WO2015117562A1 - 海底冷泉天然气渗漏流量原位超声波测量系统 - Google Patents

海底冷泉天然气渗漏流量原位超声波测量系统 Download PDF

Info

Publication number
WO2015117562A1
WO2015117562A1 PCT/CN2015/072319 CN2015072319W WO2015117562A1 WO 2015117562 A1 WO2015117562 A1 WO 2015117562A1 CN 2015072319 W CN2015072319 W CN 2015072319W WO 2015117562 A1 WO2015117562 A1 WO 2015117562A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
bubble
acoustic wave
cold spring
bubble breaking
Prior art date
Application number
PCT/CN2015/072319
Other languages
English (en)
French (fr)
Inventor
邸鹏飞
龙建军
龙达鑫
陈琳莹
冯东
陈多福
Original Assignee
中国科学院南海海洋研究所
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院南海海洋研究所, 广东工业大学 filed Critical 中国科学院南海海洋研究所
Priority to US14/772,308 priority Critical patent/US9845672B2/en
Publication of WO2015117562A1 publication Critical patent/WO2015117562A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/001Survey of boreholes or wells for underwater installation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/007Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00 by detecting gases or particles representative of underground layers at or near the surface

Definitions

  • the invention relates to an in-situ ultrasonic measuring system for measuring leakage current of seabed cold spring natural gas, in particular to measure the leakage flow of seabed leakage by an acoustic method.
  • the in-situ measuring device for leakage current of seabed cold spring natural gas is a new technology developed by foreign countries in the past decade, and research in this field is in full swing in the world.
  • the United States regards deep-sea technology as a high-tech project funded by its own marine sector.
  • Professor Harry Roberts of the Louisiana State University Coastal Research Institute had designed and manufactured a submarine cold spring fluid observation device that successfully observed the natural gas leakage system in Bush Hill, Gulf of Mexico.
  • the Gulf of Mexico Gas Hydrate Research Association organized 15 universities, 5 federal agencies and several private companies, led by the University of Mississippi, to conduct a study of the submarine gas hydrate real-time observation system for the Mississippi Canyon Block in the Gulf of Mexico.
  • 118 conducted geochemical, microbial and seismic observations.
  • the University of California, Santa Barbara used the designed submarine cold spring observing device to observe global natural gas leakage and gas hydrate development areas such as hydrate ridges and the Gulf of Mexico.
  • the hydrate (leakage hydrate) developed by the leakage system has the characteristics of shallow burial, easy exploitation and high value.
  • the amount of methane released into the ocean waters and the atmosphere through this submarine cold spring gas leakage is very impressive every year, and the initial estimate is greater than 10Tg (1012g) per year.
  • Methane is a strong greenhouse gas with a greenhouse effect that is more than 20 times that of the same quality carbon dioxide. Such a large amount of methane is an important factor in global climate change.
  • the present invention provides an in-situ ultrasonic measurement system for the submarine cold spring natural gas leakage flow, the system has The characteristics of small volume, light weight and low power consumption can not only carry out on-line measurement of long-term in-situ flow of submarine cold spring natural gas leakage, but also can be used for on-line measurement of submerged flow of submarine cold spring natural gas in different water depth environments.
  • the present invention adopts the following technical solutions:
  • An in-situ ultrasonic measuring system for a submarine cold spring natural gas leakage flow comprising a leakage tent cover and a flow measuring channel, wherein the flow measuring channel comprises a lower bubble breaking passage, an ultrasonic sensor measuring channel and an upper bubble which are arranged in order from bottom to top and communicate with each other.
  • the lower bubble breaking passage is in communication with a leaking tent cover in which a bubble crushing grid is installed, and a lower bubble crushing device disposed along a rising direction of the bubble is respectively installed in the lower bubble crushing passage and the upper bubble crushing passage
  • an upper bubble breaking device one side of the ultrasonic sensor measuring channel is fixedly connected with a sound wave splitter, and the other side is fixedly connected with a flat receiving transducer for receiving the transmitted sound wave generated by the sound wave splitter, and is measured by the ultrasonic sensor
  • An acoustic probe that also receives the transmitted acoustic waves generated by the acoustic wave splitter is provided in the channel.
  • the flow measuring channel is formed by a ring, wherein the ring includes a first ring forming a lower bubble breaking passage, a second ring forming an ultrasonic sensor measuring channel, a third ring forming an upper bubble breaking channel, and a fourth ring fixedly connected to the leaking tent cover, the first ring, the second ring, the third ring and the fourth ring being fixed by a connecting shaft, the acoustic wave splitter and the flat receiving The transducer and the sonic probe are both fixed to the second ring.
  • the second ring includes a second ring and a second ring, and a bubble separating plate is disposed between the second ring and the second ring.
  • the connecting shaft sleeve is provided with a sleeve for protecting the connecting shaft.
  • the reinforcing shaft is fixedly connected to the upper end of the connecting shaft.
  • the acoustic wave splitter includes an acoustic wave splitter body, a fixed seat sound transmitting section, a flat acoustic wave transmitting transducer, a fixed seat, and a sealed joint, wherein the acoustic wave splitter body includes an end portion and a side of the end portion
  • Two integrally formed acoustic wave branching mechanisms wherein the at least two acoustic wave branching mechanisms are identical in structure, each of the acoustic wave branching mechanisms is mounted with a first acoustic wave reflecting plate, and the two acoustic wave shunts are
  • a second acoustic wave reflector is disposed between the mechanisms, and two ends of the sound transmission section of the fixed seat are respectively fixedly connected with the other side of the end portion and one side of the fixed seat, and the flat acoustic wave transmitting transducer is mounted on the fixed seat to transmit sound.
  • the sealing joint On the end face of the segment and in the fixed seat In some sealed chambers, the sealing joint is fixedly connected to the other side of the fixing seat, and the driving cable connected to the flat acoustic wave transmitting transducer is connected to the external signal source through the sealing joint.
  • the two acoustic wave splitting mechanisms are respectively fixed to the second ring and the second two rings, and the flat receiving transducers are two, and the two flat receiving transducers are respectively sealed and fixed to the second a first flat receiving transducer mount on a ring and a second flat receiving transducer mount fixed to the second two ring, and two flat receiving transducers and two acoustic wave splitting mechanisms correspond.
  • the acoustic wave probes are four, and the four acoustic wave probes are disposed two by two, and are respectively fixed to the second one ring and the second two rings by the acoustic wave probe fixing seat.
  • the lower bubble breaking device comprises a bracket assembly, a power transmission and bubble breaking assembly, and a honeycomb core board
  • the bracket assembly comprises a lower bracket, a support plate, a honeycomb core board mounting plate and an upper bracket arranged in order from bottom to top.
  • the power transmission and bubble breaking assembly comprises a support ring, an impeller shaft, an impeller, and a bubble cutter.
  • the honeycomb core plate is mounted in the honeycomb core board mounting plate, the support plate is fixed on the outer side of the support ring, and the impeller shaft is inserted in the support ring.
  • the impeller whose fixed end is fixedly connected is located in the lower central perforation provided by the lower bracket (41), and the bubble cutter fixedly connected at the upper end is located in the upper central perforation provided in the upper bracket, and the impeller and the bubble cutter are both
  • the impeller shaft is coaxial, and the upper and lower sides of the support ring are respectively provided with an upper block and a lower block fixed on the impeller shaft, and the upper block and the lower block are both coaxial with the impeller shaft.
  • the upper bubble breaking device comprises at least two bubble baffles and a bubble baffle, wherein the at least two bubble baffles are arranged in order from the bottom to the top in the direction in which the bubbles rise, and each of the bubble baffles is provided for dividing the rising bubbles.
  • a circular hole the radius of the circular hole of each bubble baffle is equal, the number of the circular holes increases along the height direction of the uniform crushing device, and the radius decreases; the bubble partition for preventing the bubble of the rising bubble from being merged again is disposed in the phase Adjacent between two bubble baffles.
  • the main function of the bubble breaking grid is to prevent the seafloor sediments or organisms from clogging the instrument.
  • the top of the leaking tent cover is connected to the flow measuring channel through the fourth ring, and the flow measuring channel is composed of upper and lower bubble breaking channels and ultrasonic waves.
  • the sensor measuring channel is composed, the upper and lower bubble breaking channels and the ultrasonic sensor measurement are fixed in series by the connecting shaft and the reinforcing cross bar, and the lower bubble breaking channel is used to divide the rising bubble into evenly distributed in the channel and the radius is equal. Bubbles are convenient for obtaining good acoustic signal characteristics.
  • the upper bubble breaking channel is to prevent bubbles from being uniformly gathered again to form unevenly distributed bubbles of different radii.
  • the ultrasonic sensor measuring channel connects one acoustic wave splitter, four acoustic wave probes and two flat receiving transducers through the second ring and the acoustic probe fixing base, and the sound wave splitter is used for the sound wave splitter
  • the transmitted acoustic wave emitted by the acoustic wave transmitting transducer is split into two homogenous sound waves, and the acoustic wave probe and the flat receiving transducer are used to receive the acoustic wave signal passing through the uniformly distributed bubble.
  • a flow measuring channel mounting base is arranged under the flow measuring channel to facilitate connection with the leaking tent cover.
  • the flow measurement channel has four acoustic wave probes, two flat receiving transducers, and one acoustic wave splitter.
  • the acoustic sound splitter emits two upper and lower sound waves, and the above two acoustic wave probes and one flat receiving transducer A group of sensors are mounted in the same cross section of the flow measurement channel and in the same plane as the upper beam from the acoustic splitter, and receive this beam of sound.
  • the remaining two sonic probes, one flat receiving transducer are mounted in another cross section of the flow measuring channel and in the same plane as the lower beam from the acoustic splitter, forming another set of sensors to receive The sound wave of the beam.
  • the total natural gas flow rate can be obtained by processing the acoustic wave signal to obtain the bubble flow rate and the cross-section gas content, combined with the recorded time.
  • the in-situ measurement of natural gas flow in the submarine cold spring leakage system is determined by the relationship between the bubble rising velocity and the average bubble density measured and the amplitude and phase of the acoustic wave.
  • the upward leakage of the submarine cold spring gas bubbles enters the flow measurement channel through the leaking tent cover, and the rising bubbles pass through the lower bubble breaking channel, forming small bubbles of equal radius and uniform distribution in the channel, and then enter the ultrasonic wave.
  • the acoustic wave transmitting transducer emits a continuous sound wave signal of a certain frequency, and two sound waves with the same spectral characteristics and energy are formed by the sound wave splitter, and two sound waves with the same energy penetrate into the evenly distributed ultrasonic measuring channel.
  • the bubbles are then received by the sonic probe and the flat receiving transducer to obtain a bubble flow rate and a cross-sectional gas content.
  • the bubbles passing through the ultrasonic sensor are measured and then enter the upper bubble breaking channel, which then gathers together and enters the seawater.
  • the total natural gas flow rate value can be obtained by the obtained bubble flow rate and the cross-sectional gas content and recording time.
  • the invention has the beneficial effects that the existing seafloor cold spring natural gas leakage in-situ flow on-line measuring device can not overcome the short-term in-situ on-line observation, and the invention can adapt to different water depth environments, and can not only carry out long-term submarine cold spring natural gas.
  • the in-situ flow of leakage is measured on-line, and can be used for online measurement of in-situ flow of submarine cold spring natural gas leakage in different water depth environments.
  • FIG. 1 is a cross-sectional view of an in-situ ultrasonic measuring system for measuring leakage current of seabed cold spring natural gas according to the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a schematic structural view of a lower bubble breaking device
  • Figure 4 is a schematic structural view of an upper bubble breaking device
  • Fig. 5 is a schematic structural view of an acoustic wave splitter.
  • the in-situ ultrasonic measurement system for the submarine cold spring natural gas leakage flow includes a leakage tent cover 2 and a flow measurement channel 1, and the flow measurement channel 1 includes the lower and upper layers arranged in parallel and connected to each other.
  • the lower air bubble breaking device 4 and the upper air bubble breaking device 5 are arranged in the channel 13 respectively in the rising direction of the air bubble, and one side of the ultrasonic sensor measuring channel 12 is fixedly connected with a sound wave splitter 7 and the other side is fixedly connected for receiving.
  • the flat receiving transducer 8 of the acoustic wave is provided with an acoustic wave probe 9 which also receives the transmitted acoustic wave generated by the acoustic wave splitter 7 in the ultrasonic sensor measuring channel 12.
  • the flow measuring channel 1 is formed by a ring 6, wherein the ring 6 includes a first ring 61 forming a lower bubble breaking passage 11, a second ring 62 forming an ultrasonic sensor measuring channel 12, and a first forming bubble breaking passage 13
  • the third ring 63 and the fourth ring 64 fixedly connected to the leaking tent cover 2, and the first ring 61, the second ring 62, the third ring 63 and the fourth ring 64 are fixed by the connecting shaft 65
  • the connecting shaft 65 is provided with a sleeve 67 for protecting the connecting shaft 65.
  • the upper end of the connecting shaft 65 is fixedly connected with a reinforcing crossbar 68.
  • the acoustic wave splitter 7, the flat receiving transducer 8, and the acoustic wave probe 9 are all fixed to the second ring 62.
  • a measuring channel mounting base 69 is disposed between the fourth ring 64 and the first ring 61, and is locked between the fourth ring 64 and the first ring 61 by a fixing bolt.
  • the second ring 62 includes a second ring 621 and a second ring 622.
  • a bubble separating plate 66 is disposed between the second ring 621 and the second ring 622.
  • the acoustic wave splitter 7 includes an acoustic wave splitter body 71, a fixed seat sound transmitting section 77, a flat acoustic wave transmitting transducer 78, a fixed seat, and a sealing joint 711, wherein the acoustic wave splitter body 71 includes The end portion and the two acoustic wave branching mechanisms integrally formed with the end portion side, the structures of the two acoustic wave branching mechanisms are the same, and each acoustic wave branching mechanism is provided with a sound wave reflecting plate 72, and the two sound wave dividing waves are arranged.
  • a sound wave reflecting plate 74 is disposed between the road mechanisms, and the sound wave reflecting plate 74 is fixed by the support rod 73.
  • the sound wave reflecting plate 72 is square, and the sound wave reflecting plate 74 is tapered.
  • the two ends of the fixed seat sound transmission section 77 are respectively fixedly connected to the other side of the end portion and one side of the fixed seat, and the flat acoustic wave transmitting transducer 78 is mounted on the end surface of the fixed seat sound transmitting section 77 and is disposed in the fixed seat.
  • the sealed chamber is filled with a layer of sound absorbing material.
  • the sealing joint 711 is fixedly coupled to the other side of the mount, and the drive cable connected to the flat acoustic wave transmitting transducer 78 is connected to an external signal source via a sealing joint 711.
  • the fixed seat sound transmission section 77 and the end portion are fixedly coupled by a mating structure of the lock screw 75 and the acoustic wave splitter horn 76.
  • the fixing base includes a fixing seat middle portion 79 and a sealing end cover 710.
  • the fixing seat sound transmitting portion 77 is disposed away from the end of the acoustic wave splitter body 71 with a connecting plate matching the shape of the fixing seat middle portion 79.
  • the sealing end cover 710 and the connecting plate respectively respectively Fixedly connected to both sides of the middle portion 79 of the fixing seat, one end of the sealing joint 711 is fixed on the sealing end cover 710, and the sealing cavity is disposed between the middle portion 79 of the fixing seat, or between the middle portion 79 of the fixing seat and the sealing end cover 710, and the driving cable is sealed.
  • the end cap 710 and the drive cable that is threaded into the sealing joint 711 are connected to the flat acoustic wave transmitting transducer 78 by a sealed end cap 710.
  • An annular gasket is disposed between the middle portion 79 of the fixing seat and the sealing end cover 710 and the connecting plate.
  • the upwardly leaking submarine cold spring gas bubbles pass through the flow measurement channel, and the floating bubbles first form small bubbles of equal size and uniform distribution in the flow measurement channel, and then enter the ultrasonic sensor measurement channel, and the external signal source is transmitted through the drive cable and the flat sound wave.
  • the transducer is electrically connected to emit a continuous acoustic signal of a certain frequency, and at least two acoustic waves having the same spectral characteristics and energy are formed through the body of the acoustic wave splitter, and the acoustic waves having the same characteristics penetrate into the uniformly distributed bubbles in the measuring channel. At least two transmitted acoustic waves are formed for external transducer reception, and are used for measuring the floating velocity of the leakage air bubbles of the seabed cold spring natural gas.
  • the two acoustic wave splitting mechanisms are respectively fixed to the second ring 621 and the second two ring 622, and the flat receiving transducers 8 are two, and the two flat receiving transducers 8 are respectively sealed and fixed to the second.
  • a first flat receiving transducer mount 81 on a ring 621 and a second flat receiving transducer mount 82 fixed to the second second ring 622, and two flat receiving transducers 8 and two The sound wave shunting mechanism corresponds.
  • the acoustic wave probes 9 are four, and the four acoustic wave probes 9 are disposed two by two, and are respectively fixed to the second one ring 621 and the second two ring 622 by the acoustic wave probe fixing base 91.
  • the lower bubble breaking device 4 comprises a bracket assembly, a power transmission and bubble breaking assembly, a bubble guiding portion and the like.
  • the bracket assembly is formed by stacking the lower bracket 41, the support plate 410, the honeycomb core mounting plate 47, the upper bracket 48, and the like in order;
  • the power transmission and bubble breaking assembly is composed of the impeller shaft 42, the impeller 43, the bubble cutter 44, and the upper block.
  • the block 45, the lower block 46 and the support ring 411 and the like are composed;
  • the bubble guiding portion is composed of the honeycomb core plate 49 and the like.
  • the lower bracket 41, the support plate 410, the honeycomb core board mounting plate 47, and the upper bracket 48 in the bracket assembly are sequentially disposed from bottom to top, and are fixed to each other by adhesion or screw or other mechanical means, and the honeycomb core board 49 is mounted on the honeycomb core.
  • the power transmission and bubble breaking assembly includes a power acquisition assembly, a power transmission assembly, and a bubble breaking assembly.
  • the power acquisition component is an impeller 43;
  • the power transmission component is an impeller shaft 42, an upper block 45, and a lower block 46;
  • the bubble breaking assembly is a bubble cutter 44.
  • the support plate 410 is fixed to the outer side of the support ring 411, the impeller shaft 42 is inserted into the support ring 411, and the impeller 43 fixedly connected to the lower end of the impeller shaft 42 is located in the lower central perforation provided by the lower bracket 41, and the upper end of the impeller shaft 42 is fixed.
  • the attached bubble cutter 44 is located in the upper central perforation provided in the upper bracket 48.
  • the honeycomb core plate 49 is placed next to the bubble cutter 44, and the core hole shape of the honeycomb core plate 49 is an equilateral hexagonal shape, which is formed by bonding a plurality of formed aluminum foils.
  • the rotation of the impeller 43 is driven by the kinetic energy of the rising bubble, and no external energy is required.
  • the impeller 43 is coaxially fixed to the impeller shaft 42.
  • the impeller shaft 42 acquires the power required for cutting the air bubble through the impeller 43.
  • the impeller shaft 42 is coaxially fixed to the upper block 45 and the lower block 46, and passes through the upper block 45 and The lower block 46 receives the impeller shaft 42
  • the axial and radial forces are transmitted to the bracket assembly via the support ring 411.
  • the impeller shaft 42 is coaxially fixed to the bubble cutter 44 to transmit power to the bubble cutter 44.
  • the impeller 43 rotates while driving the bubble cutter 44 to rotate centrally about the axis of the impeller shaft 42.
  • the bubble cutter 44 cuts the narrow bubble formed by the flow guiding action of the honeycomb core plate 49 into a bubble having a smaller diameter and breaks. The purpose of the bubble.
  • the upper bubble breaking device 5 includes at least two bubble baffles 51 and a bubble baffle 52. At least two bubble baffles 51 are sequentially disposed from bottom to top in the direction in which the bubbles rise, and each bubble baffle 51 is provided. A circular hole 511 for dividing the rising bubble is provided, and the circular hole 511 of each bubble baffle 51 has the same radius, and the number of the circular hole 511 is increased along the height direction of the uniform crushing device and the radius is decreased; The bubble separator 52 in which the rear bubble is fused again is disposed between the adjacent two bubble shutters 51.
  • the bubble partitions 52 are distributed in a grid shape, the grid is square, the center point of each square corresponds to the center of the circular hole 511 on the upper bubble baffle 51, and the intersection of the adjacent four grids is located below The center of the circular hole 511 on the side bubble baffle 51.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种海底冷泉天然气渗漏流量原位超声波测量系统,其包括渗漏帐篷罩(2)、流量测量通道(1),流量测量通道(1)包括由下至上依次设置并相互连通的下气泡破碎通道(11)、超声波传感器测量通道(12)以及上气泡破碎通道(13),下气泡破碎通道(11)与安装有气泡破碎网格(3)的渗漏帐篷罩(2)相连通,在下气泡破碎通道(11)和上气泡破碎通道(13)中分别安装有沿气泡的上升方向设置的下气泡破碎装置(4)和上气泡破碎装置(5),超声波传感器测量通道(12)的一侧固定连接有一声波分路器(7),另一侧固定连接有用于接收声波分路器(7)产生的透射声波的扁平接收换能器(8),在超声波传感器测量通道(12)中设有同样接收声波分路器(7)产生的透射声波的声波探针(9)。该超声波测量系统可对不同水深环境下的海底冷泉天然气渗漏原位流量开展长期在线测量。

Description

海底冷泉天然气渗漏流量原位超声波测量系统 技术领域
本发明涉及一种用于测量海底冷泉天然气渗漏流量原位超声波测量系统,尤其是采用声学方法测量海底渗漏气泡流量。
背景技术
海底冷泉天然气渗漏流量原位测量装置是近十几年国外研究发展的一项新技术,国际上该领域的研究正在如火如荼的进行着。美国将深海技术作为本国海洋领域优先资助的高科技项目。1998年路易斯安那州立大学海岸研究所Harry Roberts教授已经设计制造出海底冷泉流体观测装置,成功地观察了墨西哥湾Bush Hill的天然气渗漏系统。1999年由墨西哥湾天然气水合物研究联合会组织了15所高校,5个联邦机构和数家私人公司,由密西西比大学牵头,开展了海底天然气水合物实时观测系统的研究,对墨西哥湾Mississippi Canyon Block 118进行了地球化学、微生物和地震观测。与此同时,加州大学圣塔芭芭拉分校采用所设计的海底冷泉观测装置对水合物脊和墨西哥湾等全球典型的天然气渗漏和天然气水合物发育区进行了观测。渗漏系统发育的水合物(渗漏型水合物)具有埋藏浅,易开采,价值高等特点。每年通过这种海底冷泉天然气渗漏释放到海洋水体及大气中的甲烷的数量是非常惊人的,初步的估计为大于10Tg(1012g)每年。甲烷是强烈的温室效应气体,其温室效应是相同质量二氧化碳的20倍以上,如此巨大数量的甲烷是全球气候变化的一个重要影响因子。因此,对海底冷泉天然气渗漏速率在线原位探测具有重要的经济价值和科学意义。目前,在国内有关海底冷泉天然气渗漏原位流量在线测量装置的研究已经开展起来,中国科学院广州地球化学研究所现已成功研制出两套海底冷泉天然气渗漏原位流量在线测量装置,填补了我国在该领域的空白,然而研制成功的这两套装置由于材料、元器件、耗电量等限制以及装置工作性能稳定性差,很难对海底冷泉渗漏系统天然气流量开展长期的多环境的原位在线观测。
发明内容
为了克服现有的海底冷泉天然气渗漏原位流量在线测量装置不能开展长期的多环境的原位在线观测的不足,本发明提供一种海底冷泉天然气渗漏流量原位超声波测量系统,该系统具有体积小、质量轻、耗电量低等特征,不仅能开展长期的海底冷泉天然气渗漏原位流量在线测量,而且还能用于不同水深环境下的海底冷泉天然气渗漏原位流量在线测量。
为实现本发明目的,本发明采取了如下的技术方案:
海底冷泉天然气渗漏流量原位超声波测量系统,其包括渗漏帐篷罩、流量测量通道,所述流量测量通道包括由下至上依次设置并相互连通的下气泡破碎通道、超声波传感器测量通道以及上气泡破碎通道,其中,所述下气泡破碎通道与安装有气泡破碎网格的渗漏帐篷罩相连通,在下气泡破碎通道和上气泡破碎通道中分别安装有沿气泡的上升方向设置的下气泡破碎装置和上气泡破碎装置,所述超声波传感器测量通道的一侧固定连接有一声波分路器,另一侧固定连接有用于接收声波分路器产生的透射声波的扁平接收换能器,在超声波传感器测量通道中设有同样接收声波分路器产生的透射声波的声波探针。
所述流量测量通道由圆环形成,其中,所述圆环包括形成下气泡破碎通道的第一圆环、形成超声波传感器测量通道的第二圆环、形成上气泡破碎通道的第三圆环以及与渗漏帐篷罩固定连接的第四圆环,所述第一圆环、第二圆环、第三圆环以及第四圆环之间通过连接轴固定,所述声波分路器、扁平接收换能器以及声波探针均固定在第二圆环上。
所述第二圆环包括第二一圆环和第二二圆环,在所述第二一圆环和第二二圆环之间设有一气泡隔离板。
所述连接轴外套设一用于保护连接轴的套筒。
所述连接轴的上端并固定连接有一加强横杆。
所述声波分路器包括声波分路器本体、固定座传声段、扁平声波发射换能器、固定座以及密封接头,其中,声波分路器本体包括端部以及与所述端部一侧一体成型的二个声波分路机构,所述至少二个声波分路机构的结构均相同,每个声波分路机构上均安装一第一声波反射板,且在所述二个声波分路机构之间设有一第二声波反射板,固定座传声段的两端分别与所述端部的另一侧以及固定座的一侧固定连接,扁平声波发射换能器安装于固定座传声段的端面上且位于固定座内设 有的密封腔内,密封接头固定连接于固定座的另一侧,与扁平声波发射换能器连接的驱动电缆通过密封接头与外部信号源相连接。
所述二个声波分路机构分别固定于第二一圆环和第二二圆环,所述扁平接收换能器为二个,该二个扁平接收换能器分别密封设置于固定于第二一圆环上的第一扁平接收换能器固定座和固定于第二二圆环的第二扁平接收换能器固定座中,且二个扁平接收换能器与二个声波分路机构相对应。
所述声波探针为四个,所述四个声波探针两两设置,并分别通过声波探针固定座固定于第二一圆环和第二二圆环上。
所述下气泡破碎装置包括支架组件、动力传递与气泡破碎组件、以及蜂窝芯板,其中,所述支架组件包括由下至上依次设置的下支架、支撑板、蜂窝芯板安装板、上支架,所述动力传递与气泡破碎组件包括支撑环、叶轮轴、叶轮、以及气泡切刀,蜂窝芯板安装于蜂窝芯板安装板内,支撑板固定于支撑环的外侧,叶轮轴穿于支撑环中,且其下端固定连接的叶轮位于下支架(41)设有的下中心穿孔内,其上端固定连接的气泡切刀位于上支架设有的上中心穿孔内,所述叶轮和气泡切刀均与叶轮轴同轴,支撑环的上、下两侧分别设有固定于叶轮轴上的上挡块和下挡块,所述上挡块和下挡块均与叶轮轴同轴。
上气泡破碎装置包括至少二个气泡挡板以及气泡隔板,所述至少二个气泡挡板沿气泡上升的方向由下至上依次设置,每个气泡挡板上设有用于对上升气泡进行分割的圆孔,每个气泡挡板的圆孔半径相等,沿均匀破碎装置的高度方向圆孔数量递增且半径递减;用于阻止所述上升气泡进行分割后的气泡再次融合的气泡隔板设置于相邻二个气泡挡板之间。
气泡破碎网格的主要作用是防止海底沉积物或生物堵塞仪器,渗漏帐篷罩顶端通过第四圆环与流量测量通道相连接,流量测量通道则是由上、下两个气泡破碎通道和超声波传感器测量通道组成,上、下两个气泡破碎通道和超声波传感器测量通过连接轴和加强横杆串联固定起来,下气泡破碎通道用于将上升的气泡分割成在通道内均匀分布且半径大小相等的气泡,便于获得好的声波信号特征,上气泡破碎通道是为了防止以均匀分布的气泡再次聚集在一起形成不均匀分布且半径大小不等的气泡。超声波传感器测量通道通过第二圆环与声波探针固定座将1个声波分路器、4个声波探针和2个扁平接收换能器相互连接,声波分路器用 于将声波发射换能器发射的透射声波分成两路同源的声波,声波探针与扁平接收换能器用于接收穿过均匀分布气泡的声波信号。
在所述流量测量通道下装有流量测量通道安装底座,便于与渗漏帐篷罩相连接。
流量测量通道有四个声波探针、两个扁平接收换能器、和一个声波分路器,本声波分路器发射上下两束声波,由上述两个声波探针、一个扁平接收换能器构成一组传感器,它们安装在流量测量通道同一个横截面内,并与声波分路器发出的上波束处在同一个平面上,并接收这一束声波。余下的两个声波探针、一个扁平接收换能器的安装在流量测量通道另一个横截面内,并与声波分路器发出的下波束处在同一个平面上,构成另一组传感器接收下波束的声波。
通过对声波信号处理得到气泡流速及截面含气率,结合记录的时间可以获得总的天然气流量值。
海底冷泉渗漏系统天然气流量的原位测定是用过利用建立的气泡上升速度和气泡平均密度测量与声波幅度和相位的关系来确定。向上渗漏的海底冷泉天然气气泡通过渗漏帐篷罩进入到流量测量通道中,上升的气泡穿过下部气泡破碎通道后,在通道内形成了半径大小相等且分布均匀的小气泡,随后进入到超声波传感器测量通道,声波发射换能器发射出一定频率连续声波信号,通过声波分路器形成两路频谱特征、能量相同的声波,两路能量相同的声波穿透进入到超声波测量通道的均匀分布的气泡,随后被声波探针和扁平接收换能器所接收,获得气泡流速及截面含气率。穿过超声波传感器测量通道的气泡后进入到上部气泡破碎通道,气泡随后又聚集在一起并进入到海水中。通过获得的气泡流速以及截面含气率及记录时间,可以获得总的天然气流量值。
本发明的有益效果是,克服了现有的海底冷泉天然气渗漏原位流量在线测量装置不能开展长期原位在线观测的不足,本发明能适应于不同水深环境,不仅能开展长期的海底冷泉天然气渗漏原位流量在线测量,而且能用于不同水深环境下海底冷泉天然气渗漏原位流量在线测量。
附图说明
图1是本发明用于测量海底冷泉天然气渗漏流量原位超声波测量系统的剖 面构造图;
图2是图1的A-A向剖视图;
图3是下气泡破碎装置的结构示意图;
图4是上气泡破碎装置的结构示意图;
图5是声波分路器的结构示意图。
附图标记说明:1、流量测量通道;11、下气泡破碎通道;12、超声波传感器测量通道;13、上气泡破碎通道;2、渗漏帐篷罩;3、气泡破碎网格;4、下气泡破碎装置;41、下支架;42、叶轮轴;43、叶轮;44、气泡切刀;45、上挡块;46、下挡块;47、蜂窝芯板安装板;48、上支架;49、蜂窝芯板;410、支撑板;411、支撑环;5、上气泡破碎装置;51、气泡挡板;511、圆孔;52、气泡隔板;6、圆环;61、第一圆环;62、第二圆环;621、第二一圆环;622、第二二圆环;63、第三圆环;64、第四圆环;65、连接轴;66、气泡隔离板;67、套筒;68、加强横杆;69、测量通道安装底座;7、声波分路器;71、声波分路器本体;72、声波反射板;73、支撑杆;74、声波反射板;75、锁紧螺钉;76、声波分路器垫铁;77、固定座传声段;78、扁平声波发射换能器;79、固定座中段;710、密封端盖;711、密封接头;8、扁平接收换能器;81、第一扁平接收换能器固定座;82、第二扁平接收换能器固定座;9、声波探针;91、声波探针固定座。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
请参照图1和图2所示,海底冷泉天然气渗漏流量原位超声波测量系统,其包括渗漏帐篷罩2、流量测量通道1,流量测量通道1包括由下至上依次设置并相互连通的下气泡破碎通道11、超声波传感器测量通道12以及上气泡破碎通道13,其中,下气泡破碎通道11与安装有气泡破碎网格3的渗漏帐篷罩2相连通,在下气泡破碎通道11和上气泡破碎通道13中分别安装有沿气泡的上升方向设置的下气泡破碎装置4和上气泡破碎装置5,超声波传感器测量通道12的一侧固定连接有一声波分路器7,另一侧固定连接有用于接收声波分路器7产生的透射 声波的扁平接收换能器8,在超声波传感器测量通道12中设有同样接收声波分路器7产生的透射声波的声波探针9。
流量测量通道1由圆环6形成,其中,圆环6包括形成下气泡破碎通道11的第一圆环61、形成超声波传感器测量通道12的第二圆环62、形成上气泡破碎通道13的第三圆环63以及与渗漏帐篷罩2固定连接的第四圆环64,第一圆环61、第二圆环62、第三圆环63以及第四圆环64之间通过连接轴65固定,连接轴65外套设一用于保护连接轴65的套筒67,连接轴65的上端并固定连接有一加强横杆68。声波分路器7、扁平接收换能器8以及声波探针9均固定在第二圆环62上。为了方便安装,在第四圆环64和第一圆环61之间垫设一测量通道安装底座69,第四圆环64和第一圆环61之间并通过固定栓锁紧。
第二圆环62包括第二一圆环621和第二二圆环622,在第二一圆环621和第二二圆环622之间设有一气泡隔离板66。
参照图5所示,声波分路器7包括声波分路器本体71、固定座传声段77、扁平声波发射换能器78、固定座以及密封接头711,其中,声波分路器本体71包括端部以及与端部一侧一体成型的二个声波分路机构,二个声波分路机构的结构均相同,每个声波分路机构上均安装一声波反射板72,且在二个声波分路机构之间设有一声波反射板74,声波反射板74通过支撑杆73固定,声波反射板72为方形,声波反射板74为锥形。固定座传声段77的两端分别与端部的另一侧以及固定座的一侧固定连接,扁平声波发射换能器78安装于固定座传声段77的端面上且位于固定座内设有的密封腔内,密封腔内填充有吸音材料层。密封接头711固定连接于固定座的另一侧,与扁平声波发射换能器78连接的驱动电缆通过密封接头711与外部信号源相连接。固定座传声段77与端部通过锁紧螺钉75和声波分路器垫铁76的配合结构固定连接。固定座包括固定座中段79和密封端盖710,固定座传声段77远离声波分路器本体71的一端设有一与固定座中段79形状相匹配的连接板,密封端盖710与连接板分别固定连接于固定座中段79的两侧,密封接头711的一端固定于密封端盖710上,密封腔设置于固定座中段79、或固定座中段79和密封端盖710之间,驱动电缆通过密封端盖710并穿于密封接头711内的驱动电缆通过密封端盖710与扁平声波发射换能器78连接。固定座中段79与密封端盖710以及连接板之间均设有一环形密封垫。
向上渗漏的海底冷泉天然气气泡通过流量测量通道,上浮的气泡在流量测量通道内先形成大小相等且分布均匀的小气泡,随后进入到超声波传感器测量通道,外部信号源通过驱动电缆与扁平声波发射换能器电性连接以使其发射出一定频率连续声波信号,通过声波分路器本体形成至少两路频谱特征、能量相同的声波,特征相同的声波穿透进入测量通道中均匀分布的气泡,形成至少两路透射声波,供外部换能器接收,用于测量海底冷泉天然气渗漏气泡上浮速度。
二个声波分路机构分别固定于第二一圆环621和第二二圆环622,扁平接收换能器8为二个,该二个扁平接收换能器8分别密封设置于固定于第二一圆环621上的第一扁平接收换能器固定座81和固定于第二二圆环622的第二扁平接收换能器固定座82中,且二个扁平接收换能器8与二个声波分路机构相对应。声波探针9为四个,四个声波探针9两两设置,并分别通过声波探针固定座91固定于第二一圆环621和第二二圆环622上。
请参照图3所示,下气泡破碎装置4包括由支架组件、动力传递与气泡破碎组件、气泡导流部分等组成。支架组件由下支架41,支撑板410,蜂窝芯板安装板47,上支架48等按顺序叠放而成;动力传递与气泡破碎组件由叶轮轴42,叶轮43,气泡切刀44,上挡块45,下挡块46和支撑环411等组成;气泡导流部分由蜂窝芯板49等组成。支架组件中的下支架41、支撑板410、蜂窝芯板安装板47、上支架48从下至上依次设置,并通过粘合或螺钉或其他机械方法实现相互固定,蜂窝芯板49安装于蜂窝芯板安装板47内。动力传递与气泡破碎组件包括动力获取组件、动力传送组件以及气泡破碎组件。其中,动力获取组件为叶轮43;动力传送组件为叶轮轴42、上挡块45、下挡块46;气泡破碎组件为气泡切刀44。支撑板410固定于支撑环411的外侧,叶轮轴42穿于支撑环411中,且叶轮轴42的下端固定连接的叶轮43位于下支架41设有的下中心穿孔内,叶轮轴42的上端固定连接的气泡切刀44位于上支架48设有的上中心穿孔内。蜂窝芯板49紧邻气泡切刀44放置,蜂窝芯板49的芯孔形状为等边六边形,由多层成型后的铝箔粘合而成。
叶轮43转动依靠气泡上升的动能驱动,不需要外加能量。叶轮43与叶轮轴42同轴固连,叶轮轴42通过叶轮43获取切割气泡所需的动力,叶轮轴42与上挡块45和下挡块46均同轴固连,通过上挡块45和下挡块46把叶轮轴42所受 轴向力和径向力经支撑环411传递到支架组件。叶轮轴42并与气泡切刀44同轴固连,将动力传递给气泡切刀44。叶轮43转动同时并驱动气泡切刀44绕叶轮轴42的轴心进行中心转动,气泡切刀44切割经蜂窝芯板49的导流作用而形成的狭长气泡成为直径较小的气泡,起到破碎气泡的目的。
请参照图4所示,上气泡破碎装置5包括至少二个气泡挡板51以及气泡隔板52,至少二个气泡挡板51沿气泡上升的方向由下至上依次设置,每个气泡挡板51上设有用于对上升气泡进行分割的圆孔511,每个气泡挡板51的圆孔511半径相等,沿均匀破碎装置的高度方向圆孔511数量递增且半径递减;用于阻止上升气泡进行分割后的气泡再次融合的气泡隔板52设置于相邻二个气泡挡板51之间。气泡隔板52成网格状分布,网格为正方形,每个正方形的中心点与其上侧气泡挡板51上的圆孔511的中心对应,且相邻四个网格的交汇点位于其下侧的气泡挡板51上的圆孔511的中心。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的保护范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的保护范围中。

Claims (10)

  1. 海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,其包括渗漏帐篷罩(2)、流量测量通道(1),所述流量测量通道(1)包括由下至上依次设置并相互连通的下气泡破碎通道(11)、超声波传感器测量通道(12)以及上气泡破碎通道(13),其中,所述下气泡破碎通道(11)与安装有气泡破碎网格(3)的渗漏帐篷罩(2)相连通,在下气泡破碎通道(11)和上气泡破碎通道(13)中分别安装有沿气泡的上升方向设置的下气泡破碎装置(4)和上气泡破碎装置(5),所述超声波传感器测量通道(12)的一侧固定连接有一声波分路器(7),另一侧固定连接有用于接收声波分路器(7)产生的透射声波的扁平接收换能器(8),在超声波传感器测量通道(12)中设有同样接收声波分路器(7)产生的透射声波的声波探针(9)。
  2. 根据权利要求1所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述流量测量通道(1)由圆环(6)形成,其中,所述圆环(6)包括形成下气泡破碎通道(11)的第一圆环(61)、形成超声波传感器测量通道(12)的第二圆环(62)、形成上气泡破碎通道(13)的第三圆环(63)以及与渗漏帐篷罩(2)固定连接的第四圆环(64),所述第一圆环(61)、第二圆环(62)、第三圆环(63)以及第四圆环(64)之间通过连接轴(65)固定,所述声波分路器(7)、扁平接收换能器(8)以及声波探针(9)均固定在第二圆环(62)上。
  3. 根据权利要求2所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述第二圆环(62)包括第二一圆环(621)和第二二圆环(622),在所述第二一圆环(621)和第二二圆环(622)之间设有一气泡隔离板(66)。
  4. 根据权利要求2或3所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述连接轴(65)外套设一用于保护连接轴(65)的套筒(67)。
  5. 根据权利要求4所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述连接轴(65)的上端并固定连接有一加强横杆(68)。
  6. 根据权利要求3所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述声波分路器(7)包括声波分路器本体(71)、固定座传声段(77)、扁平声波发射换能器(78)、固定座以及密封接头(711),其中,声波分路器本 体(71)包括端部以及与所述端部一侧一体成型的二个声波分路机构,所述至少二个声波分路机构的结构均相同,每个声波分路机构上均安装一第一声波反射板(72),且在所述二个声波分路机构之间设有一第二声波反射板(74),固定座传声段(77)的两端分别与所述端部的另一侧以及固定座的一侧固定连接,扁平声波发射换能器(78)安装于固定座传声段(77)的端面上且位于固定座内设有的密封腔内,密封接头(711)固定连接于固定座的另一侧,与扁平声波发射换能器(78)连接的驱动电缆通过密封接头(711)与外部信号源相连接。
  7. 根据权利要求3所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述二个声波分路机构分别固定于第二一圆环(621)和第二二圆环(622),所述扁平接收换能器(8)为二个,该二个扁平接收换能器(8)分别密封设置于固定于第二一圆环(621)上的第一扁平接收换能器固定座(81)和固定于第二二圆环(622)的第二扁平接收换能器固定座(82)中,且二个扁平接收换能器(8)与二个声波分路机构相对应。
  8. 根据权利要求3所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述声波探针(9)为四个,所述四个声波探针(9)两两设置,并分别通过声波探针固定座(91)固定于第二一圆环(621)和第二二圆环(622)上。
  9. 根据权利要求1所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,所述下气泡破碎装置(4)包括支架组件、动力传递与气泡破碎组件、以及蜂窝芯板(49),其中,所述支架组件包括由下至上依次设置的下支架(41)、支撑板(410)、蜂窝芯板安装板(47)、上支架(48),所述动力传递与气泡破碎组件包括支撑环(411)、叶轮轴(42)、叶轮(43)、以及气泡切刀(44),蜂窝芯板(49)安装于蜂窝芯板安装板(47)内,支撑板(410)固定于支撑环(411)的外侧,叶轮轴(42)穿于支撑环(411)中,且其下端固定连接的叶轮(43)位于下支架(41)设有的下中心穿孔内,其上端固定连接的气泡切刀(44)位于上支架(48)设有的上中心穿孔内,所述叶轮(43)和气泡切刀(44)均与叶轮轴(42)同轴,支撑环(411)的上、下两侧分别设有固定于叶轮轴(42)上的上挡块(45)和下挡块(46),所述上挡块(45)和下挡块(46)均与叶轮轴(42)同轴。
  10. 根据权利要求1所述的海底冷泉天然气渗漏流量原位超声波测量系统,其特征在于,上气泡破碎装置(5)包括至少二个气泡挡板(51)以及气泡隔板(52),所述至少二个气泡挡板(51)沿气泡上升的方向由下至上依次设置,每个气泡挡板(51)上设有用于对上升气泡进行分割的圆孔(511),每个气泡挡板(51)的圆孔(511)半径相等,沿均匀破碎装置的高度方向圆孔(511)数量递增且半径递减;用于阻止所述上升气泡进行分割后的气泡再次融合的气泡隔板(52)设置于相邻二个气泡挡板(51)之间。
PCT/CN2015/072319 2014-02-07 2015-02-05 海底冷泉天然气渗漏流量原位超声波测量系统 WO2015117562A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/772,308 US9845672B2 (en) 2014-02-07 2015-02-05 In-situ ultrasonic measuring system for natural gas flux at the hydrocarbon seeps at the seafloor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410045178.8 2014-02-07
CN201410045178.8A CN103776499B (zh) 2014-02-07 2014-02-07 海底冷泉天然气渗漏流量原位超声波测量系统

Publications (1)

Publication Number Publication Date
WO2015117562A1 true WO2015117562A1 (zh) 2015-08-13

Family

ID=50569020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072319 WO2015117562A1 (zh) 2014-02-07 2015-02-05 海底冷泉天然气渗漏流量原位超声波测量系统

Country Status (3)

Country Link
US (1) US9845672B2 (zh)
CN (1) CN103776499B (zh)
WO (1) WO2015117562A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103776499B (zh) 2014-02-07 2017-01-04 中国科学院南海海洋研究所 海底冷泉天然气渗漏流量原位超声波测量系统
CN105804724B (zh) * 2014-12-29 2023-08-22 何建辉 一种石油钻井超声波液位监控装置
CN104807512B (zh) * 2015-04-14 2018-06-01 广东工业大学 一种超声测量海底渗漏气流量的方法
CN105003249B (zh) * 2015-08-06 2020-09-25 北京航空航天大学 一种基于总流量与电导探针阵列信号的水平井流型识别方法
US11150118B2 (en) * 2016-09-23 2021-10-19 Blue-White Industries, Ltd. Flow sensor devices and systems
CN107064294B (zh) * 2017-06-12 2023-06-23 国家海洋技术中心 海底沉积物原位声学测量系统的数据采集装置
CN109458172B (zh) * 2018-11-01 2022-10-18 中国石油大学(华东) 隔水管气侵监测工具及监测方法
CN109270577A (zh) * 2018-11-12 2019-01-25 广州冷聚变电力科技有限公司 一种可燃冰潜水探测装置
US11639863B2 (en) 2019-06-07 2023-05-02 Blue-White Industries, Ltd. Flow sensor devices and systems
CN110308303A (zh) * 2019-06-13 2019-10-08 中国科学院南海海洋研究所 测量海底冷泉渗漏气泡上升速度的声波接收传感装置
CN110320384A (zh) * 2019-06-13 2019-10-11 中国科学院南海海洋研究所 一种海底渗漏气泡上升速度的声波测量装置
CN110319892A (zh) * 2019-06-13 2019-10-11 中国科学院南海海洋研究所 一种海底渗漏气泡体积含量的超声波测量装置
CN112127872B (zh) * 2019-06-24 2024-03-22 南京延长反应技术研究院有限公司 一种可燃冰开采过程中的安全监测系统
CN111489627B (zh) * 2020-03-26 2021-09-24 南方海洋科学与工程广东省实验室(广州) 模拟海洋冷泉发育的系统及其实现方法
CN111879474B (zh) * 2020-06-04 2021-05-11 中国海洋大学 海底气体渗漏探测模拟装置
CN112257839B (zh) * 2020-10-22 2021-07-30 青岛海洋地质研究所 一种海底甲烷气泡计数装置及计数方法
CN115182705B (zh) * 2022-07-27 2024-03-22 广东中煤江南工程勘测设计有限公司 一种海底冷泉开采装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080640A1 (de) * 1981-11-30 1983-06-08 INTERATOM Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Nachweis von Blasen in einer Flüssigkeit
CN101072452A (zh) * 2005-12-27 2007-11-14 中国科学院声学研究所 深海压电水声换能器及其制造方法
JP2011122920A (ja) * 2009-12-10 2011-06-23 Tokyo Electric Power Co Inc:The 流速分布計測方法および流速分布計測装置
CN103454684A (zh) * 2013-09-02 2013-12-18 杭州电子科技大学 一种深海模拟声学实验台及其使用方法
CN103776499A (zh) * 2014-02-07 2014-05-07 中国科学院南海海洋研究所 海底冷泉天然气渗漏流量原位超声波测量系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273212A (en) * 1979-01-26 1981-06-16 Westinghouse Electric Corp. Oil and gas well kick detector
US4903524A (en) * 1989-03-10 1990-02-27 Kayaba Industry Co., Ltd. Method of and apparatus for detecting bubbles from hermetic container and method of detecting leak in hermetic container
US5214251A (en) * 1990-05-16 1993-05-25 Schlumberger Technology Corporation Ultrasonic measurement apparatus and method
US5130950A (en) * 1990-05-16 1992-07-14 Schlumberger Technology Corporation Ultrasonic measurement apparatus
US5237856A (en) * 1991-06-20 1993-08-24 Expertek, Inc. Bubble emission volume quantifier
US5337597A (en) * 1991-06-20 1994-08-16 Expertek Bubble emission volume quantifier
US6578405B2 (en) * 2001-09-25 2003-06-17 Schlumberger Technology Corporation Gas seep detection
US9109430B2 (en) * 2010-06-30 2015-08-18 Ruth C. Ibanez Blow-out preventer, and oil spill recovery management system
CN102012246B (zh) * 2010-09-25 2012-03-14 中国科学院广州地球化学研究所 一种测量海底冷泉天然气渗漏原位流量速率变化的测量装置
CN102207399B (zh) * 2011-04-02 2012-07-04 中国科学院广州地球化学研究所 电机驱动翻板阀式海底冷泉渗漏流量测量排水集气系统
US8986547B2 (en) * 2011-04-21 2015-03-24 Michael J. Baccigalopi Subsea contaminate remediation apparatus and methods
NO333337B1 (no) * 2011-08-02 2013-05-06 Naxys As Undervannsdetekteringsapparat
US9004175B2 (en) * 2012-01-30 2015-04-14 Leo William Abel Method and system for rapid containment and intervention of a subsea well blowout

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0080640A1 (de) * 1981-11-30 1983-06-08 INTERATOM Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Nachweis von Blasen in einer Flüssigkeit
CN101072452A (zh) * 2005-12-27 2007-11-14 中国科学院声学研究所 深海压电水声换能器及其制造方法
JP2011122920A (ja) * 2009-12-10 2011-06-23 Tokyo Electric Power Co Inc:The 流速分布計測方法および流速分布計測装置
CN103454684A (zh) * 2013-09-02 2013-12-18 杭州电子科技大学 一种深海模拟声学实验台及其使用方法
CN103776499A (zh) * 2014-02-07 2014-05-07 中国科学院南海海洋研究所 海底冷泉天然气渗漏流量原位超声波测量系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DI, PENGFEI ET AL.: "In Situ Measurement of Fluid Flow and Signatures of Seep Activity at Marine Seep Sites", PROGRESS IN GEOPHYSICS, vol. 23, no. 5, 31 October 2008 (2008-10-31), pages 1592 - 1602, XP055216600 *
LONG, JIANJUN ET AL.: "Method of Measuring Bubble Flow from Cool Seeps on Seafloor Using Acoustic Transmission and Preliminary Experiments", JOURNAL OF TROPICAL OCEANOGRAPHY, vol. 31, no. 5, 30 September 2012 (2012-09-30), pages 100 - 105 *

Also Published As

Publication number Publication date
US9845672B2 (en) 2017-12-19
US20160333687A1 (en) 2016-11-17
CN103776499A (zh) 2014-05-07
CN103776499B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2015117562A1 (zh) 海底冷泉天然气渗漏流量原位超声波测量系统
US11499826B2 (en) Long-term in-situ observing device and method for deep sea bottom- supported engineering geological environment
JP6609787B1 (ja) 深海底混濁流のマルチパラメータ総合モニタリング装置
CN106291564B (zh) 一种海底冷泉水体回声反射探测系统和方法
Liu et al. Correlations between the in situ acoustic properties and geotechnical parameters of sediments in the Yellow Sea, China
AU2005296562B2 (en) Submarine resource probing system and method
CA2842516A1 (en) Underwater detection apparatus
Kozaczka et al. Detection of objects buried in the sea bottom with the use of parametric echosounder
CN103776500B (zh) 测量海底冷泉天然气渗漏气泡上浮速度的声波分路器
CN103776498B (zh) 一种用于使海底冷泉渗漏气泡均匀破碎装置
WO2012110096A1 (en) Marine exploration vehicle
Eriksen Leakage and oil spill detection utilizing active acoustic systems
Ballard et al. Development of a system for in situ measurements of geoacoustic properties during sediment coring
Bennett et al. Geoacoustic and geological characterization of surficial marine sediments by in situ probe and remote sensing techniques
CN210293330U (zh) 一种海底渗漏气泡体积含量的超声波测量装置
CN203758558U (zh) 一种用于使海底冷泉渗漏气泡均匀破碎装置
CN212059536U (zh) 一种水质检测用取样装置
CN103791966B (zh) 海底冷泉天然气渗漏气泡破碎装置
Sanderson et al. USING REFLECTED CLICKS TO MONITOR RANGE AND DEPTH OF ATLANTIC HARBOUR PORPOISES.
RU2282217C1 (ru) Способ определения комплексных данных о состоянии океана
Tomczk et al. Detection, localization and quantification of the emissions of gas from the seabed in fieldwork and experimental studies using active sonar systems
RU2436118C1 (ru) Подводный зонд
CN202267530U (zh) 可用于深水水下的同振式矢量接收器
Ostiguy Ambient noise levels off the coast of Northern Labrador
Eriksen Oil spill detection and mapping tool in low visibility and arctic ice settings

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14772308

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745859

Country of ref document: EP

Kind code of ref document: A1