WO2015115766A1 - Voltage equalization circuit - Google Patents

Voltage equalization circuit Download PDF

Info

Publication number
WO2015115766A1
WO2015115766A1 PCT/KR2015/000821 KR2015000821W WO2015115766A1 WO 2015115766 A1 WO2015115766 A1 WO 2015115766A1 KR 2015000821 W KR2015000821 W KR 2015000821W WO 2015115766 A1 WO2015115766 A1 WO 2015115766A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
energy storage
electrical energy
storage cell
series
Prior art date
Application number
PCT/KR2015/000821
Other languages
French (fr)
Korean (ko)
Inventor
김성민
Original Assignee
킴스테크날리지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 킴스테크날리지 주식회사 filed Critical 킴스테크날리지 주식회사
Publication of WO2015115766A1 publication Critical patent/WO2015115766A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a voltage equalization circuit of an electrical energy storage device, and more particularly, to a voltage equalization circuit for performing voltage equalization between electrical energy storage cells in an electrical energy storage device configured by connecting electrical energy storage cells in series. .
  • electric energy storage cells such as secondary batteries and capacitors have a rated voltage of only a few volts, but most applications require voltages of tens to hundreds of volts. do. For this reason, recent electric energy storage devices (Electric Energy Storage Device) has been manufactured in a structure in which hundreds of electric energy storage cells are connected in series.
  • an electrical energy storage cell such as a battery or a capacitor
  • charging and discharging must be performed within an allowable operating voltage range.
  • the electrical energy storage cell operates in an area outside the permitted operating voltage range, for example, when the battery is operated in an under-voltage or over-voltage state, the life of the electrical energy storage cell is abruptly shortened or There is a risk of an accident such as an explosion or fire.
  • the electrical energy storage cells connected in series must have the same characteristics. That is, the make, model, capacity, leakage current, etc. must be the same, and even the same manufacturing date and the same lot number are required. Under these conditions, the electrical energy storage cells having the same characteristics must maintain the same characteristics and the same state of charge during operation in series connection.
  • the electrical energy storage cell is inevitable to some extent, such as a manufacturing capacity deviation.
  • the characteristic may change depending on environmental factors such as temperature deviation.
  • an electric energy storage device including a plurality of electrical energy storage cells connected in series may have a temperature deviation or an aging deviation between the electric energy storage cells depending on the position of the electric energy storage cells.
  • the characteristic deviation increases as the usage time of the electrical energy storage device increases. For this reason, it is very difficult to continuously maintain voltage equalization between electrical energy storage cells only by the electrical energy storage cells themselves.
  • FIG. 1 is a circuit diagram of a voltage equalizer using a voltage divider and an op amp according to the prior art, which is a circuit diagram disclosed in US Patent No. 5,773,159.
  • the voltage equalization method of the voltage equalizer disclosed in US Patent No. 5,773,159 shows that the input voltage and the output voltage are the same when the op amps (OA 1 ,... OA n-1 ) are used as voltage followers. It is used. That is, when the voltage divider is configured by connecting the resistors R 1 , R 2 , ..., R N having the same resistance value in series as the number of series of the electric energy storage cell, the voltage applied across each resistor is averaged.
  • the voltages of the nodes Y 1 ,..., And Y n-1 connecting voltages and resistances are integer multiples of the average voltage.
  • the goal of voltage equalization is to equalize the voltage by inputting the node voltage of the voltage divider to the op amp and connecting the op amp output to the nodes of the electrical energy storage cells of the same order since the voltage of each electric energy storage cell is an average value.
  • this method works relatively smoothly when the number of serials is small, but it is difficult to operate smoothly when the number of serials increases. For example, if six electrical energy storage cells are connected in series and 12V is applied to both ends, if a resistor divider is composed of six resistors, node 1 is 2V, node 2 is 4V, and node 3 is 6V. , Node 4 voltage is 8V, node 5 voltage is 10V.
  • the voltage of the first electrical energy storage cell is 2.5V
  • the voltage of the sixth electrical energy storage cell is 1.5V and the remaining electrical energy storage cells have an average voltage of 2V
  • the first time of the string in which the electrical energy storage cells are connected in series Node voltage is 2.5V
  • node 2 is 4.5V
  • node 3 is 6.5V
  • node 4 is 8.5V
  • node 5 is 10.5V
  • the input of OP1 is 2V, which is the voltage of node 1 of voltage divider
  • the output of OP1 is 2V and the output of OP1 is connected to node 1 of the electrical energy storage cell with voltage of 2.5V.
  • the cell is discharged through op amp 1.
  • the second electrical energy storage cell is also discharged through the second op amp.
  • the voltage of the second electrical energy storage cell is an average voltage
  • the second electrical energy storage cell is a cell that is normally equalized, but there is a problem of discharging the electrical energy storage cell by mistaken for overvoltage. This occurs in the third, fourth and fifth electrical energy storage cells. This is a problem with the method of comparing the node voltage. In other words, since the charging voltage cannot be clearly known only by the node voltage, it is difficult to expect accurate operation. As the number of series increases, the exact operation becomes more difficult.
  • FIG. 2 is a circuit diagram of another type of voltage equalization device according to the prior art, which is a circuit diagram disclosed in US Patent No. 7,342,768.
  • the voltage equalization method of the voltage equalizer disclosed in US Pat. No. 7,342,768 uses a voltage divider function of a resistor and a voltage follower of an op amp as shown in FIG. will be. That is, as shown in FIG. 2, the voltage equalizer disclosed in US Pat. No. 7,342,768 consists of a plurality of capacitors 202 coupled to multiple voltage equalization modules 204a-204e. Capacitor 202 may be connected to a power source and / or a load via connections 205a and 205b.
  • the multiple voltage equalization modules 204a to 204e are designed in a layout structure of overlapping topologies in two series as shown in FIG. 2 to form a cooperative relationship with each other.
  • the conventional voltage equalization device disclosed in the US Patent No. 7,342,768 has no problem in misunderstanding the state of the electrical energy storage cell as shown in FIG. 1 by using two series.
  • voltage equalization since voltage equalization has to be propagated sequentially through adjacent cells, when the number of series is large, voltage equalization speed is slow and voltage equalization accuracy is disadvantageous. For example, if 40V is applied to a series string in which ten electrical energy storage cells are connected in series, the average voltage is 4.9V for the first electrical energy storage cell and 3.9V for the remaining nine electrical energy storage cells.
  • There is no voltage equalization operation because the voltages of the two electrical energy storage cells are the same in the other units except the unit in which the electrical energy storage cell having the voltage of 4.0V but the voltage is 4.9V.
  • the voltage equalization is started after the energy of the electric energy storage cell with the voltage of 4.9V is propagated to the adjacent cell so that the voltage difference between the electric energy storage cells of each module is generated. Therefore, the voltage equalization rate is also slow.
  • the problem to be solved by the present invention to solve the above problems is to improve the voltage equalization precision and speed of the voltage equalization circuit and to provide a simple and inexpensive voltage equalization circuit.
  • the voltage equalization circuit of the electrical energy storage device includes a series string in which the electrical energy storage cells are connected in series; A reference voltage generator for generating a voltage equalization reference voltage; a target voltage generator for inputting the reference voltage to generate a voltage equalization target voltage; And a voltage controller to which the target voltage is input and connected to the electrical energy storage cell of the series string to equalize the voltage of the electrical energy storage cell, wherein the target voltage generator comprises: a cathode of the target electrical energy storage cell of the series string; The target voltage may be generated by adding the reference voltage to a terminal voltage or by subtracting the reference voltage from a positive terminal voltage of a target electric energy storage cell.
  • the voltage equalization circuit according to the present invention can be configured at low cost with fast voltage equalization and excellent voltage equalization accuracy with a simple structure.
  • FIG. 1 is a circuit diagram illustrating a voltage equalization method according to the related art.
  • FIG. 2 is a circuit diagram illustrating another voltage equalization method according to the related art.
  • FIG. 3 is a circuit diagram of a voltage equalization circuit according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
  • FIG. 5 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a voltage equalization circuit according to an embodiment of the present invention.
  • a circuit diagram in which four electric energy storage cells C1, C2, C3, and C4, such as a secondary battery or an ultracapacitor, is connected in series is illustrated. do.
  • This is merely to simplify the circuit configuration to facilitate the understanding of the description, the present invention is not limited thereto. Accordingly, it is assumed that each of the following target voltage generators and voltage controllers included in the voltage equalization circuit according to the embodiment of the present invention is configured as three.
  • a voltage equalization circuit may include three first to third voltage equalization target voltage generators OP1V, OP2V, and OP3V that generate a voltage equalization target voltage, and the voltage equalization target voltage.
  • the reference voltage Vref input to the positive input terminal of each of the voltage equalization target voltage generators OP1V, OP2V, and OP3V is a voltage for voltage equalization operation of each of the electrical energy storage cells C1, C2, C3, and C4. to be.
  • the reference voltage Vref may be an average voltage of the electrical energy storage cells C1, C2, C3, and C4 connected in series. In some cases, the average voltage may be a processed voltage.
  • the reference voltage (Vref) is the average voltage
  • the reference voltage (Vref) is a differential dividing the total voltage connected in series by a voltage divider or an electrical energy storage cell in series with a resistor having the same resistance value in series Can be generated using means such as amplifiers.
  • the average voltage of the electrical energy storage cells (C1, C2, C3, C4) as a reference voltage.
  • Each of the voltage equalization target voltage generators OP1V, OP2V, and OP3V may be implemented using a summing amplifier using an op amp having a gain of 1.
  • the voltage equalization target voltage is generated by adding the reference voltage Vref to the cathode voltages VC1, VC2, and VC3 of the electrical energy storage cells C1, C2, C3, and C4 that are to be voltage equalized.
  • the first voltage equalization target voltage generator OP1V generates the target voltage VC1 + Vref plus the negative voltage VC1 of the electrical energy storage cell C1 and the reference voltage Vref, and the second voltage equalization target voltage.
  • the generator OP2V generates the target voltage VC2 + Vref plus the cathode voltage VC2 and the reference voltage Vref of the electrical energy storage cell C2.
  • the third voltage equalization target voltage generator OP3V generates the target voltage VC3 + Vref.
  • the voltage equalization target voltage may be generated by subtracting the reference voltage from the anode voltage of the electrical energy storage cells C1, C2, C3, and C4 that are the voltage equalization targets. In this case, a differential amplifier circuit is used.
  • voltage equalization may be performed on the node voltage of the series string of the electrical energy storage cells, not the charging voltage of the electrical energy storage cells C1, C2, C3, and C4.
  • Simple voltage controllers O1P, OP2P, OP3P
  • Op amps can be used for voltage control.
  • the voltage controllers OP1P, OP2P, and OP3P function as voltage followers of the op amp, and feedback resistors Rf for feeding back the output terminals of the voltage controllers OP1P, OP2P, and OP3P to the negative input terminal.
  • the load resistors RL connected to the outputs of the voltage controllers OP1P, OP2P, and OP3P may be omitted as necessary.
  • the feedback configuration of the voltage controllers OP1P, OP2P, and OP3P is connected to the negative input terminal of the voltage controllers OP1P, OP2P, and OP3P. Accordingly, a node formed between the op amp output terminal and the load resistor RL may be connected to the negative input terminal of the voltage controllers OP1P, OP2P, and OP3P.
  • the reference voltage is added (subtracted in the case of the positive voltage) to the negative electrode (or positive voltage) of the target electric energy storage cell to generate a voltage equalization target voltage to generate the voltage equalization target voltage. It is possible to exclude the influence of the state of charge of the electrical energy storage cell other than the state of charge. By doing so, it is possible to accurately measure the state of charge of the target electrical energy storage cell to achieve accurate voltage equalization through charge or discharge according to the state of charge.
  • the voltage equalization method according to an embodiment of the present invention proceeds simultaneously in the entire electrical energy storage cells connected in series, the voltage equalization is faster than the sequential progress according to the prior art of FIG. 2. Therefore, even if the number of series increases, it is possible to achieve voltage equalization more accurately and quickly than the conventional technique by a simple method.
  • FIG. 3 describes an example in which a voltage controller for performing voltage equalization of an electric energy storage cell is implemented as an op amp.
  • a voltage controller for performing voltage equalization of an electric energy storage cell is implemented as an op amp.
  • the current capable of charging and discharging using the op amp may be small, when the capacity of the electrical energy storage cell is large, the voltage equalization speed may be lowered.
  • the op amp is used as the target voltage generator OP1V to OP3V and the voltage controller OP1P to OP3P, as shown in FIG. 3, the output voltage of the general op amp is about 1 to 2 V lower than the op amp input power supply voltage. Therefore, it is preferable to use a rail-to-rail type op amp that can increase the output voltage to the op amp input power supply voltage.
  • FIG. 4 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
  • the voltage equalization circuit configures a current amplifier 40 to be applied to an output terminal of each of the voltage controllers OP1P, OP2P, and OP3P illustrated in FIG. 3.
  • a current amplifier 40 to be applied to an output terminal of each of the voltage controllers OP1P, OP2P, and OP3P illustrated in FIG. 3.
  • the current amplifier 40 has two transistors Q1 and Q2 connected in series between Vcc and ground and the output terminals of the third voltage controller OP3P. It includes two resistors (R1, R2) respectively connected to the input terminal (base terminal) of the.
  • the output node 42 of this current amplifier 40 is connected to the series string node 44 which connects the electrical energy storage cell C3 and the electrical energy storage cell C4 in series.
  • the negative input terminal of the third voltage controller OP3P is connected to the output node 42 or 44 of the current amplifier 40 to form a feedback line. In this way, by configuring the current amplifier 40 at the output terminal of each of the voltage controllers OP1P, OP2P, and OP3P, it is possible to increase the current that can be applied.
  • FIG. 5 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
  • the voltage equalization circuit performs voltage equalization by configuring one transistor Tn at an output terminal of the voltage controller OPnP unlike other embodiments of FIG. 4. .
  • the output terminal of the voltage controller OPnP is connected to the transistor Tn base, and the emitter of the transistor Tn and the anode terminal of the electrical energy storage cell Cn have a load resistance ( And a feedback line electrically connected by RL, the emitter of transistor Tn being connected to the negative input of the voltage controller OPnP.
  • the reference voltage Vref the input of the voltage equalization target voltage generator OPnV
  • a voltage difference equal to dV is generated across the load resistance RL even after voltage equalization and a corresponding current is applied.
  • the discharge through the voltage controller OPnP is stopped.
  • the voltage equalization operation is similar to the passive method in which a resistor is connected across the electrical energy storage cell.
  • the smaller the resistance the greater the voltage equalization effect, but the smaller the resistance, the leakage current increases.
  • the voltage of the electrical energy storage cell Cn is smaller than the average voltage, the discharge operation is stopped. . Therefore, the leakage current does not increase significantly even with a small resistor. For example, if a resistance of 50 Ohm is connected in parallel to an electric energy storage cell with a voltage of 2.5V, the current flowing through the resistor is 50mA.
  • the average voltage is 2.5V and the dV is 0.05V
  • the load resistance RL is 50 Ohm
  • the current flowing through the load resistor RL is only 1mA.
  • the load resistance RL When the load resistance RL is 1 Ohm, the current flowing through the load resistor RL is 50 mA. 5 operates like the passive method, but the voltage equalization rate is much faster than the passive method, the voltage equalization accuracy is high, and the leakage current through the resistor is very small.
  • the load resistor RL is connected in parallel to the electrical energy storage cell Cn, and the voltage controller OPnP is connected in series to the load resistor RL, and the lower limit voltage for stopping the voltage equalization operation.
  • Passive voltage equalization method with a lower limit voltage is controlled by the same reference voltage as the average voltage.
  • FIG. 3 includes four electrical energy storage cells, and the voltage of the fourth electrical energy storage cell (C4) is the highest, and the voltages of the remaining three electrical energy storage cells except the electrical energy storage cell # 4. A case where the controller OPnP is connected will be described.
  • the remaining electrical energy storage cells except for the fourth electrical energy storage cell reach voltage equalization, and the four electrical energy storage cells naturally reach voltage equalization.
  • the voltages of the remaining storage cells except for the fourth electrical energy storage cell are slightly different from the theoretical values due to the offset or resistance deviation of the op amp. The voltage will deviate significantly from the target value. It is difficult to correct this because the voltage controller is not connected to the 4th electrical energy storage cell. Since the positive voltage of the 4th electrical energy storage cell has a fixed value, in order to connect the voltage controller to the 4th electrical energy storage cell, the target voltage is generated by subtracting the reference voltage from the positive voltage of the 4th electrical energy storage cell. Can be connected to the cathode of No.
  • the voltage controller of the 3rd electrical energy storage cell and the voltage controller of the 4th electrical energy storage cell are connected to the same point, and the voltages of the two voltage controllers are different from each other due to offset or resistance error. Difficult to do
  • FIG. 6 is a view for explaining a voltage equalization circuit according to another embodiment of the present invention
  • Figure 6a is a view showing the configuration of a controller for adjusting the reference voltage according to an embodiment of the present invention
  • Figure 6b is a view A circuit diagram of a voltage equalization circuit using a reference voltage regulated by the controller shown in 6a.
  • FIG. 6B illustrates that in the embodiment of FIG. 3, the anode voltage V + C3 of the third electrical energy storage cell C3 is equal to the average voltage (V + C4-V - C1) at the total voltage (V + C4). / 4) includes a controller as shown in Figure 6a to adjust the reference voltage to be equal to the subtracted voltage.
  • the error caused by offset or resistance error in the target voltage generator and the voltage controller in the above-described embodiment is offset by slightly adjusting the reference voltage Vref. By doing so, it is possible to prevent the voltage error from accumulating in the fourth electrical energy storage cell C4.
  • FIG. 6 illustrates an example in which the voltage controller is not installed in the electrical energy storage cell positioned at the highest voltage, even when the voltage controller is not installed in the lowest or middle portion. Can be prevented.
  • the present invention provides a voltage equalization method between electrical energy storage cells in an electrical energy storage device in which electrical energy storage cells are connected in series.
  • the electrical energy storage cell is an electric double layer capacitor, such as an electric double layer capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A voltage equalization circuit is disclosed. This circuit comprises: a series-string configured to include electronic energy storage cells connected in series; a reference voltage generator which generates a voltage equalization reference voltage; a target voltage generator which generates a voltage equalization target voltage, and to which the reference voltage is input; and a voltage controller, to which the target voltage is input, which is connected to the electronic energy storage cell of the series-string, and which equalizes a voltage of the electronic energy storage cell. Herein, the target voltage generator generates the target voltage by adding the reference voltage to a negative terminal voltage of an objective electronic energy storage cell of the series-string or by subtracting the reference voltage from a positive terminal voltage of the objective electronic energy storage cell.

Description

전압 균등화 회로Voltage equalization circuit
본 발명은 전기에너지 저장장치의 전압 균등화 회로에 관한 것으로서, 구체적으로는 전기에너지 저장셀이 직렬로 연결되어 구성된 전기에너지 저장장치에서 전기에너지 저장셀 사이의 전압 균등화를 수행하는 전압 균등화 회로에 관한 것이다.The present invention relates to a voltage equalization circuit of an electrical energy storage device, and more particularly, to a voltage equalization circuit for performing voltage equalization between electrical energy storage cells in an electrical energy storage device configured by connecting electrical energy storage cells in series. .
일반적으로 이차전지(Secondary Battery)나 캐패시터(Capacitor) 같은 전기에너지 저장셀(Electric Energy Storage Cell)은 정격전압(Rated Voltage)이 수 볼트에 불과하지만 대부분의 응용분야에서는 수십 내지 수백 볼트의 전압이 요구된다. 이러한 이유에서, 최근의 전기에너지 저장장치(Electric Energy Storage Device)는 수백 개의 전기에너지 저장셀을 직렬로 연결된 구조로 제조되고 있다.In general, electric energy storage cells such as secondary batteries and capacitors have a rated voltage of only a few volts, but most applications require voltages of tens to hundreds of volts. do. For this reason, recent electric energy storage devices (Electric Energy Storage Device) has been manufactured in a structure in which hundreds of electric energy storage cells are connected in series.
전지나 캐패시터 같은 전기에너지 저장셀이 정상적으로 동작하기 위해서는 허용된 동작전압영역 내에서 충전과 방전이 이루어져야 한다. 허용된 동작전압영역을 벗어난 영역에서 전기에너지 저장셀이 동작하는 경우, 예컨대, 저전압(Under-Voltage) 또는 과전압(Over-Voltage) 상태에서 동작하는 경우에는 전기에너지 저장셀의 수명이 급격하게 단축되거나 폭발이나 화재 같은 사고 발생 위험이 있다.In order for an electrical energy storage cell such as a battery or a capacitor to operate normally, charging and discharging must be performed within an allowable operating voltage range. When the electrical energy storage cell operates in an area outside the permitted operating voltage range, for example, when the battery is operated in an under-voltage or over-voltage state, the life of the electrical energy storage cell is abruptly shortened or There is a risk of an accident such as an explosion or fire.
전기에너지 저장장치의 수명을 증대시키고 안전성을 제고하기 위해서는 기본적으로 전기에너지 저장셀 차원에서 전기에너지 저장셀 사이의 전압을 균등하게 유지시키는 것이 필요하다.In order to increase the lifespan and increase the safety of the electric energy storage device, it is necessary to maintain the voltage between the electric energy storage cells evenly at the electric energy storage cell level.
전기에너지 저장셀 차원에서 직렬로 연결된 전기에너지 저장셀 사이의 전압을 균등하게 유지시키기 위해서는 먼저 직렬로 연결되는 전기에너지 저장셀이 동일한 특성을 지녀야 한다. 즉 제조회사, 모델, 용량, 누설전류 등이 동일해야 하며, 심지어는 동일한 제조일자 및 동일한 로트 번호(lot number)까지도 요구된다. 이러한 조건에서 동일한 특성을 갖는 전기에너지 저장셀들은 직렬 연결된 상태에서 동작 중에 동일한 특성을 유지하고 동일한 충전상태를 유지해야 한다.In order to maintain an equal voltage between the electrical energy storage cells connected in series at the dimension of the electrical energy storage cell, the electrical energy storage cells connected in series must have the same characteristics. That is, the make, model, capacity, leakage current, etc. must be the same, and even the same manufacturing date and the same lot number are required. Under these conditions, the electrical energy storage cells having the same characteristics must maintain the same characteristics and the same state of charge during operation in series connection.
그러나 전기에너지 저장셀은 제조상의 용량편차와 같은 어느 정도의 특성 편차는 불가피하다. 이러한 특성편차 외에도 환경적인 요인 예컨대, 온도편차와 같은 요인 등에 따라 특성이 변할 수 있다. 이와 같이, 직렬 연결된 다수의 전기에너지 저장셀들로 이루어진 전기에너지 저장장치는 전기에너지 저장셀의 위치에 따라 온도편차 또는 전기에너지 저장셀 사이의 에이징(aging) 편차가 존재할 수 있으므로 초기에는 특성편차가 작더라도 전기에너지 저장장치의 사용시간이 증가함에 따라 특성편차가 증가한다. 이러한 이유로, 전기에너지 저장셀 자체만으로 전기에너지 저장셀 사이의 전압 균등화를 지속적으로 유지하는 것은 매우 어렵다.However, the electrical energy storage cell is inevitable to some extent, such as a manufacturing capacity deviation. In addition to the characteristic deviation, the characteristic may change depending on environmental factors such as temperature deviation. As such, an electric energy storage device including a plurality of electrical energy storage cells connected in series may have a temperature deviation or an aging deviation between the electric energy storage cells depending on the position of the electric energy storage cells. Although small, the characteristic deviation increases as the usage time of the electrical energy storage device increases. For this reason, it is very difficult to continuously maintain voltage equalization between electrical energy storage cells only by the electrical energy storage cells themselves.
이러한 문제점을 해결하기 위한 전기에너지 저장셀 사이의 전압 균등화를 위한 다양한 장치들이 개발된 바 있다.Various devices have been developed for voltage equalization between electrical energy storage cells to solve this problem.
도 1은 종래의 기술에 따른 전압분배기와 오피앰프를 사용한 전압 균등화 장치의 회로도로서, 미국등록특허 5,773,159에 개시된 회로도이다.1 is a circuit diagram of a voltage equalizer using a voltage divider and an op amp according to the prior art, which is a circuit diagram disclosed in US Patent No. 5,773,159.
도 1을 참조하면, 이 미국등록특허 5,773,159에 개시된 전압 균등화 장치의 전압 균등화 방법은 오피앰프(OA1, ...OAn-1)를 전압팔로워로 사용할 때 입력전압과 출력전압이 같다는 점을 이용한 것이다. 즉, 저항값이 동일한 저항들(R1, R2, ..., RN)을 전기에너지 저장셀의 직렬 수만큼 직렬로 연결하여 전압분배기를 구성할 때 각 저항 양단에 인가되는 전압은 평균전압이고 저항을 연결하는 노드(Y1,..., Yn-1)의 전압은 평균전압의 정수배가 된다. 전압 균등화의 목표는 각 전기에너지 저장셀의 전압이 평균값이므로 전압분배기의 노드전압을 오피앰프에 입력시키고 오피앰프 출력을 동일한 순번의 전기에너지 저장셀 노드에 연결하여 전압을 균등화시키는 방법이다. 그러나 이러한 방법은 직렬수가 작을 경우에는 비교적 원활하게 동작하지만 직렬수가 증가하면 원활한 동작이 어렵다. 예를 들어 6개의 전기에너지 저장셀이 직렬로 연결되고 양단에 12V가 인가된 경우 6개의 저항으로 저항분배기를 구성하면 1번 노드전압은 2V, 2번 노드전압은 4V, 3번 노드전압은 6V, 4번 노드전압은 8V, 5번 노드전압은 10V이다. 만약 1번 전기에너지 저장셀의 전압이 2.5V이고 6번 전기에너지 저장셀의 전압이 1.5V이고 나머지 전기에너지 저장셀은 평균전압인 2V인 경우, 전기에너지 저장셀이 직렬로 연결된 스트링의 1번 노드전압은 2.5V, 2번 노드전압은 4.5V, 3번 노드전압은 6.5V, 4번 노드전압은 8.5V, 5번 노드전압은 10.5V이다. 1번 오피앰프의 입력은 전압분배기 1번 노드 전압인 2V이므로 1번 오피앰프 출력은 2V이며 1번 오피앰프 출력이 전압이 2.5V인 전기에너지 저장셀 1번 노드에 연결되므로 1번 전기에너지 저장셀은 1번 오피앰프를 통해 방전된다. 한편 2번 오피앰프의 경우 대응되는 입력전압은 2번 노드전압 4V이며 따라서 2번 오피앰프의 출력전압은 4V이고 출력은 노드전압이 4.5V인 전기에너지 저장셀의 2번 노드에 연결된다. 따라서 2번 전기에너지 저장셀도 2번 오피앰프를 통해 방전된다. 그러나 2번 전기에너지 저장셀의 전압은 평균전압이므로 2번 전기에너지 저장셀은 정상적으로 전압 균등화가 이루어진 셀이지만 과전압으로 오인하여 전기에너지 저장셀을 방전시키는 문제가 발생된다. 이러한 점은 3번, 4번, 5번 전기에너지 저장셀에서도 발생하게 된다. 이러한 점이 노드전압을 비교하는 방법이 갖는 문제점이다. 즉, 노드전압 만으로는 충전전압을 명확하게 알 수 없으므로 정확한 동작을 기대하기 어렵다. 직렬수가 증가할수록 정확한 동작이 어렵다. Referring to FIG. 1, the voltage equalization method of the voltage equalizer disclosed in US Patent No. 5,773,159 shows that the input voltage and the output voltage are the same when the op amps (OA 1 ,... OA n-1 ) are used as voltage followers. It is used. That is, when the voltage divider is configured by connecting the resistors R 1 , R 2 , ..., R N having the same resistance value in series as the number of series of the electric energy storage cell, the voltage applied across each resistor is averaged. The voltages of the nodes Y 1 ,..., And Y n-1 connecting voltages and resistances are integer multiples of the average voltage. The goal of voltage equalization is to equalize the voltage by inputting the node voltage of the voltage divider to the op amp and connecting the op amp output to the nodes of the electrical energy storage cells of the same order since the voltage of each electric energy storage cell is an average value. However, this method works relatively smoothly when the number of serials is small, but it is difficult to operate smoothly when the number of serials increases. For example, if six electrical energy storage cells are connected in series and 12V is applied to both ends, if a resistor divider is composed of six resistors, node 1 is 2V, node 2 is 4V, and node 3 is 6V. , Node 4 voltage is 8V, node 5 voltage is 10V. If the voltage of the first electrical energy storage cell is 2.5V, the voltage of the sixth electrical energy storage cell is 1.5V and the remaining electrical energy storage cells have an average voltage of 2V, the first time of the string in which the electrical energy storage cells are connected in series Node voltage is 2.5V, node 2 is 4.5V, node 3 is 6.5V, node 4 is 8.5V, node 5 is 10.5V. Since the input of OP1 is 2V, which is the voltage of node 1 of voltage divider, the output of OP1 is 2V and the output of OP1 is connected to node 1 of the electrical energy storage cell with voltage of 2.5V. The cell is discharged through op amp 1. On the other hand, in the case of the second op amp, the corresponding input voltage is the node voltage of 4 V, and thus the output voltage of the second op amp is 4 V and the output is connected to the second node of the electric energy storage cell having the node voltage of 4.5 V. Therefore, the second electrical energy storage cell is also discharged through the second op amp. However, since the voltage of the second electrical energy storage cell is an average voltage, the second electrical energy storage cell is a cell that is normally equalized, but there is a problem of discharging the electrical energy storage cell by mistaken for overvoltage. This occurs in the third, fourth and fifth electrical energy storage cells. This is a problem with the method of comparing the node voltage. In other words, since the charging voltage cannot be clearly known only by the node voltage, it is difficult to expect accurate operation. As the number of series increases, the exact operation becomes more difficult.
도 2는 종래의 기술에 따른 다른 형태의 전압 균등화 장치의 회로도로서, 미국등록특허 7,342,768에 개시된 회로도이다.2 is a circuit diagram of another type of voltage equalization device according to the prior art, which is a circuit diagram disclosed in US Patent No. 7,342,768.
도 2를 참조하면, 미국등록특허 7,342,768에 개시된 전압 균등화 장치의 전압 균등화 방법은 도 1과 같이 저항을 이용한 전압분배기와 오피앰프의 전압팔로워 기능을 이용한 것이지만 2직렬씩 중첩시켜 다중 전압 균등화 모듈로 구성한 것이다. 즉, 도 2에 도시된 바와 같이, 미국등록특허 7,342,768에 개시된 전압 균등화 장치는 다중 전압 균등화 모듈(204a ~ 204e)에 결합된 다수의 커패시터(202)로 구성된다. 커패시터(202)는 커넥션(205a, 205b)를 통하여 전원 그리고/또는 부하에 연결될 수 있다. 다중 전압 균등화 모듈(204a ~ 204e)은 서로 협력 관계를 형성하도록 도 2에 나타난 바와 같이 2직렬씩 중첩 토폴로지의 배치구조로 설계된다. 이러한 미국등록특허 7,342,768에 개시된 종래의 전압 균등화 장치는 2직렬을 사용함에 따라 도 1과 같은 전기에너지 저장셀의 상태를 오인하는 문제점은 없다. 그러나, 전압 균등화가 인접셀을 통해 순차적으로 전파되어야 하므로 직렬수가 많은 경우 전압 균등화 속도가 느리고 전압 균등화 정밀도 측면에서도 단점을 지닌다. 예를 들어 10개의 전기에너지 저장셀이 직렬로 연결된 직렬스트링에 40V가 인가된 경우 1번 전기에너지 저장셀의 전압이 4.9V이고 나머지 9개 전기에너지 저장셀의 전압이 3.9V인 경우 평균전압은 4.0V이지만 전압이 4.9V인 전기에너지 저장셀이 위치한 유닛을 제외한 다른 유닛에서는 2개의 전기에너지 저장셀의 전압이 동일하므로 전압 균등화 동작이 없다. 전압이 4.9V인 전기에너지 저장셀의 에너지가 인접셀로 전파되어 비로소 각 모듈의 전기에너지 저장셀 사이의 전압차가 발생된 이후에 전압 균등화가 시작된다. 따라서 전압 균등화 속도 또한 느리다.Referring to FIG. 2, the voltage equalization method of the voltage equalizer disclosed in US Pat. No. 7,342,768 uses a voltage divider function of a resistor and a voltage follower of an op amp as shown in FIG. will be. That is, as shown in FIG. 2, the voltage equalizer disclosed in US Pat. No. 7,342,768 consists of a plurality of capacitors 202 coupled to multiple voltage equalization modules 204a-204e. Capacitor 202 may be connected to a power source and / or a load via connections 205a and 205b. The multiple voltage equalization modules 204a to 204e are designed in a layout structure of overlapping topologies in two series as shown in FIG. 2 to form a cooperative relationship with each other. The conventional voltage equalization device disclosed in the US Patent No. 7,342,768 has no problem in misunderstanding the state of the electrical energy storage cell as shown in FIG. 1 by using two series. However, since voltage equalization has to be propagated sequentially through adjacent cells, when the number of series is large, voltage equalization speed is slow and voltage equalization accuracy is disadvantageous. For example, if 40V is applied to a series string in which ten electrical energy storage cells are connected in series, the average voltage is 4.9V for the first electrical energy storage cell and 3.9V for the remaining nine electrical energy storage cells. There is no voltage equalization operation because the voltages of the two electrical energy storage cells are the same in the other units except the unit in which the electrical energy storage cell having the voltage of 4.0V but the voltage is 4.9V. The voltage equalization is started after the energy of the electric energy storage cell with the voltage of 4.9V is propagated to the adjacent cell so that the voltage difference between the electric energy storage cells of each module is generated. Therefore, the voltage equalization rate is also slow.
이와 같이, 전압분배기와 오피앰프를 사용하는 종래의 전압 균등화 방법은 구조적인 단순함에 따라 많은 변형된 형태가 개발되고 있지만 위에서 언급한 문제점들은 여전하다.As described above, in the conventional voltage equalization method using a voltage divider and an op amp, many modified forms have been developed due to the structural simplicity, but the above-mentioned problems remain.
전술한 문제점을 해결하기 위한, 본 발명이 해결하고자 하는 과제는 전압 균등화 회로의 전압 균등화 정밀도와 속도를 향상시키고 또한 단순하고 저렴한 전압 균등화 회로를 제공하는 것이다.The problem to be solved by the present invention to solve the above problems is to improve the voltage equalization precision and speed of the voltage equalization circuit and to provide a simple and inexpensive voltage equalization circuit.
이차전지나 캐패시터 같은 전기에너지 저장셀이 직렬로 연결되어 있는 직렬스트링으로 구성된 전기에너지 저장장치에서 전술한 과제를 해결하기 위하여,In order to solve the above-mentioned problems in an electric energy storage device composed of a series string in which an electric energy storage cell such as a secondary battery or a capacitor is connected in series,
본 발명에 따른 전기에너지 저장장치의 전압 균등화 회로는, 전기에너지 저장셀이 직렬로 연결되어 구성되는 직렬스트링; 전압 균등화 기준전압을 생성시키는 기준전압 생성기 상기 기준전압이 입력되어 전압 균등화 목표전압을 생성하는 목표전압 생성기; 및 상기 목표전압이 입력되고 상기 직렬스트링의 전기에너지 저장셀에 연결되어 전기에너지 저장셀의 전압을 균등화시키는 전압제어기를 포함하며, 상기 목표전압 생성기는, 상기 직렬스트링의 대상 전기에너지 저장셀의 음극단자 전압에 상기 기준전압을 가산하거나 대상 전기에너지 저장셀의 양극단자 전압으로부터 상기 기준전압을 감산하여 상기 목표전압을 생성하는 것을 특징으로 한다.The voltage equalization circuit of the electrical energy storage device according to the present invention includes a series string in which the electrical energy storage cells are connected in series; A reference voltage generator for generating a voltage equalization reference voltage; a target voltage generator for inputting the reference voltage to generate a voltage equalization target voltage; And a voltage controller to which the target voltage is input and connected to the electrical energy storage cell of the series string to equalize the voltage of the electrical energy storage cell, wherein the target voltage generator comprises: a cathode of the target electrical energy storage cell of the series string; The target voltage may be generated by adding the reference voltage to a terminal voltage or by subtracting the reference voltage from a positive terminal voltage of a target electric energy storage cell.
본 발명에 의한 전압 균등화 회로는, 단순한 구조로 신속한 전압 균등화와 우수한 전압 균등화 정밀도를 저렴하게 구성할 수 있다.The voltage equalization circuit according to the present invention can be configured at low cost with fast voltage equalization and excellent voltage equalization accuracy with a simple structure.
도 1은 종래의 기술에 따른 전압 균등화 방법을 설명하기 위한 회로도이다.1 is a circuit diagram illustrating a voltage equalization method according to the related art.
도 2는 종래의 기술에 따른 다른 전압 균등화 방법을 설명하기 위한 회로도이다.2 is a circuit diagram illustrating another voltage equalization method according to the related art.
도 3은 본 발명의 일 실시 예에 따른 전압 균등화 회로의 회로도이다.3 is a circuit diagram of a voltage equalization circuit according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시 예에 따른 전압 균등화 회로의 회로도이다.4 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시 예에 따른 전압 균등화 회로의 회로도이다.5 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
도 6은 본 발명의 또 다른 실시 예에 따른 전압 균등화 회로의 회로도이다.6 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 전압 균등화 회로의 회로도로서, 도 3에서는, 이차전지나 울트라 캐패시터와 같은 4개의 전기에너지 저장셀(C1, C2, C3, C4)이 직렬로 연결된 회로도가 예시된다. 이는 설명의 이해를 돕기 위해, 회로 구성을 간략화한 것일 뿐, 본 발명이 이에 한정되는 것은 아니다. 이에 따라, 본 발명의 일 실시 예에 따른 전압 균등화 회로에 포함되는 아래의 목표 전압 생성기 및 전압 제어기는 각각 3개로 구성된 것으로 가정한다.FIG. 3 is a circuit diagram of a voltage equalization circuit according to an embodiment of the present invention. In FIG. 3, a circuit diagram in which four electric energy storage cells C1, C2, C3, and C4, such as a secondary battery or an ultracapacitor, is connected in series is illustrated. do. This is merely to simplify the circuit configuration to facilitate the understanding of the description, the present invention is not limited thereto. Accordingly, it is assumed that each of the following target voltage generators and voltage controllers included in the voltage equalization circuit according to the embodiment of the present invention is configured as three.
도 3을 참조하면, 본 발명의 일 실시 예에 따른 전압 균등화 회로는 전압 균등화 목표전압을 생성하는 3개의 제1 내지 제3 전압 균등화 목표전압 생성기(OP1V, OP2V, OP3V), 상기 전압 균등화 목표전압의 입력에 따라 전기에너지 저장셀(C1, C2, C3, C4)의 전압 균등화를 수행하는 3개의 제1 내지 제3 전압 제어기(OP1P, OP2P, OP3P)를 포함한다.Referring to FIG. 3, a voltage equalization circuit according to an embodiment of the present invention may include three first to third voltage equalization target voltage generators OP1V, OP2V, and OP3V that generate a voltage equalization target voltage, and the voltage equalization target voltage. Three first to third voltage controllers OP1P, OP2P, and OP3P for performing voltage equalization of the electrical energy storage cells C1, C2, C3, and C4 according to the input of the control circuit.
각 전압 균등화 목표전압 생성기(OP1V, OP2V, OP3V)의 양(+)의 입력단으로 입력되는 기준전압(Vref)은 각 전기에너지 저장셀(C1, C2, C3, C4)의 전압 균등화 동작을 위한 전압이다. 상기 기준전압(Vref)은 직렬로 연결된 전기에너지 저장셀(C1, C2, C3, C4)의 평균전압일 수 있다. 경우에 따라 평균전압을 가공한 전압일수도 있다. 여기서, 상기 기준전압(Vref)이 평균전압인 경우, 상기 기준전압(Vref)은 저항값이 동일한 저항을 직렬로 연결한 전압분배기나 전기에너지 저장셀이 직렬로 연결된 전체 전압을 직렬수로 나누는 차동 증폭기와 같은 수단을 이용하여 생성할 수 있다. 본 실시 예에서는, 전기에너지 저장셀(C1, C2, C3, C4)의 평균전압을 기준전압으로 가정한다. The reference voltage Vref input to the positive input terminal of each of the voltage equalization target voltage generators OP1V, OP2V, and OP3V is a voltage for voltage equalization operation of each of the electrical energy storage cells C1, C2, C3, and C4. to be. The reference voltage Vref may be an average voltage of the electrical energy storage cells C1, C2, C3, and C4 connected in series. In some cases, the average voltage may be a processed voltage. Here, when the reference voltage (Vref) is the average voltage, the reference voltage (Vref) is a differential dividing the total voltage connected in series by a voltage divider or an electrical energy storage cell in series with a resistor having the same resistance value in series Can be generated using means such as amplifiers. In this embodiment, it is assumed that the average voltage of the electrical energy storage cells (C1, C2, C3, C4) as a reference voltage.
각 전압 균등화 목표전압 생성기(OP1V, OP2V, OP3V)는 게인(gain)이 1인 오피 앰프를 사용한 더하기 회로(Summing Amplifier)를 사용하여 구현될 수 있다. 전압 균등화 목표전압은 전압 균등화 대상인 각 전기에너지 저장셀(C1, C2, C3, C4)의 음극전압(VC1, VC2, VC3)에 기준전압(Vref)을 더한 값으로 생성된다. 예컨대, 제1 전압 균등화 목표전압 생성기(OP1V)는 전기에너지 저장셀(C1)의 음극 전압(VC1)과 기준전압(Vref) 더한 목표전압(VC1+Vref)을 생성하고, 제2 전압 균등화 목표전압 생성기(OP2V)는 전기에너지 저장셀(C2)의 음극 전압(VC2)과 기준전압(Vref) 더한 목표전압(VC2+Vref)을 생성한다. 마찬가지로, 제3 전압 균등화 목표전압 생성기(OP3V)는 목표전압(VC3+Vref)을 생성한다. 물론 전압 균등화 대상인 전기에너지 저장셀(C1, C2, C3, C4)의 양극전압으로부터 기준전압을 뺀 값으로 전압 균등화 목표전압이 생성될 수도 있다. 이 경우에는 차동 증폭 회로가 사용된다.Each of the voltage equalization target voltage generators OP1V, OP2V, and OP3V may be implemented using a summing amplifier using an op amp having a gain of 1. The voltage equalization target voltage is generated by adding the reference voltage Vref to the cathode voltages VC1, VC2, and VC3 of the electrical energy storage cells C1, C2, C3, and C4 that are to be voltage equalized. For example, the first voltage equalization target voltage generator OP1V generates the target voltage VC1 + Vref plus the negative voltage VC1 of the electrical energy storage cell C1 and the reference voltage Vref, and the second voltage equalization target voltage. The generator OP2V generates the target voltage VC2 + Vref plus the cathode voltage VC2 and the reference voltage Vref of the electrical energy storage cell C2. Similarly, the third voltage equalization target voltage generator OP3V generates the target voltage VC3 + Vref. Of course, the voltage equalization target voltage may be generated by subtracting the reference voltage from the anode voltage of the electrical energy storage cells C1, C2, C3, and C4 that are the voltage equalization targets. In this case, a differential amplifier circuit is used.
상기와 같이 전압 균등화 목표전압을 생성하면, 전기에너지 저장셀(C1, C2, C3, C4)의 충전전압이 아닌 전기에너지 저장셀의 직렬스트링의 노드전압에 대해 전압 균등화를 수행할 수 있기 때문에, 전압제어를 위해 오피앰프와 같은 간단한 전압 제어기(OP1P, OP2P, OP3P)를 사용할 수 있다.When the voltage equalization target voltage is generated as described above, voltage equalization may be performed on the node voltage of the series string of the electrical energy storage cells, not the charging voltage of the electrical energy storage cells C1, C2, C3, and C4. Simple voltage controllers (OP1P, OP2P, OP3P) such as op amps can be used for voltage control.
전압 제어기(OP1P, OP2P, OP3P)는 오피앰프의 전압팔로워(Voltage Follower)로서 기능하며, 각 전압 제어기(OP1P, OP2P, OP3P)의 출력단을 음(-)의 입력단으로 피드백시키는 피드백 저항(Rf), 각 전압 제어기(OP1P, OP2P, OP3P)의 출력에 연결된 로드저항(RL)은 필요에 따라 생략할 수도 있다. 도 3에서 각 전압제어기(OP1P, OP2P, OP3P)의 피드백 구성은 전기에너지 저장셀 직렬스트링의 각 노드가 전압제어기(OP1P, OP2P, OP3P)의 음(-)의 입력단에 연결된 형태이지만, 경우에 따라 오피앰프 출력단과 로드저항(RL)사이에 형성되는 노드가 전압 제어기(OP1P, OP2P, OP3P)의 음(-)의 입력단에 연결된 형태일 수도 있다.The voltage controllers OP1P, OP2P, and OP3P function as voltage followers of the op amp, and feedback resistors Rf for feeding back the output terminals of the voltage controllers OP1P, OP2P, and OP3P to the negative input terminal. The load resistors RL connected to the outputs of the voltage controllers OP1P, OP2P, and OP3P may be omitted as necessary. In FIG. 3, the feedback configuration of the voltage controllers OP1P, OP2P, and OP3P is connected to the negative input terminal of the voltage controllers OP1P, OP2P, and OP3P. Accordingly, a node formed between the op amp output terminal and the load resistor RL may be connected to the negative input terminal of the voltage controllers OP1P, OP2P, and OP3P.
도 1과 같은 종래의 기술에 따른 전압 균등화 방법의 경우, 전압 균등화 목표전압인 전압분배기의 노드 전압과 대상 전기에너지 저장셀의 충전상태뿐만 아니라 노드전압보다 낮은 쪽의 모든 전기에너지 저장셀의 충전상태가 축적된 전기에너지 저장셀 직렬스트링 노드전압을 통해 대상 전기에너지 저장셀의 충전상태를 비교하여 동작하기 때문에 대상 전기에너지 저장셀의 충전상태를 정확하게 파악하기 어렵다.In the voltage equalization method according to the prior art as shown in FIG. 1, not only the node voltage of the voltage divider which is the voltage equalization target voltage and the state of charge of the target electric energy storage cell, but also the state of charge of all the electric energy storage cells lower than the node voltage. It is difficult to accurately determine the state of charge of the target electric energy storage cell because it operates by comparing the state of charge of the target electric energy storage cell through the accumulated electric energy storage cell serial string node voltage.
이에 반해, 본 발명에서는 대상 전기에너지 저장셀의 음극(또는 양극 전압)에 기준전압을 가산(양극전압의 경우에는 감산)하여 전압 균등화 목표전압을 생성함으로써 전압 균등화 목표전압에서 대상 전기에너지 저장셀의 충전상태 이외의 다른 전기에너지 저장셀의 충전상태 영향을 배제시킬 수 있다. 이렇게 함으로써, 대상 전기에너지 저장셀의 충전상태를 정확하게 측정하여 충전상태에 따라 충전 또는 방전을 통해 정확한 전압 균등화를 이룰 수 있다. In contrast, in the present invention, the reference voltage is added (subtracted in the case of the positive voltage) to the negative electrode (or positive voltage) of the target electric energy storage cell to generate a voltage equalization target voltage to generate the voltage equalization target voltage. It is possible to exclude the influence of the state of charge of the electrical energy storage cell other than the state of charge. By doing so, it is possible to accurately measure the state of charge of the target electrical energy storage cell to achieve accurate voltage equalization through charge or discharge according to the state of charge.
이러한 본 발명의 일 실시 예에 따른 전압 균등화 방법은 직렬로 연결된 전기에너지 저장셀 전체에서 동시다발적으로 진행되기 때문에 도 2의 종래의 기술에 따른 순차적인 진행보다 전압 균등화가 신속하게 이루어진다. 따라서 직렬수가 증가하더라도 간단한 방법으로 종래의 기술보다 정확하고 신속하게 전압 균등화 이룰 수 있다.Since the voltage equalization method according to an embodiment of the present invention proceeds simultaneously in the entire electrical energy storage cells connected in series, the voltage equalization is faster than the sequential progress according to the prior art of FIG. 2. Therefore, even if the number of series increases, it is possible to achieve voltage equalization more accurately and quickly than the conventional technique by a simple method.
한편, 도 3에의 실시 예는 전기에너지 저장셀의 전압 균등화를 수행하는 전압 제어기가 오피앰프로 구현된 예를 기술한 것이다. 이 경우, 오피앰프를 사용하여 충전 및 방전을 행할 수 있는 전류는 작을 수 있기 때문에 전기에너지 저장셀의 용량이 큰 경우 전압 균등화 속도가 저하될 수 있다. 그리고 도 3과 같이 목표전압 생성기(OP1V~OP3V)와 전압 제어기(OP1P~OP3P)로 오피앰프를 사용하는 경우, 일반적인 오피앰프의 출력전압이 오피앰프 입력전원 전압보다 1~2V 정도 낮은 점을 감안하여 전압이 높은 쪽에 위치하는 오피앰프로는 출력전압을 오피앰프 입력전원 전압까지 증가시킬 수 있는 레일-투-레일(Rail to Rail) 방식의 오피앰프를 사용하는 것이 바람직하다. Meanwhile, the embodiment of FIG. 3 describes an example in which a voltage controller for performing voltage equalization of an electric energy storage cell is implemented as an op amp. In this case, since the current capable of charging and discharging using the op amp may be small, when the capacity of the electrical energy storage cell is large, the voltage equalization speed may be lowered. In addition, when the op amp is used as the target voltage generator OP1V to OP3V and the voltage controller OP1P to OP3P, as shown in FIG. 3, the output voltage of the general op amp is about 1 to 2 V lower than the op amp input power supply voltage. Therefore, it is preferable to use a rail-to-rail type op amp that can increase the output voltage to the op amp input power supply voltage.
도 4는 본 발명의 다른 실시 예에 따른 전압 균등화 회로의 회로도이다.4 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
도 4를 참조하면, 본 발명의 다른 실시 예에 따른 전압 균등화 회로는 도 3에 도시된 각 전압 제어기(OP1P, OP2P, OP3P)의 출력단에 전류 증폭기(40)를 구성하여 인가할 수 있는 전류를 증가시키는 회로 구성을 갖는다. 도 4에서는 도면의 간략화를 위해, 도 3에 도시된 제3 전압 제어기(OP3P)의 출력단에 연결된 전류 증폭기(40)만이 도시된다. 이 전류 증폭기(40)는 도 4에 도시된 바와 같이, Vcc와 접지 사이에 직렬 연결된 2개의 트랜지스터(Q1, Q2)와 제3 전압 제어기(OP3P)의 출력단을 상기 2개의 트랜지스터(Q1, Q2)의 입력단(베이스 단자)에 각각 연결하는 2개의 저항(R1, R2)를 포함한다. 이 전류 증폭기(40)의 출력 노드(42)는 전기에너지 저장셀(C3)과 전기에너지 저장셀(C4)을 직렬 연결하는 직렬 스트링 노드(44)에 연결된다. 제3 전압 제어기(OP3P)의 음(-)의 입력단은 전류 증폭기(40)의 출력 노드(42 또는 44)에 연결되어 피드백 라인을 구성한다. 이와 같이, 각 전압 제어기(OP1P, OP2P, OP3P)의 출력단에 전류 증폭기(40)를 구성함으로써, 인가할 수 있는 전류를 증가시킬 수 있다.Referring to FIG. 4, the voltage equalization circuit according to another embodiment of the present invention configures a current amplifier 40 to be applied to an output terminal of each of the voltage controllers OP1P, OP2P, and OP3P illustrated in FIG. 3. Has a circuit configuration that increases. In FIG. 4, only the current amplifier 40 connected to the output terminal of the third voltage controller OP3P shown in FIG. 3 is shown for simplicity of the drawing. As shown in FIG. 4, the current amplifier 40 has two transistors Q1 and Q2 connected in series between Vcc and ground and the output terminals of the third voltage controller OP3P. It includes two resistors (R1, R2) respectively connected to the input terminal (base terminal) of the. The output node 42 of this current amplifier 40 is connected to the series string node 44 which connects the electrical energy storage cell C3 and the electrical energy storage cell C4 in series. The negative input terminal of the third voltage controller OP3P is connected to the output node 42 or 44 of the current amplifier 40 to form a feedback line. In this way, by configuring the current amplifier 40 at the output terminal of each of the voltage controllers OP1P, OP2P, and OP3P, it is possible to increase the current that can be applied.
도 5는 본 발명의 또 다른 실시 예에 따른 전압 균등화 회로의 회로도이다.5 is a circuit diagram of a voltage equalization circuit according to another embodiment of the present invention.
도 5를 참조하면, 본 발명의 또 다른 실시 예에 따른 전압 균등화 회로는 도 4의 다른 실시 예와는 다르게 전압제어기(OPnP)의 출력단에 하나의 트랜지스터(Tn)를 구성하여 전압 균등화를 수행한다. 구체적으로, 본 발명의 또 다른 실시 예는, 전압 제어기(OPnP)의 출력단이 트랜지스터(Tn) 베이스와 연결되고, 트랜지스터(Tn)의 에미터와 전기에너지 저장셀(Cn)의 양극단자가 로드저항(RL)에 의해 전기적으로 연결되고, 트랜지스터(Tn)의 에미터가 전압 제어기(OPnP)의 음(-)의 입력단에 연결되는 피드백 라인을 포함한다. 그리고 전압 균등화 목표전압 생성기(OPnV)의 입력인 기준전압(Vref)을 평균전압에서 dV 만큼 작게 설정하면 전압 균등화가 이루어진 후에도 로드저항(RL)양단에는 dV만큼의 전압 차가 발생되고 이에 상응하는 전류가 흐른다. 만약 전기에너지 저장셀의 전압이 Vref-dV 보다 작아지면 전압제어기(OPnP)를 통한 방전이 정지된다.Referring to FIG. 5, the voltage equalization circuit according to another embodiment of the present invention performs voltage equalization by configuring one transistor Tn at an output terminal of the voltage controller OPnP unlike other embodiments of FIG. 4. . Specifically, in another embodiment of the present invention, the output terminal of the voltage controller OPnP is connected to the transistor Tn base, and the emitter of the transistor Tn and the anode terminal of the electrical energy storage cell Cn have a load resistance ( And a feedback line electrically connected by RL, the emitter of transistor Tn being connected to the negative input of the voltage controller OPnP. If the reference voltage Vref, the input of the voltage equalization target voltage generator OPnV, is set as small as dV from the average voltage, a voltage difference equal to dV is generated across the load resistance RL even after voltage equalization and a corresponding current is applied. Flow. If the voltage of the electrical energy storage cell is lower than Vref-dV, the discharge through the voltage controller OPnP is stopped.
다시, 도 5를 참조하면, 전기에너지 저장셀(Cn)의 전압이 높을수록 로드저항(RL)양단의 전압차는 증가하고 전류가 증가한다. 마치 저항을 전기에너지 저장셀 양단에 연결한 패시브 방법과 같이 전압 균등화 동작을 하게 된다.Referring back to FIG. 5, as the voltage of the electrical energy storage cell Cn is higher, the voltage difference across the load resistor RL increases and the current increases. The voltage equalization operation is similar to the passive method in which a resistor is connected across the electrical energy storage cell.
이렇게 전압에 따라 방전전류가 변하는 점을 이용하면 전기에너지 저장셀을 충전시키지 않고도 전압 균등화를 수행할 수 있다. 도 3과 같은 전압 균등화 회로에서 전압 균등화 동작에 의해 전기에너지 저장셀(Cn)이 충전되면 전기에너지 저장셀(Cn)만 충전되는 것이 아니라 전기에너지 저장셀(Cn)보다 전압이 낮은 쪽에 위치하는 모든 전기에너지 저장셀이 충전된다. 효과적인 전압 균등화를 위해서는 특정 전기에너지 저장셀만을 충전 또는 방전시킬 수 있어야 하지만 충전동작에서는 이러한 점이 간단하지 않다. 반면에 방전동작은 특정 전기에너지 저장셀만을 방전시키는 것이 비교적 용이하다. 도 5의 실시 예는 이러한 점을 이용하여 방전기능으로만 전압 균등화 동작을 수행함으로써 보다 정확하게 전압 균등화 동작을 수행할 수 있다. By using the point that the discharge current changes according to the voltage, voltage equalization can be performed without charging the electrical energy storage cell. In the voltage equalization circuit as shown in FIG. 3, when the electric energy storage cell Cn is charged by the voltage equalization operation, not only the electric energy storage cell Cn is charged, but all voltages lower than the electric energy storage cell Cn. The electrical energy storage cell is charged. In order to effectively equalize voltage, only a specific electric energy storage cell should be charged or discharged, but this is not simple in the charging operation. On the other hand, the discharge operation is relatively easy to discharge only a specific electric energy storage cell. 5 can perform the voltage equalization operation more accurately by performing the voltage equalization operation only with the discharge function using this point.
패시브 방법의 경우, 저항이 작을수록 전압 균등화 효과가 크지만 저항이 작을수록 누설전류가 증가하지만 도 5의 경우 전기에너지 저장셀(Cn)의 전압이 평균전압보다 dV 만큼 작아지면 방전동작을 멈추게 된다. 따라서 작은 저항을 사용하더라도 누설전류가 크게 증가하지 않는다. 예를 들어 전압이 2.5V인 전기에너지 저장셀에 저항값이 50 Ohm인 저항을 병렬로 연결하면 저항을 통해 흐르는 전류는 50mA이다. 그러나 도 5에서 평균전압이 2.5V이고 dV가 0.05V인 경우 로드저항(RL)값이 50 Ohm이면 로드저항(RL)을 통해 흐르는 전류는 1mA에 불과하다. 로드저항(RL)값이 1 Ohm인 경우에 로드저항(RL)을 통해 흐르는 전류가 50mA이다. 도 5는 패시브 방법처럼 동작하지만 패시브 방법에 비해 전압 균등화 속도가 매우 빠르며 전압 균등화 정밀도 또한 높으며 저항을 통한 누설전류도 매우 작다.In the passive method, the smaller the resistance, the greater the voltage equalization effect, but the smaller the resistance, the leakage current increases. However, in FIG. 5, when the voltage of the electrical energy storage cell Cn is smaller than the average voltage, the discharge operation is stopped. . Therefore, the leakage current does not increase significantly even with a small resistor. For example, if a resistance of 50 Ohm is connected in parallel to an electric energy storage cell with a voltage of 2.5V, the current flowing through the resistor is 50mA. However, in FIG. 5, when the average voltage is 2.5V and the dV is 0.05V, when the load resistance RL is 50 Ohm, the current flowing through the load resistor RL is only 1mA. When the load resistance RL is 1 Ohm, the current flowing through the load resistor RL is 50 mA. 5 operates like the passive method, but the voltage equalization rate is much faster than the passive method, the voltage equalization accuracy is high, and the leakage current through the resistor is very small.
도 5와 같은 방법은, 전기에너지 저장셀(Cn)에 로드저항(RL)이 병렬로 연결되고 전압제어기(OPnP)가 로드저항(RL)에 직렬로 연결된 형태이고 전압균등화 동작을 중지시키는 하한전압을 갖는 패시브 전압균등화방법이며 하한전압은 평균전압과 같은 기준전압에 의해 조절된다.In the method as shown in FIG. 5, the load resistor RL is connected in parallel to the electrical energy storage cell Cn, and the voltage controller OPnP is connected in series to the load resistor RL, and the lower limit voltage for stopping the voltage equalization operation. Passive voltage equalization method with a lower limit voltage is controlled by the same reference voltage as the average voltage.
한편 도 3과 같은 전압 등화 회로는 전압이 가장 높은 쪽에 위치하는 전기에너지 저장셀에 대한 전압균등화가 어렵다. 이후 설명을 용이하게 하기 위해 도 3이 4개의 전기에너지 저장셀로 구성되고 4번 전기에너지 저장셀(C4)의 전압이 가장 높으며 4번 전기에너지 저장셀을 제외한 나머지 3개의 전기에너지 저장셀에 전압제어기(OPnP)가 연결된 경우를 설명하기로 하겠다. On the other hand, in the voltage equalization circuit as shown in FIG. 3, it is difficult to equalize voltages for the electric energy storage cells positioned at the highest voltage. In order to facilitate the following description, FIG. 3 includes four electrical energy storage cells, and the voltage of the fourth electrical energy storage cell (C4) is the highest, and the voltages of the remaining three electrical energy storage cells except the electrical energy storage cell # 4. A case where the controller OPnP is connected will be described.
도 3과 같은 경우 이론적으로는, 4번 전기에너지 저장셀을 제외한 나머지 전기에너지 저장셀이 전압균등화에 도달하며 4번 전기에너지 저장셀도 자연스럽게 전압균등화에 도달된다. 그러나 실제로는 오피앰프의 옵셋이나 저항편차 등에 의해 4번 전기에너지 저장셀을 제외한 나머지 저장셀의 전압은 계산에 따른 이론값과 약간 편차를 갖게 되며 이러한 값들이 누적될 경우 4번 전기에너지 저장셀의 전압은 목표치로부터 크게 벗어나게 된다. 4번 전기에너지 저장셀에는 전압제어기가 연결되지 않았기 때문에 이를 바로 잡기도 어렵다. 4번 전기에너지 저장셀의 양극전압은 고정된 값을 갖기 때문에 4번 전기에너지 저장셀에 전압제어기를 연결하기 위해서는 4번 전기에너지 저장셀의 양극전압에서 기준전압을 빼서 목표전압을 생성하고 전압제어기를 4번 전기에너지 저장셀의 음극에 연결할 수 있다. 그러나 이 경우 3번 전기에너지 저장셀의 전압제어기와 4번 전기에너지 저장셀의 전압제어기가 같은 지점에 연결되며 옵셋이나 저항오차 등에 의해 2개의 전압제어기의 전압이 서로 달라 정확하고 원할한 동작을 기대하기 어렵다. In theory, as shown in FIG. 3, the remaining electrical energy storage cells except for the fourth electrical energy storage cell reach voltage equalization, and the four electrical energy storage cells naturally reach voltage equalization. However, in practice, the voltages of the remaining storage cells except for the fourth electrical energy storage cell are slightly different from the theoretical values due to the offset or resistance deviation of the op amp. The voltage will deviate significantly from the target value. It is difficult to correct this because the voltage controller is not connected to the 4th electrical energy storage cell. Since the positive voltage of the 4th electrical energy storage cell has a fixed value, in order to connect the voltage controller to the 4th electrical energy storage cell, the target voltage is generated by subtracting the reference voltage from the positive voltage of the 4th electrical energy storage cell. Can be connected to the cathode of No. 4 electrical energy storage cell. However, in this case, the voltage controller of the 3rd electrical energy storage cell and the voltage controller of the 4th electrical energy storage cell are connected to the same point, and the voltages of the two voltage controllers are different from each other due to offset or resistance error. Difficult to do
도 6은 본 발명의 또 다른 실시 예에 따른 전압 균등화 회로를 설명하기 위한 도면으로서, 도 6a는 본 발명의 일 실시 예에 따른 기준전압을 조절하는 제어기의 구성을 보여주는 도면이고, 도 6b는 도 6a에 도시된 제어기에 의해 조절된 기준전압을 이용한 전압 균등화 회로의 회로도이다.6 is a view for explaining a voltage equalization circuit according to another embodiment of the present invention, Figure 6a is a view showing the configuration of a controller for adjusting the reference voltage according to an embodiment of the present invention, Figure 6b is a view A circuit diagram of a voltage equalization circuit using a reference voltage regulated by the controller shown in 6a.
도 6b의 실시예는 도 3의 실시 예에서 3번째 전기에너지 저장셀(C3)의 양극전압(V+C3)이 전체전압(V+C4)에서 평균전압((V+C4 - V-C1)/4)을 뺀 전압과 같아지도록 기준전압을 조절하는 도 6a와 같은 제어기(Controller)를 포함한다. 본 발명의 또 다른 실시 예에서는 앞서 기술된 실시 예에서 목표 전압 생성기 및 전압 제어기에 존재하는 옵셋이나 저항오차 등에 의한 오차를 기준전압(Vref) 값을 약간 조절함으로써 상쇄시키는 것이다. 이렇게 함으로써 4번째 전기에너지 저장셀(C4)에 전압오차가 누적되는 것을 방지할 수 있다. 6B illustrates that in the embodiment of FIG. 3, the anode voltage V + C3 of the third electrical energy storage cell C3 is equal to the average voltage (V + C4-V - C1) at the total voltage (V + C4). / 4) includes a controller as shown in Figure 6a to adjust the reference voltage to be equal to the subtracted voltage. According to another embodiment of the present invention, the error caused by offset or resistance error in the target voltage generator and the voltage controller in the above-described embodiment is offset by slightly adjusting the reference voltage Vref. By doing so, it is possible to prevent the voltage error from accumulating in the fourth electrical energy storage cell C4.
도 6을 통해 전압이 가장 높은 쪽에 위치한 전기에너지 저장셀에 전압제어기가 설치되지 않은 경우를 예시한 것으로 전압이 가장 낮은 곳이나 중간 부분에 전압제어기가 설치되지 않은 경우에도 동일한 방법으로 전압오차가 누적되는 것을 방지할 수 있다.6 illustrates an example in which the voltage controller is not installed in the electrical energy storage cell positioned at the highest voltage, even when the voltage controller is not installed in the lowest or middle portion. Can be prevented.
이러한 방법은 4번째 전기에너지 저장셀(C4)의 음극에 전압제어기를 연결하는 경우에도 3번째 전기에너지 저장셀(C3)의 전압제어기 전압과 4번째 전기에너지 저장셀(C4)의 전압 제어기 전압 사이의 편차를 줄일 수 있어 보다 효과적이다. In this method, even when the voltage controller is connected to the cathode of the fourth electrical energy storage cell C4, the voltage controller voltage of the third electrical energy storage cell C3 and the voltage controller voltage of the fourth electrical energy storage cell C4 are maintained. It is more effective to reduce the deviation of.
전술한 바와 같은 본 발명은 전기에너지 저장셀이 직렬로 연결된 전기에너지 저장장치에서 전기에너지 저장셀 사이의 전압 균등화 방법을 제공하는 것으로, 전기에너지 저장셀로 전기이중층 캐패시터(Electric Double Layer Capacitor)와 같은 울트라캐패시터(Ultracapacitor) 뿐만 아니라 납축전지(Lead Acid Battery), 니켈수소전지(NiMH Battery), 니켈카드뮴전지(NiCd Battery), 리튬이온전지(Lithium Ion Battery), 알루미늄 전해캐패시터(Aluminum Electrolytic Capacitor) 등이 사용될 수 있다.As described above, the present invention provides a voltage equalization method between electrical energy storage cells in an electrical energy storage device in which electrical energy storage cells are connected in series. The electrical energy storage cell is an electric double layer capacitor, such as an electric double layer capacitor. Lead Acid Battery, NiMH Battery, NiCd Battery, Lithium Ion Battery, Aluminum Electrolytic Capacitor, as well as Ultracapacitor Can be used.
이상, 본 발명에 대하여 첨부 도면을 참조하여 상세히 설명하였으나, 이는 예시에 불과한 것으로서 본 발명의 기술적 사상의 범위 내에서 다양한 변형과 변경이 가능함은 자명하다. 따라서 본 발명의 보호 범위는, 전술한 실시예에 국한되서는 아니되며 이하의 특허청구범위의 기재에 의한 범위 및 그와 균등한 범위를 포함하여 정하여져야 할 것이다.As mentioned above, although this invention was demonstrated in detail with reference to attached drawing, this is only an illustration, It is clear that various deformation | transformation and a change are possible within the scope of the technical idea of this invention. Therefore, the protection scope of the present invention should not be limited to the above-described embodiment, but should be determined to include the scope according to the description of the following claims and their equivalents.

Claims (9)

  1. 전기에너지 저장장치의 전압 균등화 회로에 있어서,In the voltage equalization circuit of the electrical energy storage device,
    전기에너지 저장셀이 직렬로 연결되어 구성되는 직렬스트링;A series string comprising electrical energy storage cells connected in series;
    전압 균등화 기준전압을 생성시키는 기준전압 생성기;A reference voltage generator for generating a voltage equalization reference voltage;
    상기 기준전압이 입력되어 전압 균등화 목표전압을 생성하는 목표전압 생성기; 및A target voltage generator configured to input the reference voltage to generate a voltage equalization target voltage; And
    상기 목표전압이 입력되고 상기 직렬스트링의 전기에너지 저장셀에 연결되어 전기에너지 저장셀의 전압을 균등화시키는 전압제어기를 포함하며,A voltage controller inputted to the target voltage and connected to the electrical energy storage cell of the series string to equalize the voltage of the electrical energy storage cell;
    상기 목표전압 생성기는,The target voltage generator,
    상기 직렬스트링의 대상 전기에너지 저장셀의 음극단자 전압에 상기 기준전압을 가산하거나 대상 전기에너지 저장셀의 양극단자 전압으로부터 상기 기준전압을 감산하여 상기 목표전압을 생성하는 것을 특징으로 하는 전압 균등화 회로.And adding the reference voltage to the negative terminal voltage of the target electric energy storage cell of the series string or subtracting the reference voltage from the positive terminal voltage of the target electric energy storage cell to generate the target voltage.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 전압 제어기는 오피앰프를 포함하는 것을 특징으로 하는 전압 균등화 회로.The voltage controller includes an op amp A voltage equalization circuit, characterized in that.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 목표전압 생성기는 오피앰프를 포함하는 것을 특징으로 하는 전압 균등화 회로.And the target voltage generator comprises an op amp.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 직렬스트링의 전기에너지 저장셀에 방전저항이 병렬로 연결되고 상기 방전저항에 상기 전압 제어기가 직렬로 연결된 것을 특징으로 하는 전압 균등화 회로.And a discharge resistor is connected in parallel to the electrical energy storage cell of the series string, and the voltage controller is connected in series to the discharge resistor.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 오피앰프 출력단에 전류를 증폭시키는 증폭기를 포함하는 것을 특징으로 하는 전압 균등화 회로.And an amplifier for amplifying the current at the op amp output stage.
  6. 제 2 항 또는 제 3항에 있어서,The method of claim 2 or 3,
    상기 오피앰프는 레일-투-레일(Rail to Rail) 방식의 오피앰프를 포함하는 것을 특징으로 하는 전압 균등화 회로.The op amp comprises a rail-to-rail (Oil amplifier) of the voltage equalization circuit, characterized in that.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 기준전압을 조절할 수 있는 제어기를 포함하는 것을 특징으로 하는 전압 균등화 회로. And a controller capable of adjusting the reference voltage.
  8. 전기에너지 저장장치의 전압 균등화 회로에 있어서,In the voltage equalization circuit of the electrical energy storage device,
    전기에너지 저장셀이 직렬로 연결되어 구성되는 직렬스트링;A series string comprising electrical energy storage cells connected in series;
    상기 직렬스트링의 전기에너지 저장셀에 병렬로 연결되는 방전저항;A discharge resistor connected in parallel to the electrical energy storage cell of the series string;
    전압 균등화 기준전압을 생성시키는 기준전압 생성기; 및A reference voltage generator for generating a voltage equalization reference voltage; And
    상기 기준전압이 입력되어 상기 직렬스트링의 전기에너지 저장셀의 전압을 균등화시키는 전압제어기;를 포함하며,And a voltage controller configured to equalize the voltage of the electrical energy storage cell of the series string by receiving the reference voltage.
    상기 방전저항과 상기 전압제어기는 직렬로 연결된 것을 특징으로 하는 전압 균등화 회로.And the discharge resistor and the voltage controller are connected in series.
  9. 전기에너지 저장장치의 전압 균등화 회로에 있어서,In the voltage equalization circuit of the electrical energy storage device,
    전기에너지 저장셀이 직렬로 연결되어 구성되는 직렬스트링;A series string comprising electrical energy storage cells connected in series;
    전압 균등화 기준전압을 생성시키는 기준전압 생성기; 및A reference voltage generator for generating a voltage equalization reference voltage; And
    상기 전압균등화 기준전압이 입력되고 상기 직렬스트링의 전기에너지 저장셀에 연결되어 전기에너지 저장셀의 전압을 균등화시키는 전압제어기를 포함하며,A voltage controller configured to equalize a voltage of the electrical energy storage cell by inputting the voltage equalization reference voltage and being connected to the electrical energy storage cell of the series string;
    상기 전압제어기가 연결되지 않은 전기에너지 저장셀이 적어도 1개 이상인 경우, 상기 전압제어기가 연결되지 않은 전기에너지 저장셀의 전압을 이용하여 상기 전압 균등화 기준전압을 조절하는 제어기를 더 구비한 것을 특징으로 하는 전압 균등화 회로. And at least one electric energy storage cell to which the voltage controller is not connected, further comprising a controller for adjusting the voltage equalization reference voltage using the voltage of the electric energy storage cell to which the voltage controller is not connected. Voltage equalization circuit.
PCT/KR2015/000821 2014-01-29 2015-01-27 Voltage equalization circuit WO2015115766A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0011086 2014-01-29
KR1020140011086A KR20150090436A (en) 2014-01-29 2014-01-29 Voltage equalization circuit

Publications (1)

Publication Number Publication Date
WO2015115766A1 true WO2015115766A1 (en) 2015-08-06

Family

ID=53757303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000821 WO2015115766A1 (en) 2014-01-29 2015-01-27 Voltage equalization circuit

Country Status (2)

Country Link
KR (1) KR20150090436A (en)
WO (1) WO2015115766A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107632A1 (en) * 2019-11-29 2021-06-03 Samsung Electronics Co., Ltd. Electronic device for managing multiple batteries connected in series and method for operating same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100093464A (en) * 2009-02-15 2010-08-25 김래영 Apparatus for charging battery and control method of thereof
KR20120071198A (en) * 2010-12-22 2012-07-02 에스비리모티브 주식회사 A cell ballancing circuit and driving method thereof, and a battery management system including the cell ballancing circuit
KR20130006077A (en) * 2011-07-08 2013-01-16 삼성전기주식회사 Apparatus for storing electrical energy, voltage equalization module thereof and method for voltage-equalizing
KR20130023862A (en) * 2011-08-30 2013-03-08 킴스테크날리지 주식회사 Voltage equalization circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100093464A (en) * 2009-02-15 2010-08-25 김래영 Apparatus for charging battery and control method of thereof
KR20120071198A (en) * 2010-12-22 2012-07-02 에스비리모티브 주식회사 A cell ballancing circuit and driving method thereof, and a battery management system including the cell ballancing circuit
KR20130006077A (en) * 2011-07-08 2013-01-16 삼성전기주식회사 Apparatus for storing electrical energy, voltage equalization module thereof and method for voltage-equalizing
KR20130023862A (en) * 2011-08-30 2013-03-08 킴스테크날리지 주식회사 Voltage equalization circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107632A1 (en) * 2019-11-29 2021-06-03 Samsung Electronics Co., Ltd. Electronic device for managing multiple batteries connected in series and method for operating same
US11695280B2 (en) 2019-11-29 2023-07-04 Samsung Electronics Co, Ltd Electronic device for managing multiple batteries connected in series and method for operating same

Also Published As

Publication number Publication date
KR20150090436A (en) 2015-08-06

Similar Documents

Publication Publication Date Title
KR102120797B1 (en) Battery charging-discharging apparatus and method
US9214820B2 (en) Battery system balancing control method for performing balancing control with aid of reference voltage information and battery system thereof
JP3696124B2 (en) Battery voltage detection circuit
US10566804B2 (en) Method of forming a balancing circuit for a plurality of battery cells
EP2725684B1 (en) Battery device
US9479000B2 (en) Battery pack including different kinds of cells and power device including the same
WO2010076955A2 (en) Voltage equalization circuit for electric energy storage device
EP2797205B1 (en) Matrix charger apparatus and charging method
US8680867B2 (en) Battery monitoring circuit and battery monitoring system
CN106786879B (en) Battery pack charging control method and charging assembly
CN102570536A (en) Cell balancing circuit for use in a multi-cell battery system
KR102319239B1 (en) Battery pack
KR101909104B1 (en) Energy storage apparatus balancing conditon of battery pack
WO2013032214A1 (en) Voltage equalization circuit
KR20110016166A (en) Circuit for balancing cells and secondary battery with the same
WO2015115766A1 (en) Voltage equalization circuit
EP2700141A1 (en) A system and method for balancing energy storage devices
KR101736008B1 (en) Device for active cell balancing using bidirectional DC-DC converter
CN109149683A (en) A kind of restructural equalizing circuit becoming battery pack structure
KR20190048443A (en) Cell balancing system for Lithium battery using low battery voltage and charging method by low battery voltage using that of
US9513339B2 (en) Device and method for equalizing current drain from a battery stack
CN113063981B (en) Battery pack voltage acquisition circuit and voltage acquisition method
TW202207573A (en) Battery management system (bms) and application
CN110957787A (en) Self-equalization battery charging circuit and charging method
WO2024071721A1 (en) Battery management system and method, and battery pack comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743918

Country of ref document: EP

Kind code of ref document: A1