WO2015118957A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2015118957A1
WO2015118957A1 PCT/JP2015/051705 JP2015051705W WO2015118957A1 WO 2015118957 A1 WO2015118957 A1 WO 2015118957A1 JP 2015051705 W JP2015051705 W JP 2015051705W WO 2015118957 A1 WO2015118957 A1 WO 2015118957A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield plate
heat transfer
shield
magnetic field
cooling device
Prior art date
Application number
PCT/JP2015/051705
Other languages
French (fr)
Japanese (ja)
Inventor
鶴留 武尚
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2015118957A1 publication Critical patent/WO2015118957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings

Definitions

  • the present invention relates to a cooling device.
  • a cryostat (cryogenic vacuum vessel) for cooling a sample is placed in a magnetic field generated by a superconducting coil.
  • the cryostat is provided with a radiation shield for protecting the object to be cooled from radiant heat in order to maintain the object to be cooled at an ultra-low temperature (for example, see Patent Document 1).
  • Radiation shields are generally manufactured from metallic materials, but if for some reason a sudden magnetic field fluctuation occurs during operation of the superconducting coil, a large electromagnetic force is generated in the radiation shield due to the magnetic field fluctuation. Can be considered. With respect to the action of such a large electromagnetic force, the radiation shield described in Patent Document 1 has room for improvement in terms of strength.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a cooling device including a radiation shield with higher strength.
  • a cooling device includes a refrigerator for cooling a sample, a part of which is thermally connected to the refrigerator and can accommodate the sample.
  • a cooling device comprising: a heat transfer portion; and a radiation shield portion covering the periphery of the sample in the heat transfer portion, wherein the radiation shield portion has a substantially cylindrical shape, and one end portion has a plurality of slits.
  • a second shield plate having a substantially circular shape corresponding to the one end portion of the first shield plate; The bent portion of the first shield plate and two reinforcing plates that sandwich and reinforce the second shield plate are included.
  • one end of the first shield plate having a substantially cylindrical shape is cut into a plurality of strips and bent inward. Further, the reinforcing plate is sandwiched between two reinforcing plates together with a substantially circular second shield plate covering the end portion on one side.
  • the first shield plate may be divided into a plurality along the circumferential direction of the substantially cylindrical shape.
  • the electromagnetic force generated by the sudden magnetic field fluctuation can be further reduced. Therefore, the breakage of the first shield plate due to the magnetic field fluctuation can be reduced.
  • the second shield plate may be divided into a plurality of parts.
  • the second shield plate is divided into a plurality of parts, the electromagnetic force generated by the sudden magnetic field fluctuation can be further reduced. Therefore, the breakage of the second shield plate due to the magnetic field fluctuation can be reduced.
  • a substantially cylindrical support member provided outside the first shield plate may be further provided, and the first shield plate may be fixed to the support member.
  • a cooling device including a radiation shield with higher strength is provided.
  • FIG. 1 is a schematic configuration diagram of a cooling device 1 according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of the cooling device 1 on the second heat transfer unit 20 side of the cryostat 2.
  • FIG. 3 is a schematic perspective view illustrating the radiation shield part in the second heat transfer part 20 of the cryostat 2.
  • FIG. 4 is a schematic cross-sectional view illustrating the bottom surface of the radiation shield part.
  • the cooling device 1 includes a refrigerator-cooled cryostat (cryogenic vacuum vessel) 2 and a magnetic field generator 80.
  • the cryostat 2 includes a GM refrigerator 3, and a first heat transfer unit 10 and a second heat transfer unit 20 connected to the lower part of the GM refrigerator 3.
  • the first heat transfer unit 10 and the second heat transfer unit 20 each have a cylindrical outer diameter, and the GM refrigerator 3, the first heat transfer unit 10, and the second heat transfer unit 20 are vertically aligned along the axis X. Are connected in this order.
  • the 1st heat-transfer part 10 and the 2nd heat-transfer part 20 function also as a vacuum vessel which accommodates the sample S which is a to-be-cooled object.
  • the GM refrigerator 3 is a refrigerator using a two-stage Gifford-MacMahone (GM) cycle, can be cooled to about 40K in the first stage, and is provided around the sample S. Used for cooling radiation shields. The second stage can be cooled to about 4K and is used for cooling the sample S.
  • GM Gifford-MacMahone
  • the main part including the cold head of the first stage and the cold head of the second stage is accommodated in the main body 11 of the first heat transfer unit 10 and the sample S is subjected to the second heat transfer.
  • the main body 21 of the unit 20 is accommodated.
  • the GM refrigerator 3 and the principal part of the 1st heat-transfer part 10 are thermally connected.
  • the first heat transfer unit 10 and the second heat transfer unit 20 each have a substantially cylindrical shape. Moreover, the diameter of the main body part 11 of the first heat transfer unit 10 is larger than the diameter of the main body part 21 of the second heat transfer unit 20, and the main body of the second heat transfer unit 20 when viewed from the lower side in the axis X direction.
  • the lower end surface 15 of the first heat transfer unit 10 protrudes outward with respect to the part 21.
  • the second heat transfer part is configured to include a substantially cylindrical main body part 21 and a flange part 22 having a larger diameter than the main body part 21 formed at the upper end of the main body part 21. By fixing the flange portion 22 to the lower end surface 15, the first heat transfer portion 10 and the second heat transfer portion 20 are connected.
  • the structure about the connection part which connects the 1st heat-transfer part 10 and the 2nd heat-transfer part 20 is mentioned later.
  • a magnetic field generation unit 80 that generates a magnetic field around the sample S is provided around the second heat transfer unit 20.
  • the magnetic field generator 80 having an annular shape and having an opening 81 along the axis X includes, for example, an annular superconducting coil 82 that is enclosed in a vacuum vessel and arranged around the axis X.
  • the diameter of the opening 81 is larger than the main body 21 of the second heat transfer unit 20 and smaller than the main body 11 of the first heat transfer unit 10.
  • the magnetic field generator 80 can generate a strong magnetic field by passing a current through the superconducting coil 82 that is cooled by a cooling means (not shown) to be in a superconducting state.
  • the second heat transfer unit 20 is inserted into the opening 81 of the magnetic field generation unit 80.
  • the connecting portion 30 including the lower end surface 15 of the first heat transfer portion 10 and the flange portion 22 of the second heat transfer portion 20 is formed on the upper surface 84 of the magnetic field generation portion 80. It comes into contact. That is, the upper surface 84 of the magnetic field generation unit 80 becomes a mounting surface on which the cryostat 2 is mounted, and the buckling load in the vertical direction of the cryostat 2 is supported by the upper surface 84 of the magnetic field generation unit 80.
  • a flange portion 12 having a larger diameter than the main body portion 11 protruding outward from the main body portion 11 of the first heat transfer portion 10 is provided on the upper end side of the first heat transfer portion 10.
  • the inside of the cryostat 2 will be described with reference to FIG.
  • the main part including the cold head of the first stage and the cold head of the second stage of the GM refrigerator 3 is accommodated in the main body 11 of the first heat transfer unit 10.
  • a rod-shaped cooling member 25 that is thermally connected to the cold head of the second stage to cool the sample S and energize the sample S is first.
  • the sample S is accommodated in the second heat transfer unit 20 in a state where the sample S extends from the heat transfer unit 10 along the axis X and is suspended from the lower end 27 of the cooling member 25.
  • a substantially cylindrical radiation shield section 40 is provided around the sample S.
  • the radiation shield part 40 is arranged on the lower end side of the second heat transfer part 20 so as to cover the lower end side of the sample S.
  • the radiation shield part 40 is thermally connected to the cold head of the first stage in the first heat transfer part 10 and is cooled to about 40K.
  • the radiation shield part 40 is configured such that a plurality of heat transfer members 42 are attached along the inner wall of a substantially cylindrical support member 41.
  • the support member 41 is formed of a material having high strength such as SUS and lower thermal conductivity than the heat transfer member 42.
  • the support member 41 includes a side wall portion 411 that forms a substantially cylindrical side surface, and a lower end portion 412 that closes the lower end side of the second heat transfer portion 20.
  • the heat transfer member 42 is formed of copper or aluminum having high heat conductivity.
  • the heat transfer member 42 includes a first shield plate 421 and a second shield plate 422.
  • the first shield plate 421 extending along the axis X direction is provided on the inner wall of the side wall portion 411.
  • the first shield plates 421 each have a substantially rectangular shape and are arranged so as to be divided along the circumferential direction.
  • four first shield plates 421 are arranged at a predetermined interval along the circumferential direction. Thereby, a slit 415 is formed between the adjacent first shield plates 421.
  • the first shield plate 421 is pressed against the side wall portion 411 at the end portion (the end portion on the other adjacent first shield plate 421 side) by a rectangular fixing plate 425 extending in the axis X direction.
  • the first shield plate 421 is fixed to the side wall portion 411 by the fixing plate 425 being fastened and fixed to the side wall portion 411 by screws 426 (fastening members).
  • first shield plate 421 extending along the axial direction is cut into a plurality of strips by a plurality of slits 431 on the lower end side of the second heat transfer unit 20, that is, on the lower end portion 412 side of the support member 41.
  • Each of the plurality of strip-shaped strip portions 433 has its lower end bent in a direction toward the axis X. That is, the plurality of strip-shaped strip portions 433 are bent along the shape of the support member 41 from the side wall portion 411 side to the lower end portion 412 side.
  • the second shield plate 422 is provided on the lower end portion 412 side of the support member 41 so as to cover the lower end portion 412. Since it is necessary to cover the side surface and the lower end side of the sample S with the first shield plate 421 and the second shield plate 422, the shape of the second shield plate 422 is the lower end portion 412 side of the support member 41, that is, the first shield. It preferably corresponds to the shape of the plate 421. Note that the second shield plate 422 may be constituted by a single substantially circular member, or may be divided into a plurality of pieces in the same manner as the first shield plate 421.
  • a disk-shaped support plate 413 formed of SUS or the like is disposed on the upper portion of the second shield plate 422 (inside the support member 41).
  • the support plate 413 is fastened and fixed to the lower end portion 412 of the support member 41 with screws 417.
  • the second shield plate 422 between the support plate 413 and the lower end portion 412 is fixed.
  • the strip portion 433 of the first shield plate 421 that extends from the side wall portion 411 and is bent is also fixed by being sandwiched between the support plate 413 and the lower end portion 412. That is, the support plate 413 and the lower end portion 412 serve as a reinforcing plate that sandwiches and reinforces the strip portion 433 and the second shield plate 422 of the first shield plate 421.
  • one end portion of the first shield plate 421 is cut into the plurality of strip portions 433, and the end portion is further bent inward. Further, the reinforcing plate is sandwiched between two reinforcing plates together with the substantially circular second shield plate 422 covering the end portion on the one side. Thereby, the rigidity of the radiation shield part 40 is improved in the lower end part 412 side.
  • the rigidity of the radiation shield part 40 is improved in the lower end part 412 side.
  • the 1st shield board 421 is divided
  • segments into four is demonstrated in the said embodiment, the number is not limited. Increasing the number of divisions can reduce the electromagnetic force generated by the magnetic field fluctuation, while increasing the number of parts and cost, and can be changed as appropriate.
  • the electromagnetic force generated by the sudden magnetic field fluctuation can be further reduced. Therefore, damage to the second shield plate 422 resulting from magnetic field fluctuation can be reduced.
  • the influence due to the magnetic field fluctuation can be further reduced by dividing the second shield plate 422 in the direction along the diameter.
  • the rigidity of the radiation shield portion 40 can be increased, which is caused by sudden magnetic field fluctuations. It is possible to prevent the first shield plate 421 from being damaged by electromagnetic force.
  • the side wall portion 411 that supports the first shield plate 421 and the lower end portion 412 that functions as one of the two reinforcing plates are integrated, the radiation shield portion 40 as a whole.
  • the rigidity can be further increased.
  • the present invention is not limited to the above embodiment.
  • a cold head for two stages is accommodated in the first heat transfer unit, and the sample S is accommodated in the second heat transfer unit 20.
  • the configuration is not limited.
  • the structure which integrated the 1st heat-transfer part 10 and the 2nd heat-transfer part 20 may be sufficient.
  • the configuration of the magnetic field generation unit 80 is not limited to the above embodiment, and for example, the number of superconducting coils can be changed as appropriate.

Abstract

A cooling device having an end section on one side of a first shield plate in a radiation shield section being cut into a plurality of rectangular sections, said end section being folded inwards and being sandwiched, together with a substantially circular second shield plate covering this end section on one side, by two reinforcing plates.

Description

冷却装置Cooling system
 本発明は、冷却装置に関する。 The present invention relates to a cooling device.
 一般的に、極低温環境において超電導に係る種々の評価を行う際には、超電導コイルにより生成される磁場中に試料を冷却するクライオスタット(極低温真空容器)を配置する。クライオスタットには、被冷却体を超低温に維持するために、輻射熱から被冷却体を保護するための輻射シールドが設けられる(例えば、特許文献1参照)。 Generally, when various evaluations related to superconductivity are performed in a cryogenic environment, a cryostat (cryogenic vacuum vessel) for cooling a sample is placed in a magnetic field generated by a superconducting coil. The cryostat is provided with a radiation shield for protecting the object to be cooled from radiant heat in order to maintain the object to be cooled at an ultra-low temperature (for example, see Patent Document 1).
特開平2-218184号公報JP-A-2-218184
 輻射シールドは、一般的に金属材料により製造されているが、何らかの原因で超電導コイルの運転中に急激な磁場変動が発生した場合には、その磁場変動によって輻射シールドに大きな電磁力が発生することが考えられる。このような大きな電磁力の作用に対して、特許文献1記載の輻射シールドには強度の面において改善の余地があった。 Radiation shields are generally manufactured from metallic materials, but if for some reason a sudden magnetic field fluctuation occurs during operation of the superconducting coil, a large electromagnetic force is generated in the radiation shield due to the magnetic field fluctuation. Can be considered. With respect to the action of such a large electromagnetic force, the radiation shield described in Patent Document 1 has room for improvement in terms of strength.
 本発明は上記を鑑みてなされたものであり、より強度が高められた輻射シールドを備えた冷却装置を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a cooling device including a radiation shield with higher strength.
 上記目的を達成するため、本発明の一形態に係る冷却装置は、試料を冷却するための冷凍機と、前記冷凍機に対してその一部が熱的に接続すると共に前記試料を収容可能な伝熱部と、前記伝熱部内で前記試料の周囲を覆う輻射シールド部と、を備える冷却装置であって、前記輻射シールド部は、略円筒状をなし、一方側の端部が複数のスリットによって複数の短冊状に分割され、その端部がそれぞれ内側に折り曲げられた第1シールド板と、前記第1シールド板の前記一方側の端部に対応した略円形状をなす第2シールド板と、前記第1シールド板の折り曲げられた端部と、前記第2シールド板とを挟みこんで補強する2枚の補強板と、を含んで構成されることを特徴とする。 In order to achieve the above object, a cooling device according to one embodiment of the present invention includes a refrigerator for cooling a sample, a part of which is thermally connected to the refrigerator and can accommodate the sample. A cooling device comprising: a heat transfer portion; and a radiation shield portion covering the periphery of the sample in the heat transfer portion, wherein the radiation shield portion has a substantially cylindrical shape, and one end portion has a plurality of slits. And a second shield plate having a substantially circular shape corresponding to the one end portion of the first shield plate; The bent portion of the first shield plate and two reinforcing plates that sandwich and reinforce the second shield plate are included.
 上記の冷却装置によれば、略円筒形状をなす第1シールド板の一方側の端部を複数の短冊状に切り分けると共に内側に折り曲げられる。また、この一方側の端部を覆う略円形状の第2シールド板と共に2枚の補強板によって挟み込まれる。これにより、特に一方側の端部において輻射シールド部の剛性が高められ、急激な磁場変動に由来する電磁力によって輻射シールド部が破損することを防止することができる。 According to the above cooling device, one end of the first shield plate having a substantially cylindrical shape is cut into a plurality of strips and bent inward. Further, the reinforcing plate is sandwiched between two reinforcing plates together with a substantially circular second shield plate covering the end portion on one side. Thereby, especially the rigidity of a radiation shield part is improved in the edge part of one side, and it can prevent that a radiation shield part is damaged by the electromagnetic force derived from a sudden magnetic field fluctuation.
 ここで、前記第1シールド板は、前記略円筒状の周方向に沿って複数に分割されている態様とすることができる。 Here, the first shield plate may be divided into a plurality along the circumferential direction of the substantially cylindrical shape.
 このように、第1シールド板が複数に分割されていることで、急激な磁場変動によって生じる電磁力をより小さくすることができる。したがって磁場変動に由来する第1シールド板の破損を低減することができる。 As described above, since the first shield plate is divided into a plurality of parts, the electromagnetic force generated by the sudden magnetic field fluctuation can be further reduced. Therefore, the breakage of the first shield plate due to the magnetic field fluctuation can be reduced.
 また、前記第2シールド板は、複数に分割されている態様とすることができる。 Further, the second shield plate may be divided into a plurality of parts.
 このように、第2シールド板が複数に分割されていることで、急激な磁場変動によって生じる電磁力をより小さくすることができる。したがって磁場変動に由来する第2シールド板の破損を低減することができる。 As described above, since the second shield plate is divided into a plurality of parts, the electromagnetic force generated by the sudden magnetic field fluctuation can be further reduced. Therefore, the breakage of the second shield plate due to the magnetic field fluctuation can be reduced.
 また、前記第1シールド板の外側に設けられた略円筒状の支持部材をさらに備え、前記第1シールド板は、支持部材に対して固定されている態様とすることができる。 Further, a substantially cylindrical support member provided outside the first shield plate may be further provided, and the first shield plate may be fixed to the support member.
 第1シールド板の外側に略円筒状の支持部材を備えることで、輻射シールド部のうち特に第1シールド板の近傍に係る剛性を高めることができ、急激な磁場変動によって生じる電磁力によって第1シールド板が破損することを防止することができる。 By providing a substantially cylindrical support member on the outside of the first shield plate, it is possible to increase the rigidity particularly in the vicinity of the first shield plate in the radiation shield portion, and the first due to the electromagnetic force generated by the sudden magnetic field fluctuation. It is possible to prevent the shield plate from being damaged.
 本発明によれば、より強度が高められた輻射シールドを備えた冷却装置が提供される。 According to the present invention, a cooling device including a radiation shield with higher strength is provided.
実施形態に係る冷却装置の概略構成図である。It is a schematic block diagram of the cooling device which concerns on embodiment. クライオスタットの第2伝熱部側の拡大図である。It is an enlarged view by the side of the 2nd heat-transfer part of a cryostat. クライオスタットの第2伝熱部内の輻射シールド部について説明する概略斜視図である。It is a schematic perspective view explaining the radiation shield part in the 2nd heat-transfer part of a cryostat. 輻射シールド部の底面について説明する概略断面図である。It is a schematic sectional drawing explaining the bottom face of a radiation shield part.
 以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本発明の一実施形態に係る冷却装置1の概略構成図である。また、図2は、冷却装置1のうち、クライオスタット2の第2伝熱部20側の拡大図である。また、図3は、クライオスタット2の第2伝熱部20内の輻射シールド部について説明する概略斜視図である。また、図4は、輻射シールド部の底面について説明する概略断面図である。 FIG. 1 is a schematic configuration diagram of a cooling device 1 according to an embodiment of the present invention. FIG. 2 is an enlarged view of the cooling device 1 on the second heat transfer unit 20 side of the cryostat 2. FIG. 3 is a schematic perspective view illustrating the radiation shield part in the second heat transfer part 20 of the cryostat 2. FIG. 4 is a schematic cross-sectional view illustrating the bottom surface of the radiation shield part.
 冷却装置1は、冷凍機冷却型のクライオスタット(極低温真空容器)2及び磁場発生部80を含んで構成される。クライオスタット2は、GM冷凍機3と、GM冷凍機3の下部に連結された第1伝熱部10と第2伝熱部20とを含んで構成されている。第1伝熱部10及び第2伝熱部20は、それぞれ外径が円柱状であり、軸線Xに沿って上下方向にGM冷凍機3、第1伝熱部10及び第2伝熱部20がこの順に連結されている。第1伝熱部10及び第2伝熱部20は被冷却物である試料Sを収容する真空容器としても機能する。 The cooling device 1 includes a refrigerator-cooled cryostat (cryogenic vacuum vessel) 2 and a magnetic field generator 80. The cryostat 2 includes a GM refrigerator 3, and a first heat transfer unit 10 and a second heat transfer unit 20 connected to the lower part of the GM refrigerator 3. The first heat transfer unit 10 and the second heat transfer unit 20 each have a cylindrical outer diameter, and the GM refrigerator 3, the first heat transfer unit 10, and the second heat transfer unit 20 are vertically aligned along the axis X. Are connected in this order. The 1st heat-transfer part 10 and the 2nd heat-transfer part 20 function also as a vacuum vessel which accommodates the sample S which is a to-be-cooled object.
 GM冷凍機3は、2段式ギフォード・マクマホン(G-M:Gifford-MacMahone)サイクルを用いた冷凍機であり、第1ステージでは約40K程度まで冷却可能であり、試料Sの周囲に設けられる輻射シールド等の冷却に用いられる。また、第2ステージは、約4K程度まで冷却可能であり、試料Sの冷却に用いられる。 The GM refrigerator 3 is a refrigerator using a two-stage Gifford-MacMahone (GM) cycle, can be cooled to about 40K in the first stage, and is provided around the sample S. Used for cooling radiation shields. The second stage can be cooled to about 4K and is used for cooling the sample S.
 本実施形態に係るクライオスタット2では、第1ステージのコールドヘッド及び第2ステージのコールドヘッドを含む主要部が第1伝熱部10の本体部11内に収容されると共に試料Sは第2伝熱部20の本体部21内に収容される。そして、GM冷凍機3と第1伝熱部10の主要部とは熱的に接続される。 In the cryostat 2 according to the present embodiment, the main part including the cold head of the first stage and the cold head of the second stage is accommodated in the main body 11 of the first heat transfer unit 10 and the sample S is subjected to the second heat transfer. The main body 21 of the unit 20 is accommodated. And the GM refrigerator 3 and the principal part of the 1st heat-transfer part 10 are thermally connected.
 第1伝熱部10及び第2伝熱部20は、それぞれ略円柱状をなしている。また、第1伝熱部10の本体部11の径は第2伝熱部20の本体部21の径よりも大きく、軸線X方向下側から見たときに、第2伝熱部20の本体部21に対して第1伝熱部10の下端面15が外方に突出している。第2伝熱部は、略円柱状の本体部21と、本体部21の上端に形成された本体部21よりも径が大きいフランジ部22とを含んで構成され、第1伝熱部10の下端面15に対してフランジ部22が固定されることで、第1伝熱部10と第2伝熱部20とが連結されている。第1伝熱部10と第2伝熱部20とを連結する連結部についての構成は後述する。 The first heat transfer unit 10 and the second heat transfer unit 20 each have a substantially cylindrical shape. Moreover, the diameter of the main body part 11 of the first heat transfer unit 10 is larger than the diameter of the main body part 21 of the second heat transfer unit 20, and the main body of the second heat transfer unit 20 when viewed from the lower side in the axis X direction. The lower end surface 15 of the first heat transfer unit 10 protrudes outward with respect to the part 21. The second heat transfer part is configured to include a substantially cylindrical main body part 21 and a flange part 22 having a larger diameter than the main body part 21 formed at the upper end of the main body part 21. By fixing the flange portion 22 to the lower end surface 15, the first heat transfer portion 10 and the second heat transfer portion 20 are connected. The structure about the connection part which connects the 1st heat-transfer part 10 and the 2nd heat-transfer part 20 is mentioned later.
 また、冷却装置1においては、試料Sの周囲に磁場を生成する磁場発生部80が第2伝熱部20の周囲に設けられる。円環状をなし軸線Xに沿った開口81を備える磁場発生部80は、例えば、真空容器に封入され、軸線Xを中心にして配置された円環状の超電導コイル82を含んで構成される。開口81は、その径が、第2伝熱部20の本体部21よりも大きく、第1伝熱部10の本体部11よりも小さくされている。 Further, in the cooling device 1, a magnetic field generation unit 80 that generates a magnetic field around the sample S is provided around the second heat transfer unit 20. The magnetic field generator 80 having an annular shape and having an opening 81 along the axis X includes, for example, an annular superconducting coil 82 that is enclosed in a vacuum vessel and arranged around the axis X. The diameter of the opening 81 is larger than the main body 21 of the second heat transfer unit 20 and smaller than the main body 11 of the first heat transfer unit 10.
 磁場発生部80は、図示しない冷却手段によって冷却されて超電導状態とされた超電導コイル82に対して電流を流すことにより、強力な磁場を発生させることができる。高磁場環境下において試料Sを冷却するために、第2伝熱部20は、磁場発生部80の開口81に挿入される。このとき、図1に示すように、第1伝熱部10の下端面15と第2伝熱部20のフランジ部22とを含んで構成される連結部30が磁場発生部80の上面84に当接した状態となる。すなわち、磁場発生部80の上面84がクライオスタット2を載置する載置面となり、クライオスタット2の上下方向の座屈荷重は磁場発生部80の上面84によって支持される。 The magnetic field generator 80 can generate a strong magnetic field by passing a current through the superconducting coil 82 that is cooled by a cooling means (not shown) to be in a superconducting state. In order to cool the sample S in a high magnetic field environment, the second heat transfer unit 20 is inserted into the opening 81 of the magnetic field generation unit 80. At this time, as shown in FIG. 1, the connecting portion 30 including the lower end surface 15 of the first heat transfer portion 10 and the flange portion 22 of the second heat transfer portion 20 is formed on the upper surface 84 of the magnetic field generation portion 80. It comes into contact. That is, the upper surface 84 of the magnetic field generation unit 80 becomes a mounting surface on which the cryostat 2 is mounted, and the buckling load in the vertical direction of the cryostat 2 is supported by the upper surface 84 of the magnetic field generation unit 80.
 また、第1伝熱部10の上端側には、第1伝熱部10の本体部11から外方に突出した本体部11よりも径が大きなフランジ部12が設けられる。図1に示すように、第1伝熱部10の本体部11に対応する開口61を有すると共にクライオスタット2を磁場発生部80の上面84に載置した際にフランジ部12と当接する規制部材60を磁場発生部80とは別に設けることで、クライオスタット2の水平方向の移動を規制する構成とすることができる。 Further, a flange portion 12 having a larger diameter than the main body portion 11 protruding outward from the main body portion 11 of the first heat transfer portion 10 is provided on the upper end side of the first heat transfer portion 10. As shown in FIG. 1, a regulating member 60 having an opening 61 corresponding to the main body 11 of the first heat transfer unit 10 and abutting against the flange 12 when the cryostat 2 is placed on the upper surface 84 of the magnetic field generator 80. Is provided separately from the magnetic field generator 80, whereby the horizontal movement of the cryostat 2 can be restricted.
 次に、クライオスタット2の内部について、図2を参照しながら説明する。上述したように、GM冷凍機3の第1ステージのコールドヘッド及び第2ステージのコールドヘッドを含む主要部が第1伝熱部10の本体部11内に収容される。第2伝熱部20の本体部21内には、第2ステージのコールドヘッドに対して熱的に接続して試料Sを冷却すると共に試料Sへの通電を行う棒状の冷却部材25が第1伝熱部10内から軸線Xに沿って延び、冷却部材25の下端部27に試料Sが吊り下げられる状態で試料Sが第2伝熱部20内に収容される。 Next, the inside of the cryostat 2 will be described with reference to FIG. As described above, the main part including the cold head of the first stage and the cold head of the second stage of the GM refrigerator 3 is accommodated in the main body 11 of the first heat transfer unit 10. In the main body 21 of the second heat transfer unit 20, a rod-shaped cooling member 25 that is thermally connected to the cold head of the second stage to cool the sample S and energize the sample S is first. The sample S is accommodated in the second heat transfer unit 20 in a state where the sample S extends from the heat transfer unit 10 along the axis X and is suspended from the lower end 27 of the cooling member 25.
 第2伝熱部20内では試料Sの周囲には略円筒状の輻射シールド部40が設けられる。輻射シールド部40は、第2伝熱部20の下端側にも試料Sの下端側を覆うように配置されている。輻射シールド部40は、第1伝熱部10内の第1ステージのコールドヘッドと熱的に接続し、約40K程度まで冷却される。 In the second heat transfer section 20, a substantially cylindrical radiation shield section 40 is provided around the sample S. The radiation shield part 40 is arranged on the lower end side of the second heat transfer part 20 so as to cover the lower end side of the sample S. The radiation shield part 40 is thermally connected to the cold head of the first stage in the first heat transfer part 10 and is cooled to about 40K.
 次に、図3及び図4を参照しながら、輻射シールド部40について説明する。輻射シールド部40は、略円筒状の支持部材41の内壁に沿って複数の伝熱部材42が取り付けられた構成とされている。支持部材41は、例えばSUS等の強度が高く且つ伝熱部材42よりも熱伝導性が低い材料によって形成される。また、支持部材41は、略円筒状の側面を形成する側壁部411と、第2伝熱部20の下端側を塞ぐ下端部412と、を含んで構成される。また、伝熱部材42は、熱伝導性の高い銅やアルミニウムによって形成される。伝熱部材42は、第1シールド板421と第2シールド板422とを含んで構成される。 Next, the radiation shield part 40 will be described with reference to FIGS. 3 and 4. The radiation shield part 40 is configured such that a plurality of heat transfer members 42 are attached along the inner wall of a substantially cylindrical support member 41. The support member 41 is formed of a material having high strength such as SUS and lower thermal conductivity than the heat transfer member 42. The support member 41 includes a side wall portion 411 that forms a substantially cylindrical side surface, and a lower end portion 412 that closes the lower end side of the second heat transfer portion 20. The heat transfer member 42 is formed of copper or aluminum having high heat conductivity. The heat transfer member 42 includes a first shield plate 421 and a second shield plate 422.
 側壁部411の内壁には、軸線X方向に沿って延びる第1シールド板421が設けられる。第1シールド板421はそれぞれ略長方形状をなし、周方向に沿って分割するように配置される。冷却装置1においては、4枚の第1シールド板421が周方向に沿って所定の間隔をあけて配置されている。これにより、隣接する第1シールド板421の間にはスリット415が形成される。第1シールド板421は、その端部(隣接する他の第1シールド板421側の端部)において、それぞれ軸線X方向に延びる矩形状の固定板425によって側壁部411に対して押し付けられる。固定板425がネジ426(締結部材)によって側壁部411に対して締結固定されることで、第1シールド板421はそれぞれ側壁部411に対して固定される。 The first shield plate 421 extending along the axis X direction is provided on the inner wall of the side wall portion 411. The first shield plates 421 each have a substantially rectangular shape and are arranged so as to be divided along the circumferential direction. In the cooling device 1, four first shield plates 421 are arranged at a predetermined interval along the circumferential direction. Thereby, a slit 415 is formed between the adjacent first shield plates 421. The first shield plate 421 is pressed against the side wall portion 411 at the end portion (the end portion on the other adjacent first shield plate 421 side) by a rectangular fixing plate 425 extending in the axis X direction. The first shield plate 421 is fixed to the side wall portion 411 by the fixing plate 425 being fastened and fixed to the side wall portion 411 by screws 426 (fastening members).
 また、軸線方向に沿って延びる第1シールド板421は、第2伝熱部20の下端側、すなわち支持部材41の下端部412側において、複数のスリット431によって複数の短冊状に切り分けられている。短冊状の複数の短冊部433は、それぞれ、その下端側が軸線Xに向かう方向へ折り曲げられている。すなわち、短冊状の複数の短冊部433は、それぞれ、支持部材41の形状に沿って側壁部411側から下端部412側へ折り曲げられている。 Further, the first shield plate 421 extending along the axial direction is cut into a plurality of strips by a plurality of slits 431 on the lower end side of the second heat transfer unit 20, that is, on the lower end portion 412 side of the support member 41. . Each of the plurality of strip-shaped strip portions 433 has its lower end bent in a direction toward the axis X. That is, the plurality of strip-shaped strip portions 433 are bent along the shape of the support member 41 from the side wall portion 411 side to the lower end portion 412 side.
 支持部材41の下端部412側には、第2シールド板422が下端部412を覆うように設けられる。第1シールド板421及び第2シールド板422によって、試料Sの側面及び下端側を覆う必要があるため、第2シールド板422の形状は、支持部材41の下端部412側、すなわち、第1シールド板421の形状に対応していることが好ましい。なお、第2シールド板422は1枚の略円形状の部材によって構成されていてもよいし、第1シールド板421と同様に複数に分割されていてもよい。 The second shield plate 422 is provided on the lower end portion 412 side of the support member 41 so as to cover the lower end portion 412. Since it is necessary to cover the side surface and the lower end side of the sample S with the first shield plate 421 and the second shield plate 422, the shape of the second shield plate 422 is the lower end portion 412 side of the support member 41, that is, the first shield. It preferably corresponds to the shape of the plate 421. Note that the second shield plate 422 may be constituted by a single substantially circular member, or may be divided into a plurality of pieces in the same manner as the first shield plate 421.
 第2シールド板422の上部(支持部材41の内部)には、SUS等によって形成された円盤状の支持板413が配置される。支持板413は、支持部材41の下端部412に対してネジ417によって締結固定される。これによって、支持板413と下端部412との間の第2シールド板422が固定される。また、側壁部411側から延びて折り曲げられた第1シールド板421の短冊部433も支持板413と下端部412によって挟み込まれることで固定される。すなわち、支持板413及び下端部412が、第1シールド板421の短冊部433及び第2シールド板422を挟みこんで補強する補強板となる。 A disk-shaped support plate 413 formed of SUS or the like is disposed on the upper portion of the second shield plate 422 (inside the support member 41). The support plate 413 is fastened and fixed to the lower end portion 412 of the support member 41 with screws 417. As a result, the second shield plate 422 between the support plate 413 and the lower end portion 412 is fixed. Further, the strip portion 433 of the first shield plate 421 that extends from the side wall portion 411 and is bent is also fixed by being sandwiched between the support plate 413 and the lower end portion 412. That is, the support plate 413 and the lower end portion 412 serve as a reinforcing plate that sandwiches and reinforces the strip portion 433 and the second shield plate 422 of the first shield plate 421.
 このように、本実施形態に係る冷却装置1によれば、第1シールド板421の一方側の端部が複数の短冊部433に切り分けられ、さらにその端部が内側に折り曲げられる。また、この一方側の端部を覆う略円形状の第2シールド板422と共に2枚の補強板によって挟み込まれる。これにより、下端部412側において輻射シールド部40の剛性が高められる。従来の輻射シールドの構成では、磁場発生部80の電源が異常遮断する等の理由によって急激な磁場変動が起きた場合、大きな電磁力が印加されるために、輻射シールドが破損する可能性があった。特に試料Sの下側を覆う輻射シールドについてはこの急激な磁場変動が起きた場合の影響があまり考慮されていなかった。これに対して、本実施形態に係る冷却装置1の輻射シールド部40では、輻射シールド部40の剛性が高められたため、急激な磁場変動に由来する電磁力によって破損することを防止することができる。 Thus, according to the cooling device 1 according to the present embodiment, one end portion of the first shield plate 421 is cut into the plurality of strip portions 433, and the end portion is further bent inward. Further, the reinforcing plate is sandwiched between two reinforcing plates together with the substantially circular second shield plate 422 covering the end portion on the one side. Thereby, the rigidity of the radiation shield part 40 is improved in the lower end part 412 side. In the configuration of the conventional radiation shield, when a sudden magnetic field fluctuation occurs due to an abnormal interruption of the power supply of the magnetic field generation unit 80, a large electromagnetic force is applied, so that the radiation shield may be broken. It was. In particular, for the radiation shield covering the lower side of the sample S, the effect of this sudden magnetic field change has not been considered much. On the other hand, in the radiation shield part 40 of the cooling device 1 which concerns on this embodiment, since the rigidity of the radiation shield part 40 was improved, it can prevent damaging by the electromagnetic force derived from a sudden magnetic field fluctuation | variation. .
 また、上記実施形態の輻射シールド部40のように、周方向に沿って第1シールド板421が複数に分割されていることで、急激な磁場変動によって生じる電磁力をより小さくすることができる。したがって磁場変動に由来する第1シールド板の破損を低減することができる。なお、上記実施形態では4つに分割している場合について説明するがその数は限定されない。分割数を増やすことで磁場変動によって生じる電磁力が小さくなる一方で、部品点数やコストが上昇する可能性があるため、適宜変更することができる。 Moreover, like the radiation shield part 40 of the said embodiment, since the 1st shield board 421 is divided | segmented into plurality along the circumferential direction, the electromagnetic force produced by a sudden magnetic field fluctuation can be made smaller. Therefore, the breakage of the first shield plate due to the magnetic field fluctuation can be reduced. In addition, although the case where it divides | segments into four is demonstrated in the said embodiment, the number is not limited. Increasing the number of divisions can reduce the electromagnetic force generated by the magnetic field fluctuation, while increasing the number of parts and cost, and can be changed as appropriate.
 また、第2シールド板422が複数に分割されている場合、急激な磁場変動によって生じる電磁力をより小さくすることができる。したがって磁場変動に由来する第2シールド板422の破損を低減することができる。第2シールド板422を分割する場合、径に沿った方向に分割することで、磁場変動による影響をより小さくすることができる。 Further, when the second shield plate 422 is divided into a plurality of parts, the electromagnetic force generated by the sudden magnetic field fluctuation can be further reduced. Therefore, damage to the second shield plate 422 resulting from magnetic field fluctuation can be reduced. When the second shield plate 422 is divided, the influence due to the magnetic field fluctuation can be further reduced by dividing the second shield plate 422 in the direction along the diameter.
 また、第1シールド板421の外側に円筒形状の支持部材41を備えることで、輻射シールド部40のうち特に第1シールド板421の近傍に係る剛性を高めることができ、急激な磁場変動によって生じる電磁力によって第1シールド板421が破損することを防止することができる。また、上記実施形態と同様に第1シールド板421を支持する側壁部411と2枚の補強板のうちの1枚として機能する下端部412とを一体化した場合には、輻射シールド部40全体としての剛性を更に高めることができる。 In addition, by providing the cylindrical support member 41 outside the first shield plate 421, the rigidity of the radiation shield portion 40, particularly in the vicinity of the first shield plate 421, can be increased, which is caused by sudden magnetic field fluctuations. It is possible to prevent the first shield plate 421 from being damaged by electromagnetic force. Similarly to the above embodiment, when the side wall portion 411 that supports the first shield plate 421 and the lower end portion 412 that functions as one of the two reinforcing plates are integrated, the radiation shield portion 40 as a whole. The rigidity can be further increased.
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限られるものではない。例えば、上記実施形態のクライオスタット2では、第1伝熱部に2段分のコールドヘッドが収容されて、第2伝熱部20には試料Sが収容されている構成とされていたが、この構成には限定されない。また、第1伝熱部10及び第2伝熱部20を一体化した構成であってもよい。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, in the cryostat 2 of the above-described embodiment, a cold head for two stages is accommodated in the first heat transfer unit, and the sample S is accommodated in the second heat transfer unit 20. The configuration is not limited. Moreover, the structure which integrated the 1st heat-transfer part 10 and the 2nd heat-transfer part 20 may be sufficient.
 また、磁場発生部80の構成は上記実施形態に限定されず、例えば超電導コイルの数等適宜変更することができる。 Further, the configuration of the magnetic field generation unit 80 is not limited to the above embodiment, and for example, the number of superconducting coils can be changed as appropriate.
 1…冷却装置、2…クライオスタット、3…GM冷凍機、10…第1伝熱部、20…第2伝熱部、22…フランジ部、30…連結部、40…輻射シールド部、41…支持部材、42…伝熱部材、60…規制部材、80…磁場発生部。 DESCRIPTION OF SYMBOLS 1 ... Cooling device, 2 ... Cryostat, 3 ... GM refrigerator, 10 ... 1st heat-transfer part, 20 ... 2nd heat-transfer part, 22 ... Flange part, 30 ... Connection part, 40 ... Radiation shield part, 41 ... Support Member, 42 ... Heat transfer member, 60 ... Restriction member, 80 ... Magnetic field generation part.

Claims (4)

  1.  試料を冷却するための冷凍機と、
     前記冷凍機に対してその一部が熱的に接続すると共に前記試料を収容可能な伝熱部と、
     前記伝熱部内で前記試料の周囲を覆う輻射シールド部と、
     を備える冷却装置であって、
     前記輻射シールド部は、
     略円筒状をなし、一方側の端部が複数のスリットによって複数の短冊状に分割され、その端部がそれぞれ内側に折り曲げられた第1シールド板と、
     前記第1シールド板の前記一方側の端部に対応した略円形状をなす第2シールド板と、
     前記第1シールド板の折り曲げられた端部と、前記第2シールド板とを挟みこんで補強する2枚の補強板と、
     を含んで構成される冷却装置。
    A refrigerator for cooling the sample;
    A part of which is thermally connected to the refrigerator and a heat transfer unit capable of accommodating the sample;
    A radiation shield part covering the periphery of the sample in the heat transfer part;
    A cooling device comprising:
    The radiation shield part is
    A first cylindrical shield plate having a substantially cylindrical shape, one end of which is divided into a plurality of strips by a plurality of slits, each of which is bent inward;
    A second shield plate having a substantially circular shape corresponding to an end of the one side of the first shield plate;
    Two reinforcing plates for sandwiching and reinforcing the bent end portion of the first shield plate and the second shield plate;
    A cooling system composed of.
  2.  前記第1シールド板は、前記略円筒状の周方向に沿って複数に分割されている請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the first shield plate is divided into a plurality along the circumferential direction of the substantially cylindrical shape.
  3.  前記第2シールド板は、複数に分割されている請求項1又は2に記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the second shield plate is divided into a plurality of parts.
  4.  前記第1シールド板の外側に設けられた略円筒状の支持部材をさらに備え、前記第1シールド板は、支持部材に対して固定されている請求項1又は2に記載の冷却装置。 The cooling device according to claim 1 or 2, further comprising a substantially cylindrical support member provided outside the first shield plate, wherein the first shield plate is fixed to the support member.
PCT/JP2015/051705 2014-02-05 2015-01-22 Cooling device WO2015118957A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014020405A JP5976704B2 (en) 2014-02-05 2014-02-05 Cooling system
JP2014-020405 2014-02-05

Publications (1)

Publication Number Publication Date
WO2015118957A1 true WO2015118957A1 (en) 2015-08-13

Family

ID=53777764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051705 WO2015118957A1 (en) 2014-02-05 2015-01-22 Cooling device

Country Status (2)

Country Link
JP (1) JP5976704B2 (en)
WO (1) WO2015118957A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107666823A (en) * 2017-10-27 2018-02-06 上海京颐科技股份有限公司 Mobile terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175558A (en) * 1991-12-26 1993-07-13 Iwatani Internatl Corp Cryostat
JPH0621520A (en) * 1992-07-02 1994-01-28 Chodendo Sensor Kenkyusho:Kk Cryostat
JPH06331717A (en) * 1993-05-26 1994-12-02 Shimadzu Corp Magnetism measuring equipment
JP2004259903A (en) * 2003-02-26 2004-09-16 Hitachi High-Technologies Corp Cryostat for measuring magnetic field of biological body and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175558A (en) * 1991-12-26 1993-07-13 Iwatani Internatl Corp Cryostat
JPH0621520A (en) * 1992-07-02 1994-01-28 Chodendo Sensor Kenkyusho:Kk Cryostat
JPH06331717A (en) * 1993-05-26 1994-12-02 Shimadzu Corp Magnetism measuring equipment
JP2004259903A (en) * 2003-02-26 2004-09-16 Hitachi High-Technologies Corp Cryostat for measuring magnetic field of biological body and apparatus therefor

Also Published As

Publication number Publication date
JP2015149345A (en) 2015-08-20
JP5976704B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5219420B2 (en) A cryostat having a cryogenic vessel supported within an external vacuum vessel
US10580565B2 (en) Reactor including first end plate and second end plate
US9711267B2 (en) Support structure for cylindrical superconducting coil structure
JP5976704B2 (en) Cooling system
US8989827B2 (en) Superconducting magnet
US8269587B2 (en) Conduction cooling superconducting magnet device
JP2005143853A (en) Superconductive magnet device and magnetic resonance imaging device using the same
US10416254B2 (en) System for reducing thermal shield vibrations
JP7404517B2 (en) coil support
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
JPH04294503A (en) Coil body and coil container
JP6505337B2 (en) Air core type reactor for railway vehicles
GB2545436A (en) A Cylindrical superconducting magnet
JP5337829B2 (en) Cryogenic container
JP2005144132A (en) Superconductive magnet device and magnetic resonance imaging device using the same
US11282628B2 (en) Reactor for vehicle
JP6223846B2 (en) Cooling system
KR20210093895A (en) Freestanding Flexible Thermal Radiation Shields
JPS6119089B2 (en)
JP6400387B2 (en) Superconducting electromagnet
JP2015179791A (en) Superconducting magnet device
WO2022224761A1 (en) Magnetic field generating device
JP6171789B2 (en) Superconducting equipment
JP6191335B2 (en) Superconducting equipment
JP6534630B2 (en) Superconducting electromagnet device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746307

Country of ref document: EP

Kind code of ref document: A1