WO2015117619A1 - Niederdruckstromerzeugungssystem - Google Patents

Niederdruckstromerzeugungssystem Download PDF

Info

Publication number
WO2015117619A1
WO2015117619A1 PCT/EP2014/000280 EP2014000280W WO2015117619A1 WO 2015117619 A1 WO2015117619 A1 WO 2015117619A1 EP 2014000280 W EP2014000280 W EP 2014000280W WO 2015117619 A1 WO2015117619 A1 WO 2015117619A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
power generation
generation system
low
nde
Prior art date
Application number
PCT/EP2014/000280
Other languages
English (en)
French (fr)
Inventor
Michael Daniels
Joachim GÄRTNER
Original Assignee
Talbot New Energy Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Talbot New Energy Ag filed Critical Talbot New Energy Ag
Priority to PCT/EP2014/000280 priority Critical patent/WO2015117619A1/de
Publication of WO2015117619A1 publication Critical patent/WO2015117619A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the invention relates to a low-pressure power generation system according to the preamble of patent claim 1.
  • Low-pressure power generation systems are known from DE102004014101 AI. In this case, electricity is generated by a relaxation of steam.
  • the object of the invention is to provide a device which further develops the prior art.
  • a low pressure power generation system comprising a steam supply line and a vapor discharge line and a generator unit, the generator unit having a dynamo with a power line connected to the dynamo and the generator unit having an axis with the axis connected to the dynamo, such that upon rotation of the axle by the dynamo electrical energy can be generated and dissipated by the power line, and the generator unit has a circular chamber, wherein the chamber has an inlet opening and an outlet opening and in the chamber a plurality of arranged on the axis blades present and the vanes divide the volume of the chamber into a plurality of segments, wherein two adjacent segments are separated by a blade and the vanes are movable in the chamber and the inlet opening with the steam supply line and the exit port mi t the steam discharge line are each connected in a vapor-tight manner, and wherein the blades are arranged with the respective ends so close to the inside of the chamber, that two adjacent segments are almost vapor
  • CONFIRMATION COPY is smaller than 0.05 mm, and the segments have an equal volume with each other, so that upon rotation of the axis, the segments between the inlet opening and the outlet opening, the plurality of equal volumes are movable in the chamber, and a bypass for bridging the generator unit is provided with a controllable valve and the bypass connects the steam supply line to the steam discharge line, wherein in a first operating state with a running generator unit, the valve of the bypass is closed and in a second operating state in case of failure of the generator unit, the valve is open.
  • An advantage of the device according to the invention is that, in contrast to the previous ones in the high-pressure range, i. above 14 bar, used very costly and complex and based on a volume change steam turbines, now also low-pressure steam can be used to generate energy.
  • the steam is not just condensed as before, but used in addition to the generation of electrical energy.
  • the power generation systems increase the efficiency and reduce the CO2 emissions.
  • the generator unit has an electrical power between 5 kW / h and 250 kW / h. Most preferably, the generator unit has a power between 50 kW / h and 150 kW / h. investigations have shown that it is advantageous if the vapor pressure in the steam supply line is less than 16 bar and greater than 0.8 bar. Most preferably, the vapor pressure is below 10 bar and above 1 bar.
  • the vapor pressure in the vapor withdrawal conduit be less than 14 bar, preferably less than 1.0 bar, and most preferably less than 0.4 bar. In particular, it is preferred that the vapor pressure in the vapor withdrawal conduit be less than 0.8 bar, preferably less than 0.3 bar, at a distance of more than 1 m from the outlet port.
  • the pressure difference between the inlet opening and the outlet opening is in a range of 1.0 bar to 4 bar, preferably in a range of 1.5 bar and 2.5 bar.
  • the generator unit can be formed as a pressure reducing station and this energy can be obtained in the form of electricity.
  • no condensation takes place, d. H. a condenser to liquefy the steam is unnecessary.
  • the vacuum condenser has for this purpose a first heat exchanger.
  • a vacuum condenser with a heater hereinafter also referred to as steam generator is connected by means of a return line to supply the hot water to the steam generator as feed water and convert the feed water by means of the steam generator in steam.
  • the steam generator has for this purpose a second heat exchanger. This makes it possible to form a closed circuit in the steam generation.
  • a preheating unit is provided in the return line between the vacuum condenser and the steam generating unit.
  • the preheating unit has an NEN third heat exchanger.
  • the third heat exchanger is flowed through by the hot water and is heated by theticianiftemden to the third heat exchanger steam and it cools steam.
  • the vacuum condenser requires less energy to extract service water from the steam and the efficiency of the low pressure power generation system increases.
  • the generator unit comprises a fan, wherein with the blower, an air flow can be generated, in particular to cool the dynamo.
  • the steam supply line and / or the steam discharge line and / or the chamber is encased with an insulating material in order to achieve thermal insulation. As a result, in particular, the release of heat is reduced to the environment and increases the efficiency.
  • a monitoring unit is provided, wherein the monitoring unit is connected to a first sensor in the steam supply line and a second sensor in the vapor discharge line and to the controllable bypass valve.
  • the monitoring unit is connected to a first sensor in the steam supply line and a second sensor in the vapor discharge line and to the controllable bypass valve.
  • a plurality of generator units are connected in parallel with respect to the steam supply line and the steam discharge line.
  • the steam supply pipe and the steam exhaust pipe are each connected to a plurality of generator units.
  • FIG. 1 shows a view of a first embodiment according to the invention of a low-pressure jet generating system
  • Figure 2 is a view of a second embodiment of the invention of the low pressure power generation system.
  • FIG. 1 shows a view of a first embodiment according to the invention of a low-pressure power generation system NDE, with a heater HZ as a steam generator and a control unit ST and a generator unit GE and a vacuum condenser VK and a bypass BY.
  • the generator unit GE has a power line STO and is connected by means of a steam supply line DZU to the heater HZ. As a result, the steam generated by the heater HZ the generator unit GE is provided.
  • the generator unit GE On the steam input side, the generator unit GE has an inlet opening EFF vapor-tightly connected to the steam supply line DZU.
  • the generator unit GE On the steam outlet side, the generator unit GE has an outlet opening EAU and a steam discharge line DAB vapor-tightly connected to the outlet opening EAU.
  • the steam discharge line DA ⁇ is connected to the vacuum condenser VK to liquefy the steam from the steam discharge line DAB to service water.
  • the vacuum condenser VK has a first heat exchanger Wl and is connected to the heater HZ by means of a return line to supply the service water to the heater HZ as feed water.
  • the feed water is converted back into steam by means of the heater HZ and using a second heat exchanger W2.
  • the monitoring unit ST is by means of a first electrical line LI with a first sensor Sl and with a second line L2 with a second sensor S2 interconnected. Both sensors are preferably designed as pressure sensors and / or as temperature sensors and or as flow sensors, wherein the first sensor Sl disposed in the steam supply line DZU between the heater and the bypass BY and the second sensor S2 in the vapor discharge line DAB between the bypass BY and the vacuum condenser VK is.
  • the bypass BY has an electrically controlled valve VBY.
  • the valve VBY is connected to the monitoring unit ST by means of a third electrical line L3.
  • the valve VBY is connected on the steam input side to the steam supply line DZU and on the steam outlet side to the steam discharge line DAB.
  • the valve VBY of the bypass BY is closed, i. the steam is passed through the generator unit GE.
  • the valve VBY is opened to bypass the generator unit with respect to the steam guide, i. the steam supply line DZU is now connected to the steam discharge line DAB.
  • a change from the first operating state to the second operating state is detected by the monitoring unit ST and subsequently applied via the monitoring unit ST an electrical signal via the third line L3 to the valve VBY to open the valve VBY.
  • the generator unit GE has a dynamo and an axis connected to the dynamo, both not shown.
  • the dynamo is connected to the power line.
  • electrical energy is generated by the dynamo and dissipated by the power line STO.
  • Disposed on the axis is a circular chamber, not shown, with the inlet opening EFF and the outlet opening EAU being elements of the chamber.
  • a plurality of on-axis blades are present.
  • the vanes divide the volume of the chamber into a plurality of segments, with two adjacent segments each separated by a blade and the vanes being movable in the chamber.
  • the blades with the respective ends arranged so close to the inside of the chamber that two adjacent segments are almost vapor-tight separated from each other.
  • the distance between the outer edge of the respective blade and the inner wall of the chamber is less than 0.05 mm.
  • the segments have an equal volume with each other, so that upon rotation of the axis, the segments between the inlet opening and the outlet opening are moved the plurality of equal volumes in the chamber.
  • FIG. 2 shows a second embodiment of the low-pressure power generation system NDE.
  • a preheating device KVW is provided between the outlet opening EAU and the second sensor S2.
  • the preheating KVW has a third heat exchanger W3.
  • the heat exchanger W3 is flowed through by the process water.
  • the steam of the steam discharge line DAB flows past.
  • the steam of the steam discharge line DAB has a higher temperature than the service water.
  • the service water is heated before the service water is provided to the heater HZ as feed water available. Investigations have shown that the installation of the preheating device KVW increases the efficiency of the low-pressure power generation system NDE.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

Niederdruckstromerzeugungssystem mit einer Dampfzufuhrleitung und einer Dampfabfuhrleitung und einer Generatoreinheit, wobei die Generatoreinheit einen Dynamo mit einer an den Dynamo angeschlossenen Stromleitung, aufweist und die Generatoreinheit eine Achse aufweist, wobei die Achse mit dem Dynamo verbunden ist, sodass bei einer Drehung der Achse durch den Dynamo elektrische Energie erzeugbar ist und mittels der Stromleitung abführbar ist, und die Generatoreinheit ein Bypass zur Überbrückung der Generatoreinheit mit einem steuerbaren Ventil vorgesehen ist und der Bypass die Dampfzufuhrleitung mit der Dampfabfuhrleitung verbindet, wobei in einem ersten Betriebszustand bei einer laufenden Generatoreinheit das Ventil des Bypass geschlossen ist und in einem zweiten Betriebszustand bei einem Ausfall der Generatoreinheit das Ventil geöffnet ist.

Description

Niederdruckstromerzeugungssystem
Die Erfindung betrifft ein Niederdruckstromerzeugungssystem gemäß dem Oberbegriff des Patentanspruchs 1.
Niederdruckstromerzeugungssysteme sind aus der DE102004014101 AI bekannt. Hierbei wird Strom durch eine Entspannung von Dampf erzeugt.
Vor diesem Hintergrund besteht die Aufgabe der Erfindung darin, eine Vorrichtung anzugeben, die den Stand der Technik weiterbildet.
Die Aufgabe wird durch ein Niederdruckstromerzeugungssystem mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.
Gemäß dem Gegenstand der Erfindung wird ein Niederdruckstromerzeugungssystem bereitgestellt, mit einer Dampfzufuhrleitung und einer Dampfabfuhrleitung und einer Generatoreinheit, wobei die Generatoreinheit einen Dynamo mit einer an den Dynamo angeschlossenen Stromleitung, aufweist und die Generatoreinheit eine Achse aufweist, wobei die Achse mit dem Dynamo verbunden ist, sodass bei einer Drehung der Achse durch den Dynamo elektrische Energie erzeugbar ist und mittels der Stromleitung abführbar ist, und die Generatoreinheit eine kreisrunde Kammer aufweist, wobei die Kammer eine Einlassöffnung und eine Auslassöffnung aufweist und in der Kammer eine Vielzahl von auf der Achse angeordneten Schaufeln vorhanden sind und die Schaufeln das Volumen der Kammer in eine Vielzahl von Segmenten unterteilen, wobei zwei benachbarte Segmente durch eine Schaufel getrennt sind und die Schaufeln in der Kammer bewegbar sind und die Einlassöffnung mit der Dampfzufuhrleitung und die Ausgangsöffnung mit der Dampfabfuhrleitung jeweils dampfdicht verbunden sind, und wobei die Schaufeln mit den jeweiligen Enden derart nahe an der Innenseite der Kammer angeordnet sind, dass zwei benachbarte Segmente nahezu dampfdicht von einander getrennt sind, indem der Abstand zwischen dem äußeren Rand der jeweiligen Schaufel und der Innenwand der Kammer kleiner als 0,1 mm, vorzugsweise
BESTÄTIGUNGSKOPIE kleiner als 0,05 mm ist, und die Segmente untereinander ein gleiches Volumen aufweisen, so dass bei einer Drehung der Achse die Segmente zwischen der Einlassöffnung und der Auslassöffnung die Vielzahl von gleichen Volumina in der Kammer bewegbar sind, und ein Bypass zur Überbrückung der Generatoreinheit mit einem steuerbaren Ventil vorgesehen ist und der Bypass die Dampfzufuhrleitung mit der Dampfabfuhrleitung verbindet, wobei in einem ersten Betriebszustand bei einer laufenden Generatoreinheit das Ventil des Bypass geschlossen ist und in einem zweiten Betriebszustand bei einem Ausfall der Generatoreinheit das Ventil geöffnet ist.
Es sei angemerkt, dass auf der Dampfseite der Generatoreinheit aufgrund der identischen Größe der einzelnen Segmente keine Volumenarbeit verrichtet wird. Die Energie wird nur aus der Druckdifferenz des Dampfes zwischen der Einlass- und der Auslassöffnung entnommen. Des Weiteren sei angemerkt, dass der Dampf mittels eines Heizers erzeugt wird und der Generatoreinheit mittels der Dampfzufuhrleitung zur Verfügung gestellt wird. Es versteht sich, dass vorliegend mit dem Begriff Achse eine drehbare Achse oder anders ausgedrückt eine Welle verstanden wird.
Ein Vorteil der erfindungsgemäßen Vorrichtung ist es, dass im Unterschied zu den bisherigen im Hochdruckbereich, d.h. oberhalb von 14 Bar, verwendeten sehr kostenintensiven und aufwändigen und auf einer Volumenänderung beruhenden Dampfturbinen, sich nunmehr auch Niederdruckdampf zur Energieerzeugung verwenden lässt. Der Dampf wird nicht wie bisher einfach nur kondensiert, sondern zusätzlich zur Erzeugung von elektrischer Energie verwendet. Hierdurch lässt bei den Stromerzeugungssystemen der Wirkungsgrad steigern und der C02 Ausstoß reduzieren. Des Weiteren lassen sich auch weitere bisher nur sehr schwierig zu nutzende Abfalldampf aus industriellen Prozessen mit Drücken unterhalb von 14 Bar für die Gewinnung elektrischer Energie nutzen.
In einer Weiterbildung weist die Generatoreinheit eine elektrische Leistung zwischen 5 kW/h und 250 kW/h auf. Höchst vorzugsweise weist die Generatoreinheit eine Leistung zwischen 50 kW/h und 150 kW/h auf. Untersuchun- gen haben gezeigt, dass es vorteilhaft ist, wenn der der Dampfdruck in der Dampfzufuhrleitung kleiner als 16 Bar und größer als 0,8 Bar ist. Höchst vorzugsweise liegt der Dampfdruck unterhalb von 10 Bar und oberhalb von 1 Bar.
In einer Ausführungsform ist es bevorzugt, dass der Dampfdruck in der Dampfabfuhrleitung kleiner als 14 Bar, vorzugsweise kleiner als 1,0 Bar und höchst vorzugsweise kleiner als 0,4 Bar ist. Insbesondere ist es bevorzugt, dass der Dampfdruck in der Dampfabfuhrleitung in einem Abstand von mehr als 1 m von der Auslassöffnung kleiner als 0,8 Bar, vorzugsweise kleiner als 0,3 Bar ist.
In einer bevorzugten Weiterbildung liegt der Druckunterschied zwischen Einlassöffnung und Auslassöffnung in einem Bereich von 1.0 Bar bis 4 Bar, vorzugsweise in einem Bereich 1,5 Bar und 2,5 Bar. Ein Vorteil ist, dass insbesondere bei einem Dampfdruck in der Dampfzufuhrleitung von 6 bar und einem Dampfdruck von 4 Bar oder vorzugsweise 3 Bar, sich die Generatoreinheit als Druckreduzierstation ausbilden lässt und sich hierbei Energie in Form von Strom gewinnen lässt. Hierbei findet keine Kondensation statt, d. h. ein Kondensor zur Verflüssigung des Dampfes erübrigt sich.
Untersuchungen haben gezeigt, dass es in einer besonders bevorzugten Ausführungsform vorteilhaft ist, die Dampfabfuhrleitung der Generatoreinheit mit einem Vakuumkondensor zu verbinden, um den Dampf aus der Dampfabfuhrleitung zu Brauchwasser zu verflüssigen. Der Vakuumkondensor weist hierzu einen ersten Wärmetauscher auf. In einer Weiterbildung ist der Vakuumkondensor mit einem Heizer, nachfolgend auch als Dampferzeuger bezeichnet, mittels einer Rückflussleitung verbunden ist, um das Brauchwasser dem Dampferzeuger als Speisewasser zuzuführen und das Speisewasser mittels des Dampferzeugers in Dampf umzuwandeln. Der Dampferzeuger weist hierzu einen zweiten Wärmetauscher auf. Hierdurch lässt sich ein geschlossener Kreislauf in der Dampferzeugung ausbilden. In einer Weiterbildung ist in der Rückflussleitung zwischen dem Vakuumkondensor und der Dampferzeugungseinheit eine Vorwärmeinheit vorgesehen. Die Vorwärmeinheit weist ei- nen dritten Wärmetauscher auf. Hierbei ist der dritte Wärmetauscher von dem Brauchwasser durchflössen und wird von dem an dem dritten Wärmetauscher vorbeifließenden Dampf erwärmt und er Dampf kühlt sich ab. In Folge benötigt der Vakuumkondensor weniger Energie, um aus dem Dampf Brauchwasser zu gewinnen und der Wirkungsgrad des Niederdruckstromerzeugungssystems erhöht sich.
In einer Ausführungsform umfasst die Generatoreinheit ein Gebläse, wobei mit dem Gebläse ein Luftstrom erzeugbar ist, um insbesondere den Dynamo zu kühlen. In einer anderen Weiterbildung ist Dampfzufuhrleitung und / oder die Dampfabfuhrleitung und / oder die Kammer mit einem Isolationsmaterial ummantelt, um eine thermische Isolation zu erreichen. Hierdurch wird insbesondere die Abgabe von Wärme an die Umgebung reduziert und der Wirkungsgrad erhöht.
Des Weiteren ist es vorteilhaft, dass eine Überwachungseinheit vorgesehen ist, wobei die Überwachungseinheit mit einem ersten Sensor in der Dampfzufuhrleitung und einem zweiten Sensor in der Dampfabfuhrleitung und mit dem steuerbaren Bypassventil verbunden ist. Hierdurch lässt sich bei einer Fehlfunktion der Generatoreinheit mittels der Überwachungseinheit das Bypassventil zu öffnen und den Dampf unmittelbar von der Dampfzufuhrleitung in die Dampfabfuhrleitung zu.
In einer anderen Weiterbildung sind mehrere Generatoreinheiten hinsichtlich der Dampfzufuhrleitung und der Dampfabfuhrleitung parallel verschaltet. Anders ausgedrückt ist die Dampfzufuhrleitung und die Dampfabfuhrleitung jeweils mit mehreren Generatoreinheiten verbunden. Untersuchungen haben gezeigt, dass es insbesondere bei größeren Dampfmengen vorteilhaft ist, die Stromerzeugung mittels mehreren Generatoreinheiten durchzuführen. Hierdurch wird bei Ausfall oder Wartung einer der Generatoreinheiten die Versorgungssicherheit gewährleistet.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen näher erläutert. Hierbei werden gleichartige Teile mit identischen Bezeichnun- gen beschriftet. Die dargestellten Ausführungsformen sind stark schematisiert, d.h. die Abstände sowie die lateralen und die vertikalen Erstreckungen sind nicht maßstäblich und weisen, sofern nicht anders angegeben auch keine ableitbare geometrischen Relationen auf. Darin zeigt:
Figur 1 eine Ansicht auf eine erste erfindungsgemäße Ausführungsform eines Niederdruckstrornerzeugungssystems,
Figur 2 eine Ansicht auf eine zweite erfindungsgemäße Ausführungsform des Niederdruckstromerzeugungssystems.
Die Abbildung der Figur 1 zeigt eine Ansicht auf eine erste erfindungsgemäße Ausführungsform eines Niederdruckstromerzeugungssystems NDE, mit einem Heizer HZ als Dampferzeuger und einem Steuergerät ST und einer Generatoreinheit GE und einem Vakuumkondensor VK und einen Bypass BY. Die Generatoreinheit GE weist eine Stromleitung STO auf und ist mittels einer Dampfzufuhrleitung DZU mit dem Heizer HZ verbunden. Hierdurch wird der von dem Heizer HZ erzeugte Dampf der Generatoreinheit GE zur Verfügung gestellt. Die Generatoreinheit GE weist dampfeingangsseitig eine mit der Dampfzufuhrleitung DZU dampfdicht verbundene Einlassöffnung EFF auf. Dampfausgangsseitig weist die Generatoreinheit GE eine Auslassöffnung EAU und eine mit der Auslassöffnung EAU dampfdicht verbundene Dampfabfuhrleitung DAB auf. Die Dampfabfuhrleitung DAß ist mit dem Vakuumkondensor VK verbunden, um den Dampf aus der Dampfabfuhrleitung DAB zu Brauchwasser zu verflüssigen.
Der Vakuumkondensor VK weist einen ersten Wärmetauscher Wl auf und ist mit dem Heizer HZ mittels einer Rückflussleitung verbunden ist, um das Brauchwasser dem Heizer HZ als Speisewasser zuzuführen. Das Speisewasser wird mittels des Heizers HZ und Verwendung eines zweiten Wärmetauscher W2 wieder in Dampf umgewandelt.
Die Überwachungseinheit ST ist mittels einer ersten elektrischen Leitung LI mit einem ersten Sensor Sl und mit einer zweiten Leitung L2 mit einem zweiten Sensor S2 verschaltet. Beide Sensoren sind vorzugsweise als Drucksensoren und oder als Temperatursensoren und oder als Durchflusssensoren ausgebildet, wobei der erste Sensor Sl in der Dampfzufuhrleitung DZU zwischen dem Heizer und dem Bypass BY und der zweite Sensor S2 in der Dampfabfuhrleitung DAB zwischen dem Bypass BY und dem Vakuumkondensor VK angeordnet ist.
Der Bypass BY weist ein elektrisch gesteuertes Ventil VBY auf. Das Ventil VBY ist mittels einer dritten elektrischen Leitung L3 mit der Überwachungseinheit ST verschaltet. Das Ventil VBY ist dampfeingangsseitig mit der Dampfzufuhrleitung DZU und dampfausgangsseitig mit der Dampfabfuhrleitung DAB verbunden. In einem ersten Betriebszustand bei einer störungsfrei laufenden Generatoreinheit GE ist das Ventil VBY des Bypass BY geschlossen, d.h. der Dampf wird durch die Generatoreinheit GE geleitet. In einem zweiten Betriebszustand bei einem Ausfall der Generatoreinheit GE ist das Ventil VBY geöffnet, um die Generatoreinheit hinsichtlich der Dampfführung zu überbrücken, d.h. die Dampfzufuhrleitung DZU ist nunmehr mit der Dampfabfuhrleitung DAB verbunden. Ein Wechsel von dem ersten Betriebszustand zu dem zweiten Betriebszustand wird mittels der Überwachungseinheit ST detektiert und nachfolgend mittels der Überwachungseinheit ST eine elektrisches Signal über die dritte Leitung L3 an das Ventil VBY angelegt, um das Ventil VBY zu öffnen.
Ferner weist die Generatoreinheit GE einen Dynamo und eine mit dem Dy- namo verbundener Achse, beide nicht dargestellt, auf. Der Dynamo ist mit der Stromleitung verschaltet. Bei einer Drehung der Achse wird durch den Dynamo elektrische Energie erzeugt und mittels der Stromleitung STO abgeführt. Auf der Achse ist eine kreisrunde Kammer, nicht dargestellt, angeordnet, wobei die Einlassöffnung EFF und die Auslassöffnung EAU Elemente der Kammer sind. In der Kammer ist eine Vielzahl von auf der Achse angeordneten Schaufeln, nicht dargestellt, vorhanden. Die Schaufeln unterteilen das Volumen der Kammer in eine Vielzahl von Segmenten, wobei zwei benachbarte Segmente jeweils durch eine Schaufel getrennt sind und die Schaufeln in der Kammer bewegbar sind. Hierbei sind die Schaufeln mit den jeweiligen Enden derart nahe an der Innenseite der Kammer angeordnet, dass zwei benachbarte Segmente nahezu dampfdicht von einander getrennt sind. Vorzugsweise ist der Abstand zwischen dem äußeren Rand der jeweiligen Schaufel und der Innenwand der Kammer kleiner als 0,05 mm.
Die Segmente weisen untereinander ein gleiches Volumen auf, so dass bei einer Drehung der Achse die Segmente zwischen der Einlassöffnung und der Auslassöffnung die Vielzahl von gleichen Volumina in der Kammer bewegt werden. Indem der Dampfdruck an der Auslassöffnung EAU kleiner als der Dampfdruck an der Einlassöffnung EAU werden die Schaufeln um die Achse gedreht.
In der Abbildung der Figur 2 ist eine zweite Ausführungsform des Niederdruckstromerzeugungssystems NDE dargestellt. Im Folgenden werden nur die Unterschiede zu der Abbildung der Figur 1 erläutert. In der Dampfabfuhrleitung DAB ist zwischen der Auslassöffnung EAU und dem zweiten Sensor S2 eine Vorwärmeinrichtung KVW vorgesehen. Die Vorwärmeinrichtung KVW weist einen dritten Wärmetauscher W3 auf. Der Wärmetauscher W3 ist von dem Brauchwasser durchflössen. An der Außenseite des dritten Wärmetauschers W3 fließt der Dampf der Dampfabfuhrleitung DAB vorbei. Der Dampf der Dampfabfuhrleitung DAB weist eine höhere Temperatur als das Brauchwasser auf. Hierdurch wird das Brauchwasser erwärmt, bevor das Brauchwasser dem Heizer HZ als Speisewasser zur Verfügung gestellt wird. Untersuchungen haben gezeigt, dass sich durch den Einbau der Vorwärmeeinrichtung KVW der Wirkungsgrad des Niederdruckstromerzeugungssystems NDE erhöht.

Claims

Patentansprüche
1. Niederdruckstromerzeugungssystem (NDE), mit einer Dampfzufuhrleitung (DZU) und einer Dampfabfuhrleitung (DAB) und einer Generatoreinheit (GE), wobei die Generatoreinheit (GE) aufweist,
- einen Dynamo mit einer an den Dynamo angeschlossenen Stromleitung (STO),
- eine Achse, wobei die Achse mit dem Dynamo verbunden ist, sodass bei einer Drehung der Achse durch den Dynamo elektrische Energie erzeugbar ist und mittels der Stromleitung (STO) abführbar ist,
- eine kreisrunde Kammer, wobei die Kammer eine Einlassöffnung (EFF) und eine Auslassöffnung (EAU) aufweist und in der Kammer eine Vielzahl von auf der Achse angeordneten Schaufeln vorhanden sind und die Schaufeln das Volumen der Kammer in eine Vielzahl von Segmenten unterteilen, wobei zwei benachbarte Segmente durch eine Schaufel getrennt sind und die Schaufeln in der Kammer bewegbar sind und die Einlassöffnung (EFF) mit der Dampfzufuhrleitung (DAB) und die Ausgangsöffnung (EAU) mit der Dampfabfuhrleitung (DAB) jeweils dampfdicht verbunden sind,
dadurch gekennzeichnet, dass
die Schaufeln mit den jeweiligen Enden derart nahe an der Innenseite der Kammer angeordnet sind, dass zwei benachbarte Segmente nahezu dampfdicht von einander getrennt sind, indem der Abstand zwischen dem äußeren Rand der jeweiligen Schaufel und der Innenwand der Kammer kleiner als 0,1 mm ist, und
die Segmente untereinander ein gleiches Volumen aufweisen, so dass bei einer Drehung der Achse die Segmente zwischen der Einlassöffnung (EFF) und der Auslassöffnung (EAU) die Vielzahl von gleichen Volumina in der Kammer bewegbar sind, und ein Bypass zur Überbrückung der Generatoreinheit (GE) mit einem steuerbaren Ventil vorgesehen ist und der Bypass (BY) die Dampfzufuhrleitung (DZU) mit der Dampfabfuhrleitung (DAB) verbindet, wobei in einem ersten Betriebszustand bei einer laufenden Generatoreinheit (GE) das Ventil (VBY) des Bypass (BY) geschlossen ist und in einem zweiten Betriebszustand bei einem Ausfall der Generatoreinheit (GE) das Ventil (VBY) geöffnet ist.
Niederdruckstromerzeugungssystem (NDE) nach Anspruch 1, dadurch gekennzeichnet, dass die Generatoreinheit (GE) eine elektrische Leistung zwischen 5 KW/h und 250 KW/h aufweist.
Niederdruckstromerzeugungssystem (NDE) nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass der Dampfdruck in der Dampfzufuhrleitung (DZU) kleiner als 16 Bar und größer als 0,8 Bar ist.
Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Dampfdruck in der Dampfabfuhrleitung (DAB) kleiner als 14 Bar, vorzugsweise kleiner als 1,0 Bar ist.
Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Dampfdruck in der Dampfabfuhrleitung (DZU) in einem Abstand von mehr als Im von der Auslassöffnung (EAU) kleiner als 0,8 Bar vorzugsweise kleiner als 0,3 Bar ist.
Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der Druckunterschied zwischen Einlassöffnung (EFF) und Auslassöffnung (EAU) zwischen 1.0 Bar und 4 Bar, vorzugsweise zwischen 1,5 Bar und 2,5 Bar liegt.
Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Dampfabfuhrleitung (DAB) die Generatoreinheit (GE) mit einem Vakuumkondensor (VK) verbindet, um den Dampf aus der Dampfabfuhrleitung (DAB) zu Brauchwasser zu verflüssigen.
8. Niederdruckstromerzeugungssystem (NDE) nach Anspruch 7, dadurch gekennzeichnet, dass der Vakuumkondensor (VK) mit einem Dampferzeuger mittels einer Rückflussleitung (RFL) verbunden ist, um das Brauchwasser einem Dampferzeuger als Speisewasser zuzuführen und das Speisewasser mittels des Dampferzeugers in Dampf umzuwandeln.
9. Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Generatoreinheit (GE) ein Gebläse umfasst und mit dem Gebläse ein Luftstrom erzeugbar ist, um die Generatoreinheit (GE) zu kühlen.
10. Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass eine Überwachungseinheit vorgesehen ist und die Überwachungseinheit (ST) mit einem ersten Sensor (Sl) in der Dampfzufuhrleitung (DZU) und einem zweiten Sensor (S2) in der Dampfabfuhrleitung (DAB) und mit dem Bypassventil (VBY) verbunden ist.
11. Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass in der Rückflussleitung (RFL) zwischen dem Vakuumkondensor (VK) und der Dampferzeugungseinheit eine Vorwärmeinheit (KVW) vorgesehen ist.
12. Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Generatoreinheit (GE) als Druckreduzierstation verwendet wird.
13. Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Dampfzufuhrleitung (DZU) und / oder die Dampfabfuhrleitung (DAB) und / oder die Kammer mit einem Isolationsmaterial ummantelt ist, um eine thermische Isolation zu erreichen.
14. Niederdruckstromerzeugungssystem (NDE) nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass mehrere Generatoreinheiten hinsichtlich der Dampfzufuhrleitung (DZU) und der Dampfabfuhrleitung (DAB) parallel verschaltet sind.
PCT/EP2014/000280 2014-02-04 2014-02-04 Niederdruckstromerzeugungssystem WO2015117619A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/000280 WO2015117619A1 (de) 2014-02-04 2014-02-04 Niederdruckstromerzeugungssystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/000280 WO2015117619A1 (de) 2014-02-04 2014-02-04 Niederdruckstromerzeugungssystem

Publications (1)

Publication Number Publication Date
WO2015117619A1 true WO2015117619A1 (de) 2015-08-13

Family

ID=50513198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/000280 WO2015117619A1 (de) 2014-02-04 2014-02-04 Niederdruckstromerzeugungssystem

Country Status (1)

Country Link
WO (1) WO2015117619A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072384A1 (en) * 2002-02-25 2003-09-04 Outfitter Energy, Inc Waste heat solar energy system
WO2008125827A2 (en) * 2007-04-13 2008-10-23 City University Organic rankine cycle apparatus and method
US20110308252A1 (en) * 2010-06-18 2011-12-22 General Electric Company Turbine inlet condition controlled organic rankine cycle
FR2976136A1 (fr) * 2011-05-30 2012-12-07 Enertime Dispositif de production d'electricite a cycle de rankine pour un reseau electrique local
WO2013028476A2 (en) * 2011-08-19 2013-02-28 E. I. Du Pont De Nemours And Company Processes and compositions for organic rankine cycles for generating mechanical energy from heat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072384A1 (en) * 2002-02-25 2003-09-04 Outfitter Energy, Inc Waste heat solar energy system
WO2008125827A2 (en) * 2007-04-13 2008-10-23 City University Organic rankine cycle apparatus and method
US20110308252A1 (en) * 2010-06-18 2011-12-22 General Electric Company Turbine inlet condition controlled organic rankine cycle
FR2976136A1 (fr) * 2011-05-30 2012-12-07 Enertime Dispositif de production d'electricite a cycle de rankine pour un reseau electrique local
WO2013028476A2 (en) * 2011-08-19 2013-02-28 E. I. Du Pont De Nemours And Company Processes and compositions for organic rankine cycles for generating mechanical energy from heat

Similar Documents

Publication Publication Date Title
EP0720689B1 (de) Vorrichtung zur kühlung des kühlmittels der gasturbine einer gas- und dampfturbinenanlage
DE60029510T2 (de) Dampfkühlungssystem für den Ausgleichkolben einer Dampfturbine und dazugehörige Methode
DE102014104452A1 (de) System und Verfahren zur Erhöhung der Gasturbinenausgangsleistung
DE112016003348B4 (de) Wasserversorgungssystem, wasserversorgungsverfahren, und dampf erzeugende anlage, die mit wasserversorgungssystem bereitgestellt wird
DE102009043871A1 (de) System und Verfahren zur Wärmesteuerung eines Gasturbineneinlasses
WO2009010023A2 (de) Vorrichtung und verfahren zur kraft-wärmeerzeugung
DE102011051415A1 (de) System mit einer Speisewasserheizvorrichtung zum Abführen von Wärme von einer Niederdruckdampfturbine
CN105980825A (zh) 天然气凝液调压气化器采样系统
WO2010034659A2 (de) Dampfkraftanlage zur erzeugung elektrischer energie
EP3183432A1 (de) Turbinenregelungseinheit mit einem temperaturbeanspruchungsregler als führungsregler
DE112017001695B4 (de) Anlage und Betriebsverfahren dafür
WO2015117619A1 (de) Niederdruckstromerzeugungssystem
EP2918793A1 (de) Regelkonzept zur Fernwärmeauskopplung bei einer Dampfkraftanlage
WO2015117621A1 (de) Niederdruckstromerzeugungssystem
DE102012222671A1 (de) Vorrichtung sowie Verfahren zur Nutzung von Abwärme eines Verbrennungsmotors sowie Turbinenaggregat für eine solche Vorrichtung
DE2512774C2 (de) Kombinierte Gas-Dampfturbinenanlage
DE102010037107B4 (de) Gasturbinenkraftwerk mit einem System zum externen Zuführen von Energie für ein Brennstoffgas zur Taupunktheizung
CN107923262B (zh) 湿分分离单元及蒸汽涡轮设备
CN112585399B (zh) 水分分离器和蒸汽涡轮设备
EP2700790A1 (de) Kraftwerksanlage umfassend eine Gasturbine, einen Generator und eine Dampfturbine sowie Verfahren zum Betrieb derselben
DE3808006C2 (de)
DE102012006141B4 (de) Abgaswärmenutzsystem
DE102010033327A1 (de) Eingehäusige Dampfturbine mit Zwischenüberhitzung
EP3183426B1 (de) Kontrollierte kühlung von turbinenwellen
DE102014221563A1 (de) Verfahren zur Verkürzung des Anfahrvorgangs einer Dampfturbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14717992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14717992

Country of ref document: EP

Kind code of ref document: A1