WO2015119082A1 - Spring and spring production method - Google Patents

Spring and spring production method Download PDF

Info

Publication number
WO2015119082A1
WO2015119082A1 PCT/JP2015/052876 JP2015052876W WO2015119082A1 WO 2015119082 A1 WO2015119082 A1 WO 2015119082A1 JP 2015052876 W JP2015052876 W JP 2015052876W WO 2015119082 A1 WO2015119082 A1 WO 2015119082A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
spring wire
wire
less
depth
Prior art date
Application number
PCT/JP2015/052876
Other languages
French (fr)
Japanese (ja)
Inventor
英利 吉川
Original Assignee
中央発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中央発條株式会社 filed Critical 中央発條株式会社
Publication of WO2015119082A1 publication Critical patent/WO2015119082A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/024Covers or coatings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/06Wound springs with turns lying in cylindrical surfaces

Definitions

  • the technology disclosed in this specification relates to a spring and a method for manufacturing the spring.
  • the present invention relates to a technique for improving the fatigue strength of a spring (for example, a valve spring or a spring for a clutch).
  • the spring has high fatigue strength by keeping the surface roughness of the spring low and applying compressive residual stress to the surface of the spring.
  • the technique disclosed in Japanese Patent Application Laid-Open No. 2004-346424 provides sufficient fatigue strength. It has been found that there are cases where it cannot be improved.
  • a spring having a relatively small diameter for example, 2.0 to 6.5 mm
  • This specification aims at providing the technique for improving the fatigue strength of a spring more.
  • the spring disclosed in this specification has a spring wire coiled in a spiral shape. On the surface of the spring wire, a plurality of micro pockets extending in the longitudinal direction of the spring wire and having a width in a direction perpendicular to the longitudinal direction of 10 ⁇ m or less are formed. And the depth of each micro pocket is 2.0 micrometers or less.
  • the depth of the micro pocket formed on the surface of the spring wire is 2.0 ⁇ m or less.
  • the depth d of micro pockets sin-called wire-drawing scratches formed on the surface of the spring wire during spring production (at the time of wire drawing) is extremely important for the fatigue strength of the spring. It has been found. As will be described in detail later, when the depth d of the micro pocket is 2.0 ⁇ m or less, the fatigue strength is remarkably improved. In this spring, since the depth d of the micro pocket is 2.0 ⁇ m or less, it can have excellent fatigue strength.
  • the present specification also discloses a spring manufacturing method for manufacturing the above-described spring. That is, the spring manufacturing method disclosed in the present specification includes a coiling process in which the spring wire is coiled in a spiral shape, a first shot peening process in which the first projecting material is projected onto the surface of the spring wire after the coiling process, After the first shot peening process, there is a nitriding process for nitriding the surface of the spring wire, and a second shot peening process for projecting the second projecting material onto the surface of the spring wire after the nitriding process.
  • a plurality of micro pockets extending in the longitudinal direction of the spring wire and having a width in the direction perpendicular to the longitudinal direction of 10 ⁇ m or less are formed.
  • the first shot peening process is performed so that the depth of the micro pocket is 2.0 ⁇ m or less.
  • the first shot peening process is performed before nitriding the surface of the spring wire. For this reason, before the surface of a spring wire hardens
  • Sectional drawing of the spring (spring wire) which concerns on a present Example The figure which shows typically the micro pocket formed in the surface of a spring wire (cross-sectional view which expands and shows the surface of a spring wire). The figure which shows typically the shape of a micro pocket when the surface of a spring wire is planarly viewed.
  • the flowchart which shows the manufacturing process of the spring of a present Example.
  • the figure which shows the experimental result which measured the relationship between the depth of a micro pocket, and 108 8 times fatigue strength.
  • the spring wire may have a steel layer and a nitride compound layer formed on the surface of the steel layer.
  • a nitride compound layer formed on the surface of the spring wire, the strength of the spring can be increased.
  • the steel layer is, in mass%, C: 0.50 to 0.80, Si: 1.30 to 2.50, Mn: 0.30 to 1.00, Cr: 0. .40 to 1.40 may be contained. Furthermore, the steel material layer may further contain at least one of Mo, V, W, Ni, and Nb. According to such a configuration, since the steel material for forming the spring is formed of an appropriate material, the fatigue strength can be further improved.
  • the spring 20 which concerns on an Example is demonstrated.
  • the spring 20 is used as a valve spring for an automobile engine.
  • the spring 20 is configured by a spring wire 10 formed in a coil shape (spiral shape), and a predetermined interval is provided between adjacent spring wires 10.
  • the diameter of the spring wire is set to ⁇ 2.0 mm to 6.5 mm.
  • micro pockets formed on the surface of the spring wire greatly affect the fatigue strength of the spring.
  • the spring wire 10 is composed of a steel material layer 12 and a compound layer 14.
  • the steel material layer 12 is formed by heat-treating the spring wire.
  • the steel material layer 12 (namely, spring wire) may contain, for example, C (carbon), Si (silicon), Mn (manganese), Cr (chromium), iron, and inevitable impurities.
  • C carbon
  • Si silicon
  • Mn manganese
  • Cr chromium
  • iron iron
  • the ratio of each element is mass%
  • C is 0.50 to 0.80%
  • Si is 1.30 to 2.50%
  • Mn 0.30 to 1.00%
  • Cr is 0. .40 to 1.40%
  • the balance may be Fe (iron) and inevitable impurities.
  • C is 0.50% or more is that when C is less than 0.50%, it is difficult to satisfy both durability and sag resistance.
  • the reason why C is set to 0.80% or less is that when C exceeds 0.80%, the moldability is lowered, and the possibility of cracking or breakage during processing increases.
  • the reason why Si is 1.30% or more is that when Si is less than 1.30%, sufficient sag resistance cannot be obtained.
  • the reason why Si is set to 2.50% or less is that when Si exceeds 2.50%, the amount of decarburization during heat treatment exceeds the allowable range and adversely affects the durability.
  • the reason why Mn is 0.30% or more is that sufficient strength cannot be obtained when Mn is less than 0.30%.
  • the reason why Mn is set to 1.00% or less is that when Mn exceeds 1.00%, the amount of retained austenite becomes excessive.
  • the reason why Cr is 0.40% or more is that when the Cr is less than 0.40%, sufficient solid solution strength and hardenability cannot be obtained.
  • the reason why Cr is made 1.40% or less is that when Cr exceeds 1.40%, the amount of retained austenite becomes excessive.
  • the steel material layer 12 may further contain W (tungsten).
  • W tungsten
  • the proportion of W is preferably about 0.08 to 0.20% by mass.
  • W is made 0.08% or more is that when W is less than 0.08%, the effect of adding W (improving hardenability, increasing strength, etc.) cannot be obtained.
  • W is made 0.20% or less is that when W exceeds 0.20%, coarse carbides are formed, and mechanical properties such as ductility are deteriorated.
  • the steel material layer 12 may contain at least one of Mo (molybdenum), V (vanadium), Ni (nickel), and Nb (niobium) together with or in place of W.
  • Mo molecular weight
  • V vanadium
  • Ni nickel
  • Nb niobium
  • the strength of steel can be improved and the hardenability can be improved.
  • V the magnitude
  • the toughness and ductility after heat processing can be improved by containing Ni.
  • by containing Nb crystal grains can be refined, and toughness and ductility can be improved.
  • the ratio of the element is mass%
  • Mo is in the range of 0.05 to 0.25%
  • V is 0.05 to 0.
  • the range is .60%
  • Ni is 0.20 to 0.40%
  • Nb is 0.005 to 0.300%.
  • Mo is 0.05% or more
  • Mo is set to 0.25% or less
  • Mo exceeds 0.25%
  • V is set to 0.05% or more
  • V vanadium carbide itself grows and becomes large, which adversely affects durability.
  • Ni 0.20% or more is that when Ni is less than 0.20%, the effect of improving toughness and ductility cannot be obtained.
  • Ni is set to 0.40% or less is that when Ni exceeds 0.40%, the effect of increasing toughness and ductility is saturated.
  • Nb is 0.005% or more is that when Nb is less than 0.005%, the crystal grains cannot be sufficiently refined.
  • Nb 0.300% or less is that when Nb exceeds 0.300%, the hardenability deteriorates.
  • a compound layer 14 is formed on the entire surface of the steel material layer 12.
  • the thickness of the compound layer 14 is 7 ⁇ m or less. Since the thickness of the compound layer 14 is 7 ⁇ m or less, a decrease in strength due to the brittleness of the compound layer can be prevented.
  • the compound layer 14 contains N (nitrogen) in addition to C, Si, Mn, Cr, Fe and unavoidable impurities contained in the steel material layer 12, and the compound layer 14 contains Si, Mn, Cr, A compound (nitride) of N and a metal element such as Fe exists.
  • the concentration of N in the compound layer 14 is not particularly limited. For example, N is in a range of 5.0 to 6.1% by mass%.
  • a micro pocket 16 is formed on the surface of the spring wire 10.
  • the micro pocket 16 is a scratch having a minute depth formed on the surface of the spring wire 10, and a plurality of micro pockets 16 are formed on the surface of the spring wire 10.
  • the micro pocket 16 is a wire wound formed mainly when a material (wire material) is drawn. Since the micro pocket 16 is formed by wire drawing, the micro pocket 16 extends in the longitudinal direction of the spring wire 10 (X-axis direction in FIG. 3).
  • the width w (see FIG. 3) in the direction orthogonal to the longitudinal direction of each micro pocket 16 is 10 ⁇ m or less. That is, when the width w of the micro pocket 16 exceeds 10 ⁇ m, the strength of the spring wire 10 is greatly reduced. For this reason, the processing conditions and the like at the time of wire drawing are adjusted so that the width w of the micro pocket does not exceed 10 ⁇ m.
  • the compound layer 14 is formed on the surface by coiling the drawn spring wire and then nitriding. That is, after a wire wound is formed on the spring wire by wire drawing, nitriding is performed on the spring wire. Therefore, as shown in FIG. 2, scratches 16 (that is, micro pockets 16) are also formed on the surface of the compound layer 14 due to the wire wound formed in the steel material layer 12. For this reason, the depth d of the micro pocket 16 becomes a depth proportional to the depth of the wire wound of the steel material layer 12. As is clear from the above, the depth d of the micro pocket 16 is reduced if the depth of the wire wound of the steel layer 12 is reduced. In the present embodiment, the depth of the micro pocket 16 formed in the spring wire 10 is 2.0 ⁇ m or less. As shown in the experimental results described later, the fatigue strength of the spring 20 can be dramatically improved by setting the depth of the micro pocket 16 formed on the surface of the spring wire 10 to 2.0 ⁇ m or less.
  • the spring wire is formed into a coil shape by a coiling machine (S12).
  • the spring wire is produced by drawing a material (wire). For this reason, a plurality of wire drawing scratches are formed on the surface of the spring wire.
  • the diameter of the spring wire after drawing is set to ⁇ 2.0 to 6.5 mm.
  • the drawn spring wire is formed into a coil shape (spiral shape) by a known coiling machine. Note that the spring wire is in mass%, C: 0.50 to 0.80, Si: 1.30 to 2.50, Mn: 0.30 to 1.00, Cr: 0.40 to 1.40, The balance contains iron and inevitable impurities.
  • the spring wire may further include, by mass%, W: 0.08 to 0.20, and / or Mo: 0.05 to 0.25, and / or V: 0.05 to 0.60, and / or Alternatively, Ni: 0.20 to 0.40 and / or Nb: 0.005 to 0.300 can be contained.
  • the end of the spring wire is cut, and then the spring wire formed into a coil shape is subjected to low-temperature annealing, and the end surface of the spring wire formed into a coil shape is further formed. Grind. Thereby, the spring wire is formed into a spring shape.
  • a first shot peening process (pre-shot peening process) is performed on the surface of the spring wire formed into a spring shape (S14).
  • the first shot peening treatment is not for imparting compressive residual stress to the spring wire, but for removing the wire wound formed on the surface of the spring wire (that is, reducing the depth of the wire wound). Done.
  • the projection material used for the first shot peening process, and the projection speed and the projection time thereof are determined according to the depth of the wire wound formed on the surface of the spring wire. That is, if the depth of the wire wound formed on the surface of the spring wire is deep, the hardness of the projection material is relatively high, and / or the projection speed is relatively high, and / or the projection time is reduced. Set long.
  • the depth of the wire wound formed on the surface of the spring wire is shallow, the hardness of the projection material is relatively low, and / or the projection speed is relatively slow, and / or the projection time is reduced. Set short. Accordingly, the surface roughness of the spring wire due to shot peening is suppressed while reducing the depth of the wire drawing scratch formed on the surface of the spring wire. As a result, the depth of the wire wound after the first shot peening is about 2.0 ⁇ m or less, for example.
  • a projection material having a diameter of 0.3 mm and a hardness of 390 HV or more can be used, and the projection speed of the projection material can be set to 60 to 90 m / s.
  • the projection time can be 5 to 60 minutes.
  • nitriding treatment is performed in an ammonia atmosphere on the spring wire whose depth of the wire drawing scratches has been reduced (S16).
  • the compound layer 14 having nitride is formed on the surface of the spring wire, and the steel material layer 12 not containing nitride is formed at the center of the spring wire.
  • the temperature condition can be 400 ° C. or more and 540 ° C. or less (for example, 450 ° C.), and the treatment time can be 1 to 4 hours (for example, 1.5 hours).
  • the thickness of the compound layer 14 can be adjusted to an appropriate thickness (for example, 3 ⁇ m).
  • a second shot peening process is performed on the surface of the spring wire (S16).
  • the second shot peening process can be performed in a plurality of times. By performing shot peening a plurality of times, compressive residual stress can be applied to a deep position of the spring wire.
  • the first stage shot peening for example, the diameter of the projection material ⁇ 0.6 mm, the hardness of the projection material 650 to 750 HV
  • the second Stage shot peening for example, projection material diameter ⁇ 0.3 mm, projection material hardness 650 to 750 HV
  • third stage shot peening for example, projection material diameter ⁇ 0.1 mm, A hardness of 700 to 1230 HV.
  • the projection speed of the projection material is preferably 60 to 90 m / s.
  • the spring wire After performing the second shot peening process in S16, the spring wire is subjected to low temperature annealing, and then the spring wire is set. Thereby, the spring 20 is manufactured from a spring wire.
  • spring wire (mass% C: 0.58, Si: 1.97, Mn: 0.76, P: 0.010, S: 0.008, Cr: 1.00, V: 0.086, The result of measuring the relationship between the depth of the micro pocket 16 and the fatigue strength of a spring actually manufactured using Ni: 0.22, the balance being iron and inevitable impurities) will be described.
  • the diameter of the spring wire used for the measurement was ⁇ 3.4 mm.
  • the depth of the micro pocket 16 formed on the surface of the spring wire was changed in the range of 0.8 ⁇ m to 4.6 ⁇ m by changing the projection time of the projection material used for the first shot peening process. That is, as shown in FIG.
  • the depth of the micro pocket varies depending on the projection time of the projection material, and the depth of the micro pocket decreases as the projection time increases. For this reason, the depth of the micro pocket was adjusted to a range of 0.8 ⁇ m to 4.6 ⁇ m by changing the projection time of the projection material.
  • the first shot peening process is performed using a projection material having a diameter of 0.3 mm and a hardness of 650 to 750 HV.
  • Each manufacturing process other than the first shot peening process was performed under the same conditions.
  • FIG. 5 shows the relationship between the micropocket depth (horizontal axis) and the fatigue strength (vertical axis) of 10 8 times.
  • the fatigue strength of a spring having a micro pocket depth of 2.0 ⁇ m or less is 650 MPa or more, whereas the spring having a micro pocket depth of more than 2.0 ⁇ m has a fatigue strength of about 600 MPa. It became. Therefore, it was confirmed that the fatigue strength changes drastically when the depth of the micro pocket is 2.0 ⁇ m or less.
  • the depth of the micro pocket was measured by photographing the surface of the spring with a laser microscope and measuring the depth of the micro pocket (within a width of 10 ⁇ m) from the photographed image. And the depth of the deepest micropocket among the depths of each micropocket was made into the depth of the micropocket of the spring.
  • the depth of the micro pocket 16 formed on the surface of the spring wire is 2.0 ⁇ m or less. For this reason, the deep micro pocket used as the starting point of stress concentration is removed from the surface of a spring wire, and the fatigue strength of a spring can be improved markedly.
  • the embodiment described above is a valve spring for an automobile engine, but the present invention is not limited to such a form, and can be applied to other springs (for example, a clutch spring).
  • the spring wire may contain inevitable impurities such as P (phosphorus) and S (sulfur). Since these inevitable impurities lead to a decrease in spring strength, the lower the concentration, the better. For example, it is preferable that P contained in the spring wire is 0.025% or less by weight and S is 0.025% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Springs (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

This spring contains a spring wire rod (10) that is coiled into a spiral shape. A plurality of micropockets (16) are formed on a surface of the spring wire rod (10), are extended in the length direction of the spring wire rod, and have a width in the direction orthogonal to the length direction that is equal to or less than 10μm. The depth (d) of each micropocket (16) is equal to or less than 2.0μm.

Description

ばね及びばねの製造方法Spring and spring manufacturing method
 本明細書に開示する技術は、ばね及びばねの製造方法に関する。詳しくは、ばね(例えば、弁ばねやクラッチ用のばね等)の疲労強度を向上するための技術に関する。 The technology disclosed in this specification relates to a spring and a method for manufacturing the spring. Specifically, the present invention relates to a technique for improving the fatigue strength of a spring (for example, a valve spring or a spring for a clutch).
 ばねの疲労強度を向上するために、ショットピーニングによって材料の表面に圧縮残留応力を付与する技術が知られている(例えば、特開2004-346424号公報等)。この技術では、螺旋状にコイリングしたばね線材の表面を窒化処理し、その後、アモルファス粒子を用いたショットピーニングを行う。これによって、表面粗さを低く抑えながら、疲労強度の向上が図られている。 In order to improve the fatigue strength of the spring, a technique for applying compressive residual stress to the surface of the material by shot peening is known (for example, Japanese Patent Application Laid-Open No. 2004-346424). In this technique, the surface of a spirally coiled spring wire is nitrided, and then shot peening is performed using amorphous particles. As a result, the fatigue strength is improved while keeping the surface roughness low.
 特開2004-346424号公報の技術では、ばねの表面粗さを低く抑えると共にばねの表面に圧縮残留応力を付与することで、ばねの高疲労強度化が図られている。しかしながら、本願発明者の検討によると、ばねの疲労強度が高くなってばねに作用する応力が高くなると、表面欠陥による影響が大きくなり、特開2004-346424号公報の技術では十分に疲労強度を向上することができない場合があることが判明した。特に、ばね線材の径が比較的に小径(例えば、2.0~6.5mm)のばねでは、高疲労強度が求められるため、表面欠陥による影響が極めて大きくなる。 In the technique of Japanese Patent Application Laid-Open No. 2004-346424, the spring has high fatigue strength by keeping the surface roughness of the spring low and applying compressive residual stress to the surface of the spring. However, according to the study of the present inventor, when the fatigue strength of the spring increases and the stress acting on the spring increases, the effect of surface defects increases, and the technique disclosed in Japanese Patent Application Laid-Open No. 2004-346424 provides sufficient fatigue strength. It has been found that there are cases where it cannot be improved. In particular, a spring having a relatively small diameter (for example, 2.0 to 6.5 mm) requires a high fatigue strength, so that the influence of surface defects becomes extremely large.
 本明細書は、ばねの疲労強度をより向上するための技術を提供することを目的とする。 This specification aims at providing the technique for improving the fatigue strength of a spring more.
 本明細書が開示するばねは、螺旋状にコイリングされたばね線材を有している。ばね線材の表面には、ばね線材の長手方向に伸び、かつ、その長手方向に直交する方向の幅が10μm以下となる複数のミクロポケットが形成されている。そして、各ミクロポケットの深さが2.0μm以下である。 The spring disclosed in this specification has a spring wire coiled in a spiral shape. On the surface of the spring wire, a plurality of micro pockets extending in the longitudinal direction of the spring wire and having a width in a direction perpendicular to the longitudinal direction of 10 μm or less are formed. And the depth of each micro pocket is 2.0 micrometers or less.
 このばねでは、ばね線材の表面に形成されるミクロポケットの深さが2.0μm以下となる。本願発明者が鋭意検討したところ、ばね製造時(伸線加工時)にばね線材の表面に形成されるミクロポケット(いわゆる、伸線キズ)の深さdがばねの疲労強度に極めて重要であることが判明した。後で詳述するように、ミクロポケットの深さdが2.0μm以下であると、疲労強度が飛躍的に向上する。このばねでは、ミクロポケットの深さdが2.0μm以下であるため、優れた疲労強度を有することができる。 In this spring, the depth of the micro pocket formed on the surface of the spring wire is 2.0 μm or less. As a result of intensive studies by the inventor of the present application, the depth d of micro pockets (so-called wire-drawing scratches) formed on the surface of the spring wire during spring production (at the time of wire drawing) is extremely important for the fatigue strength of the spring. It has been found. As will be described in detail later, when the depth d of the micro pocket is 2.0 μm or less, the fatigue strength is remarkably improved. In this spring, since the depth d of the micro pocket is 2.0 μm or less, it can have excellent fatigue strength.
 また、本明細書は、上記のばねを製造するためのばねの製造方法を開示する。すなわち、本明細書に開示するばねの製造方法は、ばね線材を螺旋状にコイリングするコイリング工程と、コイリング工程後のばね線材の表面に第1の投射材を投射する第1ショットピーニング工程と、第1ショットピーニング工程後に、ばね線材の表面を窒化する窒化工程と、窒化工程後のばね線材の表面に第2の投射材を投射する第2ショットピーニング工程と、を有している。コイリング工程後のばね線材の表面には、ばね線材の長手方向に伸び、かつ、その長手方向に直交する方向の幅が10μm以下となる複数のミクロポケットが形成されている。第1ショットピーニング工程後において、ミクロポケットの深さが2.0μm以下となるように、第1ショットピーニング工程が行われる。 The present specification also discloses a spring manufacturing method for manufacturing the above-described spring. That is, the spring manufacturing method disclosed in the present specification includes a coiling process in which the spring wire is coiled in a spiral shape, a first shot peening process in which the first projecting material is projected onto the surface of the spring wire after the coiling process, After the first shot peening process, there is a nitriding process for nitriding the surface of the spring wire, and a second shot peening process for projecting the second projecting material onto the surface of the spring wire after the nitriding process. On the surface of the spring wire after the coiling step, a plurality of micro pockets extending in the longitudinal direction of the spring wire and having a width in the direction perpendicular to the longitudinal direction of 10 μm or less are formed. After the first shot peening process, the first shot peening process is performed so that the depth of the micro pocket is 2.0 μm or less.
 この製造方法によると、ばね線材の表面に窒化処理をする前に第1ショットピーニング工程を実施する。このため、ばね線材の表面が硬化する前に、ばね線材の表面のミクロポケットの深さを小さくすることができる。これによって、高疲労強度のばねを効率的に製造することができる。 According to this manufacturing method, the first shot peening process is performed before nitriding the surface of the spring wire. For this reason, before the surface of a spring wire hardens | cures, the depth of the micro pocket of the surface of a spring wire can be made small. Thereby, a high fatigue strength spring can be efficiently manufactured.
本実施例に係るばね(ばね線材)の断面図。Sectional drawing of the spring (spring wire) which concerns on a present Example. ばね線材の表面に形成されるミクロポケットを模式的に示す図(ばね線材の表面を拡大して示す断面図)。The figure which shows typically the micro pocket formed in the surface of a spring wire (cross-sectional view which expands and shows the surface of a spring wire). ばね線材の表面を平面視したときのミクロポケットの形状を模式的に示す図。The figure which shows typically the shape of a micro pocket when the surface of a spring wire is planarly viewed. 本実施例のばねの製造工程を示すフローチャート。The flowchart which shows the manufacturing process of the spring of a present Example. ミクロポケットの深さと10回疲労強度の関係を実測した実験結果を示す図。The figure which shows the experimental result which measured the relationship between the depth of a micro pocket, and 108 8 times fatigue strength. ミクロポケットの深さと投射時間の関係を示す図。The figure which shows the relationship between the depth of a micro pocket, and projection time.
 本明細書が開示するばねにおいてばね線材は、鋼材層と、鋼材層の表面に形成された窒化物の化合物層とを有していてもよい。ばね線材の表面に窒化物の化合物層を形成することで、ばねを高強度化することができる。 In the spring disclosed in this specification, the spring wire may have a steel layer and a nitride compound layer formed on the surface of the steel layer. By forming a nitride compound layer on the surface of the spring wire, the strength of the spring can be increased.
 本明細書が開示するばねにおいて、鋼材層は、質量%で、C:0.50~0.80、Si:1.30~2.50、Mn:0.30~1.00、Cr:0.40~1.40を含有していてもよい。さらには、鋼材層は、MoとVとWとNiとNbの少なくとも1つをさらに含有していてもよい。このような構成によると、ばねを形成するための鋼材が適切な材料により形成されるため、疲労強度をより向上することができる。 In the spring disclosed in the present specification, the steel layer is, in mass%, C: 0.50 to 0.80, Si: 1.30 to 2.50, Mn: 0.30 to 1.00, Cr: 0. .40 to 1.40 may be contained. Furthermore, the steel material layer may further contain at least one of Mo, V, W, Ni, and Nb. According to such a configuration, since the steel material for forming the spring is formed of an appropriate material, the fatigue strength can be further improved.
(実施例) 実施例に係るばね20について説明する。ばね20は、自動車エンジン用の弁ばねとして用いられる。ばね20は、コイル状(螺旋状)に成形されたばね線材10により構成されており、隣接するばね線材10の間には所定の間隔が設けられている。本実施例では、ばね線材の径がφ2.0mm~6.5mmとされている。ばね線材の径がφ2.0~6.5mmの範囲では、ばね線材の表面に形成されるミクロポケット(後述)がばねの疲労強度に大きな影響を与える。 (Example) The spring 20 which concerns on an Example is demonstrated. The spring 20 is used as a valve spring for an automobile engine. The spring 20 is configured by a spring wire 10 formed in a coil shape (spiral shape), and a predetermined interval is provided between adjacent spring wires 10. In the present embodiment, the diameter of the spring wire is set to φ2.0 mm to 6.5 mm. When the diameter of the spring wire is in the range of φ2.0 to 6.5 mm, micro pockets (described later) formed on the surface of the spring wire greatly affect the fatigue strength of the spring.
 図1に示すように、ばね線材10は、鋼材層12と化合物層14から構成されている。鋼材層12は、ばね線材を熱処理等することによって形成される。鋼材層12(すなわち、ばね線材)は、例えば、C(炭素)、Si(ケイ素)、Mn(マンガン)、Cr(クロム)、鉄および不可避的不純物を含有していてもよい。この場合、それぞれの元素の割合は、質量%で、Cが0.50~0.80%、Siが1.30~2.50%、Mnが0.30~1.00%、Crが0.40~1.40%、の範囲とされており、残部がFe(鉄)および不可避的不純物としてもよい。Cを0.50%以上としたのは、Cが0.50%未満となると、耐久性と耐へたり性の双方を満足することが難しくなるためである。また、Cを0.80%以下としたのは、Cが0.80%を超えると、成形性が低下し、加工時の割れや折損等の可能性が高くなるためである。Siを1.30%以上としたのは、Siが1.30%未満となると、十分な耐へたり性を得ることができないためである。Siを2.50%以下としたのは、Siが2.50%を超えると、熱処理時の脱炭量が許容範囲を超え、耐久性に悪影響を与えるためである。Mnを0.30%以上としたのは、Mnが0.30%未満では、十分な強度を得ることができないためである。また、Mnを1.00%以下としたのは、Mnが1.00%を超えると、残留オーステナイト量が多くなり過ぎるためである。Crを0.40%以上としたのは、Crが0.40%未満であると、十分な固溶強度及び焼入れ性を得ることができないためである。また、Crを1.40%以下としたのは、Crが1.40%を超えると、残留オーステナイト量が多くなり過ぎるためである。 As shown in FIG. 1, the spring wire 10 is composed of a steel material layer 12 and a compound layer 14. The steel material layer 12 is formed by heat-treating the spring wire. The steel material layer 12 (namely, spring wire) may contain, for example, C (carbon), Si (silicon), Mn (manganese), Cr (chromium), iron, and inevitable impurities. In this case, the ratio of each element is mass%, C is 0.50 to 0.80%, Si is 1.30 to 2.50%, Mn is 0.30 to 1.00%, and Cr is 0. .40 to 1.40%, and the balance may be Fe (iron) and inevitable impurities. The reason why C is 0.50% or more is that when C is less than 0.50%, it is difficult to satisfy both durability and sag resistance. Further, the reason why C is set to 0.80% or less is that when C exceeds 0.80%, the moldability is lowered, and the possibility of cracking or breakage during processing increases. The reason why Si is 1.30% or more is that when Si is less than 1.30%, sufficient sag resistance cannot be obtained. The reason why Si is set to 2.50% or less is that when Si exceeds 2.50%, the amount of decarburization during heat treatment exceeds the allowable range and adversely affects the durability. The reason why Mn is 0.30% or more is that sufficient strength cannot be obtained when Mn is less than 0.30%. The reason why Mn is set to 1.00% or less is that when Mn exceeds 1.00%, the amount of retained austenite becomes excessive. The reason why Cr is 0.40% or more is that when the Cr is less than 0.40%, sufficient solid solution strength and hardenability cannot be obtained. The reason why Cr is made 1.40% or less is that when Cr exceeds 1.40%, the amount of retained austenite becomes excessive.
 なお、鋼材層12は、W(タングステン)をさらに含有していてもよい。鋼材層12がWを含有する場合、Wの割合は、質量%で0.08~0.20%程度とすることが好ましい。Wを0.08%以上とするのは、Wが0.08%未満では、Wを添加した効果(焼入れ性の向上、高強度化等)を得ることができないためである。また、Wを0.20%以下とするのは、Wが0.20%を超えると、粗大な炭化物を生じ、延性などの機械的特性を悪化させるためである。 The steel material layer 12 may further contain W (tungsten). When the steel material layer 12 contains W, the proportion of W is preferably about 0.08 to 0.20% by mass. The reason why W is made 0.08% or more is that when W is less than 0.08%, the effect of adding W (improving hardenability, increasing strength, etc.) cannot be obtained. Further, the reason why W is made 0.20% or less is that when W exceeds 0.20%, coarse carbides are formed, and mechanical properties such as ductility are deteriorated.
 また、鋼材層12は、Wと共に、あるいは、Wに代えて、Mo(モリブデン)とV(バナジウム)とNi(ニッケル)とNb(ニオブ)の少なくとも1種以上を含有してもよい。Moを含有することで、それ自体が鋼の強度を向上させるとともに、焼入れ性を向上することができる。また、Vを含有することで、鋼材層12中に析出する炭化物の大きさを微細にすることができ、より鋼材層12の強度を向上することができる。また、Niを含有することで、熱処理後の靱性、延性を高めることができる。また、Nbを含有することで、結晶粒を微細化することができ、靱性、延性を向上することができる。鋼材層12がMo、V、Ni、Nbの少なくともいずれかを含有する場合、その元素の割合は、質量%で、Moが0.05~0.25%の範囲、Vが0.05~0.60%の範囲、Niが0.20~0.40%の範囲、Nbが0.005~0.300%の範囲とされることが好ましい。Moを0.05%以上とするのは、Moが0.05%未満では、十分な強度が得られないためである。また、Moを0.25%以下としたのは、Moが0.25%を超えると、残留オーステナイトの安定化作用が無視し得なくなるためである。また、Vを0.05%以上としたのは、Vが0.05%未満では、十分な量の炭化物が生成せず、結晶粒成長防止効果を得ることができないためである。また、Vを0.60%以下としたのは、Vが0.60%を超えると、バナジウム炭化物自体が成長して大きくなり、耐久性に悪影響を与えるためである。また、Niを0.20%以上とするのは、Niが0.20%未満では、靱性、延性を高める効果が得られないためである。Niを0.40%以下としたのは、Niが0.40%を超えると、靱性、延性を高める効果が飽和してしまうためである。また、Nbを0.005%以上とするのは、Nbが0.005%未満では、十分に結晶粒を微細化できないためである。Nbを0.300%以下としたのは、Nbが0.300%を超えると、焼入れ性が悪くなるためである。 The steel material layer 12 may contain at least one of Mo (molybdenum), V (vanadium), Ni (nickel), and Nb (niobium) together with or in place of W. By containing Mo itself, the strength of steel can be improved and the hardenability can be improved. Moreover, by containing V, the magnitude | size of the carbide | carbonized_material precipitated in the steel material layer 12 can be made fine, and the intensity | strength of the steel material layer 12 can be improved more. Moreover, the toughness and ductility after heat processing can be improved by containing Ni. Moreover, by containing Nb, crystal grains can be refined, and toughness and ductility can be improved. When the steel material layer 12 contains at least one of Mo, V, Ni, and Nb, the ratio of the element is mass%, Mo is in the range of 0.05 to 0.25%, and V is 0.05 to 0. Preferably, the range is .60%, Ni is 0.20 to 0.40%, and Nb is 0.005 to 0.300%. The reason why Mo is 0.05% or more is that sufficient strength cannot be obtained when Mo is less than 0.05%. The reason why Mo is set to 0.25% or less is that when Mo exceeds 0.25%, the stabilizing action of retained austenite cannot be ignored. Further, the reason why V is set to 0.05% or more is that when V is less than 0.05%, a sufficient amount of carbide is not generated and the effect of preventing crystal grain growth cannot be obtained. Further, the reason why V is set to 0.60% or less is that when V exceeds 0.60%, vanadium carbide itself grows and becomes large, which adversely affects durability. The reason why Ni is 0.20% or more is that when Ni is less than 0.20%, the effect of improving toughness and ductility cannot be obtained. The reason why Ni is set to 0.40% or less is that when Ni exceeds 0.40%, the effect of increasing toughness and ductility is saturated. The reason why Nb is 0.005% or more is that when Nb is less than 0.005%, the crystal grains cannot be sufficiently refined. The reason why Nb is 0.300% or less is that when Nb exceeds 0.300%, the hardenability deteriorates.
 鋼材層12の表面には、全面に亘って化合物層14が形成されている。化合物層14の厚みは7μm以下となっている。化合物層14の厚みが7μm以下であるため、化合物層の脆さによる強度の低下を防ぐことができる。化合物層14は、上記の鋼材層12に含まれるC、Si、Mn、Cr、Feおよび不可避的不純物の他に、N(窒素)を含んでおり、化合物層14にはSi、Mn、Cr、Fe等の金属元素とNとの化合物(窒化物)が存在している。化合物層14中のNの濃度は特に限定しないが、例えば質量%でNが5.0~6.1%の範囲とされている。 A compound layer 14 is formed on the entire surface of the steel material layer 12. The thickness of the compound layer 14 is 7 μm or less. Since the thickness of the compound layer 14 is 7 μm or less, a decrease in strength due to the brittleness of the compound layer can be prevented. The compound layer 14 contains N (nitrogen) in addition to C, Si, Mn, Cr, Fe and unavoidable impurities contained in the steel material layer 12, and the compound layer 14 contains Si, Mn, Cr, A compound (nitride) of N and a metal element such as Fe exists. The concentration of N in the compound layer 14 is not particularly limited. For example, N is in a range of 5.0 to 6.1% by mass%.
 図2,3に示すように、ばね線材10の表面にはミクロポケット16が形成されている。ミクロポケット16は、ばね線材10の表面に形成される微小な深さの傷であり、ばね線材10の表面に複数形成されている。ミクロポケット16は、主に素材(線材)を伸線加工する際に形成される伸線傷である。ミクロポケット16が伸線加工によって形成されることから、ミクロポケット16は、ばね線材10の長手方向(図3のX軸方向)に伸びている。 2 and 3, a micro pocket 16 is formed on the surface of the spring wire 10. The micro pocket 16 is a scratch having a minute depth formed on the surface of the spring wire 10, and a plurality of micro pockets 16 are formed on the surface of the spring wire 10. The micro pocket 16 is a wire wound formed mainly when a material (wire material) is drawn. Since the micro pocket 16 is formed by wire drawing, the micro pocket 16 extends in the longitudinal direction of the spring wire 10 (X-axis direction in FIG. 3).
 各ミクロポケット16の長手方向と直交する方向の幅w(図3参照)は、10μm以下とされる。すなわち、ミクロポケット16の幅wが10μmを超えると、ばね線材10の強度が大きく低下する。このため、ミクロポケットの幅wが10μmを超えないように、伸線加工時の加工条件等が調整されている。 The width w (see FIG. 3) in the direction orthogonal to the longitudinal direction of each micro pocket 16 is 10 μm or less. That is, when the width w of the micro pocket 16 exceeds 10 μm, the strength of the spring wire 10 is greatly reduced. For this reason, the processing conditions and the like at the time of wire drawing are adjusted so that the width w of the micro pocket does not exceed 10 μm.
 なお、本実施例では、伸線したばね線材をコイリングした後に窒化処理を行うことで、その表面に化合物層14が形成される。すなわち、伸線加工によりばね線材に伸線傷が形成された後に、ばね線材に窒化処理が行われる。したがって、図2に示すように、鋼材層12に形成された伸線傷によって、化合物層14の表面にも傷16(すなわち、ミクロポケット16)が形成される。このため、ミクロポケット16の深さdは、鋼材層12の伸線傷の深さに比例した深さとなる。上記のことから明らかなように、鋼材層12の伸線傷の深さを小さくすれば、ミクロポケット16の深さdも小さくなる。なお、本実施例では、ばね線材10に形成されるミクロポケット16の深さは2.0μm以下とされている。後述する実験結果に示すように、ばね線材10の表面に形成されるミクロポケット16の深さを2.0μm以下とすることで、ばね20の疲労強度を飛躍的に向上することができる。 In this embodiment, the compound layer 14 is formed on the surface by coiling the drawn spring wire and then nitriding. That is, after a wire wound is formed on the spring wire by wire drawing, nitriding is performed on the spring wire. Therefore, as shown in FIG. 2, scratches 16 (that is, micro pockets 16) are also formed on the surface of the compound layer 14 due to the wire wound formed in the steel material layer 12. For this reason, the depth d of the micro pocket 16 becomes a depth proportional to the depth of the wire wound of the steel material layer 12. As is clear from the above, the depth d of the micro pocket 16 is reduced if the depth of the wire wound of the steel layer 12 is reduced. In the present embodiment, the depth of the micro pocket 16 formed in the spring wire 10 is 2.0 μm or less. As shown in the experimental results described later, the fatigue strength of the spring 20 can be dramatically improved by setting the depth of the micro pocket 16 formed on the surface of the spring wire 10 to 2.0 μm or less.
 次に、上記のばね20の製造方法を、図4を参照して説明する。図4に示すように、まず、ばね線材をコイリングマシンによってコイル状に成形する(S12)。ばね線材は、素材(線材)を伸線加工することによって作製される。このため、ばね線材の表面には複数の伸線傷が形成されている。伸線後のばね線材の径は、φ2.0~6.5mmとされる。伸線後のばね線材は、公知のコイリングマシンによってコイル状(螺旋状)に成形される。なお、ばね線材は、質量%で、C:0.50~0.80、Si:1.30~2.50、Mn:0.30~1.00、Cr:0.40~1.40、残部が鉄および不可避的不純物を含有している。ばね線材には、さらに質量%で、W:0.08~0.20、及び/又は、Mo:0.05~0.25、及び/又は、V:0.05~0.60、及び/又は、Ni:0.20~0.40、及び/又は、Nb:0.005~0.300を含有することができる。 Next, a method for manufacturing the spring 20 will be described with reference to FIG. As shown in FIG. 4, first, the spring wire is formed into a coil shape by a coiling machine (S12). The spring wire is produced by drawing a material (wire). For this reason, a plurality of wire drawing scratches are formed on the surface of the spring wire. The diameter of the spring wire after drawing is set to φ2.0 to 6.5 mm. The drawn spring wire is formed into a coil shape (spiral shape) by a known coiling machine. Note that the spring wire is in mass%, C: 0.50 to 0.80, Si: 1.30 to 2.50, Mn: 0.30 to 1.00, Cr: 0.40 to 1.40, The balance contains iron and inevitable impurities. The spring wire may further include, by mass%, W: 0.08 to 0.20, and / or Mo: 0.05 to 0.25, and / or V: 0.05 to 0.60, and / or Alternatively, Ni: 0.20 to 0.40 and / or Nb: 0.005 to 0.300 can be contained.
 なお、ばね線材をコイル状に成形した後は、ばね線材の端部を切断し、次いで、コイル状に成形されたばね線材に低温焼鈍を施し、さらに、このコイル状に成形されたばね線材の端面を研削する。これにより、ばね線材がばね形状に成形される。 After the spring wire is formed into a coil shape, the end of the spring wire is cut, and then the spring wire formed into a coil shape is subjected to low-temperature annealing, and the end surface of the spring wire formed into a coil shape is further formed. Grind. Thereby, the spring wire is formed into a spring shape.
 次に、ばね形状に成形されたばね線材の表面に第1ショットピーニング処理(プレ・ショットピーニング処理)を実施する(S14)。第1ショットピーニング処理は、ばね線材に圧縮残留応力を付与するためではなく、ばね線材の表面に形成されている伸線傷を除去する(すなわち、伸線傷の深さを浅くする)ために行われる。このため、第1ショットピーニング処理に用いられる投射材、及び、その投射速度と投射時間は、ばね線材の表面に形成されている伸線傷の深さに応じて決定される。すなわち、ばね線材の表面に形成されている伸線傷の深さが深いと、投射材の硬度を比較的に高く、及び/又は、投射速度を比較的に速く、及び/又は、投射時間を長く設定される。一方、ばね線材の表面に形成されている伸線傷の深さが浅いと、投射材の硬度を比較的に低く、及び/又は、投射速度を比較的に遅く、及び/又は、投射時間を短く設定される。これによって、ばね線材の表面に形成されている伸線傷の深さを浅くしながら、ショットピーニングによるばね線材の表面荒れが抑制される。その結果、第1ショットピーニング処理後のばね線材の伸線傷の深さは、例えば、約2.0μm以下となる。なお、第1ショットピーニング処理は、例えば、径φ0.3mm、硬度390HV以上の投射材を用いることができ、また、その投射材の投射速度を60~90m/sとすることができると共に、その投射時間を5~60分とすることができる。 Next, a first shot peening process (pre-shot peening process) is performed on the surface of the spring wire formed into a spring shape (S14). The first shot peening treatment is not for imparting compressive residual stress to the spring wire, but for removing the wire wound formed on the surface of the spring wire (that is, reducing the depth of the wire wound). Done. For this reason, the projection material used for the first shot peening process, and the projection speed and the projection time thereof are determined according to the depth of the wire wound formed on the surface of the spring wire. That is, if the depth of the wire wound formed on the surface of the spring wire is deep, the hardness of the projection material is relatively high, and / or the projection speed is relatively high, and / or the projection time is reduced. Set long. On the other hand, if the depth of the wire wound formed on the surface of the spring wire is shallow, the hardness of the projection material is relatively low, and / or the projection speed is relatively slow, and / or the projection time is reduced. Set short. Accordingly, the surface roughness of the spring wire due to shot peening is suppressed while reducing the depth of the wire drawing scratch formed on the surface of the spring wire. As a result, the depth of the wire wound after the first shot peening is about 2.0 μm or less, for example. In the first shot peening process, for example, a projection material having a diameter of 0.3 mm and a hardness of 390 HV or more can be used, and the projection speed of the projection material can be set to 60 to 90 m / s. The projection time can be 5 to 60 minutes.
 次に、伸線傷の深さが浅くされたばね線材にアンモニア雰囲気下で窒化処理を施す(S16)。これによって、ばね線材の表面に窒化物を有する化合物層14が形成され、ばね線材の中心部に、窒化物を含有しない鋼材層12が形成される。窒化処理は、温度条件を400℃以上540℃以下(例えば、450℃)、処理時間を1~4時間(例えば、1.5時間)とすることができる。なお、処理時間を2時間未満とすると、化合物層14の厚みを適切な厚み(例えば、3μm)に調整することができる。 Next, nitriding treatment is performed in an ammonia atmosphere on the spring wire whose depth of the wire drawing scratches has been reduced (S16). Thereby, the compound layer 14 having nitride is formed on the surface of the spring wire, and the steel material layer 12 not containing nitride is formed at the center of the spring wire. In the nitriding treatment, the temperature condition can be 400 ° C. or more and 540 ° C. or less (for example, 450 ° C.), and the treatment time can be 1 to 4 hours (for example, 1.5 hours). When the treatment time is less than 2 hours, the thickness of the compound layer 14 can be adjusted to an appropriate thickness (for example, 3 μm).
 次いで、ばね線材の耐疲労強度を向上するために、ばね線材の表面に第2ショットピーニング処理を実施する(S16)。第2ショットピーニング処理は、複数回に分けて行うことができる。複数回のショットピーニングを行うことで、ばね線材の深い位置まで圧縮残留応力を付与することができる。第2ショットピーニング処理は、例えば、窒化直後のばね線材の表面に第1段目のショットピーニング(例えば、投射材の径φ0.6mm,投射材の硬度650~750HV)を行い、次いで、第2段目のショットピーニング(例えば、投射材の径φ0.3mm,投射材の硬度650~750HV)を行い、さらに、第3段目のショットピーニング(例えば、投射材の径φ0.1mm,投射材の硬度700~1230HV)を行うことができる。このように投射材の径及び硬度を変えながら多段階にショットピーニングを行うことで、ばね線材に効果的に圧縮残留応力を付与することができる。なお、第1段目のショットピーニング、第2段目のショットピーニング及び第3段目のショットピーニングのそれぞれにおいて、投射材の投射速度は60~90m/sとすることが好ましい。 Next, in order to improve the fatigue resistance of the spring wire, a second shot peening process is performed on the surface of the spring wire (S16). The second shot peening process can be performed in a plurality of times. By performing shot peening a plurality of times, compressive residual stress can be applied to a deep position of the spring wire. In the second shot peening treatment, for example, the first stage shot peening (for example, the diameter of the projection material φ0.6 mm, the hardness of the projection material 650 to 750 HV) is performed on the surface of the spring wire just after nitriding, and then the second Stage shot peening (for example, projection material diameter φ0.3 mm, projection material hardness 650 to 750 HV) is performed, and third stage shot peening (for example, projection material diameter φ0.1 mm, A hardness of 700 to 1230 HV). Thus, by performing shot peening in multiple stages while changing the diameter and hardness of the projection material, it is possible to effectively apply compressive residual stress to the spring wire. In each of the first stage shot peening, the second stage shot peening, and the third stage shot peening, the projection speed of the projection material is preferably 60 to 90 m / s.
 S16で第2ショットピーニング処理を行った後は、ばね線材に低温焼鈍を実施し、次いで、ばね線材にセッチングを実行する。これにより、ばね線材からばね20が製造される。 After performing the second shot peening process in S16, the spring wire is subjected to low temperature annealing, and then the spring wire is set. Thereby, the spring 20 is manufactured from a spring wire.
 次に、ばね線材(質量%C:0.58、Si:1.97、Mn:0.76、P:0.010、S:0.008、Cr:1.00、V:0.086、Ni:0.22、残部が鉄および不可避的不純物)を用いて実際に製造したばねについて、ミクロポケット16の深さと疲労強度との関係を測定した結果について説明する。測定に用いたばね線材の径はφ3.4mmとした。また、ばね線材の表面に形成されるミクロポケット16の深さは、第1ショットピーニング処理に用いられる投射材の投射時間を変えることで、0.8μm~4.6μmの範囲で変化させた。すなわち、図6に示すように、ミクロポケットの深さは、投射材の投射時間によって変化し、投射時間が長くなるとミクロポケットの深さが小さくなる。このため、投射材の投射時間を変えることで、ミクロポケットの深さを0.8μm~4.6μmの範囲に調整した。なお、図6に示す例では、径φ0.3mm、硬度650~750HVの投射材を用いて第1ショットピーニング処理を行っている。第1ショットピーニング処理以外の各製造工程は、全て同一条件で実施した。上記のように製作した各ばねについて、平均応力τm=686MPaとして、応力振幅を615MPaと645MPaの2水準で疲労試験を行い、10回の疲労強度を測定した。 Next, spring wire (mass% C: 0.58, Si: 1.97, Mn: 0.76, P: 0.010, S: 0.008, Cr: 1.00, V: 0.086, The result of measuring the relationship between the depth of the micro pocket 16 and the fatigue strength of a spring actually manufactured using Ni: 0.22, the balance being iron and inevitable impurities) will be described. The diameter of the spring wire used for the measurement was φ3.4 mm. Further, the depth of the micro pocket 16 formed on the surface of the spring wire was changed in the range of 0.8 μm to 4.6 μm by changing the projection time of the projection material used for the first shot peening process. That is, as shown in FIG. 6, the depth of the micro pocket varies depending on the projection time of the projection material, and the depth of the micro pocket decreases as the projection time increases. For this reason, the depth of the micro pocket was adjusted to a range of 0.8 μm to 4.6 μm by changing the projection time of the projection material. In the example shown in FIG. 6, the first shot peening process is performed using a projection material having a diameter of 0.3 mm and a hardness of 650 to 750 HV. Each manufacturing process other than the first shot peening process was performed under the same conditions. Each spring manufactured as described above was subjected to a fatigue test with an average stress τm = 686 MPa and stress amplitudes at two levels of 615 MPa and 645 MPa, and the fatigue strength was measured 10 8 times.
 図5は、ミクロポケットの深さ(横軸)と、10回の疲労強度(縦軸)の関係を示している。図5から明らかなように、ミクロポケットの深さが2.0μm以下のばねでは、疲労強度が650MPa以上となる一方、ミクロポケットの深さが2.0μmを超えるばねでは、疲労強度が約600MPaとなった。したがって、ミクロポケットの深さを2.0μm以下とすることで、疲労強度がドラスティックに変化することが確認された。なお、ミクロポケットの深さは、レーザー顕微鏡でばねの表面を撮影し、撮影された画像からミクロポケット(幅10μm以内)の深さを測定した。そして、各ミクロポケットの深さのうち最も深いミクロポケットの深さを、そのばねのミクロポケットの深さとした。 FIG. 5 shows the relationship between the micropocket depth (horizontal axis) and the fatigue strength (vertical axis) of 10 8 times. As is apparent from FIG. 5, the fatigue strength of a spring having a micro pocket depth of 2.0 μm or less is 650 MPa or more, whereas the spring having a micro pocket depth of more than 2.0 μm has a fatigue strength of about 600 MPa. It became. Therefore, it was confirmed that the fatigue strength changes drastically when the depth of the micro pocket is 2.0 μm or less. The depth of the micro pocket was measured by photographing the surface of the spring with a laser microscope and measuring the depth of the micro pocket (within a width of 10 μm) from the photographed image. And the depth of the deepest micropocket among the depths of each micropocket was made into the depth of the micropocket of the spring.
 上述した結果から明らかなように、本実施例のばねでは、ばね線材の表面に形成されるミクロポケット16の深さが2.0μm以下とされる。このため、ばね線材の表面から応力集中の起点となる深いミクロポケットが除去され、ばねの疲労強度を格段に向上することができる。 As is clear from the above results, in the spring of this example, the depth of the micro pocket 16 formed on the surface of the spring wire is 2.0 μm or less. For this reason, the deep micro pocket used as the starting point of stress concentration is removed from the surface of a spring wire, and the fatigue strength of a spring can be improved markedly.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 例えば、上述した実施例は、自動車エンジン用の弁ばねであったが、本発明はこのような形態に限られず、他のばね(例えば、クラッチ用のばね等)にも適用することができる。また、ばね線材には、P(リン)や、S(硫黄)等の不可避的不純物を含んでいてもよい。こうした不可避的不純物は、ばね強度の低下に繋がるため、濃度は低いほどよい。例えば、ばね線材に含まれるPは、重量%で0.025%以下、Sは0.025%以下であることが好ましい。 For example, the embodiment described above is a valve spring for an automobile engine, but the present invention is not limited to such a form, and can be applied to other springs (for example, a clutch spring). The spring wire may contain inevitable impurities such as P (phosphorus) and S (sulfur). Since these inevitable impurities lead to a decrease in spring strength, the lower the concentration, the better. For example, it is preferable that P contained in the spring wire is 0.025% or less by weight and S is 0.025% or less.
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in the present specification or drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (5)

  1.  螺旋状にコイリングされたばね線材を有しており、
     そのばね線材の表面には、ばね線材の長手方向に伸び、かつ、その長手方向に直交する方向の幅が10μm以下となる複数のミクロポケットが形成されており、
     各ミクロポケットの深さが2.0μm以下であることを特徴とするばね。
    It has spring wire that is coiled spirally,
    On the surface of the spring wire, a plurality of micro pockets extending in the longitudinal direction of the spring wire and having a width in a direction perpendicular to the longitudinal direction of 10 μm or less are formed,
    A spring characterized in that each micro pocket has a depth of 2.0 μm or less.
  2.  ばね線材は、鋼材層と、鋼材層の表面に形成された窒化物の化合物層とを有している、請求項1に記載のばね。 2. The spring according to claim 1, wherein the spring wire has a steel material layer and a nitride compound layer formed on the surface of the steel material layer.
  3.  鋼材層は、質量%で、C:0.50~0.80、Si:1.30~2.50、Mn:0.30~1.00、Cr:0.40~1.40を含有する、請求項1又は2に記載のばね。 The steel layer contains, by mass%, C: 0.50 to 0.80, Si: 1.30 to 2.50, Mn: 0.30 to 1.00, Cr: 0.40 to 1.40. The spring according to claim 1 or 2.
  4.  鋼材層は、MoとVとWとNiとNbの少なくとも1つをさらに含有する、請求項3に記載のばね。 The spring according to claim 3, wherein the steel layer further contains at least one of Mo, V, W, Ni, and Nb.
  5.  ばねの製造方法であり、
     ばね線材を螺旋状にコイリングするコイリング工程と、
     コイリング工程後のばね線材の表面に第1の投射材を投射する第1ショットピーニング工程と、
     第1ショットピーニング工程後に、ばね線材の表面を窒化する窒化工程と、
     窒化工程後のばね線材の表面に第2の投射材を投射する第2ショットピーニング工程と、を有しており、
     コイリング工程後のばね線材の表面には、ばね線材の長手方向に伸び、かつ、その長手方向に直交する方向の幅が10μm以下となる複数のミクロポケットが形成されており、
     第1ショットピーニング工程後において、ミクロポケットの深さが2.0μm以下となるように、第1ショットピーニング工程が行われることを特徴とするばねの製造方法。
    A method of manufacturing a spring,
    A coiling process for spirally coiling the spring wire;
    A first shot peening process for projecting the first projecting material onto the surface of the spring wire after the coiling process;
    A nitriding step of nitriding the surface of the spring wire after the first shot peening step;
    A second shot peening process for projecting the second projecting material onto the surface of the spring wire after the nitriding process,
    On the surface of the spring wire after the coiling step, a plurality of micro pockets extending in the longitudinal direction of the spring wire and having a width in the direction perpendicular to the longitudinal direction of 10 μm or less are formed,
    A method for manufacturing a spring, wherein the first shot peening step is performed after the first shot peening step so that the depth of the micro pocket is 2.0 μm or less.
PCT/JP2015/052876 2014-02-04 2015-02-02 Spring and spring production method WO2015119082A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014019371A JP2015145712A (en) 2014-02-04 2014-02-04 Spring and method for manufacturing spring
JP2014-019371 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119082A1 true WO2015119082A1 (en) 2015-08-13

Family

ID=53777887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052876 WO2015119082A1 (en) 2014-02-04 2015-02-02 Spring and spring production method

Country Status (2)

Country Link
JP (1) JP2015145712A (en)
WO (1) WO2015119082A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193197A (en) * 2001-12-25 2003-07-09 Togo Seisakusho Corp High strength coil spring and production method therefor
JP2004346424A (en) * 2003-04-28 2004-12-09 Sintokogio Ltd Method for producing helical spring and helical spring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003193197A (en) * 2001-12-25 2003-07-09 Togo Seisakusho Corp High strength coil spring and production method therefor
JP2004346424A (en) * 2003-04-28 2004-12-09 Sintokogio Ltd Method for producing helical spring and helical spring

Also Published As

Publication number Publication date
JP2015145712A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2015064202A1 (en) Spring and process for producing spring
JP5742801B2 (en) Hot rolled steel bar or wire rod
JP6884852B2 (en) Steel wire and spring
JP4872846B2 (en) Rough shape for nitriding gear and nitriding gear
JP2010163689A (en) Oil-tempered wire, method for manufacturing the same, and spring
JP2007063584A (en) Oil tempered wire and manufacturing method therefor
JP5653022B2 (en) Spring steel and spring with excellent corrosion fatigue strength
JP6572216B2 (en) Stainless steel spring and method for producing stainless steel spring
WO2012017749A1 (en) High-strength spring
WO2021255848A1 (en) Steel wire for spring
JP2004315968A (en) Steel wire for high strength spring having excellent workability, and high strength spring
JP6448529B2 (en) Steel wire with excellent coiling property and method for producing the same
WO2015119082A1 (en) Spring and spring production method
JP6891889B2 (en) Method for manufacturing spring steel wire, spring, spring steel wire and method for manufacturing spring
JP5540433B2 (en) Spring excellent in sag resistance and durability and method for manufacturing the same
JP4133515B2 (en) Spring steel wire with excellent sag and crack resistance
WO2017169481A1 (en) Steel wire having excellent fatigue characteristics and method for manufacturing same
JP2018172751A (en) Cvt ring material for nitriding, and cvt ring member, and method for manufacturing the same
JP2001247934A (en) Steel wire for spring, its producing method and spring
JP2015196840A (en) High strength steel material excellent in fatigue characteristics
JP2004190116A (en) Steel wire for spring
JP2014040626A (en) Bearing steel excellent in rolling fatigue characteristics and method for manufacturing the same
JP2009270150A (en) Method for manufacturing coil spring
JP2021183716A (en) Steel wire and spring
JP5821512B2 (en) NITRIDED COMPONENT AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746035

Country of ref document: EP

Kind code of ref document: A1