WO2015119204A1 - Gas-liquid mixing device and gas-liquid mixing system - Google Patents

Gas-liquid mixing device and gas-liquid mixing system Download PDF

Info

Publication number
WO2015119204A1
WO2015119204A1 PCT/JP2015/053271 JP2015053271W WO2015119204A1 WO 2015119204 A1 WO2015119204 A1 WO 2015119204A1 JP 2015053271 W JP2015053271 W JP 2015053271W WO 2015119204 A1 WO2015119204 A1 WO 2015119204A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipe
liquid
stock solution
liquid mixing
Prior art date
Application number
PCT/JP2015/053271
Other languages
French (fr)
Japanese (ja)
Inventor
種池 昌彦
匡史 筏
進成 唐澤
Original Assignee
三菱レイヨン・クリンスイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン・クリンスイ株式会社 filed Critical 三菱レイヨン・クリンスイ株式会社
Priority to KR1020167020740A priority Critical patent/KR101858886B1/en
Priority to CN201580007313.2A priority patent/CN105992636B/en
Priority to JP2015510207A priority patent/JP5952959B2/en
Publication of WO2015119204A1 publication Critical patent/WO2015119204A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/236Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids specially adapted for aerating or carbonating beverages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23762Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/423Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
    • B01F25/4233Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using plates with holes, the holes being displaced from one plate to the next one to force the flow to make a bending movement

Definitions

  • the present invention relates to a gas-liquid mixing apparatus and a gas-liquid mixing system.
  • This application claims priority based on Japanese Patent Application No. 2014-20711 filed in Japan on February 5, 2014 and Japanese Patent Application No. 2014-134987 filed in Japan on June 30, 2014. Is hereby incorporated by reference.
  • a structure using a hollow fiber membrane is known in addition to the gas mixed water generating apparatus of Patent Document 1.
  • a structure using a static mixer is also known, but with this structure, the gas solubility in the stock solution cannot be increased unless the pressure is sufficiently increased. Since this is necessary, the device configuration is complicated and it is difficult to reduce the size.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to enable production of a gas mixture having a relatively high solubility with a simple structure, thereby enabling downsizing and cost reduction. At the same time, it is an object to provide a gas-liquid mixing apparatus that facilitates maintenance and ensures ease of use by ensuring a sufficient flow rate, and a gas-liquid mixing system using the same.
  • a gas-liquid mixing apparatus is a gas-liquid mixing apparatus for producing a gas mixed liquid by mixing a gas into a raw liquid, and the raw liquid inflow pipe into which the raw liquid continuously flows and the gas continuously
  • a gas inflow pipe that flows into the gas and a liquid mixture pipe that communicates with the stock solution inflow pipe and the gas inflow pipe, respectively, and the stock solution inflow pipe and the gas inflow pipe face each other and the stock solution and the gas collide with each other.
  • a gas-liquid collision part is formed, and the mixed liquid pipe is communicated with the gas-liquid collision part, and the central axis of the stock solution inflow pipe and the gas inflow pipe At least one of the central axes is arranged in a direction different from the central axis of the mixed solution pipe.
  • the stock solution inflow pipe and the gas inflow pipe are communicated so that the stock solution and the gas face each other and collide with each other, thereby forming a gas-liquid collision part at this communication location, Further, the mixed liquid pipe is communicated with the gas-liquid collision portion, and at least one of the central axis of the raw liquid inlet pipe and the central axis of the gas inlet pipe is arranged in a direction different from the central axis of the mixed liquid pipe. Therefore, the stock solution flowing in from the stock solution inflow tube and the gas flowing in from the gas inflow tube collide with each other, and at least one of the central axis of the stock solution inflow tube and the central axis of the gas inflow tube is not biased to one side. Therefore, the gas mixture can be guided in different directions, so that the collision energy can be maximized with a simple structure and the solubility of the gas in the stock solution can be increased.
  • the angle formed by the central axis of the stock solution inflow pipe and the central axis of the gas inflow pipe is preferably 20 ° to 180 °, more preferably 95 ° to 180 °. preferable.
  • “the angle formed by the central axis of the stock solution inflow pipe and the central axis of the gas inflow tube” is the result of connecting the stock solution inflow tube and the gas inflow tube on a plane, It means the angle formed between the two central axes. According to this configuration, a gas mixture having a relatively high gas solubility can be manufactured with a simple structure.
  • the stock solution is water and the gas is carbon dioxide gas. According to this configuration, carbonated water having a relatively high solubility of carbon dioxide (carbon dioxide) can be produced with a simple structure.
  • a first vortex generating mechanism for generating a vortex in the gas mixture is provided in the mixture liquid pipe.
  • the stock solution and the gas collide at the connection portion (the gas-liquid collision portion) of the stock solution inflow pipe and the gas inflow tube, the gas is mixed with the stock solution, and most of the gas is dissolved,
  • the bubbles in the gas mixture can be refined and the specific surface area can be increased to promote dissolution in the stock solution.
  • the first vortex generating mechanism is configured to face an end portion of the gas-liquid collision portion of an annular or cylindrical vortex generating portion provided in the liquid mixture pipe and the end portion. It is preferable that a groove portion formed to open to the gas-liquid collision portion side is provided between the inner wall surface of the mixed liquid pipe. According to this configuration, since the first eddy current generating mechanism includes the groove formed to open to the gas-liquid collision part side, the gas mixed liquid collides with the bottom surface of the groove and reverses the flow so that a minute amount is obtained. Eddy currents are formed, whereby the bubbles in the gas mixture are refined.
  • the first vortex generating mechanism includes an upstream first vortex generating mechanism disposed on the upstream side of the mixed liquid piping, and a downstream side of the upstream first vortex generating mechanism. It is preferable that a downstream first vortex generating mechanism is provided. According to this configuration, dissolution in the stock solution can be further promoted by further miniaturizing the bubbles in the gas mixture and increasing the specific surface area, rather than providing one first vortex generating mechanism.
  • a guide port that guides the gas mixture to the inner wall surface side of the downstream first vortex generating mechanism is provided in an internal hole of the vortex generating portion that constitutes the upstream first vortex generating mechanism.
  • the guide port is provided in the internal hole of the vortex generating portion that constitutes the upstream first vortex generating mechanism, the gas mixture that has passed through the guide port is included in the downstream first vortex generating mechanism.
  • the second vortex generating mechanism includes a narrow portion that narrows a flow path of the gas mixed liquid flowing through the mixed liquid pipe from upstream to downstream, and a flow path to a side of the narrow portion. It is preferable to have a flow path changing unit that reverses the flow of the gas mixed liquid by changing the flow rate and generates a vortex flow. According to this configuration, the gas mixture is pressurized by flowing through the narrow portion, and the solubility of the gas in the gas mixture is increased. Further, the flow of the gas mixture is reversed by the flow path changing unit, and the vortex is generated, whereby the bubbles in the gas mixture are refined and the dissolution in the stock solution is promoted.
  • the said control valve is comprised by the latch type solenoid valve. According to this configuration, the power consumption of the gas-liquid mixing device having the control valve can be reduced because the latch type solenoid valve has much less power consumption than a general solenoid valve.
  • the latch solenoid valve is preferably operated by a battery, and more preferably by a dry battery or a rechargeable battery.
  • a dry battery or a rechargeable battery instead of a commercial power source as a power source, the usability of the gas-liquid mixing device can be improved, and for example, it can be easily used in a bathroom.
  • the gas-liquid mixing system includes the gas-liquid mixing device, a raw liquid supply source that supplies the raw liquid to the raw liquid inflow pipe, a gas supply source that supplies gas to the gas inflow pipe, and the raw liquid supply source.
  • a control unit that controls supply of the stock solution from the gas supply source to the stock solution inflow tube and gas supply from the gas supply source to the gas inflow tube.
  • FIG. 1 It is a mimetic diagram showing a schematic structure of a 1st embodiment of a gas-liquid mixing system concerning the present invention.
  • It is an external appearance perspective view which shows schematic structure of a gas-liquid mixing apparatus.
  • It is a sectional side view which shows schematic structure of a gas-liquid mixing apparatus.
  • It is a perspective view which shows a vortex generating member.
  • It is a top view which shows a vortex generating member.
  • FIG. side view which shows a vortex generating member.
  • It is a perspective view which shows the other modification of a guide port.
  • It is a perspective view which shows a mixing pipe.
  • It is a top view which shows a mixing pipe.
  • FIG. 10 is a perspective view showing an internal structure of the gas-liquid mixing system shown in FIGS. 9A to 9C.
  • FIG. It is a schematic diagram which shows schematic structure of 3rd Embodiment of the gas-liquid mixing system which concerns on this invention.
  • FIG. 9A to 9C It is a schematic diagram which shows schematic structure of 3rd Embodiment of the gas-liquid mixing system which concerns on this invention.
  • FIG. 9C It is a schematic diagram which shows schematic structure of 3rd Embodiment of the gas-liquid mixing system which concerns on this invention.
  • It is a front view which shows the external appearance of 3rd Embodiment of the gas-liquid mixing system which concerns on this invention.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a first embodiment of a gas-liquid mixing system according to the present invention.
  • reference numeral 1 is a gas-liquid mixing system
  • 2 is a gas-liquid mixing device.
  • the gas-liquid mixing system 1 is for mixing and dissolving carbon dioxide (carbon dioxide) in raw water, for example, tap water, and providing the obtained carbonated water for various purposes.
  • carbonated water it is used for hairdressing and beauty purposes such as shampooing, and hot water for baths, that is, carbonated springs, as in the past.
  • FIG. 1 shows a schematic configuration of a gas-liquid mixing system 1 disposed in each hair wash table in a barber / beauty shop having a plurality of hair wash stands.
  • the gas-liquid mixing device 2 is the first embodiment of the gas-liquid mixing device according to the present invention.
  • FIG. 2A is an external perspective view of the gas-liquid mixing device 2 and a side sectional view of the gas-liquid mixing device 2.
  • a raw water inflow pipe (raw liquid inflow pipe) 5 connected to the raw water supply source 3 via a pipe (raw water side pipe 30), and a pipe (gas side pipe 31) to the gas supply source 4.
  • a gas inflow pipe 6 connected to each other.
  • the angle shown in FIG. By setting this angle within the above range, a gas mixture having a relatively high gas solubility can be produced with a simple structure.
  • the mixed liquid pipe is so arranged that the central axis of the mixed liquid pipe 8 is orthogonal to the central axis of one pipe formed by the raw water inflow pipe 5 and the gas inflow pipe 6. 8 is arranged.
  • the gas inflow pipe 6 is provided with an orifice plate 6b having a small hole on the opening 6a side, so that the carbon dioxide gas supplied from the gas supply source 4 can be supplied into the gas inflow pipe 6 at a predetermined pressure. To be supplied. About the magnitude
  • a mixed liquid pipe 8 is provided in the gas-liquid collision portion 7 of the raw water inflow pipe 5 and the gas inflow pipe 6 so as to communicate with the raw water inflow pipe 5 and the gas inflow pipe 6, respectively.
  • a pipe main body 9 that is disposed in a direction different from the central axis of the mixed liquid pipe 8 among at least one of the central axis of the raw water inflow pipe 5 and the central axis of the gas inflow pipe 6, and is integrally connected to the gas-liquid collision unit 7;
  • the housing 10 is detachably connected to the pipe body 9.
  • the housing 10 is detachably connected to the pipe body 9, but the pipe body 9 and the housing 10 may be integrally formed. Further, in the present embodiment, as shown in FIG.
  • ⁇ ′ is 20 ° to 180 °. It is preferably 95 ° to 180 °, more preferably 135 ° to 180 °.
  • the pipe body 9 is a cylindrical body integrally connected to the gas-liquid collision part 7 between the raw water inflow pipe 5 and the gas inflow pipe 6. Therefore, the members forming the raw water inflow pipe 5, the gas inflow pipe 6, and the pipe main body 9 are integrally molded products made of resin or metal in this embodiment.
  • the integrally molded product may be formed in a T-shape when viewed from the surface.
  • the pipe body 9 is formed so as to surround a cylindrical guide tube 11 formed in communication with the gas-liquid collision portion 7, and therefore has an inner diameter sufficiently larger than the inner diameter of the guide tube 11. is doing.
  • the housing 10 is made of a resin or metal formed in a substantially cylindrical shape, that is, in a pipe shape.
  • One end side is a substantially cylindrical insertion portion 12 that is inserted into the pipe body 9, and the other end side is a pipe body 9.
  • the main body 13 is a substantially cylindrical housing body 13 pulled out from the housing.
  • An annular flange portion 14 is formed between the insertion portion 12 and the housing body 13. The flange portion 14 is configured to contact an annular flange 9 a provided at an end portion of the pipe body 9 when the insertion portion 12 is inserted into the pipe body 9.
  • the joint clip 15 is attached to the flange portion 14 and the flange 9a as shown in FIGS. 2A and 2B.
  • the flange portion 14 and the flange 9a are held and fixed in contact with each other.
  • the joint clip 15 is a metal leaf spring formed in a substantially ring shape, and has an elongated opening 15a that engages with the flange portion 14 and the flange 9a along the circumferential direction thereof.
  • the joint clip 15 is expanded between one end side and the other end side, and the flange portion 14 and the flange 9a are inserted into the joint clip 15. Thereafter, the end portion is closed between the other end side and the flange portion is opened in the opening 15a. 14, the flange portion 14 and the flange 9 a can be held and fixed by the joint clip 15 by engaging and projecting the flange 9 a.
  • two O-rings 16, 16 are wound around the outer peripheral surface of the insertion portion 12 of the housing 10. These O-rings 16, 16 are provided so as to partially protrude in grooves (not shown) formed around the outer peripheral surface of the insertion portion 12. Under such a configuration, when the insertion portion 12 is inserted into the pipe main body 9, the O-rings 16 and 16 are interposed between the inner wall surface of the pipe main body 9 and the pipe main body 9. 9 is hermetically connected.
  • a cylindrical vortex generating member (vortex generating portion) 17 is accommodated in the internal hole of such an insertion portion 12. That is, a stepped portion 12a is formed in the inner hole of the insertion portion 12 substantially at the boundary with the housing body 13 side, and the vortex generating member 17 is placed on the stepped portion 12a. As shown in FIGS. 3A to 3C, the vortex generating member 17 includes a cylindrical portion 18 and a drift plate 19 integrally formed in the cylindrical portion 18.
  • 3A is a perspective view of the vortex generating member 17
  • FIG. 3B is a plan view of the vortex generating member 17
  • FIG. 3C is a side sectional view of the vortex generating member 17.
  • the vortex generating member 17 has an upper end portion of the cylindrical portion 18, that is, an end portion on the gas-liquid collision portion 7 side, and a rear side of the central axis of the mixed liquid pipe 8 (housing 10) (gas-liquid collision portion 7 side).
  • a taper surface 18a from the inside toward the outside as it goes from the front to the front side (the side opposite to the gas-liquid collision portion 7) is formed over the entire circumference of the upper end portion.
  • the taper surface 18a and the surface facing the taper surface 18a that is, the inner wall surface of the mixed liquid pipe 8 (insertion portion 12 of the housing 10) facing the upper end portion of the vortex generating member 17 shown in FIG. 2B.
  • a groove 20 is formed between them.
  • the groove portion 20 is formed to open toward the gas-liquid collision portion 7 over the entire circumference of the upper end portion of the vortex generating member 17, and is a part of the first vortex generating mechanism in the present invention, that is, the upstream side 1 eddy current generating mechanism is configured.
  • a part of the gas mixture flowing from the gas-liquid collision part 7 through the guide tube 11 and into the insertion part 12 by the groove part 20 is the bottom surface of the groove part 20, that is, the tapered surface. It collides with 18a and reverses its flow to form a minute vortex.
  • size are not limited to the form shown to FIG. 3A and FIG. 3B, if it is arrange
  • the form of can be adopted.
  • a relatively small circular guide port 19b as shown in FIG. 4A and a plurality of smaller circular guide ports 19c as shown in FIG. 4B may be arranged.
  • the guide port 19b shown in FIG. 4A and the guide port 19c shown in FIG. 4B are formed so that the total opening area thereof is substantially the same as the inner diameter of the guide tube 11 as with the guide port 19a. Is preferred. 4A and 4B show only the drift plate 19, but these drift plates 19 are provided in the cylindrical portion 18 shown in FIGS. 3A to 3C to constitute the vortex generating member 17. .
  • the inner hole 21a of the large diameter portion 21 is formed in a tapered shape that gradually becomes smaller in diameter toward the small diameter portion 22 side.
  • the lower end side that is, the side communicating with the inner hole 22a of the small diameter portion 22 is a tapered surface 21b having a large inclination angle (taper angle) formed by the inner wall surface. That is, the tapered surface 21b is formed to be inclined with respect to the central axis (not shown) so as to go from the outside to the inside as it goes to the small diameter portion 22 side.
  • a groove portion 24 is formed between the upper end portion of the mixing pipe 23 and the inner wall surface (housing main body 13 of the housing 10) of the mixed liquid pipe 8 facing the upper end portion, that is, the tapered surface 21b. Yes.
  • the groove portion 24 is formed to open to the gas-liquid collision portion 7 side, that is, the vortex generating member 17 side constituting the upstream first vortex generating mechanism over the entire circumference of the upper end portion of the mixing pipe 23,
  • the downstream 1st eddy current generation mechanism used as a part of the 1st eddy current generation mechanism in this invention is comprised.
  • the first vortex flow is generated by such a downstream first vortex generating mechanism having the mixing pipe 23 as a vortex generating portion and the upstream first vortex generating mechanism having the vortex generating member 17 as a vortex generating portion.
  • a generation mechanism is configured.
  • the upper end of the mixing pipe 23 constitutes a downstream first vortex generating mechanism, but in the present embodiment, a second vortex generating mechanism is formed inside thereof separately from this. That is, the mixing pipe 23 has a narrow portion 25 and a flow path changing portion 26 inside as shown in FIGS. 5A to 5C.
  • 5A is a perspective view of the mixing pipe 23
  • FIG. 5B is a plan view of the mixing pipe 23
  • FIG. 5C is a side sectional view of the mixing pipe 23.
  • the narrow portion 25 is provided with a first baffle plate 27 a extending from a part of the inner wall surface of the mixing pipe 23 toward the center side. This is an opening formed between the tip of the baffle plate 27 a and the inner wall surface of the mixing pipe 23. As described above, since the inner hole of the mixing pipe 23 is partially closed by the first baffle plate 27a, the remaining opening portion inevitably narrows the opening area, so that the flow path of the gas mixture can be made upstream. It becomes the site
  • a second baffle plate 27b extends from another part of the inner wall surface of the mixing pipe 23 toward the center side. Is provided. Since the second baffle plate 27b is arranged directly under the narrow portion 25 in this way, the gas mixture flowing through the narrow portion 25 collides with the second baffle plate 27b, and then the second baffle plate 27b. It flows through an opening 27 c formed between the tip of the mixing pipe 23 and the inner wall surface of the mixing pipe 23. Accordingly, the second baffle plate 27b and the opening 27c formed on the tip side of the second baffle plate 27b constitute a flow path changing portion 26 that changes the flow path to the side of the narrow portion 25.
  • the mixing pipe 23 is formed with two notches 28a and 28b on the side wall as shown in FIGS. 5A and 5C. These notches 28a and 28b are mainly used for forming the first baffle plate 27a and the second baffle plate 27b. Moreover, the annular fitting convex part fitted to the fitting recessed part (not shown) formed in the lower end part of the small diameter part 22 of the housing main body 13 as shown in FIG. 2B at the lower end part of the mixing pipe 23 29 is formed. The fitting pipe 29 is detachably fitted into the fitting recess at the lower end of the small-diameter portion 22, so that the mixing pipe 23 is detachably accommodated in the housing body 13.
  • the mixing pipe 23 accommodated and fixed in the housing body 13 in this way has an opening on the lower end side serving as a gas mixture jet outlet of the gas-liquid mixing device 2. Therefore, although not shown, the hose and the shower head are attached to the small diameter portion 22 of the housing body 13. Therefore, the small diameter portion 22 has a male screw portion (not shown) formed on the outer peripheral surface thereof, and a hose is detachably attached thereto.
  • the raw water supply source 3 is a water pipe, and therefore, the raw water side pipe 30 is disposed between the water pipe and the raw water inflow pipe 5.
  • the water pipe or the raw water inflow pipe 5 may be provided with a heating device (not shown) for heating the tap water to a predetermined temperature, for example, a preset temperature of about 30 ° C. to 45 ° C. .
  • a heating device not shown
  • the temperature within the above temperature range, preferably about 35 ° C. to 40 ° C.
  • a predetermined amount of sodium chloride may be dissolved in tap water as raw water in advance to obtain physiological saline for medical purposes. Furthermore, you may add the fragrance
  • the raw water supply source 3 various water sources can be used in addition to the water pipe.
  • the gas supply source 4 in this embodiment, a gas cylinder filled with carbon dioxide gas at a pressure (gauge pressure) of about 0.5 MPa is used.
  • the raw water side pipe 30 is provided with a first pressure switch 32 serving as a pressure switch of the present invention.
  • the first pressure switch 32 reduces the pressure of the raw water flowing in the raw water side pipe 30 (in the raw water inflow pipe 5) without narrowing the flow path of the raw water side pipe 30, that is, the raw water inflow pipe 5.
  • This is a sensor to detect, and has a known configuration in which a switch is turned on when a predetermined pressure higher than a preset pressure is detected and the switch is turned off when the pressure is lower than a predetermined pressure.
  • the first pressure switch 32 is electrically connected to the control unit 40, and transmits a detected on / off signal to the control unit 40.
  • the gas side pipe 31 connected to the gas side supply pipe 6 of the gas-liquid mixing apparatus 2 shown in FIGS. 6A and 6B includes an electromagnetic valve 33 in the path between the gas supply source 4 as shown in FIG. (Control valve) and a second pressure switch 34 are provided.
  • the second pressure switch 34 is disposed on the gas supply source 4 side, detects the pressure of the carbon dioxide gas flowing through the gas side pipe 31, and is equal to or higher than a preset pressure (for example, 0.3 MPa [gauge pressure]). If so, the switch is turned on, and if it is less than a preset pressure, the switch is turned off. Therefore, the second pressure switch 34 functions as a fuel gauge for determining the residual pressure in the gas cylinder constituting the gas supply source 4, that is, the remaining amount of carbon dioxide in the gas cylinder.
  • a preset pressure for example, 0.3 MPa [gauge pressure]
  • the second pressure switch 34 is also electrically connected to the control unit 40, and transmits an on / off signal based on the detection result to the control unit 40.
  • the control unit 40 whether or not the detection result of the second pressure switch 34, that is, the remaining amount of the gas supply source 4 (gas cylinder) is equal to or higher than a preset pressure (amount) is displayed on the display unit of the operation panel (not shown). Is displayed.
  • the electromagnetic valve 33 is disposed on the downstream side of the second pressure switch 34 and adjusts the supply of carbon dioxide from the gas supply source 4 by opening and closing thereof. That is, when the electromagnetic valve 33 is opened, carbon dioxide is supplied from the gas supply source 4 to the gas inflow pipe 6 of the gas-liquid mixing device 2, and when closed, the supply of carbon dioxide is stopped.
  • the opening and closing of the electromagnetic valve 33 is controlled by being electrically connected to the control unit 40.
  • the control unit 40 receives the on / off signal from the first pressure switch 32 and controls the opening / closing of the electromagnetic valve 33 based on the on / off signal. That is, the first pressure switch 32 detects that the pressure in the raw water side pipe 30 (raw water inflow pipe 5) is equal to or higher than a predetermined pressure, and therefore the raw water is flowing at a predetermined flow rate or higher, and controls the ON signal. When transmitting to the unit 40, the control unit 40 transmits an ON signal to the electromagnetic valve 33 in order to open the electromagnetic valve 33. Then, the electromagnetic valve 33 is opened, and carbon dioxide gas is supplied to the gas-liquid mixing device 2.
  • the pressure in the raw water side pipe 30 (raw water inflow pipe 5 control unit 40) is less than a predetermined pressure, and therefore the first pressure switch 32 cannot detect that the raw water is flowing at a predetermined flow rate or higher. In this case, the ON signal is not transmitted to the control unit 40, and thus the control unit 40 closes the electromagnetic valve 33 without opening it. Then, since the electromagnetic valve 33 is closed, the carbon dioxide gas is not supplied to the gas-liquid mixing device 2.
  • carbon dioxide gas is supplied to the gas-liquid mixing device 2 only when the raw water flows at a predetermined flow rate or higher and is supplied to the gas-liquid mixing device 2, so that the carbon dioxide gas is excessive. Consumption is prevented, and the gas mixture to be produced, that is, the carbon dioxide concentration in the carbonated water is adjusted to an appropriate range set in advance.
  • the control unit 40 includes a CPU, a memory device, and the like, and has an operation panel that also functions as a display unit.
  • the entire gas-liquid mixing system 1 is turned on and off, and various data are output via the operation panel. Can be done. That is, the control unit 40, based on the signals from the first pressure switch 32 and the second pressure switch 34 described above, supply time (supply amount) of raw water, supply time (supply amount) of carbon dioxide gas, The remaining amount of carbon dioxide gas from the gas supply source 4 is calculated.
  • the various information calculated in this way can be output to an external terminal such as an iOS terminal or an Android via the output unit 35 in the control unit 40.
  • an external terminal such as an iOS terminal or an Android
  • the output part 35 what is output by communication means (for example, Bluetooth (trademark) etc.) which is not illustrated is provided.
  • a tablet, a smartphone, or the like is preferably used, and various information calculated by the control unit 40 can be easily received.
  • a hairdressing and beauty shop having a plurality of hair basins as in the present embodiment, when the gas-liquid mixing system 1 is disposed in each basin, various information is output from the gas-liquid mixing system 1 of each basin. Various information can be input to one external terminal. Therefore, the person in charge of the hairdressing and beauty shop can easily check the operating status of each hair basin, the past driving history, and the like by looking at the external terminal to which various information has been input.
  • water hot water
  • tap water as the raw water supply source 3
  • a predetermined pressure set in advance, for example, 0.10 to 0.20 MPa, preferably 0.10 to 0.15 MPa (gauge pressure).
  • Flow in side pipe 30 By supplying the raw water at such a predetermined pressure, in this embodiment, the flow rate is set to be, for example, about 6 to 15 l / min, preferably about 6 to 10 l / min.
  • the first pressure switch 32 detects this and opens the electromagnetic valve 33 via the control unit 40.
  • the second pressure switch 34 detects the remaining pressure (remaining amount) in the gas supply source (gas cylinder) 4 and displays the result on the operation panel of the control unit 40. Therefore, if the residual pressure of the gas supply source 4 is equal to or higher than a preset pressure, the operator proceeds with the production of carbonated water as it is. Moreover, when the residual pressure of the gas supply source 4 is less than a preset pressure, the gas supply source 4 is exchanged as necessary.
  • the gas supply source (gas cylinder) 4 is provided with a pressure regulator and a pressure gauge. For example, the replacement timing of the gas supply source 4 can be determined by checking the pressure gauge.
  • Carbon dioxide gas that has passed through the solenoid valve 33 is adjusted to have a flow rate of, for example, about 4 to 12 l / min, preferably about 5 to 11 l / min, by a flow rate regulator (not shown) provided on the upstream side or downstream side of the solenoid valve 33. Adjusted to When raw water is supplied from the raw water supply source 3 to the raw water inflow pipe 5 via the raw water side pipe 30, and carbon dioxide is supplied from the gas supply source 4 to the gas inflow pipe 6 via the gas side pipe 31, FIG. The raw water and carbon dioxide gas (gas) collide at the gas-liquid collision part 7 and are mixed as indicated by arrows in FIG. Then, it flows into the mixed liquid pipe 8 through the guide pipe 11.
  • a flow rate regulator not shown
  • the raw water and the carbon dioxide gas collide with each other in the gas-liquid collision unit 7, and the gas mixture obtained in a direction different from at least one of the raw water and the carbon dioxide gas without being biased to one side is guided,
  • the collision energy is maximized, the carbon dioxide is sufficiently mixed with the raw water, and the solubility of the carbon dioxide in the raw water is increased.
  • the saturated concentration of carbon dioxide with respect to water at a temperature of 40 ° C. is about 1000 ppm.
  • the gas-liquid mixing unit 2 after colliding with the gas-liquid collision unit 7, the gas-liquid mixing unit 2 passes through the guide tube 11 by flowing into the mixed solution pipe 8 through the guide tube 11.
  • the concentration of carbon dioxide in the gas mixture could be adjusted to about 800 to 850 ppm.
  • natural water exists as a state which became a bubble and was mixed in the gas liquid mixture.
  • the gas mixed solution (carbonated water) that has flowed into the mixed solution pipe 8 flows toward the vortex generating member 17 provided in the insertion portion 12 of the housing 10. At that time, a part of the gas mixture liquid flows toward the groove portion 20 (upstream first vortex generating mechanism) provided between the upper end portion of the vortex generating member 17 and the inner wall surface of the insertion portion 12. As shown by the arrows in FIG. 7, a minute vortex is generated. That is, the gas mixed solution collides with the bottom surface (tapered surface 18 a) of the groove portion 20, reverses the flow thereof, and flows in a direction intersecting with the central axis of the mixed solution pipe 8, thereby generating a minute vortex.
  • the bubbles in the gas mixture are refined and the specific surface area is increased.
  • the contact area of the carbon dioxide gas which forms a bubble, and gas mixed liquid (raw water) increases, and melt
  • the gas mixture whose carbon dioxide concentration is increased by the upstream first vortex generating mechanism passes through the guide port 19a of the drift plate 19 of the vortex generating member 17, as indicated by an arrow in FIG. And flows on the inner wall surface side of the inner hole 21 a of the large-diameter portion 21 of the housing body 13.
  • most of the gas mixture is a groove portion 24 (downstream first vortex generating mechanism) provided between the inner wall surface of the inner hole 21 a of the large diameter portion 21, that is, the tapered surface 21 b, and the upper end portion of the mixing pipe 23.
  • a minute vortex is generated as shown by an arrow in FIG. That is, the gas mixed liquid collides with the bottom surface (tapered surface 21 b) of the groove portion 24, reverses the flow thereof, and flows in a direction intersecting with the central axis of the mixed liquid piping 8, thereby generating a minute vortex.
  • the gas mixture that has flowed into the mixing pipe 23 is pressurized by flowing through the narrow portion 25 as shown in FIG. 5C, thereby increasing the solubility of the carbon dioxide gas in the gas mixture.
  • the flow is reversed by the second baffle plate 27 b and flows in a direction crossing the central axis of the mixed liquid pipe 8, thereby generating a vortex.
  • eddy_current is produced also when a flow path is changed toward the opening 27c after that.
  • bubbles in the gas mixture are refined, and dissolution of carbon dioxide in the gas mixture (raw water) is promoted.
  • the gas mixture is increased to a carbon dioxide concentration of about 1000 ppm, which is a saturated concentration.
  • the gas-liquid mixed solution (carbonated water) in which carbon dioxide gas is dissolved to a saturation concentration in this way is supplied to a hose connected to the small diameter portion 22 of the housing body 13 and a shower head provided at the tip of the hose. It is made to erupt through and is used for hair washing.
  • the gas-liquid mixing device 2 of the present embodiment causes the raw water supplied by the raw water inflow pipe 5 and the carbon dioxide gas (gas) supplied by the gas inflow pipe 4 to collide with each other, and the mixed liquid Since the gas mixture is guided in a direction different from at least one of the raw water and carbon dioxide without being biased to one side by the pipe 8, the collision energy is maximized with a simple structure and the solubility of carbon dioxide in the raw water is increased. Can do. Accordingly, a driving source such as a pump is not required, and carbonated water having a relatively high solubility can be produced with a simple structure. This makes it possible to reduce the size and cost of the gas-liquid mixing device. .
  • the first eddy current generating mechanism includes grooves 20 and 24 formed between the upper end portion of the vortex generating portion including the vortex generating member 17 and the mixing pipe 23 and the inner wall surface of the mixed liquid pipe 8 facing the upper end portion. Therefore, by causing the gas mixture to collide with the bottom surfaces of the groove portions 20 and 24 and reversing the flow, a fine vortex can be formed and the bubbles in the gas mixture can be miniaturized. Therefore, the dissolution of carbon dioxide in the raw water (gas mixture) can be promoted.

Abstract

Provided is a gas-liquid mixing device that produces a liquid having a gas mixed thereinto by mixing a gas inside a stock solution, said mixing device being provided with a stock solution inflow pipe into which the stock solution flows continuously, a gas inflow pipe into which the gas flows continuously, and a mixed liquid piping that communicates with the stock solution inflow pipe and the gas inflow pipe, wherein: the stock solution inflow pipe and the gas inflow pipe communicate such that the stock solution and the gas collide facing each other, and due to this, a gas-liquid collision portion is formed at this communication point; and the mixed liquid piping is made to communicate with the gas-liquid collision portion, and the central axis of the stock solution inflow pipe and/or the central axis of the gas inflow pipe are disposed in a direction that is different from the central axis of the mixed liquid piping.

Description

気液混合装置及び気液混合システムGas-liquid mixing device and gas-liquid mixing system
 本発明は、気液混合装置及び気液混合システムに関する。
本願は、2014年2月5日に日本に出願された特願2014-20711号及び2014年6月30日に日本に出願された特願2014-134987号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a gas-liquid mixing apparatus and a gas-liquid mixing system.
This application claims priority based on Japanese Patent Application No. 2014-20711 filed in Japan on February 5, 2014 and Japanese Patent Application No. 2014-134987 filed in Japan on June 30, 2014. Is hereby incorporated by reference.
 従来、気液混合装置として、例えば特許文献1に開示されているように、給水に気体を混合して気体混合水を製造する気体混合水生成装置が知られている。この特許文献1の気体混合水生成装置では、主に、水に炭酸ガスを混合して炭酸水を製造することが開示されている。 Conventionally, as a gas-liquid mixing apparatus, as disclosed in, for example, Patent Document 1, a gas mixed water generating apparatus for producing gas mixed water by mixing a gas with feed water is known. In the gas mixed water production | generation apparatus of this patent document 1, it is mainly disclosed that carbonic acid gas is mixed with water to produce carbonated water.
 炭酸水は優れた保温作用があるため、古くから温泉を利用する浴場等で用いられている。炭酸水の保温作用は、基本的に、含有炭酸ガスの末梢血管拡張作用により身体環境が改善されるためと考えられている。また、炭酸ガスの経皮浸入によって毛細血管床の増加及び拡張が起こり、皮膚の血行を改善する。このため、退行性病変及び末梢循環障害の治療に効果があるとされている。 Since carbonated water has an excellent heat retaining effect, it has long been used in bathhouses that use hot springs. It is considered that the warming action of carbonated water is basically because the body environment is improved by the peripheral vasodilatory action of the contained carbon dioxide gas. Further, the percutaneous infiltration of carbon dioxide gas increases and dilates the capillary bed, improving the blood circulation of the skin. For this reason, it is said that it is effective in the treatment of degenerative lesions and peripheral circulation disorders.
特開2010-264364号公報JP 2010-264364 A
 ところで、前記特許文献1の気体混合水生成装置では、簡易な構造で気体混合水(特に炭酸水)の製造を可能にしている。しかし、炭酸水を製造するための装置では、特に炭酸水を洗髪に用いるような理美容目的の場合、小型化や低価格化が望まれている。したがって、洗髪などの理美容にも適用される気液混合装置では、単に簡易な構造で炭酸水の製造を可能にするだけでなく、原液への気体の溶解度を高めて比較的高い溶解度の炭酸水(気体混合液)の製造を可能にし、これによって装置の小型化や低価格化を図ることが強く要望されている。また、メンテナンスを容易にしたり、充分な流量を確保することで使い勝手を良くすることも望まれている。 By the way, in the gas mixed water production | generation apparatus of the said patent document 1, it enables manufacture of gas mixed water (especially carbonated water) with a simple structure. However, in an apparatus for producing carbonated water, miniaturization and cost reduction are desired especially for hairdressing and beauty purposes such as using carbonated water for washing hair. Therefore, in a gas-liquid mixing device that is also applied to hairdressing and beauty such as shampooing, it is possible not only to produce carbonated water with a simple structure, but also to increase the solubility of the gas in the stock solution to increase the solubility of the There is a strong demand to enable the production of water (gas mixture), thereby reducing the size and cost of the apparatus. In addition, it is also desired to improve usability by facilitating maintenance and ensuring a sufficient flow rate.
 炭酸ガスを溶解するための構造としては、特許文献1の気体混合水生成装置以外にも、中空糸膜を用いたものが知られている。しかし、中空糸膜を用いたものは、流量確保、小型化、低価格化が難くなっている。
 また、スタティックミキサを用いた構造のものも知られているが、この構造のものでは充分に圧を上げないと原液に対する気体の溶解度を高めることができず、したがって通常はポンプ等の駆動原が必要になるため、装置構成が複雑になって小型化が難しくなっている。
As a structure for dissolving the carbon dioxide gas, a structure using a hollow fiber membrane is known in addition to the gas mixed water generating apparatus of Patent Document 1. However, it is difficult to secure the flow rate, to reduce the size, and to reduce the price of the one using the hollow fiber membrane.
A structure using a static mixer is also known, but with this structure, the gas solubility in the stock solution cannot be increased unless the pressure is sufficiently increased. Since this is necessary, the device configuration is complicated and it is difficult to reduce the size.
 本発明は前記事情に鑑みてなされたもので、その目的とするところは、簡易な構造で比較的高い溶解度の気体混合液を製造できるようにし、これによって小型化や低価格化を可能にするとともに、メンテナンスを容易にし、充分な流量も確保することで使い勝手を良くした気液混合装置と、これを用いた気液混合システムを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to enable production of a gas mixture having a relatively high solubility with a simple structure, thereby enabling downsizing and cost reduction. At the same time, it is an object to provide a gas-liquid mixing apparatus that facilitates maintenance and ensures ease of use by ensuring a sufficient flow rate, and a gas-liquid mixing system using the same.
 本発明に係る気液混合装置は、原液中に気体を混合して気体混合液を製造する気液混合装置であって、前記原液が連続的に流入する原液流入管と、前記気体が連続的に流入する気体流入管と、前記原液流入管、前記気体流入管にそれぞれ連通する混合液配管とを備え、前記原液流入管と前記気体流入管が、前記原液と前記気体とが対面して衝突するように連通し、それにより、この連通箇所において、気液衝突部を形成し、前記混合液配管を、前記気液衝突部に連通させるとともに、前記原液流入管の中心軸と前記気体流入管の中心軸のうち少なくとも一つを前記混合液配管の中心軸と異なる方向に配置した。 A gas-liquid mixing apparatus according to the present invention is a gas-liquid mixing apparatus for producing a gas mixed liquid by mixing a gas into a raw liquid, and the raw liquid inflow pipe into which the raw liquid continuously flows and the gas continuously A gas inflow pipe that flows into the gas, and a liquid mixture pipe that communicates with the stock solution inflow pipe and the gas inflow pipe, respectively, and the stock solution inflow pipe and the gas inflow pipe face each other and the stock solution and the gas collide with each other. In this communication location, a gas-liquid collision part is formed, and the mixed liquid pipe is communicated with the gas-liquid collision part, and the central axis of the stock solution inflow pipe and the gas inflow pipe At least one of the central axes is arranged in a direction different from the central axis of the mixed solution pipe.
 この気液混合装置では、原液流入管と気体流入管とを、前記原液と前記気体とが対面して衝突するように連通し、それにより、この連通箇所において、気液衝突部を形成し、また、混合液配管を、前記気液衝突部に連通させるとともに、前記原液流入管の中心軸と前記気体流入管の中心軸のうち少なくとも一つを前記混合液配管の中心軸と異なる方向に配置しているので、原液流入管から流入する原液と気体流入管から流入する気体とを互いに衝突させ、かつ、一方に偏ることなく原液流入管の中心軸と気体流入管の中心軸のうち少なくとも一つと異なる方向に気体混合液を案内することができ、したがって簡易な構造で衝突エネルギーを最大化し、原液に対する気体の溶解度を高めることができる。 In this gas-liquid mixing apparatus, the stock solution inflow pipe and the gas inflow pipe are communicated so that the stock solution and the gas face each other and collide with each other, thereby forming a gas-liquid collision part at this communication location, Further, the mixed liquid pipe is communicated with the gas-liquid collision portion, and at least one of the central axis of the raw liquid inlet pipe and the central axis of the gas inlet pipe is arranged in a direction different from the central axis of the mixed liquid pipe. Therefore, the stock solution flowing in from the stock solution inflow tube and the gas flowing in from the gas inflow tube collide with each other, and at least one of the central axis of the stock solution inflow tube and the central axis of the gas inflow tube is not biased to one side. Therefore, the gas mixture can be guided in different directions, so that the collision energy can be maximized with a simple structure and the solubility of the gas in the stock solution can be increased.
 また、前記気液混合装置において、前記原液流入管の中心軸と前記気体流入管の中心軸とのなす角度が20°~180°であることが好ましく、95°~180°であることがより好ましい。ここで、「前記原液流入管の中心軸と前記気体流入管の中心軸とのなす角度」は、前記原液流入管と前記気体流入管とを連結したものを、平面上に配置した場合に、前記2つの中心軸の間に形成される角度を意味する。
 この構成によれば、気体の溶解度が比較的高い気体混合液を簡易な構造で製造することができる。
In the gas-liquid mixing apparatus, the angle formed by the central axis of the stock solution inflow pipe and the central axis of the gas inflow pipe is preferably 20 ° to 180 °, more preferably 95 ° to 180 °. preferable. Here, "the angle formed by the central axis of the stock solution inflow pipe and the central axis of the gas inflow tube" is the result of connecting the stock solution inflow tube and the gas inflow tube on a plane, It means the angle formed between the two central axes.
According to this configuration, a gas mixture having a relatively high gas solubility can be manufactured with a simple structure.
 また、前記気液混合装置において、前記原液が水であり、前記気体が炭酸ガスであることが好ましい。
 この構成によれば、炭酸ガス(二酸化炭素)の溶解度が比較的高い炭酸水を簡易な構造で製造することができる。
In the gas-liquid mixing apparatus, it is preferable that the stock solution is water and the gas is carbon dioxide gas.
According to this configuration, carbonated water having a relatively high solubility of carbon dioxide (carbon dioxide) can be produced with a simple structure.
 また、前記気液混合装置において、前記混合液配管には、前記気体混合液に渦流を生じさせる、第1渦流生成機構が設けられていることが好ましい。
 この構成によれば、原液流入管と気体流入管の接続部(前記の気液衝突部)で原液と気体とが衝突し、原液に気体が混合してその多くが溶解した気体混合液に、渦流を生じさせることにより、気体混合液中の気泡を微細化し、その比表面積を大きくすることで原液に対する溶解を促進することができる。
In the gas-liquid mixing apparatus, it is preferable that a first vortex generating mechanism for generating a vortex in the gas mixture is provided in the mixture liquid pipe.
According to this configuration, the stock solution and the gas collide at the connection portion (the gas-liquid collision portion) of the stock solution inflow pipe and the gas inflow tube, the gas is mixed with the stock solution, and most of the gas is dissolved, By causing the vortex to flow, the bubbles in the gas mixture can be refined and the specific surface area can be increased to promote dissolution in the stock solution.
 また、前記気液混合装置において、前記第1渦流生成機構は、前記混合液配管内に設けられた環状または筒状の渦発生部の前記気液衝突部の端部と、該端部に対向する前記混合液配管の内壁面との間において、前記気液衝突部側に開口して形成された溝部を備えていることが好ましい。
 この構成によれば、第1渦流生成機構が気液衝突部側に開口して形成された溝部を備えているので、気体混合液が溝部の底面に衝突してその流れを反転させることで微小な渦流を形成し、これによって気体混合液中の気泡が微細化する。
Further, in the gas-liquid mixing apparatus, the first vortex generating mechanism is configured to face an end portion of the gas-liquid collision portion of an annular or cylindrical vortex generating portion provided in the liquid mixture pipe and the end portion. It is preferable that a groove portion formed to open to the gas-liquid collision portion side is provided between the inner wall surface of the mixed liquid pipe.
According to this configuration, since the first eddy current generating mechanism includes the groove formed to open to the gas-liquid collision part side, the gas mixed liquid collides with the bottom surface of the groove and reverses the flow so that a minute amount is obtained. Eddy currents are formed, whereby the bubbles in the gas mixture are refined.
 また、前記気液混合装置において、前記第1渦流生成機構は、前記混合液配管の上流側に配設された上流側第1渦流生成機構と、該上流側第1渦流生成機構より下流側に配設された下流側第1渦流生成機構とを備えていることが好ましい。
 この構成によれば、第1渦流生成機構を一つ設けるよりも、気体混合液中の気泡をさらに微細化し、その比表面積を大きくすることで原液に対する溶解をさらに促進することができる。
Further, in the gas-liquid mixing apparatus, the first vortex generating mechanism includes an upstream first vortex generating mechanism disposed on the upstream side of the mixed liquid piping, and a downstream side of the upstream first vortex generating mechanism. It is preferable that a downstream first vortex generating mechanism is provided.
According to this configuration, dissolution in the stock solution can be further promoted by further miniaturizing the bubbles in the gas mixture and increasing the specific surface area, rather than providing one first vortex generating mechanism.
 また、前記上流側第1渦流生成機構を構成する前記渦発生部の内部孔には、前記気体混合液を前記下流側第1渦流生成機構の前記内壁面側に案内する案内口が設けられていることが好ましい。
 この構成によれば、上流側第1渦流生成機構を構成する渦発生部の内部孔に案内口を設けているので、該案内口を通った気体混合液が下流側第1渦流生成機構の内壁面側に案内されることで該下流側第1渦流生成機構の溝部の底面により多く衝突し、流れを反転して渦流を形成することで気体混合液中の気泡が微細化する。
In addition, a guide port that guides the gas mixture to the inner wall surface side of the downstream first vortex generating mechanism is provided in an internal hole of the vortex generating portion that constitutes the upstream first vortex generating mechanism. Preferably it is.
According to this configuration, since the guide port is provided in the internal hole of the vortex generating portion that constitutes the upstream first vortex generating mechanism, the gas mixture that has passed through the guide port is included in the downstream first vortex generating mechanism. By being guided to the wall surface side, more collisions are made with the bottom surface of the groove portion of the downstream first vortex generating mechanism, and the flow is reversed to form a vortex, whereby the bubbles in the gas mixture are refined.
 また、前記気液混合装置において、前記混合液配管には、該混合液配管を流れる気体混合液の流路を上流から下流に向けて狭めることにより、前記気体混合液に渦流を生じさせる、第2渦流生成機構が設けられていることが好ましい。
 この構成によれば、原液流入管と気体流入管の接続部(前記の気液衝突部)で原液と気体とが衝突し、原液に気体が混合してその多くが溶解した気体混合液を、渦流を生じさせることにより、気体混合液中の気泡を微細化し、その比表面積を大きくすることで原液に対する溶解を促進することができる。また、混合液配管を流れる気体混合液の流路を上流から下流に向けて狭めるようにしたので、気体混合液を加圧することによって該気体混合液中への気体の溶解度を高めることができる。
Further, in the gas-liquid mixing apparatus, the mixture liquid pipe is configured to generate a vortex in the gas mixture liquid by narrowing a flow path of the gas mixture liquid flowing through the mixture liquid pipe from upstream to downstream. It is preferable that a two-eddy current generating mechanism is provided.
According to this configuration, the stock solution and the gas collide at the connection portion (the gas-liquid collision portion) of the stock solution inflow pipe and the gas inflow tube, and the gas mixture solution in which the gas is mixed and dissolved in the stock solution, By causing the vortex to flow, the bubbles in the gas mixture can be refined and the specific surface area can be increased to promote dissolution in the stock solution. Moreover, since the flow path of the gas mixed liquid flowing through the mixed liquid piping is narrowed from the upstream toward the downstream, the gas solubility in the gas mixed liquid can be increased by pressurizing the gas mixed liquid.
 また、前記気液混合装置において、前記第2渦流生成機構は、前記混合液配管を流れる気体混合液の流路を上流から下流に向けて狭める狭隘部と、該狭隘部の側方に流路を変更することで前記気体混合液の流れを反転させ、渦流を生じさせる流路変更部と、を有して構成されていることが好ましい。
 この構成によれば、狭隘部を流れることで気体混合液が加圧され、該気体混合液中での気体の溶解度が高まる。また、流路変更部によって気体混合液の流れが反転し、渦流が生じることにより、気体混合液中の気泡が微細化して原液に対する溶解が促進される。
Further, in the gas-liquid mixing apparatus, the second vortex generating mechanism includes a narrow portion that narrows a flow path of the gas mixed liquid flowing through the mixed liquid pipe from upstream to downstream, and a flow path to a side of the narrow portion. It is preferable to have a flow path changing unit that reverses the flow of the gas mixed liquid by changing the flow rate and generates a vortex flow.
According to this configuration, the gas mixture is pressurized by flowing through the narrow portion, and the solubility of the gas in the gas mixture is increased. Further, the flow of the gas mixture is reversed by the flow path changing unit, and the vortex is generated, whereby the bubbles in the gas mixture are refined and the dissolution in the stock solution is promoted.
 また、前記気液混合装置において、前記原液流入管には、該原液流入管の流路を狭めることなく該流路を流れる原液の圧力が所定の圧力以上になったことを検知する圧力スイッチが設けられ、前記気体流入管には、該気体流入管と気体供給源との間に設けられて前記気体供給源から前記気体流入管への気体の供給を制御する制御弁が設けられ、前記圧力スイッチは、原液の圧力が所定の圧力以上になったことを検知したら前記制御弁を開くように構成されていることが好ましい。
 この構成によれば、原液流入管に、その流路を狭めることなく該流路を流れる原液の圧力を検知する圧力スイッチを設けているので、原液の流路が狭められることで加圧され、その流量が絞られて所望の流量の気体混合液が得られなくなるのを防止することができる。
Further, in the gas-liquid mixing apparatus, the stock solution inflow pipe has a pressure switch for detecting that the pressure of the stock solution flowing through the flow path is not less than a predetermined pressure without narrowing the flow path of the stock solution inflow pipe. The gas inflow pipe is provided with a control valve provided between the gas inflow pipe and the gas supply source to control the supply of gas from the gas supply source to the gas inflow pipe, and the pressure The switch is preferably configured to open the control valve when it is detected that the pressure of the stock solution has become equal to or higher than a predetermined pressure.
According to this configuration, the stock solution inflow pipe is provided with a pressure switch that detects the pressure of the stock solution flowing through the flow path without narrowing the flow path. It can be prevented that the flow rate is reduced and a gas mixture having a desired flow rate cannot be obtained.
 また、前記気液混合装置においては、前記制御弁が、ラッチ式電磁弁によって構成されていることが好ましい。
 この構成によれば、ラッチ式電磁弁が一般の電磁弁に比べて消費電力が格段に少ないことにより、制御弁を有する気液混合装置の消費電力を少なくすることができる。
Moreover, in the said gas-liquid mixing apparatus, it is preferable that the said control valve is comprised by the latch type solenoid valve.
According to this configuration, the power consumption of the gas-liquid mixing device having the control valve can be reduced because the latch type solenoid valve has much less power consumption than a general solenoid valve.
 また、前記気液混合装置において、前記ラッチ式電磁弁は、電池で稼働することが好ましく、乾電池あるいは充電池で稼働することがより好ましい。
 電源として商用電源に代えて、乾電池や充電池を用いることにより、気液混合装置の使い勝手を良くし、例えば風呂場での使用を容易にすることができる。
In the gas-liquid mixing device, the latch solenoid valve is preferably operated by a battery, and more preferably by a dry battery or a rechargeable battery.
By using a dry battery or a rechargeable battery instead of a commercial power source as a power source, the usability of the gas-liquid mixing device can be improved, and for example, it can be easily used in a bathroom.
 また、前記気液混合装置においては、前記制御弁が、比例電磁弁によって構成され、該比例電磁弁には、前記気体供給源から前記気体流入管への気体の供給量を調整する調整部が設けられていることが好ましい。
 この構成によれば、制御弁として比例電磁弁を用いているので、調整部によってこの比例電磁弁の開度を切り換えることにより、気体供給源から気体流入管への気体の供給量を調整することができる。したがって、原液流入管から流入する原水に対して、気体の流量を調整することにより、得られる気液混合液の濃度を異なる複数の濃度に調整することができる。
Further, in the gas-liquid mixing apparatus, the control valve is constituted by a proportional solenoid valve, and the proportional solenoid valve has an adjustment unit that adjusts a gas supply amount from the gas supply source to the gas inflow pipe. It is preferable to be provided.
According to this configuration, since the proportional solenoid valve is used as the control valve, the amount of gas supplied from the gas supply source to the gas inflow pipe is adjusted by switching the opening of the proportional solenoid valve by the adjusting unit. Can do. Therefore, the concentration of the gas-liquid mixture obtained can be adjusted to a plurality of different concentrations by adjusting the gas flow rate with respect to the raw water flowing from the raw solution inflow pipe.
 本発明に係る気液混合システムは、前記の気液混合装置と、前記原液流入管に原液を供給する原液供給源と、前記気体流入管に気体を供給する気体供給源と、前記原液供給源からの前記原液流入管への原液の供給、および前記気体供給源からの前記気体流入管への気体の供給を制御する制御部と、を備える。
 この気液混合システムでは、前記の気液混合装置を備えることにより、簡易な構造で原液に対する気体の溶解度を高めることができる。したがって、小型化や低価格化を可能にするとともに、メンテナンスを容易にし、充分な流量を確保することで使い勝手を良くすることができる。
The gas-liquid mixing system according to the present invention includes the gas-liquid mixing device, a raw liquid supply source that supplies the raw liquid to the raw liquid inflow pipe, a gas supply source that supplies gas to the gas inflow pipe, and the raw liquid supply source. A control unit that controls supply of the stock solution from the gas supply source to the stock solution inflow tube and gas supply from the gas supply source to the gas inflow tube.
In this gas-liquid mixing system, by providing the gas-liquid mixing device, the solubility of the gas in the stock solution can be increased with a simple structure. Therefore, it is possible to reduce the size and price, facilitate maintenance, and improve usability by securing a sufficient flow rate.
 本発明の気液混合装置によれば、簡易な構造で原液と気体との衝突エネルギーを最大化し、原液に対する気体の溶解度を高めるようにしたので、簡易な構造で比較的高い溶解度の気体混合液を製造することができ、したがって小型化や低価格化を可能にするとともに、メンテナンスを容易にし、充分な流量を確保することで使い勝手を良くすることができる。 According to the gas-liquid mixing apparatus of the present invention, since the collision energy between the stock solution and the gas is maximized with a simple structure and the solubility of the gas in the stock solution is increased, a gas mixture with a relatively high solubility with a simple structure. Therefore, it is possible to reduce the size and the price, to facilitate the maintenance, and to ensure a sufficient flow rate to improve usability.
本発明に係る気液混合システムの第1実施形態の概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a 1st embodiment of a gas-liquid mixing system concerning the present invention. 気液混合装置の概略構成を示す外観斜視図である。It is an external appearance perspective view which shows schematic structure of a gas-liquid mixing apparatus. 気液混合装置の概略構成を示す側断面図である。It is a sectional side view which shows schematic structure of a gas-liquid mixing apparatus. 渦発生部材を示す斜視図である。It is a perspective view which shows a vortex generating member. 渦発生部材を示す平面図である。It is a top view which shows a vortex generating member. 渦発生部材を示す側断面図である。It is a sectional side view which shows a vortex generating member. 案内口の変形例を示す斜視図である。It is a perspective view which shows the modification of a guide port. 案内口の他の変形例を示す斜視図である。It is a perspective view which shows the other modification of a guide port. ミキシングパイプを示す斜視図である。It is a perspective view which shows a mixing pipe. ミキシングパイプを示す平面図である。It is a top view which shows a mixing pipe. ミキシングパイプを示す側断面図である。It is a sectional side view which shows a mixing pipe. 第1の圧力スイッチを説明するための斜視図である。It is a perspective view for demonstrating a 1st pressure switch. 第1の圧力スイッチを説明するための側断面図である。It is a sectional side view for demonstrating a 1st pressure switch. 気液混合装置による気体混合液の製造を説明するための側断面図である。It is a sectional side view for demonstrating manufacture of the gas liquid mixture by a gas-liquid mixing apparatus. ミキシングパイプの変形例を示す斜視図である。It is a perspective view which shows the modification of a mixing pipe. ミキシングパイプの変形例を示す平面図である。It is a top view which shows the modification of a mixing pipe. ミキシングパイプの変形例を示す側断面図である。It is a sectional side view which shows the modification of a mixing pipe. 本発明に係る気液混合システムの第2実施形態の概略構成を示す図であって、外観を示す正面図である。It is a figure which shows schematic structure of 2nd Embodiment of the gas-liquid mixing system which concerns on this invention, Comprising: It is a front view which shows an external appearance. 本発明に係る気液混合システムの第2実施形態の概略構成を示す図であって、内部構造を示す正面図である。It is a figure which shows schematic structure of 2nd Embodiment of the gas-liquid mixing system which concerns on this invention, Comprising: It is a front view which shows an internal structure. 本発明に係る気液混合システムの第2実施形態の概略構成を示す図であって、外観を示す背面図である。It is a figure which shows schematic structure of 2nd Embodiment of the gas-liquid mixing system which concerns on this invention, Comprising: It is a rear view which shows an external appearance. 図9A~図9Cに示した気液混合システムの内部構造を示す斜視図である。10 is a perspective view showing an internal structure of the gas-liquid mixing system shown in FIGS. 9A to 9C. FIG. 本発明に係る気液混合システムの第3実施形態の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of 3rd Embodiment of the gas-liquid mixing system which concerns on this invention. 本発明に係る気液混合システムの第3実施形態の外観を示す正面図である。It is a front view which shows the external appearance of 3rd Embodiment of the gas-liquid mixing system which concerns on this invention. 原液流入管、気体流入管、混合液配管の連通部の概略構成を示す正面図である。It is a front view which shows schematic structure of the communicating part of a raw | natural liquid inflow pipe, a gas inflow pipe, and mixed liquid piping.
 以下、本発明に係る気液混合装置および気液混合システムについて、図面を参照して詳しく説明する。
 図1は、本発明に係る気液混合システムの第1実施形態の概略構成を示す模式図であり、図1中符号1は気液混合システム、2は気液混合装置である。
Hereinafter, a gas-liquid mixing apparatus and a gas-liquid mixing system according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a schematic configuration of a first embodiment of a gas-liquid mixing system according to the present invention. In FIG. 1, reference numeral 1 is a gas-liquid mixing system, and 2 is a gas-liquid mixing device.
 気液混合システム1は、本実施形態では原水、例えば水道水に炭酸ガス(二酸化炭素)を混合、溶解させて、得られた炭酸水を各種の目的に供するためのものである。炭酸水の用途としては、従来と同様に、例えば洗髪などの理美容目的や、風呂の湯、すなわち炭酸泉として用いられる。図1は、複数の洗髪台を備えた理美容店において、各洗髪台にそれぞれ配設される気液混合システム1の概略構成を示している。 In this embodiment, the gas-liquid mixing system 1 is for mixing and dissolving carbon dioxide (carbon dioxide) in raw water, for example, tap water, and providing the obtained carbonated water for various purposes. As for the use of carbonated water, it is used for hairdressing and beauty purposes such as shampooing, and hot water for baths, that is, carbonated springs, as in the past. FIG. 1 shows a schematic configuration of a gas-liquid mixing system 1 disposed in each hair wash table in a barber / beauty shop having a plurality of hair wash stands.
 気液混合システム1は、気液混合装置2、この気液混合装置2に原水(原液)を供給する原水供給源(原液供給源)3、前記気液混合装置2に炭酸ガス(CO:気体)を供給する気体供給源4、原水供給源3からの原水の供給や気体供給源4からの炭酸ガスの供給を制御する制御部40等を備えて構成されている。 The gas-liquid mixing system 1 includes a gas-liquid mixing device 2, a raw water supply source (raw solution supply source) 3 for supplying raw water (raw solution) to the gas-liquid mixing device 2, and carbon dioxide gas (CO 2 : A gas supply source 4 for supplying gas), a control unit 40 for controlling supply of raw water from the raw water supply source 3 and supply of carbon dioxide gas from the gas supply source 4 and the like.
 気液混合装置2は、本発明に係る気液混合装置の第1実施形態となるもので、気液混合装置2の外観斜視図である図2A、および気液混合装置2の側断面図である図2Bに示すように、前記原水供給源3に配管(原水側配管30)を介して接続される原水流入管(原液流入管)5と、前記気体供給源4に配管(気体側配管31)を介して接続される気体流入管6と、を有している。 The gas-liquid mixing device 2 is the first embodiment of the gas-liquid mixing device according to the present invention. FIG. 2A is an external perspective view of the gas-liquid mixing device 2 and a side sectional view of the gas-liquid mixing device 2. As shown in FIG. 2B, a raw water inflow pipe (raw liquid inflow pipe) 5 connected to the raw water supply source 3 via a pipe (raw water side pipe 30), and a pipe (gas side pipe 31) to the gas supply source 4. And a gas inflow pipe 6 connected to each other.
 本実施形態では、これら原水流入管5と気体流入管6とが一つの配管によって形成されており、原水流入管5側の開口5aに原水側配管を介して前記原水供給源3が接続され、気体流入管6側の開口6aに気体側配管を介して前記気体供給源4が接続されている。したがって、図2Bに示すように原水流入管5と気体流入管6とは、原液と気体とが対面して衝突するように連通し、原水流入管5の中心軸(図示せず)と気体流入管6の中心軸(図示せず)のうち少なくとも一つが混合液配管8の中心軸(図示せず)と異なる方向に配置されている。
 原水流入管5及び気体流入管6の形状及び寸法については、前記したような本発明の効果を損なわない限り特に制限はないが、円筒形であることが好ましい。
 また、原水流入管5の中心軸と気体流入管6の中心軸のうちのいずれかと混合液配管8の中心軸との間で形成される角度が10°~90°であることが好ましく、45°~90°であることがより好ましい。なお、この角度は、原水流入管5と気体流入管6のうちのいずれかと混合液配管8が連結された状態のものを平面上に配置した場合に、前記2つの中心軸の間に形成される角度を意味する。例えば、原水流入管5の中心軸と混合液配管8の中心軸との間で形成される角度の場合、図13に示す角度がθである。この角度を上記の範囲とすることにより、気体の溶解度が比較的高い気体混合液を簡易な構造で製造することができる。図2A及び図2Bに示す態様においては、原水流入管5と気体流入管6とにより形成される一つの配管の中心軸に対して、混合液配管8の中心軸が直交するように混合液配管8が配置されている。
 なお、気体流入管6には、その開口6a側に小孔を有するオリフィス板6bが設けられており、これによって気体供給源4から供給される炭酸ガスは、所定の圧力で気体流入管6内に供給されるようになっている。この小孔の大きさや数については、所望の気体圧力に応じて適宜選択することができる。
In this embodiment, the raw water inflow pipe 5 and the gas inflow pipe 6 are formed by one pipe, and the raw water supply source 3 is connected to the opening 5a on the raw water inflow pipe 5 side through the raw water side pipe. The gas supply source 4 is connected to the opening 6a on the gas inflow pipe 6 side through a gas side pipe. Therefore, as shown in FIG. 2B, the raw water inflow pipe 5 and the gas inflow pipe 6 communicate with each other so that the raw liquid and the gas face each other and collide with each other, and the central axis (not shown) of the raw water inflow pipe 5 and the gas inflow At least one of the central axes (not shown) of the pipe 6 is arranged in a direction different from the central axis (not shown) of the mixed liquid pipe 8.
The shapes and dimensions of the raw water inflow pipe 5 and the gas inflow pipe 6 are not particularly limited as long as the effects of the present invention as described above are not impaired, but are preferably cylindrical.
The angle formed between any one of the central axis of the raw water inlet pipe 5 and the central axis of the gas inlet pipe 6 and the central axis of the mixed liquid pipe 8 is preferably 10 ° to 90 °. More preferably, the angle is from 90 ° to 90 °. This angle is formed between the two central axes when one of the raw water inflow pipe 5 and the gas inflow pipe 6 and the mixed liquid pipe 8 are arranged on a plane. Means the angle. For example, in the case of an angle formed between the central axis of the raw water inflow pipe 5 and the central axis of the mixed liquid pipe 8, the angle shown in FIG. By setting this angle within the above range, a gas mixture having a relatively high gas solubility can be produced with a simple structure. In the embodiment shown in FIGS. 2A and 2B, the mixed liquid pipe is so arranged that the central axis of the mixed liquid pipe 8 is orthogonal to the central axis of one pipe formed by the raw water inflow pipe 5 and the gas inflow pipe 6. 8 is arranged.
The gas inflow pipe 6 is provided with an orifice plate 6b having a small hole on the opening 6a side, so that the carbon dioxide gas supplied from the gas supply source 4 can be supplied into the gas inflow pipe 6 at a predetermined pressure. To be supplied. About the magnitude | size and number of this small hole, it can select suitably according to desired gas pressure.
 また、原水流入管5と気体流入管6の気液衝突部7には、原水流入管5、気体流入管6にそれぞれ連通して混合液配管8が設けられている。原水流入管5の中心軸と気体流入管6の中心軸のうち少なくとも一つが、混合液配管8の中心軸と異なる方向に配置され、前記気液衝突部7に一体に接続する配管本体9と、該配管本体9に着脱可能に連結するハウジング10とから構成されている。
 本実施形態では、ハウジング10が配管本体9に着脱可能に連結しているが、配管本体9とハウジング10とが一体に形成されていてもよい。
 また、本実施形態では、図13に示すように、原前記原液流入管の中心軸と前記気体流入管の中心軸とのなす角度をθ’とすると、θ’は20°~180°であることが好ましく、95°~180°であることがより好ましく、135°~180°であることが特に好ましい。このように構成することにより、気体の溶解度が比較的高い気体混合液を簡易な構造で製造することができる。
また、本発明の装置において、原水流入管5、気体流入管6及び混合液配管8のそれぞれの中心軸は、これらを同一平面上に配置できるように構成されていても、これらが三角錐を形成するように構成されていても良い。
Further, a mixed liquid pipe 8 is provided in the gas-liquid collision portion 7 of the raw water inflow pipe 5 and the gas inflow pipe 6 so as to communicate with the raw water inflow pipe 5 and the gas inflow pipe 6, respectively. A pipe main body 9 that is disposed in a direction different from the central axis of the mixed liquid pipe 8 among at least one of the central axis of the raw water inflow pipe 5 and the central axis of the gas inflow pipe 6, and is integrally connected to the gas-liquid collision unit 7; The housing 10 is detachably connected to the pipe body 9.
In the present embodiment, the housing 10 is detachably connected to the pipe body 9, but the pipe body 9 and the housing 10 may be integrally formed.
Further, in the present embodiment, as shown in FIG. 13, if the angle between the central axis of the raw solution inflow pipe and the central axis of the gas inflow pipe is θ ′, θ ′ is 20 ° to 180 °. It is preferably 95 ° to 180 °, more preferably 135 ° to 180 °. By comprising in this way, the gas liquid mixture whose gas solubility is comparatively high can be manufactured with a simple structure.
In the apparatus of the present invention, the central axes of the raw water inflow pipe 5, the gas inflow pipe 6 and the mixed liquid pipe 8 are configured so that they can be arranged on the same plane. It may be configured to form.
 配管本体9は、原水流入管5と気体流入管6との間の気液衝突部7に一体に連結された円筒状のものである。したがって、これら原水流入管5、気体流入管6、配管本体9を形成する部材は、本実施形態では樹脂製または金属製の一体成形品となっている。この一体成形品は、測面視T字状に形成してもよい。ここで、配管本体9は、前記気液衝突部7に連通して形成された円筒状の案内管11を囲った状態に形成されており、したがって案内管11の内径より充分に大きい内径を有している。 The pipe body 9 is a cylindrical body integrally connected to the gas-liquid collision part 7 between the raw water inflow pipe 5 and the gas inflow pipe 6. Therefore, the members forming the raw water inflow pipe 5, the gas inflow pipe 6, and the pipe main body 9 are integrally molded products made of resin or metal in this embodiment. The integrally molded product may be formed in a T-shape when viewed from the surface. Here, the pipe body 9 is formed so as to surround a cylindrical guide tube 11 formed in communication with the gas-liquid collision portion 7, and therefore has an inner diameter sufficiently larger than the inner diameter of the guide tube 11. is doing.
 ハウジング10は、略円筒状、すなわち配管状に形成された樹脂製または金属製のもので、一端側が配管本体9に内挿する略円筒状の内挿部12とされ、他端側が配管本体9から引き出された略円筒状のハウジング本体13とされている。また、これら内挿部12とハウジング本体13との間には円環状のフランジ部14が形成されている。フランジ部14は、内挿部12を配管本体9に内挿した際に、この配管本体9の端部に設けられた円環状のフランジ9aに当接するように構成されている。 The housing 10 is made of a resin or metal formed in a substantially cylindrical shape, that is, in a pipe shape. One end side is a substantially cylindrical insertion portion 12 that is inserted into the pipe body 9, and the other end side is a pipe body 9. The main body 13 is a substantially cylindrical housing body 13 pulled out from the housing. An annular flange portion 14 is formed between the insertion portion 12 and the housing body 13. The flange portion 14 is configured to contact an annular flange 9 a provided at an end portion of the pipe body 9 when the insertion portion 12 is inserted into the pipe body 9.
 そして、このようにハウジング10のフランジ部14が配管本体9のフランジ9aに当接した状態で、図2A、図2Bに示すようにこれらフランジ部14、フランジ9aにジョイントクリップ15が取り付けられることにより、フランジ部14、フランジ9aは互いに当接した状態に保持固定されている。 Then, with the flange portion 14 of the housing 10 in contact with the flange 9a of the pipe body 9 as described above, the joint clip 15 is attached to the flange portion 14 and the flange 9a as shown in FIGS. 2A and 2B. The flange portion 14 and the flange 9a are held and fixed in contact with each other.
 ジョイントクリップ15は、金属製の板ばねが略リング状に形成されたもので、その周方向に沿ってフランジ部14、フランジ9aに係合する細長い開口15aを有している。このようなジョイントクリップ15の一端側と他端側との間を拡げてその内部にフランジ部14、フランジ9aを入れ、その後一端側と他端側との間を閉じて開口15a内にフランジ部14、フランジ9aを係合させ、突出させることにより、ジョイントクリップ15によってフランジ部14、フランジ9aを保持固定することができる。 The joint clip 15 is a metal leaf spring formed in a substantially ring shape, and has an elongated opening 15a that engages with the flange portion 14 and the flange 9a along the circumferential direction thereof. The joint clip 15 is expanded between one end side and the other end side, and the flange portion 14 and the flange 9a are inserted into the joint clip 15. Thereafter, the end portion is closed between the other end side and the flange portion is opened in the opening 15a. 14, the flange portion 14 and the flange 9 a can be held and fixed by the joint clip 15 by engaging and projecting the flange 9 a.
 また、ハウジング10の内挿部12には、図2Bに示すようにその外周面に2つのOリング16、16が巻回されている。これらOリング16、16は、内挿部12の外周面に周回して形成された溝(図示せず)内に一部が突出して設けられている。このような構成のもとに内挿部12は、配管本体9に内挿された際、該配管本体9の内壁面との間にOリング16、16が介装されることにより、配管本体9に対して気密に接続されている。 Further, as shown in FIG. 2B, two O- rings 16, 16 are wound around the outer peripheral surface of the insertion portion 12 of the housing 10. These O- rings 16, 16 are provided so as to partially protrude in grooves (not shown) formed around the outer peripheral surface of the insertion portion 12. Under such a configuration, when the insertion portion 12 is inserted into the pipe main body 9, the O- rings 16 and 16 are interposed between the inner wall surface of the pipe main body 9 and the pipe main body 9. 9 is hermetically connected.
 このような内挿部12の内部孔内には、円筒状の渦発生部材(渦発生部)17が収容されている。すなわち、内挿部12の内部孔内には、ハウジング本体13側とのほぼ境界部に段差部12aが形成されており、この段差部12a上に渦発生部材17が載せられている。渦発生部材17は、図3A~図3Cに示すように、円筒部18と該円筒部18内に一体に形成された偏流板19とを有している。ここで、図3Aは渦発生部材17の斜視図であり、図3Bは渦発生部材17の平面図であり、図3Cは渦発生部材17の側断面図である。 A cylindrical vortex generating member (vortex generating portion) 17 is accommodated in the internal hole of such an insertion portion 12. That is, a stepped portion 12a is formed in the inner hole of the insertion portion 12 substantially at the boundary with the housing body 13 side, and the vortex generating member 17 is placed on the stepped portion 12a. As shown in FIGS. 3A to 3C, the vortex generating member 17 includes a cylindrical portion 18 and a drift plate 19 integrally formed in the cylindrical portion 18. 3A is a perspective view of the vortex generating member 17, FIG. 3B is a plan view of the vortex generating member 17, and FIG. 3C is a side sectional view of the vortex generating member 17.
 渦発生部材17には、その円筒部18の上端部、すなわち前記気液衝突部7側の端部に、混合液配管8(ハウジング10)の中心軸の後側(気液衝突部7側)から前側(気液衝突部7と反対の側)に行くにつれて内側から外側に向かうテーパ面18aが、前記上端部の全周に亘って形成されている。これによってこのテーパ面18aと、該テーパ面18aに対向する面、すなわち図2Bに示す渦発生部材17の上端部に対向する混合液配管8(ハウジング10の内挿部12)の内壁面との間に、溝部20が形成されている。 The vortex generating member 17 has an upper end portion of the cylindrical portion 18, that is, an end portion on the gas-liquid collision portion 7 side, and a rear side of the central axis of the mixed liquid pipe 8 (housing 10) (gas-liquid collision portion 7 side). A taper surface 18a from the inside toward the outside as it goes from the front to the front side (the side opposite to the gas-liquid collision portion 7) is formed over the entire circumference of the upper end portion. As a result, the taper surface 18a and the surface facing the taper surface 18a, that is, the inner wall surface of the mixed liquid pipe 8 (insertion portion 12 of the housing 10) facing the upper end portion of the vortex generating member 17 shown in FIG. 2B. A groove 20 is formed between them.
 溝部20は、渦発生部材17の上端部の全周に亘って前記気液衝突部7側に開口して形成されたもので、本発明における第1渦流生成機構の一部、すなわち上流側第1渦流生成機構を構成している。このような溝部20により、後述するように前記気液衝突部7から案内管11を通って内挿部12内に流入した気体混合液は、その一部が溝部20の底面、すなわち前記テーパ面18aに衝突してその流れを反転させ、微小な渦流を形成するようになっている。 The groove portion 20 is formed to open toward the gas-liquid collision portion 7 over the entire circumference of the upper end portion of the vortex generating member 17, and is a part of the first vortex generating mechanism in the present invention, that is, the upstream side 1 eddy current generating mechanism is configured. As described later, a part of the gas mixture flowing from the gas-liquid collision part 7 through the guide tube 11 and into the insertion part 12 by the groove part 20 is the bottom surface of the groove part 20, that is, the tapered surface. It collides with 18a and reverses its flow to form a minute vortex.
 渦発生部材17の前記偏流板19には、図3A、図3Bに示すようにその外周部、すなわち円筒部18側に、案内口19aが形成されている。本実施形態では、図3Bに示すように案内口19aは円筒部18の内周面に沿って円弧状に形成されており、このような案内口19aが円筒部18の周方向に沿って等間隔で4つ形成されている。このように案内口19aが円筒部18側に形成されていることで、これら案内口19aを通過した気体混合液は、後述するように下流側第1渦流生成機構を構成する混合液配管8の内壁面側に案内されるようになっている。 As shown in FIGS. 3A and 3B, the drift plate 19 of the vortex generating member 17 is formed with a guide port 19a on the outer peripheral portion thereof, that is, on the cylindrical portion 18 side. In the present embodiment, as shown in FIG. 3B, the guide port 19 a is formed in an arc shape along the inner peripheral surface of the cylindrical portion 18, and such a guide port 19 a is formed along the circumferential direction of the cylindrical portion 18. Four are formed at intervals. Since the guide port 19a is formed on the cylindrical portion 18 side in this way, the gas mixed solution that has passed through the guide port 19a is, as will be described later, the mixed solution pipe 8 that constitutes the downstream first vortex generating mechanism. It is guided to the inner wall surface side.
 ここで、4つの案内口19aの開口面積の合計は、前記案内管11の内部孔の開口面積とほぼ同じに形成されている。したがって、気液衝突部7で原水と炭酸ガスとが衝突し、混合されて形成された気体混合液は、案内管11を通過する際と4つの案内口19aを通過する際とで、ほぼ同じ流速で通過するようになっている。これにより、4つの案内口19aを通過する際には、特に加圧されることでその流量が絞られるとことなく、案内管11を通過する際と同じ流量で流れるようになっている。 Here, the total opening area of the four guide ports 19a is formed to be substantially the same as the opening area of the inner hole of the guide tube 11. Therefore, the raw water and the carbon dioxide gas collide at the gas-liquid collision part 7 and the gas mixture liquid formed by mixing is substantially the same when passing through the guide tube 11 and when passing through the four guide ports 19a. It passes through at a flow rate. As a result, when passing through the four guide ports 19a, the flow rate is not reduced by being particularly pressurized, but flows at the same flow rate as when passing through the guide tube 11.
 なお、案内口19aについては、その形状や大きさは図3A、図3Bに示した形態に限定されることなく、偏流板19の外周部、すなわち円筒部18側に配置されていれば、種々の形態を採用することができる。例えば、図4Aに示すように比較的小径の円形の案内口19bや、図4Bに示すようにさらに小径の円形の案内口19cをそれぞれ複数ずつ配置してもよい。ただし、これら図4Aに示す案内口19bや図4Bに示す案内口19cについても、前記案内口19aと同様にその開口面積の合計が、前記案内管11の内径とほぼ同じになるように形成するのが好ましい。なお、図4A、図4Bでは偏流板19しか記載していないが、これら偏流板19は図3A~図3Cに示した円筒部18内に設けられることで、渦発生部材17を構成している。 In addition, about the guide port 19a, the shape and magnitude | size are not limited to the form shown to FIG. 3A and FIG. 3B, if it is arrange | positioned at the outer peripheral part of the drift plate 19, ie, the cylindrical part 18 side, it will be various. The form of can be adopted. For example, a relatively small circular guide port 19b as shown in FIG. 4A and a plurality of smaller circular guide ports 19c as shown in FIG. 4B may be arranged. However, the guide port 19b shown in FIG. 4A and the guide port 19c shown in FIG. 4B are formed so that the total opening area thereof is substantially the same as the inner diameter of the guide tube 11 as with the guide port 19a. Is preferred. 4A and 4B show only the drift plate 19, but these drift plates 19 are provided in the cylindrical portion 18 shown in FIGS. 3A to 3C to constitute the vortex generating member 17. .
 図2Bに示すようにハウジング本体13は、内挿部12側となる大径部21と、該大径部21より小径の小径部22とによって形成されている。大径部21内には、前記段差部12a側に形成される内部孔に連通し、したがって渦発生部材17の案内口19aに連通する内部孔21aが形成されている。一方、小径部22内には、大径部21の内部孔21aに連通する内部孔22aが形成されている。 As shown in FIG. 2B, the housing body 13 is formed by a large-diameter portion 21 on the side of the insertion portion 12 and a small-diameter portion 22 having a smaller diameter than the large-diameter portion 21. In the large-diameter portion 21, an internal hole 21 a that communicates with the internal hole formed on the stepped portion 12 a side and therefore communicates with the guide port 19 a of the vortex generating member 17 is formed. On the other hand, an internal hole 22 a communicating with the internal hole 21 a of the large diameter portion 21 is formed in the small diameter portion 22.
 大径部21の内部孔21aは、小径部22側に行くにつれて漸次小径となるテーパ状に形成されている。特にその下端側、すなわち小径部22の内部孔22aに連通する側は、内壁面が形成する傾斜角(テーパ角)が大きいテーパ面21bとなっている。すなわち、テーパ面21bは、小径部22側に行くに連れて外側から内側に向かうように中心軸(図示せず)に対して傾斜して形成されている。 The inner hole 21a of the large diameter portion 21 is formed in a tapered shape that gradually becomes smaller in diameter toward the small diameter portion 22 side. In particular, the lower end side, that is, the side communicating with the inner hole 22a of the small diameter portion 22 is a tapered surface 21b having a large inclination angle (taper angle) formed by the inner wall surface. That is, the tapered surface 21b is formed to be inclined with respect to the central axis (not shown) so as to go from the outside to the inside as it goes to the small diameter portion 22 side.
 小径部22の内部孔22aには、ミキシングパイプ23が着脱可能に挿入嵌合され、固定されている。ミキシングパイプ23は、樹脂や金属からなる略円筒状のもので、本発明における渦発生部を構成するものであり、その上端部が大径部21の内部孔21a側に突出して取り付けられ、固定されている。すなわち、ミキシングパイプ23は、その上端が前記テーパ面21bの上端にほぼ一致するように配置されている。 A mixing pipe 23 is detachably inserted and fixed in the internal hole 22a of the small diameter portion 22. The mixing pipe 23 is a substantially cylindrical one made of resin or metal, and constitutes the vortex generating portion in the present invention, and its upper end protrudes toward the inner hole 21a side of the large diameter portion 21 and is fixed. Has been. That is, the mixing pipe 23 is disposed so that the upper end thereof substantially coincides with the upper end of the tapered surface 21b.
 このような構成により、ミキシングパイプ23の上端部とこの上端部に対向する混合液配管8の内壁面(ハウジング10のハウジング本体13)、すなわちテーパ面21bとの間に、溝部24が形成されている。溝部24は、ミキシングパイプ23の上端部の全周に亘って前記気液衝突部7側、すなわち上流側第1渦流生成機構を構成する渦発生部材17側に開口して形成されたもので、本発明における第1渦流生成機構の一部となる下流側第1渦流生成機構を構成している。 With such a configuration, a groove portion 24 is formed between the upper end portion of the mixing pipe 23 and the inner wall surface (housing main body 13 of the housing 10) of the mixed liquid pipe 8 facing the upper end portion, that is, the tapered surface 21b. Yes. The groove portion 24 is formed to open to the gas-liquid collision portion 7 side, that is, the vortex generating member 17 side constituting the upstream first vortex generating mechanism over the entire circumference of the upper end portion of the mixing pipe 23, The downstream 1st eddy current generation mechanism used as a part of the 1st eddy current generation mechanism in this invention is comprised.
 このような溝部24により、後述するように渦発生部材17の案内口19aを通ってハウジング本体13内に流入した気体混合液は、多くが溝部24の底面、すなわち前記テーパ面21bに衝突してその流れを反転させ、微小な渦流を形成するようになっている。すなわち、渦発生部材17の案内口19aを通過した気体混合液は、これら案内口19aによって大径部21の内部孔21aの内壁面側に案内されるため、その多くが溝部24に向けて流れるようになっている。
 本実施形態では、このようなミキシングパイプ23を渦発生部とする下流側第1渦流生成機構と、渦発生部材17を渦発生部とする前記上流側第1渦流生成機構とにより、第1渦流生成機構が構成されている。
As described later, a large amount of the gas mixture flowing into the housing body 13 through the guide port 19a of the vortex generating member 17 collides with the bottom surface of the groove portion 24, that is, the tapered surface 21b. The flow is reversed and a minute vortex is formed. That is, since the gas mixture that has passed through the guide port 19a of the vortex generating member 17 is guided to the inner wall surface side of the internal hole 21a of the large diameter portion 21 by these guide ports 19a, most of it flows toward the groove portion 24. It is like that.
In the present embodiment, the first vortex flow is generated by such a downstream first vortex generating mechanism having the mixing pipe 23 as a vortex generating portion and the upstream first vortex generating mechanism having the vortex generating member 17 as a vortex generating portion. A generation mechanism is configured.
 ミキシングパイプ23は、その上端部が下流側第1渦流生成機構を構成しているが、本実施形態ではこれとは別にその内部に、第2渦流生成機構を形成している。すなわち、ミキシングパイプ23は、図5A~図5Cに示すように内部に狭隘部25と流路変更部26とを有している。ここで、図5Aはミキシングパイプ23の斜視図であり、図5Bはミキシングパイプ23の平面図であり、図5Cはミキシングパイプ23の側断面図である。 The upper end of the mixing pipe 23 constitutes a downstream first vortex generating mechanism, but in the present embodiment, a second vortex generating mechanism is formed inside thereof separately from this. That is, the mixing pipe 23 has a narrow portion 25 and a flow path changing portion 26 inside as shown in FIGS. 5A to 5C. 5A is a perspective view of the mixing pipe 23, FIG. 5B is a plan view of the mixing pipe 23, and FIG. 5C is a side sectional view of the mixing pipe 23. FIG.
 図5B、図5Cに示すように狭隘部25は、ミキシングパイプ23の内壁面の一部から中心側に向けて第1の邪魔板27aが延出して設けられていることにより、この第1の邪魔板27aの先端とミキシングパイプ23の内壁面との間に形成された開口である。このように第1の邪魔板27aによってミキシングパイプ23の内部孔が一部閉じられていることにより、残った開口部分は必然的に開口面積が狭められることで気体混合液の流路を上流から下流に向けて狭める部位、すなわち狭隘部25となっている。 As shown in FIGS. 5B and 5C, the narrow portion 25 is provided with a first baffle plate 27 a extending from a part of the inner wall surface of the mixing pipe 23 toward the center side. This is an opening formed between the tip of the baffle plate 27 a and the inner wall surface of the mixing pipe 23. As described above, since the inner hole of the mixing pipe 23 is partially closed by the first baffle plate 27a, the remaining opening portion inevitably narrows the opening area, so that the flow path of the gas mixture can be made upstream. It becomes the site | part narrowed toward the downstream, ie, the narrow part 25. FIG.
 また、図5Cに示すようにこの狭隘部25の下側(下流側)には、第2の邪魔板27bが、ミキシングパイプ23の内壁面の他の一部から中心側に向けて延出して設けられている。このように狭隘部25の直下に第2の邪魔板27bが配置されていることで、狭隘部25を流れた気体混合液は第2の邪魔板27bに衝突し、その後第2の邪魔板27bの先端とミキシングパイプ23の内壁面との間に形成された開口27cに流れるようになっている。したがって、このような第2の邪魔板27bとその先端側に形成された開口27cとにより、狭隘部25の側方に流路を変更する流路変更部26が構成されている。 Further, as shown in FIG. 5C, on the lower side (downstream side) of the narrow portion 25, a second baffle plate 27b extends from another part of the inner wall surface of the mixing pipe 23 toward the center side. Is provided. Since the second baffle plate 27b is arranged directly under the narrow portion 25 in this way, the gas mixture flowing through the narrow portion 25 collides with the second baffle plate 27b, and then the second baffle plate 27b. It flows through an opening 27 c formed between the tip of the mixing pipe 23 and the inner wall surface of the mixing pipe 23. Accordingly, the second baffle plate 27b and the opening 27c formed on the tip side of the second baffle plate 27b constitute a flow path changing portion 26 that changes the flow path to the side of the narrow portion 25.
 このような構成からなる流路変更部26は、狭隘部25にて流路が上流から下流に向けて狭められたことで加圧された気体混合液の流れを第2の邪魔板27bで反転させ、その後第2の邪魔板27bの側方の開口27cに案内する。その際、図5C中に矢印で示すように狭隘部25では気体混合液が加圧されることで炭酸ガスの溶解度が高められる。また、流路変更部26では第2の邪魔板27bによって気体混合液の流れが反転させられ、混合液配管8(ミキシングパイプ23)の中心軸と交差する方向に気体混合液が流動させられて、渦流が生じるようになっている。 The flow path changing unit 26 having such a configuration reverses the flow of the gas mixture liquid pressurized by the narrowed part 25 from the upstream side to the downstream side by the second baffle plate 27b. Then, it is guided to the opening 27c on the side of the second baffle plate 27b. At that time, as shown by an arrow in FIG. 5C, the gas mixture is pressurized in the narrow portion 25, so that the solubility of carbon dioxide gas is increased. Further, in the flow path changing unit 26, the flow of the gas mixture is reversed by the second baffle plate 27b, and the gas mixture is caused to flow in a direction crossing the central axis of the mixture pipe 8 (mixing pipe 23). A vortex is generated.
 なお、このようなミキシングパイプ23には、図5A、図5Cに示すようにその側壁部に二つの切欠28a、28bが形成されている。これら切欠28a、28bは、主に第1の邪魔板27aや第2の邪魔板27b等を形成するための加工用のものである。
 また、ミキシングパイプ23の下端部には、図2Bに示すようにハウジング本体13の小径部22の下端部に形成された嵌合凹部(図示せず)に嵌合する円環状の嵌合凸部29が形成されている。この嵌合凸部29が小径部22の下端部の嵌合凹部に着脱可能に嵌合させられることにより、ミキシングパイプ23はハウジング本体13内に着脱可能に収容固定されている。
The mixing pipe 23 is formed with two notches 28a and 28b on the side wall as shown in FIGS. 5A and 5C. These notches 28a and 28b are mainly used for forming the first baffle plate 27a and the second baffle plate 27b.
Moreover, the annular fitting convex part fitted to the fitting recessed part (not shown) formed in the lower end part of the small diameter part 22 of the housing main body 13 as shown in FIG. 2B at the lower end part of the mixing pipe 23 29 is formed. The fitting pipe 29 is detachably fitted into the fitting recess at the lower end of the small-diameter portion 22, so that the mixing pipe 23 is detachably accommodated in the housing body 13.
 このようにハウジング本体13に収容固定されたミキシングパイプ23は、その下端側の開口が気液混合装置2の気体混合液の噴出口となっている。したがって、ハウジング本体13には、図示しないものの、その小径部22にホースおよびシャワーヘッドが取り付けられている。そのため、小径部22には、その外周面に雄ねじ部(図示せず)が形成されており、ここにホースが着脱可能に取り付けられるようになっている。 The mixing pipe 23 accommodated and fixed in the housing body 13 in this way has an opening on the lower end side serving as a gas mixture jet outlet of the gas-liquid mixing device 2. Therefore, although not shown, the hose and the shower head are attached to the small diameter portion 22 of the housing body 13. Therefore, the small diameter portion 22 has a male screw portion (not shown) formed on the outer peripheral surface thereof, and a hose is detachably attached thereto.
 このような構成からなる気液混合装置2には、図6A、図6Bに示すように、原水流入管5の開口5aに原水側配管30が連結され、気体流入管6の開口6aに気体側配管31が連結されている。これら原水側配管30や気体側配管31の連結には、ジョイントクリップ15が用いられている。原水側配管30は、図1に示した原水供給源3に接続されており、気体側配管31は、気体供給源4に接続されている。 As shown in FIGS. 6A and 6B, the gas-liquid mixing device 2 having such a configuration has a raw water side pipe 30 connected to the opening 5 a of the raw water inflow pipe 5 and a gas side to the opening 6 a of the gas inflow pipe 6. The piping 31 is connected. A joint clip 15 is used to connect the raw water side pipe 30 and the gas side pipe 31. The raw water side pipe 30 is connected to the raw water supply source 3 shown in FIG. 1, and the gas side pipe 31 is connected to the gas supply source 4.
 ここで、本実施形態では原水供給源3は水道管となっており、したがって、原水側配管30は水道管と原水流入管5との間に配設されている。ただし、水道管や原水流入管5には、水道水を所定の温度、例えば30℃~45℃程度の予め設定された温度に加温する加熱装置(図示せず)が設けられていてもよい。洗髪の際には、通常の水道水では冷たく感じられるため、前記の温度範囲、好ましくは35℃~40℃程度に加温しておくのが望ましい。 Here, in this embodiment, the raw water supply source 3 is a water pipe, and therefore, the raw water side pipe 30 is disposed between the water pipe and the raw water inflow pipe 5. However, the water pipe or the raw water inflow pipe 5 may be provided with a heating device (not shown) for heating the tap water to a predetermined temperature, for example, a preset temperature of about 30 ° C. to 45 ° C. . When shampooing, it is felt cold with normal tap water, so it is desirable to keep the temperature within the above temperature range, preferably about 35 ° C. to 40 ° C.
 また、このように加温するのとは別に、原水となる水道水に例えば予め塩化ナトリウムを所定量溶解しておき、医療用目的としての生理食塩水としてもよい。さらに、必要に応じて香料を添加しておいてもよい。なお、原水供給源3としては、水道管以外にも種々の水源を用いることができる。
 一方、気体供給源4としては、本実施形態では炭酸ガスを0.5MPa程度の圧(ゲージ圧)で充填したガスボンベが用いられる。
In addition to heating in this manner, for example, a predetermined amount of sodium chloride may be dissolved in tap water as raw water in advance to obtain physiological saline for medical purposes. Furthermore, you may add the fragrance | flavor as needed. As the raw water supply source 3, various water sources can be used in addition to the water pipe.
On the other hand, as the gas supply source 4, in this embodiment, a gas cylinder filled with carbon dioxide gas at a pressure (gauge pressure) of about 0.5 MPa is used.
 図6A、図6Bに示すように原水側配管30には、本発明の圧力スイッチとなる第1の圧力スイッチ32が設けられている。第1の圧力スイッチ32は、図6Aに示すように原水側配管30内(原水流入管5内)を流れる原水の圧力を、原水側配管30、すなわち原水流入管5の流路を狭めることなく検知するセンサであり、予め設定された所定の圧力以上になるとこれを検知してスイッチがオンになり、所定の圧力未満ではスイッチがオフとなる公知の構成のものである。 As shown in FIGS. 6A and 6B, the raw water side pipe 30 is provided with a first pressure switch 32 serving as a pressure switch of the present invention. As shown in FIG. 6A, the first pressure switch 32 reduces the pressure of the raw water flowing in the raw water side pipe 30 (in the raw water inflow pipe 5) without narrowing the flow path of the raw water side pipe 30, that is, the raw water inflow pipe 5. This is a sensor to detect, and has a known configuration in which a switch is turned on when a predetermined pressure higher than a preset pressure is detected and the switch is turned off when the pressure is lower than a predetermined pressure.
 この第1の圧力スイッチ32は、原水側配管30内に連通するバイパス管32aを有して構成されており、原水側配管30内が所定の圧力以上になると原水がバイパス管32aを通って第1の圧力スイッチ32を加圧し、スイッチをオンにする。また、原水側配管30内が所定の圧力未満のときには原水が第1の圧力スイッチ32を加圧せず、したがってスイッチがオフの状態となる。 The first pressure switch 32 includes a bypass pipe 32a communicating with the raw water side pipe 30. When the pressure in the raw water side pipe 30 reaches a predetermined pressure or higher, the raw water passes through the bypass pipe 32a and the first pressure switch 32 is connected to the first pressure switch 32. The pressure switch 32 of No. 1 is pressurized and turned on. Further, when the inside of the raw water side pipe 30 is less than a predetermined pressure, the raw water does not pressurize the first pressure switch 32, and therefore the switch is turned off.
 よって、この第1の圧力スイッチ32は、原水側配管30、すなわちこれに連結する原水流入管5の流路を狭めることなく、該流路を流れる原水の圧力を検知するようになっている。一般に用いられる流量センサでは、流路にインペラ等を配置し、その回転数から流量を検出しているため、結果的にインペラ等で流路を狭めることになっている。これに対して第1の圧力スイッチ32は、流路を狭めないため、流量についてもこれを絞ることなく、流すことができる。 Therefore, the first pressure switch 32 detects the pressure of the raw water flowing through the flow path without narrowing the flow path of the raw water side pipe 30, that is, the raw water inflow pipe 5 connected thereto. In a flow sensor generally used, an impeller or the like is arranged in the flow path, and the flow rate is detected from the number of rotations thereof. As a result, the flow path is narrowed by the impeller or the like. On the other hand, since the first pressure switch 32 does not narrow the flow path, it can flow without restricting the flow rate.
 この第1の圧力スイッチ32は、図1に示すように制御部40に電気的に接続されており、検知したオン/オフ信号を制御部40に送信している。
 図6A、図6Bに示した気液混合装置2の気体側供給管6に接続する気体側配管31には、図1に示すように気体供給源4との間の経路中に、電磁弁33(制御弁)と第2の圧力スイッチ34とが設けられている。
As shown in FIG. 1, the first pressure switch 32 is electrically connected to the control unit 40, and transmits a detected on / off signal to the control unit 40.
The gas side pipe 31 connected to the gas side supply pipe 6 of the gas-liquid mixing apparatus 2 shown in FIGS. 6A and 6B includes an electromagnetic valve 33 in the path between the gas supply source 4 as shown in FIG. (Control valve) and a second pressure switch 34 are provided.
 第2の圧力スイッチ34は、気体供給源4側に配置されたもので、気体側配管31を流れる炭酸ガスの圧力を検知し、予め設定された圧(例えば0.3MPa[ゲージ圧])以上であればスイッチをオンとし、予め設定された圧未満ではスイッチをオフとする。したがって、この第2の圧力スイッチ34は、気体供給源4を構成するガスボンベ内の残圧、すなわちガスボンベ内の炭酸ガスの残量を判定する残量計として機能している。 The second pressure switch 34 is disposed on the gas supply source 4 side, detects the pressure of the carbon dioxide gas flowing through the gas side pipe 31, and is equal to or higher than a preset pressure (for example, 0.3 MPa [gauge pressure]). If so, the switch is turned on, and if it is less than a preset pressure, the switch is turned off. Therefore, the second pressure switch 34 functions as a fuel gauge for determining the residual pressure in the gas cylinder constituting the gas supply source 4, that is, the remaining amount of carbon dioxide in the gas cylinder.
 この第2の圧力スイッチ34も、制御部40に電気的に接続されており、検知結果に基づくオン/オフ信号を制御部40に送信している。制御部40では、図示しない操作パネルの表示部に、第2の圧力スイッチ34の検知結果、すなわち気体供給源4(ガスボンベ)の残量が予め設定された圧(量)以上であるか否かが、表示されるようになっている。 The second pressure switch 34 is also electrically connected to the control unit 40, and transmits an on / off signal based on the detection result to the control unit 40. In the control unit 40, whether or not the detection result of the second pressure switch 34, that is, the remaining amount of the gas supply source 4 (gas cylinder) is equal to or higher than a preset pressure (amount) is displayed on the display unit of the operation panel (not shown). Is displayed.
 電磁弁33は、第2の圧力スイッチ34の下流側に配置されたもので、その開閉によって気体供給源4からの炭酸ガスの供給を調整している。すなわち、電磁弁33が開かれることで気体供給源4から気液混合装置2の気体流入管6に炭酸ガスが供給され、閉じられことで炭酸ガスの供給が停止させられるようになっている。この電磁弁33は、制御部40に電気的に接続することでその開閉が制御されている。 The electromagnetic valve 33 is disposed on the downstream side of the second pressure switch 34 and adjusts the supply of carbon dioxide from the gas supply source 4 by opening and closing thereof. That is, when the electromagnetic valve 33 is opened, carbon dioxide is supplied from the gas supply source 4 to the gas inflow pipe 6 of the gas-liquid mixing device 2, and when closed, the supply of carbon dioxide is stopped. The opening and closing of the electromagnetic valve 33 is controlled by being electrically connected to the control unit 40.
 制御部40は、前記第1の圧力スイッチ32からのオン/オフ信号を受信し、このオン/オフ信号に基づいて電磁弁33の開閉を制御する。すなわち、原水側配管30(原水流入管5)内の圧力が所定の圧力以上であり、したがって原水が所定の流量以上で流れていることを第1の圧力スイッチ32が検知し、オン信号を制御部40に送信すると、制御部40は電磁弁33を開くべく、電磁弁33にオン信号を送信する。すると、電磁弁33が開き、炭酸ガスが気液混合装置2に供給される。 The control unit 40 receives the on / off signal from the first pressure switch 32 and controls the opening / closing of the electromagnetic valve 33 based on the on / off signal. That is, the first pressure switch 32 detects that the pressure in the raw water side pipe 30 (raw water inflow pipe 5) is equal to or higher than a predetermined pressure, and therefore the raw water is flowing at a predetermined flow rate or higher, and controls the ON signal. When transmitting to the unit 40, the control unit 40 transmits an ON signal to the electromagnetic valve 33 in order to open the electromagnetic valve 33. Then, the electromagnetic valve 33 is opened, and carbon dioxide gas is supplied to the gas-liquid mixing device 2.
 一方、原水側配管30(原水流入管5制御部40)内の圧力が所定の圧力未満であり、したがって原水が所定の流量以上で流れていることを第1の圧力スイッチ32が検知できない場合には、オン信号が制御部40に送信されず、したがって制御部40は電磁弁33を開くことなく閉じた状態にする。すると、電磁弁33が閉じているため、炭酸ガスが気液混合装置2に供給されないようになる。 On the other hand, when the pressure in the raw water side pipe 30 (raw water inflow pipe 5 control unit 40) is less than a predetermined pressure, and therefore the first pressure switch 32 cannot detect that the raw water is flowing at a predetermined flow rate or higher. In this case, the ON signal is not transmitted to the control unit 40, and thus the control unit 40 closes the electromagnetic valve 33 without opening it. Then, since the electromagnetic valve 33 is closed, the carbon dioxide gas is not supplied to the gas-liquid mixing device 2.
 このように原水が所定の流量以上で流れて気液混合装置2に供給されている場合にのみ、炭酸ガスが気液混合装置2に供給されるようになっているので、炭酸ガスが過剰に消費されることが防止されるとともに、製造する気体混合液、すなわち炭酸水中の炭酸ガス濃度が、予め設定された適正な範囲に調整される。 In this way, carbon dioxide gas is supplied to the gas-liquid mixing device 2 only when the raw water flows at a predetermined flow rate or higher and is supplied to the gas-liquid mixing device 2, so that the carbon dioxide gas is excessive. Consumption is prevented, and the gas mixture to be produced, that is, the carbon dioxide concentration in the carbonated water is adjusted to an appropriate range set in advance.
 制御部40は、CPUやメモリ装置等を備えるとともに、表示部としても機能する操作パネルを有したもので、操作パネルを介して気液混合システム1全体の電源のオンオフや、各種データの出力などを行えるようになっている。すなわち、この制御部40は、前述した第1の圧力スイッチ32や第2の圧力スイッチ34からの信号に基づき、原水の供給時間(供給量)や炭酸ガスの供給時間(供給量)、さらには気体供給源4の炭酸ガスの残量等を算出するように構成されている。 The control unit 40 includes a CPU, a memory device, and the like, and has an operation panel that also functions as a display unit. The entire gas-liquid mixing system 1 is turned on and off, and various data are output via the operation panel. Can be done. That is, the control unit 40, based on the signals from the first pressure switch 32 and the second pressure switch 34 described above, supply time (supply amount) of raw water, supply time (supply amount) of carbon dioxide gas, The remaining amount of carbon dioxide gas from the gas supply source 4 is calculated.
 そして、このように算出した各種の情報を、制御部40内の出力部35を介してiOS端末やアンドロイドなどの外部端末に出力できるようになっている。出力部35としては、図示しない通信手段(例えばBluetooth(登録商標)など)によって出力するものが備えられている。外部端末としては、タブレットやスマートフォンなどが好適に用いられ、前記の制御部40で算出された各種情報を容易に受信することが可能になっている。 The various information calculated in this way can be output to an external terminal such as an iOS terminal or an Android via the output unit 35 in the control unit 40. As the output part 35, what is output by communication means (for example, Bluetooth (trademark) etc.) which is not illustrated is provided. As the external terminal, a tablet, a smartphone, or the like is preferably used, and various information calculated by the control unit 40 can be easily received.
 本実施形態のように複数の洗髪台を有する理美容店において、各洗髪台にそれぞれ気液混合システム1が配設される場合、各洗髪台の気液混合システム1からそれぞれ各種情報を出力させ、一つの外部端末に各種情報を入力することができる。したがって、理美容店の責任者などは各種情報を入力した外部端末を見ることで、各洗髪台の運転状況や過去の運転履歴などを容易に確認することができる。 In a hairdressing and beauty shop having a plurality of hair basins as in the present embodiment, when the gas-liquid mixing system 1 is disposed in each basin, various information is output from the gas-liquid mixing system 1 of each basin. Various information can be input to one external terminal. Therefore, the person in charge of the hairdressing and beauty shop can easily check the operating status of each hair basin, the past driving history, and the like by looking at the external terminal to which various information has been input.
 次に、このような構成からなる気液混合システム1(気液混合装置2)による、気体混合液となる炭酸水の製造について説明する。
 まず、原水供給源3である水道から水(湯)を、予め設定された所定の圧力、例えば0.10~0.20MPa、好ましくは0.10~0.15MPaの圧(ゲージ圧)で原水側配管30に流す。このような所定の圧力で原水を供給することにより、本実施形態ではその流量が、例えば6~15l/分、好ましくは6~10l/分程度となるように設定されている。
Next, the production of carbonated water to be a gas mixture by the gas-liquid mixing system 1 (gas-liquid mixing device 2) having such a configuration will be described.
First, water (hot water) is supplied from tap water as the raw water supply source 3 at a predetermined pressure set in advance, for example, 0.10 to 0.20 MPa, preferably 0.10 to 0.15 MPa (gauge pressure). Flow in side pipe 30. By supplying the raw water at such a predetermined pressure, in this embodiment, the flow rate is set to be, for example, about 6 to 15 l / min, preferably about 6 to 10 l / min.
 このようにして原水を流し、原水側配管30内が所定の圧力に達すると、第1の圧力スイッチ32がこれを検知し、制御部40を介して電磁弁33を開く。
 気体供給源4側では、第2の圧力スイッチ34が気体供給源(ガスボンベ)4内の残圧(残量)を検知し、制御部40の操作パネルにその結果を表示させる。したがって、操作者は気体供給源4の残圧が予め設定された圧以上であれば、そのまま炭酸水の製造を進める。また、気体供給源4の残圧が予め設定された圧未満である場合には、必要に応じて気体供給源4の交換などを行う。なお、気体供給源(ガスボンベ)4には圧力調整器や圧力計が備えられており、例えば圧力計を確認することで、気体供給源4の交換時期を決定することもできる。
When the raw water is flowed in this way and the inside of the raw water side pipe 30 reaches a predetermined pressure, the first pressure switch 32 detects this and opens the electromagnetic valve 33 via the control unit 40.
On the gas supply source 4 side, the second pressure switch 34 detects the remaining pressure (remaining amount) in the gas supply source (gas cylinder) 4 and displays the result on the operation panel of the control unit 40. Therefore, if the residual pressure of the gas supply source 4 is equal to or higher than a preset pressure, the operator proceeds with the production of carbonated water as it is. Moreover, when the residual pressure of the gas supply source 4 is less than a preset pressure, the gas supply source 4 is exchanged as necessary. The gas supply source (gas cylinder) 4 is provided with a pressure regulator and a pressure gauge. For example, the replacement timing of the gas supply source 4 can be determined by checking the pressure gauge.
 電磁弁33を通った炭酸ガスは、電磁弁33の上流側あるいは下流側に設けられた図示しない流量調整器によって、流量が例えば4~12l/分、好ましくは5~11l/分程度となるように調整される。
 原水供給源3から原水側配管30を介して原水流入管5に原水が供給され、気体供給源4から気体側配管31を介して気体流入管6に炭酸ガスが供給されると、図7中に矢印で示すように原水と炭酸ガス(気体)とが気液衝突部7にて衝突し、混合される。そして、案内管11を通って混合液配管8内に流入する。
Carbon dioxide gas that has passed through the solenoid valve 33 is adjusted to have a flow rate of, for example, about 4 to 12 l / min, preferably about 5 to 11 l / min, by a flow rate regulator (not shown) provided on the upstream side or downstream side of the solenoid valve 33. Adjusted to
When raw water is supplied from the raw water supply source 3 to the raw water inflow pipe 5 via the raw water side pipe 30, and carbon dioxide is supplied from the gas supply source 4 to the gas inflow pipe 6 via the gas side pipe 31, FIG. The raw water and carbon dioxide gas (gas) collide at the gas-liquid collision part 7 and are mixed as indicated by arrows in FIG. Then, it flows into the mixed liquid pipe 8 through the guide pipe 11.
 その際、原水と炭酸ガスとは気液衝突部7にて互いに衝突し、さらに一方に偏ることなく原水と炭酸ガスのうち少なくとも一つと異なる方向に得られた気体混合液が案内されるため、衝突エネルギーが最大化し、原水に対して炭酸ガスが充分に混合されるとともに、原水に対する炭酸ガスの溶解度が高められる。温度40℃の水に対する炭酸ガスの飽和濃度は約1000ppmである。これに対して本実施形態の気液混合装置2では、気液衝突部7で衝突させた後、案内管11を通って混合液配管8内に流入させることで、この案内管11を通った気体混合液(炭酸水)中の炭酸ガス濃度を、800~850ppm程度の濃度にすることができた。なお、原水中に溶解していない炭酸ガスは、気泡となって気体混合液中に混合された状態として、存在する。 At that time, the raw water and the carbon dioxide gas collide with each other in the gas-liquid collision unit 7, and the gas mixture obtained in a direction different from at least one of the raw water and the carbon dioxide gas without being biased to one side is guided, The collision energy is maximized, the carbon dioxide is sufficiently mixed with the raw water, and the solubility of the carbon dioxide in the raw water is increased. The saturated concentration of carbon dioxide with respect to water at a temperature of 40 ° C. is about 1000 ppm. On the other hand, in the gas-liquid mixing device 2 of the present embodiment, after colliding with the gas-liquid collision unit 7, the gas-liquid mixing unit 2 passes through the guide tube 11 by flowing into the mixed solution pipe 8 through the guide tube 11. The concentration of carbon dioxide in the gas mixture (carbonated water) could be adjusted to about 800 to 850 ppm. In addition, the carbon dioxide gas which is not melt | dissolved in raw | natural water exists as a state which became a bubble and was mixed in the gas liquid mixture.
 混合液配管8内に流入した気体混合液(炭酸水)は、ハウジング10の内挿部12内に設けられた渦発生部材17に向けて流れる。その際、気体混合液の一部は、渦発生部材17の上端部と内挿部12の内壁面との間に設けられた溝部20(上流側第1渦流生成機構)に向けて流れることにより、図7中に矢印で示すように微小な渦流を生じる。すなわち、気体混合液は溝部20の底面(テーパ面18a)に衝突してその流れを反転させ、混合液配管8の中心軸と交差する方向に流動することにより、微小な渦流を生じる。 The gas mixed solution (carbonated water) that has flowed into the mixed solution pipe 8 flows toward the vortex generating member 17 provided in the insertion portion 12 of the housing 10. At that time, a part of the gas mixture liquid flows toward the groove portion 20 (upstream first vortex generating mechanism) provided between the upper end portion of the vortex generating member 17 and the inner wall surface of the insertion portion 12. As shown by the arrows in FIG. 7, a minute vortex is generated. That is, the gas mixed solution collides with the bottom surface (tapered surface 18 a) of the groove portion 20, reverses the flow thereof, and flows in a direction intersecting with the central axis of the mixed solution pipe 8, thereby generating a minute vortex.
 このような微小な渦流を生じることにより、気体混合液中の気泡が微細化し、その比表面積が大きくなる。これにより、気泡を形成する炭酸ガスと気体混合液(原水)との接触面積が増加し、気体混合液(原水)に対する炭酸ガスの溶解が促進される。したがって、既に800~850ppm程度の濃度となっている気体混合液は、その炭酸ガス濃度が900ppm程度にまで高められる。 By generating such a minute vortex, the bubbles in the gas mixture are refined and the specific surface area is increased. Thereby, the contact area of the carbon dioxide gas which forms a bubble, and gas mixed liquid (raw water) increases, and melt | dissolution of the carbon dioxide gas with respect to gaseous mixed liquid (raw water) is accelerated | stimulated. Therefore, the gas mixture already having a concentration of about 800 to 850 ppm has its carbon dioxide concentration increased to about 900 ppm.
 上流側第1渦流生成機構(溝部20)で炭酸ガス濃度が高められた気体混合液は、図7中に矢印で示すように、渦発生部材17の偏流板19の案内口19aを通過することでこれに案内され、ハウジング本体13の大径部21の内部孔21aの内壁面側を流れる。これにより、気体混合液の多くが大径部21の内部孔21aの内壁面、すなわちテーパ面21bと、ミキシングパイプ23の上端部との間に設けられた溝部24(下流側第1渦流生成機構)に向けて流れ、図7中に矢印で示すように微小な渦流を生じる。すなわち、気体混合液は溝部24の底面(テーパ面21b)に衝突してその流れを反転させ、混合液配管8の中心軸と交差する方向に流動することにより、微小な渦流を生じる。 The gas mixture whose carbon dioxide concentration is increased by the upstream first vortex generating mechanism (groove portion 20) passes through the guide port 19a of the drift plate 19 of the vortex generating member 17, as indicated by an arrow in FIG. And flows on the inner wall surface side of the inner hole 21 a of the large-diameter portion 21 of the housing body 13. As a result, most of the gas mixture is a groove portion 24 (downstream first vortex generating mechanism) provided between the inner wall surface of the inner hole 21 a of the large diameter portion 21, that is, the tapered surface 21 b, and the upper end portion of the mixing pipe 23. ) And a minute vortex is generated as shown by an arrow in FIG. That is, the gas mixed liquid collides with the bottom surface (tapered surface 21 b) of the groove portion 24, reverses the flow thereof, and flows in a direction intersecting with the central axis of the mixed liquid piping 8, thereby generating a minute vortex.
 このような微小な渦流を生じることにより、前記溝部20(上流側第1渦流生成機構)のときと同様にして気体混合液(原水)に対する炭酸ガスの溶解が促進され、気体混合液はその炭酸ガス濃度がさらに高められる。
 下流側第1渦流生成機構(溝部24)で炭酸ガス濃度が高められた気体混合液は、図7中に矢印で示すように、ミキシングパイプ23内に流入する。
By generating such a small vortex, the dissolution of carbon dioxide in the gas mixture (raw water) is promoted in the same manner as in the groove 20 (upstream first vortex generation mechanism). The gas concentration is further increased.
The gas mixture whose carbon dioxide concentration is increased by the downstream first vortex generating mechanism (groove portion 24) flows into the mixing pipe 23 as shown by an arrow in FIG.
 そして、ミキシングパイプ23内に流入した気体混合液は、図5Cに示したように狭隘部25を流れることで加圧され、これによって該気体混合液中での炭酸ガスの溶解度が高められる。また、第2の邪魔板27bによって流れが反転させられ、混合液配管8の中心軸と交差する方向に流動することにより、渦流を生じる。さらに、その後開口27cに向けて流路を変更させられることによっても、渦流を生じる。これにより、気体混合液中の気泡が微細化して、気体混合液(原水)に対する炭酸ガスの溶解が促進される。本実施形態では、気体混合液はその炭酸ガス濃度が飽和濃度である1000ppm程度にまで高められる。 Then, the gas mixture that has flowed into the mixing pipe 23 is pressurized by flowing through the narrow portion 25 as shown in FIG. 5C, thereby increasing the solubility of the carbon dioxide gas in the gas mixture. Further, the flow is reversed by the second baffle plate 27 b and flows in a direction crossing the central axis of the mixed liquid pipe 8, thereby generating a vortex. Furthermore, a vortex | eddy_current is produced also when a flow path is changed toward the opening 27c after that. Thereby, bubbles in the gas mixture are refined, and dissolution of carbon dioxide in the gas mixture (raw water) is promoted. In the present embodiment, the gas mixture is increased to a carbon dioxide concentration of about 1000 ppm, which is a saturated concentration.
 このようにして炭酸ガスが飽和濃度近くまで溶解させられた気液混合液(炭酸水)は、ハウジング本体13の小径部22に接続されたホース、さらにこのホースの先端に設けられたシャワーヘッドを介して噴出させられ、洗髪に供せられる。 The gas-liquid mixed solution (carbonated water) in which carbon dioxide gas is dissolved to a saturation concentration in this way is supplied to a hose connected to the small diameter portion 22 of the housing body 13 and a shower head provided at the tip of the hose. It is made to erupt through and is used for hair washing.
 以上説明したように、本実施形態の気液混合装置2は、原水流入管5によって供給される原水と気体流入管4によって供給される炭酸ガス(気体)とを互いに衝突させ、かつ、混合液配管8によって一方に偏ることなく原水と炭酸ガスのうち少なくとも一つと異なる方向に気体混合液を案内するようにしたので、簡易な構造で衝突エネルギーを最大化し、原水に対する炭酸ガスの溶解度を高めることができる。したがって、ポンプ等の駆動原が不要であり、簡易な構造で比較的高い溶解度の炭酸水を製造することができ、これにより気液混合装置の小型化や低価格化を可能にすることができる。また、従来の中空糸膜を用いたものの場合のような目詰まりが無く、したがってメンテナンスが容易になり、さらに気体混合液(炭酸水)をほとんど加圧しないため、充分な流量を確保することができる。よって、従来に比べ格段に使い勝手を良くすることができる。 As described above, the gas-liquid mixing device 2 of the present embodiment causes the raw water supplied by the raw water inflow pipe 5 and the carbon dioxide gas (gas) supplied by the gas inflow pipe 4 to collide with each other, and the mixed liquid Since the gas mixture is guided in a direction different from at least one of the raw water and carbon dioxide without being biased to one side by the pipe 8, the collision energy is maximized with a simple structure and the solubility of carbon dioxide in the raw water is increased. Can do. Accordingly, a driving source such as a pump is not required, and carbonated water having a relatively high solubility can be produced with a simple structure. This makes it possible to reduce the size and cost of the gas-liquid mixing device. . In addition, there is no clogging as in the case of using a conventional hollow fiber membrane, so maintenance is facilitated, and furthermore, a gas mixture (carbonated water) is hardly pressurized so that a sufficient flow rate can be secured. it can. Therefore, usability can be improved significantly compared to the prior art.
 また、混合液配管8に、気体混合液を混合液配管8の中心軸と交差する方向に流動させて渦流を生じさせる第1渦流生成機構を設けているので、気体混合液に渦流を生じさせることによって気体混合液中の気泡を微細化し、その比表面積を大きくすることで原水に対する炭酸ガスの溶解を促進することができる。 Moreover, since the 1st vortex | eddy_current generation | occurrence | production mechanism which makes a gas mixture liquid flow to the direction which cross | intersects the center axis | shaft of the liquid mixture pipe | tube 8 in the liquid mixture piping 8 is provided, a vortex flow is produced in a gas liquid mixture. Thus, by dissolving the bubbles in the gas mixture and increasing the specific surface area, dissolution of carbon dioxide in the raw water can be promoted.
 また、第1渦流生成機構を、渦発生部材17やミキシングパイプ23からなる渦発生部の上端部と、該上端部に対向する混合液配管8の内壁面との間に形成した溝部20、24によって構成しているので、気体混合液を溝部20、24の底面に衝突させてその流れを反転させることにより、微小な渦流を形成して気体混合液中の気泡を微細化することができる。よって、原水(気体混合液)に対する炭酸ガスの溶解を促進することができる。 In addition, the first eddy current generating mechanism includes grooves 20 and 24 formed between the upper end portion of the vortex generating portion including the vortex generating member 17 and the mixing pipe 23 and the inner wall surface of the mixed liquid pipe 8 facing the upper end portion. Therefore, by causing the gas mixture to collide with the bottom surfaces of the groove portions 20 and 24 and reversing the flow, a fine vortex can be formed and the bubbles in the gas mixture can be miniaturized. Therefore, the dissolution of carbon dioxide in the raw water (gas mixture) can be promoted.
 また、上流側第1渦流生成機構を構成する渦発生部材17の内部孔に形成した偏流板19に案内口19aを設けているので、該案内口19aを通った気体混合液を大径部21の内部孔21aの内壁面側に案内することで下流側第1渦流生成機構の溝部24の底面により多く衝突させ、流れを反転させて渦流を形成することができる。したがって、気体混合液中の気泡を微細化し、原水(気体混合液)に対する炭酸ガスの溶解を促進することができる。 Moreover, since the guide port 19a is provided in the drift plate 19 formed in the internal hole of the vortex generating member 17 that constitutes the upstream first vortex generating mechanism, the gas mixture liquid that has passed through the guide port 19a is supplied to the large-diameter portion 21. By guiding toward the inner wall surface side of the inner hole 21a, it is possible to cause more collision with the bottom surface of the groove portion 24 of the downstream first vortex generating mechanism and to reverse the flow to form a vortex. Therefore, the bubbles in the gas mixture can be made finer and the dissolution of carbon dioxide in the raw water (gas mixture) can be promoted.
 また、混合液配管8にミキシングパイプ23を設け、このミキシングパイプ23内に第2渦流生成機構を設けて気体混合液の流路を上流から下流に向けて狭め、渦流を生じさせるようにしているので、気体混合液に渦流を生じさせることによって気体混合液中の気泡を微細化し、その比表面積を大きくすることで原水に対する炭酸ガスの溶解を促進することができる。また、気体混合液の流路を上流から下流に向けて狭めるようにしたので、気体混合液を加圧することによって該気体混合液中への気体の溶解度を高めることができる。 In addition, a mixing pipe 23 is provided in the mixed liquid pipe 8, and a second vortex generating mechanism is provided in the mixing pipe 23 so that the flow path of the gas mixed liquid is narrowed from upstream to downstream to generate a vortex. Therefore, it is possible to promote dissolution of the carbon dioxide gas in the raw water by generating eddy currents in the gas mixture to refine the bubbles in the gas mixture and increasing the specific surface area. Moreover, since the flow path of the gas mixture is narrowed from upstream to downstream, the solubility of the gas in the gas mixture can be increased by pressurizing the gas mixture.
 また、第2渦流生成機構を、混合液配管8を流れる気体混合液の流路を上流から下流に向けて狭める狭隘部25と、該狭隘部25の側方に流路を変更することで気体混合液の流れを反転させ、渦流を生じさせる流路変更部26とによって構成しているので、狭隘部25によって気体混合液を加圧し、該気体混合液中での炭酸ガスの溶解度を高めることができる。また、流路変更部26によって気体混合液の流れを反転させ、渦流を生じさせるので、気体混合液中の気泡を微細化して原水に対する炭酸ガスの溶解を促進することができる。 Further, the second eddy current generating mechanism is configured by changing the flow path to the narrow portion 25 that narrows the flow path of the gas mixture flowing through the mixed liquid pipe 8 from upstream to downstream, and to the side of the narrow portion 25 to change the gas flow. Since it is constituted by the flow path changing unit 26 that reverses the flow of the mixed solution and generates a vortex, the gas mixed solution is pressurized by the narrowed portion 25 and the solubility of the carbon dioxide gas in the gas mixed solution is increased. Can do. Moreover, since the flow of the gas mixture is reversed by the flow path changing unit 26 to generate a vortex, the bubbles in the gas mixture can be refined to promote the dissolution of carbon dioxide in the raw water.
 また、原水流入管5に接続され、したがって実質的に原水流入管5に含まれる原水側配管30に、その流路を狭めることなく該流路を流れる原水の圧力を検知する第1の圧力スイッチ32を設けたので、原水の流路が狭められることで加圧され、その流量が絞られて所望の流量の気体混合液が得られなくなるのを防止することができる。また、第1の圧力スイッチ32を、原水の圧力が所定の圧力以上になったことを検知したら電磁弁33(制御弁)を開くように構成しているので、炭酸ガスが過剰に消費されることを防止することができ、さらに、製造する炭酸水中の炭酸ガス濃度を予め設定された適正な範囲に調整することができる。 Further, a first pressure switch that is connected to the raw water inflow pipe 5 and therefore detects the pressure of the raw water flowing in the raw water side pipe 30 substantially included in the raw water inflow pipe 5 without narrowing the flow path. Since 32 is provided, it is possible to prevent a gas mixture liquid having a desired flow rate from being obtained by being pressurized by narrowing the flow path of the raw water and reducing the flow rate. Further, since the first pressure switch 32 is configured to open the electromagnetic valve 33 (control valve) when it is detected that the pressure of the raw water has become a predetermined pressure or more, the carbon dioxide gas is excessively consumed. This can be prevented, and the carbon dioxide concentration in the carbonated water to be produced can be adjusted to an appropriate range set in advance.
 また、このような気液混合装置2を備えた気液混合システム1にあっても、気液混合装置2を備えることによって簡易な構造で原水に対する炭酸ガスの溶解度を高めることができ、したがって小型化や低価格化を可能にするとともに、メンテナンスを容易にし、充分な流量を確保することで使い勝手を良くすることができる。 Further, even in the gas-liquid mixing system 1 having such a gas-liquid mixing device 2, by providing the gas-liquid mixing device 2, the solubility of the carbon dioxide gas with respect to the raw water can be increased with a simple structure, and thus the small size. Can be reduced in price and price, and maintenance is facilitated, and sufficient flow rate is ensured to improve usability.
 なお、前記第1実施形態では、混合液配管8の流路中にて渦流を生成するための渦流生成機構として、上流側第1渦流生成機構(溝部20)、下流側第1渦流生成機構(溝部24)、第2渦流生成機構(狭隘部25および流路変更部26)の3機構設けたが、これらの順序を変更して設けてもよく、これらの3機構のうち1機構、2機構又は少なくとも4機構設ける構成としてもよく、また、同じ機構を少なくとも2つ設けてもよく、さらには、これら渦流生成機構を設けない構成としてもよい。その場合にも、気液衝突部7にて原水(原液)と炭酸ガス(気体)とを衝突させることにより、気体混合液中(原水中)に高い濃度で炭酸ガスを溶解することできる。 In the first embodiment, the upstream first vortex generating mechanism (groove portion 20) and the downstream first vortex generating mechanism (groove portion 20) are used as the vortex generating mechanism for generating the vortex in the flow path of the mixed liquid pipe 8. Although the three mechanisms of the groove portion 24) and the second eddy current generating mechanism (the narrow portion 25 and the flow path changing portion 26) are provided, the order of these may be changed, and one of these three mechanisms, two mechanisms Alternatively, at least four mechanisms may be provided, at least two of the same mechanisms may be provided, and furthermore, a configuration in which these eddy current generating mechanisms are not provided may be employed. Also in this case, carbon dioxide gas can be dissolved at a high concentration in the gas mixture (raw water) by colliding the raw water (raw solution) and the carbon dioxide gas (gas) in the gas-liquid collision unit 7.
 また、渦流生成機構を一部無くす構成として、具体的には、第2渦流生成機構(狭隘部25および流路変更部26)を無くす例を挙げることができる。図8A~図8Cは、図5A~図5Cに示したミキシングパイプ23に代えて用いられるパイプ36であり、ミキシングパイプ23と同様に、図2Bに示したハウジング本体13の小径部22の内部孔22aに収容され、固定されるように構成されている。 Further, as a configuration in which a part of the eddy current generating mechanism is eliminated, specifically, an example in which the second eddy current generating mechanism (the narrow portion 25 and the flow path changing unit 26) is eliminated can be given. 8A to 8C show a pipe 36 used in place of the mixing pipe 23 shown in FIGS. 5A to 5C. Like the mixing pipe 23, the internal hole of the small-diameter portion 22 of the housing main body 13 shown in FIG. It is comprised so that it may be accommodated and fixed in 22a.
 このパイプ36は、ミキシングパイプ23に形成された狭隘部25や流路変更部26、すなわち第1の邪魔板27aや第2の邪魔板27b、切欠28a、28bが形成されていない点以外は、ミキシングパイプ23と同じ形状に形成されたものであり、嵌合凸部29を有する以外は、単なる円筒形状に形成されたものである。 The pipe 36 has a narrow portion 25 and a flow path changing portion 26 formed in the mixing pipe 23, that is, the first baffle plate 27a, the second baffle plate 27b, and the cutouts 28a and 28b are not formed. It is formed in the same shape as the mixing pipe 23, and is formed in a simple cylindrical shape except that it has a fitting convex portion 29.
 したがって、このようなパイプ36をミキシングパイプ23に代えてハウジング本体13の小径部22の内部孔22aに収容固定することにより、その上端部で下流側第1渦流生成機構を形成することができ、また、第2渦流生成機構を省略することができる。
 このように気体混合液の流路を上流から下流に向けて狭める狭隘部25を有した第2渦流生成機構を省略することにより、得られる炭酸水(気体混合液)の炭酸ガス(気体)の溶解度は低くなるものの、狭隘部25による気体混合液の加圧を無くすことで流量が絞られることを抑えることができ、したがって得られる炭酸水(気体混合液)の流量を多くすることができる。
Therefore, by replacing and fixing such a pipe 36 in the internal hole 22a of the small-diameter portion 22 of the housing body 13 instead of the mixing pipe 23, the downstream first vortex generating mechanism can be formed at the upper end portion thereof. Further, the second eddy current generating mechanism can be omitted.
Thus, by omitting the second eddy current generating mechanism having the narrow portion 25 that narrows the flow path of the gas mixture from upstream to downstream, the carbon dioxide gas (gas) of the obtained carbonated water (gas mixture) is omitted. Although the solubility is lowered, it is possible to prevent the flow rate from being reduced by eliminating the pressurization of the gas mixture by the narrow portion 25, and thus the flow rate of the carbonated water (gas mixture) obtained can be increased.
 次に、本発明に係る気液混合装置及び気液混合システムの第2実施形態を説明する。なお、以下の説明では、第1実施形態と同一の構成要素に同一の符号を付し、その説明を省略する。
 図9A~図9Cは、本発明に係る気液混合システムの第2実施形態の概略構成を示す図であり、図9Aは外観を示す正面図、図9Bは内部構造を示す正面図、図9Cは外観を示す背面図である。また、図10は図9A~図9Cに示した気液混合システムの内部構造を示す斜視図である。図9A~図9Cにおいて符号50は気液混合システムであり、この気液混合システム50は、筐体51内に前記実施形態で示した本発明に係る前記気液混合装置2や、これに付随する各種構成要素をコンパクトに収容したものである。
Next, a second embodiment of the gas-liquid mixing apparatus and gas-liquid mixing system according to the present invention will be described. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
9A to 9C are diagrams showing a schematic configuration of a second embodiment of the gas-liquid mixing system according to the present invention, FIG. 9A is a front view showing an appearance, FIG. 9B is a front view showing an internal structure, and FIG. FIG. 3 is a rear view showing an appearance. FIG. 10 is a perspective view showing the internal structure of the gas-liquid mixing system shown in FIGS. 9A to 9C. 9A to 9C, reference numeral 50 denotes a gas-liquid mixing system, and this gas-liquid mixing system 50 is provided in the casing 51 with the gas-liquid mixing apparatus 2 according to the present invention shown in the above-described embodiment, and the accompanying device. Various components to be stored are compactly accommodated.
 筐体51は、例えば一辺が100mm~200mm程度に形成された略正方形の正面板及び背面板を有し、厚さが50mm~100mm程度に形成されたもので、図9Bに示すようにその内部に、図2A及び図2Bに示した気液混合装置2と図1に示した制御部40とを有している。また、気液混合装置2は、図1、図6A、図6Bに示した第1実施形態の気液混合装置2と同様に、原水側配管30、気体側配管31(図10参照)、第1の圧力スイッチ32、第2の圧力スイッチ34、制御弁52を有している。 The housing 51 has, for example, a substantially square front plate and a back plate each having a side of about 100 mm to 200 mm and a thickness of about 50 mm to 100 mm. As shown in FIG. In addition, the gas-liquid mixing device 2 shown in FIGS. 2A and 2B and the control unit 40 shown in FIG. 1 are provided. Moreover, the gas-liquid mixing apparatus 2 is the same as the gas-liquid mixing apparatus 2 of 1st Embodiment shown to FIG.1, FIG.6A, FIG.6B, and the raw | natural water side piping 30, the gas side piping 31 (refer FIG. 10), 1st 1 pressure switch 32, second pressure switch 34, and control valve 52.
 原水側配管30は、図1に示したように気液混合装置2に原水(原液)を供給する原水供給源(原液供給源)3に、接続配管等(図示せず)を介して接続するように形成されたもので、第1実施形態と同様に第1の圧力スイッチ32が設けられている。この原水側配管30は、図9Bに示すように接続配管等に接続する雄螺子状の接続部30aが、筐体51の側板から外方に突出して配置されている。したがって、原水側配管30は接続配管等を介して原水供給源3に容易に接続できるようになっている。 As shown in FIG. 1, the raw water side pipe 30 is connected to a raw water supply source (raw liquid supply source) 3 for supplying raw water (raw liquid) to the gas-liquid mixing device 2 via a connecting pipe or the like (not shown). As in the first embodiment, the first pressure switch 32 is provided. As shown in FIG. 9B, the raw water side pipe 30 has a male screw-like connection portion 30 a that is connected to a connection pipe or the like, and is disposed so as to protrude outward from the side plate of the casing 51. Therefore, the raw water side pipe 30 can be easily connected to the raw water supply source 3 via a connection pipe or the like.
 気体側配管31は、図1に示したように気液混合装置2に炭酸ガスを供給する気体供給源4に、直接、あるいは接続配管等を介して接続するように形成されたもので、図10に示すように第2の圧力スイッチ34、制御弁52が設けられ、さらにスピードコントローラ53が設けられている。この気体側配管31は、気体供給源4側に接続する接続部31aが、図9Cに示すように筐体51の背面板から外方に突出させられている。したがって、気体側配管31は接続配管等を介して気体供給源4に容易に接続できるようになっている。 The gas side pipe 31 is formed so as to be connected to the gas supply source 4 for supplying carbon dioxide gas to the gas-liquid mixing device 2 as shown in FIG. As shown in FIG. 10, a second pressure switch 34 and a control valve 52 are provided, and a speed controller 53 is further provided. As for this gas side piping 31, the connection part 31a connected to the gas supply source 4 side is made to protrude outward from the backplate of the housing | casing 51, as shown to FIG. 9C. Therefore, the gas side pipe 31 can be easily connected to the gas supply source 4 via a connection pipe or the like.
 スピードコントローラ53は、図10に示すように気体供給源4から気体側配管31に流入する炭酸ガスの流量を調整する流量調整弁であり、予め設定された流量となるように調整される。 The speed controller 53 is a flow rate adjusting valve that adjusts the flow rate of carbon dioxide gas flowing from the gas supply source 4 into the gas side pipe 31 as shown in FIG. 10, and is adjusted to have a preset flow rate.
 制御弁52は、本実施形態ではラッチ式電磁弁によって構成されている。例えばNC(通常閉)タイプのソレノイドバルブでは、オープン状態(開状態)を保持するためには電力を供給し続ける必要があるのに対し、ラッチ式電磁弁では、閉状態、開状態を保持するために永久磁石を用いることで、状態保持に電力の供給が不要になっている。すなわち、切換時のみに通電が必要であり、切換後の状態保持時には通電が不要になっている。これにより、ラッチ式電磁弁はNCタイプなどの一般の電磁弁に比べて消費電力が格段に少なくなっている。 In the present embodiment, the control valve 52 is constituted by a latch type electromagnetic valve. For example, in an NC (normally closed) type solenoid valve, it is necessary to continue supplying electric power in order to maintain an open state (open state), whereas in a latch type solenoid valve, a closed state and an open state are maintained. Therefore, by using a permanent magnet, it is not necessary to supply power to maintain the state. That is, energization is necessary only at the time of switching, and energization is not necessary when maintaining the state after switching. As a result, the latch type solenoid valve consumes much less power than a general solenoid valve such as the NC type.
 したがって、このようなラッチ式電磁弁からなる制御弁52では、直流電源で稼働させることが可能であり、また消費電力が少ないため、例えば乾電池や充電池(充電式電池)での稼働が可能となる。そこで、本実施形態では、このラッチ式電磁弁(制御弁52)の電源(図示せず)として、乾電池や充電池を用いている。この乾電池や充電池からなる電源、すなわち乾電池や充電池は、筐体51内に直接配置され、あるいは、乾電池や充電池を収容する電源ボックス(図示せず)が筐体51に接続されて配置される。また、この電源は、本実施形態では第1圧力センサ32、第2圧力センサ34、制御部40の電源としても用いられる。したがって、本実施形態の気液混合装置52は、家庭や店に設けられた商用電源に配線コードを介して接続することなく、単独で使用が可能になっている。 Therefore, the control valve 52 composed of such a latch-type electromagnetic valve can be operated with a DC power source, and can be operated with, for example, a dry battery or a rechargeable battery (rechargeable battery) because of low power consumption. Become. Therefore, in the present embodiment, a dry battery or a rechargeable battery is used as a power source (not shown) of the latch type electromagnetic valve (control valve 52). The power source composed of the dry battery or the rechargeable battery, that is, the dry battery or the rechargeable battery is directly arranged in the casing 51 or a power supply box (not shown) for housing the dry battery or the rechargeable battery is connected to the casing 51. Is done. In addition, this power source is also used as a power source for the first pressure sensor 32, the second pressure sensor 34, and the control unit 40 in the present embodiment. Therefore, the gas-liquid mixing device 52 of the present embodiment can be used alone without being connected to a commercial power source provided in a home or store via a wiring cord.
 また、本実施形態では、気体供給源4として小型のガスカートリッジ、例えば74g入りの市販の炭酸ガスカートリッジが好適に用いられる。この炭酸ガスカートリッジは、一般の流通による輸送が可能であり、取り扱い性に優れている。そして、このような炭酸ガスカートリッジは、充分に軽量であるため、図9Cに示した気体側配管31の接続部31aに直接、あるいはカプラ等を介して間接的に連結することができる。 In this embodiment, a small gas cartridge, for example, a commercially available carbon dioxide gas cartridge containing 74 g is suitably used as the gas supply source 4. The carbon dioxide cartridge can be transported by general distribution and has excellent handling properties. Since such a carbon dioxide cartridge is sufficiently lightweight, it can be directly connected to the connection part 31a of the gas side pipe 31 shown in FIG. 9C or indirectly through a coupler or the like.
 したがって、本実施形態の気液混合システム50は、特に家庭の風呂場に好適に用いられる。一般に家庭の風呂場には商用電源が無く、また、炭酸ガスボンベを直接配置することもないため、例えば大型の気液混合システムを風呂場で使用しようとした場合、電源に接続するための配線コードや炭酸ガスボンベからの配管を風呂場の外から引き回してこなくてはならない。しかし、このような配線コードや配管の引き回しは、風呂場を改装するなどの必要があり、また、漏電の心配や、配管が外れることによる炭酸ガスの漏れの心配がある。 Therefore, the gas-liquid mixing system 50 according to the present embodiment is particularly suitable for a home bathroom. In general, there is no commercial power supply in a bathroom at home, and there is no direct placement of carbon dioxide gas cylinders. For example, when a large gas-liquid mixing system is used in a bathroom, a wiring cord for connecting to the power supply And piping from the carbon dioxide cylinder must be routed from outside the bathroom. However, such wiring cords and piping routing require refurbishment of the bathroom, etc., and there are concerns about electric leakage and carbon dioxide leakage due to disconnection of the piping.
 これに対して図9A~図9C、図10に示した気液混合システム50では、制御弁52としてラッチ式電磁弁を用いるため電力消費量が少なく、したがって電源として乾電池や充電池を用いるため、商用電源に接続するための配線コードが不要になっている。また、小型の炭酸ガスカートリッジが使用可能なため、配管の引き回しが不要になっている。 On the other hand, in the gas-liquid mixing system 50 shown in FIGS. 9A to 9C and FIG. 10, since the latch type electromagnetic valve is used as the control valve 52, the power consumption is small, and therefore a dry battery or a rechargeable battery is used as the power source. A wiring cord for connecting to a commercial power supply is not necessary. In addition, since a small carbon dioxide cartridge can be used, piping is not required.
 よって、本実施形態の気液混合システム50にあっては、風呂場を改装するなどの必要がなく、また、漏電の心配や配管が外れることによる炭酸ガスの漏れの心配もなく、家庭用の風呂場にて簡単に使用することができる。例えば、先端部にシャワーヘッドを取り付けた給湯用のホースについて、アタッチメントを介してシャワーヘッドを着脱可能にしておく。そして、この給湯用ホースからシャワーヘッドを取り外し、ここにカプラを介して気液混合システム50の原水側配管30の接続部30aを接続する。また、気体側配管31の接続部31aに炭酸ガスカートリッジを接続しておく。 Therefore, in the gas-liquid mixing system 50 of the present embodiment, there is no need to refurbish the bathroom, and there is no worry of leakage of electricity or leakage of carbon dioxide gas due to disconnection of piping. Easy to use in the bathroom. For example, with respect to a hot water supply hose having a shower head attached to the tip, the shower head is made detachable via an attachment. And a shower head is removed from this hot water supply hose, and the connection part 30a of the raw | natural water side piping 30 of the gas-liquid mixing system 50 is connected here via a coupler. Further, a carbon dioxide cartridge is connected to the connection part 31 a of the gas side pipe 31.
 そして、気液混合システム50の気液混合装置2の小径部22にシャワーヘッドをホースとともに取り付ける。これにより、第1実施形態と同様にして気液混合システム50にお湯を供給するとともに炭酸ガスを供給することにより、シャワーヘッドから炭酸水(気液混合液)を噴出させることができる。よって、炭酸水を洗髪に供することができる。また、シャワーヘッドに代えてホースを取り付け、これを浴槽に向けることにより、浴槽内に炭酸泉を入れることもできる。 And a shower head is attached to the small diameter part 22 of the gas-liquid mixing apparatus 2 of the gas-liquid mixing system 50 with a hose. Thereby, by supplying hot water to the gas-liquid mixing system 50 and supplying carbon dioxide gas in the same manner as in the first embodiment, carbonated water (gas-liquid mixed liquid) can be ejected from the shower head. Therefore, carbonated water can be used for hair washing. In addition, by attaching a hose instead of the shower head and directing it to the bathtub, the carbonated spring can be put into the bathtub.
 なお、このような炭酸水供給の制御は、図9Aに示すように筐体51の正面板に設けられた操作パネル54によって直接行うことができる。操作パネル54は、その表示が図1に示した制御部40によって制御されるもので、「WATER」の表示と「GAS」の表示、及びON/OFFのための表示55がある。操作者は、気液混合システム50を稼働させるため、まず、ON/OFFのための表示55を押圧する。 It should be noted that such control of carbonated water supply can be directly performed by an operation panel 54 provided on the front plate of the casing 51 as shown in FIG. 9A. The operation panel 54 is controlled by the control unit 40 shown in FIG. 1 and includes a “WATER” display, a “GAS” display, and a display 55 for ON / OFF. In order to operate the gas-liquid mixing system 50, the operator first presses the display 55 for ON / OFF.
 すると、気液混合システム50が稼働し、原水供給源3から原水が供給される。そして、原水が所定の流量以上で流れていることを第1の圧力スイッチ32が検知すると、操作パネル54は制御部40からの信号を受けて「WATER」の表示を点灯する。また、このように原水が所定の流量以上で流れていることを第1の圧力スイッチ32が検知し、かつ第2の圧力スイッチ34が検知し、かつON/OFFのための表示55を押圧しONにすると、制御部40は制御弁52を開く。これにより、炭酸ガスが気液混合装置2に供給され、したがって気液混合装置2の小径部22から炭酸水が噴出する。その際、第2の圧力スイッチ34が気体供給源(ガスボンベ)4内の残圧(残量)を検知し、予め設定された圧以上であれば、制御部40は操作パネルにその結果を表示させる。すなわち、「GAS」の表示を点灯する。 Then, the gas-liquid mixing system 50 is operated, and raw water is supplied from the raw water supply source 3. When the first pressure switch 32 detects that the raw water is flowing at a predetermined flow rate or higher, the operation panel 54 receives a signal from the control unit 40 and lights “WATER”. Further, the first pressure switch 32 detects that the raw water is flowing at a predetermined flow rate or more, and the second pressure switch 34 detects and presses the display 55 for ON / OFF. When turned ON, the control unit 40 opens the control valve 52. Thereby, carbon dioxide gas is supplied to the gas-liquid mixing device 2, and therefore, carbonated water is ejected from the small diameter portion 22 of the gas-liquid mixing device 2. At that time, the second pressure switch 34 detects the residual pressure (remaining amount) in the gas supply source (gas cylinder) 4 and if the pressure is higher than a preset pressure, the control unit 40 displays the result on the operation panel. Let That is, the display of “GAS” is turned on.
 したがって、操作者は「WATER」、「GAS」の表示を共に確認することで、気液混合装置2の小径部22から炭酸水が噴出していることを確認することができる。
 また、使用後はON/OFFのための表示55を再度押圧することにより、気液混合装置2の作動を停止させることができる。
Therefore, the operator can confirm that carbonated water is ejected from the small-diameter portion 22 of the gas-liquid mixing apparatus 2 by confirming both “WATER” and “GAS”.
Moreover, the operation of the gas-liquid mixing apparatus 2 can be stopped by pressing the display 55 for ON / OFF again after use.
 本実施形態の気液混合システム50における気液混合装置2にあっては、制御弁52としてラッチ式電磁弁を用いているので、ラッチ式電磁弁が一般の電磁弁に比べて消費電力が格段に少ないことにより、制御弁52を有する気液混合装置2、さらには気液混合システム50の消費電力を少なくすることができる。したがって、電源として商用電源に代えて、乾電池や充電池(充電式電池)を用いることができる。 In the gas-liquid mixing apparatus 2 in the gas-liquid mixing system 50 of the present embodiment, since the latching solenoid valve is used as the control valve 52, the latching solenoid valve consumes much more power than a general solenoid valve. Therefore, the power consumption of the gas-liquid mixing device 2 having the control valve 52 and the gas-liquid mixing system 50 can be reduced. Therefore, a dry battery or a rechargeable battery (rechargeable battery) can be used as a power source instead of a commercial power source.
 また、このように制御弁52(ラッチ式電磁弁)の電源として乾電池あるいは充電池を用いることにより、気液混合装置2や気液混合システム50から商用電源への配線コードを無くすことができ、したがって配線コードによる煩わしさを解消することができる。また、家庭の風呂場での使用も容易になる。特に、気体供給源4として例えば74g入りの市販の炭酸ガスカートリッジを用いることで、家庭の風呂場での使用をより容易にすることができる。 Further, by using a dry battery or a rechargeable battery as a power source for the control valve 52 (latch type solenoid valve) in this way, the wiring cord from the gas-liquid mixing device 2 or the gas-liquid mixing system 50 to the commercial power source can be eliminated, Therefore, the troublesomeness caused by the wiring cord can be eliminated. In addition, it can be easily used in a bathroom at home. In particular, by using, for example, a commercially available carbon dioxide cartridge containing 74 g as the gas supply source 4, it is possible to make it easier to use in a household bathroom.
 次に、本発明に係る気液混合装置及び気液混合システムの第3実施形態を説明する。
 第3実施形態が第2実施形態と異なるところは、図9B、図10に示した制御弁52として、ラッチ式電磁弁に代えて比例電磁弁を用いた点である。比例電磁弁は、一般の電磁弁のようにその流路の開度を単に「開/閉」の二段階でなく、「開」の状態をさらに複数の状態に切り換えることができるように構成されている。なお、比例電磁弁はラッチ式電磁弁と異なり、その状態保持のために通電が必要なため、基本的に商用電源に配線コードで接続されるようになっている。
Next, a third embodiment of the gas-liquid mixing apparatus and gas-liquid mixing system according to the present invention will be described.
The third embodiment differs from the second embodiment in that a proportional solenoid valve is used in place of the latch solenoid valve as the control valve 52 shown in FIGS. 9B and 10. The proportional solenoid valve is configured so that the opening degree of the flow path is not simply “open / closed” in two stages like a general solenoid valve, and the “open” state can be switched to a plurality of states. ing. Unlike proportional solenoid valves, proportional solenoid valves need to be energized to maintain their state, and are therefore basically connected to a commercial power source with a wiring cord.
 本実施形態では、制御弁52としての比例電磁弁はその開状態が、例えば全開と半開のように、二段階に切り換えられるようになっている。このような開度の切換は、気液混合システムの概略構成を示す模式図である図11に示すように、制御弁52に電気的に接続する制御部40によってなされる。すなわち、本実施形態の比例電磁弁(制御弁52)にも制御部40が電気的に接続されており、この制御部40には比例電磁弁(制御弁52)のオン/オフ、及びその開度の切換を行う調整部55が設けられている。 In the present embodiment, the open state of the proportional solenoid valve as the control valve 52 is switched in two stages, for example, full open and half open. Such switching of the opening degree is performed by the control unit 40 electrically connected to the control valve 52 as shown in FIG. 11 which is a schematic diagram showing a schematic configuration of the gas-liquid mixing system. That is, the control unit 40 is also electrically connected to the proportional solenoid valve (control valve 52) of the present embodiment, and the control unit 40 is turned on / off of the proportional solenoid valve (control valve 52) and opened. An adjustment unit 55 for switching the degree is provided.
 調整部55は、比例電磁弁(制御弁52)の開度を切り換えることにより、気体供給源4から気体流入管6への炭酸ガス(気体)の供給量を調整するようになっている。なお、気体流入管6への炭酸ガス(気体)の最大供給量は、図10に示したスピードコントローラ53によって規定されており、したがって調整部55は、この最大供給量とこれより少ない供給量の二段階で切り換えるようになっている。また、調整部55は比例電磁弁をオフとする制御も行うように構成されている。したがって、調整部55は比例電磁弁のオン/オフを調整するとともに、原水流入管5から供給される原水に対して、炭酸ガスの流量を二段階に調整する。これにより、本実施形態の気液混合装置2では、炭酸ガス濃度が高濃度の炭酸水と低濃度の炭酸水のいずれかを選択し、供給できるようになっている。 The adjusting unit 55 adjusts the supply amount of carbon dioxide gas (gas) from the gas supply source 4 to the gas inflow pipe 6 by switching the opening degree of the proportional solenoid valve (control valve 52). Note that the maximum supply amount of carbon dioxide gas (gas) to the gas inflow pipe 6 is defined by the speed controller 53 shown in FIG. 10, and therefore the adjusting unit 55 has the maximum supply amount and a supply amount smaller than this maximum supply amount. It is designed to switch in two steps. The adjusting unit 55 is also configured to perform control to turn off the proportional solenoid valve. Therefore, the adjustment unit 55 adjusts the proportional solenoid valve on / off, and adjusts the flow rate of the carbon dioxide gas in two stages with respect to the raw water supplied from the raw water inflow pipe 5. Thereby, in the gas-liquid mixing apparatus 2 of this embodiment, either carbonated water with a high concentration of carbon dioxide or carbonated water with a low concentration can be selected and supplied.
 本実施形態では、図12に示すように操作パネル56に、図9Aに示した「WATER」、「GAS」、ON/OFFのための表示55に加えて、炭酸水濃度を高濃度に選択するための「H」と、低濃度を選択するための「L」の表示が加えられ、それぞれの横に三角形57と逆三角形58の押圧部が配置されている。そして、これら三角形57または逆三角形58の一方を押圧することにより、操作パネル56に接続する制御部40ではその調整部55が押圧された方の濃度に対応するように比例電磁弁(制御弁52)の開度を切り換え、炭酸ガスの流量を調整する。また、押圧部の横の「H」または「L」を点灯させ、操作者が選択した設定濃度になっていることを表示する。 In the present embodiment, as shown in FIG. 12, in addition to the “WATER”, “GAS”, and ON / OFF display 55 shown in FIG. Display of “H” for selecting a low density and “L” for selecting a low density are added, and a pressing portion of a triangle 57 and an inverted triangle 58 is arranged next to each. By pressing one of the triangle 57 or the inverted triangle 58, the control unit 40 connected to the operation panel 56 is a proportional solenoid valve (control valve 52) so as to correspond to the concentration of the adjustment unit 55 pressed. ) And adjust the flow rate of carbon dioxide. Further, “H” or “L” next to the pressing portion is lit to display that the set density selected by the operator is reached.
 本実施形態の気液混合システムにおける気液混合装置2にあっては、制御弁52として比例電磁弁を用いているので、調整部55によってこの比例電磁弁の開度を切り換えることにより、気体供給源4から気体流入管6への気体の供給量を調整することができる。したがって、原水流入管5から供給される原水に対して、炭酸ガスの流量を例えば二段階に調整することにより、得られる炭酸水の炭酸ガス濃度を異なる複数の濃度に調整することができる。また、このような炭酸ガス濃度の調整を、制御弁52として比例電磁弁を用いることで行うことができるため、炭酸ガス濃度の調整を、装置を複雑にすることなく簡易に行うことができ、これによって気液混合装置2やこれを用いた気液混合システムの小型化を可能にすることができる。 In the gas-liquid mixing device 2 in the gas-liquid mixing system of the present embodiment, a proportional solenoid valve is used as the control valve 52. Therefore, by adjusting the opening of the proportional solenoid valve by the adjusting unit 55, the gas supply is performed. The amount of gas supplied from the source 4 to the gas inlet pipe 6 can be adjusted. Therefore, by adjusting the flow rate of the carbon dioxide gas with respect to the raw water supplied from the raw water inflow pipe 5, for example, the carbon dioxide concentration of the obtained carbonated water can be adjusted to a plurality of different concentrations. Further, since the carbon dioxide concentration can be adjusted by using a proportional solenoid valve as the control valve 52, the carbon dioxide concentration can be easily adjusted without complicating the apparatus. As a result, the gas-liquid mixing device 2 and the gas-liquid mixing system using the same can be miniaturized.
 なお、前記第3実施形態では、調整部55によって比例電磁弁(制御弁52)の開度を二段階で切り換えるようにしたが、三段階以上に切り換えることができるように構成してもよい。また、基本的には原水供給源3から供給される原水の量に関係なく、炭酸ガスの流量を変えるようにしたが、原水供給源3から供給される原水の量に応じて、炭酸ガスの流量を変えるように構成してもよい。 In the third embodiment, the opening of the proportional solenoid valve (control valve 52) is switched in two stages by the adjusting unit 55, but it may be configured so that it can be switched in three or more stages. Although the flow rate of carbon dioxide gas is basically changed regardless of the amount of raw water supplied from the raw water supply source 3, the amount of carbon dioxide gas is changed according to the amount of raw water supplied from the raw water supply source 3. You may comprise so that a flow volume may be changed.
 具体的には、調整部55を、操作パネル56を介して予め設定された複数の異なる炭酸ガス濃度を入力できるように構成しておく。また、図11に示す第1の圧力スイッチ32により、原水供給源3から供給される原水の流量を検出し、検出値を制御部40に送信するように構成しておく。制御部40では、検出された原水の流量に対し、調整部55で入力された炭酸ガス濃度にするための炭酸ガスの流量を算出する。そして、この算出値に基づき、比例電磁弁(制御弁52)の開度を求め、求めた開度を調整部55に送る。 Specifically, the adjustment unit 55 is configured to be able to input a plurality of different carbon dioxide concentrations set in advance via the operation panel 56. Further, the first pressure switch 32 shown in FIG. 11 detects the flow rate of the raw water supplied from the raw water supply source 3 and transmits the detected value to the control unit 40. In the control part 40, the flow rate of the carbon dioxide gas for making the carbon dioxide gas concentration input in the adjustment part 55 into the detected flow rate of the raw water is calculated. Then, based on this calculated value, the opening degree of the proportional solenoid valve (control valve 52) is obtained, and the obtained opening degree is sent to the adjusting unit 55.
 調整部55は、送られてきた開度に調整すべく、比例電磁弁(制御弁52)を制御し、その開度を調整する。これにより、制御弁52として比例電磁弁を用いることにより、原水供給源3から供給される原水の量に関係なく、すなわち原水量が任意の量であっても、得られる炭酸水の炭酸ガス濃度を所望の濃度に調整することができる。 The adjusting unit 55 controls the proportional solenoid valve (control valve 52) to adjust the opening degree in order to adjust the opening degree that has been sent. Thereby, by using a proportional solenoid valve as the control valve 52, the carbon dioxide gas concentration of the carbonated water obtained regardless of the amount of raw water supplied from the raw water supply source 3, that is, even if the amount of raw water is an arbitrary amount. Can be adjusted to a desired concentration.
 なお、本発明の技術範囲は、前記実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、前記実施形態では、本発明の気液混合装置2および気液混合システム1を、理美容目的として洗髪台に設けられるシャワーや家庭用の風呂場のシャワーなどに適用した例について説明したが、各種医療設備における医療用具等に適用してもよいのはもちろんである。また、家庭用の風呂や業務用の風呂に適用して、炭酸泉を製造する装置(システム)にも用いることができる。さらに、炭酸水を必要とする種々の装置(システム)にも適用することができる。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, the gas-liquid mixing device 2 and the gas-liquid mixing system 1 of the present invention have been described as examples applied to a shower provided on a hair washing table or a shower in a household bathroom for the purpose of hairdressing and beauty. Of course, the present invention may be applied to medical devices in various medical facilities. In addition, the present invention can be applied to a household bath or a business bath and can be used in an apparatus (system) for producing a carbonated spring. Furthermore, the present invention can be applied to various apparatuses (systems) that require carbonated water.
 また、前記実施形態では、本発明の気液混合装置を、水と炭酸ガスとを混合して炭酸水を製造する装置(システム)に適用した場合について説明したが、本発明はこれに限定されることなく、水に炭酸ガス以外の気体を混合・溶解する場合や、水以外の液体に炭酸ガスやその他の気体を混合・溶解する場合にも適用することができる。 In the above embodiment, the case where the gas-liquid mixing apparatus of the present invention is applied to an apparatus (system) for producing carbonated water by mixing water and carbon dioxide gas has been described. However, the present invention is not limited to this. The present invention can also be applied to a case where a gas other than carbon dioxide gas is mixed and dissolved in water, or a case where carbon dioxide gas or other gas is mixed and dissolved in a liquid other than water.
 更に、本発明においては、原液中に気体を混合して気体混合液を製造する方法が提供される。即ち、本発明の方法は、
 原液中に気体を混合して気体混合液を製造する方法であって、
前記の気液混合装置を提供し、
前記原液を原液流入管に連続的に供給し、これと同時に前記気体を気体流入管に連続的に供給し、それにより、前記原液と前記気体とを対面して衝突させることによって混合し、
得られた原液と気体の混合物を、前記混合液配管に流入させる
ことを含む方法である。
本発明の方法に用いる気液混合装置、原液及び気体、並びに原液、気体を装置に供給する手順及び条件などについては、気液混合装置に関して前記した通りである。また、本発明の方法は、前記した本発明の気液混合システムを用いて実施することもできる。
Furthermore, in this invention, the method of mixing gas in a stock solution and manufacturing a gas liquid mixture is provided. That is, the method of the present invention comprises:
A method for producing a gas mixture by mixing a gas in a stock solution,
Providing the gas-liquid mixing device,
The stock solution is continuously supplied to the stock solution inflow pipe, and at the same time, the gas is continuously supplied to the gas inflow pipe, thereby mixing the stock solution and the gas by facing each other and mixing them,
It is a method including flowing the obtained mixture of undiluted solution and gas into the mixed solution pipe.
The gas-liquid mixing device, the raw solution and gas, the procedure and conditions for supplying the raw solution and gas to the device, etc. used in the method of the present invention are as described above for the gas-liquid mixing device. The method of the present invention can also be carried out using the gas-liquid mixing system of the present invention described above.
 1 気液混合システム
2 気液混合装置
3 原水供給源(原液供給源)
4 気体供給源
5 原水流入管(原液流入管)
6 気体流入管
7 気液衝突部
8 混合液配管
9 配管本体
10 ハウジング
11 案内管
12 内挿部
13 ハウジング本体
17 渦発生部材(渦発生部)
18 円筒部
18a テーパ面
19 偏流板
19a 案内口
20 溝部
21 大径部
21a 内部孔
21b テーパ面
22 小径部
22a 内部孔
23 ミキシングパイプ
24 溝部
25 狭隘部
26 流路変更部
27a 第1の邪魔板
27b 第2の邪魔板
27c 開口
32 第1の圧力スイッチ
33 電磁弁(制御弁)
36 パイプ
50 気液混合システム
52 制御弁
54 操作パネル
55 調整部
1 Gas-liquid mixing system 2 Gas-liquid mixing device 3 Raw water supply source (raw liquid supply source)
4 Gas supply source 5 Raw water inflow pipe (raw liquid inflow pipe)
6 Gas inflow pipe 7 Gas-liquid collision part 8 Mixed liquid pipe 9 Piping body 10 Housing 11 Guide pipe 12 Insertion part 13 Housing body 17 Vortex generating member (vortex generating part)
18 Cylindrical portion 18a Tapered surface 19 Diffusion plate 19a Guide port 20 Groove portion 21 Large diameter portion 21a Internal hole 21b Tapered surface 22 Small diameter portion 22a Internal hole 23 Mixing pipe 24 Groove portion 25 Narrow portion 26 Flow path changing portion 27a First baffle plate 27b Second baffle plate 27c Opening 32 First pressure switch 33 Solenoid valve (control valve)
36 Pipe 50 Gas-liquid mixing system 52 Control valve 54 Operation panel 55 Adjustment unit

Claims (15)

  1.  原液中に気体を混合して気体混合液を製造する気液混合装置であって、
     前記原液が連続的に流入する原液流入管と、前記気体が連続的に流入する気体流入管と、前記原液流入管、前記気体流入管にそれぞれ連通する混合液配管とを備え、
     前記原液流入管と前記気体流入管とが、前記原液と前記気体とが対面して衝突するように連通し、それにより、この連通箇所において、気液衝突部を形成し、
     前記混合液配管を、前記気液衝突部に連通させるとともに、前記原液流入管の中心軸と前記気体流入管の中心軸のうち少なくとも一つを前記混合液配管の中心軸と異なる方向に配置した気液混合装置。
    A gas-liquid mixing device for producing a gas mixture by mixing gas in a stock solution,
    A stock solution inflow pipe through which the stock solution continuously flows, a gas inflow pipe through which the gas continuously flows, a mixture liquid pipe respectively connected to the stock solution inflow pipe and the gas inflow pipe,
    The undiluted solution inflow pipe and the gas inflow tube communicate with each other so that the undiluted solution and the gas collide face each other, thereby forming a gas-liquid collision portion at this communicating location,
    The mixed liquid pipe communicates with the gas-liquid collision portion, and at least one of the central axis of the raw liquid inlet pipe and the central axis of the gas inlet pipe is arranged in a direction different from the central axis of the mixed liquid pipe. Gas-liquid mixing device.
  2.  前記原液流入管の中心軸と前記気体流入管の中心軸とのなす角度が20°~180°である請求項1記載の気液混合装置。 2. The gas-liquid mixing device according to claim 1, wherein an angle formed by a central axis of the stock solution inflow pipe and a central axis of the gas inflow pipe is 20 ° to 180 °.
  3.  前記原液が水であり、前記気体が炭酸ガスである請求項1又は2に記載の気液混合装置。 The gas-liquid mixing apparatus according to claim 1 or 2, wherein the stock solution is water and the gas is carbon dioxide gas.
  4.  前記混合液配管に、前記気体混合液に渦流を生じさせる、第1渦流生成機構が設けられている請求項1~3に記載の気液混合装置。 The gas-liquid mixing device according to any one of claims 1 to 3, wherein a first eddy current generating mechanism for generating a vortex in the gas liquid mixture is provided in the liquid mixture pipe.
  5.  前記第1渦流生成機構は、前記混合液配管内に設けられた環状または筒状の渦発生部の前記気液衝突部側の端部と、該端部に対向する前記混合液配管の内壁面との間において、前記気液衝突部側に開口して形成された溝部を備えている請求項4記載の気液混合装置。 The first vortex generating mechanism includes an end portion on the gas-liquid collision portion side of an annular or cylindrical vortex generating portion provided in the mixed solution pipe, and an inner wall surface of the mixed solution pipe facing the end portion. The gas-liquid mixing apparatus of Claim 4 provided with the groove part opened and formed in the said gas-liquid collision part side between.
  6.  前記第1渦流生成機構は、前記混合液配管の上流側に配設された上流側第1渦流生成機構と、該上流側第1渦流生成機構より下流側に配設された下流側第1渦流生成機構とを備えている請求項5記載の気液混合装置。 The first vortex generating mechanism includes an upstream first vortex generating mechanism disposed on the upstream side of the mixed solution pipe, and a downstream first vortex flow disposed on the downstream side of the upstream first vortex generating mechanism. The gas-liquid mixing apparatus of Claim 5 provided with the production | generation mechanism.
  7.  前記上流側第1渦流生成機構を構成する前記渦発生部の内部孔には、前記気体混合液を前記下流側第1渦流生成機構の前記内壁面側に案内する案内口が設けられている請求項6記載の気液混合装置。 A guide port that guides the gas mixture to the inner wall surface side of the downstream first vortex generating mechanism is provided in an internal hole of the vortex generating portion constituting the upstream first vortex generating mechanism. Item 7. The gas-liquid mixing device according to Item 6.
  8.  前記混合液配管には、該混合液配管を流れる気体混合液の流路を上流から下流に向けて狭めることにより、前記気体混合液に渦流を生じさせる、第2渦流生成機構が設けられている請求項1~7のいずれか一項に記載の気液混合装置。 The mixed liquid pipe is provided with a second eddy current generating mechanism for generating a vortex in the gas mixed liquid by narrowing a flow path of the gas mixed liquid flowing through the mixed liquid pipe from upstream to downstream. The gas-liquid mixing device according to any one of claims 1 to 7.
  9.  前記第2渦流生成機構は、前記混合液配管を流れる気体混合液の流路を上流から下流に向けて狭める狭隘部と、該狭隘部の側方に流路を変更することで前記気体混合液の流れを反転させ、渦流を生じさせる流路変更部と、を有して構成されている請求項8記載の気液混合装置。 The second eddy current generating mechanism includes a narrow portion that narrows a flow path of the gas mixture flowing through the mixed solution pipe from upstream to downstream, and a change of the flow path to the side of the narrow portion, thereby changing the gas mixture The gas-liquid mixing device according to claim 8, further comprising: a flow path changing unit that reverses the flow of the liquid and generates a vortex.
  10.  前記原液流入管には、該流路を流れる原液の圧力が所定の圧力以上になったことを検知する圧力スイッチが設けられ、
     前記気体流入管には、該気体流入管と気体供給源との間に設けられて前記気体供給源から前記気体流入管への気体の供給を制御する制御弁が設けられ、
     前記圧力スイッチは、原液の圧力が所定の圧力以上になったことを検知したら前記制御弁を開くように構成されている請求項1~9のいずれか一項に記載の気液混合装置。
    The stock solution inflow pipe is provided with a pressure switch for detecting that the pressure of the stock solution flowing through the flow path is equal to or higher than a predetermined pressure,
    The gas inflow pipe is provided with a control valve that is provided between the gas inflow pipe and the gas supply source and controls supply of gas from the gas supply source to the gas inflow pipe,
    The gas-liquid mixing device according to any one of claims 1 to 9, wherein the pressure switch is configured to open the control valve when detecting that the pressure of the stock solution has become equal to or higher than a predetermined pressure.
  11.  前記制御弁が、ラッチ式電磁弁によって構成されている請求項10記載の気液混合装置。 The gas-liquid mixing device according to claim 10, wherein the control valve is constituted by a latch type electromagnetic valve.
  12.  前記ラッチ式電磁弁は、電池で稼働する請求項11記載の気液混合装置。 The gas-liquid mixing device according to claim 11, wherein the latch type solenoid valve is operated by a battery.
  13.  前記制御弁が、比例電磁弁によって構成され、該比例電磁弁には、前記気体供給源から前記気体流入管への気体の供給量を調整する調整部が設けられている請求項10記載の気液混合装置。 11. The gas according to claim 10, wherein the control valve is constituted by a proportional solenoid valve, and the proportional solenoid valve is provided with an adjustment unit that adjusts a gas supply amount from the gas supply source to the gas inflow pipe. Liquid mixing device.
  14.  請求項1~13のいずれか一項に記載の気液混合装置と、
     前記原液流入管に原液を供給する原液供給源と、
     前記気体流入管に気体を供給する気体供給源と、
     前記原液供給源からの前記原液流入管への原液の供給、および前記気体供給源からの前記気体流入管への気体の供給を制御する制御部と、を備える気液混合システム。
    A gas-liquid mixing device according to any one of claims 1 to 13,
    A stock solution supply source for supplying the stock solution to the stock solution inflow pipe;
    A gas supply source for supplying gas to the gas inlet pipe;
    A gas-liquid mixing system comprising: a control unit that controls supply of a stock solution from the stock solution supply source to the stock solution inflow tube and supply of gas from the gas supply source to the gas inflow tube.
  15.  原液中に気体を混合して気体混合液を製造する方法であって、
    請求項1~13のいずれか一項に記載の気液混合装置を提供し、
    前記原液を原液流入管に連続的に供給し、これと同時に前記気体を気体流入管に連続的に供給し、それにより、前記原液と前記気体とを対面して衝突させることによって混合し、
    得られた原液と気体の混合物を、前記混合液配管に流入させる
    ことを含む方法。
    A method for producing a gas mixture by mixing a gas in a stock solution,
    A gas-liquid mixing device according to any one of claims 1 to 13 is provided,
    The stock solution is continuously supplied to the stock solution inflow pipe, and at the same time, the gas is continuously supplied to the gas inflow pipe, thereby mixing the stock solution and the gas by facing each other and mixing them,
    A method comprising flowing the obtained mixture of stock solution and gas into the mixed solution pipe.
PCT/JP2015/053271 2014-02-05 2015-02-05 Gas-liquid mixing device and gas-liquid mixing system WO2015119204A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167020740A KR101858886B1 (en) 2014-02-05 2015-02-05 Gas-liquid mixing device and gas-liquid mixing system
CN201580007313.2A CN105992636B (en) 2014-02-05 2015-02-05 Liqiud-gas mixing device and gas-fluid mixing systems
JP2015510207A JP5952959B2 (en) 2014-02-05 2015-02-05 Gas-liquid mixing device and gas-liquid mixing system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014020711 2014-02-05
JP2014-020711 2014-02-05
JP2014134987 2014-06-30
JP2014-134987 2014-06-30

Publications (1)

Publication Number Publication Date
WO2015119204A1 true WO2015119204A1 (en) 2015-08-13

Family

ID=53778005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053271 WO2015119204A1 (en) 2014-02-05 2015-02-05 Gas-liquid mixing device and gas-liquid mixing system

Country Status (5)

Country Link
JP (3) JP5952959B2 (en)
KR (1) KR101858886B1 (en)
CN (1) CN105992636B (en)
TW (3) TWI584873B (en)
WO (1) WO2015119204A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105708679A (en) * 2016-01-26 2016-06-29 胥常委 Carbonate spring preparation device and method
WO2018023713A1 (en) * 2016-08-05 2018-02-08 Cornelius, Inc. Apparatuses for mixing gases into liquids
CN109966941A (en) * 2019-05-13 2019-07-05 江苏炬焰智能科技有限公司 Carbonate spring mixer
US10477883B2 (en) 2015-08-25 2019-11-19 Cornelius, Inc. Gas injection assemblies for batch beverages having spargers
US10785996B2 (en) 2015-08-25 2020-09-29 Cornelius, Inc. Apparatuses, systems, and methods for inline injection of gases into liquids
US11040314B2 (en) 2019-01-08 2021-06-22 Marmon Foodservice Technologies, Inc. Apparatuses, systems, and methods for injecting gasses into beverages

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL248295B (en) 2016-10-10 2018-02-28 Strauss Water Ltd Carbonation unit, system and method
CN107261876B (en) * 2017-07-31 2023-04-18 广东大任生物科技有限责任公司 Gas-liquid mixing device
US20200360875A1 (en) * 2019-05-14 2020-11-19 Sodastream Industries Ltd. Carbonation machine and a gas canister for a carbonation machine
CN111115787A (en) * 2020-01-17 2020-05-08 南京昭凌精密机械有限公司 Fusion device for preparing high-concentration carbonic acid spring
TWI764774B (en) * 2021-07-02 2022-05-11 信紘科技股份有限公司 Gas-liquid mixing device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293342A (en) * 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd Device and process for carbonated water
JP2011240209A (en) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk Mechanism for generating microbubble
JP2013529130A (en) * 2010-05-03 2013-07-18 アパイク インコーポレイテッド Method of solubilizing carbon dioxide in water using high energy collisions

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312354B2 (en) * 1997-04-24 2002-08-05 リンナイ株式会社 Gas appliance equipped with a latch type solenoid valve
JP3738440B2 (en) * 2002-01-18 2006-01-25 株式会社ユアテック Bubble generator
JP2005118634A (en) * 2003-10-14 2005-05-12 Japan Science & Technology Agency Micro-mixing device
JP2008212495A (en) * 2007-03-06 2008-09-18 Hiroshi Sawakuri Carbonated spring generator
JP4964829B2 (en) * 2008-06-09 2012-07-04 三菱レイヨン・クリンスイ株式会社 Carbonated water production method and carbonated water production equipment
US9144205B2 (en) * 2008-10-17 2015-09-29 Alchem Environmental Ip Llc Hydroponics applications and ancillary modifications to a polyphasic pressurized homogenizer
JP5894355B2 (en) 2009-05-13 2016-03-30 アムズ株式会社 Gas mixed water generator
DE102011083402A1 (en) * 2011-09-26 2013-03-28 Siemens Aktiengesellschaft Mixing device for use in bioreactor for mixing carbon dioxide into suspension formed by nutrient solution for cultivation of e.g. algae, has diffuser for appeasing suspension such that gas in gas bubbles dissolves in suspension
JP5243657B1 (en) * 2012-12-19 2013-07-24 日科ミクロン株式会社 Mixing device and installation structure of mixing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001293342A (en) * 2000-04-18 2001-10-23 Mitsubishi Rayon Eng Co Ltd Device and process for carbonated water
JP2013529130A (en) * 2010-05-03 2013-07-18 アパイク インコーポレイテッド Method of solubilizing carbon dioxide in water using high energy collisions
JP2011240209A (en) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk Mechanism for generating microbubble

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10477883B2 (en) 2015-08-25 2019-11-19 Cornelius, Inc. Gas injection assemblies for batch beverages having spargers
US10785996B2 (en) 2015-08-25 2020-09-29 Cornelius, Inc. Apparatuses, systems, and methods for inline injection of gases into liquids
US11013247B2 (en) 2015-08-25 2021-05-25 Marmon Foodservice Technologies, Inc. Apparatuses, systems, and methods for inline injection of gases into liquids
CN105708679A (en) * 2016-01-26 2016-06-29 胥常委 Carbonate spring preparation device and method
WO2018023713A1 (en) * 2016-08-05 2018-02-08 Cornelius, Inc. Apparatuses for mixing gases into liquids
US11612864B2 (en) 2016-08-05 2023-03-28 Marmon Foodservice Technologies, Inc. Apparatuses for mixing gases into liquids
US11040314B2 (en) 2019-01-08 2021-06-22 Marmon Foodservice Technologies, Inc. Apparatuses, systems, and methods for injecting gasses into beverages
CN109966941A (en) * 2019-05-13 2019-07-05 江苏炬焰智能科技有限公司 Carbonate spring mixer

Also Published As

Publication number Publication date
KR101858886B1 (en) 2018-05-16
TW201709976A (en) 2017-03-16
CN105992636A (en) 2016-10-05
TWI629096B (en) 2018-07-11
CN105992636B (en) 2018-05-22
JP6224049B2 (en) 2017-11-01
JP2016027941A (en) 2016-02-25
TW201706036A (en) 2017-02-16
TWI615193B (en) 2018-02-21
JP6147313B2 (en) 2017-06-14
JP2016027942A (en) 2016-02-25
JPWO2015119204A1 (en) 2017-03-23
JP5952959B2 (en) 2016-07-13
TW201536407A (en) 2015-10-01
KR20160104046A (en) 2016-09-02
TWI584873B (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6224049B2 (en) Gas-liquid mixing device and gas-liquid mixing system
US20190232238A1 (en) Apparatus for generating ultrafine bubbles of molecular hydrogen in water
CN112923569A (en) Control method of water heater, water heater and computer readable storage medium
KR102128202B1 (en) Nano-bubble generator
JP2019055376A (en) Carbon dioxide gas fine bubble water generation device
JP2016030000A (en) Carbonated spring generation device
JP6598371B2 (en) Gas-liquid mixing device
JP6055551B2 (en) Management device, management system, gas-liquid mixing system, management method, and computer program
CN113091300A (en) Gas water heater with bubble water function and control method thereof
JP2003053169A (en) Carbonated water manufacturing apparatus and carbonic acid gas dissolving method
CN107585846B (en) Hydrogen shower water system
CN216953550U (en) Gas water heater
KR20160040923A (en) Device for generating carbonated water
JP2023549932A (en) Water quality adjustment unit and delivery unit for cleaning equipment
JP6602284B2 (en) Gas dissolver
KR101613087B1 (en) Apparatus for producing carbonated water
KR102385172B1 (en) System for producing carbonated water
US11077018B2 (en) Bathing system and method of controlling same
CN108534361B (en) Water heater
JP2017225932A (en) Gas-water manufacturing device
KR20230003706A (en) Bubble generation system
JP2004097274A (en) Method and apparatus for producing carbon dioxide dissolved warm water
JP6174536B2 (en) Gas-liquid mixing nozzle and apparatus for producing oxyhydrogen water, hydrogen water, or oxygen water using the gas-liquid mixing nozzle
TW201726257A (en) Multifunctional gas-liquid mixing device capable of achieving mixing a gas and a liquid or mixing a liquid and the other liquid under the condition that no electric energy is required
JP2016087142A (en) Carbonate warm water generator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015510207

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020740

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746592

Country of ref document: EP

Kind code of ref document: A1