WO2015119132A1 - 前がん病変の進行を予測する方法 - Google Patents

前がん病変の進行を予測する方法 Download PDF

Info

Publication number
WO2015119132A1
WO2015119132A1 PCT/JP2015/053041 JP2015053041W WO2015119132A1 WO 2015119132 A1 WO2015119132 A1 WO 2015119132A1 JP 2015053041 W JP2015053041 W JP 2015053041W WO 2015119132 A1 WO2015119132 A1 WO 2015119132A1
Authority
WO
WIPO (PCT)
Prior art keywords
apkcλ
protein
lesion
antibody
expression
Prior art date
Application number
PCT/JP2015/053041
Other languages
English (en)
French (fr)
Inventor
大野 茂男
大一 水島
史樹 平原
悦子 宮城
美紀子 佐藤
雅明 中谷
Original Assignee
公立大学法人横浜市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人横浜市立大学 filed Critical 公立大学法人横浜市立大学
Priority to JP2015560997A priority Critical patent/JP6607444B2/ja
Publication of WO2015119132A1 publication Critical patent/WO2015119132A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57411Specifically defined cancers of cervix
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/912Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)

Definitions

  • the present invention relates to a method for predicting the progression of a precancerous lesion.
  • Cervical intraepithelial neoplasia is a precursor lesion of cancer that has developed in the cervical epithelium.
  • CIN is diagnosed by HE staining (hematoxylin and eosin staining) of the pathological tissue.
  • CIN1 is mild and the morphology is close to the normal epithelium, CIN3 is highly deformed and the morphology is close to invasive cancer, and intermediate variants CIN2 degree is classified into 3 levels.
  • Cervical cancer and CIN are caused by human papillomavirus (HPV).
  • HPV infection is necessary but not sufficient for carcinogenesis (occurrence of CIN).
  • Only about 1 in 1000 women with HPV progress to invasive cancer of the cervix.
  • infection with carcinogenic HPV is naturally eliminated.
  • Some infections persist and may progress to precancerous lesions, but even if CIN develops, it may improve without progressing to cancer.
  • a diagnosis by biopsy is performed when a high risk is determined by uterine cancer screening. In most cases, when the biopsy does not show lesions, the procedure returns to normal cancer screening, and surgery is indicated if CIN3 is diagnosed. If CIN1 or CIN2 is diagnosed, follow-up is performed, and if necessary, a biopsy is performed again several months later to evaluate the progression of the lesion. Surgery is also indicated if CIN2 persists for a long time. The operation is a cervical conical resection, and the uterus is preserved, but postoperative complications such as postoperative cervical stenosis, bleeding, and increased preterm birth rate may occur.
  • ⁇ CIN grades may worsen depending on the case and become invasive cancer, or it may be relieved and return to normal. Therefore, it is ideal to classify the risks and establish the medical treatment contents according to the risk of each case.
  • conventional diagnostic methods pathological diagnosis of hematoxylin and eosin (HE) staining of cervical tissue
  • HE hematoxylin and eosin
  • a method that has been put to practical use to date is a method of detecting HPV infection from body fluids and tissues collected from the cervix using the fact that HPV is related to the development and exacerbation of cervical intraepithelial lesions ( Roche Diagnostics, Inc., product name: Amplicor HPV; Sekisui Medical, Inc., product name: Clinichip; Qiagen, Inc., product name: Hybrid Capture II, etc.) and overexpressed p16 protein in response to HPV E7 protein (Roche, product name: CINtec p16 Histology).
  • HPV-related auxiliary diagnosis alone is not sufficient to predict exacerbations.
  • atypical Protein Kinase C ⁇ / ⁇ is one of the proteins that control the polarity of cells and plays an important role in the construction and maintenance of normal tissue morphology.
  • Abnormal cell polarity is one of the characteristics of cancer, and it has been reported that aPKC ⁇ / ⁇ is abnormally expressed in various cancers.
  • cervical cancer it has been reported so far that abnormal localization and expression of aPKC ⁇ / ⁇ are poor prognostic factors in invasive cancer (Non-patent Document 1).
  • An object of the present invention is to provide a novel means capable of predicting whether a precancerous lesion of cancer such as cervical cancer will worsen in the future.
  • Inventors of the present application have investigated the relationship between the expression of aPKC ⁇ / ⁇ protein in the precancerous lesion and the subsequent progression of the lesion in CIN cases, and as a result, in the initial biopsy tissue of the precancerous lesion.
  • the expression level of aPKC ⁇ / ⁇ protein is high or the aPKC ⁇ / ⁇ protein is localized in the nucleus, it was found that the CIN grade was significantly deteriorated after follow-up.
  • the present invention was completed by finding that the progression of precancerous lesions can be predicted by examining the expression level and intracellular distribution.
  • the present invention is a method for predicting the progression of a precancerous lesion, comprising examining the expression of aPKC ⁇ / ⁇ protein in a sample isolated from a subject, wherein the expression level of aPKC ⁇ / ⁇ protein is high In some cases and / or when the aPKC ⁇ / ⁇ protein is localized to the nucleus, a method is provided wherein a precancerous lesion is likely to be exacerbated or unlikely to be improved.
  • the present invention also provides a diagnostic agent for predicting the progression of a precancerous lesion, comprising an anti-aPKC ⁇ / ⁇ antibody or an antigen-binding fragment thereof.
  • the present invention provides a diagnostic kit for predicting the progression of a precancerous lesion, comprising an anti-aPKC ⁇ / ⁇ antibody or an antigen-binding fragment thereof.
  • the present invention newly provides a means for auxiliary diagnosis for predicting the progression of precancerous lesions.
  • aPKC ⁇ / ⁇ protein in the pre-cancerous lesion biopsy tissue of patients who have been judged to be at high risk of cancer by cancer screening etc.
  • Spontaneous healing is possible by extending the interval between outpatient visits during follow-up or continuing the follow-up for a longer period if it is predicted that the possibility of aggravation is low or the possibility of improvement is high Surgical treatment of highly likely cases can be avoided.
  • the present invention greatly assists in predicting the progression of precancerous lesions in medical institutions.
  • 2 is a graph showing the relationship between the intracellular distribution of aPKC ⁇ / ⁇ and the progression rate of CIN1 lesions. The progression of CIN1 lesions was defined as “CIN1 progresses to lesions higher than CIN2”.
  • Pre-cancerous lesions refer to non-invasive lesions that can cause malignant tumors, ie, cancer. Morphologically, dysplastic lesions, that is, proliferative lesions with the appearance of cells with traits that differ from normal in the overall size and shape of cells, staining properties of nuclei and cytoplasm, and other types of adenomas It has been known. Also in the present invention, the “precancerous lesion” includes the above-mentioned proliferative dysplastic lesion and adenoma.
  • the “precancerous lesion” targeted in this application is a cervical intraepithelial neoplasia (CIN) before progressing to invasive cancer, and includes CIN1 to CIN3 .
  • CIN cervical intraepithelial neoplasia
  • the diagnostic agent and method of the present invention can be preferably carried out for CIN1 to CIN2, especially CIN1 cases.
  • precancerous lesions of cancers other than cervical cancer including all grades of lesions that are generally recognized as precancerous in the field of cancer treatment and prevention.
  • the present invention can be preferably implemented for precancerous lesions.
  • the expression of aPKC ⁇ / ⁇ protein in the sample separated from the subject is examined.
  • the expression “examine (analyze) protein expression” includes both quantitatively or semi-quantitatively measuring the protein expression level and examining the intracellular distribution of the protein.
  • the prediction of the progression of precancerous lesions can be performed based only on the expression level of aPKC ⁇ / ⁇ protein, or can be performed based only on the intracellular distribution of aPKC ⁇ / ⁇ protein.
  • At least one of the analyzes may be performed, but in the present invention, it is particularly preferable to analyze the intracellular distribution of aPKC ⁇ / ⁇ .
  • the subject subject to the present invention is usually a person who has been determined to have a high risk of cancer by cancer screening or the like and has been subjected to a close examination, and typically has a precancerous lesion. It is a person.
  • the sample used for the expression analysis of aPKC ⁇ / ⁇ protein in the present invention is a cell sample or tissue sample derived from a precancerous lesion, preferably a tissue sample.
  • a tissue sample is a biopsy tissue sample of a subject who is determined to be suspected of having cancer by cancer screening or the like.
  • a cervical epithelial tissue sample or a scraped cell sample is used.
  • aPKC ⁇ / ⁇ protein expression is performed by immunological analysis using an antibody that specifically recognizes aPKC ⁇ / ⁇ protein (anti-aPKC ⁇ / ⁇ antibody) or an antigen-binding fragment thereof, more specifically by immunostaining. It is preferable to implement.
  • immunostaining a sample using an antibody against aPKC ⁇ / ⁇ protein or an antigen-binding fragment thereof the intracellular distribution of aPKC ⁇ / ⁇ protein can be examined by the signal distribution, and aPKC ⁇ / ⁇ protein expression can be determined by the signal intensity. The amount can be examined semi-quantitatively.
  • the expression level of aPKC ⁇ / ⁇ may be measured semi-quantitatively.
  • the expression analysis of aPKC ⁇ / ⁇ protein is not limited to the method of detecting anti-aPKC ⁇ / ⁇ protein itself using an antibody, and the expression level of mRNA of aPKC ⁇ / ⁇ gene is aPKC ⁇ / ⁇ protein. May be measured as the expression level.
  • measurement of the expression level of aPKC ⁇ / ⁇ protein includes measurement of the expression level of mRNA of the aPKC ⁇ / ⁇ gene.
  • Methods for measuring the expression level of mRNA are well known, and techniques such as real-time PCR, Northern blot, and in-situ RT-PCR in the case of tissue samples can be used.
  • techniques for examining the expression level of a protein using an antibody include techniques such as solid-phase ELISA performed by extracting a protein from a precancerous lesion sample.
  • the anti-aPKC ⁇ / ⁇ antibody may be a polyclonal antibody or a monoclonal antibody, but a monoclonal antibody is preferable from the viewpoint of the reproducibility of the expression analysis of aPKC ⁇ / ⁇ .
  • the anti-aPKC ⁇ / ⁇ antibody can also be used in the form of an antibody fragment (antigen-binding fragment) that maintains the binding property to the corresponding antigen, aPKC ⁇ / ⁇ .
  • Antibodies capable of recognizing aPKC ⁇ / ⁇ in distinction from other PKC isoforms are known and commercially available (for example, mouse anti-PKC ⁇ monoclonal antibody of catalog number 610176 of BD Biosciences). In the present invention, such known antibodies can be used. Alternatively, since an antibody production method is a well-known conventional method, an anti-aPKC ⁇ / ⁇ antibody can be prepared and used. Among protein kinase C, aPKC ⁇ has the most similar structure to aPKC ⁇ / ⁇ , but it is known that an antibody that recognizes the region from amino acids 404 to 587 of aPKC ⁇ / ⁇ does not recognize aPKC ⁇ . It has been.
  • the above-mentioned commercially available mouse anti-PKC ⁇ monoclonal antibody is an antibody that recognizes the same region prepared using the region of amino acids 404 to 587 of aPKC ⁇ / ⁇ as an immunogen. Therefore, an antibody that specifically recognizes aPKC ⁇ / ⁇ can be prepared by using a fragment consisting of the region of amino acids 404 to 587 of human aPKC ⁇ as an immunogen.
  • the “antibody recognizing the region from the 404th amino acid to the 587th amino acid” includes an antibody having a part of the region as an epitope.
  • sequences shown in SEQ ID NOs: 1 and 2 in the Sequence Listing are the base sequence and amino acid sequence of human PKC ⁇ registered with NCBI GenBank with an accession number of NM_002740.5.
  • the fragment of aPKC ⁇ / ⁇ protein used as an immunogen can be prepared by conventional methods such as chemical synthesis and genetic engineering based on such sequence information.
  • the chemical synthesis method examples include Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-butyloxycarbonyl method) and the like. Moreover, it can also synthesize
  • a method for producing a polypeptide by a genetic engineering technique is also well known.
  • a fragment comprising the region of amino acids 404 to 587 of aPKC ⁇ / ⁇ can be prepared, for example, by the following method.
  • a cDNA fragment encoding the region of amino acids 404 to 587 of aPKC ⁇ / ⁇ is isolated and amplified from a human cDNA library.
  • a polypeptide fragment encoding the above region can be obtained by incorporating this into an appropriate vector, expressing the polypeptide in an appropriate expression system, and recovering the polypeptide.
  • vectors used and various expression systems are also well known.
  • Various vectors, host cells, reagents, kits Can be appropriately selected and used by those skilled in the art.
  • Human-derived cultured cells are also commercially available and distributed and are easy to obtain.
  • the anti-aPKC ⁇ / ⁇ polyclonal antibody is prepared by, for example, immunizing an animal (except human) with an appropriate fragment of the aPKC ⁇ / ⁇ protein as described above together with an appropriate adjuvant, obtaining antiserum from blood collected from the animal, It can be obtained by purifying a polyclonal antibody in the antiserum. Immunization is usually carried out several times over several weeks in order to increase the antibody titer in the immunized animal.
  • the antibody in the antiserum can be purified by, for example, ammonium sulfate precipitation, fractionation by anion chromatography, affinity column purification, or the like.
  • the anti-aPKC ⁇ / ⁇ monoclonal antibody can be prepared, for example, by a well-known hybridoma method. Specifically, an appropriate fragment of aPKC ⁇ / ⁇ protein is immunized with an appropriate adjuvant together with an animal (excluding humans), and antibody-producing cells such as spleen cells and lymphocytes are collected from the animal, and this is referred to as myeloma cells.
  • a hybridoma is prepared by fusing, and a hybridoma producing an antibody that binds to the aPKC ⁇ / ⁇ protein is screened, and this is propagated to obtain an anti-aPKC ⁇ / ⁇ monoclonal antibody from the culture supernatant. In the screening step, it may be further confirmed that it does not bind to aPKC ⁇ .
  • the “antigen-binding fragment” may be any antibody fragment as long as the binding property of the original antibody to the corresponding antigen (antigen-antibody reactivity) is maintained.
  • Specific examples include, but are not limited to, Fab, F (ab ′) 2 , scFv, and the like.
  • Fab and F (ab ′) 2 can be obtained by treating a monoclonal antibody with a proteolytic enzyme such as papain or pepsin.
  • a method for producing scFv single chain fragment of variable region is also well known.
  • mRNA of a hybridoma produced as described above is extracted, single-stranded cDNA is prepared, and immunoglobulin H chain and L PCR is carried out using primers specific to the chain to amplify the immunoglobulin H chain gene and L chain gene, and these are ligated with a linker, added with an appropriate restriction enzyme site, and introduced into a plasmid vector.
  • ScFv can be obtained by transforming E. coli to express scFv and recovering it from E. coli.
  • the technique of immunostaining of cell samples and tissue samples is a well-known conventional method, and may be performed as usual using an anti-aPKC ⁇ / ⁇ antibody or an antigen-binding fragment thereof as a primary antibody.
  • the immunostaining method is roughly classified into a direct method in which a primary antibody is labeled to detect an antigen and an indirect method in which a labeled secondary antibody is reacted with an unlabeled primary antibody to detect an antigen.
  • the direct method or the indirect method may be used, but in general, the indirect method has higher detection sensitivity, and the indirect method can be preferably employed in the present invention.
  • the term “immunostaining” includes a technique using a signal other than color development.
  • the labeling substance to be bound to the antibody is not particularly limited, and the same labeling substance used in general immunostaining can be used. Specific examples include enzymes, fluorescent dyes, gold particles, radioactive substances and the like. Known enzymes such as alkaline phosphatase, peroxidase (horseradish peroxidase, etc.), ⁇ -galactosidase and the like can be used as the enzyme.
  • a substrate such as a chromogenic substrate, a fluorescent substrate, or a luminescent substrate corresponding to the enzyme may be reacted with the enzyme, and signals such as chromogenic, fluorescent, and luminescent generated as a result may be detected.
  • it is preferable to use an enzyme label and a chromogenic substrate from the viewpoint of ease of signal detection and the like. Color development can be easily observed with an optical microscope.
  • DAB diaminobenzidine, colored brown
  • AEC amino-9-ethylcarbozol, colored red
  • NF new fuchsin, colored in red
  • FR first red, colored in red
  • a signal may be detected by reacting a tissue sample with streptavidin or a hapten antibody to which an enzyme, a fluorescent substance, a radioactive substance, or the like is bound.
  • the sample is post-stained for the purpose of accurately recognizing the cell structure, as in the general immunostaining method.
  • pigments such as hematoxylin (nuclei are stained blue) and methyl green (nuclei are stained blue-green) can be used.
  • detection of immunostaining is performed by color development, a dye is selected in consideration of the combination of the color of immunostaining and the color of post-staining.
  • the expression level of aPKC ⁇ / ⁇ protein in the precancerous lesion sample isolated from the subject is examined, if the expression level is high, the precancerous lesion is likely to be aggravated or improved. It is possible to predict that the possibility of Whether the expression level is high or not, for example, in cases where the precancerous lesions are known to have not worsened (as a result of follow-up over several months) (no change or remission) Whether or not the expression level is higher than the average level of the expression level of the aPKC ⁇ / ⁇ protein in the precancerous lesion may be determined.
  • the signal intensity should be 0 (no expression), 1+, 2+ for reference when determining the level of expression.
  • a typical image of each grade when classified into a small number of stages such as 3+ is prepared in advance as a reference image, and immunity of a precancerous lesion sample derived from a subject is prepared. The grade may be determined by comparing the staining result with these reference images.
  • Such a reference image can be provided, for example, by including it in a diagnostic agent or a package insert of the kit for carrying out the method of the present invention.
  • the expression level can be determined to be high if it is 2+ or more.
  • aPKC ⁇ / ⁇ protein is localized to the nucleus in the precancerous lesion, it is predicted that the precancerous lesion is likely to worsen or is unlikely to improve. be able to.
  • the epidermis of skin, esophagus, cervix, etc. is a squamous epithelium, but aPKC ⁇ / ⁇ protein is localized in the cytoplasm in normal squamous epithelial cells. Therefore, in the precancerous lesion tissue of squamous cell carcinoma, when aPKC ⁇ / ⁇ protein is detected in the nucleus at the same level or more as the cytoplasm, it may be determined that the tissue is localized in the nucleus.
  • the mucosal epithelium of the digestive tract such as the stomach and intestine is a columnar epithelium.
  • the aPKC ⁇ / ⁇ protein is localized at the cell adhesion site.
  • the aPKC ⁇ / ⁇ protein is detected in the nucleus with a certain intensity or more, it may be determined that the protein is localized in the nucleus.
  • a typical example of an immunostained image with no distribution is prepared in advance as a reference image, and the immunostaining result of a precancerous lesion sample derived from a subject is compared with these reference images.
  • the intracellular distribution of aPKC ⁇ / ⁇ may be determined.
  • an immunostained image that is localized in the cell adhesion site and does not show distribution to the nucleus, or an immunostained image in which distribution to the nucleus is also confirmed is used as a reference image
  • the intracellular distribution of aPKC ⁇ / ⁇ can be determined based on comparison with a reference image.
  • a reference image can be provided, for example, by including it in a diagnostic agent or a package insert of the kit for carrying out the method of the present invention.
  • the progression prediction of the precancerous lesion according to the present invention may be performed in combination with a known progression prediction method.
  • a known progression prediction method For predicting the progression of precancerous lesions of cervical cancer, methods for predicting progression based on p16 protein expression and methods for predicting progression based on HPV type are known.
  • progress prediction by examining the expression of p16 protein can be preferably used in combination.
  • p16 protein is overexpressed in response to HPV E7 protein, and precancerous lesions are likely to be worsened or improved when p16 protein is overexpressed in cervical epithelial tissue Is expected to be low.
  • Reagents containing anti-p16 primary antibodies for examining p16 expression are commercially available (Roche, trade name: CINtec p16 Histology), and progress prediction by p16 protein can be performed using such commercial products .
  • p16 protein overexpression is positive when a continuous staining property from the basal cell layer to the parabasal cell layer of the cervical tissue is obtained.
  • Discontinuous staining as a small cell cluster is regarded as overexpression negative.
  • the prediction of the exacerbation risk can be further subdivided in the aPKC ⁇ / ⁇ cytoplasmic localized type exacerbation low risk case. Specifically, if aPKC ⁇ / ⁇ cytoplasmic localization type and p16 positive, the possibility of exacerbation is low, and if it is aPKC ⁇ / ⁇ cytoplasmic localization type and p16 negative, the possibility of exacerbation is extremely low Can be predicted.
  • the anti-aPKC ⁇ / ⁇ antibody or antigen-binding fragment thereof can be used as a diagnostic agent for predicting the possibility of precancerous lesions worsening.
  • the diagnostic agent may further contain other components useful for stabilizing the antibody or antigen-binding fragment thereof.
  • the diagnostic agent may be appropriately combined with other reagents (for example, a labeled secondary antibody, or a substrate such as a chromogenic substrate when the label is an enzyme), and the precancerous lesion may be exacerbated.
  • the diagnostic agent and the diagnostic kit may be attached with, for example, a document on which the above-described reference image for comparing the immunostaining results of the sample is compared.
  • a formalin-fixed paraffin-embedded specimen was sliced into 2 ⁇ m by a conventional method. This section was processed according to the following procedure to prepare a specimen.
  • aPKC ⁇ / ⁇ signal intensity (brown density) was semi-quantitatively classified into 4 classifications (negative, 1+, 2+, 3+), and was less than 1+ and over 2+ Classify as high expression type, and subcellular distribution is classified into cytoplasmic localization type and nuclear localization type (if they are distributed at the same level in nucleus and cytoplasm, it is classified as nuclear localization type) Relevance was evaluated.
  • ⁇ Result 1> Representative micrographs of CIN1 cases with aPKC ⁇ / ⁇ signal intensity of 1+ to 3+ for both intracellular and nuclear localization of aPKC ⁇ / ⁇ . Is shown in FIG. In the cytoplasm localized type (middle), the nucleus is stained blue with hematoxylin, and the aPKC ⁇ / ⁇ protein in the cytoplasm is stained brown with DAB. In the nuclear localization type (bottom), at the signal intensity 1+, the nuclei are stained to the same extent in both blue and brown, but above 2+ the brown staining is darker than blue, and at 3+ the nuclei are It is dyed dark brown so that the blue color cannot be confirmed. Of the 38 cases targeted, there were no cases with negative aPKC ⁇ / ⁇ signal intensity.
  • Figure 2 shows a graph of the results in Table 1.
  • 18 cases of low-expression type in which the signal intensity of aPKC ⁇ / ⁇ was 1+ were 3 cases that subsequently worsened to CIN2 to CIN3 (17% exacerbation rate) Met.
  • This result shows that when the expression level of aPKC ⁇ / ⁇ at the precancerous lesion is high, the lesion is significantly worsened thereafter.
  • Figure 3-1 shows a graph of the results in Table 2.
  • aPKC ⁇ / ⁇ was localized in the cytoplasm at the first biopsy
  • 3 cases were subsequently exacerbated to CIN2 to CIN3.
  • p 0.001
  • Figure 3-2 shows the results of analysis of the cumulative lesion progression rate (exacerbation rate) for 86 cases.
  • the cumulative progression rate over 4 years was 63.1% in the nuclear localization group and 9.4% in the cytoplasmic localization group, and it was confirmed in this analysis that lesions are likely to progress in aPKC ⁇ / ⁇ nuclear localization type cases.
  • the analysis result of the rate of disappearance of product lesions over 4 years is shown in Figure 3-3.
  • the lesion is difficult to disappear in nuclear localization cases, and the nuclear localization of aPKC ⁇ / ⁇ is It was confirmed to be a disease exacerbation factor.
  • Fig. 4 shows a graph of the results in Table 3.
  • p 0.61
  • aPKC ⁇ / ⁇ cytoplasmic localization and p16 negative case exacerbation rate 0%
  • aPKC ⁇ / ⁇ cytoplasmic localization and p16 positive case 25% exacerbation rate
  • aPKC ⁇ / ⁇ nuclear localization case is 68% exacerbation rate
  • HPV infection is a necessary factor for the development of cervical cancer.
  • the risk of developing cervical cancer varies depending on the type of HPV.
  • 13 types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) , 68 type) is considered a high risk, among which the 16 type and the 18 type are particularly high risk.
  • lesion progression risk factors p16 expression and HPV infection and aPKC ⁇ / ⁇ localization pattern
  • aPKC ⁇ / ⁇ , HPV infection and p16 were used as explanatory variables to explain the progression of CIN1 lesions.
  • Variable analysis multivariate Cox regression proportional hazard analysis
  • HPV typing was performed using Clinichip (registered trademark) of Sekisui Medical Co., Ltd. when analyzing from cervical wiping fluid.
  • Clinichip registered trademark
  • a specific site is amplified by PCR
  • the amplified product is cleaved with a restriction enzyme
  • the HPV type is analyzed from the size of the degradation product (Nagano H, Yoshikawa H, Kawana T, et al. Association of multiple human papillomavirus types with vulvar neoplasias. J Obstet Gynaecol Res 1996; 22: 1-8.
  • HPV classification is high-risk type negative, high-risk type other than 16/18, 16/18 type, and unknown (samples to be analyzed do not exist, or sample volume required for HPV detection test cannot be secured) ) In 4 subgroups.
  • FIG. 6 shows the results of analyzing the cumulative lesion progression rate in each subgroup by Kaplan-Meier method and log rank test. Within any HPV-infected subgroup, the nuclear localization of aPKC ⁇ / ⁇ was found to be significantly higher in the risk of lesion progression than cytoplasmic localization.
  • Fig. 7 shows the results of analysis of cumulative lesion disappearance rate by Kaplan-Meier method and log rank test by dividing CIN1 cases into high-risk HPV-positive case groups (excluding HPV16 / 18) and high-risk HPV-negative case groups. Show. In all HPV-infected subgroups, the nuclear localization of aPKC ⁇ / ⁇ was found to be significantly less likely to resolve lesions compared to cytoplasmic localization.
  • ⁇ Analysis results for CIN2 cases> About 40 cases whose diagnosis was CIN2 in the first biopsy were examined, and the relationship between the results of the expression analysis of aPKC ⁇ / ⁇ in the first biopsy tissue and the subsequent outcome of the lesion was examined. As a result, the percentage of improvement without CIN1 to lesions was 26% in the case of nuclear localization type, whereas the improvement rate was 60% in the case of cytoplasmic localization type. Although there was no significant difference in lesion outcome (p 0.46), CIN2 nuclear localization cases tended to be more difficult to improve than cytoplasmic localization cases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 子宮頸がん等のがんの前がん病変が将来増悪するかどうかを予測できる新規な手段が開示されている。本発明の前がん病変の進行を予測する方法は、被検者から分離された試料におけるaPKCλ/ιタンパク質の発現を調べることを含む。aPKCλ/ιタンパク質の発現量が高い場合及び/又はaPKCλ/ιタンパク質が核に局在している場合に、前がん病変が増悪する可能性が高い又は改善する可能性が低いと予測される。aPKCλ/ιタンパク質の発現の解析は、好ましくは、抗aPKCλ/ι抗体又はその抗原結合性断片を用いた免疫染色により行われる。

Description

前がん病変の進行を予測する方法
 本発明は、前がん病変の進行を予測する方法に関する。
 子宮頸部上皮内腫瘍 (Cervical Intraepithelial Neoplasia, CIN)とは、子宮頸部上皮で発生したがんの前駆病変である。CINの診断は病理組織のHE染色(ヘマトキシリンエオジン染色)で行われており、異形度が軽度で形態が正常上皮に近いCIN1、異形度が強く形態が浸潤癌に近いCIN3、その中間的な異形度のCIN2の3段階に分類されている。
 子宮頸がん及びCINはヒトパピローマウイルス(HPV)が原因である。ただし、HPV感染は発がん(CINの発生)に必要ではあるが十分ではない。HPVに感染した女性のうち、子宮頸部の浸潤癌にまで進行するのは、約1000人に1人だけである。発がん性のHPVに感染しても、多くの場合自然に排除される。一部は感染が持続し、前がん病変に進む場合があるが、CINを発症してもがんに進まずに軽快する場合もある。
 子宮がん検診などで高リスクと判断された場合に、生検による診断が行われる。生検で病変が認められない場合の多くは通常のがん検診に戻り、CIN3と診断された場合は手術の適応となる。CIN1又はCIN2と診断された場合は経過観察となり、必要に応じて数か月後に再度生検を行ない病変の進行を評価する。CIN2が長期持続している場合も手術の適応となる。手術は子宮頸部円錐切除であり、子宮は温存されるが、術後の子宮頸管狭窄・出血・早産率の上昇などの術後合併症を生じる可能性がある。
 CINのグレードは症例により増悪して浸潤癌になる場合も、軽快して正常にもどる場合もあるため、リスクを分類して各症例のリスクに合わせた診療内容を立てることが理想である。確かに、これまでの診断方法(子宮頸部組織のヘマトキシリンエオジン(HE)染色の病理学的診断)では、CINグレードを分類することができたが、同じCINグレードの症例であっても病変が将来増悪する場合も軽快する場合もあり、それはHE染色では予測できなかった。
 そこで、これまでCINのグレードの増悪や軽快を予測する診断補助法が開発されてきた。現在までに実用化されている方法は、子宮頸部上皮内病変の発生および増悪にはHPVが関連することを利用し、子宮頸部より採取した体液や組織からHPVの感染を検出する方法(ロッシュ・ダイアグノスティックス社、商品名:アンプリコアHPV; 積水メディカル社、商品名:Clinichip; キアゲン社、商品名:Hybrid Capture IIなど)や、HPV E7蛋白に反応して過剰発現するp16蛋白質を検出する方法(Roche社、商品名:CINtec p16 Histology)である。しかしながら、HPV関連の補助診断だけでは増悪を予見する精度が充分ではない。
 一方、atypical Protein Kinase C λ/ι(aPKCλ/ι)とは、細胞の極性を制御するタンパク質の一つであり、正常な組織形態の構築および維持に重要な役割を果たしている。細胞極性の異常はがんの特徴の一つであり、様々ながんでaPKCλ/ιが発現異常をきたしていることが報告されている。子宮頸がんに関しては、これまでに、浸潤がんにおいてaPKCλ/ιの局在異常と発現異常が予後不良因子であることが報告されている(非特許文献1)。
 しかしながら、子宮頸がんを含め、がんの前駆状態におけるaPKCλ/ιの動態についてはこれまでに報告がなく、前がん病変におけるaPKCλ/ιの病的意義も知られていない。
水島大一ら、「細胞極性制御因子atypical protein kinase C λ/ιの過剰発現および核局在は子宮頸癌の予後不良因子である」、日本産科婦人科学会雑誌 2013年65巻2号704項、平成25年2月1日発行
 本発明の目的は、子宮頸がん等のがんの前がん病変が将来増悪するかどうかを予測できる新規な手段を提供することにある。
 本願発明者らは、CIN症例において前がん病変部におけるaPKCλ/ιタンパク質の発現とその後の該病変部の進行との関係を鋭意に調べた結果、前がん病変部の初回生検組織においてaPKCλ/ιタンパク質の発現量が高い若しくはaPKCλ/ιタンパク質が核に局在する症例は、経過観察後にCINのグレードが有意に増悪することを見出し、従って前がん病変部のaPKCλ/ιタンパク質の発現量や細胞内分布を調べることで前がん病変の進行を予測できることを見出し、本願発明を完成した。
 すなわち、本発明は、被検者から分離された試料におけるaPKCλ/ιタンパク質の発現を調べることを含む、前がん病変の進行を予測する方法であって、aPKCλ/ιタンパク質の発現量が高い場合及び/又はaPKCλ/ιタンパク質が核に局在している場合に、前がん病変が増悪する可能性が高い又は改善する可能性が低いと予測される、方法を提供する。また、本発明は、抗aPKCλ/ι抗体又はその抗原結合性断片を含む、前がん病変の進行を予測するための診断剤を提供する。さらに、本発明は、抗aPKCλ/ι抗体又はその抗原結合性断片を含む、前がん病変の進行を予測するための診断キットを提供する。
 本発明により、前がん病変の進行を予見する補助診断の手段が新たに提供される。がん検診等でがんのリスクが高いと判定され、精密検査の対象となった患者の前がん病変部生検組織におけるaPKCλ/ιタンパク質の発現量や細胞内分布を調べることで、当該患者の前がん病変が将来的に増悪する可能性が高いかどうかを予測することができる。増悪する可能性が高い、ないしは改善する可能性が低いと予測される場合、経過観察中の外来通院間隔を早め、早期に手術治療を施す等の対応をすることができる。増悪する可能性が低いないしは改善する可能性が高いと予測される場合には、経過観察中の外来通院間隔を延長したり、あるいは期間を延長して経過観察を続けることにより、自然治癒の可能性が高い症例の手術治療を回避することができる。本発明は、医療機関における前がん病変の進行予測の大きな補助となる。
抗aPKCλ/ι抗体で免疫染色したCIN1生検組織の顕微鏡像である。aPKCλ/ιの細胞内分布が細胞質局在型であったもの及び核局在型であったもののそれぞれについて、aPKCλ/ιシグナル強度が1+、2+、3+であった顕微鏡像の代表例を示した。参考として、一次抗体を用いずに染色をした正常子宮頸部上皮組織で、シグナル強度が陰性である陰性コントロールの顕微鏡像も併せて示した。スケールバーは100μm。 初回生検がCIN1であった38症例について、初回生検組織の免疫染色のaPKCλ/ιシグナル強度と経過観察後の病変のグレードとの関連性をまとめたグラフである。 初回生検がCIN1であった38症例について、初回生検組織の免疫染色のaPKCλ/ι細胞内分布と経過観察後の病変のグレードとの関連性をまとめたグラフである。 aPKCλ/ιの細胞内分布とCIN1病変の進行率との関係を示すグラフである。CIN1の病変の進行は「CIN1がCIN2以上の病変へ進行すること」と定義した。 aPKCλ/ιの細胞内分布とCIN1病変の消退率との関係を示すグラフである。CIN1の病変の消退は「CIN1が組織学的に正常上皮にもどること」と定義した。 初回生検がCIN1であった38症例について、初回生検組織のp16染色結果と経過観察後の病変のグレードとの関連性をまとめたグラフである。 初回生検がCIN1であった38症例について、初回生検組織のaPKCλ/ι細胞内分布及びp16染色結果を組み合わせて経過観察後の病変のグレードとの関連性を評価した結果である。* p = 0.32、** p = 0.015。 CIN1症例のうちのハイリスクHPV陽性群(HPV16/18症例を除く)とハイリスクHPV陰性群のそれぞれについて、aPKCλ/ιの細胞内分布とCIN1病変の進行率との関係を示したグラフである。 CIN1症例のうちのハイリスクHPV陽性群(HPV16/18症例を除く)とハイリスクHPV陰性群のそれぞれについて、aPKCλ/ιの細胞内分布とCIN1病変の消退率との関係を示したグラフである。
 「前がん病変」とは、悪性腫瘍すなわちがんとなる恐れのある非浸潤性の病変をいう。形態学的には異形成病変、すなわち細胞の全体の大きさや形状、核や細胞質の染色性などにおいて正常と異なる形質をもつ細胞の出現を伴う増殖性の病変であり、そのほか腺腫も含まれることが知られている。本発明においても、「前がん病変」には、上記した増殖性の異形成病変及び腺腫が包含される。
 例えば、子宮頸がんの場合、本願で対象とする「前がん病変」とは、浸潤がんに進展する前の子宮頸部上皮内腫瘍(CIN)であり、CIN1~CIN3が包含される。特に限定されないが、本発明の診断剤及び方法はCIN1~CIN2、とりわけCIN1症例に対して好ましく実施することができる。子宮頸がん以外のがんの前がん病変についても同様であり、がんの治療・予防分野で一般に前がん状態と認識されている病変のあらゆるグレードが包含され、とりわけ初期のグレードの前がん病変に対して本発明を好ましく実施することができる。
 本発明では、被検者から分離された試料におけるaPKCλ/ιタンパク質の発現を調べる。「タンパク質の発現を調べる(解析する)」との表現には、タンパク質の発現量を定量的又は半定量的に測定すること、及びタンパク質の細胞内分布を調べることの両者が包含される。前がん病変の進行予測は、aPKCλ/ιタンパク質の発現量のみに基づいて実施することもできるし、またaPKCλ/ιタンパク質の細胞内分布のみに基づいて実施することもできるので、本発明では少なくともいずれか一方の解析を行えばよいが、本発明では特にaPKCλ/ιの細胞内分布の解析を行なうことが好ましい。
 本発明で対象となる被検者は、通常、がん検診等でがんのリスクが高いと判定され、精密検査の対象となった者であり、典型的には、前がん病変を有する者である。
 本発明でaPKCλ/ιタンパク質の発現解析に供される試料は、前がん病変部に由来する細胞試料又は組織試料であり、好ましくは組織試料である。典型例として、がん検診等でがんの疑いありと判定された被検者の生検組織試料を挙げることができる。子宮頸がんの前がん病変について進行を予測する場合には、子宮頸部上皮組織試料や擦過細胞試料が用いられる。
 aPKCλ/ιタンパク質の発現の解析は、aPKCλ/ιタンパク質を特異的に認識する抗体(抗aPKCλ/ι抗体)又はその抗原結合性断片を用いた免疫学的解析、より具体的には免疫染色により実施することが好ましい。aPKCλ/ιタンパク質に対する抗体又はその抗原結合性断片を用いた試料の免疫染色によれば、シグナルの分布によってaPKCλ/ιタンパク質の細胞内分布を調べることができるほか、シグナル強度によってaPKCλ/ιタンパク質発現量を半定量的に調べることができる。本発明においては、aPKCλ/ιの発現量の測定は半定量的な測定でよい。
 もっとも、aPKCλ/ιタンパク質の発現解析、特に発現量の測定は、抗体を用いて抗aPKCλ/ιタンパク質自体を検出する手法に限定されず、aPKCλ/ι遺伝子のmRNAの発現量をaPKCλ/ιタンパク質の発現量として測定してもよい。本発明では、aPKCλ/ιタンパク質の発現量の測定には、aPKCλ/ι遺伝子のmRNAの発現量の測定も包含される。mRNAの発現量の測定方法は周知であり、リアルタイムPCR、ノーザンブロットや、組織試料の場合にはin situ RT-PCR等の手法を用いることができる。また、抗体を用いてタンパク質の発現量を調べる手法としては、免疫染色の他、前がん病変部試料からタンパク質を抽出して行なわれる固相ELISA等の手法も挙げることができる。
 抗aPKCλ/ι抗体は、ポリクローナル抗体でもモノクローナル抗体でもよいが、aPKCλ/ιの発現解析の再現性等の観点からはモノクローナル抗体が好ましい。また、抗aPKCλ/ι抗体は、対応抗原であるaPKCλ/ιとの結合性を維持した抗体断片(抗原結合性断片)の形態で使用することもできる。
 PKCの他のアイソフォームと区別してaPKCλ/ιを認識できる抗体は公知であり、市販もされている(例えば、BDバイオサイエンス社のカタログ番号610176のマウス抗PKCιモノクローナル抗体)。本発明では、そのような公知の抗体を用いることができる。あるいは、抗体の作製方法は周知の常法であるので、抗aPKCλ/ι抗体を調製して用いることもできる。プロテインキナーゼCの中で最もaPKCλ/ιに構造が類似しているのはaPKCζであるが、aPKCλ/ιの第404番~第587番アミノ酸の領域を認識する抗体はaPKCζを認識しないことが知られている。上記した市販のマウス抗PKCιモノクローナル抗体は、aPKCλ/ιの第404番~第587番アミノ酸の領域を免疫原として用いて調製された、同領域を認識する抗体である。従って、ヒトaPKCιの第404番~第587番アミノ酸の領域からなる断片を免疫原として用いれば、aPKCλ/ιを特異的に認識する抗体を調製することができる。なお、「第404番~第587番アミノ酸の領域を認識する抗体」には、当該領域のうちの一部の領域をエピトープとする抗体が包含される。
 配列表の配列番号1及び2に示した配列は、NCBIのGenBankにNM_002740.5のアクセッション番号で登録されているヒトPKCιの塩基配列およびアミノ酸配列である。免疫原として用いるaPKCλ/ιタンパク質の断片は、このような配列情報に基づき、化学合成、遺伝子工学的手法等の常法により作製することができる。
 化学合成法の具体例としては、例えばFmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等を挙げることができる。また、各種の市販のペプチド合成機を利用して常法により合成することもできる。化学合成の場合は、アミノ酸配列のみに基づいて所望のポリペプチドを合成できる。
 遺伝子工学的手法によるポリペプチドの作製方法も周知である。aPKCλ/ιの第404番~第587番アミノ酸の領域からなる断片は、具体的には、例えば次の通りの方法で作製することができる。まず、ヒトcDNAライブラリーからaPKCλ/ιの第404番~第587番アミノ酸の領域をコードするcDNA断片を単離、増幅する。これを適当なベクターに組み込み、適当な発現系にてポリペプチドを発現させ、このポリペプチドを回収することで、上記の領域をコードするポリペプチド断片を得ることができる。用いるベクターや各種の発現系(細菌発現系、酵母細胞発現系、哺乳動物細胞発現系、昆虫細胞発現系、無細胞発現系など)も周知であり、種々のベクターや宿主細胞、試薬類、キットが市販されているため、当業者であれば適宜選択して使用することができる。ヒト由来培養細胞も市販・分譲されており、入手は容易である。
 抗aPKCλ/ιポリクローナル抗体は、例えば、上記したようなaPKCλ/ιタンパク質の適当な断片を適宜アジュバントと共に動物(ヒトを除く)に免疫し、該動物から採取した血液から抗血清を得て、該抗血清中のポリクローナル抗体を精製することで得ることができる。免疫は、被免疫動物中での抗体価を上昇させるため、通常数週間かけて複数回行なう。抗血清中の抗体の精製は、例えば、硫酸アンモニウム沈殿や陰イオンクロマトグラフィーによる分画、アフィニティーカラム精製等により行なうことができる。
 抗aPKCλ/ιモノクローナル抗体は、例えば、周知のハイブリドーマ法により作製することができる。具体的には、aPKCλ/ιタンパク質の適当な断片を適宜アジュバントと共に動物(ヒトを除く)に免疫し、該動物から脾細胞やリンパ球のような抗体産生細胞を採取し、これをミエローマ細胞と融合させてハイブリドーマを調製し、aPKCλ/ιタンパク質と結合する抗体を産生するハイブリドーマをスクリーニングし、これを増殖させて培養上清から抗aPKCλ/ιモノクローナル抗体を得ることができる。スクリーニング工程では、aPKCζとは結合しないことをさらに確認してもよい。
 「抗原結合性断片」は、もとの抗体の対応抗原に対する結合性(抗原抗体反応性)を維持している限り、いかなる抗体断片であってもよい。具体例としては、Fab、F(ab')2、scFv等を挙げることができるが、これらに限定されない。FabやF(ab')2は、周知の通り、モノクローナル抗体をパパインやペプシンのようなタンパク分解酵素で処理することにより得ることができる。scFv(single chain fragment of variable region、単鎖抗体)の作製方法も周知であり、例えば、上記の通りに作製したハイブリドーマのmRNAを抽出し、一本鎖cDNAを調製し、免疫グロブリンH鎖及びL鎖に特異的なプライマーを用いてPCRを行なって免疫グロブリンH鎖遺伝子及びL鎖遺伝子を増幅し、これらをリンカーで連結し、適切な制限酵素部位を付与してプラスミドベクターに導入し、該ベクターで大腸菌を形質転換してscFvを発現させ、これを大腸菌から回収することにより、scFvを得ることができる。
 細胞試料や組織試料の免疫染色の手法自体は周知の常法であり、抗aPKCλ/ι抗体又はその抗原結合性断片を一次抗体として用いて常法通り実施すればよい。免疫染色法は、一次抗体を標識して抗原の検出を行なう直接法と、非標識の一次抗体に対して標識した二次抗体を反応させ抗原の検出を行なう間接法に大別される。本発明で組織試料中のaPKCλ/ιタンパク質の免疫染色を行なう場合、直接法でも間接法でもよいが、一般に間接法の方が検出感度が高く、本発明でも間接法を好ましく採用できる。なお、本発明において、「免疫染色」との語には、発色以外のシグナルを用いる手法も包含される。
 抗体に結合させる標識物質は特に限定されず、一般的な免疫染色において使用されている標識物質と同様のものを用いることができる。具体例としては、酵素、蛍光色素、金粒子、放射性物質などが挙げられる。酵素としては、アルカリホスファターゼ、ペルオキシダーゼ(セイヨウワサビペルオキシダーゼ等)、βガラクトシダーゼ等、公知のものを用いることができる。酵素を標識物質として用いる場合、該酵素に対応した発色基質、蛍光基質又は発光基質等の基質を該酵素と反応させ、その結果発生する発色、蛍光、発光等のシグナルを検出すればよい。本発明では、シグナル検出の簡便さ等の観点から、酵素標識及び発色基質を用いることが好ましい。発色は光学顕微鏡により容易に観察できる。
 酵素標識としてペルオキシダーゼを用いる場合、発色基質としてはDAB(3,3'-ジアミノベンジジン、茶褐色に発色)、AEC(アミノ-9-エチルカルボゾール、赤色に発色)等を用いることができる。酵素標識としてアルカリホスファターゼを用いる場合、発色基質としてはNF(ニューフクシン、赤色に発色)、FR(ファーストレッド、赤色に発色)等を用いることができる。もっともこれらの具体例には限定されない。
 また、抗体をビオチン又はハプテンで標識して用いることも可能である。その場合、酵素、蛍光物質、放射性物質等を結合したストレプトアビジン又はハプテン抗体等を組織標本に反応させ、シグナルの検出を行なえばよい。
 本発明においてaPKCλ/ιタンパク質を免疫染色する場合、一般的な免疫染色法と同様に、細胞の構造を正確に認識する目的で標本の後染色が行われる。後染色にはヘマトキシリン(核を青色に染色)やメチル緑(核を青緑色に染色)等の色素を使用することができる。免疫染色の検出を発色により行なう場合には、免疫染色の発色と後染色の色の組み合わせに留意して色素を選択する。
 被検者から分離された前がん病変部試料でaPKCλ/ιタンパク質の発現量を調べた結果、発現量が高かった場合には、その前がん病変は増悪する可能性が高い、ないしは改善する可能性が低いと予測することができる。発現量が高いか否かは、例えば、前がん病変が結果的に(数か月程度以上の経過観察の結果として)増悪しなかったこと(変化なし又は軽快)が判明している症例の、当該前がん病変部におけるaPKCλ/ιタンパク質の発現量の平均的なレベルと対比して、それよりも発現量が高いか否かを判断すればよい。発現量の測定を免疫染色のシグナル強度に基づいて半定量的に行なう場合には、発現量の高低を判定する際に参考となるよう、シグナル強度を0(発現なし)、1+、2+、3+等のように少数の段階に分類した場合の各グレードの典型的な画像(図1参照)を参考画像として予め準備しておき、被検者由来の前がん病変部試料の免疫染色結果をこれらの参考画像と対比して、いずれのグレードに属するかを決定してよい。そのような参考画像は、例えば、本発明の方法を実施するための診断剤ないしはキットの添付文書等に含めて提供することができる。そのように複数の参考画像が提供される場合、免疫染色のシグナル強度がどのグレード以上であると増悪する可能性が高いかという基準も併せて提供され得る。シグナル強度を4段階に分類して評価する場合、2+以上であれば発現量が高いと判断することができる。
 また、前がん病変部において、aPKCλ/ιタンパク質の核への局在が生じている場合には、その前がん病変は増悪する可能性が高い、ないしは改善する可能性が低いと予測することができる。皮膚、食道、子宮頸部等の表皮は扁平上皮であるが、正常な扁平上皮細胞ではaPKCλ/ιタンパク質は細胞質に局在している。従って、扁平上皮がんの前がん病変組織においては、核において細胞質と同程度以上にaPKCλ/ιタンパク質が検出される場合には、核に局在していると判断してよい。胃や腸等の消化管の粘膜上皮は円柱上皮であり、正常な円柱上皮ではaPKCλ/ιタンパク質は細胞接着部位に局在するが、円柱上皮に由来する腺がんの前がん病変組織においても同様に、核においてaPKCλ/ιタンパク質が一定以上の強度で検出される場合には核に局在していると判断してよい。被検者から分離された前がん病変部試料の免疫染色結果からaPKCλ/ιの細胞内分布を判定する際に参考となるよう、例えば、細胞質に局在し核への分布は見られない免疫染色像、細胞質と核の両者に分布している免疫染色像(分布が細胞質>核、細胞質=核、細胞質<核など、さらに細かく分けてもよい)、及び核に局在し細胞質への分布は見られない免疫染色像の典型例(図1参照)を参考画像として予め準備しておき、被検者由来の前がん病変部試料の免疫染色結果をこれらの参考画像と対比してaPKCλ/ιの細胞内分布を判定してよい。腺がんの前がん病変部の場合でも同様に、細胞接着部位に局在し核への分布は見られない免疫染色像、核への分布も確認される免疫染色像などを参考画像として予め準備しておき、参考画像との対比によりaPKCλ/ιの細胞内分布を判定することができる。そのような参考画像は、例えば、本発明の方法を実施するための診断剤ないしはキットの添付文書等に含めて提供することができる。
 本発明による前がん病変の進行予測は、公知の進行予測法と組み合わせて実施してよい。子宮頸がんの前がん病変の進行予測では、p16タンパク質発現に基づく進行予測法や、HPVの型に基づく進行予測法が公知であるが、本発明により子宮頸がんの前がん病変の進行予測を行なう場合、例えばp16タンパク質の発現を調べることによる進行予測を好ましく併用することができる。p16タンパク質は、HPV E7タンパク質に反応して過剰発現するタンパク質であり、子宮頸部上皮組織においてp16タンパク質の過剰発現が見られる場合に前がん病変が増悪する可能性が高いないしは改善する可能性が低いと予測される。p16の発現を調べるための抗p16一次抗体を含む試薬が市販されており(Roche社、商品名:CINtec p16 Histology)、そのような市販品を用いてp16タンパク質による進行予測を実施することができる。当該市販の試薬では、抗p16抗体による免疫染色の結果、子宮頸部組織の基底細胞層から傍基底細胞層へと連続した染色性を示した場合にp16タンパク質過剰発現陽性とされ、細胞単体又は小さな細胞集塊としての非連続的な染色性は過剰発現陰性とされる。p16による予測をaPKCλ/ιの細胞内分布に基づく予測と組み合わせて進行予測を行なうと、aPKCλ/ι細胞質局在型の増悪低リスク症例について、さらに増悪リスクの予測を細分化することができる。具体的には、aPKCλ/ι細胞質局在型でかつp16陽性の場合には増悪する可能性が低く、aPKCλ/ι細胞質局在型でかつp16陰性の場合には増悪する可能性が極めて低いと予測することができる。
 HPV型判別と組み合わせて子宮頸がんの前がん病変の進行予測を実施する場合には、例えば、増悪リスクが特に高いとされているHPV16/18の感染の有無とaPKCλ/ιの局在パターンとを組み合わせて進行予測する方法が想定される。一般的なHPV型判定検査では主に13種類の型(16型、18型、31型、33型、35型、39型、45型、51型、52型、56型、58型、59型、68型)がハイリスクとされ、中でも16型及び18型が特にハイリスクとされる。16型及び18型以外のハイリスクHPVについては、感染の有無による増悪予測の精度は必ずしも高くなく、本発明による進行予測を組み合わせることが特に有用であると考えられる。すなわち、HPV型のうちでも16型と18型に着目し、HPV16/18感染ありの患者については増悪する可能性が高いと予想し、HPV16/18感染なしの患者については、aPKCλ/ι核局在であれば増悪する可能性が高く、aPKCλ/ι細胞質局在であれば増悪する可能性が低い、と予測することで、HPV型判定のみに基づく増悪予測よりもさらに精度の高い予測が可能になる。
 抗aPKCλ/ι抗体又はその抗原結合性断片は、前がん病変が増悪する可能性を予測するための診断剤として用いることができる。該診断剤は、抗aPKCλ/ι抗体又はその抗原結合性断片の他、該抗体又はその抗原結合性断片の安定化等に有用な他の成分をさらに含み得る。また、該診断剤は、他の試薬類等(例えば、標識二次抗体、標識が酵素の場合には発色基質等の基質、など)と適宜に組み合わせて、前がん病変が増悪する可能性を予測するための診断キットとして提供することができる。また、診断剤及び診断キットには、例えば、試料の免疫染色結果を対比するための上記した参考画像を掲載した文書が添付されていてよい。
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
<材料及び方法>
 2008年~2011年の間に横浜市大附属病院において生検により診断された子宮頸部上皮内腫瘍グレード1(cervical intraepithelial neoplasia grade 1, CIN1)症例のうち、経過観察(4~6ヶ月)の後に再生検でCIN病変のグレードが評価され、病変の進行もしくは消退が評価された38~86症例を対象とした。各症例の初回生検検体を抗aPKCλ/ι抗体で免疫染色し、得られた結果をその後の病変の進退と対比して、両者の関連性を調べた。
 常法によりホルマリン固定パラフィン包埋した検体を2μmに薄切した。この切片を以下の手順で処理し、標本を作製した。
(1) 脱パラフィン(Xylen, 5分間×2回)、脱水(Ethanol, 5分間×2回)
(2) 水 5分間
(3) 10mMクエン酸バッファー(pH6.0)に浸漬してオートクレーブ(121℃, 15分間)
(4) 自然冷却, 20分間
(5) PBS 5分間
(6) 0.3% 過酸化水素/脱イオン水に浸漬(室温, 30分間)
(7) PBS 5分間(PBSで5分間に2回洗浄)
(8) ニチレイヒストファイン ブロッキング(10% 正常ウサギ血清/PBS、ニチレイ社)
  30分間、室温~37℃
(9) 一次抗体aPKCλ/ι mAb(BD Bioscience cat.610176 Mouse anti PKCιを250倍希釈で使用)+ウサギ血清(体積10%)+PBS
  16時間以上、4℃
(10) PBS 5分間×3回
(11) ニチレイヒストファイン ビオチン化抗マウスIgG二次抗体 30分間
(12) PBS 5分間×3回
(13) ニチレイ ペルオキシダーゼ標識ストレプトアビジン 15分間
(14) PBS 5分間、3回
(15) Diaminobenthidine(DAB)反応2分
(16) ヘマトキシリン1秒
(17) 流水で10分洗浄
(18) 脱水(Ethanol, 5分間×3回)
(19) 透徹(Xylen, 5分間×2回)
 上記の通りに作製した初回生検検体の標本を顕微鏡下で観察した。aPKCλ/ιのシグナル強度(茶色の濃さ)は半定量的に4分類(陰性、1+、2+、3+)した後、1+以下であった低発現型と2+以上であった高発現型に分類し、細胞内分布については細胞質局在型と核局在型に分類(核と細胞質に同程度に分布している場合は核局在型として分類)して、病変の進退との関連性を評価した。統計学的解析はマン・ホイットニー検定により行なった。すなわち、各症例の経過観察後の病変を無し(正常化)=0、CIN1=1、CIN2=2、CIN3=3とスコアリングし、マン・ホイットニー検定により2群間の比較を行ない、p<0.05を有意差ありとした。
 さらに、初回生検でCIN1と診断された計86症例について、aPKCλ/ι細胞内局在群と核局在群に分け、診断後の4年間における各群の累積病変進行率及び累積病変消退率をカプラン-マイヤー法により解析した。群間の差はログランク検定により評価した。
<結果1>
 aPKCλ/ιの細胞内分布が細胞質局在型であったもの及び核局在型であったもののそれぞれについて、aPKCλ/ιシグナル強度が1+~3+であったCIN1症例の代表的な顕微鏡像を図1に示した。細胞質局在型(中段)では、核はヘマトキシリンで青色に染色され、細胞質にあるaPKCλ/ιタンパク質がDABにより茶色に染色されている。核局在型(下段)では、シグナル強度1+では核が青色と茶色の両方で同程度に染色されているが、2+以上では茶色の染色が青色よりも濃くなり、3+では核は青色が確認できない程度に濃い茶色に染色されている。なお、対象とした38症例でaPKCλ/ιシグナル強度が陰性の症例は存在しなかった。
<結果2>
 初回生検標本のaPKCλ/ιシグナル強度を半定量的に分類した結果、1+(低発現型)が18例、2+~3+(高発現型)が20例であった。各症例の経過観察後の病変の転帰は下記表1の通りであった。
Figure JPOXMLDOC01-appb-T000001
 表1の結果をグラフ化したものを図2に示す。初回生検でCIN1と判定された症例のうち、aPKCλ/ιのシグナル強度が1+であった低発現型の18症例では、その後CIN2~CIN3に増悪した症例が3例(増悪率17%)であった。これに対し、シグナル強度が2+又は3+であった高発現型の20症例では、その後CIN2~CIN3に増悪した症例が13症例(増悪率65%)であり、低発現型と比べて有意に(p=0.0015)増悪していた。この結果は、前がん病変部におけるaPKCλ/ιの発現量が高い場合にはその後有意に病変が増悪することを示している。
 また、初回生検標本のaPKCλ/ιの細胞内局在を分類した結果、CP(細胞質に局在)に分類された症例が19例、N(核に局在、又は核と細胞質に同程度に分布)に分類された症例が19例であった。各症例の経過観察後の病変の転帰は下記表2の通りであった。
Figure JPOXMLDOC01-appb-T000002
 表2の結果をグラフ化したものを図3-1に示す。初回生検でaPKCλ/ιが細胞質に局在していた19症例では、その後CIN2~CIN3に増悪した症例が3例のみ(増悪率15%)であった。一方、核局在型の19症例ではその後に増悪した症例が13例(増悪率68%)であり、細胞質局在型症例と比べて有意に(p=0.001)増悪していた。この結果は、前がん病変部におけるaPKCλ/ιの細胞内分布が核局在型であった場合にはその後有意に病変が増悪することを示している。
 86症例についての累積病変進行率(増悪率)の解析結果を図3-2に示す。4年間の累積進行率は核局在群では63.1%、細胞質局在群では9.4%であり、aPKCλ/ι核局在型症例では病変が進行しやすいことが本解析においても確認された。また、4年間の積病変消退率の解析結果を図3-3に示す。CIN1病変消退率(CIN1の消退=「CIN1が組織学的に正常上皮に戻ること」と定義)として見たときも、核局在症例では病変が消退しにくく、aPKCλ/ιの核局在は病変増悪因子であることが確認された。
<結果3>
 市販のp16染色キット(CINtec p16 Histology、ロシュ社)をキット添付のプロトコールに従って使用し、初回生検標本のp16の発現量を調べてp16陰性又はp16陽性に分類した。その結果、p16陰性が11例、p16陽性が27例であった。各症例の経過観察後の病変の転帰は下記表3の通りであった。
Figure JPOXMLDOC01-appb-T000003
 表3の結果をグラフ化したものを図4に示す。初回生検でp16陰性であった症例では、その後CIN2~CIN3に増悪した症例が3例(増悪率27%)であり、一方でp16陽性であった症例ではその後増悪した症例が13例(増悪率48%)であった。増悪率に有意差は認められなかったが(p=0.61)、p16陽性であった症例はその後増悪する傾向にあるといえる。
<結果4>
 結果2及び3の結果から、aPKCλ/ιの細胞内分布とp16評価を組み合わせて初回生検標本を分類し、経過観察後の各症例の病変の転帰との関連を調べた。結果を表4及び図5に示す。
Figure JPOXMLDOC01-appb-T000004
 初回生検でCIN1であった38症例のうち、
aPKCλ/ι細胞質局在かつp16陰性の症例は増悪率0%、
aPKCλ/ι細胞質局在かつp16陽性の症例は増悪率25%、
aPKCλ/ι核局在の症例は増悪率68%、
という結果であった。aPKCλ/ιが細胞質局在型であった症例については、p16評価を併用するとさらにリスク分類を細分化することができる。
<結果5>
 HPV感染は子宮頸がんの発がんに必要な因子である。HPVの型により子宮頸がん発症リスクは異なる。一般的なHPV型判定検査では主に13種類の型(16型、18型、31型、33型、35型、39型、45型、51型、52型、56型、58型、59型、68型)がハイリスクとされ、中でも16型及び18型が特にハイリスクとされる。病変進行のリスク因子(p16の発現に加えさらにHPV感染とaPKCλ/ι局在パターン)と病変の進行の関連を調べるため、aPKCλ/ι、HPV感染及びp16を説明変数としてCIN1病変の進行について多変量解析(多変量Cox回帰比例ハザード分析)を行なった。HPVのタイピングは、子宮頸部のぬぐい液から解析する場合は積水メディカル社のClinichip(登録商標)を使用して行なった。ホルマリン固定パラフィン包埋からDNAを抽出する場合は、PCRで特異的な部位を増幅し、増幅産物を制限酵素で切断し、その分解産物の大きさからHPVの型を解析する方法(Nagano H, Yoshikawa H, Kawana T, et al. Association of multiple human papillomavirus types with vulvar neoplasias. J Obstet Gynaecol Res 1996; 22: 1-8.)を用いた。HPV感染については、16型、18型、31型、33型、35型、39型、45型、51型、52型、56型、58型、59型、68型をハイリスクHPVと定義した。HPVの分類は、ハイリスク型陰性、16/18以外のハイリスク型、16/18型、及び不明(解析するサンプルが現存しないか,HPVの検出検査のために必要な検体量が確保できない検体)の4つのサブグループに分類した。
 CIN1病変の増悪と各説明変数の関連をコックス回帰比例ハザード分析により評価した結果を表5に示す。aPKCλ/ιが細胞質に局在するCIN1症例の病変が進行する割合を1とすると,aPKCλ/ιが核に局在する症例で病変が進行する割合は3.59であった(p=0.02)。同様に、HPV16/18型陽性の症例はHPV陰性の症例と比較して、病変が増悪しやすかった。aPKCλ/ιの核局在とHPV16/18型は、それぞれ独立に、CIN1病変が進行するリスク因子であることが明らかとなった。
Figure JPOXMLDOC01-appb-T000005
 CIN1症例の中でHPV16/18型以外のハイリスクHPV陽性症例群とハイリスクHPV陰性症例群の2つのサブグループとに分けて解析をした。各サブグループ内で累積病変進行率をカプラン-マイヤー法及びログランク検定にて解析した結果を図6に示す。いずれのHPV感染サブグループ内でも、aPKCλ/ιの核局在は細胞質局在と比較して病変進行リスクが有意に高いことが明らかとなった。ハイリスクHPV陽性(16/18型以外)の症例でも、aPKCλ/ιが細胞質局在の場合は4年後も病変の増悪が認められず(図6左)、またハイリスクHPV陰性でもaPKCλ/ιが核局在だと病変の増悪が認められた(図6右)。従って本発明の方法の適用により、例えば16/18型以外のハイリスクHPV陽性症例の中でも、病変が増悪する可能性が高い症例と低い症例を精度よく予測することができる。
 CIN1病変の消退と各説明変数の関連をコックス回帰比例ハザード分析により評価した結果を表6に示す。aPKCλ/ιの核局在とHPV16/18型は、それぞれ独立に、CIN1病変の消退を予測する因子であることが明らかとなった。aPKCλ/ιが細胞質に局在するCIN1症例の病変が消退する割合を1とすると,aPKCλ/ιが核に局在する症例で病変が消退する割合は0.41であった(p=0.02)。同様に、HPV16/18型陽性の症例はHPV陰性の症例と比較して、病変が消退しにくいことが明らかとなった。
Figure JPOXMLDOC01-appb-T000006
 CIN1症例をハイリスクHPV陽性症例群(HPV16/18型を除く)とハイリスクHPV陰性症例群とに分けて累積病変消退率をカプラン-マイヤー法及びログランク検定にて解析した結果を図7に示す。いずれのHPV感染サブグループでも、aPKCλ/ιの核局在は細胞質局在と比較して病変が有意に消退しにくいことが明らかとなった。
<CIN2症例を対象とした解析結果>
 初回生検での診断結果がCIN2であった約40症例を対象とし、初回生検組織のaPKCλ/ιの発現解析結果とその後の病変の転帰との関連を調べた。その結果、核局在型症例ではCIN1~病変なしに改善した割合が26%であるのに対し、細胞質局在型症例では改善率は60%であった。病変の転帰に有意差は認められなかったものの(p=0.46)、CIN2の核局在型症例では細胞質局在型症例よりも病変が改善し難い傾向が認められた。

Claims (14)

  1.  被検者から分離された試料におけるaPKCλ/ιタンパク質の発現を調べることを含む、前がん病変の進行を予測する方法であって、aPKCλ/ιタンパク質の発現量が高い場合及び/又はaPKCλ/ιタンパク質が核に局在している場合に、前がん病変が増悪する可能性が高い又は改善する可能性が低いと予測される、方法。
  2.  抗aPKCλ/ι抗体又はその抗原結合性断片を用いた試料の免疫染色によりaPKCλ/ιタンパク質の発現を調べる、請求項1記載の方法。
  3.  aPKCλ/ιタンパク質の細胞内分布を調べることを含む、請求項1又は2記載の方法。
  4.  前記試料が組織試料である、請求項1ないし3のいずれか1項に記載の方法。
  5.  前記前がん病変が子宮頸がんの前がん病変である、請求項1ないし4のいずれか1項に記載の方法。
  6.  前記前がん病変が子宮頸部上皮内腫瘍グレード1である、請求項5記載の方法。
  7.  前記前がん病変が子宮頸部上皮内腫瘍グレード2であり、aPKCλ/ιタンパク質の細胞内分布を調べることによりaPKCλ/ιタンパク質の発現を調べる、請求項5記載の方法。
  8.  前記試料におけるp16タンパク質の発現を調べることをさらに含む、請求項1ないし7のいずれか1項に記載の方法。
  9.  ヒトパピローマウイルス16型及び/又は18型に感染しているか否かの検査と組み合わせて行なわれる、請求項1ないし8のいずれか1項に記載の方法。
  10.  抗aPKCλ/ι抗体又はその抗原結合性断片を含む、前がん病変の進行を予測するための診断剤。
  11.  前記前がん病変は子宮頸がんの前がん病変である、請求項10記載の診断剤。
  12.  前記前がん病変は子宮頸部上皮内腫瘍グレード1又はグレード2である、請求項11記載の診断剤。
  13.  p16タンパク質に対する抗体又はその抗原結合性断片と組み合わせて用いられる、請求項10ないし12のいずれか1項に記載の診断剤。
  14.  抗aPKCλ/ι抗体又はその抗原結合性断片を含む、前がん病変の進行を予測するための診断キット。
PCT/JP2015/053041 2014-02-04 2015-02-04 前がん病変の進行を予測する方法 WO2015119132A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015560997A JP6607444B2 (ja) 2014-02-04 2015-02-04 子宮頸がんの前がん病変の進行を予測するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014019201 2014-02-04
JP2014-019201 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119132A1 true WO2015119132A1 (ja) 2015-08-13

Family

ID=53777936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053041 WO2015119132A1 (ja) 2014-02-04 2015-02-04 前がん病変の進行を予測する方法

Country Status (2)

Country Link
JP (1) JP6607444B2 (ja)
WO (1) WO2015119132A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049510A1 (ja) 2019-09-09 2021-03-18 aiwell株式会社 情報処理システムおよびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505247A (ja) * 2000-07-24 2004-02-19 メディカル リサーチ カウンシル 子宮頚部悪性腫瘍につながる異常の検出
JP2012526286A (ja) * 2009-05-07 2012-10-25 オンコヘルス コーポレーション ヒトパピローマウイルス(hpv)およびhpv関連癌の初期段階および後期段階の検出、スクリーニング、および診断のための高度または≧cin2の同定
WO2013039394A1 (en) * 2011-09-15 2013-03-21 Self-Screen B.V. Methylation analysis on self-samples as triage tool for hpv-positive women

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004505247A (ja) * 2000-07-24 2004-02-19 メディカル リサーチ カウンシル 子宮頚部悪性腫瘍につながる異常の検出
JP2012526286A (ja) * 2009-05-07 2012-10-25 オンコヘルス コーポレーション ヒトパピローマウイルス(hpv)およびhpv関連癌の初期段階および後期段階の検出、スクリーニング、および診断のための高度または≧cin2の同定
WO2013039394A1 (en) * 2011-09-15 2013-03-21 Self-Screen B.V. Methylation analysis on self-samples as triage tool for hpv-positive women

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU XIAOJIAO ET AL.: "Disruption of precise regulation of alphaPKC expression and cellular localization is associated with cervical cancer progression", ARCHIVES OF GYNECOLOGY AND OBSTETRICS, vol. 288, no. 2, August 2013 (2013-08-01), pages 401 - 8, XP055218259, [retrieved on 20130227] *
SHOICHIRO TSUGANE ET AL.: "Biomarkers in predicting cancer risk and their application for cancer prevention", CELL TECHNOLOGY, vol. 26, no. 9, 22 August 2007 (2007-08-22), pages 1009 - 1013 *
TAICHI MIZUSHIMA ET AL.: "Saibo Kyokusei Seigyo Inshi atypical protein kinaseClambda/iota no Kajo Hatsugen Oyobi Kaku Kyokuzai wa Shikyukeigan no Yogo Furyo Inshi de aru", ACTA OBSTETRICA ET GYNAECOLOGIA JAPONICA, vol. 65, no. 2, 1 February 2013 (2013-02-01), pages 704 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049510A1 (ja) 2019-09-09 2021-03-18 aiwell株式会社 情報処理システムおよびプログラム
JP2021043565A (ja) * 2019-09-09 2021-03-18 aiwell株式会社 情報処理システムおよびプログラム
JP7215682B2 (ja) 2019-09-09 2023-01-31 aiwell株式会社 情報処理システムおよびプログラム

Also Published As

Publication number Publication date
JP6607444B2 (ja) 2019-11-20
JPWO2015119132A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
CA2718707C (en) Method for detection of liver cancer cell using anti-glypican-3 antibody
JP6180931B2 (ja) 癌の診断および/または予後のための新規な抗体
US20090155799A1 (en) Methods for diagnosing pancreatic cancer using reg4 protein
JP5819851B2 (ja) Hpv関連の癌の治療及びスクリーニングのための細胞に基づいた高処理能力hpv免疫アッセイ
US20220412976A1 (en) Clinical management of oropharyngeal squamous cell carcinoma
JP2012526286A (ja) ヒトパピローマウイルス(hpv)およびhpv関連癌の初期段階および後期段階の検出、スクリーニング、および診断のための高度または≧cin2の同定
Yeh Measuring HER-2 in breast cancer: immunohistochemistry, FISH, or ELISA?
US20100316635A1 (en) Kit for diagnosis of breast cancer using herceptin, a composition comprising herceptin and a method for detecting herceptin-sensitive her2 overexpressed cell using the same
US20230058124A1 (en) Preeclampsia biomarkers and use thereof
JP7544930B2 (ja) 乳がんのバイオマーカとしてのbmmf1 repタンパク質の使用
WO2011090166A1 (ja) 食道癌マーカー
JP6607444B2 (ja) 子宮頸がんの前がん病変の進行を予測するための方法
JP2022521535A (ja) 前立腺がんのバイオマーカとしてのbmmf1 repタンパク質の使用
RU2678135C1 (ru) Композиция и способ для детектирования злокачественного неопластического заболевания
EP4025914A1 (en) Methods for confirming detection and evaluating the progression of a prostate cancer and related therapies
EP4403581A1 (en) Anti-ck2 alpha antibody or fragment thereof
JP7562127B2 (ja) 子宮内膜癌の発症の予測方法
US20150160220A1 (en) Methods to predict progression of berret's esophagus to high grade dysplasia esophageal adenocarcinoma
JP6602481B2 (ja) 予後診断方法及び該方法において有用なキット
WO2011086973A1 (ja) 活性型egfr特異抗体
JP2014534432A (ja) 乳癌用の予測バイオマーカ
WO2019234176A1 (en) Novel biomarkers for carcinoma diagnosis
WO2016133860A1 (en) Cancer biomarkers and methods of use thereof
WO2015114350A1 (en) Biomarker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746807

Country of ref document: EP

Kind code of ref document: A1