低 L-SIG 字段的 PAPR, 进而使该 L-SIG字段的 PAPR处于功率放大器的线性区间, 从而能够在对该前导码进行发射功率放大后发送给接收端, 进而能够提高接 收端获得准确的长度信息的效果, 由于承载于 L-SIG字段的比特序列所对应 的数据长度,大于实际发送的数据的数据长度,能够确保传输过程不被干扰, 并能够确保传输的准确性, 从而能够提高系统吞吐率, 改善数据传输性能和 用户体验。
以上, 结合图 1至图 3详细说明了本发明实施例的传输数据的方法, 下 面, 结合图 5, 详细说明本发明实施例的传输数据的设备。
图 5示出了本发明实施例的传输数据的设备 300, 如图 7所示, 该设备 300包括:
总线 310;
与所述总线 310相连的处理器 320;
与所述总线 310相连的存储器 330;
与所述总线 310相连的收发器 340;
其中, 该处理器 320通过所述总线 310, 调用所述存储器 330中存储的 程序, 以用于基于预设规则和系统状态, 根据发送给接收端的目标数据的数 据长度, 确定目标比特序列, 其中, 在该预设规则下, 该目标数据的数据长 度小于该目标比特序列所对应的数据长度, 在该系统状态下, 该目标比特序 列对应的峰均功率比 PAPR小于与该目标数据的数据长度相对应的比特序列 对应的 PAPR, 该目标比特序列对应的 PAPR小于该发送端的发射功率放大 界限;
用于将该目标比特序列承载于目标前导码的传统信令字段中的长度比 特位, 根据该发射功率放大界限, 对该目标前导码中的传统短训练域字段、 传统长训练域字段和该传统信令字段进行发射功率增强处理, 并通过收发器 340发送给该接收端,其中,该目标前导码与该目标数据承载于同一数据帧。
可选地, 该处理器 320具体用于根据该预设规则, 确定映射表项, 该映 射表项记录有 N种数据长度与 N个比特序列之间的映射关系, 其中, 该 N 种数据长度与该 N个比特序列——对应, 该目标数据的数据长度属于该 N 种数据长度;
才艮据该系统状态, 确定该 N个比特序列所分别对应的 PAPR;
根据预设门限, 确定至少一个比特序列对, 其中, 一个比特序列对包括 一个待修改比特序列和一个参考比特序列,各比特序列对包括的待修改比特 序列彼此相异, 该待修改比特序列对应的 PAPR大于该预设门限, 该参考比 特序列对应的 PAPR小于或等于该预设门限, 且在一个比特序列对中, 待修 改比特序列所对应的数据长度小于参考比特序列所对应的数据长度, 该预设 门限小于该发送端的发射功率放大界限;
根据该比特序列对, 修改该映射表项, 以将各比特序列对中的待修改比 特序列替换为参考比特序列;
根据发送给接收端的目标数据的数据长度, 查找修改后的映射表项, 以 确定目标比特序列。
可选地,如果针对一个比特序列对中的待修改比特序列,在该 N个比特 序列中存在至少两个备选比特序列, 则该处理器 320确定的该参考比特序列 是该至少两个备选比特序列中, 所对应的数据长度最小的比特序列, 其中, 该备选比特序列对应的 PAPR小于或等于该预设门限, 且该待修改比特序列 所对应的数据长度小于该备选比特序列所对应的数据长度。
可选地, 该处理器 320具体用于根据该预设规则, 确定与发送给接收端 的目标数据的数据长度相对应的第一比特序列;
从至少一个第二比特序列中, 确定该目标比特序列, 其中, 在该系统状 态下, 第一比特序列对应的 PAPR大于该第二比特序列对应的 PAPR, 该第 二比特序列对应的 PAPR小于该发送端的发射功率放大界限, 且在该预设规 则中, 该第一比特序列所对应的数据长度小于该第二比特序列所对应的数据 长度。
可选地, 该处理器 320还用于确定该第一比特序列对应的 PAPR大于预 设门限, 其中, 该预设门限小于该发送端的功率放大界限, 该第二比特序列 对应的 PAPR小于或等于该预设门限。
可选地, 当存在至少两个第二比特序列时, 该处理器 320确定的该目标 比特序列是该至少两个第二比特序列中, 所对应的数据长度最小的比特序 列。
可选地, 该处理器 320具体用于根据该目标比特序列对应的 PAPR和该 发射功率放大界限, 对该目标前导码中的传统短训练域字段、 传统长训练域 字段和该传统信令字段进行发射功率增强处理。
可选地,该处理器 320具体用于根据该预设门限和该发射功率放大界限, 对该目标前导码中的传统短训练域字段、传统长训练域字段和该传统信令字 段进行发射功率增强处理。 在本发明实施例中,处理单器还可以称为 CPU。存储器可以包括只读存 储器和随机存取存储器, 并向处理器提供指令和数据。 存储器的一部分还可 以包括非易失行随机存取存储器( NVRAM )。 具体的应用中,传输数据的设 备可以嵌入或者本身可以就是例如个人电脑之类的标准以太网通信设备,传 输数据的设备的各个模块通过总线系统耦合在一起, 其中, 总线系统除包括 数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理 器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件 处理器执行完成, 或者用解码处理器中的硬件及软件模块组合执行完成。 软 件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电 可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于 存储器, 解码单元或者处理单元读取存储器中的信息, 结合其硬件完成上述 方法的步骤。
应理解, 在本发明实施例中, 该处理器可以是中央处理单元 (Central
Processing Unit, 筒称为 "CPU" ), 该处理器还可以是其他通用处理器、 数 字信号处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑 电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤可以 直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组合执 行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存 储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存 储介质位于存储器, 处理器读取存储器中的信息, 结合其硬件完成上述方法 的步骤。 为避免重复, 这里不再详细描述。 中的发送端设备, 并且, 该传输数据的设备 300中的各单元即模块和上述其 他操作和 /或功能分别为了实现图 2中的方法 100的相应流程, 为了筒洁,在 此不再赘述。
根据本发明实施例的传输数据的设备,通过发送端将与需要传输给发送 端的目标数据的数据长度相对应的比特序列 ,替换为所对应数据长度更长且
PAPR更低的比特序列,承载于前导码的 L-SIG字段中,能够有效降低 L-SIG 字段的 PAPR, 进而使该 L-SIG字段的 PAPR处于功率放大器的线性区间, 从而能够在对该前导码进行发射功率放大后发送给接收端, 进而能够提高接 收端获得准确的长度信息的效果, 由于承载于 L-SIG字段的比特序列所对应 的数据长度,大于实际发送的数据的数据长度,能够确保传输过程不被干扰, 并能够确保传输的准确性, 从而能够提高系统吞吐率, 改善数据传输性能和 用户体验。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种传输数据的方法, 其特征在于, 所述方法包括:
发送端设备基于预设规则和系统状态,根据发送给接收端的目标数据的 数据长度, 确定目标比特序列, 其中, 在所述预设规则下, 所述目标数据的 数据长度小于所述目标比特序列所对应的数据长度, 在所述系统状态下, 所 述目标比特序列对应的峰均功率比 PAPR小于与所述目标数据的数据长度相 对应的比特序列对应的 PAPR , 所述目标比特序列对应的 PAPR 'J、于所述发 送端的发射功率放大界限;
将所述目标比特序列承载于目标前导码的传统信令字段中的长度比特 位,根据所述发射功率放大界限,对所述目标前导码中的传统短训练域字段、 传统长训练域字段和所述传统信令字段进行发射功率增强处理, 并发送给所 述接收端, 其中, 所述目标前导码与所述目标数据承载于同一数据帧。
2、 根据权利要求 1所述的方法, 其特征在于, 所述发送端设备基于预 设规则和系统状态, 根据发送给接收端的目标数据的数据长度, 确定目标比 特序列, 包括:
所述发送端根据所述预设规则, 确定映射表项, 所述映射表项记录有 N 种数据长度与 N个比特序列之间的映射关系, 其中, 所述 N种数据长度与 所述 N个比特序列——对应, 所述目标数据的数据长度属于所述 N种数据 长度;
居所述系统状态, 确定所述 N个比特序列所分别对应的 PAPR;
根据预设门限, 确定至少一个比特序列对, 其中, 一个比特序列对包括 一个待修改比特序列和一个参考比特序列,各比特序列对包括的待修改比特 序列彼此相异, 所述待修改比特序列对应的 PAPR大于所述预设门限, 所述 参考比特序列对应的 PAPR小于或等于所述预设门限, 且在一个比特序列对 中, 待修改比特序列所对应的数据长度小于参考比特序列所对应的数据长 度, 所述预设门限小于所述发送端的发射功率放大界限;
根据所述比特序列对, 修改所述映射表项, 以将各所述比特序列对中的 待修改比特序列替换为参考比特序列;
根据发送给接收端的目标数据的数据长度, 查找修改后的映射表项, 以 确定目标比特序列。
3、 根据权利要求 2所述的方法, 其特征在于, 如果针对一个比特序列 对中的待修改比特序列, 在所述 N 个比特序列中存在至少两个备选比特序 歹 ij , 则所述参考比特序列是所述至少两个备选比特序列中, 所对应的数据长 度最小的比特序列, 其中, 所述备选比特序列对应的 PAPR小于或等于所述 预设门限,且所述待修改比特序列所对应的数据长度小于所述备选比特序列 所对应的数据长度。
4、 根据权利要求 1所述的方法, 其特征在于, 所述发送端设备基于预 设规则和系统状态, 根据发送给接收端的目标数据的数据长度, 确定目标比 特序列, 包括:
所述发送端根据所述预设规则,确定与发送给接收端的目标数据的数据 长度相对应的第一比特序列;
从至少一个第二比特序列中, 确定所述目标比特序列, 其中, 在所述系 统状态下,第一比特序列对应的 PAPR大于所述第二比特序列对应的 PAPR, 所述第二比特序列对应的 PAPR小于所述发送端的发射功率放大界限, 且在 所述预设规则中, 所述第一比特序列所对应的数据长度小于所述第二比特序 列所对应的数据长度。
5、 根据权利要求 4所述的方法, 其特征在于, 在所述从至少一个第二 比特序列中, 确定目标比特序列之前, 所述方法还包括:
确定所述第一比特序列对应的 PAPR大于预设门限, 其中, 所述预设门 限小于所述发送端的功率放大界限, 所述第二比特序列对应的 PAPR小于或 等于所述预设门限。
6、 根据权利要求 5所述的方法, 其特征在于, 当存在至少两个第二比 特序列时, 所述目标比特序列是所述至少两个第二比特序列中, 所对应的数 据长度最小的比特序列。
7、 根据权利要求 1至 6中任一项所述的方法, 其特征在于, 所述根据 所述发射功率放大界限, 对所述目标前导码中的传统短训练域字段、 传统长 训练域字段和所述传统信令字段进行发射功率增强处理, 包括:
根据所述目标比特序列对应的 PAPR和所述发射功率放大界限, 对所述 目标前导码中的传统短训练域字段、传统长训练域字段和所述传统信令字段 进行发射功率增强处理。
8、 根据权利要求 2或 5所述的方法, 其特征在于, 所述根据所述发射 功率放大界限, 对所述目标前导码中的传统短训练域字段、 传统长训练域字 段和所述传统信令字段进行发射功率增强处理, 包括:
根据所述预设门限和所述发射功率放大界限,对所述目标前导码中的传 统短训练域字段、传统长训练域字段和所述传统信令字段进行发射功率增强 处理。
9、 一种传输数据的装置, 其特征在于, 所述装置包括:
确定单元, 用于基于预设规则和系统状态, 根据发送给接收端的目标数 据的数据长度, 确定目标比特序列, 其中, 在所述预设规则下, 所述目标数 据的数据长度小于所述目标比特序列所对应的数据长度, 在所述系统状态 下, 所述目标比特序列对应的峰均功率比 PAPR小于与所述目标数据的数据 长度相对应的比特序列对应的 PAPR , 所述目标比特序列对应的 PAPR 'J、于 所述发送端的发射功率放大界限;
处理单元, 用于将所述目标比特序列承载于目标前导码的传统信令字段 中的长度比特位, 根据所述发射功率放大界限, 对所述目标前导码中的传统 短训练域字段、传统长训练域字段和所述传统信令字段进行发射功率增强处 理, 并发送给所述接收端, 其中, 所述目标前导码与所述目标数据承载于同 一数据帧。
10、 根据权利要求 9所述的装置, 其特征在于, 所述确定单元具体用于 根据所述预设规则,确定映射表项, 所述映射表项记录有 N种数据长度与 N 个比特序列之间的映射关系, 其中, 所述 N种数据长度与所述 N个比特序 列——对应, 所述目标数据的数据长度属于所述 N种数据长度;
用于 ^据所述系统状态, 确定所述 N个比特序列所分别对应的 PAPR; 用于根据预设门限, 确定至少一个比特序列对, 其中, 一个比特序列对 包括一个待修改比特序列和一个参考比特序列,各比特序列对包括的待修改 比特序列彼此相异, 所述待修改比特序列对应的 PAPR大于所述预设门限, 所述参考比特序列对应的 PAPR小于或等于所述预设门限, 且在一个比特序 列对中,待修改比特序列所对应的数据长度小于参考比特序列所对应的数据 长度, 所述预设门限小于所述发送端的发射功率放大界限;
用于根据所述比特序列对, 修改所述映射表项, 以将各所述比特序列对 中的待修改比特序列替换为参考比特序列;
用于根据发送给接收端的目标数据的数据长度, 查找修改后的映射表 项, 以确定目标比特序列。
11、 根据权利要求 10所述的装置, 其特征在于, 如果针对一个比特序 列, 则所述确定单元确定的所述参考比特序列是所述至少两个备选比特序列 中, 所对应的数据长度最小的比特序列, 其中, 所述备选比特序列对应的 PAPR小于或等于所述预设门限, 且所述待修改比特序列所对应的数据长度 小于所述备选比特序列所对应的数据长度。
12、 根据权利要求 9所述的装置, 其特征在于, 所述确定单元具体用于 根据所述预设规则,确定与发送给接收端的目标数据的数据长度相对应的第 一比特序列;
用于从至少一个第二比特序列中, 确定所述目标比特序列, 其中, 在所 述系统状态下, 第一比特序列对应的 PAPR 大于所述第二比特序列对应的 PAPR, 所述第二比特序列对应的 PAPR 小于所述发送端的发射功率放大界 限, 且在所述预设规则中, 所述第一比特序列所对应的数据长度小于所述第 二比特序列所对应的数据长度。
13、 根据权利要求 12所述的装置, 其特征在于, 所述确定单元还用于 确定所述第一比特序列对应的 PAPR大于预设门限, 其中, 所述预设门限小 于所述发送端的功率放大界限, 所述第二比特序列对应的 PAPR小于或等于 所述预设门限。
14、 根据权利要求 13所述的装置, 其特征在于, 当存在至少两个第二 比特序列时, 所述确定单元确定的所述目标比特序列是所述至少两个第二比 特序列中, 所对应的数据长度最小的比特序列。
15、 根据权利要求 9至 14中任一项所述的装置, 其特征在于, 所述处 理单元具体用于根据所述目标比特序列对应的 PAPR和所述发射功率放大界 限, 对所述目标前导码中的传统短训练域字段、 传统长训练域字段和所述传 统信令字段进行发射功率增强处理。
16、 根据权利要求 10或 13所述的装置, 其特征在于, 所述处理单元具 体用于根据所述预设门限和所述发射功率放大界限,对所述目标前导码中的 传统短训练域字段、传统长训练域字段和所述传统信令字段进行发射功率增 强处理。
PCT/CN2014/072025 2014-02-13 2014-02-13 传输数据的方法和装置 WO2015120595A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/072025 WO2015120595A1 (zh) 2014-02-13 2014-02-13 传输数据的方法和装置
CN201480048509.1A CN105519065B (zh) 2014-02-13 2014-02-13 传输数据的方法和装置
US15/235,484 US9882754B2 (en) 2014-02-13 2016-08-12 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072025 WO2015120595A1 (zh) 2014-02-13 2014-02-13 传输数据的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/235,484 Continuation US9882754B2 (en) 2014-02-13 2016-08-12 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2015120595A1 true WO2015120595A1 (zh) 2015-08-20

Family

ID=53799506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072025 WO2015120595A1 (zh) 2014-02-13 2014-02-13 传输数据的方法和装置

Country Status (3)

Country Link
US (1) US9882754B2 (zh)
CN (1) CN105519065B (zh)
WO (1) WO2015120595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033565B2 (en) * 2015-07-27 2018-07-24 Intel Corporation Low peak-to-average power ratio long training field sequences

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3094057B1 (en) * 2014-02-14 2018-05-30 Huawei Technologies Co., Ltd. Method and apparatus for data transmission
CN107994976B (zh) * 2016-10-26 2021-06-22 华为技术有限公司 一种快速应答回复方法及装置
CN109756928B (zh) * 2017-11-01 2022-03-04 展讯通信(上海)有限公司 无线局域网系统的数据发送方法及装置、存储介质、终端
US10499346B2 (en) * 2018-04-03 2019-12-03 Cypress Semiconductor Corporation System and method extending range of a wireless network
CN116366414A (zh) * 2018-07-27 2023-06-30 华为技术有限公司 设计短训练序列的方法和装置
CN110080749B (zh) * 2019-04-08 2020-08-28 中国科学技术大学 一种通用自适应高速测井遥传系统
CN113078987A (zh) 2020-01-03 2021-07-06 华为技术有限公司 传输物理层协议数据单元的方法和装置
US11870629B2 (en) * 2021-05-13 2024-01-09 Qualcomm Incorporated Enhanced phase tracking reference signal for digital post distortion assist

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194544A1 (en) * 2009-07-17 2011-08-11 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
CN103297379A (zh) * 2013-07-01 2013-09-11 重庆邮电大学 时变正交频分复用多载波调制系统及调制方法
CN103503395A (zh) * 2011-03-04 2014-01-08 高通股份有限公司 用于次千兆赫频带中的无线通信的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472537B2 (en) 2010-03-02 2013-06-25 Harris Corporation Systems and associated methods to reduce signal field symbol peak-to-average power ratio (PAPR)
CN102843220B (zh) * 2011-06-21 2014-12-24 华为技术有限公司 错误恢复方法、接入点设备、站点设备及其系统
EP3094057B1 (en) * 2014-02-14 2018-05-30 Huawei Technologies Co., Ltd. Method and apparatus for data transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194544A1 (en) * 2009-07-17 2011-08-11 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
CN103503395A (zh) * 2011-03-04 2014-01-08 高通股份有限公司 用于次千兆赫频带中的无线通信的系统和方法
CN103297379A (zh) * 2013-07-01 2013-09-11 重庆邮电大学 时变正交频分复用多载波调制系统及调制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033565B2 (en) * 2015-07-27 2018-07-24 Intel Corporation Low peak-to-average power ratio long training field sequences

Also Published As

Publication number Publication date
CN105519065A (zh) 2016-04-20
US20160352553A1 (en) 2016-12-01
US9882754B2 (en) 2018-01-30
CN105519065B (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2015120595A1 (zh) 传输数据的方法和装置
US10637702B2 (en) Data Transmission method and apparatus
EP3499977B1 (en) Method and device for sending and receiving wur frame
WO2015062107A1 (zh) Polar码的速率匹配方法和设备、无线通信装置
US10129069B2 (en) Data transmission method and apparatus
US10425203B2 (en) Data transmission method and apparatus
WO2016078082A1 (zh) 传输信息的方法、装置和设备
EP3116271B1 (en) Signal transmission method and apparatus
WO2016179807A1 (zh) 传输数据的方法、接收端设备和发送端设备
WO2022002250A1 (zh) Pdcch监听方法、发送方法及相关设备
WO2016078083A1 (zh) 确定调制编码阶数的方法、装置和设备
WO2017059719A1 (zh) 传输数据的方法和设备
WO2018098691A1 (zh) 一种控制信道生成方法、控制信道检测方法及相关设备
US11025397B2 (en) Quick acknowledgement reply method and apparatus
WO2016145616A1 (zh) 一种信息传输方法、设备及系统
WO2018000924A1 (zh) 传输帧的方法和装置
WO2016011619A1 (zh) 无线局域网的传输方法及传输设备
US20140029697A1 (en) GMSK-Based Modulation in a Wireless Local Area Network
US8826108B1 (en) Pre-scaling soft-decoder inputs
WO2018103008A1 (zh) 一种数字通信系统及误码率的计算方法
WO2017041585A1 (zh) 一种信号处理方法、发送站点及接收站点
CN114978823B (zh) 信道均衡方法、装置、终端、及计算机可读存储介质
WO2021120732A1 (zh) 一种数据接收方法,数据发送方法以及相关设备
US11382085B2 (en) Search space determining method and wireless apparatus
WO2020010993A1 (zh) 上行发送方法和发送端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882253

Country of ref document: EP

Kind code of ref document: A1