WO2015115177A1 - Liquid adhesive coating for coating collector - Google Patents

Liquid adhesive coating for coating collector Download PDF

Info

Publication number
WO2015115177A1
WO2015115177A1 PCT/JP2015/050754 JP2015050754W WO2015115177A1 WO 2015115177 A1 WO2015115177 A1 WO 2015115177A1 JP 2015050754 W JP2015050754 W JP 2015050754W WO 2015115177 A1 WO2015115177 A1 WO 2015115177A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
binder
adhesive coating
coating
lithium ion
Prior art date
Application number
PCT/JP2015/050754
Other languages
French (fr)
Japanese (ja)
Inventor
卓 松村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201580003077.7A priority Critical patent/CN105814720B/en
Priority to JP2015559855A priority patent/JP6471697B2/en
Priority to KR1020167013525A priority patent/KR102384939B1/en
Publication of WO2015115177A1 publication Critical patent/WO2015115177A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an adhesive coating liquid for a current collector coating used when manufacturing an electrochemical element.
  • Electrochemical elements such as lithium ion secondary batteries that are small and lightweight, have high energy density, and can be repeatedly charged and discharged are rapidly expanding their demands by taking advantage of their characteristics.
  • Lithium ion secondary batteries are used in fields such as mobile phones, notebook personal computers, and electric vehicles because of their relatively high energy density.
  • electrochemical elements are required to be further improved in accordance with expansion and development of applications, such as lowering resistance, increasing capacity, improving mechanical properties and productivity. Under such circumstances, there has been a demand for a more productive manufacturing method for electrochemical element electrodes, and various improvements have been made regarding a manufacturing method capable of high-speed molding and a material for electrochemical element electrodes suitable for the manufacturing method. It has been broken.
  • Electrochemical element electrodes are usually formed by laminating an electrode active material layer formed by binding an electrode active material and a conductive agent used as necessary with a binder on a current collector. It is.
  • Patent Documents 1 and 2 obtain and obtain a particulate electrode material by spray drying a slurry containing an electrode active material, rubber particles and a dispersion medium. Disclosed is a method of forming an electrode active material layer using an electrode material.
  • an intermediate layer such as an adhesive layer is provided between the electrode active material layer and the current collector.
  • an electrode active material layer is formed as in the methods disclosed in Patent Documents 1 and 2 in a portion where a coating liquid for providing an adhesive layer is not applied, the resistance of the battery increases and the capacity is maintained. The battery performance deteriorates, for example, the rate decreases.
  • the viscosity of the slurry is low because no viscosity modifier is used, and the binder is localized on the surface in the particulate electrode material. The obtained particulate electrode material was inferior in fluidity.
  • the present inventor has found that the above object can be achieved by using an adhesive coating liquid for current collector coating having predetermined physical property values, and has completed the present invention.
  • An adhesive coating solution for a current collector coating containing a binder and water wherein the amount of agglomerates generated in the Marlon mechanical stability test of the coating solution is less than the solid content. 3 wt. %, The contact angle to the copper foil is less than 60 °, and the measurement result in the loop tack test is 0.5 N / 25 mm or more,
  • the adhesive coating liquid for current collector coating according to (1), wherein the binder is a particulate binder is a particulate binder
  • the adhesive coating liquid for current collector coating according to (2), wherein the particulate binder has a glass transition temperature of ⁇ 40 ° C. or higher and 10 ° C.
  • Adhesive coating liquid for current collector coating according to any one of (1) to (3) (5) The adhesive coating liquid for a current collector coating according to any one of (1) to (4), which contains a tackiness-imparting material.
  • an electrochemical element having good performance can be produced.
  • the current collector coat adhesive coating solution of the present invention is a current collector coat adhesive coating solution containing a binder and water, and in the Marlon mechanical stability test of the coating solution
  • the amount of aggregates generated is 0.3 wt. %
  • the contact angle with respect to the copper foil is less than 60 °
  • the measurement result in the loop tack test is 0.5 N / 25 mm or more. Note that “wt.%” Is synonymous with “wt%”.
  • the binder used in the present invention is a component for adhering the electrode active materials to each other, and the current collector and other components and the electrode active material.
  • the polymer particles having binding properties are dispersed in water.
  • the dispersion is used in the form of a dispersion (binder aqueous dispersion) or in the form of a solution in which a polymer having binding properties is dissolved in water (binder solution).
  • Examples of the polymer used for the binder aqueous dispersion include a diene polymer, an acrylic polymer, a fluorine polymer, and a silicone polymer.
  • a diene polymer or an acrylic polymer is preferable because of excellent adhesion between the current collector and the electrode active material layer.
  • the adhesive layer obtained from the current collector coating adhesive coating solution is used in the positive electrode and the negative electrode, high redox stability is required, and in particular, the oxidation stability at the positive electrode is high.
  • acrylic polymers are most preferred.
  • the diene polymer is a polymer containing monomer units obtained by polymerizing conjugated dienes such as butadiene and isoprene.
  • the proportion of monomer units obtained by polymerizing conjugated diene in the diene polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • Examples of the polymer include homopolymers of conjugated dienes such as polybutadiene and polyisoprene; and copolymers of monomers that are copolymerizable with conjugated dienes.
  • Examples of the copolymerizable monomer include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; styrene, chlorostyrene, vinyltoluene, and t-butyl.
  • Styrene monomers such as styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene and divinyl benzene; olefins such as ethylene and propylene; vinyl chloride and vinylidene chloride Halogen atom-containing monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, etc .; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl Vinyl ketones such as ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole.
  • the acrylic polymer is a polymer containing a monomer unit obtained by polymerizing an acrylic ester and / or a methacrylic ester.
  • the proportion of monomer units obtained by polymerizing acrylic acid ester and / or methacrylic acid ester in the acrylic polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • Examples of the polymer include homopolymers of acrylic acid esters and / or methacrylic acid esters, and copolymers with monomers copolymerizable therewith.
  • Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid
  • two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Carboxylates having carbon double bonds including styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, N-methylol aquaylamide, acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ - such as acrylonitrile and methacrylonitrile Saturated nitrile compounds; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate Vinyl esters such as
  • polymer used for the binder solution examples include hydroxyethyl cellulose (HEC), polyethylene glycol (PEG), polyethylene oxide (PEO), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyoxyethylene polyoxypropylene block copolymer.
  • HEC hydroxyethyl cellulose
  • PEG polyethylene glycol
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • PPP polyoxyethylene polyoxypropylene block copolymer.
  • PMMA polyacrylamide
  • PNVF poly N-vinylformamide
  • PAA polyacrylic acid
  • PAA-Na sodium polyacrylate
  • PAA-NH4 ammonium polyacrylate
  • PSS-Na polystyrene sulfonic acid Sodium
  • CMC-Na sodium carboxymethylcellulose
  • PEI polyethyleneimine
  • the binder used in the present invention is preferably obtained through a particulate metal removal step of removing particulate metals contained in the binder aqueous dispersion or the binder solution in the production process.
  • a particulate metal removal step of removing particulate metals contained in the binder aqueous dispersion or the binder solution in the production process.
  • the method for removing the particulate metal component from the binder aqueous dispersion or the binder solution in the particulate metal removal step is not particularly limited.
  • a method of removing by magnetic force is preferable.
  • the method for removing by magnetic force is not particularly limited as long as it is a method that can remove the metal component.
  • the binder preferably has a cationic group or an anionic group.
  • a cationic group is a group in which the substituent has cationic chemical functionality, and the substituent has the formula R 1 R 2 R 3 R 4 N + (A ⁇ ), wherein R 1 is Is as follows.
  • R 1 is of the formula —CH 2 —CHOH—CH 2 — or —CH 2 —CH 2 —, wherein R 2 , R 3 , R 4 each independently represents 1-20 carbon atoms.
  • Selected from alkyl or arylalkyl groups having A ⁇ is a halide ion, a sulfate ion, a phosphate ion, or a tetrafluoroborate ion.
  • a cationic group-containing ethylenically unsaturated monomer is copolymerized and then neutralized or quaternized as necessary, whereby a cationic group is contained in the binder. Can be contained.
  • Examples of the cationic group-containing ethylenically unsaturated monomer include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, diisopropylaminoethyl (meth) acrylate, dibutylaminoethyl ( (Meth) acrylate, diisobutylaminoethyl (meth) acrylate, di-t-butylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, dipropylaminopropyl (meth) acrylamide, diisopropylaminopropyl (Meth) acrylamide, dibutylaminopropyl (meth) acrylamide, diisopropylaminopropyl (me
  • the anionic group is a group in which the substituent has an anionic chemical functionality.
  • examples of the anionic chemical functional group include carboxylate, sulfate, sulfonate, phosphate, phosphonate, or a mixture thereof. It is done.
  • an anionic group can be contained in the binder by copolymerizing an anionic group-containing ethylenically unsaturated monomer.
  • the anionic group-containing ethylenically unsaturated monomer is not particularly limited, and examples thereof include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; itaconic acid, maleic acid, fumaric acid, and butenetricarboxylic acid.
  • Ethylenically unsaturated polycarboxylic acid monomers such as acids; partial ester monomers of ethylenically unsaturated polycarboxylic acids such as monobutyl fumarate, monobutyl maleate, mono-2-hydroxypropyl maleate; maleic anhydride
  • Ethylenically unsaturated carboxylic acid monomers such as styrene sulfonic acid, allyloxybenzene sulfonic acid, methallyloxybenzene sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid , Methallylsulfonic acid, 4-sulfonic acid butyl methacrylate Monomer having a phospho groups; and the like. These monomers can be used alone or in combination of two or more.
  • the content of the monomer unit used for containing an anionic group or a cationic group is preferably 0.5 to 5 wt. %, More preferably 1 to 4 wt. %.
  • the resistance of the electrochemical element electrode obtained will go up.
  • the amount of aggregates in the adhesive coating liquid for collector coatings obtained will increase.
  • the shape of the binder used in the present invention is not particularly limited, but is preferably particulate.
  • the binding property is good, and it is possible to suppress deterioration of the capacity of the produced electrode and deterioration due to repeated charge and discharge.
  • the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
  • the average particle size of the binder in the binder aqueous dispersion is preferably 50 to 500 nm, more preferably 70 to 400 nm.
  • the glass transition temperature (Tg) of the binder is appropriately selected according to the purpose of use, but is preferably ⁇ 40 ° C. or higher and 10 ° C. or lower, more preferably ⁇ 35 ° C. or higher and 10 ° C. or lower, and further preferably ⁇ 30 ° C. It is the range of 0 degreeC or more. If the Tg of the binder is too high, the tackiness of the current collector coating adhesive coating solution is lost. In addition, when the Tg of the binder is too low, the strength of the obtained electrochemical element electrode is lowered.
  • the solid content concentration of the binder aqueous dispersion is preferably 15 to 70 wt.% From the viewpoint of good workability in the production of the current collector coating adhesive coating liquid. %, More preferably 20 to 65 wt. %, More preferably 30 to 60 wt. %.
  • the adhesive coating liquid for current collector coating of the present invention may contain a surfactant.
  • the surfactant is not particularly limited as long as it imparts wettability to the current collector of the adhesive coating liquid for current collector coating, but from the viewpoint of less adverse effect on the resulting electrochemical device, nonionic It is preferable to use a surfactant.
  • Nonionic surfactants include polyoxyalkylene alkyl aryl ether surfactants, polyoxyalkylene alkyl ether surfactants, polyoxyalkylene fatty acid ester surfactants, sorbitan fatty acid ester surfactants, silicone surfactants, acetylenes Examples include alcohol surfactants and fluorine-containing surfactants.
  • polyoxyalkylene alkyl aryl ether surfactant examples include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, and polyoxyethylene dodecyl phenyl ether.
  • polyoxyalkylene alkyl ether surfactant examples include polyoxyethylene oleyl ether and polyoxyethylene lauryl ether.
  • polyoxyalkylene fatty acid ester surfactant examples include polyoxyethylene oleate, polyoxyethylene laurate, and polyoxyethylene distearate.
  • sorbitan fatty acid ester surfactant examples include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene monooleate, and polyoxyethylene stearate.
  • silicone surfactants include dimethylpolysiloxane.
  • acetylene alcohol surfactants examples include 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 3,6-dimethyl-4-octyne-3,6-diol, 3,5- Examples thereof include dimethyl-1-hexyne-3ol.
  • fluorine-containing surfactants include fluorine alkyl esters.
  • the surfactant content in the current collector coating adhesive coating solution of the present invention is 0.1 wt. % Or more and 3 wt. %, Preferably 0.1 wt. % Or more and 1 wt. %, More preferably 0.2 wt. % Or more and 0.8 wt. %.
  • the resistance of the lithium ion secondary battery obtained will rise.
  • the adhesive coating liquid for collector coating cannot be applied on a collector.
  • the adhesive coating liquid for current collector coating of the present invention may contain a tackiness-imparting material.
  • a tackiness-imparting material polyhydric alcohol is preferably used, and specific examples thereof include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. These polyhydric alcohols can be used alone or in combination of two or more. Among these, it is particularly preferable to use glycerin or propylene glycol from the viewpoints of volatility and plasticity.
  • the content of the tackiness-imparting material in the current collector coating adhesive coating solution of the present invention is preferably 0.5 to 10 wt. %, More preferably 1 to 5 wt. %.
  • the content of the tackiness-imparting material is too large, the performance of the obtained lithium ion secondary battery is deteriorated.
  • desired tackiness cannot be imparted.
  • the method for producing the current collector coating adhesive coating liquid of the present invention is not particularly limited, and any means may be used as long as each solid component can be dispersed in a dispersion medium.
  • a binder aqueous dispersion containing a binder, a surfactant and / or tackiness-imparting material used as needed are mixed together, and then a dispersion medium is added as necessary and water is added. May adjust the solid content concentration of the dispersion.
  • at least one of the surfactant and the tackiness-imparting material may be added to the binder aqueous dispersion containing the binder in a state where it is dissolved or dispersed in water.
  • the viscosity of the current collector coating adhesive coating liquid depends on the coating method, but is preferably 10 to 10,000 mPa ⁇ s, more preferably from the viewpoint of forming a uniform adhesive layer on the current collector. 20 to 5,000 mPa ⁇ s, more preferably 50 to 2,000 mPa ⁇ s.
  • the amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating was 0.3 wt. %, 0.2 wt. %, Preferably 0.1 wt. More preferably, it is less than%.
  • the aggregate amount generated in the Marlon mechanical stability test is the ratio (wt.%) Of the aggregate amount (residue) to the solid content in the sample, and the aggregate amount was generated in the Marlon mechanical stability test.
  • the agglomerates are collected by a 100 mesh wire net and dried. If the amount of aggregate generated in the Marlon mechanical stability test is too large, aggregates are generated during the application of the current collector coating adhesive coating solution.
  • the contact angle of the current collector coating adhesive coating solution with respect to the copper foil is less than 60 °, preferably less than 50 °, more preferably less than 45 °. If the contact angle is too large, the current collector coating adhesive coating solution is repelled at the time of coating, so that the coating cannot be performed.
  • the measurement result in the loop tack test of the adhesive coating liquid for the current collector coat should be measured by the loop tack test performed in a state where the current collector coating liquid is applied to the current collector.
  • the measurement result of the loop tack test is obtained by measuring the loop tack under an atmosphere of 25 ° C. according to FINAT-1991 FTM-9 (Quick-stick tack measurement).
  • coated the adhesive coating liquid for collector coatings of this invention by 2 micrometers in thickness was used for the test panel in the said loop tack test. If the measurement result in the loop tack test is too small, the adhesive force of the adhesive layer formed by the current collector coating adhesive coating solution is reduced.
  • the material of the current collector is, for example, metal, carbon, conductive polymer, etc., and metal is preferably used.
  • metal aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
  • the thickness of the current collector is preferably 5 to 100 ⁇ m, more preferably 8 to 70 ⁇ m, and still more preferably 10 to 50 ⁇ m.
  • the method for applying the adhesive layer is not particularly limited.
  • the adhesive layer is formed on the current collector by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a die coating method, brushing, or the like. Further, after forming an adhesive layer on the release paper, it may be transferred to a current collector.
  • the coated adhesive layer may be dried, and examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. It is done. Of these, a drying method using hot air and a drying method using irradiation with far infrared rays are preferable.
  • the drying temperature and the drying time are preferably a temperature and a time at which the solvent in the current collector coating adhesive coating solution coated on the current collector can be completely removed.
  • the drying temperature is usually 50 to 300 ° C., preferably 80 ° C. ⁇ 250 ° C.
  • the drying time is usually 2 hours or less, preferably 5 seconds to 30 minutes.
  • the adhesive bond layer formed with the adhesive agent coating liquid for collector coating of this invention has a tack
  • the thickness of the adhesive layer is 0.5 to 5 ⁇ m, preferably 0.5 to 4 ⁇ m, particularly preferably from the viewpoint of obtaining an electrode having good adhesion to the electrode active material layer described later and having low resistance. Is 0.5 to 3 ⁇ m.
  • the adhesive layer has a composition corresponding to the solid content composition of the adhesive coating liquid for current collector coating, and includes a binder, a surfactant used as needed, and a tackifier.
  • Electrochemical element electrode An electrochemical element electrode can be obtained by forming an electrode active material layer on the current collector with an adhesive layer.
  • the formation method of an electrode active material layer is not specifically limited, It is preferable to laminate
  • the composite particles When laminating the electrode active material layer on the current collector with the adhesive layer, the composite particles may be formed into a sheet and then laminated on the current collector with the adhesive layer.
  • a method in which the composite particles are directly pressure-molded on the current collector is preferred.
  • a method for pressure molding for example, a roll type pressure molding apparatus provided with a pair of rolls is used, and a composite particle is rolled by a supply device such as a screw feeder while feeding the current collector with an adhesive layer by the roll.
  • roll pressure forming method for forming the electrode active material layer on the current collector with the adhesive layer or by dispersing the composite particles on the current collector with the adhesive layer, For example, a method of adjusting the thickness with a blade or the like, and then forming with a pressurizing apparatus, a method of filling composite particles into a mold, and pressing the mold to form.
  • the roll pressure molding method is preferable.
  • the composite particles of the present invention have high fluidity, they can be molded by roll press molding due to the high fluidity, thereby improving productivity.
  • the roll temperature at the time of roll pressing is preferably 25 to 200 ° C., more preferably from the viewpoint of ensuring sufficient adhesion between the electrode active material layer and the current collector with the adhesive layer.
  • the temperature is 50 to 150 ° C, more preferably 80 to 120 ° C.
  • the press linear pressure between the rolls during roll pressing is preferably 10 to 1000 kN / m, more preferably 200 to 900 kN / m, from the viewpoint of improving the uniformity of the thickness of the electrode active material layer. More preferably, it is 300 to 600 kN / m.
  • the molding speed at the time of roll press molding is preferably 0.1 to 20 m / min, more preferably 4 to 10 m / min.
  • post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the formed electrochemical element electrode and increase the density of the electrode active material layer to increase the capacity.
  • the post-pressing method is preferably a pressing process using a roll.
  • the roll pressing step two cylindrical rolls are arranged vertically in parallel with a narrow interval, each is rotated in the opposite direction, and pressure is applied by interposing an electrode therebetween.
  • the temperature of the roll may be adjusted as necessary, such as heating or cooling.
  • the composite particles can be obtained by granulation using an electrode active material, a binder, and other components such as a water-soluble polymer and a conductive agent added as necessary.
  • the production method of the composite particles is not particularly limited, and a slurry for composite particles containing other components such as an electrode active material, a binder, and a conductive agent that is added as necessary is used.
  • Manufacture of granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed granulation method, fluidized bed multifunctional granulation method, and melt granulation method It can be obtained by the method.
  • the spray-drying granulation method is preferable from the viewpoint that the composite particles can be produced relatively easily.
  • the slurry for composite particles used for the manufacture of composite particles is obtained by dispersing or dissolving an electrode active material, a conductive agent, a binder, and other components added as necessary, in a dispersion medium.
  • the electrode active material for the positive electrode of the lithium ion secondary battery
  • the electrode active material (positive electrode active material) for the positive electrode of the lithium ion secondary battery include metal oxides capable of reversibly doping and dedoping lithium ions. It is done.
  • the metal oxide include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate.
  • the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
  • Examples of the negative electrode active material (negative electrode active material) as the counter electrode of the lithium ion secondary battery positive electrode include low crystalline carbon (amorphous) such as graphitizable carbon, non-graphitizable carbon, and pyrolytic carbon. Carbon), graphite (natural graphite, artificial graphite), alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, and lithium titanate.
  • the negative electrode active material illustrated above may be used independently according to a use suitably, and may be used in mixture of multiple types.
  • the shape of the electrode active material for the lithium ion secondary battery electrode is preferably a granulated particle.
  • a higher-density electrode can be formed during electrode molding.
  • the volume average particle diameter of the electrode active material for the lithium ion secondary battery electrode is usually 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably 0.8 to 30 ⁇ m for both the positive electrode and the negative electrode.
  • conductive agent Specific examples of the conductive agent used in the present invention include conductive carbon black such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap). Among these, acetylene black and furnace black are more preferable. These conductive agents can be used alone or in combination of two or more.
  • Binder As the binder used for the production of the composite particles, the same binder as that used in the above-described current collector coating adhesive coating solution can be used.
  • the composite particle slurry may contain other components such as a dispersant as required.
  • a dispersant include cellulose polymers such as carboxymethyl cellulose and methyl cellulose, and ammonium or alkali metal salts thereof. These dispersants can be used alone or in combination of two or more.
  • the composite particles can be obtained, for example, by spray drying the slurry containing the electrode active material, the conductive agent, the binder, and other components added as necessary.
  • the composite particle includes at least an electrode active material, a conductive agent, and a binder.
  • each of the composite particles does not exist as an independent particle, but is an electrode active material that is a constituent, a binder.
  • One particle is formed by two or more components including an agent. Specifically, a plurality of (more preferably several to several tens) electrode active materials are formed by binding a plurality of individual particles of the two or more components to form secondary particles. It is preferable that the particles are bound to form particles.
  • the average particle diameter of the composite particles is preferably 0.1 to 200 ⁇ m, more preferably 1 to 150 ⁇ m, and still more preferably 10 to 80 ⁇ m, from the viewpoint that an electrode active material layer having a desired thickness can be easily obtained.
  • the average particle size is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).
  • electrochemical element electrode examples include a lithium ion secondary battery and a lithium ion capacitor using such an electrode, and a lithium ion secondary battery is preferable.
  • a lithium ion secondary battery uses an electrochemical element electrode obtained as described above as at least one of a positive electrode and a negative electrode, and further includes a separator and an electrolytic solution.
  • separator for example, a polyolefin resin such as polyethylene or polypropylene, a microporous film or a nonwoven fabric containing an aromatic polyamide resin, a porous resin coat containing an inorganic ceramic powder, or the like can be used.
  • the thickness of the separator is preferably 0.5 to 40 ⁇ m, more preferably from the viewpoint of reducing resistance due to the separator in the lithium ion secondary battery and excellent workability when manufacturing the lithium ion secondary battery.
  • the thickness is 1 to 30 ⁇ m, more preferably 1 to 25 ⁇ m.
  • the electrolytic solution is not particularly limited.
  • a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more.
  • the amount of the supporting electrolyte is usually 1 wt. % Or more, preferably 5 wt. % Or more, and usually 30 wt. % Or less, preferably 20 wt. % Or less. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used.
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive.
  • the additive is preferably a carbonate compound such as vinylene carbonate (VC).
  • electrolytic solutions include gel polymer electrolytes in which a polymer electrolyte such as polyethylene oxide or polyacrylonitrile is impregnated with an electrolytic solution, lithium sulfide, LiI, Li 3 N, Li 2 SP—P 2 S 5 glass ceramic, etc.
  • An inorganic solid electrolyte can be mentioned.
  • a lithium ion secondary battery is obtained by stacking a negative electrode and a positive electrode through a separator, winding this according to the shape of the battery, folding it into a battery container, pouring the electrolyte into the battery container and sealing it. It is done. Further, if necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • an electrochemical element electrode having good performance can be produced even during long molding.
  • a lithium ion secondary battery electrode manufactured using 50 m at the end (in Example 7, a negative electrode, In Examples and Comparative Examples other than the above, a positive electrode) was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece.
  • This test piece was affixed to the cellophane tape fixed to the test stand. When sticking, the surface on the electrode active material layer side was faced down, and the surface on the electrode active material layer side and the adhesive surface of the cellophane tape were brought into contact.
  • the cellophane tape one specified in JIS Z1522 was used.
  • the lithium ion secondary batteries manufactured using the final 50 m and the initial 50 m were each subjected to a constant current constant voltage charging method of 0.5 C at 60 ° C.
  • the battery was charged at a constant current until 4.2V, then charged at a constant voltage, and then a charge / discharge cycle test was performed to discharge to 3.0V at a constant current of 0.5C.
  • the charge / discharge cycle test was conducted up to 100 cycles. The ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was determined as the capacity retention rate.
  • Capacity maintenance rate is 90% or more
  • Capacity maintenance rate is 80% or more and less than 90%
  • Capacity maintenance rate is 70% or more and less than 80%
  • Capacity maintenance rate is 60% or more and less than 70%
  • Capacity maintenance rate is less than 60%
  • ⁇ Marlon mechanical stability test> The pH of the adhesive coating solution for current collector coating obtained in Examples and Comparative Examples was adjusted to 8 ⁇ 0.1, filtered through a 100 mesh wire net, and then the solid content concentration was adjusted to 30%. This was filtered through a 100 mesh wire net and then subjected to a Marlon mechanical stability test. The conditions were a rotational speed of 1000 rpm, a load of 15 kg, and 10 minutes.
  • the adhesive coating liquid for current collector coating after the Marlon mechanical stability test is filtered through a 100 mesh wire mesh, and the aggregates collected on the wire mesh are dried and weighed to determine the aggregate generation amount. The ratio (%) with respect to the solid content weight of the tested adhesive coating liquid for current collector coating was determined.
  • ⁇ Contact angle measurement> The contact angles of the current collector coating adhesive coating solutions obtained in Examples and Comparative Examples were observed using “DMs-400” manufactured by Kyowa Interface Science Co., Ltd. Specifically, 2 ⁇ L of the current collector coating adhesive coating solution was dropped on the electrolytic surface of an electrolytic copper foil (product name “NC-WS”, thickness 20 ⁇ m, manufactured by Furukawa Electric). A droplet 1 minute after the dropping was observed from the horizontal direction using a measuring device. From the observed image, the contact angle between the electrolytic copper foil and the current collector coating adhesive coating solution was calculated by the ⁇ / 2 method.
  • the adhesive coating liquid for collector coating, the lithium ion secondary battery positive electrode, the lithium ion secondary battery negative electrode, and the lithium ion secondary battery of Examples and Comparative Examples were produced as follows.
  • Example 1 Manufacture of binder
  • 300 parts of ion-exchanged water, 93.8 parts of n-butyl acrylate, 2 parts of acrylonitrile, 1.0 part of allyl glycine ether, 2.0 parts of itaconic acid, 1.2 parts of N-methylol acrylamide and molecular weight adjustment Add 0.05 part of t-dodecyl mercaptan as the agent and 0.3 part of potassium persulfate as the polymerization initiator, and after sufficiently stirring, polymerize by heating to 70 ° C., solid content concentration of 40% as the binder
  • An aqueous dispersion of a particulate binder (acrylate binder) containing an acrylic polymer was obtained.
  • the polymerization conversion rate determined from the solid content concentration was approximately 99%.
  • the obtained particulate binder had a Tg of ⁇ 20 ° C.
  • the binder is 40 wt. %
  • Dispanol TOC manufactured by NOF Corporation
  • PG Propylene glycol
  • a binder, a surfactant, a tackiness-imparting material, and water were mixed so as to obtain an adhesive coating solution for current collector coating.
  • the amount of agglomerates generated in the Marlon mechanical stability test of the obtained current collector coating adhesive coating liquid was 0.05 wt. %
  • the contact angle to the copper foil was 30 °.
  • LiCoO 2 lithium cobaltate
  • acetylene black electrical Denka Black powder product manufactured by Kagaku Kogyo Co., Ltd .: particle size 35 nm, specific surface area 68 m 2 / g) 5.0 parts, 1.5% aqueous solution of carboxymethyl cellulose (DN-800H: manufactured by Daicel Chemical Industries) as a dispersant 1.0 part by volume in terms of the amount was mixed, and ion-exchanged water was further added so that the solid content concentration would be 40%, and mixed and dispersed to obtain a composite particle slurry for the positive electrode.
  • LCO lithium cobaltate
  • This positive electrode composite particle slurry is spray-dried (manufactured by Okawara Chemical Co., Ltd.), is rotated at a rotational speed of 25,000 rpm, hot air temperature is 150 ° C. Spray drying granulation was performed at a temperature of 90 ° C. to obtain composite particles.
  • the average volume particle diameter of the composite particles was 50 ⁇ m.
  • the current collector with an adhesive layer is conveyed at a speed of 2 m / min, and is positively charged by a roll (rolling rough surface hot roll, manufactured by Hirano Giken Kogyo Co., Ltd.) roll (roll temperature 100 ° C., press linear pressure 4 kN / cm).
  • the active material layer was formed into a sheet shape on the current collector with an adhesive layer to obtain a lithium ion secondary battery positive electrode having a thickness of 60 ⁇ m.
  • ion exchange water was added so as to have a solid content concentration of 50%, and mixed and dispersed to obtain a negative electrode slurry, which was applied to a copper foil having a thickness of 18 ⁇ m and dried at 120 ° C. for 30 minutes. Thereafter, roll pressing was performed to obtain a negative electrode having a thickness of 50 ⁇ m.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m, manufactured by dry method, porosity 55%) was cut into a 5 ⁇ 5 cm 2 square.
  • the lithium ion secondary battery positive electrode obtained above was cut into a 4 ⁇ 4 cm 2 square and placed so that the surface on the current collector side was in contact with the aluminum packaging exterior.
  • the square separator obtained above was disposed on the surface of the positive electrode active material layer of the lithium ion secondary battery positive electrode.
  • the lithium ion secondary battery negative electrode obtained above was cut into a square of 4.2 ⁇ 4.2 cm 2 and placed on the separator so that the surface on the negative electrode active material layer side faced the separator. Further, containing the vinylene carbonate 2.0%, was charged with LiPF 6 solution having a concentration of 1.0 M.
  • Example 2 In the production of the binder, the binder was produced in the same manner as in Example 1 except that the amount of itaconic acid used was 1 part.
  • the Tg of the particulate binder obtained in Example 2 was ⁇ 20 ° C. Except for using this binder, the production of an adhesive coating solution for current collector coating, the production of a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery in the same manner as in Example 1. Went.
  • the amount of aggregates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 2 was 0.1 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 5 N / 25 mm.
  • Example 3 In the production of the current collector coating adhesive coating solution, the concentration of Dispanol TOC as the surfactant was 0.1 wt. %, The production of an adhesive coating solution for current collector coating, a lithium ion secondary battery positive electrode in the same manner as in Example 1 except that the binder, surfactant, tackiness-imparting material and water were mixed so that The negative electrode of the lithium ion secondary battery and the lithium ion secondary battery were manufactured.
  • the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 3 was 0.05 wt. %, The contact angle with respect to the copper foil was 50 °, and the loop tack was 5 N / 25 mm.
  • Example 4 In the production of the binder, the binder was produced in the same manner as in Example 1 except that a particulate binder having a Tg of 0 ° C. was obtained. Using this binder, production of an adhesive coating solution for current collector coating, production of a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery were conducted in the same manner as in Example 1. .
  • the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 4 was 0.05 wt. %, The contact angle to the copper foil was 30 °, and the loop tack was 1 N / 25 mm.
  • Example 5 In the production of the current collector coating adhesive coating solution, the concentration of Dispanol TOC as the surfactant was 0.2 wt. %, The concentration of propylene glycol as a tackifier is 2 wt. % Production of an adhesive coating solution for current collector coating, lithium ion secondary battery positive electrode in the same manner as in Example 4 except that the binder, surfactant, tackiness-imparting material and water were mixed so that The negative electrode of the lithium ion secondary battery and the lithium ion secondary battery were manufactured.
  • the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 5 was 0.05 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 6 N / 25 mm.
  • Example 6 In the production of the adhesive coating liquid for current collector coating, glycerin was used as the tackifier and the concentration of Dispanol TOC as the surfactant was 0.8 wt. %, The concentration of glycerin as a tackifier is 1 wt. %, The production of an adhesive coating solution for current collector coating, a lithium ion secondary battery positive electrode in the same manner as in Example 1 except that the binder, surfactant, tackiness-imparting material and water were mixed so that The negative electrode of the lithium ion secondary battery and the lithium ion secondary battery were manufactured.
  • the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 6 was 0.05 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 5 N / 25 mm.
  • Example 7 Manufacture of adhesive coating liquid for current collector coating
  • SBR binder styrene-butadiene copolymer latex
  • Dispanol TOC as a surfactant is 0.8 wt. %
  • Propylene glycol is 1 wt.
  • a binder, a surfactant, a tackiness-imparting material, and water were mixed so as to obtain an adhesive coating solution for current collector coating.
  • the amount of aggregates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 7 was 0.05 wt. %, The contact angle to the copper foil was 30 °, and the loop tack was 8 N / 25 mm.
  • ion-exchanged water was added so as to have a solid content concentration of 40%, and mixed and dispersed to obtain a composite particle slurry for a negative electrode, which was then spray-dried (Okawara Chemical Co., Ltd.).
  • a composite particle slurry for a negative electrode which was then spray-dried (Okawara Chemical Co., Ltd.).
  • a rotating disk type atomizer (diameter 65 mm), rotating at 25,000 rpm, hot air temperature 150 ° C., and particle recovery outlet temperature 90 ° C.
  • the average volume particle size of the composite particles was 50 [mu] m.
  • LiCoO 2 LiCoO 2
  • PVDF polyvinylidene fluoride
  • Example 7 (Manufacture of lithium ion secondary batteries) A separator similar to that in Example 1 was prepared, and the lithium ion secondary battery negative electrode and lithium ion secondary battery positive electrode obtained in Example 7 were used in the same procedure as in Example 1 to form a laminated lithium ion secondary battery. A battery (laminated cell) was produced.
  • Example 8 In the production of the current collector coating adhesive coating solution, in place of the above binder as a binder, polyethylene oxide was used, except that the binder, surfactant, tackifier, and water were mixed. In the same manner as in Example 1, production of an adhesive coating solution for current collector coating, production of a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery were carried out.
  • the amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for collector coating obtained in Example 8 was 0 wt. %, The contact angle with respect to the copper foil was 35 °, and the loop tack was 2 N / 25 mm.
  • Comparative Example 1 In the production of the binder, the binder was produced in the same manner as in Example 1 except that itaconic acid was not used. The Tg of the particulate binder obtained in Comparative Example 1 was ⁇ 20 ° C. In addition, in the production of the current collector coating adhesive coating solution, the current collector coat adhesive coating solution was produced without using the tackifier. Moreover, the lithium ion secondary battery positive electrode, the lithium ion secondary battery negative electrode, and the lithium ion secondary battery were the same as in Example 1 except that the adhesive coating liquid for collector coating obtained in Comparative Example 1 was used. Was manufactured.
  • the amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Comparative Example 1 was 0.5 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 4 N / 25 mm.
  • Example 2 Adhesive for current collector coating in the same manner as in Example 1 except that in the production of the adhesive coating liquid for current collector coating, a binder, a tackifier and water were mixed without using a surfactant. Production of the agent coating liquid, lithium ion secondary battery positive electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery were carried out.
  • the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Comparative Example 2 was 0.1 wt. %, The contact angle with respect to the copper foil was 60 °, and the loop tack was 4 N / 25 mm.
  • Example 3 In the production of the binder, the binder was produced in the same manner as in Example 1 except that a particulate binder having a Tg of 10 ° C. was obtained. Further, using this binder, Dispanol TOC as a surfactant was 0.05 wt. %, Propylene glycol is 1 wt.
  • the adhesive coating liquid for current collector coating was produced by mixing the binder, surfactant, tackiness-imparting material, and water so as to be in a percentage.
  • a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that this current collector coating adhesive coating solution was used.
  • the amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Comparative Example 3 was 0.1 wt. %, The contact angle with respect to the copper foil was 80 °, and the loop tack was 0.1 N / 25 mm.
  • an adhesive coating liquid for a current collector coating containing a binder and water, and the amount of aggregate generated in the Marlon mechanical stability test of the coating liquid is a solid content
  • the peel strength of the battery electrode is good, and the capacity retention rate of the lithium ion secondary battery including the lithium ion secondary battery electrode using the current collector coating adhesive coating solution is good at both the initial 50 m and the final 50 m. there were.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 A liquid adhesive coating for coating a collector, the liquid adhesive coating containing a binding agent and water, wherein the amount of aggregates produced during Maron mechanical stability testing of the liquid coating is less than 0.3 wt% of the solid content, the contact angle with respect to copper foil is less than 60°, and the result of measurement using loop tack testing is 0.5 N/25 mm.

Description

集電体コート用接着剤塗工液Adhesive coating solution for current collector coating
 本発明は、電気化学素子を製造する際に用いる集電体コート用接着剤塗工液に関するものである。 The present invention relates to an adhesive coating liquid for a current collector coating used when manufacturing an electrochemical element.
 小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能なリチウムイオン二次電池などの電気化学素子は、その特性を活かして急速に需要を拡大している。リチウムイオン二次電池は、エネルギー密度が比較的に大きいことから携帯電話やノート型パーソナルコンピュータ、電気自動車などの分野で利用されている。 Electrochemical elements such as lithium ion secondary batteries that are small and lightweight, have high energy density, and can be repeatedly charged and discharged are rapidly expanding their demands by taking advantage of their characteristics. Lithium ion secondary batteries are used in fields such as mobile phones, notebook personal computers, and electric vehicles because of their relatively high energy density.
 これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、より一層の改善が求められている。このような状況において、電気化学素子電極に関してもより生産性の高い製造方法が求められており、高速成形可能な製造方法及び該製造方法に適合する電気化学素子電極用材料について様々な改善が行われている。 These electrochemical elements are required to be further improved in accordance with expansion and development of applications, such as lowering resistance, increasing capacity, improving mechanical properties and productivity. Under such circumstances, there has been a demand for a more productive manufacturing method for electrochemical element electrodes, and various improvements have been made regarding a manufacturing method capable of high-speed molding and a material for electrochemical element electrodes suitable for the manufacturing method. It has been broken.
 電気化学素子電極は、通常、電極活物質と、必要に応じて用いられる導電剤とを結着剤で結着することにより形成された電極活物質層を集電体上に積層してなるものである。このような電極活物質層を形成する方法として、特許文献1及び2には、電極活物質、ゴム粒子及び分散媒を含むスラリーを噴霧乾燥することにより粒子状の電極材料を得て、得られた電極材料を用いて電極活物質層を形成する方法が開示されている。 Electrochemical element electrodes are usually formed by laminating an electrode active material layer formed by binding an electrode active material and a conductive agent used as necessary with a binder on a current collector. It is. As a method for forming such an electrode active material layer, Patent Documents 1 and 2 obtain and obtain a particulate electrode material by spray drying a slurry containing an electrode active material, rubber particles and a dispersion medium. Disclosed is a method of forming an electrode active material layer using an electrode material.
特許第4219705号公報Japanese Patent No. 4219705 特開2007-18874号公報JP 2007-18874 A
 ところで、電極活物質層と集電体との密着性を向上させるために、電極活物質層と集電体との間に接着剤層等の中間層を設けることも行われている。しかし、接着剤層を設けるための塗工液が塗工されていない部分に特許文献1及び2に開示されている方法のように電極活物質層を形成すると、電池の抵抗が上がり、容量維持率が下がる等、電池性能が悪化する。
 また、特許文献1に記載の技術では、スラリーを調製する際に、粘度調整剤を用いないためスラリーの粘度が低く、粒子状の電極材料中において結着剤が表面に局在化するため、得られる粒子状の電極材料は流動性に劣っていた。そのため、均一な膜厚を有する電極を製造することができない等、成形性に問題があった。
 また、電極の製造の際には、例えば、ロール状に巻き取られた長尺の集電体を引き出し、集電体上に電極活物質層を形成することが行われている。従って、長尺の集電体上に均一な電極活物質層を形成した電極を製造することが求められるが、特許文献1及び2には長尺成形性についての記載はなかった。
 本発明の目的は、長尺成形時においても良好な性能を有する電気化学素子電極を製造できる集電体コート用接着剤塗工液を提供することである。
Incidentally, in order to improve the adhesion between the electrode active material layer and the current collector, an intermediate layer such as an adhesive layer is provided between the electrode active material layer and the current collector. However, when an electrode active material layer is formed as in the methods disclosed in Patent Documents 1 and 2 in a portion where a coating liquid for providing an adhesive layer is not applied, the resistance of the battery increases and the capacity is maintained. The battery performance deteriorates, for example, the rate decreases.
In addition, in the technique described in Patent Document 1, when preparing the slurry, the viscosity of the slurry is low because no viscosity modifier is used, and the binder is localized on the surface in the particulate electrode material. The obtained particulate electrode material was inferior in fluidity. For this reason, there is a problem in moldability, such as inability to manufacture an electrode having a uniform film thickness.
Moreover, when manufacturing an electrode, for example, a long current collector wound in a roll shape is drawn out, and an electrode active material layer is formed on the current collector. Therefore, it is required to produce an electrode in which a uniform electrode active material layer is formed on a long current collector. However, Patent Documents 1 and 2 did not describe long formability.
The objective of this invention is providing the adhesive agent coating liquid for collector coating which can manufacture the electrochemical element electrode which has a favorable performance also at the time of long shaping | molding.
 本発明者は、鋭意検討の結果、所定の物性値を有する集電体コート用接着剤塗工液を用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has found that the above object can be achieved by using an adhesive coating liquid for current collector coating having predetermined physical property values, and has completed the present invention.
 即ち、本発明によれば、
(1) 結着剤と水とを含む、集電体コート用接着剤塗工液であって、前記塗工液のマーロン式機械安定性試験で発生した凝集物量が固形分量に対して0.3wt.%未満であり、銅箔に対する接触角が60°未満であり、ループタック試験での測定結果が0.5N/25mm以上である集電体コート用接着剤塗工液、
(2) 前記結着剤が粒子状結着剤である(1)記載の集電体コート用接着剤塗工液、
(3) 前記粒子状結着剤のガラス転移温度が-40℃以上10℃以下である(2)記載の集電体コート用接着剤塗工液、
(4) 界面活性剤を含み、前記界面活性剤の濃度が0.1wt.%以上3wt.%未満である(1)~(3)の何れかに記載の集電体コート用接着剤塗工液、
(5) タック性付与材を含む(1)~(4)の何れかに記載の集電体コート用接着剤塗工液
が提供される。
That is, according to the present invention,
(1) An adhesive coating solution for a current collector coating containing a binder and water, wherein the amount of agglomerates generated in the Marlon mechanical stability test of the coating solution is less than the solid content. 3 wt. %, The contact angle to the copper foil is less than 60 °, and the measurement result in the loop tack test is 0.5 N / 25 mm or more,
(2) The adhesive coating liquid for current collector coating according to (1), wherein the binder is a particulate binder,
(3) The adhesive coating liquid for current collector coating according to (2), wherein the particulate binder has a glass transition temperature of −40 ° C. or higher and 10 ° C. or lower,
(4) A surfactant is included, and the concentration of the surfactant is 0.1 wt. % Or more and 3 wt. % Adhesive coating liquid for current collector coating according to any one of (1) to (3),
(5) The adhesive coating liquid for a current collector coating according to any one of (1) to (4), which contains a tackiness-imparting material.
 本発明に係る集電体コート用接着剤塗工液によれば、良好な性能を有する電気化学素子を製造することができる。 According to the adhesive coating liquid for current collector coating according to the present invention, an electrochemical element having good performance can be produced.
 以下、本発明の集電体コート用接着剤塗工液について説明する。本発明の集電体コート用接着剤塗工液は、結着剤と水とを含む、集電体コート用接着剤塗工液であって、前記塗工液のマーロン式機械安定性試験で発生した凝集物量が固形分量に対して0.3wt.%未満であり、銅箔に対する接触角が60°未満であり、ループタック試験での測定結果が0.5N/25mm以上である。尚、「wt.%」は「重量%」と同義である。 Hereinafter, the adhesive coating liquid for current collector coating of the present invention will be described. The current collector coat adhesive coating solution of the present invention is a current collector coat adhesive coating solution containing a binder and water, and in the Marlon mechanical stability test of the coating solution The amount of aggregates generated is 0.3 wt. %, The contact angle with respect to the copper foil is less than 60 °, and the measurement result in the loop tack test is 0.5 N / 25 mm or more. Note that “wt.%” Is synonymous with “wt%”.
 (結着剤)
 本発明に用いる結着剤は、電極活物質同士、および集電体や他の成分と電極活物質とを接着するための成分であり、通常結着性を有する重合体粒子が水に分散された分散液の状態(バインダ水分散液)、または結着性を有する重合体が水に溶解した溶液の状態(バインダ溶液)で用いられる。
(Binder)
The binder used in the present invention is a component for adhering the electrode active materials to each other, and the current collector and other components and the electrode active material. Usually, the polymer particles having binding properties are dispersed in water. The dispersion is used in the form of a dispersion (binder aqueous dispersion) or in the form of a solution in which a polymer having binding properties is dissolved in water (binder solution).
 バインダ水分散液に用いる重合体としては、例えば、ジエン系重合体、アクリル系重合体、フッ素系重合体、シリコーン系重合体などが挙げられる。 Examples of the polymer used for the binder aqueous dispersion include a diene polymer, an acrylic polymer, a fluorine polymer, and a silicone polymer.
 これらのなかでも集電体と電極活物質層との密着性に優れるため、ジエン系重合体、又はアクリル系重合体が好ましい。また、集電体コート用接着剤塗工液により得られる接着剤層は、正極、負極中に用いられることから高い酸化還元安定性が求められており、特に正極での酸化安定性が高いことからアクリル系重合体がもっとも好ましい。 Among these, a diene polymer or an acrylic polymer is preferable because of excellent adhesion between the current collector and the electrode active material layer. In addition, since the adhesive layer obtained from the current collector coating adhesive coating solution is used in the positive electrode and the negative electrode, high redox stability is required, and in particular, the oxidation stability at the positive electrode is high. To acrylic polymers are most preferred.
 (ジエン系重合体)
 ジエン系重合体とは、ブタジエン、イソプレンなどの共役ジエンを重合してなる単量体単位を含む重合体である。ジエン系重合体中の共役ジエンを重合してなる単量体単位の割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。重合体としては、ポリブタジエンやポリイソプレンなどの共役ジエンの単独重合体;共役ジエンと共重合可能な単量体との共重合体が挙げられる。前記共重合可能な単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;アクリル酸、メタクリル酸などの不飽和カルボン酸類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。
(Diene polymer)
The diene polymer is a polymer containing monomer units obtained by polymerizing conjugated dienes such as butadiene and isoprene. The proportion of monomer units obtained by polymerizing conjugated diene in the diene polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. Examples of the polymer include homopolymers of conjugated dienes such as polybutadiene and polyisoprene; and copolymers of monomers that are copolymerizable with conjugated dienes. Examples of the copolymerizable monomer include α, β-unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; styrene, chlorostyrene, vinyltoluene, and t-butyl. Styrene monomers such as styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene and divinyl benzene; olefins such as ethylene and propylene; vinyl chloride and vinylidene chloride Halogen atom-containing monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, etc .; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl Vinyl ketones such as ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole.
 (アクリル系重合体)
 アクリル系重合体とは、アクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位を含む重合体である。アクリル系重合体中のアクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位の割合は、通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。重合体としては、アクリル酸エステル及び/又はメタクリル酸エステルの単独重合体、これと共重合可能な単量体との共重合体が挙げられる。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクエイルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。
(Acrylic polymer)
The acrylic polymer is a polymer containing a monomer unit obtained by polymerizing an acrylic ester and / or a methacrylic ester. The proportion of monomer units obtained by polymerizing acrylic acid ester and / or methacrylic acid ester in the acrylic polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. . Examples of the polymer include homopolymers of acrylic acid esters and / or methacrylic acid esters, and copolymers with monomers copolymerizable therewith. Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate. Carboxylates having carbon double bonds; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, N-methylol aquaylamide, acrylamide-2-methylpropanesulfonic acid; α, β- such as acrylonitrile and methacrylonitrile Saturated nitrile compounds; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate Vinyl esters such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone; N-vinyl pyrrolidone, vinyl Heterocycle-containing vinyl compounds such as pyridine and vinylimidazole can be mentioned.
 バインダ溶液に用いる重合体としては、例えば、ヒドロキシエチルセルロース(HEC)、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリオキシエチレンポリオキシプロピレンブロック共重合体(PPP)、ポリアクリルアミド(PMMA)、ポリN-ビニルホルムアミド(PNVF)、ポリアクリル酸(PAA)、ポリアクリル酸ナトリウム(PAA-Na)、ポリアクリル酸アンモニウム(PAA-NH4)、ポリスチレンスルホン酸ナトリウム(PSS-Na)、カルボキシメチルセルロースナトリウム(CMC-Na)、ポリエチレンイミン(PEI)などが挙げられる。 Examples of the polymer used for the binder solution include hydroxyethyl cellulose (HEC), polyethylene glycol (PEG), polyethylene oxide (PEO), polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and polyoxyethylene polyoxypropylene block copolymer. Combined (PPP), polyacrylamide (PMMA), poly N-vinylformamide (PNVF), polyacrylic acid (PAA), sodium polyacrylate (PAA-Na), ammonium polyacrylate (PAA-NH4), polystyrene sulfonic acid Sodium (PSS-Na), sodium carboxymethylcellulose (CMC-Na), polyethyleneimine (PEI) and the like can be mentioned.
 本発明に用いる結着剤は、製造工程において、バインダ水分散液またはバインダ溶液に含まれる粒子状の金属を除去する粒子状金属除去工程を経て得られたものであることが好ましい。結着剤に含まれる粒子状金属成分の含有量が10ppm以下であることにより、電池の内部短絡や充電時の溶解・析出による自己放電増大の懸念が少なく、電池のサイクル特性や安全性が向上する。 The binder used in the present invention is preferably obtained through a particulate metal removal step of removing particulate metals contained in the binder aqueous dispersion or the binder solution in the production process. When the content of the particulate metal component contained in the binder is 10 ppm or less, there is little concern about increased self-discharge due to internal short circuit of the battery or dissolution / precipitation during charging, improving the cycle characteristics and safety of the battery. To do.
 前記粒子状金属除去工程におけるバインダ水分散液またはバインダ溶液から粒子状の金属成分を除去する方法は特に限定されず、例えば、濾過フィルターによる濾過により除去する方法、振動ふるいにより除去する方法、遠心分離により除去する方法、磁力により除去する方法等が挙げられる。中でも、除去対象が金属成分であるため磁力により除去する方法が好ましい。磁力により除去する方法としては、金属成分が除去できる方法であれば特に限定はされないが、生産性および除去効率を考慮すると、好ましくは結着剤の製造ライン中に磁気フィルターを配置することで行われる。 The method for removing the particulate metal component from the binder aqueous dispersion or the binder solution in the particulate metal removal step is not particularly limited. For example, the removal method by filtration using a filtration filter, the removal method using a vibrating sieve, and centrifugation. And a method of removing by magnetic force. Especially, since the removal object is a metal component, the method of removing by magnetic force is preferable. The method for removing by magnetic force is not particularly limited as long as it is a method that can remove the metal component. However, in consideration of productivity and removal efficiency, it is preferable to place a magnetic filter in the binder production line. Is called.
 また、結着剤は、カチオン性基またはアニオン性基を有することが好ましい。
 カチオン性基とは、置換基がカチオン性の化学官能性を有する基であり、置換基は、式R1234+(A-)を有し、式中、R1は、以下の通りである。
Further, the binder preferably has a cationic group or an anionic group.
A cationic group is a group in which the substituent has cationic chemical functionality, and the substituent has the formula R 1 R 2 R 3 R 4 N + (A ), wherein R 1 is Is as follows.
 R1は、式-CH2-CHOH-CH2-、または、-CH2-CH2-であり、R2、R3、R4は、それぞれ独立して、1~20個の炭素原子を有するアルキルまたはアリールアルキル基から選択され、A-は、ハロゲン化物イオン、スルフェートイオン、ホスファートイオン、または、テトラフルオロボラートイオンである。 R 1 is of the formula —CH 2 —CHOH—CH 2 — or —CH 2 —CH 2 —, wherein R 2 , R 3 , R 4 each independently represents 1-20 carbon atoms. Selected from alkyl or arylalkyl groups having A is a halide ion, a sulfate ion, a phosphate ion, or a tetrafluoroborate ion.
 結着剤を製造する際に、カチオン性基含有エチレン性不飽和単量体を共重合し、その後必要に応じて中和処理又は四級化処理することにより、結着剤中にカチオン性基を含有させることができる。カチオン性基含有エチレン性不飽和単量体としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジプロピルアミノエチル(メタ)アクリレート、ジイソプロピルアミノエチル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレート、ジイソブチルアミノエチル(メタ)アクリレート、ジt-ブチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、ジプロピルアミノプロピル(メタ)アクリルアミド、ジイソプロピルアミノプロピル(メタ)アクリルアミド、ジブチルアミノプロピル(メタ)アクリルアミド、ジイソブチルアミノプロピル(メタ)アクリルアミド、ジt-ブチルアミノプロピル(メタ)アクリルアミド等のジアルキルアミノ基を有する(メタ)アクリル酸エステル又は(メタ)アクリルアミド類;ジメチルアミノスチレン、ジメチルアミノメチルスチレン等のジアルキルアミノ基を有するスチレン類;4-ビニルピリジン、2-ビニルピリジン等のビニルピリジン類;N-ビニルイミダゾール等のN-ビニル複素環化合物類;アミノエチルビニルエーテル、ジメチルアミノエチルビニルエーテル等のビニルエーテル類などのアミノ基を有する単量体の、酸中和物あるいは4級アンモニウム塩;ジメチルジアリルアンモニウムクロライド、ジエチルジアリルアンモニウムクロライド等のジアリル型4級アンモニウム塩などが挙げられる。 When the binder is produced, a cationic group-containing ethylenically unsaturated monomer is copolymerized and then neutralized or quaternized as necessary, whereby a cationic group is contained in the binder. Can be contained. Examples of the cationic group-containing ethylenically unsaturated monomer include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dipropylaminoethyl (meth) acrylate, diisopropylaminoethyl (meth) acrylate, dibutylaminoethyl ( (Meth) acrylate, diisobutylaminoethyl (meth) acrylate, di-t-butylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, dipropylaminopropyl (meth) acrylamide, diisopropylaminopropyl (Meth) acrylamide, dibutylaminopropyl (meth) acrylamide, diisobutylaminopropyl (meth) acrylamide, di-t-butylaminopropyl (Meth) acrylic acid ester or (meth) acrylamide having a dialkylamino group such as pill (meth) acrylamide; styrene having a dialkylamino group such as dimethylaminostyrene or dimethylaminomethylstyrene; 4-vinylpyridine, 2- Vinyl pyridines such as vinyl pyridine; N-vinyl heterocyclic compounds such as N-vinyl imidazole; acid neutralized products of monomers having amino groups such as amino ether vinyl ether and vinyl ethers such as dimethylaminoethyl vinyl ether; Quaternary ammonium salts; diallyl-type quaternary ammonium salts such as dimethyldiallylammonium chloride and diethyldiallylammonium chloride.
 また、アニオン性基とは、置換基がアニオン性の化学官能性を有する基であり、アニオン性の化学官能基としては、カルボキシレート、スルフェート、スルホナート、ホスファート、ホスホナート、または、これらの混合物があげられる。 The anionic group is a group in which the substituent has an anionic chemical functionality. Examples of the anionic chemical functional group include carboxylate, sulfate, sulfonate, phosphate, phosphonate, or a mixture thereof. It is done.
 結着剤を製造する際に、アニオン性基含有エチレン性不飽和単量体を共重合させることにより、結着剤中にアニオン性基を含有させることができる。アニオン性基含有エチレン性不飽和単量体としては、特に限定されず、たとえば、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸単量体;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステル単量体;無水マレイン酸、無水シトラコン酸等の多価カルボン酸無水物;などの、エチレン性不飽和カルボン酸単量体;スチレンスルホン酸、アリルオキシベンゼンスルホン酸、メタリルオキシベンゼンスルホン酸、ビニルスルホン酸、アリルスルホン酸、メタリルスルホン酸、4-スルフォニックアシドブチルメタクリレートなどのスルホン酸基を有する単量体;を挙げることができる。これらの単量体は単独で、または2種以上を組み合わせて用いることができる。 When producing the binder, an anionic group can be contained in the binder by copolymerizing an anionic group-containing ethylenically unsaturated monomer. The anionic group-containing ethylenically unsaturated monomer is not particularly limited, and examples thereof include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; itaconic acid, maleic acid, fumaric acid, and butenetricarboxylic acid. Ethylenically unsaturated polycarboxylic acid monomers such as acids; partial ester monomers of ethylenically unsaturated polycarboxylic acids such as monobutyl fumarate, monobutyl maleate, mono-2-hydroxypropyl maleate; maleic anhydride Ethylenically unsaturated carboxylic acid monomers such as styrene sulfonic acid, allyloxybenzene sulfonic acid, methallyloxybenzene sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid , Methallylsulfonic acid, 4-sulfonic acid butyl methacrylate Monomer having a phospho groups; and the like. These monomers can be used alone or in combination of two or more.
 本発明に用いる結着剤中、アニオン性基またはカチオン性基を含有させるために用いられる単量体単位の含有量は、好ましくは0.5~5wt.%、より好ましくは1~4wt.%である。上記単量体単位の含有量が多すぎると得られる電気化学素子電極の抵抗が上がる。また、上記単量体単位の含有量が少なすぎると得られる集電体コート用接着剤塗工液中の凝集物量が増加する。 In the binder used in the present invention, the content of the monomer unit used for containing an anionic group or a cationic group is preferably 0.5 to 5 wt. %, More preferably 1 to 4 wt. %. When there is too much content of the said monomer unit, the resistance of the electrochemical element electrode obtained will go up. Moreover, when there is too little content of the said monomer unit, the amount of aggregates in the adhesive coating liquid for collector coatings obtained will increase.
 本発明に用いる結着剤の形状は、特に限定はないが、粒子状であることが好ましい。粒子状であることにより、結着性が良く、また、作製した電極の容量の低下や充放電の繰り返しによる劣化を抑えることができる。粒子状の結着剤としては、例えば、ラテックスのごとき結着剤の粒子が水に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。 The shape of the binder used in the present invention is not particularly limited, but is preferably particulate. By being in the form of particles, the binding property is good, and it is possible to suppress deterioration of the capacity of the produced electrode and deterioration due to repeated charge and discharge. Examples of the particulate binder include those in which binder particles such as latex are dispersed in water, and powders obtained by drying such a dispersion.
 また、バインダ水分散液における結着剤の平均粒子径は、好ましくは50~500nm、より好ましくは70~400nmである。 Further, the average particle size of the binder in the binder aqueous dispersion is preferably 50 to 500 nm, more preferably 70 to 400 nm.
 結着剤のガラス転移温度(Tg)は、使用目的に応じて適宜選択されるが、好ましくは-40℃以上10℃以下、より好ましくは-35℃以上10℃以下、さらに好ましくは-30℃以上0℃以下の範囲である。結着剤のTgが高すぎると得られる集電体コート用接着剤塗工液のタック性が失われる。また、結着剤のTgが低すぎると得られる電気化学素子電極の強度が低下する。 The glass transition temperature (Tg) of the binder is appropriately selected according to the purpose of use, but is preferably −40 ° C. or higher and 10 ° C. or lower, more preferably −35 ° C. or higher and 10 ° C. or lower, and further preferably −30 ° C. It is the range of 0 degreeC or more. If the Tg of the binder is too high, the tackiness of the current collector coating adhesive coating solution is lost. In addition, when the Tg of the binder is too low, the strength of the obtained electrochemical element electrode is lowered.
 バインダ水分散液の固形分濃度は、集電体コート用接着剤塗工液の製造における作業性が良好である観点から、好ましくは15~70wt.%であり、より好ましくは、20~65wt.%、さらに好ましくは30~60wt.%である。 The solid content concentration of the binder aqueous dispersion is preferably 15 to 70 wt.% From the viewpoint of good workability in the production of the current collector coating adhesive coating liquid. %, More preferably 20 to 65 wt. %, More preferably 30 to 60 wt. %.
 (界面活性剤)
 本発明の集電体コート用接着剤塗工液は、界面活性剤を含んでいてもよい。界面活性剤としては、集電体コート用接着剤塗工液の集電体に対する濡れ性を付与するものであれば特に限定されないが、得られる電気化学素子に及ぼす悪影響が少ない観点から、ノニオン系界面活性剤を用いることが好ましい。ノニオン系界面活性剤としては、ポリオキシアルキレンアルキルアリールエーテル界面活性剤、ポリオキシアルキレンアルキルエーテル界面活性剤、ポリオキシアルキレン脂肪酸エステル界面活性剤、ソルビタン脂肪酸エステル界面活性剤、シリコーン系界面活性剤、アセチレンアルコール系界面活性剤、含フッ素界面活性剤等が挙げられる。
(Surfactant)
The adhesive coating liquid for current collector coating of the present invention may contain a surfactant. The surfactant is not particularly limited as long as it imparts wettability to the current collector of the adhesive coating liquid for current collector coating, but from the viewpoint of less adverse effect on the resulting electrochemical device, nonionic It is preferable to use a surfactant. Nonionic surfactants include polyoxyalkylene alkyl aryl ether surfactants, polyoxyalkylene alkyl ether surfactants, polyoxyalkylene fatty acid ester surfactants, sorbitan fatty acid ester surfactants, silicone surfactants, acetylenes Examples include alcohol surfactants and fluorine-containing surfactants.
 ポリオキシアルキレンアルキルアリールエーテル界面活性剤としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテルを挙げることができる。 Examples of the polyoxyalkylene alkyl aryl ether surfactant include polyoxyethylene nonyl phenyl ether, polyoxyethylene octyl phenyl ether, and polyoxyethylene dodecyl phenyl ether.
 ポリオキシアルキレンアルキルエーテル界面活性剤としては、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテルを挙げることができる。 Examples of the polyoxyalkylene alkyl ether surfactant include polyoxyethylene oleyl ether and polyoxyethylene lauryl ether.
 ポリオキシアルキレン脂肪酸エステル界面活性剤としては、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンラウリン酸エステル、ポリオキシエチレンジステアリン酸エステルを挙げることができる。 Examples of the polyoxyalkylene fatty acid ester surfactant include polyoxyethylene oleate, polyoxyethylene laurate, and polyoxyethylene distearate.
 ソルビタン脂肪酸エステル界面活性剤としては、ソルビタンラウレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンセスキオレエート、ポリオキシエチレンモノオレエート、ポリオキシエチレンステアレート等を挙げることができる。
 シリコーン系界面活性剤としては、ジメチルポリシロキサン等を挙げることができる。
Examples of the sorbitan fatty acid ester surfactant include sorbitan laurate, sorbitan monostearate, sorbitan monooleate, sorbitan sesquioleate, polyoxyethylene monooleate, and polyoxyethylene stearate.
Examples of silicone surfactants include dimethylpolysiloxane.
 アセチレンアルコール系界面活性剤としては、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、3,6-ジメチル-4-オクチン-3,6-ジオール、3,5-ジメチル-1-ヘキシン-3オール等を挙げることができる。
 含フッ素系界面活性剤としては、フッ素アルキルエステル等を挙げることができる。
Examples of acetylene alcohol surfactants include 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 3,6-dimethyl-4-octyne-3,6-diol, 3,5- Examples thereof include dimethyl-1-hexyne-3ol.
Examples of fluorine-containing surfactants include fluorine alkyl esters.
 本発明の集電体コート用接着剤塗工液における界面活性剤の含有量は、0.1wt.%以上3wt.%未満、好ましくは0.1wt.%以上1wt.%未満、より好ましくは0.2wt.%以上0.8wt.%未満である。界面活性剤の含有量が多すぎると得られるリチウムイオン二次電池の抵抗が上昇する。また、界面活性剤の含有量が少なすぎると集電体コート用接着剤塗工液を集電体上に塗工することができない。 The surfactant content in the current collector coating adhesive coating solution of the present invention is 0.1 wt. % Or more and 3 wt. %, Preferably 0.1 wt. % Or more and 1 wt. %, More preferably 0.2 wt. % Or more and 0.8 wt. %. When there is too much content of surfactant, the resistance of the lithium ion secondary battery obtained will rise. Moreover, when there is too little content of surfactant, the adhesive coating liquid for collector coating cannot be applied on a collector.
 (タック性付与材)
 本発明の集電体コート用接着剤塗工液は、タック性付与材を含んでいてもよい。タック性付与材としては、多価アルコールが好ましく用いられ、その具体例としては、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン等が挙げられる。これらの多価アルコールは1種または2種以上を組み合わせて用いることができる。これらの中でも、揮発性と可塑性の観点からグリセリン又はプロピレングリコールを用いることが特に好ましい。
 本発明の集電体コート用接着剤塗工液におけるタック性付与材の含有量は、好ましくは0.5~10wt.%、より好ましくは1~5wt.%である。タック性付与材の含有量が多すぎると得られるリチウムイオン二次電池の性能が悪化する。また、タック性付与材の含有量が少なすぎると所望のタック性を付与することができない。
(Tacking material)
The adhesive coating liquid for current collector coating of the present invention may contain a tackiness-imparting material. As the tackiness-imparting material, polyhydric alcohol is preferably used, and specific examples thereof include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. These polyhydric alcohols can be used alone or in combination of two or more. Among these, it is particularly preferable to use glycerin or propylene glycol from the viewpoints of volatility and plasticity.
The content of the tackiness-imparting material in the current collector coating adhesive coating solution of the present invention is preferably 0.5 to 10 wt. %, More preferably 1 to 5 wt. %. When the content of the tackiness-imparting material is too large, the performance of the obtained lithium ion secondary battery is deteriorated. Moreover, when there is too little content of a tackiness provision material, desired tackiness cannot be imparted.
 (集電体コート用接着剤塗工液)
 本発明の集電体コート用接着剤塗工液の製造方法は、特に限定はされず、上記各固形成分を分散媒に分散させることができればいかなる手段であってもよい。たとえば、結着剤を含むバインダ水分散液、必要に応じて用いられる界面活性剤および/またはタック性付与材を一括して混合し、その後必要に応じ分散媒を添加し、水を添加することにより分散液の固形分濃度を調整してもよい。また、界面活性剤およびタック性付与材の少なくとも一方を水に溶解または分散した状態で、結着剤を含むバインダ水分散液に添加してもよい。
(Adhesive coating solution for current collector coating)
The method for producing the current collector coating adhesive coating liquid of the present invention is not particularly limited, and any means may be used as long as each solid component can be dispersed in a dispersion medium. For example, a binder aqueous dispersion containing a binder, a surfactant and / or tackiness-imparting material used as needed are mixed together, and then a dispersion medium is added as necessary and water is added. May adjust the solid content concentration of the dispersion. Further, at least one of the surfactant and the tackiness-imparting material may be added to the binder aqueous dispersion containing the binder in a state where it is dissolved or dispersed in water.
 集電体コート用接着剤塗工液の粘度は、塗布法にもよるが、集電体上に均一な接着剤層が形成できる観点から、好ましくは10~10,000mPa・s、より好ましくは20~5,000mPa・s、さらに好ましくは50~2,000mPa・sである。 The viscosity of the current collector coating adhesive coating liquid depends on the coating method, but is preferably 10 to 10,000 mPa · s, more preferably from the viewpoint of forming a uniform adhesive layer on the current collector. 20 to 5,000 mPa · s, more preferably 50 to 2,000 mPa · s.
 また、集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は固形分量に対して0.3wt.%未満であり、0.2wt.%未満であることが好ましく、0.1wt.%未満であることがより好ましい。ここで、マーロン式機械安定性試験で発生した凝集物量は、試料中の固形分量に対する凝集物量(残渣)の割合(wt.%)であり、凝集物量はマーロン式機械的安定性試験で発生した凝集物を100メッシュの金網で捕集し、乾燥することにより得られる。マーロン式機械安定性試験で発生した凝集物量が多すぎると、集電体コート用接着剤塗工液の塗工中に凝集物が発生する。 Also, the amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating was 0.3 wt. %, 0.2 wt. %, Preferably 0.1 wt. More preferably, it is less than%. Here, the aggregate amount generated in the Marlon mechanical stability test is the ratio (wt.%) Of the aggregate amount (residue) to the solid content in the sample, and the aggregate amount was generated in the Marlon mechanical stability test. The agglomerates are collected by a 100 mesh wire net and dried. If the amount of aggregate generated in the Marlon mechanical stability test is too large, aggregates are generated during the application of the current collector coating adhesive coating solution.
 また、集電体コート用接着剤塗工液の銅箔に対する接触角は、60°未満、好ましくは50°未満、より好ましくは45°未満である。接触角が大きすぎると、塗工時に集電体コート用接着剤塗工液がはじかれるため、塗工することができない。 The contact angle of the current collector coating adhesive coating solution with respect to the copper foil is less than 60 °, preferably less than 50 °, more preferably less than 45 °. If the contact angle is too large, the current collector coating adhesive coating solution is repelled at the time of coating, so that the coating cannot be performed.
 また、集電体コート用接着剤塗工液のループタック試験での測定結果は、集電体コート用接着剤塗工液を集電体に塗工した状態で行うループタック試験により測定することができ、0.5N/25mm以上、好ましくは1.0N/25mm以上、より好ましくは2.0N/25mm以上である。ここで、ループタック試験の測定結果は、FINAT-1991 FTM-9(Quick-stick tack measurement)に準じて、25℃の雰囲気下でのループタックを測定することにより求めたものである。尚、上記ループタック試験におけるテストパネルには、本発明の集電体コート用接着剤塗工液を厚さ2μmで塗布したポリエチレンテレフタレートフィルムを使用した。
 ループタック試験での測定結果が小さすぎると、集電体コート用接着剤塗工液により形成される接着剤層の接着力が低下する。
In addition, the measurement result in the loop tack test of the adhesive coating liquid for the current collector coat should be measured by the loop tack test performed in a state where the current collector coating liquid is applied to the current collector. 0.5 N / 25 mm or more, preferably 1.0 N / 25 mm or more, more preferably 2.0 N / 25 mm or more. Here, the measurement result of the loop tack test is obtained by measuring the loop tack under an atmosphere of 25 ° C. according to FINAT-1991 FTM-9 (Quick-stick tack measurement). In addition, the polyethylene terephthalate film which apply | coated the adhesive coating liquid for collector coatings of this invention by 2 micrometers in thickness was used for the test panel in the said loop tack test.
If the measurement result in the loop tack test is too small, the adhesive force of the adhesive layer formed by the current collector coating adhesive coating solution is reduced.
 (接着剤層付集電体)
 本発明の集電体コート用接着剤塗工液を集電体上に塗工することにより集電体上に接着剤層を形成した接着剤層付集電体を得ることができる。
(Current collector with adhesive layer)
By applying the adhesive coating liquid for current collector coating of the present invention onto the current collector, a current collector with an adhesive layer in which an adhesive layer is formed on the current collector can be obtained.
 集電体の材料は、例えば、金属、炭素、導電性高分子などであり、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。 The material of the current collector is, for example, metal, carbon, conductive polymer, etc., and metal is preferably used. As the current collector metal, aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
 集電体の厚みは、好ましくは5~100μm、より好ましくは8~70μm、さらに好ましくは10~50μmである。 The thickness of the current collector is preferably 5 to 100 μm, more preferably 8 to 70 μm, and still more preferably 10 to 50 μm.
 接着剤層の塗工方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ダイコート法、ハケ塗りなどによって、集電体上に接着剤層が形成される。また、剥離紙上に、接着剤層を形成した後に、これを集電体に転写してもよい。 The method for applying the adhesive layer is not particularly limited. For example, the adhesive layer is formed on the current collector by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a die coating method, brushing, or the like. Further, after forming an adhesive layer on the release paper, it may be transferred to a current collector.
 また、塗工された接着剤層を乾燥させてもよく、乾燥方法としては、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、熱風による乾燥法、遠赤外線の照射による乾燥法が好ましい。乾燥温度と乾燥時間は、集電体上に塗布した集電体コート用接着剤塗工液中の溶媒を完全に除去できる温度と時間が好ましく、乾燥温度は通常50~300℃、好ましくは80~250℃である。乾燥時間は、通常2時間以下、好ましくは5秒~30分である。なお、本発明の集電体コート用接着剤塗工液により形成される接着剤層は、集電体への塗工後、加熱することなくタックを有することが好ましい。 The coated adhesive layer may be dried, and examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. It is done. Of these, a drying method using hot air and a drying method using irradiation with far infrared rays are preferable. The drying temperature and the drying time are preferably a temperature and a time at which the solvent in the current collector coating adhesive coating solution coated on the current collector can be completely removed. The drying temperature is usually 50 to 300 ° C., preferably 80 ° C. ~ 250 ° C. The drying time is usually 2 hours or less, preferably 5 seconds to 30 minutes. In addition, it is preferable that the adhesive bond layer formed with the adhesive agent coating liquid for collector coating of this invention has a tack | tuck, without heating after the coating to a collector.
 接着剤層の厚みは、後述する電極活物質層との密着性が良好で、かつ、低抵抗である電極が得られる観点から、0.5~5μm、好ましくは0.5~4μm、特に好ましくは0.5~3μmである。 The thickness of the adhesive layer is 0.5 to 5 μm, preferably 0.5 to 4 μm, particularly preferably from the viewpoint of obtaining an electrode having good adhesion to the electrode active material layer described later and having low resistance. Is 0.5 to 3 μm.
 接着剤層は、集電体コート用接着剤塗工液の固形分組成に応じた組成を有し、結着剤、必要に応じて用いられる界面活性剤及びタック性付与材を含む。 The adhesive layer has a composition corresponding to the solid content composition of the adhesive coating liquid for current collector coating, and includes a binder, a surfactant used as needed, and a tackifier.
 (電気化学素子電極)
 上記接着剤層付集電体上に電極活物質層を形成することにより電気化学素子電極を得ることができる。電極活物質層の形成方法は、特に限定されないが、電極活物質を含む複合粒子を用いて、電極活物質層を接着剤層付集電体上に積層することが好ましい。
(Electrochemical element electrode)
An electrochemical element electrode can be obtained by forming an electrode active material layer on the current collector with an adhesive layer. Although the formation method of an electrode active material layer is not specifically limited, It is preferable to laminate | stack an electrode active material layer on an electrical power collector with an adhesive layer using the composite particle containing an electrode active material.
 電極活物質層を接着剤層付集電体上に積層する際には、複合粒子をシート状に成形し、次いで接着剤層付集電体上に積層してもよいが、接着剤層付集電体上で複合粒子を直接加圧成形する方法が好ましい。加圧成形する方法としては、例えば、一対のロールを備えたロール式加圧成形装置を用い、接着剤層付集電体をロールで送りながら、スクリューフィーダー等の供給装置で複合粒子をロール式加圧成形装置に供給することで、接着剤層付集電体上に電極活物質層を成形するロール加圧成形法や、複合粒子を接着剤層付集電体上に散布し、複合粒子をブレード等でならして厚みを調整し、次いで加圧装置で成形する方法、複合粒子を金型に充填し、金型を加圧して成形する方法などが挙げられる。これらのなかでも、ロール加圧成形法が好ましい。特に、本発明の複合粒子は、高い流動性を有しているため、その高い流動性により、ロール加圧成形による成形が可能であり、これにより、生産性の向上が可能となる。 When laminating the electrode active material layer on the current collector with the adhesive layer, the composite particles may be formed into a sheet and then laminated on the current collector with the adhesive layer. A method in which the composite particles are directly pressure-molded on the current collector is preferred. As a method for pressure molding, for example, a roll type pressure molding apparatus provided with a pair of rolls is used, and a composite particle is rolled by a supply device such as a screw feeder while feeding the current collector with an adhesive layer by the roll. By supplying to the pressure forming device, roll pressure forming method for forming the electrode active material layer on the current collector with the adhesive layer, or by dispersing the composite particles on the current collector with the adhesive layer, For example, a method of adjusting the thickness with a blade or the like, and then forming with a pressurizing apparatus, a method of filling composite particles into a mold, and pressing the mold to form. Among these, the roll pressure molding method is preferable. In particular, since the composite particles of the present invention have high fluidity, they can be molded by roll press molding due to the high fluidity, thereby improving productivity.
 ロール加圧成形を行う際のロール温度は、電極活物質層と接着剤層付集電体との密着性を十分なものとすることができる観点から、好ましくは25~200℃、より好ましくは50~150℃、さらに好ましくは80~120℃である。また、ロール加圧成形時のロール間のプレス線圧は、電極活物質層の厚みの均一性を向上させることができる観点から、好ましくは10~1000kN/m、より好ましくは200~900kN/m、さらに好ましくは300~600kN/mである。また、ロール加圧成形時の成形速度は、好ましくは0.1~20m/分、より好ましくは4~10m/分である。 The roll temperature at the time of roll pressing is preferably 25 to 200 ° C., more preferably from the viewpoint of ensuring sufficient adhesion between the electrode active material layer and the current collector with the adhesive layer. The temperature is 50 to 150 ° C, more preferably 80 to 120 ° C. Further, the press linear pressure between the rolls during roll pressing is preferably 10 to 1000 kN / m, more preferably 200 to 900 kN / m, from the viewpoint of improving the uniformity of the thickness of the electrode active material layer. More preferably, it is 300 to 600 kN / m. Further, the molding speed at the time of roll press molding is preferably 0.1 to 20 m / min, more preferably 4 to 10 m / min.
 また、成形した電気化学素子電極の厚みのばらつきを無くし、電極活物質層の密度を上げて高容量化を図るために、必要に応じてさらに後加圧を行ってもよい。後加圧の方法は、ロールによるプレス工程が好ましい。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませることにより加圧する。この際においては、必要に応じて、ロールは加熱又は冷却等、温度調節してもよい。 Further, post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the formed electrochemical element electrode and increase the density of the electrode active material layer to increase the capacity. The post-pressing method is preferably a pressing process using a roll. In the roll pressing step, two cylindrical rolls are arranged vertically in parallel with a narrow interval, each is rotated in the opposite direction, and pressure is applied by interposing an electrode therebetween. In this case, the temperature of the roll may be adjusted as necessary, such as heating or cooling.
 (複合粒子)
 複合粒子としては、電極活物質、結着剤および必要に応じ添加される水溶性高分子、導電剤等他の成分を用いて造粒することにより得られる。複合粒子の製造方法は特に限定されないが、電極活物質、結着剤および必要に応じ添加される導電剤等他の成分を含む複合粒子用スラリーを用いて、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、および溶融造粒法などの製造方法によって得ることができる。これらのなかでも、複合粒子を比較的容易に製造することができる観点から、噴霧乾燥造粒法が好ましい。
(Composite particles)
The composite particles can be obtained by granulation using an electrode active material, a binder, and other components such as a water-soluble polymer and a conductive agent added as necessary. The production method of the composite particles is not particularly limited, and a slurry for composite particles containing other components such as an electrode active material, a binder, and a conductive agent that is added as necessary is used. Manufacture of granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed granulation method, fluidized bed multifunctional granulation method, and melt granulation method It can be obtained by the method. Among these, the spray-drying granulation method is preferable from the viewpoint that the composite particles can be produced relatively easily.
 (複合粒子用スラリー)
 複合粒子の製造に用いる複合粒子用スラリーは電極活物質、導電剤、結着剤および必要に応じて添加される他の成分が分散媒に分散または溶解されてなる。
(Slurry for composite particles)
The slurry for composite particles used for the manufacture of composite particles is obtained by dispersing or dissolving an electrode active material, a conductive agent, a binder, and other components added as necessary, in a dispersion medium.
 (電極活物質)
 電気化学素子がリチウムイオン二次電池である場合の、リチウムイオン二次電池正極用の電極活物質(正極活物質)としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
(Electrode active material)
When the electrochemical element is a lithium ion secondary battery, examples of the electrode active material (positive electrode active material) for the positive electrode of the lithium ion secondary battery include metal oxides capable of reversibly doping and dedoping lithium ions. It is done. Examples of the metal oxide include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate. In addition, the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
 なお、リチウムイオン二次電池正極の対極としての負極の活物質(負極活物質)としては、たとえば、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム等の酸化物等が挙げられる。なお、上記にて例示した負極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。 Examples of the negative electrode active material (negative electrode active material) as the counter electrode of the lithium ion secondary battery positive electrode include low crystalline carbon (amorphous) such as graphitizable carbon, non-graphitizable carbon, and pyrolytic carbon. Carbon), graphite (natural graphite, artificial graphite), alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, and lithium titanate. In addition, the negative electrode active material illustrated above may be used independently according to a use suitably, and may be used in mixture of multiple types.
 リチウムイオン二次電池電極用の電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が粒状であると、電極成形時により高密度な電極が形成できる。 The shape of the electrode active material for the lithium ion secondary battery electrode is preferably a granulated particle. When the shape of the particles is granular, a higher-density electrode can be formed during electrode molding.
 リチウムイオン二次電池電極用の電極活物質の体積平均粒子径は、正極、負極ともに通常0.1~100μm、好ましくは0.5~50μm、より好ましくは0.8~30μmである。 The volume average particle diameter of the electrode active material for the lithium ion secondary battery electrode is usually 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably 0.8 to 30 μm for both the positive electrode and the negative electrode.
 (導電剤)
 本発明に用いる導電剤の具体例としては、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックがより好ましい。
 これらの導電剤は、単独でまたは二種類以上組み合わせて用いることができる。
(Conductive agent)
Specific examples of the conductive agent used in the present invention include conductive carbon black such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap). Among these, acetylene black and furnace black are more preferable.
These conductive agents can be used alone or in combination of two or more.
 (結着剤)
 複合粒子の製造に用いる結着剤としては、上記の集電体コート用接着剤塗工液に用いる結着剤と同様の結着剤を用いることができる。
(Binder)
As the binder used for the production of the composite particles, the same binder as that used in the above-described current collector coating adhesive coating solution can be used.
 (他の成分)
 複合粒子用スラリーは、必要に応じて分散剤等の他の成分を含んでもよい。分散剤の具体例としては、カルボキシメチルセルロース、メチルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウムまたはアルカリ金属塩などが挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。
(Other ingredients)
The composite particle slurry may contain other components such as a dispersant as required. Specific examples of the dispersant include cellulose polymers such as carboxymethyl cellulose and methyl cellulose, and ammonium or alkali metal salts thereof. These dispersants can be used alone or in combination of two or more.
 (複合粒子の製造)
 複合粒子は、電極活物質、導電剤、結着剤および必要に応じて添加される他の成分を含む上記スラリーを例えば、噴霧乾燥することにより得られる。ここで、複合粒子は、少なくとも電極活物質、導電剤および結着剤を含んでなるが、前記のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である電極活物質、結着剤を含む2成分以上によって一粒子を形成するものである。具体的には、前記2成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個~数十個)の電極活物質が、結着剤によって結着されて粒子を形成しているものが好ましい。
(Manufacture of composite particles)
The composite particles can be obtained, for example, by spray drying the slurry containing the electrode active material, the conductive agent, the binder, and other components added as necessary. Here, the composite particle includes at least an electrode active material, a conductive agent, and a binder. However, each of the composite particles does not exist as an independent particle, but is an electrode active material that is a constituent, a binder. One particle is formed by two or more components including an agent. Specifically, a plurality of (more preferably several to several tens) electrode active materials are formed by binding a plurality of individual particles of the two or more components to form secondary particles. It is preferable that the particles are bound to form particles.
 複合粒子の平均粒子径は、所望の厚みの電極活物質層を容易に得ることができる観点から、好ましくは0.1~200μm、より好ましくは1~150μm、さらに好ましくは10~80μmである。なお、本発明において平均粒子径とは、レーザー回折式粒度分布測定装置(たとえば、SALD-3100;島津製作所製)にて測定し、算出される体積平均粒子径である。 The average particle diameter of the composite particles is preferably 0.1 to 200 μm, more preferably 1 to 150 μm, and still more preferably 10 to 80 μm, from the viewpoint that an electrode active material layer having a desired thickness can be easily obtained. In the present invention, the average particle size is a volume average particle size calculated by measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3100; manufactured by Shimadzu Corporation).
 (電気化学素子)
 電気化学素子電極の使用態様としては、かかる電極を用いたリチウムイオン二次電池、リチウムイオンキャパシタなどが挙げられ、リチウムイオン二次電池が好適である。たとえばリチウムイオン二次電池は、上述のようにして得られる電気化学素子電極を正極および負極の少なくとも一方に用い、さらにセパレータおよび電解液を備える。
(Electrochemical element)
Examples of usage of the electrochemical element electrode include a lithium ion secondary battery and a lithium ion capacitor using such an electrode, and a lithium ion secondary battery is preferable. For example, a lithium ion secondary battery uses an electrochemical element electrode obtained as described above as at least one of a positive electrode and a negative electrode, and further includes a separator and an electrolytic solution.
 (セパレータ)
 セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や、芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;などを用いることができる。
(Separator)
As the separator, for example, a polyolefin resin such as polyethylene or polypropylene, a microporous film or a nonwoven fabric containing an aromatic polyamide resin, a porous resin coat containing an inorganic ceramic powder, or the like can be used.
 セパレータの厚さは、リチウムイオン二次電池内でのセパレータによる抵抗が小さくなり、またリチウムイオン二次電池を製造する時の作業性に優れる観点から、好ましくは0.5~40μm、より好ましくは1~30μm、さらに好ましくは1~25μmである。 The thickness of the separator is preferably 0.5 to 40 μm, more preferably from the viewpoint of reducing resistance due to the separator in the lithium ion secondary battery and excellent workability when manufacturing the lithium ion secondary battery. The thickness is 1 to 30 μm, more preferably 1 to 25 μm.
 (電解液)
 電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1wt.%以上、好ましくは5wt.%以上、また通常は30wt.%以下、好ましくは20wt.%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
(Electrolyte)
The electrolytic solution is not particularly limited. For example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more. The amount of the supporting electrolyte is usually 1 wt. % Or more, preferably 5 wt. % Or more, and usually 30 wt. % Or less, preferably 20 wt. % Or less. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類、1,2-ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。また、電解液には添加剤を含有させて用いることも可能である。また、添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。 The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Usually, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene. Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane; tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive. The additive is preferably a carbonate compound such as vinylene carbonate (VC).
 上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、Li3N、Li2S-P25ガラスセラミックなどの無機固体電解質を挙げることができる。 Other electrolytic solutions include gel polymer electrolytes in which a polymer electrolyte such as polyethylene oxide or polyacrylonitrile is impregnated with an electrolytic solution, lithium sulfide, LiI, Li 3 N, Li 2 SP—P 2 S 5 glass ceramic, etc. An inorganic solid electrolyte can be mentioned.
 リチウムイオン二次電池は、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口して得られる。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。 A lithium ion secondary battery is obtained by stacking a negative electrode and a positive electrode through a separator, winding this according to the shape of the battery, folding it into a battery container, pouring the electrolyte into the battery container and sealing it. It is done. Further, if necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge. The shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
 本発明の、集電体コート用接着剤塗工液によれば、長尺成形時においても良好な性能を有する電気化学素子電極を製造することができる。 According to the adhesive coating liquid for current collector coating of the present invention, an electrochemical element electrode having good performance can be produced even during long molding.
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。
 実施例及び比較例において、ピール強度、及び容量維持率の評価はそれぞれ以下のように行った。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily changed without departing from the gist and equivalent scope of the present invention. Can be implemented. In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified.
In Examples and Comparative Examples, peel strength and capacity maintenance rate were evaluated as follows.
<ピール強度>
 実施例及び比較例で得られた接着剤層付集電体のうち、終わり(終端部のこと、以下同じ)50mを用いて製造したリチウムイオン二次電池電極(実施例7においては負極、それ以外の実施例及び比較例においては正極)を、長さ100mm、幅10mmの長方形に切り出して試験片とした。この試験片を、試験台に固定されたセロハンテープに貼付した。貼付に際しては、電極活物質層側の表面を下にして、電極活物質層側の表面とセロハンテープの粘着面とを接触させた。セロハンテープとしてはJIS  Z1522に規定されるものを用いた。
<Peel strength>
Of the current collectors with adhesive layers obtained in the examples and comparative examples, a lithium ion secondary battery electrode manufactured using 50 m at the end (the end portion, the same shall apply hereinafter) (in Example 7, a negative electrode, In Examples and Comparative Examples other than the above, a positive electrode) was cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece. This test piece was affixed to the cellophane tape fixed to the test stand. When sticking, the surface on the electrode active material layer side was faced down, and the surface on the electrode active material layer side and the adhesive surface of the cellophane tape were brought into contact. As the cellophane tape, one specified in JIS Z1522 was used.
 その後、集電体の一端を垂直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、その平均値を求めて、当該平均値をピール強度とした。ピール強度が大きいほど、電極活物質層の集電体への結着力が大きいこと、すなわち、密着強度が大きいことを示す。
  A:3.0N/m以上
  B:2.0N/m以上、3.0N/m未満
  C:1.0N/m以上、2.0N/m未満
  D:1.0N/m未満
Then, the stress when one end of the current collector was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed 3 times, the average value was calculated | required, and the said average value was made into peel strength. The higher the peel strength, the higher the binding force of the electrode active material layer to the current collector, that is, the higher the adhesion strength.
A: 3.0 N / m or more B: 2.0 N / m or more, less than 3.0 N / m C: 1.0 N / m or more, less than 2.0 N / m D: Less than 1.0 N / m
<容量維持率(終わり50m及び最初50m)>
 実施例及び比較例で得られた接着剤層付集電体のうち、終わり50m及び最初50mを用いて製造したリチウムイオン二次電池について、それぞれ60℃で0.5Cの定電流定電圧充電法にて、4.2Vになるまで定電流で充電し、その後、定電圧で充電し、次いで、0.5Cの定電流で3.0Vまで放電する充放電サイクル試験を行った。充放電サイクル試験は100サイクルまで行った。初期放電容量に対する100サイクル目の放電容量の比を容量維持率として求めた。各実施例及び比較例において10サンプル作製し、10サンプル中最も容量維持率が小さかったものについて、下記の基準で判定した。この値が大きいほど繰り返し充放電による容量減が少ないことを示す。
  A:容量維持率が90%以上
  B:容量維持率が80%以上、90%未満
  C:容量維持率が70%以上、80%未満
  D:容量維持率が60%以上、70%未満
  E:容量維持率が60%未満
<Capacity maintenance rate (end 50m and first 50m)>
Of the current collectors with adhesive layers obtained in the examples and comparative examples, the lithium ion secondary batteries manufactured using the final 50 m and the initial 50 m were each subjected to a constant current constant voltage charging method of 0.5 C at 60 ° C. The battery was charged at a constant current until 4.2V, then charged at a constant voltage, and then a charge / discharge cycle test was performed to discharge to 3.0V at a constant current of 0.5C. The charge / discharge cycle test was conducted up to 100 cycles. The ratio of the discharge capacity at the 100th cycle to the initial discharge capacity was determined as the capacity retention rate. In each example and comparative example, 10 samples were produced, and the sample having the smallest capacity retention rate among the 10 samples was determined according to the following criteria. It shows that the capacity | capacitance reduction by repeated charging / discharging is so small that this value is large.
A: Capacity maintenance rate is 90% or more B: Capacity maintenance rate is 80% or more and less than 90% C: Capacity maintenance rate is 70% or more and less than 80% D: Capacity maintenance rate is 60% or more and less than 70% E: Capacity maintenance rate is less than 60%
 また、実施例及び比較例において得られた集電体コート用接着剤塗工液について、以下のようにマーロン式機械安定性試験、ループタック試験、及び接触角測定を行った。 Moreover, the Marlon mechanical stability test, the loop tack test, and the contact angle measurement were performed on the current collector coating adhesive coating solutions obtained in the examples and comparative examples as follows.
<マーロン式機械安定性試験>
 実施例及び比較例で得られた集電体コート用接着剤塗工液のpHを8±0.1に調整し、100メッシュ金網で濾過した後、固形分濃度を30%に調整した。これを100メッシュ金網で濾過した後、マーロン式機械的安定性試験に供した。条件は、回転数1000rpm、加重15kg、10分間とした。マーロン式機械安定性試験後の集電体コート用接着剤塗工液を100メッシュ金網で濾過し、金網上に濾取された凝集物を乾燥後、秤量して凝集物発生量を求め、供試された集電体コート用接着剤塗工液の固形分重量に対する割合(%)を求めた。
<Marlon mechanical stability test>
The pH of the adhesive coating solution for current collector coating obtained in Examples and Comparative Examples was adjusted to 8 ± 0.1, filtered through a 100 mesh wire net, and then the solid content concentration was adjusted to 30%. This was filtered through a 100 mesh wire net and then subjected to a Marlon mechanical stability test. The conditions were a rotational speed of 1000 rpm, a load of 15 kg, and 10 minutes. The adhesive coating liquid for current collector coating after the Marlon mechanical stability test is filtered through a 100 mesh wire mesh, and the aggregates collected on the wire mesh are dried and weighed to determine the aggregate generation amount. The ratio (%) with respect to the solid content weight of the tested adhesive coating liquid for current collector coating was determined.
<ループタック試験>
 FINAT-1991 FTM-9(Quick-stick  tack  measurement)に準じて、実施例及び比較例で得られた集電体コート用接着剤塗工液を塗工した集電体の25℃の雰囲気下でのループタックを測定し、タック性を評価した。値が大きいものほど、タック性に優れる。
<Loop tack test>
In accordance with FINAT-1991 FTM-9 (Quick-stick tack measurement), under the atmosphere at 25 ° C. of the current collector coated with the current collector coating adhesive coating liquid obtained in Examples and Comparative Examples The loop tack was measured and the tackiness was evaluated. The larger the value, the better the tackiness.
<接触角測定>
 実施例および比較例で得られた集電体コート用接着剤塗工液の接触角を、協和界面科学株式会社製「DMs-400」を用いて観察した。具体的には、前記集電体コート用接着剤塗工液を、電解銅箔(古河電工社製 製品名「NC-WS」 厚さ20μm)の電解面上に2μL滴下した。滴下後1分後の液滴を、水平方向から測定装置を用いて観察した。観察された像から、θ/2法により電解銅箔と集電体コート用接着剤塗工液との接触角を算出した。
<Contact angle measurement>
The contact angles of the current collector coating adhesive coating solutions obtained in Examples and Comparative Examples were observed using “DMs-400” manufactured by Kyowa Interface Science Co., Ltd. Specifically, 2 μL of the current collector coating adhesive coating solution was dropped on the electrolytic surface of an electrolytic copper foil (product name “NC-WS”, thickness 20 μm, manufactured by Furukawa Electric). A droplet 1 minute after the dropping was observed from the horizontal direction using a measuring device. From the observed image, the contact angle between the electrolytic copper foil and the current collector coating adhesive coating solution was calculated by the θ / 2 method.
 実施例及び比較例の集電体コート用接着剤塗工液、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池は以下のように作製した。 The adhesive coating liquid for collector coating, the lithium ion secondary battery positive electrode, the lithium ion secondary battery negative electrode, and the lithium ion secondary battery of Examples and Comparative Examples were produced as follows.
 (実施例1)
 (結着剤の製造)
 攪拌機付きのオートクレーブにイオン交換水300部、n-ブチルアクリレート93.8部、アクリロニトリル2部、アリルグリシンエーテル1.0部、イタコン酸2.0部、N-メチロールアクリルアミド1.2部および分子量調整剤としてt-ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に攪拌した後、70℃に加温して重合し、結着剤として固形分濃度40%のアクリル系重合体を含む粒子状の結着剤(アクリレートバインダ)の水分散液を得た。固形分濃度から求めた重合転化率は略99%であった。また、得られた粒子状の結着剤のTgは-20℃であった。
Example 1
(Manufacture of binder)
In an autoclave equipped with a stirrer, 300 parts of ion-exchanged water, 93.8 parts of n-butyl acrylate, 2 parts of acrylonitrile, 1.0 part of allyl glycine ether, 2.0 parts of itaconic acid, 1.2 parts of N-methylol acrylamide and molecular weight adjustment Add 0.05 part of t-dodecyl mercaptan as the agent and 0.3 part of potassium persulfate as the polymerization initiator, and after sufficiently stirring, polymerize by heating to 70 ° C., solid content concentration of 40% as the binder An aqueous dispersion of a particulate binder (acrylate binder) containing an acrylic polymer was obtained. The polymerization conversion rate determined from the solid content concentration was approximately 99%. The obtained particulate binder had a Tg of −20 ° C.
 (集電体コート用接着剤塗工液の製造)
 上記結着剤が固形分換算量で40wt.%、界面活性剤としてノニオン系界面活性剤であるディスパノールTOC(日油株式会社製)が0.5wt.%、タック性付与材としてプロピレングリコール(以下、「PG」ということがある。)が1wt.%となるように結着剤、界面活性剤、タック性付与材及び水を混合することにより、集電体コート用接着剤塗工液を得た。得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.05wt.%、銅箔に対する接触角は30°であった。
(Manufacture of adhesive coating liquid for current collector coating)
The binder is 40 wt. %, Dispanol TOC (manufactured by NOF Corporation), which is a nonionic surfactant, is 0.5 wt. %, Propylene glycol (hereinafter sometimes referred to as “PG”) as a tackiness-imparting material is 1 wt. A binder, a surfactant, a tackiness-imparting material, and water were mixed so as to obtain an adhesive coating solution for current collector coating. The amount of agglomerates generated in the Marlon mechanical stability test of the obtained current collector coating adhesive coating liquid was 0.05 wt. %, The contact angle to the copper foil was 30 °.
 (複合粒子の製造)
 正極活物質としてコバルト酸リチウム(LiCoO2、以下、「LCO」という。)(粒子径:6μm)92部、上記結着剤を固形分換算量で2.0部、導電剤としてアセチレンブラック(電気化学工業社製デンカブラック粉状品:粒子径35nm、比表面積68m2/g)5.0部、分散剤としてカルボキシメチルセルロースの1.5%水溶液(DN-800H:ダイセル化学工業社製)を固形分換算量で1.0部混合し、さらにイオン交換水を固形分濃度が40%となるように加え、混合分散して正極用の複合粒子用スラリーを得た。この正極用の複合粒子用スラリーをスプレー乾燥機(大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)を用い、回転数25,000rpm、熱風温度150℃、粒子回収出口の温度を90℃として噴霧乾燥造粒を行い、複合粒子を得た。この複合粒子の平均体積粒子径は50μmであった。
(Manufacture of composite particles)
92 parts of lithium cobaltate (LiCoO 2 , hereinafter referred to as “LCO”) (particle diameter: 6 μm) as the positive electrode active material, 2.0 parts of the above binder in terms of solid content, and acetylene black (electric Denka Black powder product manufactured by Kagaku Kogyo Co., Ltd .: particle size 35 nm, specific surface area 68 m 2 / g) 5.0 parts, 1.5% aqueous solution of carboxymethyl cellulose (DN-800H: manufactured by Daicel Chemical Industries) as a dispersant 1.0 part by volume in terms of the amount was mixed, and ion-exchanged water was further added so that the solid content concentration would be 40%, and mixed and dispersed to obtain a composite particle slurry for the positive electrode. This positive electrode composite particle slurry is spray-dried (manufactured by Okawara Chemical Co., Ltd.), is rotated at a rotational speed of 25,000 rpm, hot air temperature is 150 ° C. Spray drying granulation was performed at a temperature of 90 ° C. to obtain composite particles. The average volume particle diameter of the composite particles was 50 μm.
 (接着剤層の形成)
 厚さ10μmのアルミニウム集電体に集電体コート用接着剤塗工液を、20m/分の成形速度でグラビアコート法により集電体に1000m塗工し、120℃で2分間乾燥して、集電体上に厚さ1.2μmの接着剤層を形成した接着剤層付集電体を得た。得られた接着剤層付集電体における接着剤層のループタックは6N/25mmであった。
(Formation of adhesive layer)
Apply the current collector coating adhesive coating liquid to a 10 μm thick aluminum current collector at a molding speed of 20 m / min by a gravure coating method, and then apply a current of 1000 m to the current collector and dry at 120 ° C. for 2 minutes. A current collector with an adhesive layer in which an adhesive layer having a thickness of 1.2 μm was formed on the current collector was obtained. In the obtained current collector with an adhesive layer, the loop tack of the adhesive layer was 6 N / 25 mm.
 (リチウムイオン二次電池正極の製造)
 接着剤層付集電体を2m/minの速度で搬送し、ロールプレス機(押し切り粗面熱ロール、ヒラノ技研工業社製)のロール(ロール温度100℃、プレス線圧4kN/cm)で正極活物質層を接着剤層付集電体上にシート状に成形し、厚さ60μmのリチウムイオン二次電池正極を得た。
(Manufacture of lithium ion secondary battery positive electrode)
The current collector with an adhesive layer is conveyed at a speed of 2 m / min, and is positively charged by a roll (rolling rough surface hot roll, manufactured by Hirano Giken Kogyo Co., Ltd.) roll (roll temperature 100 ° C., press linear pressure 4 kN / cm). The active material layer was formed into a sheet shape on the current collector with an adhesive layer to obtain a lithium ion secondary battery positive electrode having a thickness of 60 μm.
 (負極用スラリーおよびリチウムイオン二次電池負極の製造)
 負極活物質として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値):0.354nm)96部、スチレン-ブタジエン共重合ラテックス(BM-400B)を固形分換算量で3.0部、分散剤としてカルボキシメチルセルロースの1.5%水溶液(DN-800H:ダイセル化学工業社製)を固形分換算量で1.0部混合し、さらにイオン交換水を固形分濃度が50%となるように加え、混合分散して負極用スラリーを得た。この負極用スラリーを厚さ18μmの銅箔に塗布し、120℃で30分間乾燥した後、ロールプレスして厚さ50μmの負極を得た。
(Manufacture of negative electrode slurry and lithium ion secondary battery negative electrode)
Artificial graphite as the negative electrode active material (average particle size: 24.5 μm, graphite interlayer distance (interval of (002) plane by X-ray diffraction (d value): 9654 nm), 96 parts, styrene-butadiene copolymer latex ( BM-400B) in an amount of 3.0 parts in terms of solid content, and 1.5 parts of a 1.5% aqueous solution of carboxymethyl cellulose (DN-800H: manufactured by Daicel Chemical Industries) as a dispersant was mixed in an amount of 1.0 parts in terms of solid content. Further, ion exchange water was added so as to have a solid content concentration of 50%, and mixed and dispersed to obtain a negative electrode slurry, which was applied to a copper foil having a thickness of 18 μm and dried at 120 ° C. for 30 minutes. Thereafter, roll pressing was performed to obtain a negative electrode having a thickness of 50 μm.
 (セパレータの用意)
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5×5cm2の正方形に切り抜いた。
(Preparation of separator)
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by dry method, porosity 55%) was cut into a 5 × 5 cm 2 square.
 (リチウムイオン二次電池の製造)
 電池の外装として、アルミ包材外装を用意した。上記で得られたリチウムイオン二次電池正極を、4×4cm2の正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。リチウムイオン二次電池正極の正極活物質層の面上に、上記で得られた正方形のセパレータを配置した。さらに、上記で得られたリチウムイオン二次電池負極を、4.2×4.2cm2の正方形に切り出し、負極活物質層側の表面がセパレータに向かい合うように、セパレータ上に配置した。更に、ビニレンカーボネートを2.0%含有する、濃度1.0MのLiPF6溶液を充填した。このLiPF6溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃でヒートシールをしてアルミニウム外装を閉口し、ラミネート型のリチウムイオン二次電池(ラミネート型セル)を製造した。
(Manufacture of lithium ion secondary batteries)
An aluminum packaging exterior was prepared as the battery exterior. The lithium ion secondary battery positive electrode obtained above was cut into a 4 × 4 cm 2 square and placed so that the surface on the current collector side was in contact with the aluminum packaging exterior. The square separator obtained above was disposed on the surface of the positive electrode active material layer of the lithium ion secondary battery positive electrode. Furthermore, the lithium ion secondary battery negative electrode obtained above was cut into a square of 4.2 × 4.2 cm 2 and placed on the separator so that the surface on the negative electrode active material layer side faced the separator. Further, containing the vinylene carbonate 2.0%, was charged with LiPF 6 solution having a concentration of 1.0 M. The solvent of this LiPF 6 solution is a mixed solvent (EC / EMC = 3/7 (volume ratio)) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing was performed at 150 ° C. to close the aluminum exterior, and a laminate type lithium ion secondary battery (laminated cell) was manufactured.
 (実施例2)
 結着剤の製造において、用いるイタコン酸の量を1部とした以外は、実施例1と同様に結着剤の製造を行った。実施例2において得られた粒子状の結着剤のTgは-20℃であった。この結着剤を用いた以外は、実施例1と同様に集電体コート用接着剤塗工液の製造、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
(Example 2)
In the production of the binder, the binder was produced in the same manner as in Example 1 except that the amount of itaconic acid used was 1 part. The Tg of the particulate binder obtained in Example 2 was −20 ° C. Except for using this binder, the production of an adhesive coating solution for current collector coating, the production of a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery in the same manner as in Example 1. Went.
 なお、実施例2において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.1wt.%、銅箔に対する接触角は30°、ループタックは5N/25mmであった。 In addition, the amount of aggregates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 2 was 0.1 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 5 N / 25 mm.
 (実施例3)
 集電体コート用接着剤塗工液の製造において、界面活性剤としてのディスパノールTOCの濃度が0.1wt.%となるように結着剤、界面活性剤、タック性付与材及び水を混合した以外は、実施例1と同様に集電体コート用接着剤塗工液の製造、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
Example 3
In the production of the current collector coating adhesive coating solution, the concentration of Dispanol TOC as the surfactant was 0.1 wt. %, The production of an adhesive coating solution for current collector coating, a lithium ion secondary battery positive electrode in the same manner as in Example 1 except that the binder, surfactant, tackiness-imparting material and water were mixed so that The negative electrode of the lithium ion secondary battery and the lithium ion secondary battery were manufactured.
 なお、実施例3において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.05wt.%、銅箔に対する接触角は50°、ループタックは5N/25mmであった。 In addition, the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 3 was 0.05 wt. %, The contact angle with respect to the copper foil was 50 °, and the loop tack was 5 N / 25 mm.
 (実施例4)
 結着剤の製造において、Tgが0℃の粒子状の結着剤を得た以外は、実施例1と同様に結着剤の製造を行った。この結着剤を用いて実施例1と同様に集電体コート用接着剤塗工液の製造、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
Example 4
In the production of the binder, the binder was produced in the same manner as in Example 1 except that a particulate binder having a Tg of 0 ° C. was obtained. Using this binder, production of an adhesive coating solution for current collector coating, production of a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery were conducted in the same manner as in Example 1. .
 なお、実施例4において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.05wt.%、銅箔に対する接触角は30°、ループタックは1N/25mmであった。 In addition, the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 4 was 0.05 wt. %, The contact angle to the copper foil was 30 °, and the loop tack was 1 N / 25 mm.
 (実施例5)
 集電体コート用接着剤塗工液の製造において、界面活性剤としてのディスパノールTOCの濃度が0.2wt.%、タック性付与材としてのプロピレングリコールの濃度が2wt.%となるように結着剤、界面活性剤、タック性付与材及び水を混合した以外は、実施例4と同様に集電体コート用接着剤塗工液の製造、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
(Example 5)
In the production of the current collector coating adhesive coating solution, the concentration of Dispanol TOC as the surfactant was 0.2 wt. %, The concentration of propylene glycol as a tackifier is 2 wt. % Production of an adhesive coating solution for current collector coating, lithium ion secondary battery positive electrode in the same manner as in Example 4 except that the binder, surfactant, tackiness-imparting material and water were mixed so that The negative electrode of the lithium ion secondary battery and the lithium ion secondary battery were manufactured.
 なお、実施例5において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.05wt.%、銅箔に対する接触角は30°、ループタックは6N/25mmであった。 In addition, the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 5 was 0.05 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 6 N / 25 mm.
 (実施例6)
 集電体コート用接着剤塗工液の製造において、タック性付与材としてグリセリンを用い、界面活性剤としてのディスパノールTOCの濃度が0.8wt.%、タック性付与材としてのグリセリンの濃度が1wt.%となるように結着剤、界面活性剤、タック性付与材及び水を混合した以外は、実施例1と同様に集電体コート用接着剤塗工液の製造、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
(Example 6)
In the production of the adhesive coating liquid for current collector coating, glycerin was used as the tackifier and the concentration of Dispanol TOC as the surfactant was 0.8 wt. %, The concentration of glycerin as a tackifier is 1 wt. %, The production of an adhesive coating solution for current collector coating, a lithium ion secondary battery positive electrode in the same manner as in Example 1 except that the binder, surfactant, tackiness-imparting material and water were mixed so that The negative electrode of the lithium ion secondary battery and the lithium ion secondary battery were manufactured.
 なお、実施例6において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.05wt.%、銅箔に対する接触角は30°、ループタックは5N/25mmであった。 In addition, the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 6 was 0.05 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 5 N / 25 mm.
 (実施例7)
 (集電体コート用接着剤塗工液の製造)
 集電体コート用接着剤塗工液の製造において、結着剤として上記結着剤に代えて、スチレン-ブタジエン共重合ラテックス(BM-400B)(以下、「SBR系バインダ」ということがある。)を用いて、界面活性剤としてのディスパノールTOCが0.8wt.%、タック性付与材としてプロピレングリコールが1wt.%となるように結着剤、界面活性剤、タック性付与材及び水を混合することにより、集電体コート用接着剤塗工液を得た。
(Example 7)
(Manufacture of adhesive coating liquid for current collector coating)
In the production of the current collector coating adhesive coating liquid, instead of the above binder as a binder, styrene-butadiene copolymer latex (BM-400B) (hereinafter referred to as “SBR binder”) may be used. ) And Dispanol TOC as a surfactant is 0.8 wt. %, Propylene glycol is 1 wt. A binder, a surfactant, a tackiness-imparting material, and water were mixed so as to obtain an adhesive coating solution for current collector coating.
 なお、実施例7において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.05wt.%、銅箔に対する接触角は30°、ループタックは8N/25mmであった。 In addition, the amount of aggregates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Example 7 was 0.05 wt. %, The contact angle to the copper foil was 30 °, and the loop tack was 8 N / 25 mm.
 (複合粒子の製造)
 負極活物質として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値):0.354nm)92部、上記スチレン-ブタジエン共重合ラテックス(BM-400B)を固形分換算量で2.0部、分散剤としてカルボキシメチルセルロースの1.5%水溶液(DN-800H:ダイセル化学工業社製)を固形分換算量で1.0部混合し、さらにイオン交換水を固形分濃度が40%となるように加え、混合分散して負極用の複合粒子用スラリーを得た。この負極用の複合粒子用スラリーをスプレー乾燥機(大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)を用い、回転数25,000rpm、熱風温度150℃、粒子回収出口の温度を90℃として噴霧乾燥造粒を行い、複合粒子を得た。この複合粒子の平均体積粒子径は50μmであった。
(Manufacture of composite particles)
Artificial graphite as the negative electrode active material (average particle size: 24.5 μm, graphite interlayer distance (interval of (002) plane by X-ray diffraction (d value): 92 parts): 92 parts, styrene-butadiene copolymer latex described above (BM-400B) was mixed with 2.0 parts in terms of solid content, and 1.5 parts of a carboxymethylcellulose 1.5% aqueous solution (DN-800H: manufactured by Daicel Chemical Industries, Ltd.) as a dispersant was mixed with 1.0 part in terms of solid content. Further, ion-exchanged water was added so as to have a solid content concentration of 40%, and mixed and dispersed to obtain a composite particle slurry for a negative electrode, which was then spray-dried (Okawara Chemical Co., Ltd.). Made by using a rotating disk type atomizer (diameter 65 mm), rotating at 25,000 rpm, hot air temperature 150 ° C., and particle recovery outlet temperature 90 ° C. To obtain a composite particle. The average volume particle size of the composite particles was 50 [mu] m.
 (正極用スラリーおよびリチウムイオン二次電池正極の製造)
 正極活物質としてLiCoO2(以下、「LCO」と略記することがある。)92部に、正極用結着剤としてポリフッ化ビニリデン(PVDF;クレハ化学社製「KF-1100」)を固形分量が2部となるように加え、さらに、アセチレンブラック(電気化学工業社製「HS-100」)を6部、N-メチルピロリドン20部を加えて、プラネタリーミキサーで混合して正極用スラリーを得た。この正極用スラリーを厚さ18μmのアルミニウム箔に塗布し、120℃で30分乾燥した後、ロールプレスして厚さ60μmのリチウムイオン二次電池正極を得た。
(Production of positive electrode slurry and lithium ion secondary battery positive electrode)
92 parts of LiCoO 2 (hereinafter sometimes abbreviated as “LCO”) as the positive electrode active material and polyvinylidene fluoride (PVDF; “KF-1100” manufactured by Kureha Chemical Co., Ltd.) as the positive electrode binder have a solid content. Add 6 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) and 20 parts of N-methylpyrrolidone and mix with a planetary mixer to obtain a slurry for positive electrode. It was. This positive electrode slurry was applied to an aluminum foil having a thickness of 18 μm, dried at 120 ° C. for 30 minutes, and then roll pressed to obtain a lithium ion secondary battery positive electrode having a thickness of 60 μm.
 (リチウムイオン二次電池の製造)
 実施例1と同様のセパレータを用意し、実施例7で得たリチウムイオン二次電池負極及びリチウムイオン二次電池正極を用いて、実施例1と同様の手順により、ラミネート型のリチウムイオン二次電池(ラミネート型セル)を製造した。
(Manufacture of lithium ion secondary batteries)
A separator similar to that in Example 1 was prepared, and the lithium ion secondary battery negative electrode and lithium ion secondary battery positive electrode obtained in Example 7 were used in the same procedure as in Example 1 to form a laminated lithium ion secondary battery. A battery (laminated cell) was produced.
 (実施例8)
 集電体コート用接着剤塗工液の製造において、結着剤として上記結着剤に代えて、ポリエチレンオキサイドを用いて、結着剤、界面活性剤、タック性付与材及び水を混合した以外は、実施例1と同様に集電体コート用接着剤塗工液の製造、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
(Example 8)
In the production of the current collector coating adhesive coating solution, in place of the above binder as a binder, polyethylene oxide was used, except that the binder, surfactant, tackifier, and water were mixed. In the same manner as in Example 1, production of an adhesive coating solution for current collector coating, production of a lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery were carried out.
 なお、実施例8において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0wt.%、銅箔に対する接触角は35°、ループタックは2N/25mmであった。 In addition, the amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for collector coating obtained in Example 8 was 0 wt. %, The contact angle with respect to the copper foil was 35 °, and the loop tack was 2 N / 25 mm.
 (比較例1)
 結着剤の製造において、イタコン酸を用いなかった以外は、実施例1と同様に結着剤の製造を行った。比較例1において得られた粒子状の結着剤のTgは-20℃であった。また、この結着剤を用いて、集電体コート用接着剤塗工液の製造において、タック性付与材を用いずに集電体コート用接着剤塗工液の製造を行った。また、比較例1で得られた集電体コート用接着剤塗工液を用いた以外は、実施例1と同様にリチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
(Comparative Example 1)
In the production of the binder, the binder was produced in the same manner as in Example 1 except that itaconic acid was not used. The Tg of the particulate binder obtained in Comparative Example 1 was −20 ° C. In addition, in the production of the current collector coating adhesive coating solution, the current collector coat adhesive coating solution was produced without using the tackifier. Moreover, the lithium ion secondary battery positive electrode, the lithium ion secondary battery negative electrode, and the lithium ion secondary battery were the same as in Example 1 except that the adhesive coating liquid for collector coating obtained in Comparative Example 1 was used. Was manufactured.
 なお、比較例1において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.5wt.%、銅箔に対する接触角は30°、ループタックは4N/25mmであった。 The amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Comparative Example 1 was 0.5 wt. %, The contact angle with respect to the copper foil was 30 °, and the loop tack was 4 N / 25 mm.
 (比較例2)
 集電体コート用接着剤塗工液の製造において、界面活性剤を用いずに、結着剤、タック性付与材及び水を混合した以外は、実施例1と同様に集電体コート用接着剤塗工液の製造、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
(Comparative Example 2)
Adhesive for current collector coating in the same manner as in Example 1 except that in the production of the adhesive coating liquid for current collector coating, a binder, a tackifier and water were mixed without using a surfactant. Production of the agent coating liquid, lithium ion secondary battery positive electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery were carried out.
 なお、比較例2において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.1wt.%、銅箔に対する接触角は60°、ループタックは4N/25mmであった。 In addition, the amount of agglomerates generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Comparative Example 2 was 0.1 wt. %, The contact angle with respect to the copper foil was 60 °, and the loop tack was 4 N / 25 mm.
 (比較例3)
 結着剤の製造において、Tgが10℃の粒子状の結着剤を得た以外は、実施例1と同様に結着剤の製造を行った。また、この結着剤を用いて、界面活性剤としてのディスパノールTOCが0.05wt.%、タック性付与材としてプロピレングリコールが1wt.%となるように結着剤、界面活性剤、タック性付与材及び水を混合することにより集電体コート用接着剤塗工液の製造を行った。この集電体コート用接着剤塗工液を用いた以外は実施例1と同様に、リチウムイオン二次電池正極、リチウムイオン二次電池負極及びリチウムイオン二次電池の製造を行った。
(Comparative Example 3)
In the production of the binder, the binder was produced in the same manner as in Example 1 except that a particulate binder having a Tg of 10 ° C. was obtained. Further, using this binder, Dispanol TOC as a surfactant was 0.05 wt. %, Propylene glycol is 1 wt. The adhesive coating liquid for current collector coating was produced by mixing the binder, surfactant, tackiness-imparting material, and water so as to be in a percentage. A lithium ion secondary battery positive electrode, a lithium ion secondary battery negative electrode, and a lithium ion secondary battery were produced in the same manner as in Example 1 except that this current collector coating adhesive coating solution was used.
 なお、比較例3において得られた集電体コート用接着剤塗工液のマーロン式機械安定性試験で発生した凝集物量は0.1wt.%、銅箔に対する接触角は80°、ループタックは0.1N/25mmであった。 The amount of aggregate generated in the Marlon mechanical stability test of the adhesive coating liquid for current collector coating obtained in Comparative Example 3 was 0.1 wt. %, The contact angle with respect to the copper foil was 80 °, and the loop tack was 0.1 N / 25 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、結着剤と水とを含む、集電体コート用接着剤塗工液であって、前記塗工液のマーロン式機械安定性試験で発生した凝集物量が固形分量に対して0.3wt.%未満であり、銅箔に対する接触角が60°未満であり、ループタック試験での測定結果が0.5N/25mm以上である集電体コート用接着剤塗工液を用いたリチウムイオン二次電池電極のピール強度は良好であり、この集電体コート用接着剤塗工液を用いたリチウムイオン二次電池電極を含むリチウムイオン二次電池の容量維持率は最初50m及び終わり50m共に良好であった。 As shown in Table 1, an adhesive coating liquid for a current collector coating containing a binder and water, and the amount of aggregate generated in the Marlon mechanical stability test of the coating liquid is a solid content In contrast, 0.3 wt. Lithium ion secondary using a current collector coating adhesive coating solution having a contact angle to the copper foil of less than 60 ° and less than 60 °, and a measurement result of the loop tack test of 0.5 N / 25 mm or more. The peel strength of the battery electrode is good, and the capacity retention rate of the lithium ion secondary battery including the lithium ion secondary battery electrode using the current collector coating adhesive coating solution is good at both the initial 50 m and the final 50 m. there were.

Claims (5)

  1.  結着剤と水とを含む、集電体コート用接着剤塗工液であって、
     前記塗工液のマーロン式機械安定性試験で発生した凝集物量が固形分量に対して0.3wt.%未満であり、
     銅箔に対する接触角が60°未満であり、
     ループタック試験での測定結果が0.5N/25mm以上である集電体コート用接着剤塗工液。
    An adhesive coating liquid for a current collector coat containing a binder and water,
    The amount of agglomerates generated in the Marlon mechanical stability test of the coating liquid was 0.3 wt. %, And
    The contact angle to the copper foil is less than 60 °,
    An adhesive coating solution for current collector coating, wherein the measurement result in the loop tack test is 0.5 N / 25 mm or more.
  2.  前記結着剤が粒子状結着剤である請求項1記載の集電体コート用接着剤塗工液。 The adhesive coating liquid for current collector coating according to claim 1, wherein the binder is a particulate binder.
  3.  前記粒子状結着剤のガラス転移温度が-40℃以上10℃以下である請求項2記載の集電体コート用接着剤塗工液。 3. The adhesive coating liquid for current collector coating according to claim 2, wherein the particulate binder has a glass transition temperature of −40 ° C. or higher and 10 ° C. or lower.
  4.  界面活性剤を含み、前記界面活性剤の濃度が0.1wt.%以上3wt.%未満である請求項1~3の何れか一項に記載の集電体コート用接着剤塗工液。 A surfactant, and the concentration of the surfactant is 0.1 wt. % Or more and 3 wt. The adhesive coating solution for a current collector coating according to any one of claims 1 to 3, wherein the adhesive coating solution is less than%.
  5.  タック性付与材を含む請求項1~4の何れか一項に記載の集電体コート用接着剤塗工液。 The adhesive coating liquid for a current collector coating according to any one of claims 1 to 4, comprising a tackiness-imparting material.
PCT/JP2015/050754 2014-01-29 2015-01-14 Liquid adhesive coating for coating collector WO2015115177A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580003077.7A CN105814720B (en) 2014-01-29 2015-01-14 Collector coating bonding agent coating fluid
JP2015559855A JP6471697B2 (en) 2014-01-29 2015-01-14 Adhesive coating solution for current collector coating
KR1020167013525A KR102384939B1 (en) 2014-01-29 2015-01-14 Liquid adhesive coating for coating collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013872 2014-01-29
JP2014013872 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115177A1 true WO2015115177A1 (en) 2015-08-06

Family

ID=53756754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050754 WO2015115177A1 (en) 2014-01-29 2015-01-14 Liquid adhesive coating for coating collector

Country Status (4)

Country Link
JP (1) JP6471697B2 (en)
KR (1) KR102384939B1 (en)
CN (1) CN105814720B (en)
WO (1) WO2015115177A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191756A (en) * 2014-03-28 2015-11-02 日本ゼオン株式会社 Method for producing slurry composition for secondary battery
WO2016117498A1 (en) * 2015-01-19 2016-07-28 古河電気工業株式会社 Surface-treated electrolytic copper foil for lithium-ion secondary cell, electrode for lithium-ion secondary cell in which same is used, and lithium-ion secondary cell
JP2018006589A (en) * 2016-07-04 2018-01-11 太陽誘電株式会社 Electrode for electrochemical device, electrochemical device, and method for manufacturing electrode for electrochemical device
WO2024048784A1 (en) * 2022-09-02 2024-03-07 積水化学工業株式会社 Non-aqueous electrolyte secondary-battery positive electrode, non-aqueous electrolyte secondary battery using the same, battery module, and battery system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048739B (en) * 2019-12-25 2022-02-18 中国科学院过程工程研究所 Ternary positive electrode slurry, preparation method thereof and lithium battery
CN113130843B (en) * 2021-04-10 2022-06-10 中国科学院福建物质结构研究所 Electrode and preparation method thereof
WO2024192215A1 (en) * 2023-03-14 2024-09-19 PolyJoule, Inc. Monolithic high loading electrodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013414A1 (en) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 Method for producing battery electrode
WO2013062088A1 (en) * 2011-10-27 2013-05-02 日本ゼオン株式会社 Conductive adhesive composition, collector with adhesive layer, and electrochemical element electrode
WO2013147007A1 (en) * 2012-03-30 2013-10-03 日本ゼオン株式会社 Slurry composition for secondary battery negative electrode
WO2014112439A1 (en) * 2013-01-17 2014-07-24 日本ゼオン株式会社 Method for manufacturing conductive adhesive composition for electrochemical element electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219705B2 (en) 2003-02-17 2009-02-04 パナソニック株式会社 Manufacturing method of secondary battery electrode
JP5085856B2 (en) 2005-07-07 2012-11-28 パナソニック株式会社 Lithium ion secondary battery
CN102549693B (en) * 2009-07-30 2014-03-12 日本瑞翁株式会社 Electrode for electrochemical-element, and electrochemical element
JP2012126850A (en) * 2010-12-16 2012-07-05 Nitto Denko Corp Adhesive composition, and use thereof
CN103031093B (en) * 2012-12-12 2014-12-24 常州大学 Method for preparing water-based urethane acrylate pressure-sensitive adhesive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013414A1 (en) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 Method for producing battery electrode
WO2013062088A1 (en) * 2011-10-27 2013-05-02 日本ゼオン株式会社 Conductive adhesive composition, collector with adhesive layer, and electrochemical element electrode
WO2013147007A1 (en) * 2012-03-30 2013-10-03 日本ゼオン株式会社 Slurry composition for secondary battery negative electrode
WO2014112439A1 (en) * 2013-01-17 2014-07-24 日本ゼオン株式会社 Method for manufacturing conductive adhesive composition for electrochemical element electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191756A (en) * 2014-03-28 2015-11-02 日本ゼオン株式会社 Method for producing slurry composition for secondary battery
WO2016117498A1 (en) * 2015-01-19 2016-07-28 古河電気工業株式会社 Surface-treated electrolytic copper foil for lithium-ion secondary cell, electrode for lithium-ion secondary cell in which same is used, and lithium-ion secondary cell
JP6012913B1 (en) * 2015-01-19 2016-10-25 古河電気工業株式会社 Surface-treated electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2018006589A (en) * 2016-07-04 2018-01-11 太陽誘電株式会社 Electrode for electrochemical device, electrochemical device, and method for manufacturing electrode for electrochemical device
US10305112B2 (en) 2016-07-04 2019-05-28 Taiyo Yuden Co., Ltd. Electrochemical device electrode, electrochemical device, and method for manufacturing electrochemical device electrode
WO2024048784A1 (en) * 2022-09-02 2024-03-07 積水化学工業株式会社 Non-aqueous electrolyte secondary-battery positive electrode, non-aqueous electrolyte secondary battery using the same, battery module, and battery system

Also Published As

Publication number Publication date
KR102384939B1 (en) 2022-04-07
JPWO2015115177A1 (en) 2017-03-23
JP6471697B2 (en) 2019-02-20
CN105814720A (en) 2016-07-27
KR20160114044A (en) 2016-10-04
CN105814720B (en) 2018-08-03

Similar Documents

Publication Publication Date Title
JP6471697B2 (en) Adhesive coating solution for current collector coating
JP6155967B2 (en) Adhesive for lithium ion secondary battery, separator with adhesive layer, electrode with adhesive layer, and lithium ion secondary battery
KR101460930B1 (en) Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
KR101996361B1 (en) Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JP6287862B2 (en) Slurry for porous membrane of secondary battery separator, porous membrane for secondary battery separator and method for producing the same, separator for secondary battery, and secondary battery
JP6327249B2 (en) Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
CN110383546B (en) Conductive material dispersion for electrochemical element electrode, slurry composition and method for producing same, electrode, and electrochemical element
CN107004828B (en) Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, and nonaqueous secondary battery
WO2015129408A1 (en) Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
JPWO2014192652A6 (en) Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
WO2017029813A1 (en) Binder composition for nonaqueous secondary batteries, composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2016024866A (en) Composite particle for nonaqueous secondary battery porous film, nonaqueous secondary battery porous film, battery member for nonaqueous secondary battery, and nonaqueous secondary battery
JP2018006334A (en) Slurry for lithium ion battery negative electrode, method for manufacturing the same, negative electrode for lithium ion battery, and lithium ion battery
JPWO2020040031A1 (en) Slurry composition for non-aqueous secondary battery functional layer, non-aqueous secondary battery functional layer, non-aqueous secondary battery separator and non-aqueous secondary battery
JP2018006333A (en) Binder solution for lithium ion battery positive electrode, powdery binder for lithium ion battery positive electrode, slurry for lithium ion battery positive electrode, positive electrode for lithium ion battery, and lithium ion battery
CN105900271A (en) Binder composition for secondary cell
JP6070266B2 (en) Slurry composition for positive electrode of lithium ion secondary battery, method for producing positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6436101B2 (en) Electrode for electrochemical element and electrochemical element
JP6304039B2 (en) Slurry for porous membrane of secondary battery separator, porous membrane for secondary battery separator and method for producing the same, separator for secondary battery, and secondary battery
JP2015138687A (en) Adhesive agent coating liquid for collector coat
JP2015041570A (en) Porous film composition for lithium ion secondary batteries, porous film for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing porous film for lithium ion secondary batteries
JPWO2019082658A1 (en) Adhesive composition for power storage device, functional layer for power storage device, power storage device, and manufacturing method of power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559855

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167013525

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742810

Country of ref document: EP

Kind code of ref document: A1