JP2003053169A - Carbonated water manufacturing apparatus and carbonic acid gas dissolving method - Google Patents

Carbonated water manufacturing apparatus and carbonic acid gas dissolving method

Info

Publication number
JP2003053169A
JP2003053169A JP2001246202A JP2001246202A JP2003053169A JP 2003053169 A JP2003053169 A JP 2003053169A JP 2001246202 A JP2001246202 A JP 2001246202A JP 2001246202 A JP2001246202 A JP 2001246202A JP 2003053169 A JP2003053169 A JP 2003053169A
Authority
JP
Japan
Prior art keywords
water
carbon dioxide
dioxide gas
water flow
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001246202A
Other languages
Japanese (ja)
Inventor
Hiroshi Tasaka
広 田阪
Masanori Sakakibara
巨規 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2001246202A priority Critical patent/JP2003053169A/en
Publication of JP2003053169A publication Critical patent/JP2003053169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a carbonic acid gas dissolving method which allow low-cost production and, moreover, manufacture massive carbonated hot water with a stable dissolving efficiency. SOLUTION: This carbonated water manufacturing apparatus is provided with water passages which are branched in a plurality and respectively have carbonic acid gas dissolving elements 1, a carbonic acid gas addition ports 2 which are disposed on the upstream of the carbonic acid gas dissolving elements 1 and a confluence part 5 which allows the water passages to flow together. Therein, even when the treating quantity of water is varied, the number of water passages to be used is increased or decreased, thereby, the quantity of water flowing through each water passage can be kept within a specified range and, therefore, the dissolving efficiency can be maintained in a high level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸水を簡便な構
造で効率よく製造するための装置および炭酸ガス溶解方
法に関する。
TECHNICAL FIELD The present invention relates to an apparatus for efficiently producing carbonated water with a simple structure and a method for dissolving carbon dioxide gas.

【0002】[0002]

【従来の技術】炭酸泉等の炭酸ガスを含んだ温水に入浴
した場合の血管拡張効果や、湯冷めしにくい等の温浴効
果は一般によく知られ、浴用炭酸水を簡便に得ることが
できる薬剤や装置が市販されている。また近年数100
ppmから1000ppm程度の高濃度での治療効果も
証明されつつある。
2. Description of the Related Art Vasodilatory effects when bathed in hot water containing carbon dioxide gas such as carbonated spring and hot bath effects such as difficulty in cooling with hot water are generally well known, and agents and devices that can easily obtain carbonated water for bathing. Is commercially available. In addition, several hundreds in recent years
The therapeutic effect at high concentration of about ppm to 1000 ppm is being proved.

【0003】このような炭酸ガスを含んだ炭酸温水を得るた
めに、両端の開口した中空糸膜を複数本収納してなる中
空糸膜モジュールを用いて浴湯中へ炭酸ガスを溶解させ
る方法が特開平2−279158号公報に、また絞りを
有する配管中に炭酸ガスを直接吹き込んで水中へ炭酸ガ
スを溶解させる装置が特開平5−238928号公報
に、それぞれ記載されている。
[0003] In order to obtain carbonated hot water containing such carbon dioxide gas, a method of dissolving carbon dioxide gas in a bath water using a hollow fiber membrane module containing a plurality of hollow fiber membranes open at both ends is known. Japanese Patent Application Laid-Open No. 2-279158 and Japanese Patent Application Laid-Open No. 5-238928 disclose a device for directly blowing carbon dioxide into a pipe having a throttle to dissolve carbon dioxide in water.

【0004】[0004]

【発明が解決しようとする課題】特開平2−27915
8号公報に記載されている中空糸膜モジュールを用いる
方法では、高濃度の炭酸水を得ることができるものの、
コストが高くなりがちであった。また特開平5−238
928号公報に記載されている絞りを有する配管中に炭
酸ガスを直接吹き込む装置の場合には、絞りがある一本
の配管を用いるため通水圧損が高く、大量の炭酸温水を
得ることが困難であり、また水の流量変動により炭酸ガ
ス溶解効率も大きく変動する問題点があった。本発明
は、低コストで生産でき、更に安定した溶解効率で大量
の炭酸温水を製造することが出来る装置及び炭酸ガス溶
解方法を提供するものである。
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-27915
Although the method using the hollow fiber membrane module described in Japanese Patent Publication No. 8 can obtain high-concentration carbonated water,
Costs tended to be high. In addition, JP-A-5-238
In the case of the device for blowing carbon dioxide gas directly into a pipe having a restriction, which is described in Japanese Patent No. 928, since a single pipe having a restriction is used, the water pressure loss is high and it is difficult to obtain a large amount of carbonated hot water. In addition, there was a problem that the carbon dioxide gas dissolution efficiency also fluctuates greatly due to fluctuations in the flow rate of water. The present invention provides an apparatus and a carbon dioxide gas dissolution method that can be produced at low cost and that can produce a large amount of hot carbonated water with stable dissolution efficiency.

【0005】[0005]

【課題を解決するための手段】即ち、本発明の第一の要
旨は、複数に分岐し、各々に、水流路内に配置され水流
に乱れを発生させる炭酸ガス溶解素子を有する水流路
と、該炭酸ガス溶解素子の上流に設けられた炭酸ガス添
加口と、該水流路を合流させる合流部とからなる炭酸水
製造装置、である。また、分岐された水流路を遮断する
手段を備えると、処理すべき流量の変動に対応して分岐
水流路の数を変更でき好ましい。また、分岐された各々
の水流路に2L/min〜4L/minで通水した際、
水流路の分岐部から合流部までの差圧が30kPa〜1
00kPaであると、炭酸ガスを効率的に溶解でき好ま
しい。
That is, the first gist of the present invention is to divide into a plurality of water channels, each of which has a water channel having a carbon dioxide dissolving element which is disposed in the water channel and generates turbulence in the water flow, A carbonated water production apparatus comprising a carbon dioxide gas addition port provided upstream of the carbon dioxide gas dissolving element, and a confluent part for converging the water flow path. Further, it is preferable to provide a means for shutting off the branched water flow passage, because the number of the branched water flow passages can be changed according to the fluctuation of the flow rate to be treated. Further, when water is passed through each of the branched water channels at 2 L / min to 4 L / min,
The differential pressure from the junction of the water channel to the junction is 30 kPa-1
When it is 00 kPa, carbon dioxide gas can be efficiently dissolved, which is preferable.

【0006】本発明の第二の要旨は、複数に分岐された水流
路に、水流路内に配置され水流に乱れを発生させる炭酸
ガス溶解素子を設け、炭酸ガス溶解素子の上流の水流路
内に炭酸ガスを添加し、炭酸ガス溶解素子にて炭酸ガス
を水中に溶解させた後、複数の水流を一つに合流させる
ことを特徴とする炭酸ガス溶解方法、である。また、処
理する水量に応じて複数の分岐された水流路を開閉して
通水する水流路の数を変化させ、分岐された水流路を流
れる水流の量を一定範囲に保つと、流量が変動しても炭
酸ガスの溶解効率を高く保つことができ好ましい。分岐
された水流路を流れる水流が2L/min〜4L/mi
nであること、水流路の分岐部から分岐された水流路の
合流部までの差圧を30kPa〜100kPaとするこ
と、が、炭酸ガスの溶解効率を向上させることができ好
ましい。また、炭酸ガスの溶解効率を70%以上とする
と、経済的に好ましい。さらに、生成される炭酸水の炭
酸ガス濃度が300ppm〜1300ppmであるこ
と、水流路に流される水の温度が30℃から50℃であ
ること、はそれぞれ炭酸水の効能が高いため好ましい。
[0006] A second gist of the present invention is to provide a carbon dioxide gas dissolving element, which is disposed in the water flow passage and generates turbulence in the water flow, in the water passage branched into a plurality of water passages, and the water flow passage upstream of the carbon dioxide dissolving element is provided. Carbon dioxide gas is added to the solution, the carbon dioxide gas is dissolved in water by a carbon dioxide gas dissolving element, and then a plurality of water streams are combined into one. In addition, if the number of water channels that flow water is changed by opening and closing multiple branched water channels according to the amount of water to be treated and the amount of water flow flowing through the branched water channels is kept within a certain range, the flow rate will fluctuate. Even so, it is preferable because the efficiency of dissolving carbon dioxide gas can be kept high. Water flow through the branched water flow path is 2 L / min to 4 L / mi
It is preferable that it is n and the differential pressure from the branched portion of the water flow passage to the confluence portion of the branched water flow passage is 30 kPa to 100 kPa because the dissolution efficiency of carbon dioxide gas can be improved. Further, it is economically preferable that the dissolution efficiency of carbon dioxide is 70% or more. Further, it is preferable that the carbon dioxide gas concentration of the generated carbonated water is 300 ppm to 1300 ppm, and that the temperature of the water flowing through the water flow channel is 30 ° C. to 50 ° C. because the carbonated water has a high effect.

【0007】[0007]

【発明の実施の形態】以下、図面を元に本発明の炭酸ガ
ス溶解装置及び炭酸ガス溶解方法について説明する。図
1は本発明による炭酸ガス溶解装置を模式的に示す図で
あり、実線の矢印は水の流れを示し、破線の矢印はガス
の流れを示すものである。図1の例では、水流路は分岐
部4から4本の水流路に分岐し、それぞれの水流路には
炭酸ガス溶解素子1と、炭酸ガス添加口2が設けてあ
る。各水流路は、合流部5で再び一本に合流する。
BEST MODE FOR CARRYING OUT THE INVENTION A carbon dioxide gas dissolving apparatus and a carbon dioxide gas dissolving method according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing a carbon dioxide gas dissolving apparatus according to the present invention, in which a solid arrow indicates a flow of water and a broken arrow indicates a flow of gas. In the example of FIG. 1, the water flow path is branched from the branching section 4 into four water flow paths, and each water flow path is provided with a carbon dioxide gas dissolving element 1 and a carbon dioxide gas addition port 2. The respective water flow paths merge again at the merging portion 5.

【0008】ここで、炭酸ガス溶解素子1とは、水流路内に
配置された水流に乱れを発生させる部材のことであり、
水流の乱れにより水中に添加された炭酸ガス気泡を微細
化し、攪拌させる事により炭酸ガスの溶解を促進させる
素子の事である。より具体的な例としては、流路に設け
られたオリフィス、メッシュ、スリット等や、格子状の
部材や突起等からなるミキサーを挙げる事ができる。
[0008] Here, the carbon dioxide gas dissolving element 1 is a member arranged in the water flow path to generate turbulence in the water flow,
It is an element that accelerates the dissolution of carbon dioxide gas by making bubbles of carbon dioxide gas added into water due to turbulence of the water flow and stirring. As more specific examples, there may be mentioned orifices, meshes, slits, etc. provided in the flow path, and a mixer composed of lattice-shaped members, protrusions and the like.

【0009】水流路の分岐の形態は、例えば、円柱や角柱等
のブロック状マニホールド部材に複数の連通口を設け、
それぞれの連通口に炭酸ガス溶解素子を配置した一体形
状のもの、炭酸ガス溶解素子が配置された一本の独立し
た流路を、複数に分岐したチューブ等配管で並列に接続
した形状のもの、等が可能である。複数に分岐したチュ
ーブ等配管で並列に接続する場合は、それぞれの分岐水
流路を一つに束ね一体形状としてもよい。また、それぞ
れの分岐水流路の形状を矩形等多角形にすると、分岐部
を一つに束ねる際に効率よく束ねられる。なお、水流路
を一旦分岐させ、分岐した水流路を更に分岐させるよう
な多段階の分岐を行っても良い。
[0009] The form of branching of the water flow path is, for example, a block-shaped manifold member such as a column or a prism provided with a plurality of communication ports,
An integrated shape in which a carbon dioxide gas dissolving element is arranged at each communication port, a shape in which one independent flow path in which a carbon dioxide gas dissolving element is arranged is connected in parallel with a pipe such as a tube branched into a plurality of pipes, Etc. are possible. When connecting in parallel with a pipe such as a tube that is branched into a plurality of tubes, the branched water flow paths may be bundled into one and integrated. Further, if the shape of each branch water channel is a polygon such as a rectangle, the branch parts can be efficiently bundled when they are bundled together. In addition, the water flow path may be branched once, and the branched water flow path may be further branched to perform multi-step branching.

【0010】分岐した水流路の各々について、水流路を遮断
する遮断手段3を設けると、水量の変化に応じて効率を
低下させずに炭酸ガスを溶解させることができる。図2
は流量と炭酸ガス溶解効率の関係を示すグラフであり、
破線は、一本の水流路に設けた炭酸ガス溶解素子に流れ
る水流量と、溶解効率の関係を示す線で、流量が低くな
ると、炭酸ガス溶解素子により発生する流れの乱れが少
なくなり、溶解効率が低下する。
[0010] When each of the branched water flow paths is provided with the blocking means 3 that blocks the water flow path, the carbon dioxide gas can be dissolved without reducing the efficiency in accordance with the change in the water amount. Figure 2
Is a graph showing the relationship between the flow rate and the carbon dioxide gas dissolution efficiency,
The broken line is a line showing the relationship between the water flow rate flowing through the carbon dioxide gas dissolution element provided in one water flow path and the dissolution efficiency.When the flow rate becomes low, the disturbance of the flow generated by the carbon dioxide gas dissolution element decreases and the dissolution Efficiency is reduced.

【0011】実線は、流量の低下に伴い、水流路に設けられ
た開閉弁を閉じて、使用する水流路を減少させ、一本の
炭酸ガス溶解素子に流れる流量を一定になるように調節
した場合の、水流量と溶解効率の関係を示す線であり、
炭酸ガス溶解効率は高い位置で安定している。即ち水流
路をn本に分割し、水流量が一定量低下するごとに水流
路を順次遮断し、一本の水流路に流れる水量を一定にす
る事により、高い溶解効率を維持する事が可能となって
いる。なお、この時水流量の低下に伴ない、炭酸ガス流
量も少なくする必要があるが、その方法は簡便な方法と
しては、圧力調整弁により炭酸ガス供給圧力を低下させ
る方法を挙げる事が出来、更には流量を検知し自動でガ
ス圧を調整するよう制御手段を用いる等、適宜選択可能
である。
[0011] The solid line indicates that as the flow rate decreases, the on-off valve provided in the water flow path is closed to reduce the water flow path used, and the flow rate flowing into one carbon dioxide gas dissolving element is adjusted to be constant. Is a line showing the relationship between the water flow rate and the dissolution efficiency in the case of
Carbon dioxide dissolution efficiency is stable at a high position. That is, it is possible to maintain high dissolution efficiency by dividing the water flow path into n lines, shutting off the water flow path sequentially whenever the water flow rate decreases by a certain amount, and making the amount of water flowing in one water flow path constant. Has become. At this time, along with the decrease in the water flow rate, it is necessary to reduce the carbon dioxide gas flow rate, but a simple method is to reduce the carbon dioxide gas supply pressure with a pressure control valve. Further, it is possible to appropriately select such as using a control means so as to detect the flow rate and automatically adjust the gas pressure.

【0012】遮断手段3としては、例えば各流路にボールバ
ルブ等開閉弁を取り付けて開閉を行う方法、また、複数
の流路が一体となっている場合には、その端部にスライ
ドやシャッター等封止部材を取り付け、封止部材をスラ
イドさせて流路を遮断する方法等、を挙げることができ
る。封止部材のスライド方法としては、例えば端部に複
数の羽根状の遮蔽板を配置し、必要に応じ羽根を移動さ
せ流路を塞ぐ方法や、ロール状に丸められた遮蔽板を引
き伸ばす事により、流路を塞ぐ方法等を挙げることがで
き、具体的には、カメラのシャッターや扇状の動きをす
る構造のもの、倉庫、車庫等の入り口につけられている
シャッターのような動きをする構造のもの等を挙げる事
ができる。
[0012] As the shut-off means 3, for example, a method of opening and closing by attaching an opening / closing valve such as a ball valve to each flow path, and when a plurality of flow paths are integrated, a slide or a shutter is provided at the end thereof. A method of attaching a sealing member, etc., and sliding the sealing member to block the flow path can be cited. As a method of sliding the sealing member, for example, by disposing a plurality of blade-shaped shield plates at the ends and moving the blades as necessary to close the flow path, or by stretching a roll-shaped shield plate. , A method of closing the flow path, etc., specifically, those having a structure such as a shutter of a camera or a structure that makes a fan-like movement, or a structure such as a shutter attached to the entrance of a warehouse, a garage, etc. You can name things.

【0013】ガス添加口は、炭酸ガス溶解素子の上流にあれ
ば、分割した水流路それぞれに設けても構わないし、水
流路を分割する手前で添加しても構わない。また、炭酸
ガスと酸素等、複数種類のガスを併せて添加することも
可能であり、その場合には、それぞれの分岐部にそれぞ
れのガスを添加するように配管すればよい。
[0013] The gas addition port may be provided in each of the divided water channels as long as it is located upstream of the carbon dioxide dissolving element, or may be added before dividing the water channel. It is also possible to add a plurality of gases such as carbon dioxide gas and oxygen together, and in that case, piping may be added so that each gas is added to each branching portion.

【0014】水流路に炭酸ガスを添加する炭酸ガス添加口2
については、ガス流路に水が逆流することがないよう逆
止弁が取り付けられてなることが好ましく、例えば、自
転車のタイヤチューブに取り付けられているムシゴムの
ような形状を有する、一般にダックビルと呼ばれるもの
などを使用することができる。
Carbon dioxide addition port 2 for adding carbon dioxide to the water flow path
Regarding, it is preferable that a check valve is attached so that water does not flow back into the gas flow path. For example, the check valve has a shape like a rubber attached to a tire tube of a bicycle, and is generally called a duck bill. Things etc. can be used.

【0015】分岐された水流路に通水されるそれぞれの水流
量は、2L/min〜4L/minが好ましい。大量の処
理を必要とする場合に、2L/min以下の流量であれ
ば、流路の分岐数が多くなって装置の大型化や高コスト
化につながり、4L/min以上で流そうとすると圧力
損失が高くなり、送液が困難となる。
[0015] The flow rate of each water flowing through the branched water flow path is preferably 2 L / min to 4 L / min. When a large amount of treatment is required, if the flow rate is 2 L / min or less, the number of branches in the flow path increases, leading to an increase in the size and cost of the device. Loss becomes high and it becomes difficult to transfer liquid.

【0016】圧力を高くするほど水中へ炭酸ガスを効率的に
溶解させることができるが、あまり圧力を高く使用とす
ると送液が困難になる。このため、水流路の分岐部から
合流部までの差圧が30kPaから100kPaになる
ように炭酸ガス溶解素子の形状や配管等の形状、径等を
調整すると、好適に炭酸水を得ることが出来るため好ま
しい。
[0016] The higher the pressure, the more efficiently carbon dioxide can be dissolved in water, but if the pressure is too high, it becomes difficult to deliver the liquid. Therefore, carbonated water can be preferably obtained by adjusting the shape of the carbon dioxide gas dissolving element, the shape of the pipes, the diameter, etc. so that the pressure difference from the branching portion to the merging portion of the water flow path is 30 kPa to 100 kPa. Therefore, it is preferable.

【0017】図3は、炭酸ガス溶解素子にオリフィスを使用
した配管の概要を示す断面図である。オリフィスの開口
部6の径を変更し、絞り率(オリフィスの突起部面積が
配管断面積を遮蔽する割合)を調整することにより、炭
酸ガスの溶解効率や水中の炭酸ガス濃度を調整すること
ができる。図4は、直径10mmの配管中に流れ方向の
長さが3mmのオリフィスを設け、オリフィスの絞り率
を変化させた際の、絞り率と炭酸ガス濃度、通水圧損と
の関係、図5は絞り率と炭酸ガス溶解効率、通水圧損と
の関係をそれぞれ示した図である。開口部径及び絞り率
は表1に示したように調整した。分岐された水流路それ
ぞれに通水される水の流量は2.7L/min、炭酸ガ
ス流量は0.8L/min及び1.5L/minで行っ
た。図4及び図5に示すように、水流路内の断面積の8
7%から95%を絞ることにより、水流路の分岐部から
分岐された水流路の合流部までの差圧を30kPaから
100kPaとすることができる。
FIG. 3 is a cross-sectional view showing an outline of piping using an orifice for a carbon dioxide gas dissolving element. It is possible to adjust the carbon dioxide gas dissolution efficiency and the carbon dioxide gas concentration in water by changing the diameter of the opening 6 of the orifice and adjusting the throttling ratio (the ratio of the area of the protrusion of the orifice that blocks the pipe cross-sectional area). it can. FIG. 4 shows the relationship between the throttle ratio, the carbon dioxide concentration, and the water pressure loss when the orifice having a length of 3 mm in the flow direction is provided in a pipe having a diameter of 10 mm and the orifice throttle ratio is changed. It is the figure which respectively showed the relationship between the draw ratio, the carbon dioxide gas dissolution efficiency, and the water pressure loss. The opening diameter and the reduction ratio were adjusted as shown in Table 1. The flow rate of water passed through each of the branched water flow paths was 2.7 L / min, and the carbon dioxide gas flow rates were 0.8 L / min and 1.5 L / min. As shown in FIG. 4 and FIG.
By narrowing 7% to 95%, the differential pressure from the branch portion of the water flow passage to the confluence portion of the branched water flow passage can be set to 30 kPa to 100 kPa.

【0018】[0018]

【表1】 [Table 1]

【0019】オリフィスの流れ方向の長さは薄い方が好まし
く、0.1〜5mmの範囲であることが好ましい。0.
1mm以下であれば通水圧によりオリフィスが破損する
可能性があり、5mm以上であれば必要以上に圧力損失
が上昇し好ましくない。
The length of the orifice in the flow direction is preferably thin, and is preferably in the range of 0.1 to 5 mm. 0.
If it is 1 mm or less, the orifice may be damaged by water pressure, and if it is 5 mm or more, pressure loss increases more than necessary, which is not preferable.

【0020】炭酸ガスの溶解効率を70%以上とする事によ
り、大気中に拡散される炭酸ガス量を抑える事が出来、
ガスボンベ等炭酸ガス源が小型であっても炭酸ガス源の
交換の手間を少なくする事ができる。
[0020] By setting the carbon dioxide gas dissolution efficiency to 70% or more, the amount of carbon dioxide gas diffused into the atmosphere can be suppressed,
Even if the carbon dioxide gas source such as a gas cylinder is small, it is possible to reduce the time and effort for exchanging the carbon dioxide gas source.

【0021】分岐された流路それぞれに通水される流量は、
実質的に等しくすることが好ましく、その方法としては
例えば分岐された各水流路にゴムやバネ等の弾性体を用
いた定流量弁を配置する方法、水流路が分岐されてから
再び合流されるまでの各水流路の長さや内径等をそろえ
て圧力損失を等しくする方法等を挙げる事が出来、適宜
選択することができる。また、装置内の炭酸ガス添加部
の配置等の関係で、例えば水流路長さを均一にすること
が出来ない場合には、炭酸ガス溶解素子の径を調整し通
水圧力損失を実質的に等しくすることも可能である。
[0021] The flow rate of water passing through each of the branched flow paths is
It is preferable to make them substantially equal. For example, a method of arranging a constant flow valve using an elastic body such as rubber or a spring in each branched water channel, or a method of merging again after the water channel is branched There is a method of equalizing the pressure loss by aligning the lengths and inner diameters of the respective water flow paths up to, and the like, and it can be appropriately selected. Further, due to the arrangement of the carbon dioxide gas addition section in the device, for example, when the water flow path length cannot be made uniform, the diameter of the carbon dioxide gas dissolving element is adjusted to substantially reduce the water pressure loss. It is possible to make them equal.

【0022】全体の処理水量は、炭酸水を全身浴或いは足浴
等の部分浴のために、浴槽等容器内に溜める時間が短く
すみ、また、シャワー浴等で使用する際にも好適にシャ
ワーヘッドから吐出されることから、2L/min〜2
0L/minの範囲が好ましく、5L/min〜15L
/minより好ましい。このとき、分岐する水流路の数
としては2〜10本が好ましい。
[0022] As for the total amount of treated water, since the carbonated water is a partial bath such as a whole body bath or a foot bath, the time for which it is stored in a container such as a bathtub is short, and the shower head is also suitable when used in a shower bath or the like. Since it is discharged from 2 L / min to 2
The range of 0 L / min is preferable, and 5 L / min to 15 L
/ Min is more preferable. At this time, the number of branched water channels is preferably 2 to 10.

【0023】炭酸ガス濃度は、「The effects
of external CO2 applicati
on on human skin microcir
culation investigated by l
aser Dopplerflowmetry. In
t J Microcirc:Clin Exp4:3
43-350(1985)」に、炭酸ガス濃度が300p
pm程度以上から血流量増加効果があることが記載され
ているように、300ppm以上にすることが好まし
い。
[0023] The carbon dioxide concentration is "The effects".
of external CO2 applicati
on on human skin microcir
Citation invested by l
aser Doppler flowmetry. In
t J Microcirc: Clin Exp 4: 3
43-350 (1985) ", the carbon dioxide concentration is 300p
As described in the description that it has an effect of increasing blood flow from about pm or more, it is preferably 300 ppm or more.

【0024】一方40℃における炭酸ガスの飽和溶解度は1
300ppm程度であり、この濃度以上に炭酸ガスを添
加しようとしても溶解効率が低下し、未溶解のガスが吐
出口から噴出するため好ましくない。さらに、炭酸ガス
濃度が700ppm以上になると炭酸水のpHが5以下
になるため、浴室や洗面室等の使用場所における金属等
の耐酸性の低い部材を劣化させることがあることから、
炭酸ガス濃度は300ppm〜700ppmに設定する
事がより好ましい。
On the other hand, the saturated solubility of carbon dioxide at 40 ° C. is 1
It is about 300 ppm, and even if carbon dioxide gas is added at a concentration higher than this concentration, the dissolution efficiency decreases and undissolved gas is ejected from the discharge port, which is not preferable. Furthermore, when the concentration of carbon dioxide gas is 700 ppm or more, the pH of the carbonated water becomes 5 or less, which may deteriorate members with low acid resistance such as metals in places of use such as bathrooms and washrooms.
It is more preferable to set the carbon dioxide concentration to 300 ppm to 700 ppm.

【0025】ガスを添加した後水温を上昇させると一旦溶解
したガスが再気泡化し水中のガス濃度が低下するため好
ましくない。このため水流路に流される水の温度は予め
30℃から50℃に温度調節されてなることが好まし
い。水温は30℃以上であれば、一般に全身浴、足浴或
いはシャワー浴等皮膚に触れる際不快感を催すことがな
く、また炭酸ガス添加後すぐに使用しない場合には50
℃程度の温度で炭酸ガスを添加し使用時に冷めて適温に
なるよう適宜調節する事も可能である。より好適な温度
範囲は体温前後の35℃から40℃の範囲である。
[0025] When the water temperature is increased after the gas is added, the once dissolved gas is re-foamed and the gas concentration in water is reduced, which is not preferable. For this reason, it is preferable that the temperature of the water flowing through the water flow path is adjusted in advance from 30 ° C to 50 ° C. If the water temperature is 30 ° C or higher, there is generally no discomfort when touching the skin such as a whole body bath, foot bath or shower bath, and 50 if not used immediately after addition of carbon dioxide.
It is also possible to add carbon dioxide at a temperature of about ° C and cool it at the time of use to adjust the temperature appropriately. A more preferable temperature range is from 35 ° C to 40 ° C around the body temperature.

【0026】炭酸ガス濃度の調整方法としては、炭酸ガスの
供給圧力をレギュレーター等圧力調整装置で炭酸ガス供
給量を調節する方法や、ニードルバルブ等で炭酸ガス流
路の開閉量により炭酸ガス供給量を調節する方法、炭酸
ガス流量調整部材として、微細な連通口を有する金属或
いは樹脂の焼結体等を流路に配置し、焼結体等を圧損部
材として機能させる方法、等を用いることができる。ま
た、これらの方法を適宜組み合わせて使用することも可
能である。
[0026] As a method of adjusting the carbon dioxide concentration, a method of adjusting the carbon dioxide supply pressure with a pressure adjusting device such as a regulator for the supply pressure of carbon dioxide, or a carbon dioxide supply amount depending on the opening / closing amount of the carbon dioxide flow passage with a needle valve or the like A method for adjusting the carbon dioxide gas flow rate adjusting member, a method for arranging a sintered body or the like of a metal or a resin having a fine communication port in the flow path, and causing the sintered body or the like to function as a pressure loss member, etc. it can. It is also possible to use these methods in combination as appropriate.

【0027】以下、実施例を基に本発明を具体的に説明す
る。 <実施例1>直径10mmの配管に、開口部径3mm、
絞り率91%のオリフィスを設け、図1に示すように4
本並列に配管し、水温40℃の水を4本合計して10L
/minで流し、炭酸ガスを配管それぞれに0.8L/
minで添加した。その結果、通水圧損は45kPa
で、溶解効率80%、炭酸ガス濃度500ppmの炭酸
温水を得ることが出来た。
Hereinafter, the present invention will be specifically described based on Examples. <Example 1> In a pipe having a diameter of 10 mm, an opening diameter of 3 mm,
An orifice with a reduction rate of 91% is provided, and as shown in FIG.
This is connected in parallel, and the total of 4 pieces of water with a water temperature of 40 ° C is 10L.
/ L / min, carbon dioxide gas 0.8L / in each pipe
added at min. As a result, water pressure loss is 45 kPa
Thus, hot carbonated water having a dissolution efficiency of 80% and a carbon dioxide gas concentration of 500 ppm could be obtained.

【0028】<実施例2>実施例1に使用した装置の4本の
並列配管の内、2本の流路を閉じ、水の流量合計を5L
/minにして通水した。その結果、通水圧損は45k
Paで、溶解効率80%、炭酸ガス濃度500ppmの
炭酸温水を得ることが出来た。
<Example 2> Of the four parallel pipes of the apparatus used in Example 1, two channels were closed and the total flow rate of water was 5 L.
/ Min to pass water. As a result, the water pressure loss is 45k.
Carbonated hot water having a dissolution efficiency of 80% and a carbon dioxide gas concentration of 500 ppm could be obtained at Pa.

【0029】<実施例3>実施例1に使用した装置の、並列
配管の流路合流部の下流にシャワーヘッドを取り付け、
家庭用給湯器を用いて40℃の温水を10L/minで
給湯し、炭酸ガスを配管それぞれに0.8L/minで
添加しながら、また、このとき通水圧損は100kPa
で、溶解効率80%、炭酸ガス濃度500ppmの炭酸
温水を得ることが出来た。
<Example 3> In the apparatus used in Example 1, a shower head was attached downstream of the flow passage merging portion of the parallel piping,
Hot water of 40 ° C was supplied at a rate of 10 L / min using a domestic water heater, and carbon dioxide was added to each of the pipes at a rate of 0.8 L / min. At this time, the water pressure loss was 100 kPa.
Thus, hot carbonated water having a dissolution efficiency of 80% and a carbon dioxide gas concentration of 500 ppm could be obtained.

【0030】<比較例1>開口部径3mm、絞り率91%の
オリフィスを設けた直径10mmの配管一本にシャワー
ヘッドを取り付け、炭酸ガスを3.2L/minで添加
しながら、家庭用給湯器から40℃の温水を給湯した
が、給水圧が200kPaまでしか上がらなかったた
め、シャワーからの吐水量は5L/minしか得られな
かった。このとき、溶解効率は50%、炭酸ガス濃度は
630ppmであった。
<Comparative Example 1> A shower head is attached to one pipe having a diameter of 10 mm provided with an orifice having an opening diameter of 3 mm and a reduction rate of 91%, and carbon dioxide gas is added at 3.2 L / min while supplying hot water for home use. Although hot water of 40 ° C. was supplied from the vessel, the water supply pressure increased only to 200 kPa, so that the discharge amount of water from the shower was only 5 L / min. At this time, the dissolution efficiency was 50% and the carbon dioxide gas concentration was 630 ppm.

【0031】<比較例2>開口部径5mm、絞り率75%の
オリフィスを設けた直径10mmの配管一本に、水温4
0℃の水を10L/minで流し、炭酸ガスを3.2L
/minで添加した。このとき、通水圧損は70kPa
で、得られた炭酸温水の炭酸ガス濃度は300ppm、
溶解効率は50%であった。
<Comparative Example 2> A pipe having a diameter of 10 mm and an orifice having a diameter of 5 mm and an orifice having a drawing rate of 75% was provided with a water temperature of 4 mm.
Pour water at 0 ° C at 10 L / min to give 3.2 L of carbon dioxide gas.
/ Min. At this time, the water pressure loss is 70 kPa
The carbon dioxide concentration of the obtained warm carbonated water is 300 ppm,
The dissolution efficiency was 50%.

【0032】<比較例3>比較例2の配管の後にシャワーヘ
ッドを取り付け、家庭用給湯器から40℃の温水を10
L/minで給湯したところ、溶解効率が低かったため
未溶解の炭酸ガス気泡がシャワー口吹き出し、連続的に
水を吐出する事が出来なかった。
<Comparative Example 3> A shower head is attached after the pipe of Comparative Example 2, and hot water at 40 ° C is supplied from a household water heater at 10 ° C.
When the hot water was supplied at L / min, the dissolution efficiency was low and undissolved carbon dioxide gas bubbles were blown out from the shower port, making it impossible to continuously discharge water.

【0033】[0033]

【発明の効果】本発明の炭酸ガス溶解方法及び溶解装置
によれば、流路を分岐し、それぞれに炭酸ガス溶解素子
を設ける簡便な構造でありながら、低い圧力損失で大量
のガス添加水を効率よく製造する事が出来、快適に全身
浴や足浴等の浴槽の貯水、或いは炭酸温水シャワー等に
使用することができる。更に給水圧の変動等により水流
量が変動しても安定した溶解効率を維持することが出来
る。また、装置も小型で低コスト化が可能である。
According to the method and apparatus for dissolving carbon dioxide gas of the present invention, a large amount of gas-added water with a low pressure loss can be obtained with a simple structure in which a flow channel is branched and a carbon dioxide gas dissolving element is provided in each. It can be manufactured efficiently and can be comfortably used for storing water in bathtubs such as whole body baths and foot baths, or for showering with carbonated hot water. Furthermore, stable dissolution efficiency can be maintained even if the water flow rate changes due to changes in the water supply pressure. Also, the device is small and can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガス添加方法を模式的に示す図で
ある。
FIG. 1 is a diagram schematically showing a gas addition method according to the present invention.

【図2】水流量と炭酸ガス溶解効率の関係を示した図で
ある。
FIG. 2 is a diagram showing a relationship between a water flow rate and a carbon dioxide gas dissolution efficiency.

【図3】本発明の炭酸ガス溶解素子を有する配管の一例
を示す断面図である。
FIG. 3 is a sectional view showing an example of a pipe having a carbon dioxide gas dissolving element of the present invention.

【図4】絞り率と炭酸ガス濃度を示すグラフである。FIG. 4 is a graph showing a drawing ratio and a carbon dioxide concentration.

【図5】絞り率と炭酸ガス溶解効率を示すグラフであ
る。
FIG. 5 is a graph showing a drawing ratio and a carbon dioxide gas dissolution efficiency.

【符号の説明】[Explanation of symbols]

1 炭酸ガス溶解素子 2 炭酸ガス添加口 3 水流路を遮断する手段 4 分岐部 5 合流部 6 開口部 1 Carbon dioxide gas dissolution element 2 Carbon dioxide gas addition port 3 Means for blocking the water flow path 4 branches 5 Confluence section 6 openings

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C094 BB14 BC11 DD06 DD14 EE01 EE20 EE34 FF01 FF02 FF05 FF09 FF11 GG03 GG06 4G035 AA05 AB26 AC26 AE13 4G075 AA02 AA03 BB03 BD01 BD13 BD22 DA02 DA12 DA18 EB21 EC01 EC06    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4C094 BB14 BC11 DD06 DD14 EE01                       EE20 EE34 FF01 FF02 FF05                       FF09 FF11 GG03 GG06                 4G035 AA05 AB26 AC26 AE13                 4G075 AA02 AA03 BB03 BD01 BD13                       BD22 DA02 DA12 DA18 EB21                       EC01 EC06

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 複数に分岐し、各々に、水流路内に配置
され水流に乱れを発生させる炭酸ガス溶解素子を有する
水流路と、該炭酸ガス溶解素子の上流に設けられた炭酸
ガス添加口と、該水流路を合流させる合流部とからなる
炭酸水製造装置。
1. A water channel having a carbon dioxide gas dissolving element which is disposed in the water channel and generates turbulence in the water flow, and a carbon dioxide gas addition port provided upstream of the carbon dioxide gas dissolving element. An apparatus for producing carbonated water, comprising: and a confluence part for converging the water flow path.
【請求項2】 前記水流路を遮断する手段を備えてなる
請求項1記載の炭酸水製造装置。
2. The carbonated water producing apparatus according to claim 1, further comprising means for blocking the water flow path.
【請求項3】 前記水流路の各々に2L/min〜4L
/minで通水した際、分岐部と合流部の間の差圧が3
0kPa〜100kPaである請求項1又は2記載の炭
酸水製造装置。
3. 2 L / min to 4 L in each of the water flow paths
When water is passed at a flow rate of / min, the pressure difference between the branch and the junction is 3
The apparatus for producing carbonated water according to claim 1 or 2, which has a pressure of 0 kPa to 100 kPa.
【請求項4】 複数に分岐された水流路に、水流路内に
配置され水流に乱れを発生させる炭酸ガス溶解素子を設
け、炭酸ガス溶解素子の上流の水流路内に炭酸ガスを添
加し、炭酸ガス溶解素子にて炭酸ガスを水中に溶解させ
た後、複数の水流を一つに合流させることを特徴とする
炭酸ガス溶解方法。
4. A carbon dioxide gas dissolving element, which is disposed in the water passage and generates turbulence in the water flow, is provided in the plurality of branched water passages, and carbon dioxide gas is added to the water passage upstream of the carbon dioxide dissolving element. A method for dissolving carbon dioxide gas, comprising dissolving carbon dioxide gas in water with a carbon dioxide gas dissolving element, and then joining a plurality of water streams into one.
【請求項5】 処理する水量に応じて複数の分岐された
水流路を開閉して通水する水流路の数を変化させ、分岐
された水流路を流れる水流の量を一定範囲に保つ請求項
4記載の炭酸ガス溶解方法。
5. The number of water flow passages that open and close a plurality of branched water flow passages is changed according to the amount of water to be treated, and the amount of water flow flowing through the branched water flow passages is maintained within a certain range. 4. The method for dissolving carbon dioxide described in 4.
【請求項6】 分岐された水流路を流れる水流が2L/
min〜4L/minである請求項5記載の炭酸ガス溶
解方法。
6. The water flow flowing through the branched water flow path is 2 L /
The carbon dioxide gas dissolution method according to claim 5, wherein the carbon dioxide gas is from 4 to 4 L / min.
【請求項7】 水流路の分岐部から合流部までの差圧を
30kPa〜100kPaとする請求項4〜6いずれか
に記載の炭酸ガス溶解方法。
7. The method for dissolving carbon dioxide gas according to claim 4, wherein the differential pressure from the branched portion of the water flow path to the confluent portion is 30 kPa to 100 kPa.
【請求項8】 炭酸ガスの溶解効率を70%以上とする
請求項4〜7いずれかに記載の炭酸ガス溶解方法。
8. The carbon dioxide gas dissolution method according to claim 4, wherein the carbon dioxide gas dissolution efficiency is 70% or more.
【請求項9】 生成される炭酸水の炭酸ガス濃度が30
0ppm〜1300ppmである請求項4〜8いずれか
に記載の炭酸ガス溶解方法。
9. The carbon dioxide concentration of the generated carbonated water is 30.
It is 0 ppm-1300 ppm, The carbon dioxide dissolution method in any one of Claims 4-8.
【請求項10】 水流路に流される水の温度が30℃か
ら50℃である請求項4〜9いずれかに記載の炭酸ガス
溶解方法。
10. The method for dissolving carbon dioxide according to claim 4, wherein the temperature of the water flowing through the water flow path is 30 ° C. to 50 ° C.
JP2001246202A 2001-08-14 2001-08-14 Carbonated water manufacturing apparatus and carbonic acid gas dissolving method Pending JP2003053169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001246202A JP2003053169A (en) 2001-08-14 2001-08-14 Carbonated water manufacturing apparatus and carbonic acid gas dissolving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001246202A JP2003053169A (en) 2001-08-14 2001-08-14 Carbonated water manufacturing apparatus and carbonic acid gas dissolving method

Publications (1)

Publication Number Publication Date
JP2003053169A true JP2003053169A (en) 2003-02-25

Family

ID=19075810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001246202A Pending JP2003053169A (en) 2001-08-14 2001-08-14 Carbonated water manufacturing apparatus and carbonic acid gas dissolving method

Country Status (1)

Country Link
JP (1) JP2003053169A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114185A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water making apparatus
JP2008114184A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water forming mixer and gas dissolved water making apparatus
JP2009005828A (en) * 2007-06-27 2009-01-15 Rinnai Corp Microbubble generator
JP2012530595A (en) * 2009-06-24 2012-12-06 ミテコ アクチエンゲゼルシャフト Equipment and method for the continuous production of liquid mixtures
JP2015188859A (en) * 2014-03-28 2015-11-02 三相電機株式会社 Microbubble generator
JP5826421B1 (en) * 2015-03-30 2015-12-02 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
US9579459B2 (en) 2010-12-21 2017-02-28 Sanofi-Aventis Deutschland Gmbh Auto-injector
JP2019141813A (en) * 2018-02-23 2019-08-29 株式会社荏原製作所 Gas dissolution liquid manufacturing device
KR102219359B1 (en) * 2019-11-19 2021-02-24 주식회사 에코닉스 Carbonic Acid Dissolved Device and Apparatus for Manufacturing the Carbonated Water Using the Same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114185A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water making apparatus
JP2008114184A (en) * 2006-11-07 2008-05-22 Sato Kogyo Kk Gas dissolved water forming mixer and gas dissolved water making apparatus
JP4537988B2 (en) * 2006-11-07 2010-09-08 佐藤工業株式会社 Gas dissolved water production mixer and gas dissolved water production apparatus
JP4557262B2 (en) * 2006-11-07 2010-10-06 佐藤工業株式会社 Gas dissolved water production equipment
JP2009005828A (en) * 2007-06-27 2009-01-15 Rinnai Corp Microbubble generator
JP2012530595A (en) * 2009-06-24 2012-12-06 ミテコ アクチエンゲゼルシャフト Equipment and method for the continuous production of liquid mixtures
US9579459B2 (en) 2010-12-21 2017-02-28 Sanofi-Aventis Deutschland Gmbh Auto-injector
JP2015188859A (en) * 2014-03-28 2015-11-02 三相電機株式会社 Microbubble generator
JP5826421B1 (en) * 2015-03-30 2015-12-02 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
JP2016187765A (en) * 2015-03-30 2016-11-04 株式会社ジェ・スク Gas dissolver and carbonated water generator using the same
JP2019141813A (en) * 2018-02-23 2019-08-29 株式会社荏原製作所 Gas dissolution liquid manufacturing device
JP7059040B2 (en) 2018-02-23 2022-04-25 株式会社荏原製作所 Gas solution manufacturing equipment
KR102219359B1 (en) * 2019-11-19 2021-02-24 주식회사 에코닉스 Carbonic Acid Dissolved Device and Apparatus for Manufacturing the Carbonated Water Using the Same

Similar Documents

Publication Publication Date Title
CN100469425C (en) Device and method for manufacturing carbonated spring and carbonic water, control method for gas density applied thereto, and membrane module
JP6147313B2 (en) Gas-liquid mixing device, gas-liquid mixing system, and method for producing gas-mixed liquid
BR0017069A (en) Oxygenation apparatus, method for oxygenating a liquid with it and applications thereof
JP2003053169A (en) Carbonated water manufacturing apparatus and carbonic acid gas dissolving method
ATE308238T1 (en) BATHING APPARATUS FOR ANIMALS
KR102102811B1 (en) Pesticide spraying apparatus
JP2012223725A (en) Device and method for producing gas-dissolved liquid
ATE340906T1 (en) WATER CIRCULATION UNIT WITH INCREASED FLOW RATE FOR SWIMMING POOLS AND FILTER UNIT CONTAINING IT
JP3640451B2 (en) Bubble diameter control method and apparatus
WO2013084603A1 (en) Carbonated spring generating device
JP3951385B2 (en) Apparatus and method for adjusting dissolved gas concentration in liquid
TW200531935A (en) Water purification device
JP5826421B1 (en) Gas dissolver and carbonated water generator using the same
JP2011031190A (en) Method for generating micro bubble, micro bubble generator, and the like
JP2003010660A (en) Apparatus and method for controlling resistivity of ultra-pure water
JP2004097274A (en) Method and apparatus for producing carbon dioxide dissolved warm water
JP2014237084A (en) Soda water discharge device
JP7432875B2 (en) Chemical spray system and its operating method
JP2019209314A (en) Carbonate spring generation method
CA2072285A1 (en) Gas injection apparatus and method
US11077018B2 (en) Bathing system and method of controlling same
CN115897733A (en) Multifunctional shower system and shower method thereof
JP6032506B2 (en) Carbonate spring generator
JPWO2023008433A5 (en)
WO2021229398A2 (en) Micro/nano bubble generator and/or system