WO2015117521A1 - 一种制冷系统及数据中心系统 - Google Patents

一种制冷系统及数据中心系统 Download PDF

Info

Publication number
WO2015117521A1
WO2015117521A1 PCT/CN2014/094696 CN2014094696W WO2015117521A1 WO 2015117521 A1 WO2015117521 A1 WO 2015117521A1 CN 2014094696 W CN2014094696 W CN 2014094696W WO 2015117521 A1 WO2015117521 A1 WO 2015117521A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air passage
refrigeration
subsystem
data center
Prior art date
Application number
PCT/CN2014/094696
Other languages
English (en)
French (fr)
Inventor
刘帆
郭雨龙
万钧
翁建刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015117521A1 publication Critical patent/WO2015117521A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1485Servers; Data center rooms, e.g. 19-inch computer racks
    • H05K7/1497Rooms for data centers; Shipping containers therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device

Definitions

  • the utility model relates to the field of communication, in particular to a refrigeration system and a data center system.
  • the container data center system can accommodate high-density computing devices. It can accommodate 6 times or even 10 times the number of cabinets in traditional data center systems in the same space. It has short commissioning time, convenient installation and flexible expansion, so it is widely used.
  • the existing container data center system mainly consists of the following structure.
  • the entire container is not partitioned between the cooling room and the equipment room, that is, the equipment and air conditioner are placed in one space, and the air conditioning work is completely relied on to cool, regardless of the external temperature and humidity of the container.
  • This architecture has the following major drawbacks:
  • the dependence on the air conditioner causes the air conditioner to fail, which cannot achieve cooling, affects the performance of the equipment, and even affects the normal operation of the equipment.
  • the air conditioner can be completely stopped. Work, with new air from the external environment to cool, and this existing container data center system does not have a fresh air channel to collect new air in the external environment, therefore, can not replace the air conditioning refrigeration with fresh air, not enough energy.
  • the refrigeration system and the data center system provided by the embodiments of the present invention can at least solve the problems that the existing data center system has low cooling efficiency, cannot be replaced by fresh air, and is not energy-saving.
  • a refrigeration system includes a refrigeration room, a first ventilation system, and a refrigeration subsystem;
  • the refrigerating compartment is provided with at least one first air passage leading to external new air, and at least one second air passage disposed to transport air between the refrigerating compartments to an external device;
  • the first ventilation system includes at least one first fan coupled to the at least one first air passage, configured to introduce new air into the refrigeration room through the at least one first air passage;
  • the refrigeration subsystem is configured to cool the air entering the refrigeration compartment.
  • the first ventilation system is located in the refrigeration compartment.
  • the refrigeration subsystem is located in the refrigeration room;
  • the refrigeration subsystem includes a first subsystem, a second subsystem, and a pipeline connected between the first subsystem and the second subsystem, the first subsystem being located in the refrigerating compartment, A second subsystem is located outside the refrigeration compartment, the conduit being configured to convey refrigerant to the first subsystem by the second subsystem.
  • the refrigeration system further includes a second ventilation system including at least one second fan coupled to the at least one second air passage, configured to pass air of the refrigeration chamber through the at least one second An air passage is introduced between the external devices.
  • a second ventilation system including at least one second fan coupled to the at least one second air passage, configured to pass air of the refrigeration chamber through the at least one second An air passage is introduced between the external devices.
  • the refrigerating compartment is further provided with at least one third air passage arranged to transport air between the external devices back to the refrigerating compartment.
  • the refrigeration system further includes a third ventilation system including at least one third fan coupled to the at least one third air passage, configured to pass air between the external devices through the at least one The three air passages are transported back to the cooling room.
  • a third ventilation system including at least one third fan coupled to the at least one third air passage, configured to pass air between the external devices through the at least one The three air passages are transported back to the cooling room.
  • the first ventilation system further includes a first switch module configured to control an intake air amount of the at least one first air passage; the third ventilation system further includes a third switch module configured to control the at least one The ventilation of the three airways.
  • the first switch module is configured to control an operating state of the at least one first fan; the third switch module is configured to control an operating state of the at least one third fan.
  • the refrigeration system further includes a control system configured to control an intake air amount of the at least one first air passage by controlling the first switch module, and control the at least one third air passage by controlling the third switch module Ventilation, and/or control of the operating state of the refrigeration subsystem.
  • the refrigeration system also includes a detection system in communication with the control system configured to detect temperature and/or humidity of fresh air outside the refrigeration compartment, the control system performing corresponding control based on the detection results of the detection system.
  • a data center system comprising: the refrigeration system, the equipment room, and the data center subsystem disposed between the equipments;
  • the refrigeration compartment and the apparatus are also ventilated by the at least one third air passage, and/or the apparatus is provided with at least one fourth air passage disposed to discharge air between the equipment to the outside.
  • the data center system further includes a fourth ventilation system, the fourth ventilation system including at least one fourth fan coupled to the at least one fourth air passage, configured to pass air between the devices through the at least one The four air passages lead to the outside.
  • the fourth ventilation system including at least one fourth fan coupled to the at least one fourth air passage, configured to pass air between the devices through the at least one The four air passages lead to the outside.
  • the fourth ventilation system is located between the devices.
  • the fourth ventilation system further includes a fourth switch module configured to control an amount of exhaust of the at least one fourth air passage.
  • the fourth switch module is configured to control an operating state of the at least one fourth fan.
  • the control system in the refrigeration system is further configured to control an intake air amount of the at least one fourth air passage by controlling the fourth switch module.
  • the data center subsystem forms at least one cold air passage and at least one hot air passage between the devices; the at least one second air passage is in communication with the at least one cold air passage; the at least one third air passage, the At least one fourth air passage is in communication with the at least one hot air passage.
  • a gas barrier that isolates between the cold air passage and the hot air passage is disposed between the equipment.
  • the equipment room and the cooling room are divided by providing partition walls in one container.
  • the at least one second air passage and the at least one third air passage are vent holes provided in the partition wall.
  • the partition wall divides the container into a space between the refrigerating compartment and the equipment in a direction perpendicular to the bottom of the container.
  • the data center subsystem includes at least one cabinet group, and each cabinet group includes at least one cabinet, and each cabinet group is arranged along a direction perpendicular to the partition wall.
  • the refrigeration system and the data center system provided by the embodiments of the present invention not only distinguish between the cooling room and the equipment room, but also improve the cooling efficiency; and the refrigeration room is also provided with a first air passage leading to external new air, that is, a fresh air passage.
  • the first air duct is also connected to the first air venting system including at least one fan, and the air blower introduces new air into the cooling room through the first air passage, so that the cooling room provided by the embodiment of the present invention is provided with a fresh air passage.
  • the new air in the external environment when the external environment temperature and humidity are suitable, can completely stop the refrigeration subsystem, and use the new air of the external environment to cool, effectively utilize the natural cold source, save energy, and reduce Operating costs and environmental protection also reduce the dependence on the refrigeration subsystem.
  • the refrigeration subsystem fails, the external fresh air is used to achieve cooling, which will not affect the normal operation of the equipment between the equipment.
  • FIG. 1 is a schematic view of a refrigeration system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a data center system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the working state of the data center system shown in FIG. 2 in a completely fresh air cooling mode
  • FIG. 4 is a schematic diagram showing the working state of the data center system shown in FIG. 2 in a cooling mode of a complete refrigeration subsystem;
  • FIG. 5 is a schematic diagram showing the working state of the data center system shown in FIG. 2 in the hybrid cooling mode.
  • the utility model provides a refrigeration system, which comprises a refrigerating room, a first ventilation system and a refrigeration subsystem.
  • the cooling room is provided with at least one first air passage leading to external new air, and is arranged to transport air of the cooling room to the outside.
  • the first ventilation system including at least one fan coupled to the at least one first air passage, configured to introduce a new to the refrigeration room through the at least one first air passage Air;
  • the refrigeration subsystem is configured to cool air entering the refrigeration compartment.
  • the equipment room and the refrigerating room are mutually external spaces. Therefore, the embodiment of the present invention distinguishes between the refrigerating room and the equipment room, and is not mixed in the same space.
  • the refrigerating room can be divided into complete containers by partition walls. Preferably, the refrigerating rooms and equipment rooms are divided by providing partition walls in one container.
  • the first air passage is a first air vent provided on the cooling room, and communicates with the external fresh air, and the new air can enter the cooling room through the first air vent.
  • the first ventilation system may be disposed in the refrigerating compartment or may be disposed outside the refrigerating compartment, and as long as the connection with the at least one first air duct is satisfied, new air may be introduced into the refrigerating compartment through the at least one first air passage.
  • the function is OK.
  • the first air passage is a first air vent provided on the cooling room
  • the first ventilation system is disposed to cover the at least one first air vent in the cooling room.
  • the first ventilation system includes at least one first fan, and the first fan includes, but is not limited to, a fan.
  • the efficiency of new air collection can be improved by the first fan.
  • multi-fans should be used as much as possible, and small and large fans combined with reasonable size should be used instead of large and large fans to improve redundancy reliability, reduce noise and energy consumption, and reduce air supply.
  • the dead zone of the airflow provides a more even and stable supply airflow.
  • the first ventilation system may further comprise a multi-stage filtration device (primary, intermediate-grade filtration, chemical filtration, etc.), configured to filter out dust, water vapor, chemicals, etc. in the new air, and to enhance new air entering the refrigeration room. Cleanliness.
  • a multi-stage filtration device primary, intermediate-grade filtration, chemical filtration, etc.
  • the first ventilation system may further include a first switch module, which may be used to control the intake air amount of the at least one first air passage, that is, control the amount of new air collected.
  • the first switch module controls the intake air amount of the at least one first air passage by controlling an operating state of the at least one first air blower, for example, turning off several of the air blowers to reduce the amount of new air collected, and all the wind turbines Open to increase the collection of new air; more fine control methods can also be used.
  • the first switch module is a fan damper, and the fan is adjusted by controlling the change of the damper from 0-100%. Ventilation.
  • the first switch module can also control the amount of intake air by controlling the closing or size of the at least one first air passage, for example, shielding several of the first air passages to reduce the amount of new air collected, and all of the first The air passage is opened to increase the amount of new air collected.
  • the control of the first switch module can be intelligently controlled manually or by a control system.
  • the refrigeration subsystem may be disposed in the refrigerating compartment, or may be disposed outside the refrigerating compartment, or may be partially disposed in the refrigerating compartment, and partially disposed outside the refrigerating compartment, as long as the function of cooling the air entering the refrigerating compartment is satisfied.
  • the refrigeration subsystem comprises a first subsystem, a second subsystem, and a pipeline connected between the first subsystem and the second subsystem, the first subsystem being located in the refrigeration compartment, the second subsystem Located outside the refrigeration compartment, the conduit is configured to convey refrigerant to the first subsystem by the second subsystem.
  • the second subsystem may include a cold source host
  • the first subsystem may include a cooling coil
  • the cold source host is disposed outside the container, is installed on the ground near the container or at the top of the container box, and one end of the pipe is connected to the cold source host, and the other end is connected to the other end.
  • the cooling coil in the refrigerating compartment is connected to the pipeline port reserved through the cooling compartment, and the refrigerant is transported from the cold source host to the cooling coil through the pipeline for cooling, and the refrigerant used may be chilled water or other refrigerant.
  • the operating state of the refrigeration subsystem including opening and closing, can be intelligently controlled manually or through a control system.
  • the second air passage is a passage connecting the cooling room and the equipment, and is mainly arranged to transport the cold air of the cooling room to the external equipment. If the cooling room and the equipment room are divided by a partition wall in a container, preferably, The second air passage is a second air vent provided on the partition wall, and the air in the cooling room can be transported to the external equipment without providing a ventilation duct. Of course, it is also possible to provide a vent in each of the cooling rooms and other places between the devices, and communicate through the ventilation duct.
  • the refrigeration system provided by the embodiment of the present invention may further include a second ventilation system, the second ventilation system including at least one second fan connected to the at least one second air passage, configured to connect the refrigeration room Air is introduced between the external devices through the at least one second air passage.
  • the second fan includes, but is not limited to, a fan. Through the second fan, the circulation efficiency of cold air from the cooling room to the equipment can be improved. Under the conditions of meeting the air volume and wind pressure requirements, multi-fans should be used as much as possible, and small and large fans combined with reasonable size should be used instead of large and large fans to improve redundancy reliability, reduce noise and energy consumption, and reduce airflow dead zone. Provide a more even and stable circulation.
  • the second ventilation system can be installed in the cooling room or in the equipment room. If it is installed in the cooling room, high-efficiency air supply can be realized. If it is installed in the equipment room, high-efficiency air suction can be realized.
  • the second air passage is a second air vent provided on the partition wall, the second ventilation system is disposed in the cooling room or in the equipment room to cover the at least one second air vent.
  • the second ventilation system may further comprise a multi-stage filtration device (primary, intermediate-grade filtration, chemical filtration, etc.), configured to filter out dust, water vapor, chemicals, etc. in the cold air to enhance the cold air entering the equipment. Cleanliness.
  • a multi-stage filtration device primary, intermediate-grade filtration, chemical filtration, etc.
  • the second ventilation system may further comprise a second switch module, which can be used to control the ventilation of the at least one second air passage, that is, the amount of cold air collected between the devices.
  • the second switch module controls the ventilation of the at least one second air passage by controlling the working state of the at least one second air blower, for example, turning off several of the air blowers to reduce the amount of cold air collected between the devices,
  • the fan is opened to increase the collection of cold air between the devices; a finer control method can also be used.
  • the second switch module is a fan damper, which is adjusted by controlling the change of the opening of the damper from 0-100%. Ventilation of each fan.
  • the second switch module can also control the amount of ventilation by controlling the closing or size of the at least one second air passage, for example, shielding several of the second air passages to reduce the amount of cold air collected, and all the second ventilation The road is opened to increase the amount of cold air collected.
  • the control of the second switch module can be intelligently controlled manually or by a control system.
  • the refrigerating room may further be provided with at least one third air passage arranged to transport air between the external devices back to the refrigerating room.
  • the third air passage is also a passage connecting the cooling room and the equipment, and is mainly arranged to transport the hot air between the equipments back to the cooling room. If the cooling room and the equipment room are divided by a partition wall in a container, preferably, The three air passages are third vents provided on the partition wall, and the hot air between the devices can be transported back to the refrigerating room without providing a ventilation duct.
  • the refrigeration system provided by the embodiment of the present invention may further include a third ventilation system, the third ventilation system includes at least one third fan, and is connected to the at least one third air passage, and is configured Air is transported back to the refrigerating compartment through the at least one third air passage.
  • the third fan includes, but is not limited to, a fan.
  • the efficiency of hot air circulation from the equipment to the cooling room can be improved by the third fan.
  • multi-fans should be used as much as possible, and small and large fans combined with reasonable size should be used instead of large and large fans to improve redundancy reliability, reduce noise and energy consumption, and reduce airflow dead zone. Provide a more even and stable circulation.
  • the third ventilation system can be installed in the cooling room or in the equipment room. If it is installed in the cooling room, high-efficiency air suction can be realized. If it is installed in the equipment room, high-efficiency air supply can be realized.
  • the third air passage is a third air vent provided on the partition wall, the third ventilation system is disposed in the cooling room or covers the at least one third air vent in the equipment room.
  • the third ventilation system may further comprise a multi-stage filtration device (primary, intermediate-grade filtration, chemical filtration, etc.), configured to filter out dust, water vapor, chemicals, etc. in the hot air to enhance hot air entering between the devices. Cleanliness.
  • a multi-stage filtration device primary, intermediate-grade filtration, chemical filtration, etc.
  • the third ventilation system may further comprise a third switch module, which can be used to control the ventilation of the at least one third air passage, that is, control the return flow of the hot air.
  • the third switch module controls the ventilation of the at least one third air passage by controlling the working state of the at least one third air blower, for example, turning off several of the air blowers to reduce the return flow of the hot air, and turning all the air blowers on To improve the return flow of hot air; more fine control methods can also be used.
  • the third switch module is a fan damper, and the ventilation of each fan is adjusted by controlling the change of the opening of the damper from 0-100%. the amount.
  • the third switch module can also control the ventilation amount by controlling the closing or size of the at least one third air passage, for example, shielding several of the third air passages to reduce the return flow of the hot air, and all the third ventilation The road is opened to increase the return flow of hot air.
  • the control of the third switch module can be intelligently controlled manually or by a control system.
  • the refrigeration system provided by the present invention may further include a control system configured to control the first switch module, the second switch module, the third switch module, and/or the refrigeration subsystem.
  • Controlling the first switch module is for controlling the intake air amount of the at least one first air passage
  • controlling the second switch module is for controlling the ventilation amount of the at least one second air passage
  • the control of the switch module is for controlling the ventilation of the at least one third air passage, and controlling the working state of the refrigeration subsystem, including controlling the opening and closing of the refrigeration subsystem.
  • the refrigeration system may be disposed in the refrigeration compartment or outside the refrigeration compartment as long as the corresponding control of the first switch module, the second switch module, the third switch module, and/or the refrigeration subsystem can be implemented.
  • the external ambient temperature T satisfies T2 ⁇ T ⁇ T1
  • the humidity D satisfies D2 ⁇ D ⁇ D1, T1, T2, D1, and D2
  • the system can open the full fresh air cooling mode, and the control system controls the dampers of all the first fans to open 100%, all the first The dampers of the two fans are all open 100%, the dampers of all the third fans are closed, and the control refrigeration subsystem is closed.
  • the working process of the refrigeration system is as follows: under the work of the first ventilation system, new air is from the At least one first air passage flows into the refrigerating compartment, and is transported to the equipment room through the at least one second venting passage for operation by the second venting system.
  • the refrigeration subsystem does not need to be turned on during the entire process.
  • the control system can be fully turned on.
  • the control system controls the dampers of all the first fans to be closed, the dampers of all the second fans are opened 100%, the dampers of all the third fans are all opened 100%, and the control refrigeration subsystem is turned on, cooling
  • the workflow of the system is as follows: the refrigeration subsystem cools the air in the cooling room, and under the operation of the second ventilation system, the cold air in the cooling room is transported to the equipment room through the at least one second ventilation channel for use by the device, cold air After the equipment is sucked in and heated by the equipment, hot air is formed. Under the operation of the third ventilation system, hot air between the equipment is transported back to the refrigerating room through the at least one third ventilation passage, and is returned under the operation of the refrigeration subsystem. The hot air to the cooling room is cooled, and then transported to the equipment room through the second ventilation channel for use by the equipment, and the next cooling air flow is resumed. Ring.
  • the control system can turn on the hybrid cooling mode, and the control system controls the dampers of all the first fans to be turned on 100. %, all the dampers of the second fan are opened 100%, all the dampers of the third fan are opened 50%, and the control refrigeration subsystem is closed.
  • the working process of the refrigeration system is as follows: under the work of the first ventilation system, the new air Flowing from the at least one first air passage to the refrigerating compartment, under the operation of the second ventilation system, and then being transported to the equipment room through the at least one second ventilation passage for use by the device, the cold air being sucked by the device between the devices and After heating, hot air is formed. Under the operation of the third ventilation system, part of the hot air between the devices is sent back to the refrigerating room through the at least one third venting passage, and the hot air sent back to the refrigerating room and flows from the first air passage.
  • the airflow forming the appropriate temperature and humidity is again sent to the equipment room through the second ventilation passage for use by the equipment, and the next gas is re-executed.
  • Flow loop The refrigeration subsystem does not need to be turned on during the entire process.
  • the control system may be manually operated by a user, or the refrigeration system provided by the embodiment of the present invention may further include a detection system in communication with the control system, which is mainly configured to detect the temperature and/or humidity of the new air outside the cooling room, and control
  • the system is a comparison module, which automatically compares the temperature of the external new air detected by the detection system with T2 and T1, compares the humidity of the external new air detected by the detection system with D2 and D1, and automatically controls according to the comparison result.
  • the detection system can be installed in the refrigerating compartment or outside the refrigerating compartment, as long as the temperature and humidity of the external new air can be detected.
  • the refrigeration system includes a refrigeration room 111 , a first ventilation system 112 , a second ventilation system 113 , a third ventilation system 114 , and a control system 115 .
  • Detection system 116 and refrigeration subsystem wherein
  • the refrigerating compartment 111 is provided with a plurality of first vents 1111 to the outside fresh air, and a plurality of second vents 1112 that are provided to transport the air between the refrigerating compartments to the external equipment, and are arranged to transport the air between the external devices back.
  • the first ventilation system 112 includes at least one first fan, a multi-stage filtration device, and a first switch module (shown in the drawings)
  • the second ventilation system 113 includes at least one second fan, a multi-stage filter device, and a second a switch module (shown in the figure)
  • the third ventilation system 114 includes at least one third fan, a multi-stage filter device, and a third switch module (shown in the figure
  • the refrigeration subsystem includes a cold source host 1171, a refrigeration coil 1172, and pipes 1173a, 1173b.
  • the cold source 1171 is disposed outside the refrigerating compartment 111, and the refrigerating coil 1172 is in the refrigerating compartment 111, closely adjacent to the third venting system 114, the pipeline
  • One end of 1173a and 1173b is connected to the cold source host 1171, and the other end is connected to the cooling coil 1172 through the pipe port on the refrigerating room 111.
  • the refrigerant is transported from the cold source host 1171 to the cooling coil 1172 through the pipe 1173a for cooling, and the residual after the refrigerant is used.
  • the material is returned to the cold source host 1171 through the pipe 1173b;
  • the detection system 116 is disposed on the outer wall of the refrigerating compartment 111, and is configured to detect the temperature and/or humidity of the fresh air outside the refrigerating compartment 111; the control system 115 is disposed in the refrigerating compartment 111, and the detecting system 116, the first switching module, and the second The switch module, the third switch module, and the cooling coil 1172 are electrically connected (not shown in the figure), and the first switch module, the second switch module, and the third switch module connected thereto according to the detection result of the detecting system 116 And the cooling coil 1172 is controlled.
  • the embodiment of the present invention further provides a data center system, including the foregoing refrigeration system, equipment, and a data center subsystem disposed between the equipment, wherein the refrigeration room and the equipment in the refrigeration system pass through the at least one second air passage. And at least one of the third airway ventilation described above.
  • the second air passage is mainly arranged to transport the cool air between the cooling rooms to the equipment room
  • the third air passage is arranged to return the hot air between the devices to the cooling room.
  • the embodiment of the present invention further provides a data center system, including the above refrigeration system, equipment, and a data center subsystem disposed between the equipment, wherein the refrigeration room and the equipment in the refrigeration system are ventilated by the at least one second air passage. And at least one fourth air passage provided to discharge air between the devices to the outside is disposed between the devices.
  • the second air passage is mainly arranged to transport the cool air between the cooling rooms to the equipment room, and the fourth air passage is arranged to discharge the hot air between the devices.
  • the embodiment of the present invention further provides a data center system, including the foregoing refrigeration system, equipment, and a data center subsystem disposed between the equipment, wherein the refrigeration room and the equipment in the refrigeration system pass through the at least one second air passage. And the at least one third air passage is ventilated, and at least one fourth air passage disposed to discharge air between the devices to the outside is disposed between the devices.
  • the second air passage is mainly arranged to transport the cool air between the cooling rooms to the equipment room
  • the third air passage is arranged to return the hot air between the devices to the cooling room
  • the fourth air passage is arranged to heat the air between the devices discharge.
  • the data center system further includes a fourth ventilation system
  • the fourth ventilation system includes at least one fourth fan connected to the at least one fourth air passage, and is disposed between the devices provided with the fourth air passage. Air is introduced to the outside through the at least one fourth air passage.
  • the fourth ventilation system may be disposed in the equipment room or may be disposed outside the equipment. As long as the connection with the at least one fourth air passage is satisfied, air between the equipment may be led to the outside through the at least one fourth air passage. Just fine.
  • the fourth air passage is a fourth air outlet disposed on the cooling room, and the fourth ventilation system is disposed to cover the at least one fourth air outlet in the cooling room.
  • the fourth fan includes, but is not limited to, a fan.
  • the efficiency of hot air discharge can be improved by the fourth fan.
  • multi-fans should be used as much as possible, and small and large fans combined with reasonable size should be used instead of large and large fans to improve redundancy reliability, reduce noise and energy consumption, and reduce air supply.
  • the dead zone of the airflow provides a more even and stable supply airflow.
  • the fourth ventilation system may further comprise a multi-stage filtration device (primary, intermediate-grade filtration, chemical filtration, etc.), which is arranged to filter out dust, water vapor, chemical substances, etc. in the hot air, and plays an environmental protection role.
  • a multi-stage filtration device primary, intermediate-grade filtration, chemical filtration, etc.
  • the fourth ventilation system may further include a fourth switch module, which can be used to control the amount of exhaust of the at least one fourth air passage, that is, control the amount of hot air discharged.
  • the fourth switch module controls the exhaust volume of the at least one fourth air passage by controlling the working state of the at least one fourth air blower, for example, turning off several of the wind turbines to reduce the amount of hot air discharged, and all the wind turbines Open to increase the discharge of hot air; more fine control methods can be used.
  • the fourth switch module is a fan damper, and the fan is adjusted by controlling the change of the opening of the damper from 0-100%. The amount of exhaust.
  • the fourth switch module can also control the amount of exhaust gas by controlling the closing or size of the at least one fourth air passage, for example, shielding some of the fourth air passages to reduce the amount of hot air discharged, and all of the fourth The air passage is opened to increase the amount of hot air emissions.
  • the control of the fourth switch module can be intelligently controlled manually or by a control system in the refrigeration system.
  • the data center subsystem disposed between the devices may include at least one cabinet group, and each cabinet group includes at least one cabinet, and each cabinet is configured to be placed, and the devices include servers, power distribution devices (including battery cabinets, uninterruptible power supplies, etc.) , fire equipment, etc. Effectively fixed between the cabinet and the equipment.
  • the data center subsystem is arranged between the devices to form at least one cold air passage and at least one hot air passage according to a certain arrangement rule; the at least one second air passage is in communication with the at least one cold air passage; the at least one third air passage At least one fourth air passage is in communication with the at least one hot air passage.
  • the equipment room and the cooling room are divided by providing partition walls in one container.
  • the partition wall divides the container into a cooling room and a equipment room in a direction perpendicular to the bottom of the container.
  • the cabinet groups of the equipment are arranged in the direction perpendicular to the partition wall.
  • the air inlets of the cabinets in each cabinet group face the same direction, and the air outlets face the same direction.
  • the cabinet groups are perpendicular to the partition wall. Aligning the directions, at least one cold air passage and at least one hot air passage can be formed along a direction perpendicular to the partition wall.
  • a data center system uses a container as a load, and a partition wall 211 is installed inside the container in a direction perpendicular to the bottom surface of the container.
  • the partition wall 211 effectively divides the container into two independent a compartment, wherein the compartment on the left side serves as the refrigerating compartment 212, and the compartment on the right side serves as the equipment compartment 213;
  • a plurality of first vents (not shown) leading to external new air are disposed above the left wall of the refrigerating compartment 212, and the first venting system 214 is mounted on the plurality of first vents, and the rear wall of the refrigerating compartment 212 is disposed a pipe port (not shown) is disposed above, and a first service door 2121 is disposed on the front wall of the cooling room 212;
  • a plurality of second vents (not shown) connecting the cooling room 212 and the equipment room 213 are disposed in a front area of the partition wall 211, and a plurality of third portions connecting the cooling room 212 and the equipment room 213 are disposed in the rear area.
  • a venting port (not shown), the second venting port is mounted with a second venting system 215, the third venting port is mounted with a third venting system 216;
  • a cold source host 217 is disposed outside the container, a third venting system 216 is disposed above the partition wall 211, and a cooling coil 218 is mounted adjacent to the third venting system 216.
  • the pipes 219 and 220 pass through the pipe opening on the cooling room 212, and one end is The cold source host 217 is connected, the other end is connected to the cooling coil 218, and the source host 217 is connected to the cooling coil 218; the pipe 219 is disposed such that the cold source host 217 delivers the refrigerant to the cooling coil 218, and the pipe 220 is disposed as the cooling coil 218. Drain the residue.
  • a cabinet group 223 is arranged in a direction perpendicular to the partition wall 211.
  • the cabinet group 223 includes a tight arrangement, and the air inlet is uniformly facing forward.
  • the tuyere is unified toward the rear of the plurality of cabinets, the leftmost cabinet is closely attached to the partition wall 211, and the rightmost cabinet is closely adjacent to the right wall of the equipment room 213, and a cold air passage A and a hot air passage B are formed in the equipment room 213, and the cold air passage is formed.
  • A is in communication with the second vent on the partition 211, and the hot air passage B is in communication with the third vent on the partition 211;
  • a setting perpendicular to the bottom of the container is provided between the top of the cabinet group 223 and the top of the equipment room 213
  • the baffle 224 for the hot and cold air duct is completely isolated from the cold and hot air flow in the equipment room 213 to avoid mixing short circuit and the like to reduce the cooling efficiency;
  • the rear wall of the spare room 213 is provided with a plurality of fourth vents (not shown) leading to the outside, and the fourth venting port is provided with a fourth venting system 222, a fourth venting system 222 and a hot air duct B connected;
  • each cabinet can be 600mm, and 750mm can be reserved between the front of the cabinet and the front wall of the equipment room 213, the width of the cold air duct A can be 750mm, and 450mm can be reserved between the rear of the cabinet and the rear wall of the equipment room 213, that is, hot air.
  • the width of the track B can be 450 mm.
  • the equipment placed on the cabinet can be IT servers, power distribution equipment, fire fighting equipment, and other network equipment.
  • a second service door 2131 is disposed on the front wall of the equipment room 213.
  • the personnel and equipment can enter and exit the cold air passage A of the equipment room 213 through the second service door 2131, and the third service door 2132 is further disposed on the rear wall of the equipment room 213.
  • Personnel and equipment can enter and exit the hot air passage B of the equipment room 213 through the third service door 2132;
  • the first ventilation system 214 includes a plurality of first fans, a multi-stage filter device, and a first switch module (shown in the figure).
  • the number of the first fans is the same as the number of the first vents, and is installed in each of the first ones.
  • a venting port, the multi-stage filtering device is arranged to filter the new air sucked by each of the first fans, and the first switch module is a damper disposed on each of the first fans;
  • the second ventilation system 215 includes a plurality of second fans, a multi-stage filter device, and a second switch module (shown in the figure).
  • the number of the second fans is the same as the number of the second vents, and is installed in each of the first ones.
  • the multi-stage filtering device is arranged to filter the air in the refrigerating compartment 212 and then transport it to the equipment room 213 through the respective second fans, and the second switching module is a damper disposed on each of the second fans;
  • the third ventilation system 216 includes a plurality of third fans, a multi-stage filter device, and a third switch module (shown in the figure).
  • the number of the third fans is the same as the number of the third vents, and is installed in each of the first ones.
  • the multi-stage filtering device is arranged to filter the air sucked by each of the third fans, and the third switch module is a damper disposed on each of the third fans;
  • the fourth ventilation system 222 includes a plurality of fourth fans, a multi-stage filter device, and a fourth switch module (shown in the figure).
  • the number of the fourth fan is the same as the number of the fourth vents, and is installed in each of the first ones.
  • the multi-stage filtering device is arranged to filter the hot air of the equipment room 213 and then discharge through the fourth fan, and the fourth switch module is a damper disposed on each of the fourth fans;
  • a controller 221 is disposed above the second ventilation system 215 on the partition wall 211.
  • the wind is controlled by the controller 221 and the dampers of all the first fans and all the second fans by routing in the container box (not shown).
  • the valve, the damper of all the third fans, the damper of all the fourth fans, the cooling coil 218, and the cold source host 217 are electrically connected;
  • the controller 221 opens all the dampers of the first fan 100%, and all the dampers of the second fan are opened 100%, all the dampers of the third fan are closed, and all the dampers of the fourth fan are opened 100%.
  • the control refrigeration coil 218 is closed.
  • the workflow of the data center system is as follows: the new air is taken in by the first fan through the first vent, and then flows into the refrigeration room through multi-stage filtration.
  • the air in the refrigerating room 212 is filtered by the second fan and then sent to the cold air channel A of the equipment room 213 through the second vent port for use by the device, and the cold air is taken in by the device in the device room 213.
  • hot air is formed and discharged to the hot air passage B.
  • the hot air of the hot air passage B is filtered by the multi-stage filter and then sucked by the respective fourth fan and discharged to the outside of the container through the fourth vent.
  • the entire process cold source host 217 and refrigeration coil 218 do not need to operate.
  • the cooling mode of the complete refrigeration subsystem is turned on, that is, the damper of all the first fans is closed by manually operating the controller 221, and the dampers of all the second fans are all opened 100%, and the dampers of all the third fans are all When 100% is turned on, the dampers of all the fourth fans are closed, and the control cold source host 217 and the cooling coil 218 are turned on.
  • the workflow of the data center system is as follows: the cold source host 217 is cooled by the pipe 219.
  • the coil 218 conveys the refrigerant, and the cooling coil 218 cools the air of the refrigerating compartment 212.
  • the cold air of the refrigerating compartment 212 is filtered by the second fan and then transported to the equipment room 213 through the second vent port.
  • the cold air passage A is used by the equipment, and the cold air is sucked and heated by the equipment in the equipment room 213 to form hot air to be discharged to the hot air passage B, and the hot air of the hot air passage B is sucked into the third air blower through the third air vent. After multi-stage filtration, it returns to the refrigerating room 212, is cooled down by the cooling coil 218, and is transported to the equipment through the second venting channel for use by the equipment, and the next refrigerating air circulation is resumed.
  • the external ambient temperature T satisfies T ⁇ T2, or the humidity D satisfies D ⁇ D1
  • the external ambient temperature or humidity is considered to be too low
  • the user manually operates the controller 221 to turn on the hybrid cooling mode, that is, by manually operating the controller 221
  • All the first fan's dampers are open 100%
  • all the second fan's dampers are open 100%
  • all third fans' dampers are open 50%
  • all fourth fans' dampers are open 50%
  • control cold The source host 217 and the cooling coil 218 are closed.
  • the workflow of the data center system is as follows: new air is taken in by the first fan through the first vent, and then flows into the refrigerating room 212 through multi-stage filtration.
  • the air in the refrigerating room 212 is filtered by the second fan and then sent to the cold air channel A of the equipment room 213 through the second vent port for use by the device, and the cold air is sucked and heated by the device in the equipment room 213. After that, hot air is discharged to the hot air passage B, and part of the hot air of the hot air passage B is sucked by the third air blower through the third air vent, and after multi-stage filtration, returns to the refrigerating room 212, and another part of the hot air duct B is heated.
  • Respective fourth fan is excluded After filtration through a fourth container vent outside the refrigerant-212 hot air flowing into and mixing of fresh air from the first vent back to the rear, The air stream forming the appropriate temperature and humidity is again transported through the second vent port to the equipment room 213 for use by the equipment to re-circulate the next air stream.
  • the entire process cold source host 217 and refrigeration coil 218 do not need to operate.
  • the equipment room and the refrigerating room are divided to improve the heat dissipation efficiency; the fresh air and the cooling coil are mutually matched and replaced by each other, and the fresh air direct cooling can be completely realized when the external environment temperature and humidity are suitable.
  • Refrigeration coil when the external ambient temperature or humidity is too high, the refrigeration coil is turned on, the hot air return air is turned on, the fresh air is turned off, and the electric refrigeration is performed; when the external ambient temperature or humidity is too low, the refrigeration coil is not turned on, and the hot air is partially turned on.
  • the refrigeration system and the data center system provided by the embodiments of the present invention have the following beneficial effects:
  • the refrigeration room provided by the embodiment of the present invention sets a fresh air passage to collect new air in the external environment, when the external environment
  • the refrigeration subsystem can be completely stopped, and the new air in the external environment can be used for cooling, which effectively utilizes the natural cold source, saves energy, reduces operating costs, and is environmentally friendly.
  • System dependence, when the refrigeration subsystem fails, using external fresh air to achieve cooling, will not affect the normal operation of equipment between equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

公开了一种制冷系统和数据中心系统。制冷系统包括制冷间(212)、第一通气系统(214)和制冷子系统。制冷间(212)设置有通向外部新空气的至少一个第一通气道、设置为将制冷间(212)的空气输送到外部设备间(213)的至少一个第二通气道。第一通气系统(214)包括至少一个第一风机,其与至少一个第一通气道相连,并配置成通过至少一个第一通气道向制冷间(212)引入新空气。制冷子系统设置为对进入制冷间(212)的空气进行降温。数据中心系统包括上述制冷系统、设备间(213)以及设置于设备间(213)的数据中心子系统。

Description

一种制冷系统及数据中心系统 技术领域
本实用新型涉及通信领域,尤其涉及一种制冷系统及数据中心系统。
背景技术
集装箱数据中心系统可容纳高密度计算设备,相同空间内可容纳6倍,甚至10倍于传统数据中心系统的机柜数量,且调测时间短,安装方便,可灵活扩展,因此被广泛的应用。
现有集装箱数据中心系统主要为以下架构,在整个集装箱中不分区制冷间和设备间,即在一个空间内放置设备和空调,而且完全依靠空调工作来制冷,不论集装箱外部环境温度、湿度如何。这种架构具有以下主要缺点:
其一,由于不分区制冷间和设备间,加上设备之间的串热,降低了制冷效率。
其二,对空调的依赖性,导致空调发生故障时,无法实现制冷,影响设备性能,甚至影响设备的正常工作;实际上,当集装箱外部环境温度、湿度适宜的情况下,完全可以让空调停止工作,借助外部环境的新空气来制冷,而这种现有架构的集装箱数据中心系统没有设置新风通道来采集外部环境中的新空气,因此,不能够借助新风来替代空调制冷,不够节能。
发明内容
本实用新型实施例提供的一种制冷系统及数据中心系统,至少能够解决现有数据中心系统制冷效率低、不能够借助新风以及不够节能的问题。
为解决上述技术问题,本实用新型采用以下技术方案:
一种制冷系统,包括制冷间、第一通气系统和制冷子系统;其中,
所述制冷间设置有通向外部新空气的至少一个第一通气道、设置为将所述制冷间的空气输送至外部设备间的至少一个第二通气道;
所述第一通气系统包括至少一个第一风机,与所述至少一个第一通气道连接,设置为通过所述至少一个第一通气道向所述制冷间引入新空气;
所述制冷子系统设置为对进入所述制冷间的空气进行降温。
所述第一通气系统位于所述制冷间。
所述制冷子系统位于所述制冷间;
或者,所述制冷子系统包括第一子系统、第二子系统以及连接在所述第一子系统与第二子系统之间的管道,所述第一子系统位于所述制冷间,所述第二子系统位于所述制冷间之外,所述管道设置为所述第二子系统向所述第一子系统输送冷媒。
该制冷系统还包括第二通气系统,所述第二通气系统包括至少一个第二风机,与所述至少一个第二通气道连接,设置为将所述制冷间的空气通过所述至少一个第二通气道引入所述外部设备间。
所述制冷间还设置有设置为将所述外部设备间的空气输送回所述制冷间的至少一个第三通气道。
该制冷系统还包括第三通气系统,所述第三通气系统包括至少一个第三风机,与所述至少一个第三通气道连接,设置为将所述外部设备间的空气通过所述至少一个第三通气道输送回至所述制冷间。
所述第一通气系统还包括第一开关模块,设置为控制所述至少一个第一通气道的进气量;所述第三通气系统还包括第三开关模块,设置为控制所述至少一个第三通气道的通气量。
所述第一开关模块设置为控制所述至少一个第一风机的工作状态;所述第三开关模块设置为控制所述至少一个第三风机的工作状态。
该制冷系统还包括控制系统,设置为通过控制所述第一开关模块来控制所述至少一个第一通气道的进气量、通过控制所述第三开关模块控制所述至少一个第三通气道的通气量,和/或控制所述制冷子系统的工作状态。
该制冷系统还包括与所述控制系统通信的检测系统,设置为检测所述制冷间外部新空气的温度和/或湿度,所述控制系统根据所述检测系统的检测结果来进行相应控制。
一种数据中心系统,包括上述任一项所述的制冷系统、设备间,以及设置于所述设备间的数据中心子系统;其中,
所述制冷系统中的制冷间与所述设备间通过所述至少一个第二通气道通气;且,
所述制冷间与所述设备间还通过所述至少一个第三通气道通气,和/或所述设备间设置有设置为将所述设备间的空气排出至外部的至少一个第四通气道。
该数据中心系统还包括第四通气系统,所述第四通气系统包括至少一个第四风机,与所述至少一个第四通气道连接,设置为将所述设备间的空气通过所述至少一个第四通气道引向外部。
所述第四通气系统位于所述设备间。
所述第四通气系统还包括第四开关模块,设置为控制所述至少一个第四通气道的排气量。
所述第四开关模块设置为控制所述至少一个第四风机的工作状态。
所述制冷系统中的所述控制系统,还设置为通过控制所述第四开关模块来控制所述至少一个第四通气道的进气量。
所述数据中心子系统在所述设备间形成至少一个冷气道和至少一个热气道;所述至少一个第二通气道与所述至少一个冷气道相通;所述至少一个第三通气道、所述至少一个第四通气道与所述至少一个热气道相通。
所述设备间设置有在冷气道和热气道之间起隔离作用的挡气板。
所述设备间、制冷间通过在一个集装箱中设置隔墙划分而成。
所述至少一个第二通气道、至少一个第三通气道为设置在所述隔墙上的通气孔。
所述隔墙沿垂直于所述集装箱底部的方向将所述集装箱划分出所述制冷间和设备间。
所述数据中心子系统包括至少一个机柜组,各机柜组中包括至少一个机柜,各机柜组沿着垂直于所述隔墙的方向排列。
本实用新型实施例提供的制冷系统及数据中心系统,不但区分了制冷间和设备间,提高了制冷效率;而且,制冷间还设置有通向外部新空气的第一通气道,即新风通道,第一通气道还与包括至少一个风机的第一通气系统连接,这些风机通过第一通气道向制冷间引入新空气,由此可见,本实用新型实施例提供的制冷间设置了新风通道来采 集外部环境中的新空气,当外部环境温度、湿度适宜的情况下,完全可以让制冷子系统停止工作,借助外部环境的新空气来制冷,有效利用了自然冷源,节约了电能、降低了运营成本并且环保,也降低了对制冷子系统的依赖性,当制冷子系统发生故障时,使用外部新风实现制冷,不至于影响设备间设备的正常工作。
附图说明
图1为本实用新型一实施例提供的制冷系统的示意图;
图2为本实用新型一实施例提供的数据中心系统的示意图;
图3为图2所示数据中心系统在完全新风制冷模式下的工作状态示意图;
图4为图2所示数据中心系统在完全制冷子系统制冷模式下的工作状态示意图;
图5为图2所示数据中心系统在混合制冷模式下的工作状态示意图。
具体实施方式
本实用新型提供一种制冷系统,包括制冷间、第一通气系统和制冷子系统,制冷间设置有通向外部新空气的至少一个第一通气道,以及设置为将制冷间的空气输送至外部设备间的至少一个第二通气道;所述第一通气系统包括至少一个风机,与所述至少一个第一通气道连接,设置为通过所述至少一个第一通气道向所述制冷间引入新空气;所述制冷子系统设置为对进入所述制冷间的空气进行降温。
其中,设备间和制冷间互为外部空间,因此,本实用新型实施例区分了制冷间和设备间,并没有混在同一空间。制冷间可以用隔墙在完整集装箱中划分出来,优选的,制冷间、设备间通过在一个集装箱中设置隔墙划分而成。
优选的,第一通气道为设置在制冷间上的第一通气口,与外部新空气相通,新空气可以通过第一通气口进入制冷间。
第一通气系统可以设置在制冷间内,也可以设置在制冷间外,只要满足与所述至少一个第一通气道连接,可以通过所述至少一个第一通气道向制冷间引入新空气这样的功能即可。优选的,若第一通气道为设置在制冷间上的第一通气口,第一通气系统设置在制冷间内罩住所述至少一个第一通气口。
第一通气系统包括至少一个第一风机,第一风机包括但不局限于风扇。通过第一风机可以提高新空气的采集效率。在满足风量与风压要求的条件下,尽可能采用多风机,采用尺寸合理的小风机组合来代替大型、超大风机,以提升冗余可靠性,并降低噪音和能耗,同时减少送风时的气流死区,提供更均匀稳定的送风气流。
优选的,第一通气系统还可以包括多级过滤装置(初级、中高级过滤以及化学过滤等),设置为过滤掉新空气中的粉尘、水蒸气、化学物质等,提升进入制冷间的新空气的洁净度。
优选的,第一通气系统还可以包括第一开关模块,可以用来控制所述至少一个第一通气道的进气量,即控制新空气的采集量。第一开关模块通过控制所述至少一个第一风机的工作状态,来控制所述至少一个第一通气道的进气量,例如关闭其中几个风机,来减少新空气的采集量,将全部风机打开来提升新空气的采集量;还可以采用更精细的控制方式,例如第一开关模块为风机风阀,通过控制风阀的开度从0-100%之间的变化,来调节各个风机的通气量。第一开关模块还可以通过控制所述至少一个第一通气道的关闭或大小来控制其进气量,例如遮住其中几个第一通气道,来减少新空气的采集量,将全部第一通气道打开来提升新空气的采集量。对第一开关模块的控制可以采用手动或通过控制系统智能控制。
制冷子系统可以设置在制冷间内,也可以设置在制冷间外,还可以部分设置在制冷间内,部分设置在制冷间外,只要满足可以对进入制冷间的空气进行降温的功能即可。优选的,制冷子系统包括第一子系统、第二子系统以及连接在所述第一子系统与第二子系统之间的管道,所述第一子系统位于制冷间内,第二子系统位于制冷间之外,所述管道设置为第二子系统向第一子系统输送冷媒。第二子系统可以包括冷源主机,第一子系统可以包括制冷盘管,冷源主机设置在集装箱外,安装在集装箱附近地面上或者集装箱箱体的顶部,管道一端连接冷源主机,另一端穿过制冷间上预留的管道口连接制冷间内的制冷盘管,冷媒通过管道从冷源主机输送到制冷盘管进行制冷,所采用的冷媒可以是冷冻水,也可以是其他制冷剂。制冷子系统的工作状态,包括开启、关闭,可以通过手动或通过控制系统智能控制。
第二通气道是连通制冷间和设备间的通道,主要设置为将制冷间的冷空气输送至外部设备间,若制冷间、设备间通过在一个集装箱中设置隔墙划分而成,优选的,第二通气道为设置在该隔墙上的第二通气口,无需设置通气管道,即可将制冷间的空气输送至外部设备间。当然也可以在制冷间、设备间的其他地方各设置一通气口,通过通气管道连通。
优选的,本实用新型实施例提供的制冷系统还可以包括第二通气系统,第二通气系统包括至少一个第二风机,与所述至少一个第二通气道连接,设置为将所述制冷间的空气通过所述至少一个第二通气道引入所述外部设备间。第二风机包括但不局限于风扇。通过第二风机可以提高冷空气从制冷间到设备间的流通效率。在满足风量与风压要求的条件下,尽可能采用多风机,采用尺寸合理的小风机组合来代替大型、超大风机,以提升冗余可靠性,并降低噪音和能耗,同时减少气流死区,提供更均匀稳定的流通。
第二通气系统可以设置在制冷间内,也可以设置在设备间内,若设置在制冷间内,可以实现高效率送风,若设置在设备间内,可以实现高效率吸风。优选的,若第二通气道为设置在上述隔墙上的第二通气口,第二通气系统设置在制冷间内或设备间内罩住所述至少一个第二通气口。
优选的,第二通气系统还可以包括多级过滤装置(初级、中高级过滤以及化学过滤等),设置为过滤掉冷空气中的粉尘、水蒸气、化学物质等,提升进入设备间的冷空气的洁净度。
优选的,第二通气系统还可以包括第二开关模块,可以用来控制所述至少一个第二通气道的通气量,即控制设备间冷空气的采集量。第二开关模块通过控制所述至少一个第二风机的工作状态,来控制所述至少一个第二通气道的通气量,例如关闭其中几个风机,来减少设备间冷空气的采集量,将全部风机打开来提升设备间冷空气的采集量;还可以采用更精细的控制方式,例如第二开关模块为风机风阀,通过控制风阀的开度从0-100%之间的变化,来调节各个风机的通气量。第二开关模块还可以通过控制所述至少一个第二通气道的关闭或大小来控制其通气量,例如遮住其中几个第二通气道,来减少冷空气的采集量,将全部第二通气道打开来提升冷空气的采集量。对第二开关模块的控制可以采用手动或通过控制系统智能控制。
优选的,本实用新型实施例提供的制冷系统,其制冷间还可以设置有设置为将外部设备间的空气输送回制冷间的至少一个第三通气道。第三通气道也是连通制冷间和设备间的通道,主要设置为将设备间的热空气输送回制冷间,若制冷间、设备间通过在一个集装箱中设置隔墙划分而成,优选的,第三通气道为设置在该隔墙上的第三通气口,无需设置通气管道,即可将设备间的热空气输送回制冷间。当然也可以在制冷间、设备间的其他地方各设置一通气口,通过通气管道连通。
在此基础之上,优选的,本实用新型实施例提供的制冷系统还可以包括第三通气系统,第三通气系统包括至少一个第三风机,与所述至少一个第三通气道连接,设置 为将设备间的空气通过所述至少一个第三通气道输送回至制冷间。第三风机包括但不局限于风扇。通过第三风机可以提高热空气从设备间到制冷间的流通效率。在满足风量与风压要求的条件下,尽可能采用多风机,采用尺寸合理的小风机组合来代替大型、超大风机,以提升冗余可靠性,并降低噪音和能耗,同时减少气流死区,提供更均匀稳定的流通。
第三通气系统可以设置在制冷间内,也可以设置在设备间内,若设置在制冷间内,可以实现高效率吸风,若设置在设备间内,可以实现高效率送风。优选的,若第三通气道为设置在上述隔墙上的第三通气口,第三通气系统设置在制冷间内或设备间内罩住所述至少一个第三通气口。
优选的,第三通气系统还可以包括多级过滤装置(初级、中高级过滤以及化学过滤等),设置为过滤掉热空气中的粉尘、水蒸气、化学物质等,提升进入设备间的热空气的洁净度。
优选的,第三通气系统还可以包括第三开关模块,可以用来控制所述至少一个第三通气道的通气量,即控制热空气的回流量。第三开关模块通过控制所述至少一个第三风机的工作状态,来控制所述至少一个第三通气道的通气量,例如关闭其中几个风机,来减少热空气的回流量,将全部风机打开来提升热空气的回流量;还可以采用更精细的控制方式,例如第三开关模块为风机风阀,通过控制风阀的开度从0-100%之间的变化,来调节各个风机的通气量。第三开关模块还可以通过控制所述至少一个第三通气道的关闭或大小来控制其通气量,例如遮住其中几个第三通气道,来减少热空气的回流量,将全部第三通气道打开来提升热空气的回流量。对第三开关模块的控制可以采用手动或通过控制系统智能控制。
优选的,本实用新型提供的制冷系统,还可以包括控制系统,设置为对上述第一开关模块、第二开关模块、第三开关模块和/或制冷子系统进行控制。对第一开关模块的控制,是为了控制所述至少一个第一通气道的进气量,对第二开关模块的控制,是为了控制所述至少一个第二通气道的通气量,对第三开关模块的控制,是为了控制所述至少一个第三通气道的通气量,对制冷子系统的工作状态的控制,包括控制制冷子系统开启和关闭。制冷系统可以设置在制冷间内或制冷间外,只要能够实现对上述第一开关模块、第二开关模块、第三开关模块和/或制冷子系统的相应控制即可。
例如,当外部环境温度T满足T2≤T≤T1,且湿度D满足D2≤D≤D1时,T1、T2、D1、D2可通过估算或测试得到,则认为外部环境温度和湿度均适宜,控制系统可以开启完全新风制冷模式,控制系统控制全部第一风机的风阀均打开100%,全部第 二风机的风阀均打开100%,全部第三风机的风阀均关闭,控制制冷子系统关闭,此时,制冷系统的工作流程如下:在第一通气系统的工作下,新空气从所述至少一个第一通气道流入到制冷间,在第二通气系统的工作下,再通过所述至少一个第二通气通道输送到设备间供设备使用。整个过程制冷子系统不需要开启。
当外部环境温度T满足T>T1,或湿度D满足D>D1时,则认为外部环境温度或湿度过高,为了节能和避免带入过多的水蒸气进入到设备间,控制系统可以开启完全制冷子系统制冷模式,控制系统控制全部第一风机的风阀均关闭,全部第二风机的风阀均打开100%,全部第三风机的风阀均打开100%,控制制冷子系统开启,制冷系统的工作流程如下:制冷子系统对制冷间的空气进行制冷,在第二通气系统的工作下,制冷间的冷空气通过所述至少一个第二通气通道输送到设备间供设备使用,冷空气在设备间被设备吸入并加热以后形成热空气,在第三通气系统的工作下,设备间的热空气通过所述至少一个第三通气通道输送回制冷间,在制冷子系统的工作下,回送到制冷间的热空气被降温,再通过第二通气通道输送到设备间供设备使用,重新进行下一次的制冷气流循环。
当外部环境温度T满足T<T2,或湿度D满足D<D1时,则认为外部环境温度或湿度过低,控制系统可以开启混合制冷模式,控制系统控制全部第一风机的风阀均打开100%,全部第二风机的风阀均打开100%,全部第三风机的风阀均打开50%,控制制冷子系统关闭,制冷系统的工作流程如下:在第一通气系统的工作下,新空气从所述至少一个第一通气道流入到制冷间,在第二通气系统的工作下,再通过所述至少一个第二通气通道输送到设备间供设备使用,冷空气在设备间被设备吸入并加热以后形成热空气,在第三通气系统的工作下,设备间的部分热空气通过所述至少一个第三通气通道输送回制冷间,回送到制冷间的热空气和从第一通气道流入的新空气混合后,形成合适温度和湿度的气流重新再通过第二通气通道输送到设备间供设备使用,重新进行下一次的气流循环。整个过程制冷子系统不需要开启。
上述控制系统可以由用户手动操作,或者,本实用新型实施例提供的制冷系统,还可以包括与上述控制系统通信的检测系统,主要设置为检测制冷间外部新空气的温度和/或湿度,控制系统为比较模块,自动将检测系统检测出的外部新空气的温度与T2、T1比较,将检测系统检测出的外部新空气的湿度与D2、D1比较,根据比较结果进行自动控制。检测系统可以设置在制冷间内或制冷间外,只要能够实现对外部新空气的温度、湿度的检测即可。
图1为本实用新型一实施例提供的制冷系统的示意图,请参考图1,制冷系统包括制冷间111、第一通气系统112、第二通气系统113、第三通气系统114、控制系统115、检测系统116和制冷子系统;其中,
制冷间111设置有通向外部新空气的多个第一通气口1111、设置为将制冷间的空气输送至外部设备间的多个第二通气口1112、设置为将外部设备间的空气输送回制冷间的多个第三通气口1113、设置为容纳管道1173a、1173b的管道口(图中未示出),以及第一维修门1115,第一通气系统112设置在制冷间111内罩住所述多个第一通气口1111,第二通气系统113设置在制冷间111内罩住所述多个第二通气口1112,第三通气系统114设置在制冷间111内罩住所述多个第三通气口1113;第一通气系统112包括至少一个第一风机、多级过滤装置和第一开关模块(图中为示出),第二通气系统113包括至少一个第二风机、多级过滤装置和第二开关模块(图中为示出),第三通气系统114包括至少一个第三风机、多级过滤装置和第三开关模块(图中为示出);
制冷子系统包括冷源主机1171、制冷盘管1172,以及管道1173a、1173b,冷源1171主机设置在制冷间111外,制冷盘管1172在制冷间111内,紧贴第三通气系统114,管道1173a、1173b一端连接冷源主机1171,另一端穿过制冷间111上的管道口连接制冷盘管1172,冷媒通过管道1173a从冷源主机1171输送到制冷盘管1172进行制冷,冷媒使用过后的残余物质通过管道1173b回流到冷源主机1171;
检测系统116设置在制冷间111的外壁上,设置为检测制冷间111外部新空气的温度和/或湿度;控制系统115设置在制冷间111内,与检测系统116、第一开关模块、第二开关模块、第三开关模块以及制冷盘管1172电性连接(图中未示出连线),根据检测系统116的检测结果对与其连接的第一开关模块、第二开关模块、第三开关模块以及制冷盘管1172进行控制。
本实用新型实施例还提供一种数据中心系统,包括上述制冷系统、设备间,以及设置于设备间的数据中心子系统,制冷系统中的制冷间与设备间通过上述至少一个第二通气道,以及上述至少一个第三通气道通气。其中,第二通气道主要设置为将制冷间的冷空气输送至设备间,第三通气道设置为将设备间的热空气输回至制冷间。
本实用新型实施例还提供一种数据中心系统,包括上述制冷系统、设备间,以及设置于设备间的数据中心子系统,制冷系统中的制冷间与设备间通过上述至少一个第二通气道通气,且设备间设置有设置为将设备间的空气排出至外部的至少一个第四通气道。其中,第二通气道主要设置为将制冷间的冷空气输送至设备间,第四通气道设置为将设备间的热空气排出。
本实用新型实施例还提供一种数据中心系统,包括上述制冷系统、设备间,以及设置于设备间的数据中心子系统,制冷系统中的制冷间与设备间通过上述至少一个第二通气道,以及上述至少一个第三通气道通气,且设备间设置有设置为将设备间的空气排出至外部的至少一个第四通气道。其中,第二通气道主要设置为将制冷间的冷空气输送至设备间,第三通气道设置为将设备间的热空气输回至制冷间,第四通气道设置为将设备间的热空气排出。
对于设置有第四通气道的设备间而言,优选的,该数据中心系统还包括第四通气系统,第四通气系统包括至少一个第四风机,与所述至少一个第四通气道连接,设置为将设备间的空气通过所述至少一个第四通气道引向外部。
第四通气系统可以设置在设备间内,也可以设置在设备间外,只要满足与所述至少一个第四通气道连接,可以将设备间的空气通过所述至少一个第四通气道引向外部即可。优选的,第四通气道为设置在制冷间上的第四通气口,第四通气系统设置在制冷间内罩住所述至少一个第四通气口。
第四风机包括但不局限于风扇。通过第四风机可以提高热空气的排放效率。在满足风量与风压要求的条件下,尽可能采用多风机,采用尺寸合理的小风机组合来代替大型、超大风机,以提升冗余可靠性,并降低噪音和能耗,同时减少送风时的气流死区,提供更均匀稳定的送风气流。
优选的,第四通气系统还可以包括多级过滤装置(初级、中高级过滤以及化学过滤等),设置为过滤掉热空气中的粉尘、水蒸气、化学物质等,起到环保的作用。
优选的,第四通气系统还可以包括第四开关模块,可以用来控制所述至少一个第四通气道的排气量,即控制热空气的排放量。第四开关模块通过控制所述至少一个第四风机的工作状态,来控制所述至少一个第四通气道的排气量,例如关闭其中几个风机,来减少热空气的排放量,将全部风机打开来提升热空气的排放量;还可以采用更精细的控制方式,例如第四开关模块为风机风阀,通过控制风阀的开度从0-100%之间的变化,来调节各个风机的排气量。第四开关模块还可以通过控制所述至少一个第四通气道的关闭或大小来控制其排气量,例如遮住其中几个第四通气道,来减少热空气的排放量,将全部第四通气道打开来提升热空气的排放量。对第四开关模块的控制可以采用手动或通过制冷系统中的控制系统智能控制。
设置于设备间的数据中心子系统可以包括至少一个机柜组,各机柜组中包括至少一个机柜,各机柜设置为放置设备,这些设备包括服务器、配电设备(包括蓄电池柜、不间断电源等)、消防设备等。机柜与设备间之间进行有效固定。
优选的,数据中心子系统按照一定的排列规则在设备间排列形成至少一个冷气道和至少一个热气道;上述至少一个第二通气道与所述至少一个冷气道相通;上述至少一个第三通气道、至少一个第四通气道与所述至少一个热气道相通。为了对冷气道和热气道进行隔离,优选的,设备间设置有在冷气道和热气道之间起隔离作用的挡气板。
优选的,设备间、制冷间通过在一个集装箱中设置隔墙划分而成。优选的,该隔墙沿垂直于集装箱底部的方向将该集装箱划分出制冷间和设备间。设备间的各机柜组沿着垂直于该隔墙的方向排列,例如每一个机柜组中的各机柜的进风口朝同一方向,出风口朝同一方向,各机柜组沿着垂直于该隔墙的方向排列,则可以沿着垂直于该隔墙的方向形成至少一个冷气道和至少一个热气道。
如图2所示,为本实用新型提供的一种数据中心系统,以集装箱作为承载,其内部沿着垂直于集装箱底面的方向安装有隔墙211,隔墙211将集装箱有效分割为两个独立的舱室,其中左侧的舱室作为制冷间212,右侧的舱室作为设备间213;
制冷间212的左壁上方设置有通向外部新空气的多个第一通气口(图中未示出),该多个第一通气口上安装有第一通气系统214,制冷间212的后壁上方设置有管道口(图中未示出),制冷间212的前壁上设置有第一维修门2121;
隔墙211上靠前区域设置有连通制冷间212与设备间213的多个第二通气口(图中未示出),靠后区域设置有连通制冷间212与设备间213的多个第三通气口(图中未示出),该多个第二通气口上安装有第二通气系统215,该多个第三通气口上安装有第三通气系统216;
集装箱外面设置有冷源主机217,隔墙211上第三通气系统216上方,紧贴第三通气系统216安装有制冷盘管218,管道219、220穿过制冷间212上的管道口,一端与冷源主机217连接,另一端与制冷盘管218连接,将源主机217与制冷盘管218连通;管道219设置为冷源主机217向制冷盘管218输送冷媒,管道220设置为制冷盘管218排出残余。
设备间213中,在第二通气口与第二通气口之间沿着垂直于隔墙211的方向,排列设置一个机柜组223,该机柜组223包括紧密排列,且进风口统一朝向前方,出风口统一朝向后方的多个机柜,最左边的机柜紧贴隔墙211,最右边的机柜紧贴设备间213的右壁,在设备间213形成一个冷气道A和一个热气道B,且冷气道A与隔墙211上的第二通气口连通,热气道B与隔墙211上的第三通气口连通;在机柜组223的顶部与设备间213的顶部之间设置有垂直于集装箱底部的设置为冷热风道隔离的挡板224,将设备间213内的冷热气流进行完全隔离,避免混合短路等降低制冷效率;在设 备间213的后壁上设置有通向外部的多个第四通气口(图中未示出),该多个第四通气口上安装有第四通气系统222,第四通气系统222与热风道B连通;
各机柜的宽度可以为600mm,并且机柜前方与设备间213的前壁之间可以保留750mm,冷气道A的宽度可以为750mm,机柜后方与设备间213的后壁之间可以保留450mm,即热气道B的宽度可以为450mm。机柜上放置的设备可以是IT服务器、配电设备、消防设备以及其他网络设备。
设备间213的前壁上设置有第二维修门2131,人员以及设备可以通过第二维修门2131出入设备间213的冷气道A,设备间213的后壁上还设置有第三维修门2132,人员以及设备可以通过第三维修门2132出入设备间213的热气道B;
第一通气系统214包括多个第一风机、多级过滤装置以及第一开关模块(图中为示出),第一风机的数量与第一通气口的数量相同,一一对应安装于各个第一通气口上,多级过滤装置设置为对各个第一风机吸入的新空气进行过滤,第一开关模块为设置在各个第一风机上的风阀;
第二通气系统215包括多个第二风机、多级过滤装置以及第二开关模块(图中为示出),第二风机的数量与第二通气口的数量相同,一一对应安装于各个第二通气口上,多级过滤装置设置为对制冷间212中的空气进行过滤后通过各个第二风机输送至设备间213,第二开关模块为设置在各个第二风机上的风阀;
第三通气系统216包括多个第三风机、多级过滤装置以及第三开关模块(图中为示出),第三风机的数量与第三通气口的数量相同,一一对应安装于各个第三通气口上,多级过滤装置设置为对各个第三风机吸入的空气进行过滤,第三开关模块为设置在各个第三风机上的风阀;
第四通气系统222包括多个第四风机、多级过滤装置以及第四开关模块(图中为示出),第四风机的数量与第四通气口的数量相同,一一对应安装于各个第四通气口上,多级过滤装置设置为对设备间213的热空气进行过滤后通过各个第四风机排出去,第四开关模块为设置在各个第四风机上的风阀;
隔墙211上第二通气系统215上方设置有控制器221,通过在集装箱箱体中走线(图中未示出),控制器221与全部第一风机的风阀、全部第二风机的风阀、全部第三风机的风阀、全部第四风机的风阀、制冷盘管218、冷源主机217电连接;
当外部环境温度T满足T2≤T≤T1,且湿度D满足D2≤D≤D1时,则认为外部环境温度和湿度均适宜,用户手动操作控制器221,开启完全新风制冷模式,即通过手动操作控制器221,将全部第一风机的风阀均打开100%,全部第二风机的风阀均打开100%,全部第三风机的风阀均关闭,全部第四风机的风阀均打开100%,控制制冷盘管218关闭,此时,如图3所示,该数据中心系统的工作流程如下:新空气通过第一通气口被各个第一风机吸入,再经多级过滤后流入到制冷间212,制冷间212的空气经多虑过滤后被各个第二风机吸入,再通过第二通气通口输送到设备间213的冷气道A,供设备使用,冷空气在设备间213被设备吸入并加热以后形成热空气排放到热气道B,热气道B的热空气经多级过滤后被各个第四风机吸入,通过第四通气口排放到集装箱外面。整个过程冷源主机217、制冷盘管218不需要工作。
当外部环境温度T满足T>T1,或湿度D满足D>D1时,则认为外部环境温度或湿度过高,为了节能和避免带入过多的水蒸气进入到设备间,用户手动操作控制器221,开启完全制冷子系统制冷模式,即通过手动操作控制器221,将全部第一风机的风阀均关闭,全部第二风机的风阀均打开100%,全部第三风机的的风阀均打开100%,全部第四风机的风阀均关闭,控制冷源主机217和制冷盘管218开启,如图4所示,该数据中心系统的工作流程如下:冷源主机217通过管道219向制冷盘管218输送冷媒,制冷盘管218对制冷间212的空气进行制冷,制冷间212的冷空气经多虑过滤后被各个第二风机吸入,再通过第二通气通口输送到设备间213的冷气道A,供设备使用,冷空气在设备间213被设备吸入并加热以后形成热空气排放到热气道B,热气道B的热空气通过第三通气口被各个第三风机吸入,经多级过滤后回到制冷间212,在制冷盘管218的作用下被重新降温,再通过第二通气通道输送到设备间供设备使用,重新进行下一次的制冷气流循环。
当外部环境温度T满足T<T2,或湿度D满足D<D1时,则认为外部环境温度或湿度过低,用户手动操作控制器221,开启混合制冷模式,即通过手动操作控制器221,将全部第一风机的风阀均打开100%,全部第二风机的风阀均打开100%,全部第三风机的风阀均打开50%,全部第四风机的风阀均打开50%,控制冷源主机217和制冷盘管218关闭,如图5所示,该数据中心系统的工作流程如下:新空气通过第一通气口被各个第一风机吸入,再经多级过滤后流入到制冷间212,制冷间212的空气经多虑过滤后被各个第二风机吸入,再通过第二通气通口输送到设备间213的冷气道A,供设备使用,冷空气在设备间213被设备吸入并加热以后形成热空气排放到热气道B,热气道B的部分热空气通过第三通气口被各个第三风机吸入,经多级过滤后回到制冷间212,热气道B的另一部分热空气经多级过滤后通过第四通气口被各个第四风机排除集装箱之外,回送到制冷间212的热空气和从第一通气口流入的新空气混合后, 形成合适温度和湿度的气流重新再通过第二通气通口输送到设备间213供设备使用,重新进行下一次的气流循环。整个过程冷源主机217、制冷盘管218不需要工作。
本实施例划分了设备间和制冷间,提高了散热效率;采用新风与制冷盘管相互配合、相互替代的方式进行制冷,在外部环境温度和湿度适宜的时候可以完全实现新风直接制冷,不开启制冷盘管;当外部环境温度或湿度过高时,开启制冷盘管,开启热气道回风,关闭新风,进行电力制冷;当外部环境温度或湿度过低,不开启制冷盘管,部分开启热气道回风,与新风混合进行制冷。具有至少三种制冷模式,有效降低了能耗以及运营成本,同时采用多风机设计,相比单个大风机,还可以提供更均匀的气流,有更好的系统冗余可靠性,并且更容易维修维护。
以上内容是结合具体的实施方式对本实用新型所作的进一步详细说明,不能认定本实用新型的具体实施只局限于这些说明。对于本实用新型所属技术领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本实用新型的保护范围。
工业实用性
如上所述,本实用新型实施例提供的一种制冷系统及数据中心系统,具有以下有益效果:本实用新型实施例提供的制冷间设置了新风通道来采集外部环境中的新空气,当外部环境温度、湿度适宜的情况下,完全可以让制冷子系统停止工作,借助外部环境的新空气来制冷,有效利用了自然冷源,节约了电能、降低了运营成本并且环保,也降低了对制冷子系统的依赖性,当制冷子系统发生故障时,使用外部新风实现制冷,不至于影响设备间设备的正常工作。

Claims (22)

  1. 一种制冷系统,包括制冷间、第一通气系统和制冷子系统;其中,
    所述制冷间设置有通向外部新空气的至少一个第一通气道、设置为将所述制冷间的空气输送至外部设备间的至少一个第二通气道;
    所述第一通气系统包括至少一个第一风机,与所述至少一个第一通气道连接,设置为通过所述至少一个第一通气道向所述制冷间引入新空气;
    所述制冷子系统设置为对进入所述制冷间的空气进行降温。
  2. 如权利要求1所述的制冷系统,其中,所述第一通气系统位于所述制冷间。
  3. 如权利要求1所述的制冷系统,其中,所述制冷子系统位于所述制冷间;
    或者,所述制冷子系统包括第一子系统、第二子系统以及连接在所述第一子系统与第二子系统之间的管道,所述第一子系统位于所述制冷间,所述第二子系统位于所述制冷间之外,所述管道设置为所述第二子系统向所述第一子系统输送冷媒。
  4. 如权利要求1所述的制冷系统,其中,还包括第二通气系统,所述第二通气系统包括至少一个第二风机,与所述至少一个第二通气道连接,设置为将所述制冷间的空气通过所述至少一个第二通气道引入所述外部设备间。
  5. 如权利要求1所述的制冷系统,其中,所述制冷间还设置有设置为将所述外部设备间的空气输送回所述制冷间的至少一个第三通气道。
  6. 如权利要求5所述的制冷系统,其中,还包括第三通气系统,所述第三通气系统包括至少一个第三风机,与所述至少一个第三通气道连接,设置为将所述外部设备间的空气通过所述至少一个第三通气道输送回至所述制冷间。
  7. 如权利要求6所述的制冷系统,其中,所述第一通气系统还包括第一开关模块,设置为控制所述至少一个第一通气道的进气量;所述第三通气系统还包括第三开关模块,设置为控制所述至少一个第三通气道的通气量。
  8. 如权利要求7所述的制冷系统,其中,所述第一开关模块设置为控制所述至少一个第一风机的工作状态;所述第三开关模块设置为控制所述至少一个第三风机的工作状态。
  9. 如权利要求7所述的制冷系统,其中,还包括控制系统,设置为通过控制所述第一开关模块来控制所述至少一个第一通气道的进气量、通过控制所述第三开关模块控制所述至少一个第三通气道的通气量,和/或控制所述制冷子系统的工作状态。
  10. 如权利要求9所述的制冷系统,其中,还包括与所述控制系统通信的检测系统,设置为检测所述制冷间外部新空气的温度和/或湿度,所述控制系统根据所述检测系统的检测结果来进行相应控制。
  11. 一种数据中心系统,包括如权利要求1至10任一项所述的制冷系统、设备间,以及设置于所述设备间的数据中心子系统;其中,
    所述制冷系统中的制冷间与所述设备间通过所述至少一个第二通气道通气;且,
    所述制冷间与所述设备间还通过所述至少一个第三通气道通气,和/或所述设备间设置有设置为将所述设备间的空气排出至外部的至少一个第四通气道。
  12. 如权利要求11所述的数据中心系统,其中,还包括第四通气系统,所述第四通气系统包括至少一个第四风机,与所述至少一个第四通气道连接,设置为将所述设备间的空气通过所述至少一个第四通气道引向外部。
  13. 如权利要求12所述的数据中心系统,其中,所述第四通气系统位于所述设备间。
  14. 如权利要求12所述的数据中心系统,其中,所述第四通气系统还包括第四开关模块,设置为控制所述至少一个第四通气道的排气量。
  15. 如权利要求14所述的数据中心系统,其中,所述第四开关模块设置为控制所述至少一个第四风机的工作状态。
  16. 如权利要求14所述的数据中心系统,其中,所述制冷系统中的所述控制系统,还设置为通过控制所述第四开关模块来控制所述至少一个第四通气道的进气量。
  17. 如权利要求11至16任一项所述的数据中心系统,其中,所述数据中心子系统在所述设备间形成至少一个冷气道和至少一个热气道;所述至少一个第二通气道与所述至少一个冷气道相通;所述至少一个第三通气道、所述至少一个第四通气道与所述至少一个热气道相通。
  18. 如权利要求17所述的数据中心系统,其中,所述设备间设置有在冷气道和热气道之间起隔离作用的挡气板。
  19. 如权利要求17所述的数据中心系统,其中,所述设备间、制冷间通过在一个集装箱中设置隔墙划分而成。
  20. 如权利要求19所述的数据中心系统,其中,所述至少一个第二通气道、至少一个第三通气道为设置在所述隔墙上的通气孔。
  21. 如权利要求19所述的数据中心系统,其中,所述隔墙沿垂直于所述集装箱底部的方向将所述集装箱划分出所述制冷间和设备间。
  22. 如权利要求21所述的数据中心系统,其中,所述数据中心子系统包括至少一个机柜组,各机柜组中包括至少一个机柜,各机柜组沿着垂直于所述隔墙的方向排列。
PCT/CN2014/094696 2014-08-25 2014-12-23 一种制冷系统及数据中心系统 WO2015117521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420481901.2 2014-08-25
CN201420481901.2U CN204240505U (zh) 2014-08-25 2014-08-25 一种制冷系统及数据中心系统

Publications (1)

Publication Number Publication Date
WO2015117521A1 true WO2015117521A1 (zh) 2015-08-13

Family

ID=52769993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094696 WO2015117521A1 (zh) 2014-08-25 2014-12-23 一种制冷系统及数据中心系统

Country Status (2)

Country Link
CN (1) CN204240505U (zh)
WO (1) WO2015117521A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702254A (zh) * 2017-11-02 2018-02-16 郑州云海信息技术有限公司 一种带风墙单排数据中心
CN110425652A (zh) * 2019-08-23 2019-11-08 广州同方瑞风节能科技股份有限公司 一种模块化数据中心机房系统
CN112506311A (zh) * 2018-02-05 2021-03-16 刘子轩 一种带防虫防尘过滤装置的云计算机机箱
CN113163673A (zh) * 2021-03-12 2021-07-23 安徽金日晟矿业有限责任公司 一种矿井用提升机自动化监控系统
WO2022272273A1 (en) * 2021-06-22 2022-12-29 Integra Mission Critical, LLC Systems and methods for cooling in power distribution centers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299919A (zh) * 2017-06-16 2017-10-27 郑州云海信息技术有限公司 一种服务器散热降噪风扇结构及风扇故障测试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110100045A1 (en) * 2009-11-02 2011-05-05 Exaflop Llc Data Center Cooling
CN102625643A (zh) * 2012-03-27 2012-08-01 合肥通用制冷设备有限公司 数据中心冷却系统及其冷却方法
CN202694251U (zh) * 2012-07-21 2013-01-23 江苏集云信息科技有限公司 集装箱式集合型机柜淋水式空气冷却系统
EP2568793A2 (de) * 2011-09-09 2013-03-13 Weiss Klimatechnik GmbH Verfahren und Anordnung zum Klimatisieren eines Raumes
US20130098597A1 (en) * 2011-10-25 2013-04-25 Hitachi, Ltd. Air-side free cooling system and data center
WO2013150583A1 (ja) * 2012-04-02 2013-10-10 富士通株式会社 モジュール型データセンター
CN103900189A (zh) * 2012-12-27 2014-07-02 艾默生网络能源有限公司 一种机房的制冷控制方法、装置及系统
CN203722985U (zh) * 2013-12-27 2014-07-16 联方云天科技(北京)有限公司 一种集装箱式数据中心
CN103940061A (zh) * 2014-05-07 2014-07-23 深圳海悟科技有限公司 一种节能空调系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110100045A1 (en) * 2009-11-02 2011-05-05 Exaflop Llc Data Center Cooling
EP2568793A2 (de) * 2011-09-09 2013-03-13 Weiss Klimatechnik GmbH Verfahren und Anordnung zum Klimatisieren eines Raumes
US20130098597A1 (en) * 2011-10-25 2013-04-25 Hitachi, Ltd. Air-side free cooling system and data center
CN102625643A (zh) * 2012-03-27 2012-08-01 合肥通用制冷设备有限公司 数据中心冷却系统及其冷却方法
WO2013150583A1 (ja) * 2012-04-02 2013-10-10 富士通株式会社 モジュール型データセンター
CN202694251U (zh) * 2012-07-21 2013-01-23 江苏集云信息科技有限公司 集装箱式集合型机柜淋水式空气冷却系统
CN103900189A (zh) * 2012-12-27 2014-07-02 艾默生网络能源有限公司 一种机房的制冷控制方法、装置及系统
CN203722985U (zh) * 2013-12-27 2014-07-16 联方云天科技(北京)有限公司 一种集装箱式数据中心
CN103940061A (zh) * 2014-05-07 2014-07-23 深圳海悟科技有限公司 一种节能空调系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702254A (zh) * 2017-11-02 2018-02-16 郑州云海信息技术有限公司 一种带风墙单排数据中心
CN112506311A (zh) * 2018-02-05 2021-03-16 刘子轩 一种带防虫防尘过滤装置的云计算机机箱
CN112506311B (zh) * 2018-02-05 2022-12-06 佛山市辉丰电器设备有限公司 一种带防虫防尘过滤装置的云计算机机箱
CN110425652A (zh) * 2019-08-23 2019-11-08 广州同方瑞风节能科技股份有限公司 一种模块化数据中心机房系统
CN113163673A (zh) * 2021-03-12 2021-07-23 安徽金日晟矿业有限责任公司 一种矿井用提升机自动化监控系统
CN113163673B (zh) * 2021-03-12 2023-08-01 安徽金日晟矿业有限责任公司 一种矿井用提升机自动化监控系统
WO2022272273A1 (en) * 2021-06-22 2022-12-29 Integra Mission Critical, LLC Systems and methods for cooling in power distribution centers

Also Published As

Publication number Publication date
CN204240505U (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2015117521A1 (zh) 一种制冷系统及数据中心系统
CN212362205U (zh) 一种厨房空气调节系统
CN206094352U (zh) 用于机房的整机柜的冷却系统
WO2016078483A1 (zh) 一种模块化节能制冷设备
CN203797865U (zh) 数据中心绝热蒸发间接换热空气侧自然冷却系统
CN207751074U (zh) 环窗框式室内空调机
TWI549600B (zh) 機櫃式數據中心
CN104023509B (zh) 服务器机柜
CN103153027B (zh) 一种it设备高效散热冷却装置
TW201626143A (zh) 組合式數據中心及其散熱方法
CN108444040A (zh) 一种双冷源数据中心及温度控制方法
CN106555488A (zh) 一种冷却集装箱和集装箱数据中心系统
WO2022037167A1 (zh) 一种一体式空调机及机房散热系统
CN106196398A (zh) 一种用于模块化数据中心的应急通风机柜
CN103220895A (zh) 机柜系统及其排风设备
CN207885066U (zh) 一种微模块数据中心
CN104359152A (zh) 一种模块多联精密空调系统及其散热方法
CN104848452A (zh) 一种数据机房高效冷却调温调湿装置
CN113137672A (zh) 空调系统
KR100840999B1 (ko) 외기흡입장치가 구비된 코너 스탠드형 에어컨
CN110418552A (zh) 一种用于多层数据中心机房的冷却系统及冷却方法
CN105992499A (zh) 机柜式数据中心
CN107990381B (zh) 热泵式排风热回收新风机与抽油烟机一体机
CN109451706A (zh) 一种冷通道封闭式通信机房
CN215863797U (zh) 一种厨房空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881572

Country of ref document: EP

Kind code of ref document: A1