WO2015120575A1 - 信道译码的方法、装置和分布式译码器 - Google Patents

信道译码的方法、装置和分布式译码器 Download PDF

Info

Publication number
WO2015120575A1
WO2015120575A1 PCT/CN2014/071966 CN2014071966W WO2015120575A1 WO 2015120575 A1 WO2015120575 A1 WO 2015120575A1 CN 2014071966 W CN2014071966 W CN 2014071966W WO 2015120575 A1 WO2015120575 A1 WO 2015120575A1
Authority
WO
WIPO (PCT)
Prior art keywords
decoding
information
channel
channel decoding
decoding device
Prior art date
Application number
PCT/CN2014/071966
Other languages
English (en)
French (fr)
Inventor
唐欣
李明
魏岳军
熊杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/071966 priority Critical patent/WO2015120575A1/zh
Priority to EP14882412.1A priority patent/EP3098991B1/en
Priority to CN201480000148.3A priority patent/CN105103480B/zh
Priority to ES14882412T priority patent/ES2765425T3/es
Priority to MYPI2016702898A priority patent/MY191154A/en
Publication of WO2015120575A1 publication Critical patent/WO2015120575A1/zh
Priority to US15/233,646 priority patent/US10285086B2/en
Priority to ZA2016/05538A priority patent/ZA201605538B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a method, an apparatus, and a distributed decoder for channel decoding.
  • a common channel decoder has a Viterbi Algorithm (VA) decoder and a List Viterbi Algorithm (LVA) decoder.
  • VA Viterbi Algorithm
  • LVA List Viterbi Algorithm
  • the ordinary VA decoder selects the optimal one path from all possible paths of the trellis diagram, and outputs the information sequence corresponding to the optimal path as the decoding result;
  • the LVA decoder is a cyclic redundancy check.
  • CRC Cyclic Redundancy Check
  • Parallel List decoding algorithm (Parallel List) Viterbi Algorithm, PLVA) Decoder is a parallel LVA decoder that can select the correct path for CRC check between multiple paths. The performance is better than that of an ordinary VA decoder that only selects the optimal path. The more the number of PLVA decoder search paths, the better the decoding performance, and the more processing load it brings. Commonly, the PLVA4 decoder is a decoder that searches for four paths. The PLVA64 decoder is a decoder that searches for 64 paths. The decoding performance of the PLVA64 decoder is better than that of the PLVA4 decoder.
  • Adaptive Multi-Rate (AMR) speech is divided into three sub-flows A/B/C, where A sub-stream is of the highest importance, and its data block is followed by CRC check, B/C.
  • the substream is relatively less important and the data has no CRC check.
  • the channel decoder is deployed on the Node B (NodeB) to decode the A/B/C substream and perform CRC check on the A substream.
  • NodeB uses VA decoding.
  • PLVA can be deployed. However, because the PLVA algorithm has a large overhead, if it is deployed on the NodeB, the processing performance of the NodeB is relatively large. Summary of the invention
  • the embodiments of the present invention provide a method, a device, and a distributed decoder for channel decoding, so as to realize distribution of channel decoding devices at different network nodes, thereby improving decoding performance while avoiding high Processing overhead.
  • a device for channel decoding including:
  • a decoding information acquiring unit configured to acquire demodulation information of the channel
  • a channel decoding algorithm unit configured to decode the demodulated information acquired by the decoding information acquiring unit to obtain current decoding information, and perform cyclic redundancy check CRC check on the current decoding information to obtain a current translation Code CRC check result;
  • a lower decoding determining unit configured to: if the current decoding CRC check result obtained by the channel decoding algorithm unit is incorrect, and there is a lower channel decoding device, determine that the lower channel decoding device continues to Demodulation signal, decoding
  • the decoding performance of the channel decoding algorithm unit in the lower channel decoding apparatus is better than the decoding performance of the channel decoding algorithm unit in the channel decoding apparatus.
  • the decoding information acquiring unit is specifically configured to acquire demodulation information of the channel from the demodulator, or from any of the upper level decoding devices before the channel decoding device. Obtain demodulation information for the channel.
  • the decoding information acquiring unit acquires a solution of the channel from any of the superior channel decoding devices before the channel decoding device
  • the decoding information acquiring unit is further configured to acquire any of the superior decoding information from the upper channel decoding device before the channel decoding device as the auxiliary decoding information, the channel decoding algorithm unit, and
  • the auxiliary decoding information is used to assist decoding of the demodulation information.
  • the apparatus further includes a decoding information transmission unit, configured to determine, by the lower-level decoding determining unit, the decoding by the lower-level channel
  • the apparatus transmits the demodulated information to the lower channel decoding apparatus when the apparatus continues to decode the demodulated information.
  • the fourth possible implementation of the first aspect continues to decode the demodulated information
  • the current decoding information obtained by the channel decoding algorithm unit is transmitted to the lower level.
  • the channel decoding device performs auxiliary decoding.
  • the subordinate decoding determining unit is further configured to: if the current decoding CRC check result is correct, end decoding Or, if the current channel decoding device is the last-stage channel decoding device, the decoding is ended.
  • the demodulation information may be any one of the following: demodulation of any substream of the adaptive multi-rate voice service AMR Information, or demodulation information of the data service, or demodulation information of the signaling.
  • the channel decoding algorithm unit is decoded by using a Viterbi decoding algorithm VA, where the lower channel decoding device is used.
  • the channel decoding algorithm unit is decoded by a list Viterbi algorithm LVA, or a parallel list Viterbi algorithm PL VA, or a serial list Viterbi algorithm SLVA.
  • the channel decoding apparatus and its lower channel decoding apparatus are deployed on different network nodes for decoding.
  • the channel decoding apparatus is deployed on the base station node NodeB, and the lower channel decoding apparatus is deployed on the radio network controller RNC.
  • a method for channel decoding is provided. The method is used in a channel decoding apparatus of any level in a distributed decoder.
  • the distributed decoder includes at least a two-stage channel decoding apparatus, and the method includes:
  • the decoding performance of the lower channel decoding apparatus is better than the decoding performance of the current channel decoding apparatus.
  • acquiring demodulation information of the channel includes acquiring demodulation information of the channel from the demodulator, or decoding from any upper channel before the current channel decoding apparatus The device acquires demodulation information of the channel.
  • Obtaining the demodulation information of the channel further includes: acquiring, by using any of the upper channel decoding devices before the current channel decoding device, the decoding information of the one level as auxiliary decoding information; decoding the demodulated information to obtain a current Decoding the information further includes assisting decoding of the demodulated information with the auxiliary decoding information.
  • the method further includes: The tuning information is transmitted to the lower channel decoding device.
  • the transmitting the demodulated information to the lower channel decoding apparatus further comprising: the current decoding information It is passed to the lower channel decoding device for auxiliary decoding.
  • the method further includes: if the current decoding CRC check result is correct, ending the decoding; or
  • the current channel decoding apparatus is the last stage channel decoding apparatus, and the decoding is ended.
  • the demodulation information may be any one of the following: demodulation information of any substream of the adaptive multi-rate voice service AMR Or, demodulation information of the data service, or demodulation information of the signaling.
  • the decoding information is decoded to obtain current decoding information, and the demodulated information is translated by Viterbi.
  • the code algorithm VA decodes, and the lower channel decoding device uses a list Viterbi algorithm LVA, or a parallel list Viterbi algorithm PL VA, or a serial list Viterbi algorithm SLVA.
  • the current channel decoding apparatus and the lower level channel decoding apparatus are deployed on different network nodes for decoding.
  • the current channel decoding apparatus is deployed on the base station node NodeB, and the lower channel decoding apparatus is deployed on the radio network controller RNC. .
  • a computer program product in a third aspect, storing one or more sets of computer programs, the computer program being executed to perform a method of any of the possible implementations of the second aspect.
  • a distributed decoder comprising at least two channel decoding devices of any of the possible implementations of the first aspect, wherein each channel decoding device has a cascade relationship between the upper and lower stages, wherein The decoding performance of the channel decoding apparatus of the lower stage is superior to that of the channel decoding apparatus of the upper stage.
  • the method, the device and the distributed decoder of the embodiments of the present invention may perform decoding and CRC check on any demodulation information of the channel, and determine whether to use a lower channel translation with higher decoding performance according to the CRC check result.
  • the hierarchical decoding of the code device can improve the decoding performance and avoid the high processing overhead caused by the decoding of the high-performance channel decoding device, while using only the primary decoding device. Since the channel decoding devices at different levels are distributed on different network nodes, it is not required to be concentrated on all NodeBs, and the number of high-performance channel decoding devices deployed is also reduced, so that the configuration is more flexible.
  • FIG. 1 is a structural diagram of an apparatus for channel decoding according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of an apparatus for voice channel decoding according to another embodiment of the present invention
  • FIG. 3 is a structural diagram of a distributed translation decoder according to another embodiment of the present invention.
  • FIG. 4 is a structural diagram of a distributed translation decoder according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of translation/decoding/performance simulation according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for voice channel decoding according to another embodiment of the present invention.
  • the method, the device, and the distributed decoder in the embodiments of the present invention may be implemented by a radio access network device, where the radio access network device includes not limited to any one of the following or more than one common implementation, such as a base station NodeB or The radio network controller RNC or other control node of the access network device.
  • the radio access network device includes not limited to any one of the following or more than one common implementation, such as a base station NodeB or The radio network controller RNC or other control node of the access network device.
  • the radio access network device for the radio access network device, the user and the user equipment have the same meaning.
  • the demodulated information obtained by the demodulator is first sent to the first-stage channel decoding device for decoding.
  • the demodulated information may be the A substream of the AMR voice service.
  • the demodulation information of any one of the B substream and the C substream may also be demodulation information of the data service or signaling. If the CRC check of the decoded information obtained by decoding by the first-stage channel decoding apparatus is unsuccessful, it is sent to the lower-level channel decoding apparatus for decoding, and after each stage of the channel decoding apparatus decodes the demodulated information, The CRC check is performed.
  • FIG. 1 is a structural diagram of a channel decoding apparatus according to an embodiment of the present invention.
  • the channel decoding apparatus and other channel decoding apparatus are respectively deployed on different network nodes, and different channel translations are performed on other channel decoding apparatuses.
  • the code algorithm decodes the demodulated information, and the decoding performance of the lower channel decoding device is superior to the channel decoding device as compared with the lower channel decoding device of the channel decoding device.
  • the apparatus may include: a decoding information acquisition unit 101, a channel decoding algorithm unit 102, and a subordinate decoding determination unit 103.
  • the decoding information acquisition unit 101 is configured to acquire demodulation information.
  • the decoding information acquiring unit 101 can specifically acquire the demodulated information from the demodulator.
  • the decoding information acquiring unit 101 may specifically obtain the demodulation information directly from the demodulator, or may be obtained from the current channel decoding device. Any superior channel decoding device acquires demodulation information depending on whether the current channel decoding device and the demodulator or any of the superior channel decoding devices support transmission of demodulation information, for example, the channel decoding device is third.
  • the decoding information acquiring unit 101 may acquire the demodulation information from the second-stage channel decoding device, or may obtain the demodulation information from the first-stage channel decoding device, and may also directly obtain the solution from the demodulator. It is to be noted that the information is not limited thereto.
  • the decoding information acquiring unit 101 may further acquire the decoding information of any one level from the previous channel decoding device before the current channel decoding device for the current channel decoding device. Code to improve the accuracy of the decoding.
  • the channel decoding algorithm unit 102 is configured to: decode the demodulated information acquired by the decoding information acquiring unit 101 to obtain current decoding information, and perform CRC check on the current decoding information to obtain a current decoded CRC check result;
  • the channel decoding algorithm unit 102 decodes the demodulated information acquired by the decoding information acquiring unit 101 by using a channel decoding algorithm to obtain current decoding information, where the channel decoding algorithm may be VA, or may be LVA, PLVA, or SLVA. , can also be other channel decoding algorithms, where PLVA root According to the number of search paths, it can be further divided into PL VA4, PLVA64, etc., and the present invention is not limited thereto.
  • the channel decoding algorithm used in the channel decoding algorithm unit of different levels of channel decoding apparatus is different, and the decoding performance of the channel decoding algorithm in the next stage channel decoding apparatus is better than that of the upper level channel decoding apparatus. The decoding performance of the channel decoding algorithm.
  • the decoding performance of the channel decoding algorithm unit 102 is better than the decoding performance of the channel decoding algorithm unit in any of the upper channel decoding devices before the current channel decoding device, and the translation of the channel decoding algorithm unit in the lower channel device
  • the code performance is superior to the channel decoding algorithm unit 102 in the current channel decoding apparatus.
  • the channel decoding device is a first-stage channel decoding device, and the channel decoding algorithm unit 102 can use VA decoding.
  • the channel decoding algorithm unit in the second channel decoding device can use LVA decoding.
  • the channel decoding device is a first-stage channel decoding device
  • the channel decoding algorithm unit 102 can use VA decoding
  • the channel decoding algorithm unit in the second-level channel decoding device can use PLVA4 decoding.
  • the channel decoding algorithm unit in the third stage channel decoding apparatus can be decoded by PL VA64.
  • the lower level decoding determining unit 103 is configured to: if the current decoding CRC check result obtained by the channel decoding algorithm unit 102 is incorrect, and there is a lower level channel decoding apparatus, determine that the demodulation information is continuously translated by the lower level channel decoding apparatus. code;
  • the decoding performance of the channel decoding algorithm unit in the lower channel decoding apparatus is better than the decoding performance of the channel decoding algorithm unit 102.
  • the channel decoding algorithm unit 102 If the current decoded CRC check result obtained by the channel decoding algorithm unit 102 is incorrect, and there is a lower channel decoding device, it is determined that the demodulated information is continuously decoded by the lower channel decoding device.
  • the lower channel decoding apparatus may acquire the demodulated information from the current channel decoding apparatus, or may obtain the demodulated information from the demodulator, or may be obtained from the current channel decoding apparatus.
  • the previous embodiment of the present invention is not limited thereto.
  • the channel decoding apparatus may further include a decoding information transmission unit.
  • a decoding information transmission unit configured to determine, by the lower stage decoding determining unit 103, a lower channel decoding apparatus When decoding of the demodulated information continues, the demodulated information is transmitted to the lower channel decoding device.
  • the decoding information transmission unit may also transmit the current decoding information decoded by the channel decoding algorithm unit 102 to the lower channel decoding device, so that the lower channel decoding device performs auxiliary decoding according to the decoding information, so as to improve The accuracy of the decoding.
  • the decoding can be ended.
  • the current decoding information may be sent to the AMR framing module to perform AMR speech framing together with the decoding information of other substreams, and for the A substream of the AMR,
  • the currently decoded CRC check result may also be sent to the outer loop power control module for outer loop power control decision.
  • the current channel decoding apparatus is the last stage channel decoding apparatus
  • decoding of the demodulated information is completed, and after the CRC is verified by the decoding information, decoding is also required.
  • the CRC check of the last-stage channel decoding apparatus fails, since the channel decoding apparatuses of the respective stages cannot obtain the decoding result of the correct CRC check, the decoding error is reported to the demodulated information.
  • the current channel decoding device and the lower channel decoding device may be deployed on different network nodes to avoid centralized deployment on the same network node, which imposes a large load on the processing of the network node.
  • the channel decoding apparatus is deployed on the base station node NodeB
  • the lower channel decoding apparatus can be deployed on the radio network controller RNC.
  • the first stage channel decoding apparatus is deployed in On the NodeB
  • the second-stage channel decoding apparatus is deployed on the transmission node between the RNC and the NodeB
  • the third-level channel decoding apparatus is deployed on the RNC.
  • the embodiments of the present invention are not limited thereto.
  • any demodulation information of the channel can be decoded and CRC checked, and whether the lower-level channel decoding apparatus with higher decoding performance is used for hierarchical decoding according to the CRC check result.
  • most of the demodulated information can obtain the correct decoding result through the first-stage decoding.
  • the bit error rate is 10%
  • the demodulated information entering the next-level decoding only accounts for all the demodulated information. 10%, which means that only 10% of the demodulation information needs to be decoded by a higher performance channel decoding device to obtain better performance.
  • the device of the embodiment of the invention uses only one level compared to the conventional one.
  • the decoding device can improve the decoding performance and avoid the high processing overhead caused by the decoding of the high-performance channel decoding device for all the demodulated information.
  • the channel decoding devices at all levels are distributed on the respective network nodes, it is not required to be concentrated on all NodeBs, and the number of high-performance channel decoding devices deployed is also reduced, so that the configuration is more flexible.
  • 2 is a structural diagram of a channel decoding apparatus according to an embodiment of the present invention.
  • the channel decoding apparatus and other channel decoding apparatus are respectively deployed on different network nodes, and different channel translations are used.
  • the apparatus can include a bus 201, a processor 202 coupled to bus 201, a memory 203 coupled to bus 201, and a transceiver 204 coupled to bus 201.
  • the processor 202 calls the program stored in the memory 203 through the bus 201 for controlling the transceiver 204 to acquire demodulation information; decoding the obtained demodulation information to obtain current decoding information, and decoding the current decoding information.
  • the information is subjected to CRC check to obtain a current decoded CRC check result; if the current decoded CRC check result is incorrect, and there is a lower-level channel decoding device, it is determined that the lower-level channel decoding device continues to decode the demodulated information; The decoding performance of the lower channel decoding device is better than the decoding performance of the current channel decoding device.
  • the transceiver 204 can obtain demodulation information in a plurality of manners.
  • the channel decoding device is a first-stage channel decoding device
  • the processor 202 is configured to control the transceiver 204 to obtain demodulation information from the demodulator; for example,
  • the transceiver 204 may directly obtain the demodulation information from the demodulator, or may be from any previous level before the current channel decoding device.
  • the channel decoding apparatus acquires demodulation information depending on whether or not transmission of demodulation information is supported between the current channel decoding apparatus and the demodulator or any of the superior channel decoding apparatuses.
  • the channel decoding device is a third-stage channel decoding device
  • the transceiver 204 can obtain demodulation information from the second-stage channel decoding device, and can also obtain demodulation information from the first-stage channel decoding device, and can also The demodulator directly obtains the demodulation information.
  • the embodiment of the present invention is not limited thereto.
  • the transceiver 204 may further acquire the level of decoding information from any of the upper channel decoding devices before the current channel decoding device for the current channel decoding device to assist decoding to improve The accuracy of the decoding.
  • the channel decoding device is a second-stage channel decoding device
  • the transceiver 204 can acquire demodulation information from the first-stage channel decoding device, and acquire the first-level decoding information from the first-stage channel decoding device.
  • auxiliary decoding For auxiliary decoding. It should be noted that the embodiments herein are only examples, and the embodiments of the present invention are not limited thereto.
  • the processor 202 may decode the demodulated information by using multiple channel decoding algorithms, for example, may be VA, may be LVA, PLVA, or SLVA, or may be other channel decoding algorithms, where PL VA is based on The number of search paths can be further divided into PL VA4, PLVA64, etc., and the present invention is not limited thereto.
  • the decoding performance of the channel decoding algorithm used by the processor 202 is superior to the decoding performance of the channel decoding algorithm used by the processor of any of the preceding channel decoding devices of the current channel decoding apparatus, and the lower channel device
  • the decoding performance of the channel decoding algorithm used by the intermediate is better than the decoding performance of the channel decoding algorithm used by the processor 202.
  • the channel decoding means is a first stage channel decoding means, and the processor 202 can use VA decoding, and the processor in the second channel decoding means can decode using PLVA or LVA.
  • the channel decoding device is a first-stage channel decoding device, the channel decoding algorithm unit 102 can use VA decoding, and the channel decoding algorithm unit in the second-level channel decoding device can use PLVA4 decoding.
  • the channel decoding algorithm unit in the third stage channel decoding apparatus can be decoded by PL VA64. It should be noted that the embodiments herein are merely examples, and the embodiments of the present invention are not limited thereto.
  • the lower channel decoding device may acquire the demodulated information from the current channel decoding device, or may obtain the demodulated information from the demodulator, and may also obtain the demodulated information from the current channel.
  • the demodulation information is obtained by any of the preceding channel decoding devices before the decoding device, and the embodiment of the present invention is not limited thereto.
  • processor 202 can also control transceiver 204 for transmitting the demodulated information to the lower level channel decoding device. At this time, the transceiver 204 can also transmit the current decoding information to the lower channel decoding device, so that the lower channel decoding device performs auxiliary decoding according to the decoding information, so as to improve translation. The accuracy of the code.
  • the decoding when the processor 202 determines that the current decoded CRC check result is correct, the decoding may be terminated without further feeding to the lower channel decoding device.
  • the current decoding information when decoding the demodulated information of any substream of the AMR, the current decoding information may be sent to the AMR framing module to perform AMR speech framing together with the decoding information of other substreams, and for the A substream of the AMR,
  • the currently decoded CRC check result may also be sent to the outer loop power control module for outer loop power control decision.
  • the current channel decoding apparatus is the last stage channel decoding apparatus
  • decoding is also required.
  • the CRC of the last stage channel decoding apparatus fails, due to various levels.
  • the channel decoding apparatus cannot obtain the decoding result of the correct CRC check, and reports the decoding error to the demodulated information.
  • the current channel decoding device and the lower channel decoding device may be deployed on different network nodes to avoid centralized deployment on the same network node, which imposes a large load on the processing of the network node.
  • the channel decoding device is deployed on the base station node NodeB, and the lower channel decoding device can be deployed on the radio network controller RNC.
  • RNC radio network controller
  • any demodulation information of the channel can be decoded and CRC checked, and the lower-level channel decoding apparatus using higher decoding performance is determined to be hierarchically decoded according to the CRC check result.
  • most of the demodulated information can obtain the correct decoding result through the first stage decoding, and the demodulated information entering the next stage decoding only accounts for a small part of the total demodulated information.
  • the apparatus of the embodiment of the present invention can improve the decoding performance and avoid the high processing overhead caused by the decoding of the high-performance channel decoding apparatus.
  • FIG. 3 is a structural diagram of a distributed decoder according to an embodiment of the present invention.
  • the cloth decoder may include: at least two channel decoding devices 301, each channel decoding device 301 is in a cascade relationship between upper and lower stages, wherein the channel decoding algorithm used by the channel decoding device 301 of the lower stage decodes performance It is superior to the channel decoding device 301 of the upper stage.
  • the channel decoding device 301 may be the channel decoding device shown in Fig. 1 or Fig. 2. Since the channel decoding device has been described in the foregoing embodiments, it will not be described again.
  • the distributed decoder includes two channel decoding devices as an example, see FIG.
  • the two channel decoding means are a first stage channel decoding means 401 and a second stage channel decoding means 402, respectively.
  • the first channel decoding device 401 is deployed on the NodeB and the second channel decoding device is deployed 402 on the RNC.
  • the demodulator is connected to the first-stage channel decoding device 401.
  • the first-stage channel decoding device 401 obtains the AMR sub-stream demodulation information from the demodulator.
  • the A-substream of the AMR voice service is taken as an example. It is a B substream or a C substream, or demodulation information of data traffic or signaling.
  • the first-stage channel decoding device 401 uses the VA to decode the acquired A-substream demodulation information to obtain the first-level decoding information, and performs CRC check on the first-level decoding information, if the CRC check result In error, the first-stage channel decoding device 401 sends the A-substream demodulation information to the second-stage channel decoding device 402. Of course, the first-stage decoding information may also be sent to the second channel decoding device 402 for assistance. Decoding; the second-stage channel decoding device 402 uses the PLVA4 algorithm with better decoding performance than the VA, and decodes the A-stream demodulated information to obtain the second-level decoding information.
  • the first stage decoding information may be used for auxiliary decoding, and the second level decoding information may be CRC checked. If the CRC check result of the second stage decoding is correct, the decoding may be ended, and the current decoding information is sent to the AMR framing module to perform AMR voice framing together with the decoding information of other substreams, and the second level may also be The decoded CRC check result is sent to the outer loop power control module for the outer loop power control decision; if the CRC check result of the second level decoding is wrong, the decoding is also ended, and the decoding error is reported at the same time.
  • the channel decoding apparatus may also be more than two. For example, there may be a third-stage channel decoding apparatus, a fourth-stage channel decoding apparatus, and the like, and each channel decoding apparatus.
  • the location of the deployment may also be not limited to the NodeB or the RNC, and may be distributed to different network nodes, and the embodiment of the present invention is not limited thereto. Work of each channel decoding device in the distributed device For the description of the channel decoding device in FIG. 1 or FIG. 2, details are not described herein.
  • any demodulation information of the channel can be decoded and CRC checked, and the lower-level channel decoding device using higher decoding performance is determined according to the CRC check result. code.
  • most of the demodulated information can obtain the correct decoding result through the first stage decoding, and the demodulated information entering the next stage decoding only accounts for a small part of the total demodulated information.
  • the apparatus of the embodiment of the present invention can improve the decoding performance and avoid the high processing overhead caused by the decoding of the high-performance channel decoding apparatus.
  • Figure 5 shows the performance simulation of several decoders in the same scenario.
  • the simulated channel environment is a typical urban area with a moving speed of 3 km per hour, referred to as TU3 channel, and the voice service is AMR 12.2k.
  • MOS score Mean Opinion Score
  • the first scheme is to use the traditional VA decoder to decode each substream of AMR;
  • the A substream of the AMR is decoded by a distributed decoder, wherein the first stage decoding uses VA, the second stage decoding uses PLVA4, and the other substreams of the AMR are still decoded by the VA decoder;
  • Scheme 3 A-stream distributed decoder for AMR, where the first-level decoding uses VA, the second-level uses PLVA4, the third-level uses PLVA64, and the other sub-streams of AMR are still translated by VA.
  • Transcoder decoding uses a distributed decoder for the A substream and the B substream of the AMR, that is, adds an 8-bit parity bit to the B substream and decodes it using a distributed decoder, where The first level of decoding uses VA, the second level uses PLVA4, the third level uses PLVA64, and the other substreams of AMR are still ⁇ Decoded with a VA decoder. It can be seen from Fig. 4 that, under the same signal-to-noise ratio, only when the CRC check is performed on the A substream of the AMR, the MOS score of the multi-level decoding using the distributed decoder is higher than that of the conventional VA.
  • FIG. 6 is a flowchart of a method for channel decoding according to another embodiment of the present invention, which is used in a channel decoder of any level in a distributed decoder, where the distributed decoder includes at least two-stage channel decoding.
  • the method includes:
  • Step 601 Acquire demodulation information of the channel.
  • the demodulation information may directly obtain demodulation information of the channel from the demodulator, or may obtain demodulation information of the channel from any previous channel decoding device before the current channel decoding device, depending on the current channel decoding device. Whether to support transmission of demodulation information between the demodulator or any of the superior channel decoding devices.
  • the demodulation information of the channel is acquired from any of the upper channel decoding devices before the current channel decoding device, the decoding information of the one level can be obtained from any of the upper channel decoding devices before the current channel decoding device. Auxiliary decoding information.
  • Step 602 Decode the obtained demodulated information in step 601 to obtain current decoding information, and perform CRC check on the current decoding information to obtain a current decoded CRC check result.
  • the demodulation information may be decoded by using multiple channel decoding algorithms, for example, VA, LVA, PLVA or SLVA, etc., or other channel decoding algorithms, where PL VA is based on the number of search paths. It can be classified into PLVA4, PLVA64, etc., and the present invention is not limited thereto.
  • the decoding performance of the current channel decoding algorithm is better than the decoding performance of the channel decoding algorithm used by any of the previous channel decoding devices, and the translation of the channel decoding algorithm used in the lower channel device
  • the code performance is better than the decoding performance of the current channel decoding algorithm.
  • the auxiliary decoding information can be used to assist decoding when decoding the demodulated information.
  • Step 603 If the current decoded CRC check result obtained in step 602 is incorrect, and there is a lower channel decoding device, it is determined that the demodulation information is continuously decoded by the lower channel decoding device.
  • the decoding performance of the lower channel decoding apparatus is better than the decoding performance of the current channel decoding apparatus.
  • the following optional steps may also be included in one embodiment of the invention:
  • Step 604 If step 603 determines that the decoding by the lower channel decoding device continues, the demodulation signal is The information is transmitted to the lower channel decoding device. Further, the current decoding information may also be transmitted to the lower channel decoding device, so that the lower channel decoding device performs auxiliary decoding according to the decoding information.
  • Step 605 If the current decoded CRC check result obtained in step 602 is correct, the decoding may be ended; or
  • Step 606 If the current channel decoding apparatus is the last stage channel decoding apparatus, it is also necessary to end decoding. At this time, if the CRC check of the last-stage channel decoding apparatus fails, since the channel decoding apparatus of each stage cannot obtain the decoding result of the correct CRC check, the decoding error is reported to the demodulated information.
  • the current channel decoding device and the lower channel decoding device may be deployed on different network nodes to avoid centralized deployment on the same network node, which imposes a large load on the processing of the network node.
  • any demodulation information of the channel can be decoded and CRC checked, and whether the lower-level channel decoding device with higher decoding performance is used for hierarchical decoding according to the CRC check result.
  • most of the demodulated information can obtain the correct decoding result through the first stage decoding, and the demodulated information entering the next stage decoding only accounts for a small part of the total demodulated information.
  • the apparatus of the embodiment of the present invention can improve the decoding performance and avoid the high processing overhead caused by the decoding of the high-performance channel decoding apparatus.
  • Computer readable media includes computer storage media and Communication medium, wherein the communication medium includes any medium that facilitates the transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.
  • CD compact disc
  • DVD digital versatile disc
  • a floppy disc a digital versatile disc
  • Blu-ray disc wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了信道译码的方法、装置和分布式译码器。一种信道译码的装置,包括,译码信息获取单元,用于获取信道的解调信息;信道译码算法单元,用于对解调信息译码得到当前译码信息,并对当前译码信息进行循环冗余校验 CRC校验得到当前译码 CRC校验结果;下级译码确定单元,用于若当前译码 CRC校验结果错误,并且,存在下级信道译码装置,则确定由下级信道译码装置继续对解调信息译码;其中,下级信道译码装置中信道译码算法单元的译码性能优于该信道译码装置中的信道译码算法单元的译码性能。本发明实施例还公开了信道译码的方法和分布式译码器。

Description

信道译码的方法、 装置和分布式译码器
技术领域
本发明实施例涉及通信领域, 尤其涉及信道译码的方法、 装置和分布式译 码器。
背景技术 常见的信道译码器有维特比算法(Viterbi Algorithm, VA)译码器以及列表 维特比算法 (List Viterbi Algorithm, LVA)译码器。
普通的 VA译码器从网格图所有可能的路径中选出最优的一条路径,输出最 优路径对应的信息序列作为译码结果; LVA译码器则是一种利用循环冗余校验 (Cyclic Redundancy Check, CRC )辅助判决的增强维特比译码算法的译码器, 基本原理是输出多条候选的路径对应的译码序列 ,对这些译码序列分别进行 CRC 校验, 选择 CRC校验正确的译码序列作为最终的译码结果, 如果所有路径对应 的译码序列都通不过 CRC校验, 则输出最优路径的译码序列作为结果; 并行列 表维特比译码算法(Parallel List Viterbi Algorithm, PLVA )译码器是指并 行的 LVA译码器, 可以在多条路径间选择 CRC校验正确的路径, 性能比只选最 优路径的普通 VA译码器性能更好。 其中 PLVA译码器搜索路径的数目越多, 其 译码性能越好, 其带来的处理负荷也越多。 常见的如, PLVA4译码器是搜索 4条 路径的译码器, PLVA64译码器是搜索 64条路径的译码器, PLVA64译码器的译 码性能要优于 PLVA4译码器。
在通用移动通信系统 ( Universal Mobile Telecommunications System,
UMTS ) 中, 自适应多速率(Adaptive Multi-Rate, AMR)语音分为 A/B/C三个 子流, 其中 A子流的重要性最高, 其数据块后附有 CRC校验, B/C子流重要性相 对较低, 数据没有 CRC校验。 信道译码器部署在节点 B (Node B, NodeB )上, 分别对 A/B/C子流进行译码,并且对 A子流进行 CRC校验。现有技术中一般 NodeB 釆用 VA译码, 为了取得更好的译码性能, 可以考虑部署 PLVA, 但是由于 PLVA 算法开销大, 如果部署在 NodeB上, 对 NodeB处理性能消耗较大。 发明内容
有鉴于此, 本发明实施例提供了信道译码的方法、 装置和分布式译码器, 以实现在在不同网络节点上分布各级信道译码装置, 提高译码性能的同时又避 免了高处理开销。
第一方面, 提供了信道译码的装置, 包括:
译码信息获取单元, 用于获取信道的解调信息;
信道译码算法单元, 用于对所述译码信息获取单元获取到的解调信息译 码得到当前译码信息,并对所述当前译码信息进行循环冗余校验 CRC校验得 到当前译码 CRC校验结果;
下级译码确定单元, 用于若所述信道译码算法单元得到的当前译码 CRC 校验结果错误, 并且, 存在下级信道译码装置, 则确定由所述下级信道译码 装置继续对所述解调信 , 译码;
其中, 所述下级信道译码装置中信道译码算法单元的译码性能优于所述 信道译码装置中的信道译码算法单元的译码性能。
在第一方面的第一种可能的实现方式中, 译码信息获取单元具体用于从 解调器获取信道的解调信息, 或者, 从所述信道译码装置之前的任一上级译 码装置获取信道的解调信息。
结合第一方面的第一种可能实现方式, 在第一方面的第二种可能实现方 式中, 译码信息获取单元从所述信道译码装置之前的任一上级信道译码装置 获取信道的解调信息时, 译码信息获取单元还用于从所述信道译码装置之前 的任一上级信道译码装置获取所述任一上级译码信息作为辅助译码信息, 信 道译码算法单元, 还用于对解调信息釆用所述辅助译码信息辅助译码。
结合第一方面的上述任一种可能实现方式, 在第一方面的第三种可能实 现方式中, 该装置还包括译码信息传输单元, 用于在下级译码确定单元确定 由下级信道译码装置继续对所述解调信息译码时, 将所述解调信息传输至下 级信道译码装置。 结合第一方面的第三种可能实现方式, 在第一方面的第四种可能实现方 置继续对解调信息译码时, 将信道译码算法单元得到的当前译码信息传输至 所述下级信道译码装置进行辅助译码。
结合第一方面的上述任一种可能实现方式, 在第一方面的第五种可能实 现方式中, 下级译码确定单元还用于若所述当前译码 CRC校验结果正确, 则 结束译码; 或者, 若当前信道译码装置为最后一级信道译码装置, 则结束译 码。
结合第一方面的上述任一种可能实现方式, 在第一方面的第六种可能实 现方式中, 解调信息可以为以下任一种: 自适应多速率语音业务 AMR任一 子流的解调信息, 或者, 数据业务的解调信息, 或者, 信令的解调信息。
结合第一方面的上述任一种可能实现方式, 在第一方面的第七种可能实 现方式中, 信道译码算法单元釆用维特比译码算法 VA译码, 所述下级信道 译码装置中的信道译码算法单元釆用列表维特比算法 LVA , 或者, 并行列 表维特比算法 PL VA, 或者, 串行列表维特比算法 SLVA译码。
结合第一方面的上述任一种可能实现方式, 在第一方面的第八种可能实 现方式中,信道译码装置和其下级信道译码装置部署在不同网络节点上译码。
结合第一方面的第八种可能实现方式, 在第一方面的第九种可能实现方 式中, 信道译码装置部署在基站节点 NodeB上, 下级信道译码装置部署在无 线网络控制器 RNC上。 第二方面, 提供了信道译码的方法, 该方法用于分布式译码器中任一级信 道译码装置中, 分布式译码器至少包括两级信道译码装置, 该方法包括:
获取信道的解调信息;
对所述解调信息译码得到当前译码信息, 并对所述当前译码信息进行循 环冗余校验 CRC校验得到当前译码 CRC校验结果; 若所述当前译码 CRC校验结果错误, 并且, 存在下级信道译码装置, 则 确定由所述下级信道译码装置继续对所述解调信息译码;
其中, 所述下级信道译码装置的译码性能优于所述当前信道译码装置的 译码性能。
在第二方面的第一种可能实现方式中, 获取信道的解调信息, 包括从解 调器获取信道的解调信息, 或者, 从所述当前信道译码装置之前的任一上级 信道译码装置获取信道的解调信息。
结合第二方面的第一种可能实现方式, 在第二方面的第二种可能实现方 式中, 从所述当前信道译码装置之前的任一上级信道译码装置获取信道的解 调信息时, 获取信道的解调信息还包括, 从所述当前信道译码装置之前的任 一上级信道译码装置获取该任一级译码信息作为辅助译码信息; 对所述解调 信息译码得到当前译码信息, 还包括对所述解调信息釆用所述辅助译码信息 辅助译码。
结合第二方面的上述任一可能实现方式, 在第二方面的第三种可能实现方 式中, 若确定由下级信道译码装置继续对所述解调信息译码时, 该方法还包括 将解调信息传输至所述下级信道译码装置。
结合第二方面的第三种可能实现方式, 在第二方面的第四种可能实现方 式中, 将所述解调信息传输至所述下级信道译码装置, 还包括将所述当前译 码信息传递至所述下级信道译码装置进行辅助译码。
结合第二方面的上述任一可能实现方式, 在第二方面的第五种可能实现方 式中, 该方法还包括若所述当前译码 CRC校验结果正确, 则结束译码; 或者, 若所述当前信道译码装置为最后一级信道译码装置, 则结束译码。
结合第二方面的上述任一可能实现方式, 在第二方面的第六种可能实现方 式中, 解调信息可以为以下任一种: 自适应多速率语音业务 AMR任一子流的解 调信息, 或者, 数据业务的解调信息, 或者信令的解调信息。 结合第二方面的上述任一可能实现方式, 在第二方面的第七种可能实现方 式中, 对所述解调信息译码得到当前译码信息为对所述解调信息釆用维特比译 码算法 VA译码, 所述下级信道译码装置釆用列表维特比算法 LVA, 或者并行 列表维特比算法 PL VA, 或者串行列表维特比算法 SLVA译码。
结合第二方面的上述任一可能实现方式, 在第二方面的第八种可能实现方 式中, 当前信道译码装置和所述下级信道译码装置部署在不同网络节点上译 码。
结合第二方面的第八种可能实现方式, 在第二方面的第九种可能实现方式 中, 当前信道译码装置部署在基站节点 NodeB上, 下级信道译码装置部署在无 线网络控制器 RNC上。
第三方面, 提供计算机程序产品, 该计算机程序产品存储一组或多组计算 机程序, 所述计算机程序被运行时用于执行第二方面中任一种可能实现方式的 方法。
第四方面, 提供分布式译码器, 该分布式译码器包括至少两个第一方面任 一可能实现方式的信道译码装置,各个信道译码装置之间为上下级级联关系, 其中下级的信道译码装置的译码性能优于上级的信道译码装置的译码性能。
本发明实施例的方法、 装置和分布式译码器, 可以对信道的任一种解调 信息进行译码和 CRC校验, 根据 CRC校验结果确定是否使用更高译码性能 的下级信道译码装置分级译码, 相比于传统只使用一级译码装置, 既能提高 译码性能, 又避免了全部解调信息均使用高性能信道译码装置译码带来的高 处理开销, 同时由于各级信道译码装置分布在不同网络节点上, 不需要集中 在所有的 NodeB上, 也减少了高性能信道译码装置部署的个数, 使得配置更 加灵活。 附图说明
图 1为本发明一实施例提供的信道译码的装置的结构图; 图 2为本发明另一实施例提供的言道译码的装置的结构图
图 3为本发明另一实施例提供的分布式 ^译译码码器的结构图
图 4为本发明另一实施例提供的分布式 ^译译码码器的结构图
图 5为本发明另一实施例提供的译译码^ / 性能仿真示意图
图 6为本发明另一实施例提供的言道译码的方法的流程图 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 可以理解的是, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员 在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护 的范围。
本发明实施例中方法、 装置以及分布式译码器可以通过无线接入网设备 来实现, 无线接入网设备包括不限于下述任一种或者多于一种共同实现,如, 基站 NodeB或者无线网络控制器 RNC或者其他接入网设备的控制节点。 在 本发明实施例中, 对于无线接入网设备而言, 用户和用户设备具有相同的含 义。
在本发明的各实施例中, 解调器得到的解调信息, 首先送到第一级信道 译码装置进行译码, 需要说明的是, 解调信息可以是 AMR语音业务的 A子 流、 B子流、 C子流中任一个子流的解调信息, 也可以是数据业务或者信令 的解调信息。如果第一级信道译码装置译码后得到的译码信息的 CRC校验不 成功, 则送入下级信道译码装置译码, 每一级信道译码装置对解调信息进行 译码后, 都会进行 CRC校验, 如果校验不成功, 则送入该级信道译码装置的 下级信道译码装置继续译码,直至其中一级信道译码装置译码 CRC校验成功 或者最后一级信道译码装置完成译码。 各级信道译码装置可以分别部署在不 同的网络节点上, 而不必集中部署在一个网络节点上。 图 1为本发明一实施例提供的信道译码装置的结构图, 该信道译码装置 和其他信道译码装置分别部署在不同的网络节点上, 釆用与其他信道译码装 置不同的信道译码算法对解调信息译码, 与该信道译码装置的下级信道译码 装置相比, 下级信道译码装置的译码性能优于该信道译码装置。 如图所示, 该装置可以包括: 译码信息获取单元 101、 信道译码算法单元 102和下级译 码确定单元 103。
译码信息获取单元 101 : 用于获取解调信息。
信道译码装置为第一级信道译码装置时, 译码信息获取单元 101具体可 以从解调器获取解调信息。
信道译码装置为第一级信道译码装置的任一下级信道译码装置时, 译码 信息获取单元 101具体可以从解调器直接获取解调信息, 也可以从当前信道 译码装置之前的任一上级信道译码装置获取解调信息, 这取决于当前信道译 码装置和解调器或者任一上级信道译码装置之间是否支持传输解调信息, 例 如, 信道译码装置为第三级信道译码装置, 译码信息获取单元 101可以从第 二级信道译码装置获取解调信息, 也可以从第一级信道译码装置获取解调信 息, 还可以从解调器直接获取解调信息, 需要说明的是, 这里只是举例, 本 发明实施例并不以此为限制。
在本发明的另一实施例中, 译码信息获取单元 101还可以从当前信道译 码装置之前的任一上级信道译码装置获取该任一级译码信息用于当前信道译 码装置辅助译码以提高译码的准确性。
信道译码算法单元 102: 用于对译码信息获取单元 101 获取到的解调信 息译码得到当前译码信息, 并对当前译码信息进行 CRC 校验得到当前译码 CRC校验结果;
信道译码算法单元 102釆用信道译码算法对译码信息获取单元 101获取 到的解调信息译码得到当前译码信息, 这里信道译码算法可以是 VA, 也可 以 LVA、 PLVA或者 SLVA等, 还可以是其他信道译码算法, 其中 PLVA根 据其搜索路径数目又可以分为 PL VA4 , PLVA64等, 本发明并不限于此。 不 同级的信道译码装置中的信道译码算法单元釆用的信道译码算法不同, 下一 级信道译码装置中的信道译码算法的译码性能要优于上一级信道译码装置中 的信道译码算法的译码性能。 信道译码算法单元 102的译码性能要优于当前 信道译码装置之前的任一上级信道译码装置中信道译码算法单元的译码性 能, 而下级信道装置中信道译码算法单元的译码性能优于当前信道译码装置 中的信道译码算法单元 102。 例如, 信道译码装置为第一级信道译码装置, 信道译码算法单元 102可以釆用 VA译码, 则第二信道译码装置中的信道译 码算法单元可以釆用 LVA译码。 又例如, 信道译码装置为第一级信道译码 装置, 信道译码算法单元 102可以釆用 VA译码, 第二级信道译码装置中的 信道译码算法单元可以釆用 PLVA4 译码, 第三级信道译码装置中的信道译 码算法单元可以釆用 PL VA64译码。 需要说明的是, 这里只是举例, 本发明 实施例并不以此为限制。
下级译码确定单元 103 : 用于若信道译码算法单元 102得到的当前译码 CRC校验结果错误, 并且, 存在下级信道译码装置, 则确定由下级信道译码 装置继续对解调信息译码;
其中, 下级信道译码装置中的信道译码算法单元的译码性能优于信道译 码算法单元 102的译码性能。
若信道译码算法单元 102得到的当前译码 CRC校验结果错误, 并且, 存 在下级信道译码装置, 确定由下级信道译码装置继续对解调信息译码。
当确定由下级信道译码装置继续译码时, 下级信道译码装置既可以从当 前信道译码装置获取解调信息, 也可以从解调器获取解调信息, 还可以从当 前信道译码装置之前的任一上级信道译码装置获取解调信息, 本发明实施例 并不以此为限。
在本发明的一个实施例中,信道译码装置还可以包括译码信息传输单元。 译码信息传输单元, 用于在下级译码确定单元 103确定由下级信道译码装置 继续对解调信息译码时, 将解调信息传输至下级信道译码装置。 译码信息传 输单元, 还可以将信道译码算法单元 102译码得到的当前译码信息也传输至 下级信道译码装置, 使下级信道译码装置根据该译码信息进行辅助译码, 以 提高译码的准确性。
在本发明的又一实施例中, 若信道译码算法单元 102 得到的当前译码
CRC校验结果正确, 则可以结束译码。 例如, 对 AMR任一子流的解调信息 译码时, 可以将当前译码信息送入 AMR组帧模块与其他子流的译码信息一 起进行 AMR语音组帧, 对于 AMR的 A子流 , 还可以将当前译码的 CRC校 验结果送入外环功控模块用于外环功控判决。
在本发明的又一实施例中, 若当前信道译码装置为最后一级信道译码装 置,对解调信息完成译码,并对译码信息进行 CRC校验后,也需要结束译码。 此时,如果最后一级信道译码装置 CRC校验失败, 由于各级信道译码装置都 无法得到 CRC校验正确的译码结果, 对该解调信息上报译码错误。
需要说明的是, 当前信道译码装置和下级信道译码装置可以部署在不同 网络节点上, 以免集中部署在同一网络节点, 给该网络节点的处理带来较大 的负荷。 例如, 信道译码装置部署在基站节点 NodeB上, 下级信道译码装置 可以部署在无线网络控制器 RNC上, 又例如, RNC和 NodeB之间有传输节 点时, 第一级信道译码装置部署在 NodeB 上, 第二级信道译码装置部署在 RNC和 NodeB之间的传输节点上, 第三级信道译码装置部署在 RNC上。 本 发明实施例并不以此为限制。
通过本发明实施例的装置, 可以对信道的任一种解调信息进行译码和 CRC校验, 根据 CRC校验结果确定是否使用更高译码性能的下级信道译码 装置分级译码。 一般情况下, 大部分解调信息通过第一级译码即可以获得正 确的译码结果, 假设误码率在 10%, 进入下一级译码的解调信息也只占全部 解调信息的 10%, 也就是说仅 10%的解调信息需要用到更高性能的信道译码 装置译码从而获得更好的性能。 本发明实施例的装置相比于传统只使用一级 译码装置, 既能提高译码性能, 又避免了全部解调信息均使用高性能信道译 码装置译码带来的高处理开销。 同时由于各级信道译码装置分布在各个网络 节点上, 不需要集中在所有的 NodeB上, 也减少了高性能信道译码装置部署 的个数, 使得配置更加灵活。 图 2为本发明一实施例提供的信道译码装置的结构图, 该信道译码装置 和其他信道译码装置分别部署在不同的网络节点上, 釆用与其他信道译码装 置不同的信道译码算法对解调信息的译码, 与该信道译码装置的下级信道译 码装置相比, 下级信道译码装置的译码性能优于该信道译码装置。如图所示, 该装置可以包括: 总线 201 , 与总线 201相连的处理器 202 , 与总线 201相连 的存储器 203 以及与总线 201相连的收发器 204。 其中, 处理器 202通过总 线 201 , 调用存储器 203 中存储的程序, 以用于控制该收发器 204获取解调 信息; 对获取到的解调信息译码得到当前译码信息, 并对当前译码信息进行 CRC校验得到当前译码 CRC校验结果; 若当前译码 CRC校验结果错误, 并 且, 存在下级信道译码装置, 则确定由下级信道译码装置继续对解调信息译 码; 其中, 下级信道译码装置的译码性能优于当前信道译码装置的译码性能。
其中, 收发器 204可以通过多种方式获取解调信息, 例如, 信道译码装 置为第一级信道译码装置, 处理器 202用于控制收发器 204从解调器获取解 调信息; 又例如, 信道译码装置为第一级信道译码装置的任一下级信道译码 装置时, 收发器 204可以从解调器直接获取解调信息, 也可以从当前信道译 码装置之前的任一上级信道译码装置获取解调信息, 这取决于当前信道译码 装置和解调器或者任一上级信道译码装置之间是否支持传输解调信息。例如, 信道译码装置为第三级信道译码装置, 收发器 204可以从第二级信道译码装 置获取解调信息, 也可以从第一级信道译码装置获取解调信息, 还可以从解 调器直接获取解调信息, 需要说明的是, 这里只是举例, 本发明实施例并不 以此为限制。 在本发明的另一实施例中, 收发器 204还可以从当前信道译码装置之前 的任一上级信道译码装置获取该任一级译码信息用于当前信道译码装置辅助 译码以提高译码的准确性。 例如, 信道译码装置为第二级信道译码装置, 收 发器 204可以从第一级信道译码装置获取解调信息, 并且从第一级信道译码 装置获取第一级的译码信息用于辅助译码。 需要说明的是, 这里只是举例, 本发明实施例并不以此为限制。
其中, 处理器 202可以釆用多种信道译码算法对解调信息译码, 例如, 可以是 VA, 也可以是 LVA、 PLVA或者 SLVA等, 还可以是其他信道译码 算法, 其中 PL VA根据其搜索路径数目又可以分为 PL VA4 , 是 PLVA64等, 本发明并不限于此。 处理器 202釆用的信道译码算法的译码性能要优于当前 信道译码装置之前的任一上级信道译码装置的处理器釆用的信道译码算法的 译码性能, 而下级信道装置中釆用的信道译码算法的译码性能优于处理器 202 釆用的信道译码算法的译码性能。 例如, 信道译码装置为第一级信道译 码装置, 处理器 202可以釆用 VA译码, 则第二信道译码装置中的处理器可 以釆用 PLVA或者 LVA译码。 又例如, 信道译码装置为第一级信道译码装 置, 信道译码算法单元 102可以釆用 VA译码, 第二级信道译码装置中的信 道译码算法单元可以釆用 PLVA4 译码, 第三级信道译码装置中的信道译码 算法单元可以釆用 PL VA64译码。 需要说明的是, 这里只是举例, 本发明实 施例并不以此为限制。
当处理器 202确定由下级信道译码装置继续译码时, 下级信道译码装置 既可以从当前信道译码装置获取解调信息, 也可以从解调器获取解调信息, 还可以从当前信道译码装置之前的任一上级信道译码装置获取解调信息, 本 发明实施例并不以此为限。 当处理器 202确定由下级信道译码装置继续对解 调信息译码时, 处理器 202还可以控制收发器 204用于将解调信息传输至下 级信道译码装置。 此时, 收发器 204还可以将当前译码信息也传输至下级信 道译码装置, 使下级信道译码装置根据该译码信息进行辅助译码, 以提高译 码的准确性。
在本发明的一个实施例中,当处理器 202确定当前译码 CRC校验结果正 确, 则可以结束译码, 而无需再送入下级信道译码装置。 例如, 对 AMR任 一子流的解调信息译码时, 可以将当前译码信息送入 AMR组帧模块与其他 子流的译码信息一起进行 AMR语音组帧, 对于 AMR的 A子流, 还可以将 当前译码的 CRC校验结果送入外环功控模块用于外环功控判决。
在本发明的又一实施例中, 若当前信道译码装置为最后一级信道译码装 置, 也需要结束译码, 此时, 如果最后一级信道译码装置 CRC校验失败, 由 于各级信道译码装置都无法得到 CRC校验正确的译码结果,对该解调信息上 报译码错误。
需要说明的是, 当前信道译码装置和下级信道译码装置可以部署在不同 网络节点上, 以免集中部署在同一网络节点, 给该网络节点的处理带来较大 的负荷。 例如, 信道译码装置部署在基站节点 NodeB上, 下级信道译码装置 可以部署在无线网络控制器 RNC上。 又例如, RNC和 NodeB之间有传输节 点时, 也可以部署在 RNC和 NodeB之间的传输节点上, 本发明实施例并不 以此为限制。
通过本发明实施例的装置, 可以对信道的任一种解调信息进行译码和 CRC校验,根据 CRC校验结果确定使用更高译码性能的下级信道译码装置分 级译码。 一般情况下, 大部分解调信息通过第一级译码即可以获得正确的译 码结果, 进入下一级译码的解调信息也只占全部解调信息的小部分。 本发明 实施例的装置相比于传统只使用一级译码装置, 既能提高译码性能, 又避免 了全部解调信息均使用高性能信道译码装置译码带来的高处理开销。 同时由 于各级信道译码装置分布在不同网络节点上, 不需要集中在所有的 NodeB 上, 也减少了高性能信道译码装置部署的个数, 使得配置更加灵活。 图 3为本发明一实施例提供的分布式译码器的结构图, 如图所示, 该分 布式译码器可以包括: 至少两个信道译码装置 301 , 各个信道译码装置 301 之间为上下级级联关系, 其中下级的信道译码装置 301釆用的信道译码算法 译码性能优于上级的信道译码装置 301。
信道译码装置 301可以为图 1或者图 2所示的信道译码装置, 由于在前 述实施例中, 已经对信道译码装置进行了说明, 在此不再赘述。
以分布式译码器包括两个信道译码装置为例说明, 参见图 4。 两个信道 译码装置分别为第一级信道译码装置 401和第二级信道译码装置 402。 第一 级信道译码装置 401部署在 NodeB上, 第二信道译码装置部署 402在 RNC 上。 解调器和第一级信道译码装置 401相连接, 第一级信道译码装置 401从 解调器获取 AMR子流解调信息, 这里以 AMR语音业务的 A子流为例, 当 然也可以是 B子流或者 C子流, 或者是数据业务或者信令的解调信息。 第一 级信道译码装置 401釆用 VA对获取到的 A子流解调信息进行译码得到第一 级译码信息, 并对第一级译码信息进行 CRC校验, 若 CRC校验结果错误, 第一级信道译码装置 401将 A子流解调信息送至第二级信道译码装置 402 , 当然也可以将第一级译码信息也送至第二信道译码装置 402进行辅助译码; 第二级信道译码装置 402釆用译码性能优于 VA的 PLVA4算法, 对 A子流 解调信息译码得到第二级译码信息, 如果有第一级译码信息, 也可以釆用第 一级译码信息进行辅助译码, 并对第二级译码信息进行 CRC校验。如果第二 级译码的 CRC校验结果正确, 可以结束译码, 将当前译码信息送入 AMR组 帧模块与其他子流的译码信息一起进行 AMR语音组帧, 还可以将第二级译 码的 CRC校验结果送入外环功控模块用于外环功控判决;如果第二级译码的 CRC校验结果错误, 则也结束译码, 同时上报译码错误。
需要说明的是, 上述均只是方便举例说明, 信道译码装置还可以多于两 个, 例如, 还可以有第三级信道译码装置, 第四级信道译码装置等, 各信道 译码装置部署的位置也可以不限于 NodeB或者 RNC, 只要分布在不同的网 络节点即可, 本发明实施例并不限于此。 分布式器中的各信道译码装置的功 能以及实现方式可以参考图 1或者图 2中信道译码装置的描述, 在此不再赘 述。
通过本发明实施例的分布式译码器, 可以对信道的任一种解调信息进行 译码和 CRC校验,根据 CRC校验结果确定使用更高译码性能的下级信道译码 装置分级译码。 一般情况下, 大部分解调信息通过第一级译码即可以获得正 确的译码结果, 进入下一级译码的解调信息也只占全部解调信息的小部分。 本发明实施例的装置相比于传统只使用一级译码装置, 既能提高译码性能, 又避免了全部解调信息均使用高性能信道译码装置译码带来的高处理开销。 同时由于各级信道译码装置分布在不同网络节点上, 不需要集中在所有的 NodeB上, 也减少了高性能信道译码装置部署的个数, 使得配置更加灵活。 图 5给出了同一场景下几种译码器的性能仿真比较, 其中, 仿真的信道 环境为典型城区, 移动速度为每小时 3公里的信道环境, 简称为 TU3信道, 语音业务为 AMR12.2k, 釆用平均意见值(Mean Opinion Score, MOS分)评 估, 译码性能越好, MOS分越高, 方案一为釆用传统的 VA译码器对 AMR 的各子流译码; 方案二对于 AMR的 A子流釆用分布式译码器译码, 其中第 一级译码釆用 VA, 第二级译码釆用 PLVA4 , 对于 AMR的其他子流仍釆用 VA译码器译码; 方案三对于 AMR的 A子流分布式译码器, 其中, 第一级 译码釆用 VA, 第二级釆用 PLVA4, 第三级釆用 PLVA64 , 对于 AMR的其 他子流仍釆用 VA译码器译码; 方案四对于 AMR的 A子流和 B子流分别釆 用分布式译码器, 即对 B子流增加 8比特校验位并使用分布式译码器译码, 其中, 第一级译码釆用 VA, 第二级釆用 PLVA4 , 第三级釆用 PLVA64 , 对 于 AMR的其他子流仍釆用 VA译码器译码。 从图 4中可以看出, 在同样的 信噪比下,仅对 AMR的 A子流进行 CRC校验的情况下, 釆用分布式译码器 多级译码的 MOS分要高于传统 VA译码,而增加对 AMR的 B子流进行 CRC 校验, 也就是对 B子流也釆用分布式译码器多级译码, 其 MOS分也高于仅 对 AMR的 A子流釆用分布式译码即多级译码。 图 6为本发明另一实施例提供的信道译码的方法的流程图, 用于分布式 译码器中任一级信道译码装置中, 该分布式译码器至少包括两级信道译码装 置, 如图所示, 该方法包括:
步骤 601 : 获取信道的解调信息。 其中, 解调信息可以从解调器直接获 取信道的解调信息, 也可以从当前信道译码装置之前的任一上级信道译码装 置获取信道的解调信息, 这取决于当前信道译码装置和解调器或者任一上级 信道译码装置之间是否支持传输解调信息。 当从当前信道译码装置之前的任 一上级信道译码装置获取信道的解调信息时, 还可以从当前信道译码装置之 前的任一上级信道译码装置获取该任一级译码信息作为辅助译码信息。
步骤 602: 对步骤 601 获取到的解调信息译码得到当前译码信息, 并对 当前译码信息进行 CRC校验得到当前译码 CRC校验结果。 可以釆用多种信 道译码算法对解调信息译码, 例如, 可以是 VA, 也可以是 LVA、 PLVA或 者 SLVA等, 还可以是其他信道译码算法, 其中 PL VA根据其搜索路径数目 又可以分为 PLVA4 , PLVA64等, 本发明并不限于此。 其中, 当前的信道 译码算法的译码性能要优于之前的任一上级信道译码装置釆用的信道译码算 法的译码性能, 而下级信道装置中釆用的信道译码算法的译码性能优于当前 的信道译码算法的译码性能。
如果在步骤 601 中还获取了辅助译码信息, 对解调信息进行译码时可以 釆用辅助译码信息辅助译码。
步骤 603 : 若步骤 602得到的当前译码 CRC校验结果错误, 并且, 存在 下级信道译码装置, 则确定由下级信道译码装置继续对解调信息译码。
其中,下级信道译码装置的译码性能优于当前信道译码装置的译码性能。 在本发明的一个实施例中还可以包括以下可选步骤:
步骤 604: 若步骤 603确定由下级信道译码装置继续译码时, 将解调信 息传输至下级信道译码装置。 进一步地, 还可以将当前译码信息也传输至下 级信道译码装置, 使下级信道译码装置根据该译码信息进行辅助译码。
在本发明的另一实施例中, 还可以包括以下可选步骤:
步骤 605 : 若步骤 602得到的当前译码 CRC校验结果正确, 则可以结束 译码; 或者;
步骤 606: 若当前信道译码装置为最后一级信道译码装置, 也需要结束 译码。 此时, 如果最后一级信道译码装置 CRC校验失败, 由于各级信道译码 装置都无法得到 CRC校验正确的译码结果, 对该解调信息上报译码错误。
需要说明的是, 当前信道译码装置和下级信道译码装置可以部署在不同 网络节点上, 以免集中部署在同一网络节点, 给该网络节点的处理带来较大 的负荷。
本发明实施例的方法各步骤的功能均可以由前述装置实施例各组成部分 对应实现, 在前述装置实施例中已经进行描述, 在此不再赘述。
通过本发明实施例的方法, 可以对信道的任一种解调信息进行译码和 CRC校验, 根据 CRC校验结果确定是否使用更高译码性能的下级信道译码 装置分级译码。 一般情况下, 大部分解调信息通过第一级译码即可以获得正 确的译码结果, 进入下一级译码的解调信息也只占全部解调信息的小部分。 本发明实施例的装置相比于传统只使用一级译码装置, 既能提高译码性能, 又避免了全部解调信息均使用高性能信道译码装置译码带来的高处理开销。 同时由于各级信道译码装置分布在不同网络节点上, 不需要集中在所有的 NodeB上, 也减少了高性能信道译码装置部署的个数, 使得配置更加灵活。 通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件 实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读介质上 的一个或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和 通信介质, 其中通信介质包括便于从一个地方向另一个地方传送计算机程序 的任何介质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但 不限于: 计算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其 他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带或存储 具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他 介质。 此外。 任何连接可以适当的成为计算机可读介质。 例如, 如果软件是 使用同轴电缆、 光纤光缆、 双绞线、 数字用户线 (DSL ) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么 同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无 线技术包括在所属介质的定影中。 如本发明所使用的, 盘( Disk )和碟( disc ) 包括压缩光碟(CD ) 、 激光碟、 光碟、 数字通用光碟(DVD ) 、 软盘和蓝光 光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面 的组合也应当包括在计算机可读介质的保护范围之内。 总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定 本发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种信道译码装置, 其特征在于, 所述装置包括:
译码信息获取单元, 用于获取信道的解调信息;
信道译码算法单元, 用于对所述译码信息获取单元获取到的解调信息译 码得到当前译码信息, 并对所述当前译码信息进行循环冗余校验 CRC校验 得到当前译码 CRC校验结果;
下级译码确定单元,用于若所述信道译码算法单元得到的当前译码 CRC 校验结果错误, 并且, 存在下级信道译码装置, 则确定由所述下级信道译码 装置继续对所述解调信 , 译码;
其中, 所述下级信道译码装置中信道译码算法单元的译码性能优于所述 信道译码装置中的信道译码算法单元的译码性能。
2、 根据权利要求 1 所述的装置, 其特征在于, 所述译码信息获取单元 具体用于:
从解调器获取信道的解调信息, 或者, 从所述信道译码装置之前的任一 上级译码装置获取信道的解调信息。
3、 根据权利要求 2所述的装置, 其特征在于, 所述译码信息获取单元 从所述信道译码装置之前的任一上级信道译码装置获取信道的解调信息时, 所述译码信息获取单元还用于从所述信道译码装置之前的任一上级信道译 码装置获取所述任一上级译码信息作为辅助译码信息;
所述信道译码算法单元,还用于对所述解调信息釆用所述辅助译码信息 辅助译码。
4、 根据权利要求 1至 3任一项所述的装置, 其特征在于, 所述装置还 包括译码信息传输单元,用于在所述下级译码确定单元确定由下级信道译码 装置继续对所述解调信息译码时,将所述解调信息传输至所述下级信道译码 装置。
5、 根据权利要求 4所述的装置, 其特征在于, 所述译码信息传输单元 还用于:
在所述下级译码确定单元确定由下级信道译码装置继续对所述解调信 息译码时,将所述信道译码算法单元得到的所述当前译码信息传输至所述下 级信道译码装置进行辅助译码。
6、 根据权利要求 1至 5任一项所述的装置, 其特征在于, 所述下级译 码确定单元还用于: 若所述当前译码 CRC校验结果正确, 则结束译码; 或 者, 若所述当前信道译码装置为最后一级信道译码装置, 则结束译码。
7、 根据权利要求 1至 6任一所述的装置, 其特征在于, 所述解调信息 为以下任一种: 自适应多速率语音业务 AMR任一子流的解调信息, 或者, 数据业务的解调信息, 或者, 信令的解调信息。
8、 根据权利要求 1至 7任一项所述的装置, 其特征在于, 所述信道译 码算法单元釆用维特比译码算法 VA译码, 所述下级信道译码装置中的信道 译码算法单元釆用列表维特比算法 LVA , 或者, 并行列表维特比算法 PLVA, 或者, 串行列表维特比算法 SLVA译码。
9、 根据权利要求 1至 8任一项所述的装置, 所述信道译码装置和所述 下级信道译码装置部署在不同网络节点上译码。
10、 根据权利要求 9 所述的装置, 所述信道译码装置部署在基站节点 NodeB上, 所述下级信道译码装置部署在无线网络控制器 RNC上。
11. 一种信道译码的方法, 其特征在于, 所述方法用于分布式译码器中 任一级信道译码装置中, 所述分布式译码器至少包括两级信道译码装置, 所 述方法包括:
获取信道的解调信息;
对所述解调信息译码得到当前译码信息, 并对所述当前译码信息进行循 环冗余校验 CRC校验得到当前译码 CRC校验结果;
若所述当前译码 CRC校验结果错误, 并且, 存在下级信道译码装置, 则确定由所述下级信道译码装置继续对所述解调信息译码; 其中, 所述下级信道译码装置的译码性能优于所述当前信道译码装置的 译码性能。
12、 根据权利要求 11 所述的方法, 其特征在于, 所述获取信道的解调 信息, 包括:
从解调器获取信道的解调信息, 或者, 从所述当前信道译码装置之前的 任一上级信道译码装置获取信道的解调信息。
13、 根据权利要求 12所述的方法, 其特征在于, 从所述当前信道译码 装置之前的任一上级信道译码装置获取信道的解调信息时,所述获取信道的 解调信息还包括,从所述当前信道译码装置之前的任一上级信道译码装置获 取该任一级译码信息作为辅助译码信息;
所述对所述解调信息译码得到当前译码信息, 还包括:
对所述解调信息釆用所述辅助译码信息辅助译码。
14、 根据权利要求 11至 13任一项所述的方法, 其特征在于, 若确定由 下级信道译码装置继续对所述解调信息译码时, 所述方法, 还包括: 将所述 解调信息传输至所述下级信道译码装置。
15、 根据权利要求 14所述的方法, 其特征在于, 所述将所述解调信息 传输至所述下级信道译码装置, 还包括:
将所述当前译码信息传递至所述下级信道译码装置进行辅助译码。
16、根据权利要求 11至 15任一项所述的方法,其特征在于, 所述方法, 还包括: 若所述当前译码 CRC校验结果正确, 则结束译码; 或者, 若所述 当前信道译码装置为最后一级信道译码装置, 则结束译码。
17、 根据权利要求 11至 16任一项所述的方法, 所述解调信息为以下任 一种: 自适应多速率语音业务 AMR任一子流的解调信息, 或者, 数据业务 的解调信息, 或者信令的解调信息。
18、 根据权利要求 11至 17任一项所述的方法, 所述对所述解调信息译 码得到当前译码信息为对所述解调信息釆用维特比译码算法 VA译码, 所述 下级信道译码装置釆用列表维特比算法 LVA, 或者并行列表维特比算法 PLVA, 或者串行列表维特比算法 SLVA译码。
19、 根据权利要求 11至 18任一项所述的方法, 所述当前信道译码装置 和所述下级信道译码装置部署在不同网络节点上译码。
20、 根据权利要求 19所述的方法, 所述当前信道译码装置部署在基站 节点 NodeB上, 所述下级信道译码装置部署在无线网络控制器 RNC上。
21、 一种计算机程序产品, 其特征在于, 所述计算机程序产品存储一组 或多组计算机程序, 所述计算机程序被运行时用于执行权利要求 11-20中任 一项所述的方法。
22、 一种分布式译码器, 其特征在于, 所述分布式译码器包括: 至少两 个如权利要求 1至 10任一项所述的信道译码装置, 各个信道译码装置之间 为上下级级联关系,其中下级的信道译码装置的译码性能优于上级的信道译 码装置的译码性能。
PCT/CN2014/071966 2014-02-11 2014-02-11 信道译码的方法、装置和分布式译码器 WO2015120575A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2014/071966 WO2015120575A1 (zh) 2014-02-11 2014-02-11 信道译码的方法、装置和分布式译码器
EP14882412.1A EP3098991B1 (en) 2014-02-11 2014-02-11 Channel decoding method and apparatus
CN201480000148.3A CN105103480B (zh) 2014-02-11 2014-02-11 信道译码的方法、装置和分布式译码器
ES14882412T ES2765425T3 (es) 2014-02-11 2014-02-11 Método y aparato de decodificación de canales
MYPI2016702898A MY191154A (en) 2014-02-11 2014-02-11 Channel decoding method and apparatus, and distributed decoder
US15/233,646 US10285086B2 (en) 2014-02-11 2016-08-10 Channel decoding method and apparatus, and distributed decoder
ZA2016/05538A ZA201605538B (en) 2014-02-11 2016-08-10 Channel decoding method and apparatus, and distributed decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071966 WO2015120575A1 (zh) 2014-02-11 2014-02-11 信道译码的方法、装置和分布式译码器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/233,646 Continuation US10285086B2 (en) 2014-02-11 2016-08-10 Channel decoding method and apparatus, and distributed decoder

Publications (1)

Publication Number Publication Date
WO2015120575A1 true WO2015120575A1 (zh) 2015-08-20

Family

ID=53799486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071966 WO2015120575A1 (zh) 2014-02-11 2014-02-11 信道译码的方法、装置和分布式译码器

Country Status (7)

Country Link
US (1) US10285086B2 (zh)
EP (1) EP3098991B1 (zh)
CN (1) CN105103480B (zh)
ES (1) ES2765425T3 (zh)
MY (1) MY191154A (zh)
WO (1) WO2015120575A1 (zh)
ZA (1) ZA201605538B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037782A1 (zh) * 2017-08-25 2019-02-28 华为技术有限公司 极化码的译码方法和译码器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985779B2 (en) 2018-08-27 2021-04-20 Polaran Haberlesme Teknolojileri Anonim Sirketi Method and system for decoding data using compressed channel output information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1385983A (zh) * 2001-05-10 2002-12-18 华为技术有限公司 一种自适应调节迭代次数的h-arq接收方法
US20090106637A1 (en) * 2007-10-23 2009-04-23 Samsung Electronics Co., Ltd. Concatenated decoder and concatenated decoding method
CN101814975A (zh) * 2009-01-27 2010-08-25 三菱电机株式会社 多级解码器和符号块解码方法
WO2012163099A1 (zh) * 2011-05-27 2012-12-06 华为技术有限公司 语音信号处理方法、装置和接入网系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092230A (en) * 1993-09-15 2000-07-18 Motorola, Inc. Method and apparatus for detecting bad frames of information in a communication system
US6272660B1 (en) * 1998-04-03 2001-08-07 Agere Systems Guardian Corp. Screening for errors in data transmission systems
US6105158A (en) * 1998-04-03 2000-08-15 Lucent Technologies, Inc. Screening for undetected errors in data transmission systems
KR100321978B1 (ko) * 1998-12-31 2002-07-02 윤종용 통신시스템에서반복복호장치및방법
US7051268B1 (en) * 2000-09-29 2006-05-23 Qualcomm Incorporated Method and apparatus for reducing power consumption of a decoder in a communication system
KR100403743B1 (ko) * 2001-04-14 2003-10-30 삼성전자주식회사 이동통신시스템에서 프레임 동기 획득 장치 및 방법
JP4321394B2 (ja) * 2004-07-21 2009-08-26 富士通株式会社 符号化装置、復号装置
EP1990926B1 (en) * 2007-05-07 2013-08-21 Nokia Siemens Networks Oy Control channels in communication network systems
US8451952B2 (en) * 2009-12-30 2013-05-28 Telefonaktiebolaget L M Ericsson (Publ) Iterative decoding and demodulation with feedback attenuation
US9705658B2 (en) * 2013-02-04 2017-07-11 Mbit Wireless, Inc. Method and apparatus for detecting inconsistent control information in wireless communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1385983A (zh) * 2001-05-10 2002-12-18 华为技术有限公司 一种自适应调节迭代次数的h-arq接收方法
US20090106637A1 (en) * 2007-10-23 2009-04-23 Samsung Electronics Co., Ltd. Concatenated decoder and concatenated decoding method
CN101814975A (zh) * 2009-01-27 2010-08-25 三菱电机株式会社 多级解码器和符号块解码方法
WO2012163099A1 (zh) * 2011-05-27 2012-12-06 华为技术有限公司 语音信号处理方法、装置和接入网系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098991A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037782A1 (zh) * 2017-08-25 2019-02-28 华为技术有限公司 极化码的译码方法和译码器

Also Published As

Publication number Publication date
EP3098991B1 (en) 2019-10-23
MY191154A (en) 2022-06-02
US20160353312A1 (en) 2016-12-01
ES2765425T3 (es) 2020-06-09
US10285086B2 (en) 2019-05-07
ZA201605538B (en) 2017-08-30
EP3098991A4 (en) 2017-01-11
CN105103480A (zh) 2015-11-25
CN105103480B (zh) 2019-04-12
EP3098991A1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
US10348331B2 (en) Decoding method and apparatus of polar code
JP4701343B2 (ja) トレリスに基づく受信器
US10476998B2 (en) Reinforced list decoding
RU2452101C2 (ru) Схема декодирования с использованием нескольких гипотез о передаваемых сообщениях
US8359523B2 (en) Method and system for decoding video, voice, and speech data using redundancy
RU2454795C2 (ru) Декодирование каналов с помощью априорной информации в мар-сообщениях канала
CN106209113A (zh) 一种极化码的编解码方法
US20090276221A1 (en) Method and System for Processing Channel B Data for AMR and/or WAMR
CN110890940B (zh) 对pbch所携带的mib的解码方法及装置、存储介质、终端
WO2011144112A2 (zh) 语音信号处理方法、装置和接入网系统
BRPI0619223A2 (pt) aparelho e método para decodificar uma mensagem recebida com informação a priori
US20100153103A1 (en) Method and system for decoding wcdma amr speech data using redundancy
US8145982B2 (en) Method and system for redundancy-based decoding of voice content in a wireless LAN system
WO2015120575A1 (zh) 信道译码的方法、装置和分布式译码器
KR101462211B1 (ko) 이동통신 시스템의 복호 장치 및 방법
WO2014177041A1 (zh) 一种传输格式组合的译码方法及装置
US8019615B2 (en) Method and system for decoding GSM speech data using redundancy
WO2015135409A1 (zh) 一种会话建立方法、终端及系统
WO2019031769A1 (ko) 무선 통신 시스템에서 신호를 복호하기 위한 장치 및 방법
CN103812511B (zh) 一种译码方法及装置
KR20120135357A (ko) 다수의 연쇄 프로토콜 데이터 유닛들을 포함하는 버스트들의 향상된 디코딩을 위한 방법들 및 장치
JP2009194647A (ja) 受信装置
WO2014040297A1 (zh) 语音帧的译码方法及装置
CN103378943B (zh) 验证码字有效性的方法和设备以及译码方法和译码器
JP2004248216A (ja) 信号処理装置及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000148.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014882412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882412

Country of ref document: EP