JP2011224482A - Method for manufacturing methacrylic acid producing catalyst - Google Patents

Method for manufacturing methacrylic acid producing catalyst Download PDF

Info

Publication number
JP2011224482A
JP2011224482A JP2010097566A JP2010097566A JP2011224482A JP 2011224482 A JP2011224482 A JP 2011224482A JP 2010097566 A JP2010097566 A JP 2010097566A JP 2010097566 A JP2010097566 A JP 2010097566A JP 2011224482 A JP2011224482 A JP 2011224482A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
molding
producing
mpag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097566A
Other languages
Japanese (ja)
Other versions
JP5473744B2 (en
Inventor
Takuro Watanabe
拓朗 渡邉
Mieharu Sugiyama
美栄治 杉山
Masahide Kondo
正英 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010097566A priority Critical patent/JP5473744B2/en
Publication of JP2011224482A publication Critical patent/JP2011224482A/en
Application granted granted Critical
Publication of JP5473744B2 publication Critical patent/JP5473744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst molded object reduced in quality irregularity of a methacrylic acid producing catalyst capable of manufacturing methacrylic acid in high yield by applying gaseous phase catalytic oxidation to methacrolein by molecular oxygen.SOLUTION: The method for manufacturing the methacrylic acid producing catalyst includes a process (1) for manufacturing catalytic component particles containing a catalytic component, a process (2) for mixing the catalytic component particles and a liquid with each other to knead them, a process (3) for primarily molding a kneaded product and a secondary molding process (4) for molding the primarily molded product into a final shape by a piston molding machine. The secondary molding pressure P2 of the process (4) is set to a range of (P1-0.2) to (P1-8) MPaG with respect to the primary molding pressure P1 of the process (3).

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用する触媒(以下、メタクリル酸製造用触媒という。)およびその製造方法、並びにこの触媒を用いたメタクリル酸の製造方法に関する。   The present invention relates to a catalyst used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen (hereinafter referred to as catalyst for producing methacrylic acid), a production method thereof, and methacrylic acid using this catalyst. The present invention relates to a method for producing an acid.

メタクロレインを分子状酸素で気相接触酸化してメタクリル酸を製造するための触媒成分としては、リンモリブデン酸に代表されるヘテロポリ酸化合物が知られている。また、この触媒成分を気相接触酸化反応に有効に作用させるために、触媒内に細孔構造を形成する方法が数多く提案されている。   As a catalyst component for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, heteropoly acid compounds represented by phosphomolybdic acid are known. In addition, many methods for forming a pore structure in the catalyst have been proposed in order for this catalyst component to effectively act on the gas phase catalytic oxidation reaction.

特許文献1には、不飽和カルボン酸製造用触媒の製造方法において、触媒成分を含む粒子と液体とを混合したものを成形して1次成形品を得る1次成形工程と、1次成形工程の後に、更に、ピストン成形機で1次成形品を最終形状に成形する2次成形工程を有する触媒の製造方法が提案されている。また、特許文献2には、押出し成形時の圧力が1.5MPa〜8MPaである不飽和カルボン酸製造用触媒の製造方法が提案されている。しかしながら、工業触媒としての使用に際しては、更に触媒成形体の品質斑を低減する製造方法が求められている。   Patent Document 1 discloses a primary molding process for producing a primary molded product by molding a mixture of particles containing a catalyst component and a liquid in a method for producing an unsaturated carboxylic acid production catalyst, and a primary molding process. After that, a method for producing a catalyst having a secondary molding step of molding a primary molded product into a final shape by a piston molding machine has been proposed. Patent Document 2 proposes a method for producing a catalyst for producing an unsaturated carboxylic acid in which the pressure during extrusion molding is 1.5 MPa to 8 MPa. However, when used as an industrial catalyst, there is a demand for a production method that further reduces the quality irregularities of the catalyst molded body.

特開2003−93882号公報JP 2003-93882 A 特開平11−239724号公報JP 11-239724 A

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を高収率で製造できるメタクリル酸製造用触媒の、触媒成形体の品質斑が少ない製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a methacrylic acid production catalyst capable of producing methacrylic acid in a high yield by vapor-phase catalytic oxidation of methacrolein with molecular oxygen with little quality irregularity of the catalyst molded body. To do.

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを触媒成分として含むメタクリル酸製造用触媒の製造方法において、
(1)触媒成分を含む触媒成分粒子を製造する工程と、
(2)前記触媒成分粒子と液体を混合して混練りする工程と、
(3)混練り品を1次成形する1次成形工程と、
(4)1次成形品をピストン成形機で最終形状に成形する2次成形工程とを含み、
かつ、(4)の工程の2次成形圧力P2が(3)の工程の1次成形圧力P1に対して、(P1−0.2)MPaG〜(P1−8)MPaGの範囲であることを特徴とするメタクリル酸製造用触媒の製造方法、およびこの方法により得られるメタクリル酸製造用触媒である。
The present invention relates to a method for producing a catalyst for producing methacrylic acid comprising at least molybdenum and phosphorus as catalyst components, which is used when producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen.
(1) a step of producing catalyst component particles containing a catalyst component;
(2) mixing and kneading the catalyst component particles and liquid;
(3) a primary molding step of primary molding the kneaded product;
(4) including a secondary molding step of molding the primary molded product into a final shape with a piston molding machine,
In addition, the secondary molding pressure P2 in the step (4) is in the range of (P1-0.2) MPaG to (P1-8) MPaG with respect to the primary molding pressure P1 in the step (3). A feature is a method for producing a catalyst for producing methacrylic acid, and a catalyst for producing methacrylic acid obtained by this method.

また、本発明は、前記のメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法である。   The present invention is also a method for producing methacrylic acid, wherein methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of the catalyst for producing methacrylic acid.

本発明によれば、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を高収率で製造できるメタクリル酸製造用触媒の、触媒成形体の品質斑が少ない製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method with few quality spots of the catalyst molded object of the catalyst for methacrylic acid production which can manufacture methacrylic acid in a high yield by carrying out the gas phase catalytic oxidation of methacrolein with molecular oxygen can be provided.

本発明の触媒は、メタクリル酸製造用触媒は、後述する製造方法によって製造される触媒であって、反応原料であるメタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるものである。   The catalyst of the present invention is a catalyst for producing methacrylic acid, which is produced by a production method to be described later. When producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein as a reaction raw material with molecular oxygen. It is used.

本発明の触媒を構成する触媒成分の組成は、目的とするメタクリル酸製造用触媒に応じて適宜選択できる。本発明の目的物であるメタクリル酸製造用触媒は、少なくともモリブデンおよびリンを触媒成分として含有する触媒であれば特に限定されないが、好ましくは下記の式(A)で表される組成を有するものである。   The composition of the catalyst component constituting the catalyst of the present invention can be appropriately selected according to the target catalyst for producing methacrylic acid. The catalyst for producing methacrylic acid, which is the object of the present invention, is not particularly limited as long as it contains at least molybdenum and phosphorus as catalyst components, but preferably has a composition represented by the following formula (A). is there.

MoCu (A)
式(A)中、P、Mo、V、CuおよびOは、それぞれリン、モリブデン、バナジウム、銅および酸素を表し、Xは、砒素、アンチモンおよびテルルからなる群より選ばれた少なくとも1種類の元素を表し、Yは、ビスマス、ゲルマニウム、ジルコニウム、銀、セレン、ケイ素、タングステン、ホウ素、鉄、亜鉛、クロム、マグネシウム、タンタル、コバルト、マンガン、バリウム、ガリウム、セリウムおよびランタンからなる群より選ばれた少なくとも1種類の元素を表し、Zは、カリウム、ルビジウムおよびセシウムからなる群より選ばれた少なくとも1種類の元素を表す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、b=12のとき、a=0.1〜3、c=0.01〜3、d=0.01〜2、eは0〜3、f=0〜3、g=0.01〜3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。
P a Mo b V c Cu d X e Y f Z g O h (A)
In the formula (A), P, Mo, V, Cu and O each represent phosphorus, molybdenum, vanadium, copper and oxygen, and X is at least one element selected from the group consisting of arsenic, antimony and tellurium Y is selected from the group consisting of bismuth, germanium, zirconium, silver, selenium, silicon, tungsten, boron, iron, zinc, chromium, magnesium, tantalum, cobalt, manganese, barium, gallium, cerium and lanthanum At least one element is represented, and Z represents at least one element selected from the group consisting of potassium, rubidium, and cesium. a, b, c, d, e, f, g, and h represent the atomic ratio of each element. When b = 12, a = 0.1-1, c = 0.01-3, d = 0. 01-2, e is 0-3, f = 0-3, g = 0.01-3, and h is the atomic ratio of oxygen necessary to satisfy the valence of each element.

本発明のメタクリル酸製造用触媒の製造方法は、(1)触媒成分を含む触媒成分粒子を製造する工程と、(2)前記触媒成分粒子と液体を混合して混練りする工程と、(3)混練り品を1次成形する1次成形工程と、(4)1次成形品をピストン成形機で最終形状に成形する2次成形工程、および、通常はさらに(5)成形体を乾燥および/または熱処理する工程を経て製造される。   The method for producing a catalyst for producing methacrylic acid of the present invention includes (1) a step of producing catalyst component particles containing a catalyst component, (2) a step of mixing and kneading the catalyst component particles and a liquid, and (3 ) A primary molding step of primary molding the kneaded product, (4) a secondary molding step of molding the primary molded product into a final shape with a piston molding machine, and usually (5) drying the molded body and Manufactured through a heat treatment step.

(1)の工程では、まずメタクリル酸製造用触媒の触媒成分の原料化合物を、適宜選択した溶媒に溶解または懸濁させ、少なくともモリブデンおよびリンを含む混合溶液またはスラリーを調製する。混合溶液またはスラリーの調製方法は、特に限定はなく、例えば、沈殿法、酸化物混合法等の公知の方法が挙げられる。   In the step (1), first, a raw material compound of a catalyst component of a catalyst for producing methacrylic acid is dissolved or suspended in an appropriately selected solvent to prepare a mixed solution or slurry containing at least molybdenum and phosphorus. The method for preparing the mixed solution or slurry is not particularly limited, and examples thereof include known methods such as a precipitation method and an oxide mixing method.

混合溶液またはスラリーの調製に用いる触媒原料は特に限定されず、触媒の各構成元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を組み合わせて使用することができる。モリブデン原料としては、例えば、三酸化モリブデン等の酸化モリブデン類;パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム類等が挙げられる。リンの原料化合物としては、例えば、リン酸、五酸化リン、リン酸アンモニウム等が挙げられる。バナジウムの原料化合物としては、例えば、メタバナジン酸アンモニウム、五酸化バナジウム、蓚酸バナジル等が挙げられる。触媒成分の原料化合物は、触媒成分を構成する各元素に対して1種を用いても2種以上を組み合わせて用いてもよい。   The catalyst raw material used for the preparation of the mixed solution or slurry is not particularly limited, and it is used in combination with nitrate, carbonate, acetate, ammonium salt, oxide, halide, oxo acid, oxo acid salt, etc. of each constituent element of the catalyst. can do. Examples of the molybdenum raw material include molybdenum oxides such as molybdenum trioxide; and ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate. Examples of the phosphorus source compound include phosphoric acid, phosphorus pentoxide, and ammonium phosphate. Examples of the vanadium raw material compound include ammonium metavanadate, vanadium pentoxide, and vanadyl oxalate. The raw material compound of the catalyst component may be used alone or in combination of two or more for each element constituting the catalyst component.

使用する溶媒としては、例えば、水、エチルアルコール、アセトンなどが挙げられるが、水を用いることが好ましい。
このようにして製造された混合溶液またはスラリーを乾燥する方法は特に限定されず、例えば、スプレー乾燥機を用いて乾燥する方法、スラリードライヤーを用いて乾燥する方法、ドラムドライヤーを用いて乾燥する方法、蒸発乾固する方法等が適用できる。これらの中では、乾燥と同時に粒子が得られること、得られる粒子の形状が整った球形であることから、スプレー乾燥機を用いることが好ましい。
Examples of the solvent to be used include water, ethyl alcohol, acetone and the like, but it is preferable to use water.
The method of drying the mixed solution or slurry thus produced is not particularly limited. For example, a method of drying using a spray dryer, a method of drying using a slurry dryer, or a method of drying using a drum dryer. The method of evaporating to dryness can be applied. In these, since a particle | grain is obtained simultaneously with drying and the shape of the particle | grains obtained is in order, it is preferable to use a spray dryer.

乾燥条件は乾燥方法により異なるが、スプレー乾燥機を用いる場合、乾燥機入口熱風温度は200〜400℃が好ましく、より好ましくは220〜370℃の温度範囲である。   The drying conditions vary depending on the drying method, but when a spray dryer is used, the dryer inlet hot air temperature is preferably 200 to 400 ° C, more preferably 220 to 370 ° C.

スプレー乾燥機を用いる場合、得られる乾燥粒子の平均粒子径としては1〜250μmの範囲が好ましい。平均粒子径が1μm未満の場合、本発明における触媒による酸化反応にとって必要な適当な細孔径が得られず、反応目的物の収率が低下する場合がある。逆に、乾燥粒子の平均粒子径が250μmを超えた場合、単位体積当たりの乾燥粒子間の接触点の数が減り、触媒の機械的強度が低下する場合がある。乾燥粒子の平均粒子径は5〜150μmの範囲がより好ましい。なお、平均粒子径は、体積平均粒子径を意味し、例えばレーザー式粒度分布測定装置により測定することができる。   When using a spray dryer, the average particle size of the obtained dry particles is preferably in the range of 1 to 250 μm. When the average particle size is less than 1 μm, an appropriate pore size necessary for the oxidation reaction by the catalyst in the present invention cannot be obtained, and the yield of the reaction target product may be lowered. On the contrary, when the average particle diameter of the dry particles exceeds 250 μm, the number of contact points between the dry particles per unit volume may decrease, and the mechanical strength of the catalyst may decrease. The average particle diameter of the dry particles is more preferably in the range of 5 to 150 μm. In addition, an average particle diameter means a volume average particle diameter, for example, can be measured with a laser type particle size distribution measuring apparatus.

また、噴霧された液滴と熱風との接触方式は、並流、向流、並向流(混合流)のいずれでもよく、いずれの場合でも好適に乾燥することができる。   Moreover, the contact method of the sprayed droplet and hot air may be any of parallel flow, counter flow, and co-current flow (mixed flow), and in any case, it can be suitably dried.

このようにして得られた乾燥粒子は、必要に応じて、200〜500℃で熱処理(焼成)して焼成粒子としてもよい。焼成条件は、特に限定されないが、焼成は、通常、酸素、空気または窒素流通下で行われる。また、焼成時間は目的とする触媒によって適宜設定される。   The dry particles thus obtained may be heat treated (fired) at 200 to 500 ° C. to obtain fired particles, if necessary. The firing conditions are not particularly limited, but firing is usually performed under a flow of oxygen, air, or nitrogen. The firing time is appropriately set depending on the target catalyst.

触媒成分を含む乾燥粒子および焼成粒子をまとめて触媒成分粒子という。
次に(2)の工程では、(1)の工程で得られた触媒成分粒子(以下「粒子」ともいう。)に、少なくとも液体を混合したものを混練りして混練り品とする。混練りに使用する装置は特に限定されず、例えば、双腕型の攪拌羽根を使用するバッチ式の混練り機、軸回転往復式やセルフクリーニング型等の連続式の混練り機等が使用できるが、混練り品の状態を確認しながら混練りを行うことができる点で、バッチ式が好ましい。また、混練りの終点は、通常目視または手触りによって判断することができる。
The dry particles and the calcined particles containing the catalyst component are collectively referred to as catalyst component particles.
Next, in the step (2), the catalyst component particles (hereinafter also referred to as “particles”) obtained in the step (1) are kneaded at least with a liquid to obtain a kneaded product. The apparatus used for kneading is not particularly limited. For example, a batch-type kneading machine using a double-arm type stirring blade, a continuous kneading machine such as a shaft rotation reciprocating type or a self-cleaning type can be used. However, the batch method is preferable because kneading can be performed while checking the state of the kneaded product. Moreover, the end point of kneading | mixing can be judged by visual observation or a touch normally.

(2)の工程で用いる液体は、(1)の工程で得られた粒子を濡らす機能を有するものであれば特に限定されず、例えば水や、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールなどの炭素数が1〜4のアルコールが挙げられる。この中でも粒子が崩壊せず、酸化反応に有効な細孔を形成しやすいという理由で、エチルアルコール、プロピルアルコールが好ましい。アルコールは高純度のものが好ましいが、少量の水を含んでいてもよい。   The liquid used in the step (2) is not particularly limited as long as it has a function of wetting the particles obtained in the step (1). For example, water, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, etc. Alcohol having 1 to 4 carbon atoms. Of these, ethyl alcohol and propyl alcohol are preferred because the particles do not collapse and easily form pores effective for the oxidation reaction. The alcohol preferably has a high purity, but may contain a small amount of water.

(2)の工程で用いる液体の使用量は、粒子の種類や大きさ、液体の種類等により適宜選択されるが、通常は(1)の工程で得られた粒子100質量部に対して10〜80質量部である。液体の使用量が多くなると、よりスムーズに押出し成形できるため、粒子が潰れにくくなり、乾燥、焼成した成形品に大きな空隙、すなわち大きな細孔が形成されてメタクリル酸の選択率が向上する傾向がある。従って、液体の使用量は粒子100質量部に対して40質量部以上が好ましく、45質量部以上がより好ましい。一方、液体の使用量が少ない方が、成形時の付着性が低減して取り扱い性が向上する。また、液体の使用量が少なくなると、成形品がより密になるため成形品の強度が向上する傾向がある。従って、液体の使用量は、粒子100質量部に対して70質量部以下が好ましく、65質量部以下がより好ましい。   The amount of the liquid used in the step (2) is appropriately selected depending on the type and size of the particles, the type of the liquid, etc., but is usually 10 with respect to 100 parts by mass of the particles obtained in the step (1). ~ 80 parts by mass. When the amount of liquid used is increased, extrusion molding can be performed more smoothly, so that the particles are less likely to be crushed, and there is a tendency that large voids, that is, large pores are formed in the dried and baked molded article and the selectivity of methacrylic acid is improved. is there. Therefore, the amount of the liquid used is preferably 40 parts by mass or more, more preferably 45 parts by mass or more with respect to 100 parts by mass of the particles. On the other hand, when the amount of liquid used is small, adhesion during molding is reduced and handling is improved. Further, when the amount of liquid used is reduced, the strength of the molded product tends to be improved because the molded product becomes denser. Accordingly, the amount of liquid used is preferably 70 parts by mass or less, more preferably 65 parts by mass or less, with respect to 100 parts by mass of the particles.

また、(2)の工程においては、触媒成分粒子と液体との混合物に、有機バインダー等の成形助剤を加えると、強度が向上するため好ましい。このような有機バインダーとしては、例えば、ポリビニルアルコール等の高分子化合物、αグルカン誘導体、βグルカン誘導体などを挙げることができる。   In the step (2), it is preferable to add a molding aid such as an organic binder to the mixture of the catalyst component particles and the liquid because the strength is improved. Examples of such an organic binder include polymer compounds such as polyvinyl alcohol, α-glucan derivatives, and β-glucan derivatives.

本発明においてαグルカン誘導体とは、グルコースから構成される多糖類のうち、グルコースがα型の構造で結合したものをいい、α1−4グルカン、α1−6グルカン、α1−4/1−6グルカン等の誘導体が例示できる。   In the present invention, an α-glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound in an α-type structure, and α1-4 glucan, α1-6 glucan, α1-4 / 1-6 glucan. And the like.

このようなαグルカン誘導体としては、アミロース、グリコーゲン、アミロペクチン、プルラン、デキストリン、シクロデキストリンなどを挙げることができる。   Examples of such α-glucan derivatives include amylose, glycogen, amylopectin, pullulan, dextrin, cyclodextrin and the like.

本発明においてβグルカン誘導体とは、グルコースから構成される多糖類のうち、グルコースがβ型の構造で結合したものをいい、β1−4グルカン、β1−3グルカン、β1−6グルカン、β1−3/1−6グルカン等の誘導体が例示できる。   In the present invention, a β-glucan derivative refers to a polysaccharide composed of glucose in which glucose is bound in a β-type structure. Β1-4 glucan, β1-3 glucan, β1-6 glucan, β1-3 Derivatives such as / 1-6 glucan can be exemplified.

このようなβグルカン誘導体としては、例えばメチルセルロース、エチルセルロース、カルボキシルメチルセルロース、カルボキシルメチルセルロースナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシブチルメチルセルロース、エチルヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体、カードラン、ラミナラン、パラミロン、カロース、パキマン、スクレログルカン等のβ1−3グルカンなどを挙げることができる。   Examples of such β-glucan derivatives include celluloses such as methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxybutylmethylcellulose, ethylhydroxyethylcellulose, and hydroxypropylcellulose. Derivatives, curdlan, laminaran, paramylon, callose, pakiman, β1-3 glucan such as scleroglucan and the like can be mentioned.

有機バインダーは、未精製のまま用いてもよく、精製して用いてもよいが、不純物としての金属や、強熱残分は、触媒性能を低下させることがあるため、より少ない方が好ましい。   The organic binder may be used as it is, or may be used after purification, but it is preferable that the metal as an impurity and the ignition residue are less because the catalyst performance may be deteriorated.

有機バインダーの使用量は、粒子の種類や大きさ、液体の種類等により適宜選択されるが、通常は(1)の工程で得られた粒子100質量部に対して0.05〜15質量部であり、好ましくは0.1〜10質量部である。有機バインダーの添加量が多くなるほど、成形性が向上する傾向があり、少なくなるほど、成形後の熱処理等による有機バインダーの除去処理が簡単になる。
前記粒子、液体および有機バインダーの混合方法は特に限定されない。具体的には、粒子と有機バインダーを乾式混合したものと液体とを混合する方法、液体に有機バインダーを溶解または分散させたものと粒子とを混合する方法等が例示できるが、なかでも粒子と有機バインダーを乾式混合したものと液体を混合する方法が好ましい。
The amount of the organic binder used is appropriately selected depending on the type and size of the particles, the type of the liquid, etc., but usually 0.05 to 15 parts by mass with respect to 100 parts by mass of the particles obtained in the step (1) Preferably, it is 0.1-10 mass parts. As the amount of the organic binder added increases, the moldability tends to improve, and as the amount decreases, the removal of the organic binder by heat treatment after molding becomes easier.
The method for mixing the particles, liquid and organic binder is not particularly limited. Specific examples include a method of mixing a mixture of particles and an organic binder with a liquid, a method of mixing a solution obtained by dissolving or dispersing an organic binder in a liquid, and a method of mixing particles. A method of mixing a liquid obtained by dry mixing an organic binder and a liquid is preferable.

また、本発明においては、従来公知のシリカ、アルミナ、シリカ−アルミナ、シリコンカーバイド、チタニア、マグネシア、グラファイトやケイソウ土などの無機化合物、ガラス繊維、セラミックボールやステンレス鋼、セラミックファイバーや炭素繊維などの無機ファイバーなどの不活性担体を添加することができる。添加は、(2)の工程の混練りする際に行えばよい。   In the present invention, conventionally known silica, alumina, silica-alumina, silicon carbide, titania, magnesia, inorganic compounds such as graphite and diatomaceous earth, glass fibers, ceramic balls and stainless steel, ceramic fibers and carbon fibers, etc. An inert carrier such as inorganic fiber can be added. The addition may be performed when kneading in the step (2).

次に(3)の1次成形工程では、(2)の工程で得られた混練り品を、スクリュー押出し機またはプレス押出し機またはプレス機等の装置によって1次成形品に成形する。   Next, in the primary molding step (3), the kneaded product obtained in the step (2) is molded into a primary molded product by an apparatus such as a screw extruder, a press extruder, or a press machine.

(3)の工程における1次成形圧力P1は、特に限定されないが、0.5MPaG〜15MPaGが好ましく、1MPaG〜12MPaGがより好ましい。
なお、本発明において成形圧力とは、プレス成型時や押出し成形時に、押出し機内にかかる圧力の平均値のことである。また、成形圧力は、プレス成型や押出し成形が開始され圧力が安定した際の平均値であり、装置作動直後の成形が開始されていない期間の圧力は含まない。
成形圧力は、例えば押出し機のシリンダー部に圧力センサーを差し込み測定することができる。例えば成形圧力が2MPaG という表記は、圧力センサーなどにより測定した成形圧力のゲージ圧が2MPaであることを示す。
The primary molding pressure P1 in the step (3) is not particularly limited, but is preferably 0.5 MPaG to 15 MPaG, and more preferably 1 MPaG to 12 MPaG.
In the present invention, the molding pressure is an average value of pressure applied to the extruder during press molding or extrusion molding. The molding pressure is an average value when the pressure molding is stabilized after the press molding or extrusion molding is started, and does not include the pressure during the period when the molding immediately after the operation of the apparatus is not started.
The molding pressure can be measured, for example, by inserting a pressure sensor into the cylinder part of the extruder. For example, the notation that the molding pressure is 2 MPaG indicates that the gauge pressure of the molding pressure measured by a pressure sensor or the like is 2 MPa.

1次成形圧力は例えばプレス機による成形であれば、設定圧力の変更で容易に変更することが出来る。スクリュー成形機の場合は1次成形品の排出ノズルの長さで調整することが出来る。成形圧力を管理し易い点と、触媒粒子の崩壊による細孔の閉塞が少ない点から、プレス機で1次成形を行うことが望ましい。   If the primary molding pressure is, for example, molding by a press, it can be easily changed by changing the set pressure. In the case of a screw molding machine, it can be adjusted by the length of the discharge nozzle of the primary molded product. It is desirable to perform primary molding with a press machine from the viewpoint that the molding pressure can be easily controlled and the pores are less blocked by the collapse of the catalyst particles.

1次成形品の形状は、特に限定されないが、1次成形品の形状が、2次成形を行うピストン成形機のシリンダー径の0.5倍以上1倍未満の径を有する円柱状であることが好ましい。円柱状の1次成形品の径は、径は小さいほどピストン成形機に1次成形品を充填することが容易であるが、0.5倍以上1未満の場合、大きいほど2次成形時に余分な空気が入り難くなり、触媒粒子への負荷が小さくなる。また、シリンダー内の体積を有効に使えるため、同量の成形品を製造する場合に1次成形、2次成形の回数を減らすことができ、生産性が向上するという利点もある。また、この範囲で、1次成形の径は大きいほど、触媒粒子への機械的な負荷を減らすことになるため、細孔の制御の点で有利になる。従って、特に、ピストン成形機のシリンダー径の0.8倍以上1倍未満の径を有する円柱状が好ましい。   The shape of the primary molded product is not particularly limited, but the shape of the primary molded product is a cylindrical shape having a diameter of 0.5 to 1 times the cylinder diameter of a piston molding machine that performs secondary molding. Is preferred. As for the diameter of the cylindrical primary molded product, the smaller the diameter, the easier it is to fill the piston molding machine with the primary molded product. Air becomes difficult to enter, and the load on the catalyst particles is reduced. Further, since the volume in the cylinder can be used effectively, there is an advantage that the number of times of primary molding and secondary molding can be reduced when the same amount of molded product is manufactured, and productivity is improved. In this range, the larger the primary molding diameter is, the more the mechanical load on the catalyst particles is reduced. Therefore, in particular, a cylindrical shape having a diameter of 0.8 times or more and less than 1 time the cylinder diameter of the piston molding machine is preferable.

次に(4)の2次成形工程では、得られた1次成形品をピストン成形機で2次成形し、最終形状に成形する。ピストン成形することで、押出し時の曲がり等が少なくなり、製品の歩留まりが向上する。また、スクリュー押出し機等を用いて成形する場合に比べて押出し中に余分な練りが入らないため触媒粒子の崩壊による細孔の閉塞が少なく、選択率が向上する。   Next, in the secondary molding step (4), the obtained primary molded product is secondarily molded by a piston molding machine and molded into a final shape. Piston molding reduces bending during extrusion and improves product yield. In addition, since excessive kneading does not occur during extrusion as compared with the case of molding using a screw extruder or the like, the pores are not blocked by the collapse of the catalyst particles, and the selectivity is improved.

また、1次成形を行わずに、不定形の混練り品を(ピストン押出し機等で)直接最終形状に押出し成形する場合と比べて、余分な空気が混入することが少なく均一な成形体が得られる点から好ましい。   Compared to the case where an irregularly shaped kneaded product is directly extruded into a final shape without performing primary molding (with a piston extruder or the like), a uniform molded body is obtained with less excess air being mixed. It is preferable from the point obtained.

本発明の(4)の工程における2次成形圧力P2は、(3)の工程の1次成形圧力P1に対して、(P1−0.2)MPaG〜(P1−8)MPaGの範囲である。2次成形圧力P2が、(P1−0.2)MPaG超えると触媒粒子間の細孔が閉塞し、メタクリル酸の選択率が低下する。2次成形圧力P2が、(P1−8)MPaGをより小さいと、余分な空気が混入することが多く均一な成形体ができない点や、最終的な触媒の嵩密度が低くなり、反応管への充填量が減る点から好ましくない。したがって(4)の工程における2次成形圧力P2は、(P1−0.2)MPaG〜(P1−8)MPaGの範囲であり、(P1−0.5)MPaG〜(P1−6)MPaGが好ましい。   The secondary molding pressure P2 in the step (4) of the present invention is in the range of (P1-0.2) MPaG to (P1-8) MPaG with respect to the primary molding pressure P1 in the step (3). . When the secondary molding pressure P2 exceeds (P1−0.2) MPaG, the pores between the catalyst particles are blocked and the selectivity of methacrylic acid is lowered. If the secondary molding pressure P2 is smaller than (P1-8) MPaG, excess air is often mixed and a uniform molded product cannot be formed, and the final catalyst bulk density is lowered, leading to the reaction tube. This is not preferable from the viewpoint of reducing the amount of filling. Therefore, the secondary molding pressure P2 in the step (4) is in the range of (P1-0.2) MPaG to (P1-8) MPaG, and (P1-0.5) MPaG to (P1-6) MPaG is preferable.

(4)の工程における2次成形圧力P2は、特に限定されないが、0.5MPaG〜5MPaGが好ましく、1MPaG〜4MPaGがより好ましい。   The secondary molding pressure P2 in the step (4) is not particularly limited, but is preferably 0.5 MPaG to 5 MPaG, and more preferably 1 MPaG to 4 MPaG.

また、2次成形で押出し成形により得られる触媒成形体の形状は、特に限定されず、例えばリング状、円柱状、星型状などの任意の形状に成形することができる。
2次成形圧力は、(2)の工程で用いる液体の量、押出しの速度、ダイスの開口率(シリンダー部の断面積に対するダイスの開口部の面積の比)などにより調節できる。すなわち2次成形圧力は、(2)の工程で用いる液体の量が少ないほど、押出しの吐出速度が大きいほど、また、ダイスの開口率が小さいほど大きくなり、逆に、(2)の工程で用いる液体の量が多いほど、押出しの吐出速度が小さいほど、また、ダイスの開口率が大きいほど小さくなる。
In addition, the shape of the catalyst molded body obtained by extrusion molding in the secondary molding is not particularly limited, and can be molded into an arbitrary shape such as a ring shape, a columnar shape, or a star shape.
The secondary molding pressure can be adjusted by the amount of liquid used in the step (2), the extrusion speed, the die opening ratio (ratio of the area of the die opening to the cross-sectional area of the cylinder), and the like. In other words, the secondary molding pressure increases as the amount of liquid used in the step (2) decreases, the extrusion discharge rate increases, and the die opening ratio decreases, and conversely, in the step (2). The smaller the amount of liquid used, the lower the extrusion discharge speed, and the larger the die opening ratio, the smaller.

次に、(5)の工程では、(4)の工程で得られた触媒成形体を乾燥、焼成して触媒(製品)を得る。乾燥方法は特に限定されず、例えば一般的に知られている熱風乾燥、湿度乾燥、遠赤外線乾燥またはマイクロ波乾燥などの方法を任意に用いることができる。乾燥条件は、目的とする含水率とすることができれば適宜選択することができる。   Next, in the step (5), the catalyst molded body obtained in the step (4) is dried and fired to obtain a catalyst (product). The drying method is not particularly limited, and for example, generally known methods such as hot air drying, humidity drying, far-infrared drying, or microwave drying can be arbitrarily used. The drying conditions can be appropriately selected as long as the desired moisture content can be achieved.

焼成条件は特に限定されず、公知の焼成条件を適用することができる。通常は200〜600℃の温度範囲で行われる。通常、焼成は200〜500℃、好ましくは300〜450℃の温度で1〜24時間行うことができる。   The firing conditions are not particularly limited, and known firing conditions can be applied. Usually, it is performed in a temperature range of 200 to 600 ° C. Usually, the calcination can be performed at a temperature of 200 to 500 ° C., preferably 300 to 450 ° C. for 1 to 24 hours.

次に、本発明のメタクリル酸の製造方法について説明する。本発明のメタクリル酸の製造方法は、上記のようにして得られたメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するものである。   Next, the manufacturing method of methacrylic acid of this invention is demonstrated. The method for producing methacrylic acid of the present invention is a method for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the methacrylic acid production catalyst obtained as described above.

気相接触酸化反応は、固定床で行う。触媒層は、特に限定されず、触媒のみの無希釈層でも、不活性担体を含んだ希釈層でもよく、単一層でも複数の層から成る混合層であってもよい。   The gas phase catalytic oxidation reaction is performed in a fixed bed. The catalyst layer is not particularly limited, and may be an undiluted layer containing only a catalyst, a diluted layer containing an inert carrier, or a single layer or a mixed layer composed of a plurality of layers.

反応には、メタクロレインと分子状酸素とを含む原料ガスを用いることが好ましい。
原料ガス中のメタクロレイン濃度は、広い範囲で変えることができるが、1容量%以上が好ましく、3容量%以上がより好ましい。また、20容量%以下が好ましく、10容量%以下がより好ましい。
In the reaction, it is preferable to use a source gas containing methacrolein and molecular oxygen.
The concentration of methacrolein in the raw material gas can be varied within a wide range, but is preferably 1% by volume or more, and more preferably 3% by volume or more. Moreover, 20 volume% or less is preferable and 10 volume% or less is more preferable.

原料ガス中の分子状酸素濃度は、メタクロレイン1モルに対して0.4モル以上が好ましく、0.5モル以上がより好ましい。また、メタクロレイン1モルに対して4モル以下が好ましく、3モル以下がより好ましい。分子状酸素源としては空気を用いることが経済的であるが、必要ならば純酸素で富化した空気等も用いることができる。   The molecular oxygen concentration in the raw material gas is preferably 0.4 mol or more, more preferably 0.5 mol or more with respect to 1 mol of methacrolein. Moreover, 4 mol or less is preferable with respect to 1 mol of methacrolein, and 3 mol or less is more preferable. Although it is economical to use air as the molecular oxygen source, air or the like enriched with pure oxygen can also be used if necessary.

原料ガスは、メタクロレインと分子状酸素以外に、水(水蒸気)を含んでいることが好ましい。水の存在下で反応を行うことで、より高い収率でメタクリル酸が得られる。原料ガス中の水蒸気の濃度は、0.1容量%以上が好ましく、1容量%以上がより好ましい。また、50容量%以下が好ましく、40容量%以下がより好ましい。原料ガスは、低級飽和アルデヒド等の不純物を少量含んでいてもよいが、その量はできるだけ少ないことが好ましい。また、窒素、炭酸ガス等の不活性ガスを含んでいてもよい。   The source gas preferably contains water (water vapor) in addition to methacrolein and molecular oxygen. By performing the reaction in the presence of water, methacrylic acid can be obtained in a higher yield. The concentration of water vapor in the raw material gas is preferably 0.1% by volume or more, and more preferably 1% by volume or more. Moreover, 50 volume% or less is preferable and 40 volume% or less is more preferable. The source gas may contain a small amount of impurities such as a lower saturated aldehyde, but the amount is preferably as small as possible. Moreover, inert gas, such as nitrogen and a carbon dioxide gas, may be included.

気相接触酸化反応の反応圧力は、常圧(大気圧)から5気圧までが好ましい。反応温度は、230℃以上が好ましく、250℃以上がより好ましい。また、450℃以下が好ましく、400℃以下がより好ましい。   The reaction pressure of the gas phase catalytic oxidation reaction is preferably from normal pressure (atmospheric pressure) to 5 atm. The reaction temperature is preferably 230 ° C. or higher, more preferably 250 ° C. or higher. Moreover, 450 degrees C or less is preferable and 400 degrees C or less is more preferable.

原料ガスの流量は特に限定されず、適切な接触時間になるように適宜設定することができる。接触時間は1.5秒以上が好ましく、2秒以上がより好ましい。また、15秒以下が好ましく、10秒以下がより好ましい。   The flow rate of the raw material gas is not particularly limited, and can be appropriately set so as to have an appropriate contact time. The contact time is preferably 1.5 seconds or longer, and more preferably 2 seconds or longer. Moreover, 15 seconds or less are preferable and 10 seconds or less are more preferable.

以下、本発明を実施例および比較例を用いて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。下記の実施例および比較例中の「部」は質量部である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these Examples. The “parts” in the following examples and comparative examples are parts by mass.

原料ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。なお、メタクロレインの反応率、生成するメタクリル酸の選択率および単流収率は、以下のように定義される。
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸の選択率(%) =(C/B)×100
メタクリル酸の収率(%) =(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
The analysis of the raw material gas and the product was performed using gas chromatography. In addition, the reaction rate of methacrolein, the selectivity of the methacrylic acid to produce | generate, and a single flow yield are defined as follows.
Reaction rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Methacrylic acid yield (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

1次成形圧力及び2次成形圧力は、プレス機や押出し機のシリンダー部に圧力センサーを差し込み測定した。
また、触媒成形体の品質斑は、同一成形条件で30回成形し各成形品の充填密度の標準偏差より判断した。充填密度は内径27mmのメスシリンダーに成形体を100ml充填し、その質量Xより以下のように算出した。
充填密度(g/L)=X×10
充填密度の標準偏差が8以下であれば、反応管に充填した際の充填長のバラつきが小さいことから、触媒成形体の品質斑が少ないと判断した。
The primary molding pressure and the secondary molding pressure were measured by inserting a pressure sensor into the cylinder part of a press or an extruder.
Further, the quality irregularity of the catalyst molded body was judged 30 times from the standard deviation of the filling density of each molded product after being molded 30 times under the same molding conditions. The filling density was calculated from the mass X of 100 ml of the compact in a measuring cylinder having an inner diameter of 27 mm as follows.
Packing density (g / L) = X × 10
If the standard deviation of the packing density was 8 or less, the variation in the packing length when filling the reaction tube was small, and therefore, it was judged that the quality unevenness of the catalyst molded body was small.

(実施例1)
純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム3.4部、85質量%リン酸水溶液8.0部および硝酸銅1.4部を溶解し、これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ3時間攪拌した。40℃まで冷却後回転翼攪拌機を用いて攪拌しながら、重炭酸セシウム13.5部を純水20部に溶解した溶液を添加して15分間攪拌した。次いで硝酸アンモニウム10.7部を純水20部に溶解した溶液を添加し、更に20分間攪拌した。
Example 1
In 400 parts of pure water, 100 parts of molybdenum trioxide, 3.4 parts of ammonium metavanadate, 8.0 parts of 85 mass% phosphoric acid aqueous solution and 1.4 parts of copper nitrate were dissolved, and the temperature was raised to 95 ° C. while stirring. The mixture was warmed and stirred for 3 hours while maintaining the liquid temperature at 95 ° C. After cooling to 40 ° C., a solution obtained by dissolving 13.5 parts of cesium bicarbonate in 20 parts of pure water was added and stirred for 15 minutes while stirring using a rotary blade stirrer. Next, a solution obtained by dissolving 10.7 parts of ammonium nitrate in 20 parts of pure water was added and further stirred for 20 minutes.

以上のようにして得られた、触媒成分の原料化合物を含有する混合スラリーを並流式スプレー乾燥機を用い、乾燥機入口温度300℃、スラリー噴霧用回転円盤18,000rpmの条件で乾燥した。   The mixed slurry containing the raw material compound of the catalyst component obtained as described above was dried under the conditions of a dryer inlet temperature of 300 ° C. and a slurry spraying rotary disk of 18,000 rpm using a co-current spray dryer.

このようにして得られた乾燥粒子100部に対してヒドロキシプロピルメチルセルロース4部とエチルアルコール50部を混合し、混練り機で粘土状になるまで混練りした。次いで、この不定形の混練り品を油圧式のプレス機を用いて直径45mm、長さ280mmの円柱状に成形した。プレス機による1次成形の圧力は2.2MPaGで行った。   100 parts of the dry particles thus obtained were mixed with 4 parts of hydroxypropylmethylcellulose and 50 parts of ethyl alcohol and kneaded with a kneader until it became a clay. Next, this irregular kneaded product was formed into a cylindrical shape having a diameter of 45 mm and a length of 280 mm using a hydraulic press. The pressure of primary molding by a press machine was 2.2 MPaG.

次いで、この1次成形品を直径50mm、長さ300mmのシリンダーを有するピストン式押出し成形機を用いて押し出し成形し、外径5.5mm、平均長さ5.5mmの円柱状の成形体を得た。   Next, this primary molded product was extruded using a piston-type extrusion molding machine having a cylinder with a diameter of 50 mm and a length of 300 mm to obtain a cylindrical molded body having an outer diameter of 5.5 mm and an average length of 5.5 mm. It was.

この成形体を60℃で16時間乾燥し、次いで空気流通下に380℃で15時間熱処理することで、触媒を得た。得られた触媒の酸素以外の元素組成(以下同じ)は、次の通りであった。
Mo120.51.2Cu0.1Cs1.2
This molded body was dried at 60 ° C. for 16 hours, and then heat-treated at 380 ° C. for 15 hours under air flow to obtain a catalyst. The elemental composition other than oxygen (hereinafter the same) of the obtained catalyst was as follows.
Mo 12 V 0.5 P 1.2 Cu 0.1 Cs 1.2

この触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気10容量%、窒素75容量%の原料ガスを、反応温度280℃、接触時間3.5秒で通じて、メタクロレインの気相接触酸化反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析して、メタクロレインの反応率、メタクリル酸の選択率、およびメタクリル酸の収率を求めた。結果を表1に示す。   This catalyst is filled in a reaction tube, and a raw material gas of 5% by volume of methacrolein, 10% by volume of oxygen, 10% by volume of water vapor and 75% by volume of nitrogen is passed at a reaction temperature of 280 ° C. and a contact time of 3.5 seconds. Rain-phase catalytic oxidation reaction was performed. The product was collected and analyzed by gas chromatography to determine methacrolein reaction rate, methacrylic acid selectivity, and methacrylic acid yield. The results are shown in Table 1.

(実施例2)
実施例1において、1次成形の圧力を4.0MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Example 2)
In Example 1, a catalyst was produced in the same manner as in Example 1 except that the primary molding pressure was changed to 4.0 MPaG, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

(実施例3)
実施例1において、1次成形の圧力を10.0MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Example 3)
In Example 1, except that the primary molding pressure was changed to 10.0 MPaG, a catalyst was produced in the same manner as in Example 1, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

(比較例1)
実施例1において、1次成形の圧力を2.0MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Comparative Example 1)
In Example 1, except that the primary molding pressure was changed to 2.0 MPaG, a catalyst was produced in the same manner as in Example 1, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

(比較例2)
実施例1において、1次成形の圧力を12.0MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Comparative Example 2)
In Example 1, except that the primary molding pressure was changed to 12.0 MPaG, a catalyst was produced in the same manner as in Example 1, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

(比較例3)
実施例1において、プレス機による1次成形を行わなかった以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Comparative Example 3)
In Example 1, a catalyst was produced in the same manner as in Example 1 except that primary molding with a press was not performed, and methacrolein was subjected to a gas phase catalytic oxidation reaction. The results are shown in Table 1.

(比較例4)
実施例1において、1次成形をスクリュー式押出し成形機に変更し、押出し圧力1.0MPaGで行った以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Comparative Example 4)
In Example 1, the catalyst was produced in the same manner as in Example 1 except that the primary molding was changed to a screw type extrusion molding machine and the extrusion pressure was 1.0 MPaG, and the gas phase catalytic oxidation reaction of methacrolein was performed. It was. The results are shown in Table 1.

(実施例4)
実施例1において、エチルアルコールの混合量を55部に変更し、1次成形の圧力を3.0MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
Example 4
In Example 1, the catalyst was produced in the same manner as in Example 1 except that the amount of ethyl alcohol mixed was changed to 55 parts and the primary molding pressure was changed to 3.0 MPaG, and vapor phase catalytic oxidation of methacrolein. Reaction was performed. The results are shown in Table 1.

(比較例5)
実施例4において、1次成形の圧力を1.0MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Comparative Example 5)
In Example 4, a catalyst was produced in the same manner as in Example 1 except that the primary molding pressure was changed to 1.0 MPaG, and methacrolein was subjected to a gas phase catalytic oxidation reaction. The results are shown in Table 1.

(実施例5)
実施例1において、エチルアルコールの混合量を40部に変更し、1次成形の圧力を5.5MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Example 5)
In Example 1, the catalyst was produced in the same manner as in Example 1 except that the amount of ethyl alcohol mixed was changed to 40 parts and the primary molding pressure was changed to 5.5 MPaG, and gas phase catalytic oxidation of methacrolein. Reaction was performed. The results are shown in Table 1.

(比較例6)
実施例5において、1次成形の圧力を1.0MPaGに変更した以外は実施例1と同様にして触媒を製造し、メタクロレインの気相接触酸化反応を行った。結果を表1に示す。
(Comparative Example 6)
In Example 5, a catalyst was produced in the same manner as in Example 1 except that the primary molding pressure was changed to 1.0 MPaG, and a gas phase catalytic oxidation reaction of methacrolein was performed. The results are shown in Table 1.

Figure 2011224482
Figure 2011224482

表1からも明らかなように、実施例では、触媒成形体の品質斑が少なく、反応生成物の収率も高かった。   As is clear from Table 1, in the examples, the quality of the catalyst molded body was small, and the yield of the reaction product was high.

一方、比較例1、3、4、5、6は、実施例に比べ、触媒成形体の品質斑が大きく、比較例2では目的とする反応生成物の収率が低かった。   On the other hand, in Comparative Examples 1, 3, 4, 5, and 6, the quality unevenness of the catalyst molded body was larger than in the Examples, and in Comparative Example 2, the yield of the target reaction product was low.

Claims (6)

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともモリブデンおよびリンを触媒成分として含むメタクリル酸製造用触媒の製造方法において、
(1)触媒成分を含む触媒成分粒子を製造する工程と、
(2)前記触媒成分粒子と液体を混合して混練りする工程と、
(3)混練り品を1次成形する1次成形工程と、
(4)1次成形品をピストン成形機で最終形状に成形する2次成形工程とを含み、
かつ、(4)の工程の2次成形圧力P2が(3)の工程の1次成形圧力P1に対して、(P1−0.2)MPaG〜(P1−8)MPaGの範囲であることを特徴とするメタクリル酸製造用触媒の製造方法。
In a method for producing a methacrylic acid production catalyst containing at least molybdenum and phosphorus as catalyst components, which is used in producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
(1) a step of producing catalyst component particles containing a catalyst component;
(2) mixing and kneading the catalyst component particles and liquid;
(3) a primary molding step of primary molding the kneaded product;
(4) including a secondary molding step of molding the primary molded product into a final shape with a piston molding machine,
The secondary molding pressure P2 in the step (4) is in the range of (P1-0.2) MPaG to (P1-8) MPaG with respect to the primary molding pressure P1 in the step (3). A method for producing a methacrylic acid production catalyst.
1次成形をプレス機で行う請求項1に記載のメタクリル酸製造用触媒の製造方法。   The manufacturing method of the catalyst for methacrylic acid production of Claim 1 which performs primary shaping | molding with a press. 2次成形圧力P2が、0.5MPaG〜5MPaGである請求項1または2に記載のメタクリル酸製造用触媒の製造方法。   The method for producing a catalyst for methacrylic acid production according to claim 1 or 2, wherein the secondary molding pressure P2 is 0.5 MPaG to 5 MPaG. 液体が、水および炭素数が1〜4のアルコールからなる群より選択される1種または2種以上である請求項1〜3のいずれかに記載のメタクリル酸製造用触媒の製造方法。   The method for producing a methacrylic acid production catalyst according to any one of claims 1 to 3, wherein the liquid is one or more selected from the group consisting of water and an alcohol having 1 to 4 carbon atoms. 請求項1〜4のいずれかに記載の製造方法により製造されたメタクリル酸製造用触媒。   The catalyst for methacrylic acid manufacture manufactured by the manufacturing method in any one of Claims 1-4. 請求項5に記載のメタクリル酸製造用触媒の存在下で、メタクロレインを分子状酸素により気相接触酸化するメタクリル酸の製造方法。   A method for producing methacrylic acid, comprising subjecting methacrolein to gas phase catalytic oxidation with molecular oxygen in the presence of the catalyst for producing methacrylic acid according to claim 5.
JP2010097566A 2010-04-21 2010-04-21 Method for producing a catalyst for methacrylic acid production Active JP5473744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097566A JP5473744B2 (en) 2010-04-21 2010-04-21 Method for producing a catalyst for methacrylic acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097566A JP5473744B2 (en) 2010-04-21 2010-04-21 Method for producing a catalyst for methacrylic acid production

Publications (2)

Publication Number Publication Date
JP2011224482A true JP2011224482A (en) 2011-11-10
JP5473744B2 JP5473744B2 (en) 2014-04-16

Family

ID=45040539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097566A Active JP5473744B2 (en) 2010-04-21 2010-04-21 Method for producing a catalyst for methacrylic acid production

Country Status (1)

Country Link
JP (1) JP5473744B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119165A1 (en) * 2014-02-05 2015-08-13 三菱レイヨン株式会社 Method for manufacturing extrusion molding
WO2017094468A1 (en) * 2015-12-01 2017-06-08 三菱レイヨン株式会社 Method for producing catalyst for (meth)acrylic acid production and method for producing (meth)acrylic acid
WO2017221615A1 (en) * 2016-06-21 2017-12-28 三菱ケミカル株式会社 Method for producing methacrylic acid production catalyst, method for producing methacrylic acid, and method for producing methacrylic acid ester
KR20200128734A (en) 2018-03-14 2020-11-16 미쯔비시 케미컬 주식회사 Catalyst molded article, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239724A (en) * 1998-02-25 1999-09-07 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing unsaturated aldehyde and/or unsaturated carboxylic acid, and production of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2000355571A (en) * 1999-06-15 2000-12-26 Nippon Shokubai Co Ltd Catalyst for producing methacrylic acid and production of methacrylic acid
JP2003093882A (en) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, manufacturing method therefor and synthesizing method for unsaturated carboxylic acid using the catalyst
JP2008284568A (en) * 2007-05-16 2008-11-27 Mitsubishi Rayon Co Ltd Tablet forming machine, and method for producing solid catalyst for synthesizing (meth)acrylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239724A (en) * 1998-02-25 1999-09-07 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing unsaturated aldehyde and/or unsaturated carboxylic acid, and production of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2000355571A (en) * 1999-06-15 2000-12-26 Nippon Shokubai Co Ltd Catalyst for producing methacrylic acid and production of methacrylic acid
JP2003093882A (en) * 2001-09-26 2003-04-02 Mitsubishi Rayon Co Ltd Catalyst for synthesizing unsaturated carboxylic acid, manufacturing method therefor and synthesizing method for unsaturated carboxylic acid using the catalyst
JP2008284568A (en) * 2007-05-16 2008-11-27 Mitsubishi Rayon Co Ltd Tablet forming machine, and method for producing solid catalyst for synthesizing (meth)acrylic acid

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119165A1 (en) * 2014-02-05 2015-08-13 三菱レイヨン株式会社 Method for manufacturing extrusion molding
JPWO2015119165A1 (en) * 2014-02-05 2017-03-23 三菱レイヨン株式会社 Method for producing extrusion molded body
KR101843666B1 (en) * 2014-02-05 2018-03-29 미쯔비시 케미컬 주식회사 Method for manufacturing extrusion molding
WO2017094468A1 (en) * 2015-12-01 2017-06-08 三菱レイヨン株式会社 Method for producing catalyst for (meth)acrylic acid production and method for producing (meth)acrylic acid
JPWO2017094468A1 (en) * 2015-12-01 2017-11-30 三菱ケミカル株式会社 Method for producing catalyst for producing (meth) acrylic acid and method for producing (meth) acrylic acid
CN108290143A (en) * 2015-12-01 2018-07-17 三菱化学株式会社 (Methyl)The manufacturing method of acrylic acid catalyst for producing and(Methyl)Method for producing acrylic acid
KR20180084122A (en) 2015-12-01 2018-07-24 미쯔비시 케미컬 주식회사 (Meth) acrylic acid and a process for producing (meth) acrylic acid
KR102051273B1 (en) * 2015-12-01 2020-01-08 미쯔비시 케미컬 주식회사 Method for producing catalyst for producing (meth) acrylic acid and method for producing (meth) acrylic acid
CN108290143B (en) * 2015-12-01 2020-12-11 三菱化学株式会社 Method for producing catalyst for producing (meth) acrylic acid and method for producing (meth) acrylic acid
WO2017221615A1 (en) * 2016-06-21 2017-12-28 三菱ケミカル株式会社 Method for producing methacrylic acid production catalyst, method for producing methacrylic acid, and method for producing methacrylic acid ester
KR20200128734A (en) 2018-03-14 2020-11-16 미쯔비시 케미컬 주식회사 Catalyst molded article, and method for producing unsaturated aldehyde and unsaturated carboxylic acid using the same

Also Published As

Publication number Publication date
JP5473744B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5581693B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5473744B2 (en) Method for producing a catalyst for methacrylic acid production
JP5888233B2 (en) Method for producing a catalyst for methacrylic acid production
KR100783994B1 (en) Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid, method for producing same, and method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4933709B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4179780B2 (en) Method for producing catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid, catalyst produced by this method, and method for synthesizing unsaturated aldehyde and unsaturated carboxylic acid using this catalyst
JP4515769B2 (en) Catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid, and method for producing the same
JP5828260B2 (en) Catalyst production method
JP6372575B2 (en) Method for producing catalyst for producing (meth) acrylic acid and method for producing (meth) acrylic acid
JP2009213970A (en) Method for manufacturing catalyst for synthesizing unsaturated carboxylic acid
JP3936055B2 (en) Method for producing catalyst for synthesis of unsaturated aldehyde and / or unsaturated carboxylic acid and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP4601196B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for synthesizing unsaturated carboxylic acid using the catalyst
JP2011115683A (en) Method for manufacturing catalyst for methacrylic acid production
JP6468183B2 (en) Method for producing extrusion molded body
JP5366646B2 (en) Catalyst and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5090796B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
JP5569180B2 (en) Method for producing a catalyst for methacrylic acid production
JP4464734B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid, catalyst for synthesis of unsaturated carboxylic acid, and method for synthesis of unsaturated carboxylic acid
JP2013034918A (en) Catalyst for producing methacrylic acid, method for producing the catalyst, method for producing methacrylic acid
WO2017221615A1 (en) Method for producing methacrylic acid production catalyst, method for producing methacrylic acid, and method for producing methacrylic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R151 Written notification of patent or utility model registration

Ref document number: 5473744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250