WO2015119165A1 - Method for manufacturing extrusion molding - Google Patents

Method for manufacturing extrusion molding Download PDF

Info

Publication number
WO2015119165A1
WO2015119165A1 PCT/JP2015/053134 JP2015053134W WO2015119165A1 WO 2015119165 A1 WO2015119165 A1 WO 2015119165A1 JP 2015053134 W JP2015053134 W JP 2015053134W WO 2015119165 A1 WO2015119165 A1 WO 2015119165A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
catalyst
meth
extruder
product
Prior art date
Application number
PCT/JP2015/053134
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 渡邉
美栄治 杉山
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020167007207A priority Critical patent/KR101843666B1/en
Priority to SG11201603963UA priority patent/SG11201603963UA/en
Priority to CN201580006057.5A priority patent/CN105934315B/en
Priority to JP2015508900A priority patent/JP6468183B2/en
Publication of WO2015119165A1 publication Critical patent/WO2015119165A1/en
Priority to SA516371200A priority patent/SA516371200B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • B28B17/02Conditioning the material prior to shaping
    • B28B17/026Conditioning ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded

Definitions

  • the present invention relates to a method for producing an extrusion-molded body.
  • a catalyst, a catalyst carrier, an adsorbent, a drying material, a humidity control material, etc. are formed into a cylindrical or cylindrical shaped body having a diameter of about 2 to 10 mm and a length of about 2 to 20 mm. Filled and used in chemical processes using unit operations such as various absorption operations and chemical reactions. In order to produce such compacts such as fillers and catalysts, an extrusion molding method has been conventionally employed.
  • Patent Document 1 includes a primary molding process in which a kneaded product is primary molded and a secondary molding process in which the primary molded product is molded into a final shape with a piston molding machine.
  • the secondary molding pressure P2 is primary.
  • An object of the present invention is to provide a method for producing an extruded product that can produce an extruded product with few quality spots by a simple operation.
  • the method for producing an extruded product includes: (1) kneading raw material powder, liquid and binder to produce a kneaded product, (2) crushing the kneaded product to produce a crushed product; (3) forming the crushed material using an extruder; Including, and When the cylinder inner diameter of the extruder in the step (3) is Dmm, the crushed material in the step (2) is crushed to a particle size that passes 80% by mass or more through a sieve having a nominal size (D / 2) mm.
  • the method for producing an extruded product according to another aspect of the present invention is as follows. (1) kneading raw material powder, liquid and binder to produce a kneaded product, (2) crushing the kneaded product to produce a crushed product; (3) forming the crushed material using an extruder; And crushing using a crusher in the step (2).
  • an extrusion molded body production method capable of producing an extrusion molded body with few quality spots by a simple operation.
  • Examples of the raw material powder used in the production method of the present invention include a catalyst powder and precursor powder for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein [Patent Document 1 (Japanese Patent Laid-Open No. 2011-224482)] And the like.
  • the extrusion-molded body comprises (1) a step of producing a kneaded product by kneading raw material powder, a liquid and a binder, and (2) a step of producing a crushed product by crushing the kneaded product. And (3) a step of forming the crushed material using an extruder, and usually a step of (4) further drying the formed body obtained in step (3).
  • the raw material powder, the liquid and the binder are kneaded.
  • the apparatus used for kneading is not particularly limited, and for example, a batch-type kneader equipped with a double-armed stirring blade, a continuous kneader such as a shaft rotation reciprocating type or a self-cleaning type can be used. .
  • a batch type kneader is preferred in that kneading can be performed while checking the state of the kneaded product.
  • mixing can be judged by visual observation or a touch normally.
  • the liquid used in the step (1) is not particularly limited as long as it has a function of wetting the raw material powder.
  • water, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol or the like has 1 to 4 carbon atoms.
  • examples include alcohol. These may use only 1 type and may use 2 or more types together. Among these, water and ethyl alcohol are preferable from the viewpoint of handleability.
  • the liquid means a liquid compound under the conditions of normal temperature and normal pressure (25 ° C., 0.101 MPa).
  • the amount of liquid used in step (1) is appropriately selected depending on the type and size of the raw material powder, the type of liquid, etc., but is 10 to 80 parts by mass with respect to 100 parts by mass of the raw material powder to be kneaded. It is preferable.
  • the amount of the liquid used is 10 parts by mass or more, extrusion can be performed more smoothly, so that the shape of the molded body is stabilized. On the other hand, when the amount of the liquid used is 80 parts by mass or less, the adhesion during molding is reduced and the handleability is improved.
  • the amount of the liquid used is more preferably 5 to 50 parts by weight, more preferably 10 to 45 parts by weight, and particularly preferably 15 to 40 parts by weight with respect to 100 parts by weight of the raw material powder to be kneaded. preferable.
  • the binder used in the step (1) is not particularly limited as long as it has a function of adhering the raw material powder.
  • the organic binder include polymer compounds such as polyvinyl alcohol, ⁇ -glucan derivatives, and ⁇ -glucan derivatives. Etc. These may use only 1 type and may use 2 or more types together.
  • an ⁇ -glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound in an ⁇ -type structure, such as ⁇ 1-4 glucan, ⁇ 1-6 glucan, ⁇ 1-4 / 1-6 glucan, etc.
  • guide_body can be illustrated.
  • examples of such ⁇ -glucan derivatives include amylose, glycogen, amylopectin, pullulan, dextrin, cyclodextrin and the like. These may use only 1 type and may use 2 or more types together.
  • a ⁇ -glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound in a ⁇ -type structure.
  • Examples of such ⁇ -glucan derivatives include celluloses such as methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, and hydroxypropylcellulose.
  • curdlan curdlan
  • laminaran paramylon
  • callose pakiman
  • ⁇ 1-3 glucan such as scleroglucan and the like
  • the organic binder may be used unpurified or may be used after purification, but in order to prevent the catalyst performance from being deteriorated due to the metal as an impurity or the residue on ignition, It is preferable that the content of the ignition residue is smaller.
  • inorganic binders include conventionally known silica, alumina, silica-alumina, silicon carbide, titania, magnesia, inorganic compounds such as graphite and diatomaceous earth, ceramic balls and stainless steel, glass fibers, ceramic fibers and carbon fibers.
  • An inert carrier such as inorganic fiber can be used. These may use only 1 type and may use 2 or more types together. Of course, it is also possible to use a mixture of an organic binder and an inorganic binder.
  • the mixing method of the raw material powder, liquid and binder is not particularly limited. Specifically, a method of mixing a raw material powder and a binder that are dry-mixed and a liquid, a method of mixing or dissolving a binder in a liquid and a raw material powder, and the like can be exemplified. In particular, a method of mixing a raw material powder and a binder that are dry-mixed with a liquid is preferable. In the case of a binder that can be obtained in a state of being dissolved or dispersed in a liquid, the amount of liquid newly added to be mixed with the raw material powder may be adjusted according to the amount of liquid contained in the binder.
  • the amount of the binder used in step (1) is appropriately selected depending on the type and size of the raw material powder, the type of liquid, etc., but is usually 0.05 to 15 parts by mass with respect to 100 parts by mass of the raw material powder. Yes, preferably 0.1 to 10 parts by mass.
  • the processing capacity of the apparatus for kneading in step (1) that is, the kneading machine is not particularly limited, but the total maximum processing capacity of the apparatus for kneading is the maximum processing capacity of the extruder used in step (3). Is preferably larger.
  • the sum of the maximum processability of the kneader is larger than the maximum processability of the extruder, it is possible to easily prevent the waiting time for raw material supply from occurring in the extruder used in the step (3). Therefore, it is possible to easily prevent the occurrence of spots between the raw material remaining in the extruder and the newly supplied raw material when the waiting time occurs.
  • the raw material it is preferable to supply the raw material continuously if it is a continuous extruder, and it is preferable to supply the raw material so as not to generate a waiting time for raw material input if it is a batch type extruder.
  • the maximum processing capability of the device used in (1) is preferably larger than the maximum processing capability of the device used in step (3).
  • the maximum processing capability of a certain device is the amount of processing [kg] per unit time [h] when the object is processed by the device and the obtained product satisfies the quality specifications in the process. It is the maximum value.
  • pulverization means to break up a lump into a particle size smaller than that state.
  • the method of crushing is not particularly limited, and examples thereof include a method of crushing by hand and a method of crushing using a crusher, a loosening machine, or the like.
  • the method of pulverization using a pulverizer is preferable because it can be pulverized to a target particle size in a short time.
  • the crusher various types such as a shearing type, an impact type and a cutting type can be adopted.
  • a rotary mill type, a screw type, an auger type, etc. are preferable.
  • a scraping-type bale crusher manufactured by Ohara Iron Works Co., Ltd. a twin-screw rotary crusher, a single-screw crusher or a screw auger crusher, and a screw auger crusher manufactured by Kobelco Construction Machinery Co., Ltd. Aisin Sangyo Co., Ltd. 1-shaft type crusher, Tokuju Kogakusho Co., Ltd. Landel mill crusher, etc.
  • Aisin Sangyo Co., Ltd. 1-shaft type crusher, Tokuju Kogakusho Co., Ltd. Landel mill crusher, etc. can be used.
  • the crushed material of the step (2) passes through a sieve having a nominal size (D / 2) mm of 80% by mass or more. Can be crushed.
  • the proportion of the crushed material passing through a sieve having a nominal size (D / 2) mm is preferably 85% by mass or more, and more preferably 90% by mass or more.
  • the nominal dimension refers to the length of one side of the mesh of the sieve (also referred to as an opening).
  • the processing capacity is not particularly limited, but it is preferable that the total maximum processing capability of the crusher to be used is larger than the maximum processing capability of the extruder used in step (3). If the total maximum processing capability of the crusher to be used is larger than the maximum processing capability of the extruder used in the step (3), it is easy for the extruder used in the step (3) to wait for the raw material supply. Can be prevented. Therefore, it is possible to easily prevent the occurrence of spots between the raw material remaining in the extruder and the newly supplied raw material when the waiting time occurs. Therefore, it is preferable that the sum of the maximum processability of the crusher used in the step (2) is larger than the maximum processability of the extruder used in the step (3). Further, it is preferable to supply the raw material continuously so as not to generate a standby time for waiting for the raw material to be charged if it is a continuous extruder and a batch type extruder.
  • the power of the disintegrator is not particularly limited, the power to volume pulverizer is preferably 10kW / m 3 ⁇ 500kW / m 3, is 50kW / m 3 ⁇ 400kW / m 3 More preferred.
  • the power with respect to the volume of the crusher is 10 kW / m 3 or more, it is easy to satisfactorily crush the kneaded material obtained in the step (1).
  • the volume of the crusher does not include the volume of the piping for supplying and discharging the raw material, but is the volume of the crusher body that is crushing the raw material, and the power of the crusher is This is the power of the motor used for crushing.
  • step (3) the crushed product obtained in step (2) is extruded to produce an extruded product.
  • an auger type extruder or a plunger type extruder can be used for the extrusion molding.
  • a shape of an extrusion molded object For example, it can be set as arbitrary shapes, such as a ring shape, a column shape, and a star shape.
  • the cylinder inner diameter D of the extruder is preferably 10 mm or more and 600 mm or less, preferably 20 mm or more and 400 mm or less, and more preferably 30 mm or more and 300 mm or less.
  • L / D when the cylinder length is Lmm is preferably 1 or more and 20 or less, and more preferably 1.1 or more and 10 or less.
  • the crushing machine and the extrusion molding machine used for the step (2) and the process (3), respectively, may be connected to perform the crushing operation to the molding operation continuously.
  • the extruded product obtained in the step (3) is dried.
  • the drying method is not particularly limited, and for example, generally known methods such as hot air drying, humidity drying, far infrared drying, and microwave drying can be arbitrarily used.
  • the drying conditions can be appropriately selected as long as the desired moisture content can be achieved.
  • the raw material powder is a catalyst powder for producing an unsaturated carboxylic acid containing at least molybdenum and phosphorus as catalyst components, which is used when producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen. It may be a precursor powder.
  • an extruded product of the catalyst can be produced by the method of the present invention, and the extruded product can be heat-treated to produce an unsaturated carboxylic acid production catalyst.
  • the unsaturated carboxylic acid is (meth) acrylic acid
  • the raw material powder is obtained by subjecting propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether to gas phase catalytic oxidation with molecular oxygen, and corresponding unsaturated aldehydes and unsaturated compounds. It may be an unsaturated aldehyde and unsaturated carboxylic acid production catalyst powder or precursor powder thereof containing at least molybdenum and bismuth as catalyst components used in the production of carboxylic acid.
  • an extrudate of the catalyst can be produced by the method of the present invention, and the extrudate can be heat-treated to produce an unsaturated aldehyde and unsaturated carboxylic acid production catalyst.
  • the unsaturated aldehyde is (meth) acrolein and the unsaturated carboxylic acid is (meth) acrylic acid
  • a catalyst for producing (meth) acrolein and (meth) acrylic acid can be produced.
  • the firing method is not particularly limited, and the firing method and conditions can be appropriately selected.
  • the firing conditions vary depending on the raw material compound used, the composition of the catalyst components, the preparation method, and the like, but are preferably 200 to 600 ° C. and 0.5 hours or longer under the flow of an oxygen-containing gas such as air or an inert gas.
  • the inert gas indicates a gas that does not decrease the reaction activity of the catalyst, and specifically includes nitrogen, carbon dioxide, helium, argon, and the like. Calcination may be performed using a heating device, but may also be performed in a catalyst molded product charged into a reactor.
  • heat treatment may include one or both of heat treatment for drying and heat treatment for firing.
  • the extruded product can be dried (not fired) by heat treatment to obtain a catalyst, or the extruded product can be dried and calcined by heat treatment to obtain a catalyst.
  • the kneaded material was collected in a plastic bag, and the portion that had been hardened in a clay shape was loosened by hand.
  • the sieving of the kneaded materials in the examples and comparative examples was carried out by vibrating a sieve having a nominal size (D / 2) mm by hand to the left and right, and throwing the kneaded materials at a speed that does not overlap the sieves.
  • the quality unevenness of the extruded molded body was determined 10 times from the standard deviation of the filling density of each molded body after being molded 10 times under the same molding conditions.
  • the packing density was calculated from the mass X of the compact body filled with a compact body having an inner diameter of 27 mm up to a scale of 100 ml as follows.
  • A is the number of moles of methacrolein supplied
  • B is the number of moles of reacted methacrolein
  • C is the number of moles of methacrylic acid produced.
  • 100 parts of the raw material powder thus obtained is mixed with 3 parts of hydroxypropyl cellulose and 18 parts of ethyl alcohol until it is made into a clay with a batch kneader equipped with a double-armed sigma blade. Kneaded.
  • Table 1 shows the crushing method, the crushing time, the nominal size of the sieve used (D / 2), and the ratio of passing through the sieve of the nominal size D / 2 of the crushed material.
  • the crushed product obtained by combining the crushed product that passed through the sieve and the crushed product that did not pass through the sieve was extruded using a plunger-type extruder, dried at 90 ° C. for 12 hours with a hot air dryer, and the outer diameter.
  • a cylindrical catalyst molded body having a length of 5.5 mm and a length of 5.5 mm was obtained.
  • the outer shape and the length were all adjusted to 5.5 mm.
  • the same crushed material was extruded 10 times, and the standard deviation of the packing density of the molded body was measured.
  • Table 1 shows the cylinder inner diameter of the plunger extruder, the ratio L / D of the cylinder length L to the cylinder inner diameter D, and the standard deviation of the packing density of the molded product.
  • the maximum processing capability of the used kneader was 5.7 when the maximum processing capability of the used extruder was 1. Moreover, the maximum processability of the used crusher was 8.3 when the maximum processability of the used extruder was set to 1.
  • the ratio of power to the volume of the crusher used was 92 kW / m 3 .
  • This catalyst (extruded product) was filled in a stainless steel reaction tube having an outer diameter of 27.5 mm and a height of 6 m having an external heat medium bath so that the catalyst filling length was 5 m.
  • the temperature of the heat medium bath provided outside the reaction tube was set to 370 ° C., and heat treatment was performed for 10 hours while circulating air.
  • the temperature of the heat medium bath is set to 290 ° C., and a reaction gas comprising 6% by volume of methacrolein, 12% by volume of oxygen, 10% by volume of water vapor and 72% by volume of nitrogen is passed through the catalyst layer at a gas space velocity of 1200 hr ⁇ 1 .
  • methacrolein was subjected to a gas phase catalytic oxidation reaction.
  • the product 24 hours after the start of the reaction was collected and analyzed by gas chromatography to determine the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

Provided is a method for manufacturing an extrusion molding, the method being capable of manufacturing an extrusion molding with minimal unevenness of quality using simple maneuvers. This method for manufacturing extrusion moldings comprises: (1) a step for manufacturing a kneaded product by kneading a starting material powder, a liquid and a binder; (2) a step for manufacturing a crushed product by crushing the kneaded product; and (3) a step for molding the crushed product using an extruder. The crushed product in step (2) is crushed to a particle size such that 80 mass% or more passes through a sieve of nominal dimension (D/2) mm when the internal cylinder diameter of the extruder in step (3) is D mm or is crushed using a crusher in step (2).

Description

押出成形体の製造方法Method for producing extrusion molded body
 本発明は、押出成形体の製造方法に関する。 The present invention relates to a method for producing an extrusion-molded body.
 一般に、触媒、触媒担体、吸着材、乾燥材、調湿材等は、直径2~10mm、長さ2~20mm程度の円柱形または円筒形の成形体に成形され、これをカラムや反応器に充填して種々の吸収操作や化学反応といった単位操作を用いた化学プロセスに利用される。このような充填剤や触媒等の成形体を製造するために、従来から押出成形法が採用されている。 In general, a catalyst, a catalyst carrier, an adsorbent, a drying material, a humidity control material, etc. are formed into a cylindrical or cylindrical shaped body having a diameter of about 2 to 10 mm and a length of about 2 to 20 mm. Filled and used in chemical processes using unit operations such as various absorption operations and chemical reactions. In order to produce such compacts such as fillers and catalysts, an extrusion molding method has been conventionally employed.
 特許文献1には、混練り品を1次成形する1次成形工程と、1次成形品をピストン成形機で最終形状に成形する2次成形工程とを含み、2次成形圧力P2が1次成形圧力P1に対して、(P1-0.2)MPaG~(P1-8)MPaGの範囲であることを特徴とするメタクリル酸製造用触媒の製造方法が提案されている。 Patent Document 1 includes a primary molding process in which a kneaded product is primary molded and a secondary molding process in which the primary molded product is molded into a final shape with a piston molding machine. The secondary molding pressure P2 is primary. There has been proposed a method for producing a catalyst for producing methacrylic acid, which is in the range of (P1-0.2) MPaG to (P1-8) MPaG with respect to the molding pressure P1.
特開2011-224482号公報JP 2011-224482 A
 現在、工業的に従来法より更に簡便な操作で成形体の品質斑を低減することができる押出成形体の製造方法が求められている。 Currently, there is a demand for a method for producing an extruded product that can reduce the quality unevenness of the molded product in an industrially simpler operation than the conventional method.
 例えば、容積やサイズが決まっているカラムへ充填剤を充填する場合や、容積やサイズが決まっている反応管へ触媒を充填する際に、所定量の充填剤や触媒等を充填する必要がある。特に多管式熱交換器型の反応器の場合、複数の反応管へ同じ触媒量を充填する必要があり、その観点から充填剤や触媒などの充填密度の安定性が重要なファクターとなる。 For example, when packing a column with a fixed volume or size, or when packing a catalyst into a reaction tube with a fixed volume or size, it is necessary to pack a predetermined amount of the packing or catalyst. . In particular, in the case of a multi-tube heat exchanger type reactor, it is necessary to fill a plurality of reaction tubes with the same amount of catalyst, and from this point of view, the stability of the packing density of the filler and catalyst is an important factor.
 本発明は、簡便な操作で品質斑が少ない押出成形体を製造することができる押出成形体の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing an extruded product that can produce an extruded product with few quality spots by a simple operation.
 本発明の一態様に係る押出成形体の製造方法は、
(1)原料粉末と液体とバインダーとを混練りして混練り物を製造する工程と、
(2)前記混練り物を解砕し解砕物を製造する工程と、
(3)前記解砕物を押出機を用いて成形する工程と、
を含み、かつ、
 工程(3)の押出機のシリンダー内径をDmmとした際、工程(2)の解砕物を、呼び寸法(D/2)mmのふるいを80質量%以上通過する粒径まで解砕することを特徴とする。
The method for producing an extruded product according to one aspect of the present invention includes:
(1) kneading raw material powder, liquid and binder to produce a kneaded product,
(2) crushing the kneaded product to produce a crushed product;
(3) forming the crushed material using an extruder;
Including, and
When the cylinder inner diameter of the extruder in the step (3) is Dmm, the crushed material in the step (2) is crushed to a particle size that passes 80% by mass or more through a sieve having a nominal size (D / 2) mm. Features.
 本発明の別の態様に係る押出成形体の製造方法は、
(1)原料粉末と液体とバインダーとを混練りして混練り物を製造する工程と、
(2)前記混練り物を解砕し解砕物を製造する工程と、
(3)前記解砕物を押出機を用いて成形する工程と、
を含み、かつ
 工程(2)において解砕機を使用して解砕することを特徴とする。
The method for producing an extruded product according to another aspect of the present invention is as follows.
(1) kneading raw material powder, liquid and binder to produce a kneaded product,
(2) crushing the kneaded product to produce a crushed product;
(3) forming the crushed material using an extruder;
And crushing using a crusher in the step (2).
 本発明によれば、簡便な操作で品質斑が少ない押出成形体を製造することができる押出成形体の製造方法が提供される。 According to the present invention, there is provided an extrusion molded body production method capable of producing an extrusion molded body with few quality spots by a simple operation.
 本発明の製造方法に用いられる原料粉末としては、例えばメタクロレインを気相接触酸化してメタクリル酸を製造するための触媒粉末やその前駆体粉末〔特許文献1(特開2011-224482号公報)に記載されている〕などが挙げられる。 Examples of the raw material powder used in the production method of the present invention include a catalyst powder and precursor powder for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein [Patent Document 1 (Japanese Patent Laid-Open No. 2011-224482)] And the like.
 本発明によれば、押出成形体は、(1)原料粉末と液体とバインダーとを混練りして混練り物を製造する工程と、(2)前記混練り物を解砕し解砕物を製造する工程と、(3)前記解砕物を押出機を用いて成形する工程、および、通常はさらに(4)工程(3)で得られた成形体を乾燥させる工程を経て製造される。 According to the present invention, the extrusion-molded body comprises (1) a step of producing a kneaded product by kneading raw material powder, a liquid and a binder, and (2) a step of producing a crushed product by crushing the kneaded product. And (3) a step of forming the crushed material using an extruder, and usually a step of (4) further drying the formed body obtained in step (3).
 (工程(1))
 工程(1)では、原料粉末と液体とバインダーとを混練りする。混練りに使用される装置は特に限定されず、例えば、双腕型の攪拌羽根を備えるバッチ式の混練り機、軸回転往復式やセルフクリーニング型等の連続式の混練り機等が使用できる。しかしながら、混練り物の状態を確認しながら混練りを行うことができる点で、バッチ式の混練り機が好ましい。また、混練りの終点は、通常目視または手触りによって判断することができる。
(Process (1))
In the step (1), the raw material powder, the liquid and the binder are kneaded. The apparatus used for kneading is not particularly limited, and for example, a batch-type kneader equipped with a double-armed stirring blade, a continuous kneader such as a shaft rotation reciprocating type or a self-cleaning type can be used. . However, a batch type kneader is preferred in that kneading can be performed while checking the state of the kneaded product. Moreover, the end point of kneading | mixing can be judged by visual observation or a touch normally.
 工程(1)で用いられる液体は、原料粉末を濡らす機能を有するものであれば特に限定されず、例えば水や、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等の炭素数が1~4のアルコールが挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。この中でも取り扱い性の観点からは、水やエチルアルコールが好ましい。また、本発明において液体とは常温、常圧(25℃、0.101MPa)の条件で液状の化合物を示す。 The liquid used in the step (1) is not particularly limited as long as it has a function of wetting the raw material powder. For example, water, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol or the like has 1 to 4 carbon atoms. Examples include alcohol. These may use only 1 type and may use 2 or more types together. Among these, water and ethyl alcohol are preferable from the viewpoint of handleability. In the present invention, the liquid means a liquid compound under the conditions of normal temperature and normal pressure (25 ° C., 0.101 MPa).
 工程(1)で用いられる液体の使用量は、原料粉末の種類や大きさ、液体の種類等により適宜選択されるが、混練りする原料粉末100質量部に対して10~80質量部であることが好ましい。 The amount of liquid used in step (1) is appropriately selected depending on the type and size of the raw material powder, the type of liquid, etc., but is 10 to 80 parts by mass with respect to 100 parts by mass of the raw material powder to be kneaded. It is preferable.
 液体の使用量が10質量部以上であることにより、よりスムーズに押出成形することができるため、成形体の形状が安定する。一方、液体の使用量が80質量部以下であることにより、成形時の付着性が低減して取り扱い性が向上する。液体の使用量は混練りする原料粉末100質量部に対して5~50質量部であることがより好ましく、10~45質量部であることがさらに好ましく、15~40質量部であることが特に好ましい。 When the amount of liquid used is 10 parts by mass or more, extrusion can be performed more smoothly, so that the shape of the molded body is stabilized. On the other hand, when the amount of the liquid used is 80 parts by mass or less, the adhesion during molding is reduced and the handleability is improved. The amount of the liquid used is more preferably 5 to 50 parts by weight, more preferably 10 to 45 parts by weight, and particularly preferably 15 to 40 parts by weight with respect to 100 parts by weight of the raw material powder to be kneaded. preferable.
 工程(1)で用いられるバインダーは、原料粉末を接着する機能を有するものであれば特に限定されず、例えば、有機系バインダーとしては、ポリビニルアルコール等の高分子化合物、αグルカン誘導体、βグルカン誘導体等を挙げることができる。これらは一種のみを用いてもよく、二種以上を併用してもよい。 The binder used in the step (1) is not particularly limited as long as it has a function of adhering the raw material powder. Examples of the organic binder include polymer compounds such as polyvinyl alcohol, α-glucan derivatives, and β-glucan derivatives. Etc. These may use only 1 type and may use 2 or more types together.
 本発明においてαグルカン誘導体とは、グルコースから構成される多糖類のうちグルコースがα型の構造で結合したものを示し、α1-4グルカン、α1-6グルカン、α1-4/1-6グルカン等の誘導体が例示できる。このようなαグルカン誘導体としては、アミロース、グリコーゲン、アミロペクチン、プルラン、デキストリン、シクロデキストリン等を挙げることができる。これらは一種のみを用いてもよく、二種以上を併用してもよい。 In the present invention, an α-glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound in an α-type structure, such as α1-4 glucan, α1-6 glucan, α1-4 / 1-6 glucan, etc. The derivative | guide_body can be illustrated. Examples of such α-glucan derivatives include amylose, glycogen, amylopectin, pullulan, dextrin, cyclodextrin and the like. These may use only 1 type and may use 2 or more types together.
 本発明においてβグルカン誘導体とは、グルコースから構成される多糖類のうちグルコースがβ型の構造で結合したものを示し、β1-4グルカン、β1-3グルカン、β1-6グルカン、β1-3/1-6グルカン等の誘導体が例示できる。このようなβグルカン誘導体としては、例えばメチルセルロース、エチルセルロース、カルボキシルメチルセルロース、カルボキシルメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体、カードラン、ラミナラン、パラミロン、カロース、パキマン、スクレログルカン等のβ1-3グルカン等を挙げることができる。これらは一種のみを用いてもよく、二種以上を併用してもよい。 In the present invention, a β-glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound in a β-type structure. Β1-4 glucan, β1-3 glucan, β1-6 glucan, β1-3 / Examples thereof include derivatives such as 1-6 glucan. Examples of such β-glucan derivatives include celluloses such as methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, and hydroxypropylcellulose. Derivatives, curdlan, laminaran, paramylon, callose, pakiman, β1-3 glucan such as scleroglucan and the like can be mentioned. These may use only 1 type and may use 2 or more types together.
 有機系バインダーは未精製のまま用いてもよく、精製して用いてもよいが、不純物としての金属や強熱残分に起因して触媒性能が低下することを抑制するために、金属不純物や強熱残分の含有量はより少ない方が好ましい。 The organic binder may be used unpurified or may be used after purification, but in order to prevent the catalyst performance from being deteriorated due to the metal as an impurity or the residue on ignition, It is preferable that the content of the ignition residue is smaller.
 また、無機系バインダーとしては、従来公知のシリカ、アルミナ、シリカ-アルミナ、シリコンカーバイド、チタニア、マグネシア、グラファイトやケイソウ土等の無機化合物、セラミックボールやステンレス鋼、ガラス繊維、セラミックファイバーや炭素繊維等の無機ファイバー等の不活性担体を挙げることができる。これらは一種のみを用いてもよく、二種以上を併用してもよい。もちろん有機系バインダーと無機系バインダーを混合して使用することも可能である。 Examples of inorganic binders include conventionally known silica, alumina, silica-alumina, silicon carbide, titania, magnesia, inorganic compounds such as graphite and diatomaceous earth, ceramic balls and stainless steel, glass fibers, ceramic fibers and carbon fibers. An inert carrier such as inorganic fiber can be used. These may use only 1 type and may use 2 or more types together. Of course, it is also possible to use a mixture of an organic binder and an inorganic binder.
 前記原料粉末、液体及びバインダーの混合方法は特に限定されない。具体的には、原料粉末とバインダーとを乾式混合したものと液体とを混合する方法、液体にバインダーを溶解又は分散させたものと原料粉末とを混合する方法等が例示できる。中でも原料粉末とバインダーとを乾式混合したものと液体とを混合する方法が好ましい。液体に溶解、または分散させた状態で入手できるバインダーの場合は、この中に含まれる液体の量に応じて、原料粉末と混合するために新たに添加する液体の量を調節すればよい。 The mixing method of the raw material powder, liquid and binder is not particularly limited. Specifically, a method of mixing a raw material powder and a binder that are dry-mixed and a liquid, a method of mixing or dissolving a binder in a liquid and a raw material powder, and the like can be exemplified. In particular, a method of mixing a raw material powder and a binder that are dry-mixed with a liquid is preferable. In the case of a binder that can be obtained in a state of being dissolved or dispersed in a liquid, the amount of liquid newly added to be mixed with the raw material powder may be adjusted according to the amount of liquid contained in the binder.
 工程(1)で用いられるバインダーの使用量は、原料粉末の種類や大きさ、液体の種類等により適宜選択されるが、通常は原料粉末100質量部に対して0.05~15質量部であり、好ましくは0.1~10質量部である。 The amount of the binder used in step (1) is appropriately selected depending on the type and size of the raw material powder, the type of liquid, etc., but is usually 0.05 to 15 parts by mass with respect to 100 parts by mass of the raw material powder. Yes, preferably 0.1 to 10 parts by mass.
 工程(1)で混練りを行う機器、すなわち混練り機の処理能力は特に限定されないが、混練りを行う機器の最大処理可能能力の合計が工程(3)で用いる押出機の最大処理可能能力よりも大きいことが好ましい。混練り機の最大処理可能能力の合計が押出機の最大処理可能能力よりも大きいと、工程(3)で用いる押出機において、原料供給の待機時間が発生することを容易に防止できる。したがって、待機時間が発生した場合に押出機内に残存している原料の流動性が変化して新たに供給する原料との間に斑が生じることを、容易に防止できる。そのためには、連続押出機であれば連続的に原料を供給することが好ましく、バッチ式の押出機であれば原料投入待ちの待機時間を発生さないよう原料を供給することが好ましいため、工程(1)で用いる機器の最大処理可能能力は工程(3)で用いる機器の最大処理可能能力よりも大きいことが好ましい。 The processing capacity of the apparatus for kneading in step (1), that is, the kneading machine is not particularly limited, but the total maximum processing capacity of the apparatus for kneading is the maximum processing capacity of the extruder used in step (3). Is preferably larger. When the sum of the maximum processability of the kneader is larger than the maximum processability of the extruder, it is possible to easily prevent the waiting time for raw material supply from occurring in the extruder used in the step (3). Therefore, it is possible to easily prevent the occurrence of spots between the raw material remaining in the extruder and the newly supplied raw material when the waiting time occurs. To that end, it is preferable to supply the raw material continuously if it is a continuous extruder, and it is preferable to supply the raw material so as not to generate a waiting time for raw material input if it is a batch type extruder. The maximum processing capability of the device used in (1) is preferably larger than the maximum processing capability of the device used in step (3).
 ここで或る機器の最大処理可能能力とは、その機器で対象物を処理し、得られたものがその工程における品質スペックを満足するときの単位時間[h]あたりの処理量[kg]の最大値である。 Here, the maximum processing capability of a certain device is the amount of processing [kg] per unit time [h] when the object is processed by the device and the obtained product satisfies the quality specifications in the process. It is the maximum value.
 (工程(2))
 工程(2)では、工程(1)で得られた混練り物を解砕する。
(Process (2))
In the step (2), the kneaded material obtained in the step (1) is crushed.
 本発明において解砕とは、塊状物を、その状態よりも小さい粒径に解きほぐすことである。 In the present invention, pulverization means to break up a lump into a particle size smaller than that state.
 解砕の方法は特に限定されず、手で解砕する方法や、解砕機、ほぐし機などを使用して解砕する方法が挙げられる。この中でも短時間で目的の粒径まで解砕できる点から解砕機を使用して解砕する方法が好ましい。 The method of crushing is not particularly limited, and examples thereof include a method of crushing by hand and a method of crushing using a crusher, a loosening machine, or the like. Among these, the method of pulverization using a pulverizer is preferable because it can be pulverized to a target particle size in a short time.
 解砕機としては、剪断式、衝撃式、切断式など各種方式を採用することができる。例えば、回転ミルタイプ、スクリュータイプ、オーガー式などが好ましい。また、具体例として、株式会社大原鉄工所製の掻き取り型ベール解砕機、2軸回転型解砕機、1軸式解砕機もしくはスクリューオーガー型解砕機、コベルコ建機株式会社製スクリューオーガー型解砕機、アイシン産業株式会社製1軸式解砕機、株式会社徳寿工作所製ランデルミル解砕機などを用いることができる。 As the crusher, various types such as a shearing type, an impact type and a cutting type can be adopted. For example, a rotary mill type, a screw type, an auger type, etc. are preferable. Further, as specific examples, a scraping-type bale crusher manufactured by Ohara Iron Works Co., Ltd., a twin-screw rotary crusher, a single-screw crusher or a screw auger crusher, and a screw auger crusher manufactured by Kobelco Construction Machinery Co., Ltd. Aisin Sangyo Co., Ltd. 1-shaft type crusher, Tokuju Kogakusho Co., Ltd. Landel mill crusher, etc. can be used.
 本発明において、解砕物は、工程(3)の押出機のシリンダー内径をDmmとした際、工程(2)の解砕物が、呼び寸法(D/2)mmのふるいを80質量%以上通過するように解砕することができる。解砕物の呼び寸法(D/2)mmのふるいを通過する割合が80質量%以上の場合、押出成形した際に成形品へのエアの噛み込みを抑制し、押出成形体の品質斑が大きくなることを抑制することが容易である。解砕物の呼び寸法(D/2)mmのふるいを通過する割合は85質量%以上が好ましく、90質量%以上がより好ましい。なお、本発明において、呼び寸法とはふるいの網の目の一辺の長さ(目開きともいう。)を指す。 In the present invention, when the cylinder inner diameter of the extruder of the step (3) is Dmm, the crushed material of the step (2) passes through a sieve having a nominal size (D / 2) mm of 80% by mass or more. Can be crushed. When the ratio of the crushed material passing through a sieve with a nominal size (D / 2) mm is 80% by mass or more, air extrusion into the molded product is suppressed during extrusion molding, and the quality unevenness of the extruded product is large. It is easy to suppress. The proportion of the crushed material passing through a sieve having a nominal size (D / 2) mm is preferably 85% by mass or more, and more preferably 90% by mass or more. In the present invention, the nominal dimension refers to the length of one side of the mesh of the sieve (also referred to as an opening).
 工程(2)で解砕機を用いる場合、処理能力は特に限定されないが、用いる解砕機の最大処理可能能力の合計が工程(3)で用いる押出機の最大処理可能能力よりも大きいことが好ましい。用いる解砕機の最大処理可能能力の合計が工程(3)で用いる押出機の最大処理可能能力よりも大きいと、工程(3)で用いる押出機において、原料供給の待機時間が発生することを容易に防止できる。したがって、待機時間が発生した場合に押出機内に残存している原料の流動性が変化して新たに供給する原料との間に斑が生じることを、容易に防止できる。そのため、工程(2)で用いる解砕機の最大処理可能能力の合計が工程(3)で用いる押出機の最大処理可能能力よりも大きいことが好ましい。また、連続押出機であれば連続的に、バッチ式の押出機であれば原料投入待ちの待機時間を発生さないよう原料を供給することが好ましい。 When the crusher is used in step (2), the processing capacity is not particularly limited, but it is preferable that the total maximum processing capability of the crusher to be used is larger than the maximum processing capability of the extruder used in step (3). If the total maximum processing capability of the crusher to be used is larger than the maximum processing capability of the extruder used in the step (3), it is easy for the extruder used in the step (3) to wait for the raw material supply. Can be prevented. Therefore, it is possible to easily prevent the occurrence of spots between the raw material remaining in the extruder and the newly supplied raw material when the waiting time occurs. Therefore, it is preferable that the sum of the maximum processability of the crusher used in the step (2) is larger than the maximum processability of the extruder used in the step (3). Further, it is preferable to supply the raw material continuously so as not to generate a standby time for waiting for the raw material to be charged if it is a continuous extruder and a batch type extruder.
 工程(2)において解砕機を用いる場合、解砕機の動力は特に限定されないが、解砕機の容積に対する動力が10kW/m~500kW/mが好ましく、50kW/m~400kW/mがより好ましい。解砕機の容積に対する動力を10kW/m以上とすると、工程(1)で得られた混練り物を良好に解砕することが容易である。なお、本発明において解砕機の容積とは、原料を供給、排出する部分の配管の容積は含まず、原料の解砕を実施している解砕機本体の容積であり、解砕機の動力とは、解砕に用いるモーターの動力である。 When using a crusher in the step (2), the power of the disintegrator is not particularly limited, the power to volume pulverizer is preferably 10kW / m 3 ~ 500kW / m 3, is 50kW / m 3 ~ 400kW / m 3 More preferred. When the power with respect to the volume of the crusher is 10 kW / m 3 or more, it is easy to satisfactorily crush the kneaded material obtained in the step (1). In the present invention, the volume of the crusher does not include the volume of the piping for supplying and discharging the raw material, but is the volume of the crusher body that is crushing the raw material, and the power of the crusher is This is the power of the motor used for crushing.
 (工程(3))
 工程(3)では、工程(2)で得られた解砕物を押出成形して押出成形体を製造する。押出成形には、例えばオーガー式押出成形機、プランジャー式押出成形機等を用いることができるが、混練り物に好適な練りを加えることが容易で成形した触媒の性能変化が少ないことから、プランジャー式押出成形機を使用することが好ましい。押出成形体の形状としては特に限定はなく、例えばリング状、円柱状、星型状等の任意の形状とすることができる。押出機のシリンダー内径Dは10mm以上600mm以下がよく、好ましくは20mm以上400mm以下であり、さらに好ましくは30mm以上300mm以下である。また、シリンダー長さをLmmとした際のL/Dは、1以上20以下が好ましく、1.1以上10以下がより好ましい。
(Process (3))
In step (3), the crushed product obtained in step (2) is extruded to produce an extruded product. For example, an auger type extruder or a plunger type extruder can be used for the extrusion molding. However, it is easy to add suitable kneading to the kneaded material, and the performance change of the molded catalyst is small. It is preferable to use a jar type extruder. There is no limitation in particular as a shape of an extrusion molded object, For example, it can be set as arbitrary shapes, such as a ring shape, a column shape, and a star shape. The cylinder inner diameter D of the extruder is preferably 10 mm or more and 600 mm or less, preferably 20 mm or more and 400 mm or less, and more preferably 30 mm or more and 300 mm or less. Further, L / D when the cylinder length is Lmm is preferably 1 or more and 20 or less, and more preferably 1.1 or more and 10 or less.
 工程(2)と工程(3)にそれぞれ用いる解砕機と押出し成形機をつないで、連続的に解砕操作から成形操作まで行ってもよい。 The crushing machine and the extrusion molding machine used for the step (2) and the process (3), respectively, may be connected to perform the crushing operation to the molding operation continuously.
 (工程(4))
 工程(4)では、工程(3)で得られた押出成形体を乾燥する。乾燥方法は特に限定されず、例えば一般的に知られている熱風乾燥、湿度乾燥、遠赤外線乾燥及びマイクロ波乾燥等の方法を任意に用いることができる。乾燥条件は、目的とする含水率とすることができれば適宜選択することができる。
(Process (4))
In the step (4), the extruded product obtained in the step (3) is dried. The drying method is not particularly limited, and for example, generally known methods such as hot air drying, humidity drying, far infrared drying, and microwave drying can be arbitrarily used. The drying conditions can be appropriately selected as long as the desired moisture content can be achieved.
 (触媒について)
 前記原料粉末が、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を製造する際に用いられる、少なくともモリブデン及びリンを触媒成分として含む不飽和カルボン酸製造用触媒粉末またはその前駆体粉末であってよい。
(About catalyst)
The raw material powder is a catalyst powder for producing an unsaturated carboxylic acid containing at least molybdenum and phosphorus as catalyst components, which is used when producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen. It may be a precursor powder.
 この場合、例えば、本発明の方法により触媒の押出成形体を製造し、この押出成形体を加熱処理して、不飽和カルボン酸製造用触媒を製造することができる。特に、不飽和カルボン酸が(メタ)アクリル酸である場合、(メタ)アクリル酸製造用触媒を製造することができ、この触媒を使用して、(メタ)アクロレインを分子状酸素により気相接触酸化して(メタ)アクリル酸を製造することができる。 In this case, for example, an extruded product of the catalyst can be produced by the method of the present invention, and the extruded product can be heat-treated to produce an unsaturated carboxylic acid production catalyst. In particular, when the unsaturated carboxylic acid is (meth) acrylic acid, it is possible to produce a catalyst for producing (meth) acrylic acid, and using this catalyst, (meth) acrolein is vapor-phase contacted with molecular oxygen. It can be oxidized to produce (meth) acrylic acid.
 また、前記原料粉末が、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に用いられる、少なくともモリブデン及びビスマスを触媒成分として含む不飽和アルデヒド及び不飽和カルボン酸製造用触媒粉末またはその前駆体粉末であってよい。 Further, the raw material powder is obtained by subjecting propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether to gas phase catalytic oxidation with molecular oxygen, and corresponding unsaturated aldehydes and unsaturated compounds. It may be an unsaturated aldehyde and unsaturated carboxylic acid production catalyst powder or precursor powder thereof containing at least molybdenum and bismuth as catalyst components used in the production of carboxylic acid.
 この場合、例えば、本発明の方法により触媒の押出成形体を製造し、この押出成形体を加熱処理して、不飽和アルデヒド及び不飽和カルボン酸製造用触媒を製造することができる。特に、不飽和アルデヒドが(メタ)アクロレインであり、かつ不飽和カルボン酸が(メタ)アクリル酸である場合、(メタ)アクロレイン及び(メタ)アクリル酸製造用触媒を製造することができ、この触媒を使用して、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、(メタ)アクロレインおよび(メタ)アクリル酸を製造することができる。 In this case, for example, an extrudate of the catalyst can be produced by the method of the present invention, and the extrudate can be heat-treated to produce an unsaturated aldehyde and unsaturated carboxylic acid production catalyst. In particular, when the unsaturated aldehyde is (meth) acrolein and the unsaturated carboxylic acid is (meth) acrylic acid, a catalyst for producing (meth) acrolein and (meth) acrylic acid can be produced. To produce (meth) acrolein and (meth) acrylic acid by vapor phase catalytic oxidation of propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether with molecular oxygen can do.
 触媒を製造する場合、押出成形品を焼成することが好ましいが、押出し成形前に焼成している場合は焼成を省略してもよい。焼成を省略した場合は触媒成形体の乾燥品が触媒であり、熱処理した場合はその熱処理品が触媒である。焼成方法は特に限定されず、焼成方法及び条件を適宜選択することができる。焼成条件は、用いる原料化合物、触媒成分の組成、調製法等によって異なるが、空気等の酸素含有ガス流通下又は不活性ガス流通下で、200~600℃、0.5時間以上が好ましい。ここで、不活性ガスとは、触媒の反応活性を低下させない気体のことを示し、具体的には、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。焼成は加熱装置を用いて行ってもよいが、触媒成形品を反応器に充填してその中で行ってもよい。 In the case of producing a catalyst, it is preferable to calcine the extruded product. However, if it is calcined before extrusion molding, the calcining may be omitted. When calcination is omitted, a dried product of the catalyst molded body is a catalyst, and when heat treatment is performed, the heat-treated product is a catalyst. The firing method is not particularly limited, and the firing method and conditions can be appropriately selected. The firing conditions vary depending on the raw material compound used, the composition of the catalyst components, the preparation method, and the like, but are preferably 200 to 600 ° C. and 0.5 hours or longer under the flow of an oxygen-containing gas such as air or an inert gas. Here, the inert gas indicates a gas that does not decrease the reaction activity of the catalyst, and specifically includes nitrogen, carbon dioxide, helium, argon, and the like. Calcination may be performed using a heating device, but may also be performed in a catalyst molded product charged into a reactor.
 本発明に関して、「加熱処理」は、乾燥のための加熱処理と焼成のための加熱処理のいずれか一方もしくは両方を含み得る。加熱処理によって押出成形体を乾燥させて(焼成はしない)触媒を得ることもできるし、加熱処理によって押出成形体を乾燥させるとともに焼成して触媒を得ることもできる。 In the context of the present invention, “heat treatment” may include one or both of heat treatment for drying and heat treatment for firing. The extruded product can be dried (not fired) by heat treatment to obtain a catalyst, or the extruded product can be dried and calcined by heat treatment to obtain a catalyst.
 以下、本発明を実施例及び比較例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described using examples and comparative examples, but the present invention is not limited to these examples.
 実施例および比較例中の手作業での解砕においては、混練り物をポリ袋に回収し、粘土状に固まっている箇所を手で小さく解きほぐした。 In the manual crushing in the examples and comparative examples, the kneaded material was collected in a plastic bag, and the portion that had been hardened in a clay shape was loosened by hand.
 実施例および比較例中の混練り物のふるい分けは、呼び寸法(D/2)mmのふるいを手で左右に振動させ、そこに混練り物をふるい上で重なり合わない速度で投入し実施した。 The sieving of the kneaded materials in the examples and comparative examples was carried out by vibrating a sieve having a nominal size (D / 2) mm by hand to the left and right, and throwing the kneaded materials at a speed that does not overlap the sieves.
 押出成形体の品質斑は、同一成形条件で10回成形し各成形体の充填密度の標準偏差より判断した。充填密度は内径27mmのメスシリンダーに成形体を100mlの目盛りまで充填し、その質量Xより以下のように算出した。 The quality unevenness of the extruded molded body was determined 10 times from the standard deviation of the filling density of each molded body after being molded 10 times under the same molding conditions. The packing density was calculated from the mass X of the compact body filled with a compact body having an inner diameter of 27 mm up to a scale of 100 ml as follows.
 充填密度(g/L)=X×10
 また、実施例および比較例に記載の「部」は「質量部」を意味する。
Packing density (g / L) = X × 10
Further, “part” described in Examples and Comparative Examples means “part by mass”.
 後述の反応評価において、原料ガス及び生成物の分析はガスクロマトグラフィーを用いて行った。なお、メタクロレイン反応率、メタクリル酸選択率及びメタクリル酸収率は、以下のように定義される。 In the reaction evaluation described later, analysis of the raw material gas and the product was performed using gas chromatography. The methacrolein reaction rate, methacrylic acid selectivity, and methacrylic acid yield are defined as follows.
  メタクロレイン反応率(%)=(B/A)×100
  メタクリル酸選択率(%) =(C/B)×100
  メタクリル酸収率(%)  =(C/A)×100
 ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
Methacrolein reaction rate (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.
 [実施例1~4、比較例1]
 実施例1~4および比較例1の各例において、以下の操作を行った。
[Examples 1 to 4, Comparative Example 1]
In each of Examples 1 to 4 and Comparative Example 1, the following operation was performed.
 純水4000部に三酸化モリブデン1000部、メタバナジン酸アンモニウム34部、85質量%リン酸水溶液80部及び硝酸銅7部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。90℃まで冷却後回転翼攪拌機を用いて攪拌しながら、重炭酸セシウム124部を純水200部に溶解した溶液を添加して15分間攪拌した。次いで炭酸アンモニウム92部を純水200部に溶解した溶液を添加し、更に20分間攪拌した。以上のようにして得られた触媒成分の原料化合物を含有する混合スラリーを、並流式スプレー乾燥機を用いて乾燥機入口温度300℃、スラリー噴霧用回転円盤18,000rpmの条件で乾燥した。 In 4000 parts of pure water, 1000 parts of molybdenum trioxide, 34 parts of ammonium metavanadate, 80 parts of 85 mass% phosphoric acid aqueous solution and 7 parts of copper nitrate are dissolved, and the temperature is raised to 95 ° C. while stirring, and the liquid temperature is 95. The mixture was stirred for 3 hours while maintaining the temperature. After cooling to 90 ° C., a solution obtained by dissolving 124 parts of cesium bicarbonate in 200 parts of pure water was added and stirred for 15 minutes while stirring using a rotary blade stirrer. Next, a solution obtained by dissolving 92 parts of ammonium carbonate in 200 parts of pure water was added, and the mixture was further stirred for 20 minutes. The mixed slurry containing the raw material compound of the catalyst component obtained as described above was dried under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spraying rotary disk of 18,000 rpm using a co-current spray dryer.
 このようにして得られた原料粉末100部に対してヒドロキシプロピルセルロース3部とエチルアルコール18部とを混合し、双腕型のシグマブレードを備えたバッチ式の混練り機で粘土状になるまで混練りした。 100 parts of the raw material powder thus obtained is mixed with 3 parts of hydroxypropyl cellulose and 18 parts of ethyl alcohol until it is made into a clay with a batch kneader equipped with a double-armed sigma blade. Kneaded.
 得られた混練物50部を1軸式解砕機または手作業にて解砕し、呼び寸法(D/2)mmのふるいを使用しふるい分けした。解砕方法、解砕時間、使用したふるいの呼び寸法(D/2)、及び解砕物の呼び寸法D/2のふるいを通過した割合を表1に示す。 50 parts of the obtained kneaded material was crushed by a single-shaft crusher or manually, and sieved using a sieve having a nominal size (D / 2) mm. Table 1 shows the crushing method, the crushing time, the nominal size of the sieve used (D / 2), and the ratio of passing through the sieve of the nominal size D / 2 of the crushed material.
 次いで、ふるいを通過した解砕品とふるいを通過しなかった解砕品を合わせて得られた解砕物をプランジャー式押出機を用いて押出成形し、熱風乾燥機で90℃で12時間乾燥させ、外径5.5mm、長さ5.5mmの円柱状の触媒成形体を得た。成形体のサイズは充填密度に与える影響をなくすため、外形、長さは全て5.5mmに合わせた。同じ解砕物を10回押出成形し、成形体の充填密度の標準偏差を測定した。プランジャー押出機のシリンダー内径及びシリンダー内径Dに対するシリンダー長さLの比L/D、及び成形品の充填密度の標準偏差を表1に示す。 Next, the crushed product obtained by combining the crushed product that passed through the sieve and the crushed product that did not pass through the sieve was extruded using a plunger-type extruder, dried at 90 ° C. for 12 hours with a hot air dryer, and the outer diameter. A cylindrical catalyst molded body having a length of 5.5 mm and a length of 5.5 mm was obtained. In order to eliminate the influence of the size of the compact on the packing density, the outer shape and the length were all adjusted to 5.5 mm. The same crushed material was extruded 10 times, and the standard deviation of the packing density of the molded body was measured. Table 1 shows the cylinder inner diameter of the plunger extruder, the ratio L / D of the cylinder length L to the cylinder inner diameter D, and the standard deviation of the packing density of the molded product.
 なお、使用した混練り機の最大処理可能能力は、使用した押出機の最大処理可能能力を1としたとき5.7であった。また、使用した解砕機の最大処理可能能力は、使用した押出機の最大処理可能能力を1としたとき、8.3であった。 The maximum processing capability of the used kneader was 5.7 when the maximum processing capability of the used extruder was 1. Moreover, the maximum processability of the used crusher was 8.3 when the maximum processability of the used extruder was set to 1.
 また、使用した解砕機の容積に対する動力の比は、92kW/mであった。 The ratio of power to the volume of the crusher used was 92 kW / m 3 .
 得られた成形品を全て混合し下記条件で反応評価を実施した。 All the molded products obtained were mixed and the reaction was evaluated under the following conditions.
 この触媒(押出成形体)を、外部に熱媒浴を有する外径27.5mm、高さ6mのステンレス製反応管に触媒充填長が5mになるように充填した。次いで、反応管外部に設けられた熱媒浴の温度を370℃に設定し、空気を流通させながら10時間熱処理した。続いて、熱媒浴の温度を290℃とし、メタクロレイン6容量%、酸素12容量%、水蒸気10容量%及び窒素72容量%からなる反応ガスをガス空間速度1200hr-1で触媒層に通過させる条件下で、メタクロレインの気相接触酸化反応を行った。反応開始より24時間後の生成物を捕集し、ガスクロマトグラフィーで分析することでメタクロレインの反応率、メタクリル酸の選択率及びメタクリル酸の収率を求めた。結果を表2に示す。 This catalyst (extruded product) was filled in a stainless steel reaction tube having an outer diameter of 27.5 mm and a height of 6 m having an external heat medium bath so that the catalyst filling length was 5 m. Next, the temperature of the heat medium bath provided outside the reaction tube was set to 370 ° C., and heat treatment was performed for 10 hours while circulating air. Subsequently, the temperature of the heat medium bath is set to 290 ° C., and a reaction gas comprising 6% by volume of methacrolein, 12% by volume of oxygen, 10% by volume of water vapor and 72% by volume of nitrogen is passed through the catalyst layer at a gas space velocity of 1200 hr −1 . Under conditions, methacrolein was subjected to a gas phase catalytic oxidation reaction. The product 24 hours after the start of the reaction was collected and analyzed by gas chromatography to determine the reaction rate of methacrolein, the selectivity of methacrylic acid, and the yield of methacrylic acid. The results are shown in Table 2.
 [比較例2、3]
 混練物を解砕せず、混練物をそのままプランジャー式押出機に供給したこと以外は、実施例1~4および比較例1について述べた手順と同様にして、触媒成形体を製造し、成形品の充填密度の標準偏差を測定し、また、メタクロレインの気相接触酸化反応を行った。条件及び結果を表1および2に示す。
[Comparative Examples 2 and 3]
Catalyst molded bodies were produced and molded in the same manner as described in Examples 1 to 4 and Comparative Example 1 except that the kneaded material was not crushed and the kneaded material was supplied to the plunger type extruder as it was. The standard deviation of the packing density of the product was measured, and the gas phase catalytic oxidation reaction of methacrolein was performed. Conditions and results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (16)

  1.  (1)原料粉末と液体とバインダーとを混練りして混練り物を製造する工程と、
     (2)前記混練り物を解砕し解砕物を製造する工程と、
     (3)前記解砕物を押出機を用いて成形する工程と、
    を含み、かつ、
     工程(3)の押出機のシリンダー内径をDmmとした際、工程(2)の解砕物を、呼び寸法(D/2)mmのふるいを80質量%以上通過する粒径まで解砕することを特徴とする押出成形体の製造方法。
    (1) kneading raw material powder, liquid and binder to produce a kneaded product,
    (2) crushing the kneaded product to produce a crushed product;
    (3) forming the crushed material using an extruder;
    Including, and
    When the cylinder inner diameter of the extruder in the step (3) is Dmm, the crushed material in the step (2) is crushed to a particle size that passes 80% by mass or more through a sieve having a nominal size (D / 2) mm. A method for producing an extruded product.
  2.  (1)原料粉末と液体とバインダーとを混練りして混練り物を製造する工程と、
     (2)前記混練り物を解砕し解砕物を製造する工程と、
     (3)前記解砕物を押出機を用いて成形する工程と、
    を含み、かつ、
     工程(2)において解砕機を使用して解砕することを特徴とする押出成形体の製造方法。
    (1) kneading raw material powder, liquid and binder to produce a kneaded product,
    (2) crushing the kneaded product to produce a crushed product;
    (3) forming the crushed material using an extruder;
    Including, and
    A method for producing an extrusion-molded product, comprising crushing using a crusher in the step (2).
  3.  前記工程(1)で混練りを行う機器の合計の最大処理可能能力が、工程(3)で用いる押出機の最大処理可能能力よりも大きく、かつ、工程(2)で用いる解砕機の合計の最大処理可能能力が、工程(3)で用いる押出機の最大処理可能能力よりも大きい請求項2に記載の押出成形体の製造方法。 The total maximum processing capability of the apparatus for kneading in the step (1) is larger than the maximum processing capability of the extruder used in the step (3), and the total of the crushers used in the step (2) The method for producing an extruded product according to claim 2, wherein the maximum processable capacity is larger than the maximum processable capacity of the extruder used in the step (3).
  4.  前記工程(2)において解砕機の容積に対する動力の比が10kW/m~500kW/mである請求項2または3に記載の押出成形体の製造方法。 The method for producing an extruded product according to claim 2 or 3, wherein in the step (2), the ratio of power to the volume of the crusher is 10 kW / m 3 to 500 kW / m 3 .
  5.  前記工程(2)において、掻き取り型ベール解砕機、2軸回転型解砕機、1軸式解砕機、スクリューオーガー型解砕機または回転ミル式解砕機のいずれかの解砕機を使用して解砕する、請求項2から4の何れか1項に記載の押出成形体の製造方法。 In the step (2), crushing is performed using any one of a scraping-type bale crusher, a twin-screw rotary crusher, a single-screw crusher, a screw auger crusher, and a rotary mill crusher. The method for producing an extruded product according to any one of claims 2 to 4.
  6.  前記工程(3)において、プランジャー式押出機を使用して成形する、請求項1から5のいずれか1項に記載の押出成形体の製造方法。 The method for producing an extruded product according to any one of claims 1 to 5, wherein in the step (3), the product is molded using a plunger-type extruder.
  7.  前記工程(3)の押出機のシリンダー内径Dが10mm~600mmである、請求項1から6のいずれか1項に記載の押出成形体の製造方法。 The method for producing an extruded product according to any one of claims 1 to 6, wherein a cylinder inner diameter D of the extruder in the step (3) is 10 mm to 600 mm.
  8.  前記工程(3)の押出機のシリンダー内径Dに対するシリンダー長さLの比L/Dが1~20である、請求項6または7に記載の押出成形体の製造方法。 The method for producing an extruded product according to claim 6 or 7, wherein the ratio L / D of the cylinder length L to the cylinder inner diameter D of the extruder in the step (3) is 1 to 20.
  9.  前記原料粉末が、不飽和アルデヒドを分子状酸素により気相接触酸化して不飽和カルボン酸を製造する際に用いられる、少なくともモリブデン及びリンを触媒成分として含む不飽和カルボン酸製造用触媒粉末またはその前駆体粉末である、請求項1から8のいずれか1項に記載の押出成形体の製造方法。 The raw material powder is a catalyst powder for producing an unsaturated carboxylic acid containing at least molybdenum and phosphorus as catalyst components, which is used when producing an unsaturated carboxylic acid by vapor-phase catalytic oxidation of an unsaturated aldehyde with molecular oxygen. The manufacturing method of the extrusion molding of any one of Claim 1 to 8 which is a precursor powder.
  10.  請求項9に記載の方法により押出成形体を製造し、この押出成形体を加熱処理する工程を含む、不飽和カルボン酸製造用触媒の製造方法。 A method for producing a catalyst for producing an unsaturated carboxylic acid, comprising a step of producing an extruded product by the method according to claim 9 and subjecting the extruded product to heat treatment.
  11.  不飽和カルボン酸が(メタ)アクリル酸である請求項10に記載の不飽和カルボン酸製造用触媒の製造方法。 The method for producing a catalyst for producing an unsaturated carboxylic acid according to claim 10, wherein the unsaturated carboxylic acid is (meth) acrylic acid.
  12.  前記原料粉末が、プロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、それぞれに対応する不飽和アルデヒド及び不飽和カルボン酸を製造する際に用いられる、少なくともモリブデン及びビスマスを触媒成分として含む不飽和アルデヒド及び不飽和カルボン酸製造用触媒粉末またはその前駆体粉末である、請求項1から8のいずれか1項に記載の押出成形体の製造方法。 The raw material powder is obtained by subjecting propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary butyl ether to gas phase catalytic oxidation with molecular oxygen, and corresponding unsaturated aldehyde and unsaturated carboxylic acid respectively. The catalyst powder for producing an unsaturated aldehyde and unsaturated carboxylic acid containing at least molybdenum and bismuth as catalyst components, or a precursor powder thereof, which is used in the production of A method for producing an extruded product.
  13.  請求項12に記載の方法により押出成形体を製造し、この押出成形体を加熱処理する工程を含む、不飽和アルデヒド及び不飽和カルボン酸製造用触媒の製造方法。 A method for producing a catalyst for producing unsaturated aldehydes and unsaturated carboxylic acids, comprising a step of producing an extruded product by the method according to claim 12 and subjecting the extruded product to heat treatment.
  14.  不飽和アルデヒドが(メタ)アクロレインであり、かつ不飽和カルボン酸が(メタ)アクリル酸である請求項13に記載の不飽和アルデヒド及び不飽和カルボン酸製造用触媒の製造方法。 The method for producing a catalyst for producing an unsaturated aldehyde and an unsaturated carboxylic acid according to claim 13, wherein the unsaturated aldehyde is (meth) acrolein and the unsaturated carboxylic acid is (meth) acrylic acid.
  15.  請求項11に記載の方法により(メタ)アクリル酸製造用触媒を製造し、この触媒を使用して(メタ)アクロレインを分子状酸素により気相接触酸化して(メタ)アクリル酸を製造する(メタ)アクリル酸の製造方法。 A (meth) acrylic acid production catalyst is produced by the method according to claim 11, and (meth) acrylic acid is produced by vapor-phase catalytic oxidation of (meth) acrolein with molecular oxygen using this catalyst ( Method for producing (meth) acrylic acid.
  16.  請求項14に記載の方法により(メタ)アクロレインおよび(メタ)アクリル酸製造用触媒を製造し、この触媒を使用してプロピレン、イソブチレン、第一級ブチルアルコール、第三級ブチルアルコール又はメチル第三級ブチルエーテルを分子状酸素により気相接触酸化して、(メタ)アクロレインおよび(メタ)アクリル酸を製造する(メタ)アクロレインおよび(メタ)アクリル酸の製造方法。 A catalyst for producing (meth) acrolein and (meth) acrylic acid is produced by the method according to claim 14, and using this catalyst, propylene, isobutylene, primary butyl alcohol, tertiary butyl alcohol or methyl tertiary A method for producing (meth) acrolein and (meth) acrylic acid, wherein (meth) acrolein and (meth) acrylic acid are produced by vapor-phase catalytic oxidation of molecular butyl ether with molecular oxygen.
PCT/JP2015/053134 2014-02-05 2015-02-04 Method for manufacturing extrusion molding WO2015119165A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167007207A KR101843666B1 (en) 2014-02-05 2015-02-04 Method for manufacturing extrusion molding
SG11201603963UA SG11201603963UA (en) 2014-02-05 2015-02-04 Method for manufacturing extrusion molding
CN201580006057.5A CN105934315B (en) 2014-02-05 2015-02-04 The manufacturing method of extrusion molding body
JP2015508900A JP6468183B2 (en) 2014-02-05 2015-02-04 Method for producing extrusion molded body
SA516371200A SA516371200B1 (en) 2014-02-05 2016-05-25 Method for Manufacturing Extrusion Molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-020416 2014-02-05
JP2014020416 2014-02-05

Publications (1)

Publication Number Publication Date
WO2015119165A1 true WO2015119165A1 (en) 2015-08-13

Family

ID=53777968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053134 WO2015119165A1 (en) 2014-02-05 2015-02-04 Method for manufacturing extrusion molding

Country Status (6)

Country Link
JP (1) JP6468183B2 (en)
KR (1) KR101843666B1 (en)
CN (1) CN105934315B (en)
SA (1) SA516371200B1 (en)
SG (1) SG11201603963UA (en)
WO (1) WO2015119165A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425452B (en) * 2020-10-15 2024-06-11 中国石油化工股份有限公司 Powder continuous humidification molding equipment, application method and catalyst carrier preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186118A (en) * 1993-12-27 1995-07-25 Toyota Motor Corp Molding of ceramics
JPH11151710A (en) * 1997-11-25 1999-06-08 Yuken Kogyo Kk Method for molding inorganic powdery material
JPH11239724A (en) * 1998-02-25 1999-09-07 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing unsaturated aldehyde and/or unsaturated carboxylic acid, and production of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2001303103A (en) * 2000-04-24 2001-10-31 Mold Research Co Ltd Method for producing sintered powder molded body
JP2003093882A (en) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, manufacturing method therefor and synthesizing method for unsaturated carboxylic acid using the catalyst
JP2011224482A (en) * 2010-04-21 2011-11-10 Mitsubishi Rayon Co Ltd Method for manufacturing methacrylic acid producing catalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179780B2 (en) * 2001-12-28 2008-11-12 三菱レイヨン株式会社 Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst
KR100497175B1 (en) * 2003-03-26 2005-06-23 주식회사 엘지화학 Method for preparing catalysts for partial oxidation of propylene and iso-butylene
CN1169619C (en) * 2003-04-17 2004-10-06 中国石油天然气股份有限公司 Compound catalyst for many metals oxide and preparation method
CN100490975C (en) * 2007-03-26 2009-05-27 上海华谊丙烯酸有限公司 Realizing method for synthesizing methyl acroleic acid deactivated catalyst by selective oxidation of methyl acrolein
KR101453134B1 (en) * 2008-02-04 2014-10-27 미츠비시 레이온 가부시키가이샤 Catalyst for methacrylic acid production, method for producing the same, and method for producing methacrylic acid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07186118A (en) * 1993-12-27 1995-07-25 Toyota Motor Corp Molding of ceramics
JPH11151710A (en) * 1997-11-25 1999-06-08 Yuken Kogyo Kk Method for molding inorganic powdery material
JPH11239724A (en) * 1998-02-25 1999-09-07 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing unsaturated aldehyde and/or unsaturated carboxylic acid, and production of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2001303103A (en) * 2000-04-24 2001-10-31 Mold Research Co Ltd Method for producing sintered powder molded body
JP2003093882A (en) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, manufacturing method therefor and synthesizing method for unsaturated carboxylic acid using the catalyst
JP2011224482A (en) * 2010-04-21 2011-11-10 Mitsubishi Rayon Co Ltd Method for manufacturing methacrylic acid producing catalyst

Also Published As

Publication number Publication date
CN105934315B (en) 2019-05-14
JPWO2015119165A1 (en) 2017-03-23
SA516371200B1 (en) 2020-12-28
KR101843666B1 (en) 2018-03-29
KR20160045117A (en) 2016-04-26
SG11201603963UA (en) 2016-07-28
JP6468183B2 (en) 2019-02-13
CN105934315A (en) 2016-09-07

Similar Documents

Publication Publication Date Title
KR101453134B1 (en) Catalyst for methacrylic acid production, method for producing the same, and method for producing methacrylic acid
KR101860595B1 (en) Method for preparing catalyst for production of methacrylic acid
JP5473744B2 (en) Method for producing a catalyst for methacrylic acid production
JP6468183B2 (en) Method for producing extrusion molded body
JP4806259B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, method for producing the same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
KR20040068603A (en) Method for preparing catalyst for synthesis of unsaturated aldehyde and unsaturated carboxylic acid, catalyst prepared by the method, and method for synthesis of unsaturated aldehyde and unsaturated carboxylic acid using the catalyst
JP4515769B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same
JP5828260B2 (en) Catalyst production method
JP2007130519A (en) Manufacturing method of extruded catalyst, and manufacturing method of unsaturated aldehyde and unsaturated carboxylic acid
JP5366646B2 (en) Catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP2011115683A (en) Method for manufacturing catalyst for methacrylic acid production
JP5059702B2 (en) Method for producing catalyst for producing unsaturated carboxylic acid
JP2013034918A (en) Catalyst for producing methacrylic acid, method for producing the catalyst, method for producing methacrylic acid
WO2017094468A1 (en) Method for producing catalyst for (meth)acrylic acid production and method for producing (meth)acrylic acid
JP5059701B2 (en) Process for producing catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JP2008302313A (en) Catalyst for producing methacrylic acid, method for manufacturing the same, and method for manufacturing methacrylic acid
JP2009213968A (en) Method for manufacturing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP5569180B2 (en) Method for producing a catalyst for methacrylic acid production
JP2002292290A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, preparation method thereof and synthetic method of unsaturated aldehyde and unsaturated carboxylic acid using its catalyst
JPH08217531A (en) Production of chromium oxide molded body

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015508900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167007207

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746484

Country of ref document: EP

Kind code of ref document: A1