JP6436101B2 - Electrode for electrochemical element and electrochemical element - Google Patents

Electrode for electrochemical element and electrochemical element Download PDF

Info

Publication number
JP6436101B2
JP6436101B2 JP2015559866A JP2015559866A JP6436101B2 JP 6436101 B2 JP6436101 B2 JP 6436101B2 JP 2015559866 A JP2015559866 A JP 2015559866A JP 2015559866 A JP2015559866 A JP 2015559866A JP 6436101 B2 JP6436101 B2 JP 6436101B2
Authority
JP
Japan
Prior art keywords
electrode
active material
electrode active
negative electrode
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015559866A
Other languages
Japanese (ja)
Other versions
JPWO2015115201A1 (en
Inventor
智一 佐々木
智一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2015115201A1 publication Critical patent/JPWO2015115201A1/en
Application granted granted Critical
Publication of JP6436101B2 publication Critical patent/JP6436101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明は、電気化学素子用電極及び電気化学素子に関するものである。   The present invention relates to an electrode for an electrochemical element and an electrochemical element.

小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能なリチウムイオン二次電池などの電気化学素子は、その特性を活かして急速に需要を拡大している。リチウムイオン二次電池は、エネルギー密度が比較的に大きいことから携帯電話やノート型パーソナルコンピュータ、電気自動車などの分野で利用されている。   Electrochemical elements such as lithium ion secondary batteries that are small and lightweight, have high energy density, and can be repeatedly charged and discharged are rapidly expanding their demands by taking advantage of their characteristics. Lithium ion secondary batteries are used in fields such as mobile phones, notebook personal computers, and electric vehicles because of their relatively high energy density.

これら電気化学素子には、用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、より一層の改善が求められている。このような状況において、電気化学素子用電極に関してもより生産性の高い製造方法が求められており、高速成形可能な製造方法及び該製造方法に適合する電気化学素子用電極の材料について様々な改善が行われている。   With the expansion and development of applications, these electrochemical elements are required to be further improved, such as lowering resistance, increasing capacity, improving mechanical properties and productivity. Under such circumstances, there is a demand for a more productive manufacturing method for electrochemical element electrodes, and various improvements have been made regarding the manufacturing method capable of high-speed molding and the materials for electrochemical element electrodes suitable for the manufacturing method. Has been done.

電気化学素子用電極は、通常、電極活物質と、必要に応じて用いられる導電材とをバインダーで結着することにより形成された電極活物質層を集電体上に積層してなるものである。また、電極活物質層と集電体との間に、密着性向上のための接着剤層や防錆のための防錆層等の中間層を設けることも行われている。   An electrode for an electrochemical element is usually formed by laminating an electrode active material layer formed by binding an electrode active material and a conductive material used as necessary with a binder on a current collector. is there. In addition, an intermediate layer such as an adhesive layer for improving adhesion and a rust prevention layer for rust prevention is also provided between the electrode active material layer and the current collector.

例えば、特許文献1には、粗化処理された銅からなる集電体を防錆処理し、その後負極活物質およびバインダーを含むスラリーを用いて電極活物質層を形成することが開示されている。   For example, Patent Document 1 discloses that a current collector made of copper that has been subjected to roughening treatment is subjected to rust prevention treatment, and then an electrode active material layer is formed using a slurry containing a negative electrode active material and a binder. .

また、特許文献2には、水酸基及び/又はアミノ酸を有するポリマー及び導電性フィラーを含む導電性塗工液により形成される導電性塗工膜を集電体上に形成し、その後電極活物質およびバインダーを含むスラリーを用いて電極活物質層を形成することが開示されている。   Patent Document 2 discloses that a conductive coating film formed by a conductive coating solution containing a polymer having a hydroxyl group and / or an amino acid and a conductive filler is formed on a current collector, and then an electrode active material and It is disclosed that an electrode active material layer is formed using a slurry containing a binder.

特許第5090028号公報Japanese Patent No. 5090028 特許第5134739号公報Japanese Patent No. 5134939

しかし、特許文献1に記載の電気化学素子用電極は、集電体と電極活物質層との密着力が十分ではなかった。また、特許文献2に記載の電気化学素子用電極を含む電気化学素子は、耐久性が十分ではなかった。
本発明の目的は、集電体と電極活物質層との密着力に優れ、さらに耐久性に優れた電気化学素子用電極及び電気化学素子を提供することである。
However, the electrode for an electrochemical element described in Patent Document 1 does not have sufficient adhesion between the current collector and the electrode active material layer. In addition, the electrochemical device including the electrode for an electrochemical device described in Patent Document 2 has not been sufficiently durable.
An object of the present invention is to provide an electrode for an electrochemical element and an electrochemical element that are excellent in adhesion between a current collector and an electrode active material layer and that are excellent in durability.

本発明者は、鋭意検討の結果、中間層に含まれる物質と電極活物質層に含まれるバインダーの組成との組み合わせを特定のものとすることにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventor has found that the above object can be achieved by specifying a specific combination of the material contained in the intermediate layer and the composition of the binder contained in the electrode active material layer. It came to be completed.

即ち、本発明によれば、
(1) 集電体上に、電極活物質およびバインダーを含む電極活物質層が形成されてなる電気化学素子用電極であって、前記集電体上に、カチオン性化合物を含むアンカー層を有し、前記バインダーは酸基含有単量体単位を0.1〜10重量%有し、前記電極活物質層中の前記バインダーの含有割合が電極活物質100重量部に対して0.1〜20重量部である、電気化学素子用電極、
(2) 前記カチオン性化合物の数平均分子量が、10000〜2000000である(1)記載の電気化学素子用電極、
(3) 前記アンカー層の厚みが、0.01μm以上1μm未満である(1)または(2)記載の電気化学素子用電極、
(4) 前記酸基含有単量体単位が、カルボキシル基、スルホン酸基、リン酸基のいずれかを含む(1)〜(3)のいずれかに記載の電気化学素子用電極、
(5) (1)〜(4)のいずれかに記載の電気化学素子用電極、セパレーターおよび電解液を含む電気化学素子、
(6) 前記電気化学素子が、リチウムイオン二次電池である(5)記載の電気化学素子、
が提供される。
That is, according to the present invention,
(1) An electrode for an electrochemical element in which an electrode active material layer containing an electrode active material and a binder is formed on a current collector, and an anchor layer containing a cationic compound is provided on the current collector. The binder has an acid group-containing monomer unit in an amount of 0.1 to 10% by weight, and the binder content in the electrode active material layer is 0.1 to 20 parts by weight based on 100 parts by weight of the electrode active material. Electrode for an electrochemical element that is part by weight,
(2) The electrode for electrochemical devices according to (1), wherein the cationic compound has a number average molecular weight of 10,000 to 2,000,000.
(3) The electrode for an electrochemical element according to (1) or (2), wherein the anchor layer has a thickness of 0.01 μm or more and less than 1 μm.
(4) The electrode for an electrochemical element according to any one of (1) to (3), wherein the acid group-containing monomer unit includes any of a carboxyl group, a sulfonic acid group, and a phosphoric acid group,
(5) An electrochemical element comprising the electrode for an electrochemical element according to any one of (1) to (4), a separator, and an electrolytic solution,
(6) The electrochemical device according to (5), wherein the electrochemical device is a lithium ion secondary battery,
Is provided.

本発明によれば、集電体と電極活物質層との密着力に優れ、さらに耐久性に優れた電気化学素子用電極及び電気化学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode for electrochemical elements and electrochemical element which were excellent in the adhesive force of a collector and an electrode active material layer, and also excellent in durability can be provided.

以下、本発明の電気化学素子用電極について説明する。本発明の電気化学素子用電極は、集電体上に、電極活物質およびバインダーを含む電極活物質層が形成されてなる電気化学素子用電極であって、前記集電体上に、カチオン性化合物を含むアンカー層を有し、前記バインダーは酸基含有単量体単位を0.1〜10重量%有し、前記電極活物質層中の前記バインダーの含有割合が電極活物質100重量部に対して0.1〜20重量部である。   Hereinafter, the electrode for an electrochemical element of the present invention will be described. The electrode for an electrochemical device of the present invention is an electrode for an electrochemical device in which an electrode active material layer containing an electrode active material and a binder is formed on a current collector, and the electrode for the electrochemical device is cationic on the current collector. An anchor layer containing a compound, the binder has an acid group-containing monomer unit in an amount of 0.1 to 10% by weight, and the binder content in the electrode active material layer is 100 parts by weight of the electrode active material; It is 0.1-20 weight part with respect to it.

(電気化学素子用電極)
本発明の電気化学素子用電極は、集電体上にアンカー層を形成し、さらにアンカー層が形成された集電体上に電極活物質層を形成することにより得られる。
(Electrodes for electrochemical devices)
The electrode for an electrochemical device of the present invention can be obtained by forming an anchor layer on a current collector and further forming an electrode active material layer on the current collector on which the anchor layer is formed.

集電体の材料は、例えば、金属、炭素、導電性高分子などであり、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、銅、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から銅、アルミニウムまたはアルミニウム合金を使用するのが好ましい。
集電体の厚みは、好ましくは5〜100μm、より好ましくは8〜70μm、さらに好ましくは10〜50μmである。
The material of the current collector is, for example, metal, carbon, conductive polymer, etc., and metal is preferably used. As the current collector metal, aluminum, platinum, nickel, tantalum, titanium, stainless steel, copper, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance.
The thickness of the current collector is preferably 5 to 100 μm, more preferably 8 to 70 μm, and still more preferably 10 to 50 μm.

(アンカー層)
本発明の電気化学素子用電極は、アンカー層を含む。アンカー層は、カチオン性化合物を含む。
(Anchor layer)
The electrode for an electrochemical element of the present invention includes an anchor layer. The anchor layer includes a cationic compound.

(カチオン性化合物)
アンカー層に含まれるカチオン性化合物としては、一級アミン化合物、二級アミン化合物(イミノ基含有化合物)、三級アミン化合物、カチオン化剤により修飾された化合物等を用いることができる。なかでも、イミノ基含有化合物、カチオン化剤により修飾された化合物が好ましい。
(Cationic compound)
As the cationic compound contained in the anchor layer, a primary amine compound, a secondary amine compound (imino group-containing compound), a tertiary amine compound, a compound modified with a cationizing agent, or the like can be used. Of these, an imino group-containing compound and a compound modified with a cationizing agent are preferable.

イミノ基含有化合物は、イミノ基を有する化合物であり、そのイミノ基が有する窒素原子は、同一の炭素原子と二重結合で結合していてもよく、別々の炭素原子と単結合で結合していてもよい。   An imino group-containing compound is a compound having an imino group, and the nitrogen atom of the imino group may be bonded to the same carbon atom by a double bond, or may be bonded to a separate carbon atom by a single bond. May be.

イミノ基含有化合物としては、低分子イミノ基含有化合物を用いてもよく、高分子イミノ基含有化合物を用いてもよい。低分子イミノ基含有化合物としては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン等の鎖状イミノ基含有化合物;エチレンイミン、プロピレンイミン、ピロリジン、ピペリジン、ピペラジン等の環状イミノ基含有化合物、などが挙げられる。また、高分子イミノ基含有化合物としては、例えば、ポリエチレンイミン;ポリN−ヒドロキシルエチレンイミン、カルボキシメチル化ポリエチレンイミン・ナトリウム塩等のポリエチレンイミン誘導体;ポリプロピレンイミン;ポリN−2−ジヒドロシキルプロピレンイミン等のポリプロピレンイミン誘導体、などが挙げられる。   As the imino group-containing compound, a low molecular imino group-containing compound or a high molecular imino group-containing compound may be used. Examples of the low molecular imino group-containing compound include chain imino group-containing compounds such as dimethylamine, diethylamine, and dipropylamine; cyclic imino group-containing compounds such as ethyleneimine, propyleneimine, pyrrolidine, piperidine, and piperazine. It is done. Examples of the polymer imino group-containing compound include polyethyleneimine; polyimineimine derivatives such as poly N-hydroxylethyleneimine and carboxymethylated polyethyleneimine / sodium salt; polypropyleneimine; polyN-2-dihydroxypropyleneimine And the like, and the like, and the like.

これらの中でも、高分子イミノ基含有化合物が好ましく、ポリエチレンイミンがより好ましい。また、イミノ基含有化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Among these, a polymer imino group-containing compound is preferable, and polyethyleneimine is more preferable. Moreover, an imino group containing compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

また、カチオン化剤により修飾された化合物としては、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース系化合物をカチオン化剤により修飾したものとして、カチオン化セルロースなどが挙げられる。
カチオン性化合物の数平均分子量は、100〜2000000であることが好ましく、10000〜2000000であることがより好ましい。
なお、カチオン性化合物の数平均分子量は、例えば、ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィー(GPC)により測定できる。
Examples of the compound modified with a cationizing agent include cationized cellulose and the like obtained by modifying a cellulose compound such as hydroxyethyl cellulose and carboxymethyl cellulose with a cationizing agent.
The number average molecular weight of the cationic compound is preferably 100 to 2,000,000, and more preferably 10,000 to 2,000,000.
The number average molecular weight of the cationic compound can be measured, for example, by gel permeation chromatography (GPC) using polystyrene as a standard substance.

アンカー層の形成方法としては、特に制限はないが、カチオン性化合物を水などの溶媒に分散または溶解させたアンカー層用塗工液を集電体上に塗工し、乾燥することにより形成することができる。また、アンカー層用塗工液中のカチオン性化合物の塗工法等に応じて濃度は適宜調整することができる。   The method for forming the anchor layer is not particularly limited, but the anchor layer is formed by applying a coating solution for an anchor layer in which a cationic compound is dispersed or dissolved in a solvent such as water on a current collector and drying it. be able to. Further, the concentration can be appropriately adjusted according to the coating method of the cationic compound in the anchor layer coating solution.

アンカー層用塗工液の塗工方法は、特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ダイコート法、ハケ塗りなどによって、集電体上にアンカー層が形成される。また、剥離紙上に、接着剤層を形成した後に、これを集電体に転写してもよい。   The method for applying the anchor layer coating solution is not particularly limited. For example, the anchor layer is formed on the current collector by a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a die coating method, a brush coating, or the like. Further, after forming an adhesive layer on the release paper, it may be transferred to a current collector.

また、集電体上に塗工されたアンカー層塗工液の乾燥方法としては、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。中でも、熱風による乾燥法、遠赤外線の照射による乾燥法が好ましい。乾燥温度と乾燥時間は、集電体上に塗布した集電体コート用接着剤塗工液中の溶媒を完全に除去できる温度と時間が好ましく、乾燥温度は通常50〜300℃、好ましくは80〜250℃である。乾燥時間は、通常2時間以下、好ましくは5秒〜30分である。   In addition, examples of the method for drying the anchor layer coating solution coated on the current collector include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. Can be mentioned. Of these, a drying method using hot air and a drying method using irradiation with far infrared rays are preferable. The drying temperature and the drying time are preferably a temperature and a time at which the solvent in the current collector coating adhesive coating solution coated on the current collector can be completely removed, and the drying temperature is usually 50 to 300 ° C., preferably 80 ~ 250 ° C. The drying time is usually 2 hours or less, preferably 5 seconds to 30 minutes.

アンカー層の厚みは、後述する電極活物質層との密着性が良好で、かつ、低抵抗である電極が得られる観点から、好ましくは0.01μm以上10μm未満、より好ましくは0.01μm以上2μm未満、さらに好ましくは0.01μm以上1μm未満である。   The thickness of the anchor layer is preferably 0.01 μm or more and less than 10 μm, more preferably 0.01 μm or more and 2 μm, from the viewpoint of obtaining an electrode having good adhesion to the electrode active material layer described later and low resistance. Less than, more preferably 0.01 μm or more and less than 1 μm.

(電極活物質層)
本発明の電気化学素子用電極は、電極活物質層を含み、電極活物質層は、電極活物質、バインダー、必要に応じて用いられる増粘剤及び導電助剤を含む。また、電極活物質層におけるバインダーの含有量は電極活物質100重量部に対して、0.1〜20重量部、好ましくは0.2〜15重量部、より好ましくは0.3〜10重量部である。
(Electrode active material layer)
The electrode for an electrochemical element of the present invention includes an electrode active material layer, and the electrode active material layer includes an electrode active material, a binder, a thickener used as necessary, and a conductive additive. The binder content in the electrode active material layer is 0.1 to 20 parts by weight, preferably 0.2 to 15 parts by weight, more preferably 0.3 to 10 parts by weight, with respect to 100 parts by weight of the electrode active material. It is.

電極活物質層は、アンカー層が形成された集電体のアンカー層上に、電極活物質、バインダー、必要に応じて用いられる増粘剤及び導電助剤を含む電極用スラリーを塗布、乾燥することにより形成される。   The electrode active material layer is formed by applying and drying an electrode slurry containing an electrode active material, a binder, a thickener used as necessary, and a conductive auxiliary agent on the anchor layer of the current collector on which the anchor layer is formed. Is formed.

集電体上に形成されたアンカー層上へ、電極用スラリーを塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、コンマダイレクトコート、スライドダイコート、およびハケ塗り法などの方法が挙げられる。乾燥方法としては例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常1〜60分であり、乾燥温度は通常40〜180℃である。電極用スラリーの塗布、乾燥を複数回繰り返すことにより電極活物質層を形成してもよい。   The method for applying the electrode slurry onto the anchor layer formed on the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a comma direct coating, a slide die coating, and a brush coating method. Examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying time is usually 1 to 60 minutes, and the drying temperature is usually 40 to 180 ° C. The electrode active material layer may be formed by repeating application and drying of the electrode slurry a plurality of times.

ここで、電極用スラリーは、電極活物質、バインダー、必要に応じ用いられる増粘剤及び導電助剤、さらに水などの溶媒等を混合することにより得ることができる。   Here, the electrode slurry can be obtained by mixing an electrode active material, a binder, a thickener and a conductive aid used as necessary, and a solvent such as water.

混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。   The mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type. In addition, a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.

(電極活物質)
電気化学素子がリチウムイオン二次電池である場合の、リチウムイオン二次電池用正極の電極活物質(正極活物質)としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
(Electrode active material)
In the case where the electrochemical device is a lithium ion secondary battery, the electrode active material (positive electrode active material) of the positive electrode for the lithium ion secondary battery includes a metal oxide capable of reversibly doping and dedoping lithium ions. It is done. Examples of the metal oxide include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate. In addition, the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.

なお、リチウムイオン二次電池用正極の対極としての負極の活物質(負極活物質)としては、たとえば、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)、錫やケイ素等の合金系材料、ケイ素酸化物、錫酸化物、チタン酸リチウム等の酸化物等が挙げられる。なお、上記にて例示した負極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。   As the negative electrode active material (negative electrode active material) as the counter electrode of the positive electrode for a lithium ion secondary battery, for example, low crystalline carbon (non-graphitizable carbon, non-graphitizable carbon, pyrolytic carbon, etc.) Crystalline carbon), graphite (natural graphite, artificial graphite), alloy materials such as tin and silicon, oxides such as silicon oxide, tin oxide, and lithium titanate. In addition, the negative electrode active material illustrated above may be used independently according to a use suitably, and multiple types may be mixed and used for it.

リチウムイオン二次電池用電極の電極活物質の形状は、粒状に整粒されたものが好ましい。粒子の形状が粒状であると、電極成形時により高密度な電極が形成できる。   The shape of the electrode active material of the electrode for a lithium ion secondary battery is preferably a granulated particle. When the shape of the particles is granular, a higher-density electrode can be formed during electrode molding.

リチウムイオン二次電池用電極の電極活物質の体積平均粒子径は、正極、負極ともに通常0.1〜100μm、好ましくは0.5〜50μm、より好ましくは0.8〜30μmである。   The volume average particle diameter of the electrode active material of the electrode for a lithium ion secondary battery is usually 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably 0.8 to 30 μm for both the positive electrode and the negative electrode.

また、電気化学素子がリチウムイオンキャパシタである場合に好ましく用いられる負極活物質としては、たとえば、易黒鉛化性炭素、難黒鉛化性炭素、熱分解炭素などの低結晶性炭素(非晶質炭素)、グラファイト(天然黒鉛、人造黒鉛)等の炭素で形成された負極活物質が挙げられる。   Examples of the negative electrode active material preferably used when the electrochemical element is a lithium ion capacitor include low crystalline carbon (amorphous carbon such as graphitizable carbon, non-graphitizable carbon, and pyrolytic carbon). ), Graphite (natural graphite, artificial graphite) and the like, and negative electrode active materials formed of carbon.

また、電気化学素子がリチウムイオンキャパシタである場合の正極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンとを可逆的に担持できるものであればよい。具体的には、炭素の同素体を好ましく用いることができる。炭素の同素体の具体例としては、活性炭、ポリアセン(PAS)、カーボンウィスカ、カーボンナノチューブ及びグラファイト等が挙げられる。   In addition, as the positive electrode active material when the electrochemical element is a lithium ion capacitor, any material can be used as long as it can reversibly carry lithium ions and anions such as tetrafluoroborate. Specifically, an allotrope of carbon can be preferably used. Specific examples of the allotrope of carbon include activated carbon, polyacene (PAS), carbon whisker, carbon nanotube, and graphite.

(バインダー)
本発明に用いるバインダーは、電極活物質同士を接着するための成分であり、通常結着性を有する重合体粒子が水等の溶媒に溶解または分散された溶液または分散液の状態で用いられる。
(binder)
The binder used in the present invention is a component for adhering electrode active materials to each other, and is usually used in the form of a solution or dispersion in which polymer particles having binding properties are dissolved or dispersed in a solvent such as water.

本発明に用いるバインダーとしては、例えば、ジエン系重合体、アクリル系重合体などが挙げられる。   Examples of the binder used in the present invention include diene polymers and acrylic polymers.

(ジエン系重合体)
ジエン系重合体とは、ブタジエン、イソプレンなどの共役ジエンを重合してなる単量体単位を含む重合体である。ジエン系重合体中の共役ジエンを重合してなる単量体単位の割合は通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。重合体としては、ポリブタジエンやポリイソプレンなどの共役ジエンの単独重合体;共役ジエンと共重合可能な単量体との共重合体が挙げられる。前記共重合可能な単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β−不飽和ニトリル化合物;アクリル酸、メタクリル酸などの不飽和カルボン酸類;スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。
(Diene polymer)
The diene polymer is a polymer containing monomer units obtained by polymerizing conjugated dienes such as butadiene and isoprene. The proportion of monomer units obtained by polymerizing conjugated diene in the diene polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. Examples of the polymer include homopolymers of conjugated dienes such as polybutadiene and polyisoprene; and copolymers of monomers that are copolymerizable with conjugated dienes. Examples of the copolymerizable monomer include α, β-unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; styrene, chlorostyrene, vinyltoluene, and t-butyl. Styrene monomers such as styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, divinylbenzene; olefins such as ethylene, propylene; vinyl chloride, vinylidene chloride Halogen atom-containing monomers such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate, etc .; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; methyl vinyl ketone, ethyl vinyl Vinyl ketones such as ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; and heterocyclic ring-containing vinyl compounds such as N-vinyl pyrrolidone, vinyl pyridine, and vinyl imidazole.

(アクリル系重合体)
アクリル系重合体とは、アクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位を含む重合体である。アクリル系重合体中のアクリル酸エステルおよび/またはメタクリル酸エステルを重合してなる単量体単位の割合は、通常40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上である。重合体としては、アクリル酸エステル及び/又はメタクリル酸エステルの単独重合体、これと共重合可能な単量体との共重合体が挙げられる。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素−炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t−ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α−メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N−メチロールアクリルアミド、アクリルアミド−2−メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β−不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N−ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。
(Acrylic polymer)
The acrylic polymer is a polymer containing a monomer unit obtained by polymerizing an acrylic ester and / or a methacrylic ester. The proportion of monomer units obtained by polymerizing acrylic acid ester and / or methacrylic acid ester in the acrylic polymer is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. . Examples of the polymer include homopolymers of acrylic acid esters and / or methacrylic acid esters, and copolymers with monomers copolymerizable therewith. Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate. -Carboxylic acid ester having a carbon double bond; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, vinyl benzoate methyl, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, Styrene monomers such as divinylbenzene; Amide monomers such as acrylamide, N-methylolacrylamide, and acrylamide-2-methylpropane sulfonic acid; α, β-defect such as acrylonitrile and methacrylonitrile Nitrile compounds; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate Vinyl esters such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, isopropenyl vinyl ketone; N-vinyl pyrrolidone, vinyl Heterocycle-containing vinyl compounds such as pyridine and vinylimidazole can be mentioned.

これらのなかでも密着性に優れるため、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、アクリル系重合体が好ましく、スチレン−ブタジエン共重合体、アクリル系重合体がより好ましい。   Among these, since it is excellent in adhesiveness, a styrene-butadiene copolymer, an acrylonitrile-butadiene copolymer, and an acrylic polymer are preferable, and a styrene-butadiene copolymer and an acrylic polymer are more preferable.

(酸基含有単量体)
本発明に用いるバインダーは、さらに酸基含有単量体単位を含む。酸基含有単量体単位を導く酸基含有単量体としては、例えば、−COOH基(カルボキシル基);−SO3H基(スルホン酸基);−PO32基及び−PO(OH)(OR)基(Rは炭化水素基を表す)等のリン酸基;等の酸基を有する単量体が挙げられる。
(Acid group-containing monomer)
The binder used in the present invention further contains an acid group-containing monomer unit. Examples of the acid group-containing monomer that leads to the acid group-containing monomer unit include -COOH group (carboxyl group); -SO 3 H group (sulfonic acid group); -PO 3 H 2 group and -PO (OH ) (OR) groups (wherein R represents a hydrocarbon group) or the like; monomers having an acid group such as;

カルボキシル基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸、ジカルボン酸の無水物、及びこれらの誘導体などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、2−エチルアクリル酸、イソクロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、メチルマレイン酸などが挙げられる。ジカルボン酸の酸無水物としては、例えば、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。   Examples of the monomer having a carboxyl group include monocarboxylic acids, dicarboxylic acids, dicarboxylic acid anhydrides, and derivatives thereof. Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, 2-ethylacrylic acid, and isocrotonic acid. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid, and methylmaleic acid. Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.

スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸、2−(N−アクリロイル)アミノ−2−メチル−1,3−プロパン−ジスルホン酸などが挙げられる。なお、本発明において、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。   Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamide-2. -Methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, 2- (N-acryloyl) amino-2-methyl-1,3-propane-disulfonic acid and the like. In the present invention, “(meth) acryl” means “acryl” or “methacryl”.

−PO32基及び−PO(OH)(OR)基(Rは炭化水素基を表す)等のリン酸基を有する単量体としては、例えば、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。なお、本発明において、「(メタ)アクリロイル」は、「アクリロイル」又は「メタアクリロイル」を意味する。
また、上述した単量体の塩も、酸基含有単量体として用いうる。
Examples of the monomer having a phosphate group such as —PO 3 H 2 group and —PO (OH) (OR) group (R represents a hydrocarbon group) include, for example, phosphate-2- (meth) acryloyloxy phosphate Examples include ethyl, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate. In the present invention, “(meth) acryloyl” means “acryloyl” or “methacryloyl”.
Moreover, the salt of the monomer mentioned above can also be used as an acid group-containing monomer.

また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。例えば、同じ種類の酸性基を含む異なる種類の単量体を組み合わせて用いてもよい。また、例えば、異なる種類の酸性基を含む単量体を組み合わせて用いてもよい。   Moreover, an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. For example, different types of monomers containing the same type of acidic group may be used in combination. Further, for example, monomers containing different types of acidic groups may be used in combination.

本発明に用いるバインダーにおける酸基含有単量体単位の含有量は、0.1〜10重量%、好ましくは0.2〜9重量%、より好ましくは0.3〜8重量%である。   The content of the acid group-containing monomer unit in the binder used in the present invention is 0.1 to 10% by weight, preferably 0.2 to 9% by weight, and more preferably 0.3 to 8% by weight.

(増粘剤)
本発明の電極活物質層は、必要に応じて増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル−ブタジエン共重合体水素化物などが挙げられる。これらのなかでも、カルボキシメチルセルロース及びカルボキシメチルセルロースのアンモニウム塩並びにアルカリ金属塩を用いることが好ましい。なお、本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味する。
(Thickener)
The electrode active material layer of the present invention may contain a thickener as necessary. Examples of thickeners include cellulosic polymers such as carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and ammonium salts and alkali metal salts thereof; ) Polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified Examples include polyacrylic acid, oxidized starch, phosphoric acid starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, and the like. Among these, it is preferable to use carboxymethylcellulose, ammonium salt of carboxymethylcellulose, and alkali metal salt. In the present invention, “(modified) poly” means “unmodified poly” or “modified poly”.

電極活物質層中の増粘剤の含有量は、電池特性に影響のない範囲が好ましく、電極活物質100重量部に対して好ましくは0.1〜5重量部、より好ましくは0.2〜4重量部、さらに好ましくは0.3〜3重量部である。   The content of the thickener in the electrode active material layer is preferably in a range that does not affect the battery characteristics, preferably 0.1 to 5 parts by weight, more preferably 0.2 to 100 parts by weight with respect to 100 parts by weight of the electrode active material. 4 parts by weight, more preferably 0.3 to 3 parts by weight.

(導電助剤)
本発明の電極活物質層は、必要に応じて導電助剤を含有していてもよい。導電助剤としては、導電性を有する材料であれば特に限定されないが、導電性を有する粒子状の材料が好ましく、たとえば、ファーネスブラック、アセチレンブラック、及びケッチェンブラック等の導電性カーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、気相法炭素繊維等の炭素繊維;が挙げられる。導電助剤が粒子状の材料である場合の平均粒子径は、特に限定されないが、電極活物質の平均粒子径よりも小さいものが好ましく、より少ない使用量で十分な導電性を発現させる観点から、好ましくは0.001〜10μm、より好ましくは0.05〜5μm、さらに好ましくは0.1〜1μmである。
(Conductive aid)
The electrode active material layer of the present invention may contain a conductive additive as necessary. The conductive auxiliary agent is not particularly limited as long as it is a conductive material, but a conductive particulate material is preferable. For example, conductive carbon black such as furnace black, acetylene black, and ketjen black; natural And graphite such as graphite and artificial graphite; and carbon fibers such as polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, and vapor grown carbon fiber. The average particle diameter when the conductive assistant is a particulate material is not particularly limited, but is preferably smaller than the average particle diameter of the electrode active material, from the viewpoint of expressing sufficient conductivity with a smaller amount of use. The thickness is preferably 0.001 to 10 μm, more preferably 0.05 to 5 μm, and still more preferably 0.1 to 1 μm.

(電気化学素子)
本発明の電気化学素子用電極の使用態様としては、かかる電極を用いたリチウムイオン二次電池、リチウムイオンキャパシタなどが挙げられ、リチウムイオン二次電池が好適である。たとえばリチウムイオン二次電池は、上述のようにして得られる電気化学素子用電極を正極および負極の少なくとも一方に用い、さらにセパレーターおよび電解液を備える。
(Electrochemical element)
Examples of usage of the electrode for an electrochemical element of the present invention include a lithium ion secondary battery and a lithium ion capacitor using such an electrode, and a lithium ion secondary battery is preferable. For example, a lithium ion secondary battery uses an electrode for an electrochemical element obtained as described above as at least one of a positive electrode and a negative electrode, and further includes a separator and an electrolytic solution.

セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や、芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;などを用いることができる。   As the separator, for example, a polyolefin resin such as polyethylene or polypropylene, or a microporous film or nonwoven fabric containing an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder;

セパレーターの厚さは、リチウムイオン二次電池内でのセパレーターによる抵抗が小さくなり、またリチウムイオン二次電池を製造する時の作業性に優れる観点から、好ましくは0.5〜40μm、より好ましくは1〜30μm、さらに好ましくは1〜25μmである。   The thickness of the separator is preferably 0.5 to 40 μm, more preferably from the viewpoint of reducing resistance due to the separator in the lithium ion secondary battery and excellent workability when manufacturing the lithium ion secondary battery. It is 1-30 micrometers, More preferably, it is 1-25 micrometers.

(電解液)
電解液は、特に限定されないが、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。これらは、単独、または2種以上を混合して用いることができる。支持電解質の量は、電解液に対して、通常1wt.%以上、好ましくは5wt.%以上、また通常は30wt.%以下、好ましくは20wt.%以下である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し電池の充電特性、放電特性が低下する。
(Electrolyte)
The electrolytic solution is not particularly limited. For example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts. In particular, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used. These can be used alone or in admixture of two or more. The amount of the supporting electrolyte is usually 1 wt. % Or more, preferably 5 wt. % Or more, and usually 30 wt. % Or less, preferably 20 wt. % Or less. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the battery are degraded.

電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されないが、通常、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、およびメチルエチルカーボネート(MEC)などのアルキルカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類、1,2−ジメトキシエタン、およびテトラヒドロフランなどのエーテル類;スルホラン、およびジメチルスルホキシドなどの含硫黄化合物類;が用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネートが好ましい。これらは、単独、または2種以上を混合して用いることができる。また、電解液には添加剤を含有させて用いることも可能である。また、添加剤としてはビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。   The solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. Usually, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene. Alkyl carbonates such as carbonate (BC) and methyl ethyl carbonate (MEC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfolane and dimethyl sulfoxide Sulfur-containing compounds are used. In particular, dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferable because high ion conductivity is easily obtained and the use temperature range is wide. These can be used alone or in admixture of two or more. Moreover, it is also possible to use an electrolyte containing an additive. The additive is preferably a carbonate compound such as vinylene carbonate (VC).

上記以外の電解液としては、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、硫化リチウム、LiI、Li3N、Li2S−P25ガラスセラミックなどの無機固体電解質を挙げることができる。Examples of the electrolytic solution other than the above include a gel polymer electrolyte in which a polymer electrolyte such as polyethylene oxide and polyacrylonitrile is impregnated with the electrolytic solution, lithium sulfide, LiI, Li 3 N, Li 2 S—P 2 S 5 glass ceramic, etc. An inorganic solid electrolyte can be mentioned.

リチウムイオン二次電池は、負極と正極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口して得られる。さらに必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をすることもできる。電池の形状は、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。   A lithium ion secondary battery is obtained by stacking a negative electrode and a positive electrode through a separator, winding this according to the shape of the battery, folding it into a battery container, pouring the electrolyte into the battery container and sealing it. It is done. Further, if necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate and the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge. The shape of the battery may be any of a laminated cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.

本発明によれば、集電体と電極活物質層との密着力に優れ、さらに耐久性に優れた電気化学素子用電極及び電気化学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode for electrochemical elements and electrochemical element which were excellent in the adhesive force of a collector and an electrode active material layer, and also excellent in durability can be provided.

以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily changed without departing from the gist and equivalent scope of the present invention. Can be implemented. In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified.

実施例及び比較例において接着性、耐久性及び低温特性の評価はそれぞれ以下のように行った。   In Examples and Comparative Examples, adhesion, durability, and low temperature characteristics were evaluated as follows.

(1)接着性
(1−1)ピール強度
実施例および比較例で製造したリチウムイオン二次電池用電極を長さ100mm、幅10mmの長方形に切り出して試験片とし、電極活物質層面を下にして電極活物質層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、アンカー層を有する集電体の一端を垂直方向に引張り速度50mm/分で引張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている。)。測定を3回行い、その平均値を求めてこれをピール強度とし、結果を表1及び表2に示した。ピール強度が大きいほど電極活物質層のアンカー層への結着力が大きい、すなわち密着強度が大きいことを示す。
(1) Adhesiveness (1-1) Peel strength The electrodes for lithium ion secondary batteries produced in Examples and Comparative Examples were cut into rectangles having a length of 100 mm and a width of 10 mm to form test pieces, with the electrode active material layer surface facing down. Measure the stress when cellophane tape (as defined in JIS Z1522) is applied to the surface of the electrode active material layer, and one end of the current collector having the anchor layer is pulled in the vertical direction at a pulling speed of 50 mm / min. (The cellophane tape is fixed to the test stand.) The measurement was performed three times, the average value was obtained and this was taken as the peel strength, and the results are shown in Tables 1 and 2. The higher the peel strength, the greater the binding force of the electrode active material layer to the anchor layer, that is, the higher the adhesion strength.

(2)耐久性
(2−1)高温サイクル特性測定後のピール強度
(2−2)の評価後、800mAhの捲回型セルのリチウムイオン二次電池を解体し、60℃、24時間、真空乾燥した。その後、リチウムイオン二次電池用電極を長さ100mm、幅10mmの長方形に切り出して試験片とし、電極活物質層面を下にして電極活物質層表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付け、アンカー層を有する集電体の一端を垂直方向に引張り速度50mm/分で引張って剥がしたときの応力を測定した(なお、セロハンテープは試験台に固定されている。)。測定を3回行い、その平均値を求めてこれをピール強度とし、結果を表1及び表2に示した。ピール強度が大きいほど電極活物質層のアンカー層への結着力が大きい、すなわち密着強度が大きいことを示す。
(2) Durability (2-1) Peel strength after measurement of high-temperature cycle characteristics After evaluation of (2-2), the lithium ion secondary battery of an 800 mAh wound cell was disassembled and vacuumed at 60 ° C. for 24 hours. Dried. Thereafter, the electrode for the lithium ion secondary battery is cut into a rectangle having a length of 100 mm and a width of 10 mm to obtain a test piece, and a cellophane tape (as defined in JIS Z1522) is formed on the surface of the electrode active material layer with the electrode active material layer side down. The one end of the current collector having the anchor layer was pulled in the vertical direction and pulled at a pulling speed of 50 mm / min, and the stress was measured (note that the cellophane tape was fixed to the test stand). The measurement was performed three times, the average value was obtained and this was taken as the peel strength, and the results are shown in Tables 1 and 2. The higher the peel strength, the greater the binding force of the electrode active material layer to the anchor layer, that is, the higher the adhesion strength.

(2−2)高温サイクル特性
実施例および比較例において作製した800mAh捲回型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.2V、0.1Cの充電、3.0V、0.1Cの放電にて充放電の操作を行い、初期容量C0を測定した。さらに、60℃環境下で、充放電を繰り返し、1000サイクル後の容量C1を測定した。高温サイクル特性は、ΔC=C1/C0×100(%)で示す容量維持率にて評価し、結果を表1及び表2に示した。この値が高いほど寿命特性に優れることを示す。
(2-2) High-temperature cycle characteristics After the lithium-ion secondary battery of the 800 mAh wound-type cell produced in Examples and Comparative Examples was allowed to stand for 24 hours in an environment at 25 ° C, Charge / discharge operation was performed by charging at 4.2 V and 0.1 C and discharging at 3.0 V and 0.1 C, and the initial capacity C 0 was measured. Furthermore, charging / discharging was repeated under an environment of 60 ° C., and the capacity C 1 after 1000 cycles was measured. The high-temperature cycle characteristics were evaluated by the capacity retention rate represented by ΔC = C 1 / C 0 × 100 (%), and the results are shown in Tables 1 and 2. It shows that it is excellent in a lifetime characteristic, so that this value is high.

(2−3)サイクル前後でのセル体積変化
実施例および比較例において作製した800mAh捲回型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.2V、0.1Cの充電、3.0V、0.1Cの放電にて充放電の操作を行った後、捲回型セルを流動パラフィンに浸漬し、その体積V0を測定した。さらに、60℃環境下で、充放電を繰り返し、1000サイクル後の捲回型セルを流動パラフィンに浸漬し、その体積V1を測定した。高温サイクル特性前後でのセル体積変化ΔV(%)=(V1−V0)/V0×100にて評価し、結果を表1及び表2に示した。この値が小さいほどガス発生抑制に優れていることを示す。
(2-3) Cell volume change before and after the cycle After allowing the lithium ion secondary battery of the 800 mAh wound-type cell produced in the examples and comparative examples to stand in an environment of 25 ° C. for 24 hours, Under the environment, after charging / discharging operation by charging at 4.2V, 0.1C, discharging at 3.0V, 0.1C, the wound type cell was immersed in liquid paraffin, and the volume V 0 was set. It was measured. Furthermore, charging and discharging were repeated under an environment of 60 ° C., the wound cell after 1000 cycles was immersed in liquid paraffin, and its volume V 1 was measured. The cell volume change ΔV (%) before and after the high-temperature cycle characteristics was evaluated at (V 1 −V 0 ) / V 0 × 100, and the results are shown in Tables 1 and 2. It shows that it is excellent in gas generation | occurrence | production suppression, so that this value is small.

(3)低温特性
(3−1)低温出力特性
実施例および比較例において作製した800mAh捲回型のリチウムイオン二次電池を、25℃の環境下で24時間静置させた後に、25℃の環境下で、4.2V、0.1C、5時間の充電の操作を行い、その時の電圧V0を測定した。その後、−10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。低温特性は、ΔV=V0−V1で示す電圧変化にて評価し、結果を表1及び表2に示した。この値が小さいほど低温特性に優れることを示す。
(3) Low temperature characteristics (3-1) Low temperature output characteristics The 800 mAh wound type lithium ion secondary battery produced in the examples and comparative examples was allowed to stand for 24 hours in an environment of 25 ° C, Under the environment, 4.2 V, 0.1 C, and 5 hours of charging were performed, and the voltage V 0 at that time was measured. Thereafter, a discharge operation was performed at a discharge rate of 1 C in an environment of −10 ° C., and the voltage V 1 15 seconds after the start of discharge was measured. The low temperature characteristics were evaluated by a voltage change represented by ΔV = V 0 −V 1 , and the results are shown in Tables 1 and 2. It shows that it is excellent in a low temperature characteristic, so that this value is small.

また、実施例および比較例において用いたカチオン性化合物の数平均分子量は、下記の方法で測定した。   Moreover, the number average molecular weight of the cationic compound used in the Examples and Comparative Examples was measured by the following method.

(数平均分子量の測定)
カチオン性化合物を、ジメチルホルムアミドに溶解して1%溶液を調製した。これを測定サンプルとして、標準物質にポリスチレンを用い、展開溶媒に、ジメチルホルムアミドの10体積%水溶液に0.85g/mlの硝酸ナトリウムを溶解させた溶液を用いたGPC測定を行った。
なお、GPC測定装置は、HLC−8220GPC(東ソー社製)、検出器は、HLC−8320GPC RI検出器(東ソー社製)、測定カラムは、TSKgel SuperHZM−M(東ソー社製)を用い、測定温度40℃、展開溶媒流速0.6mL/min、サンプル注入量20μlで測定を行った。
(Measurement of number average molecular weight)
The cationic compound was dissolved in dimethylformamide to prepare a 1% solution. Using this as a measurement sample, GPC measurement was performed using polystyrene as a standard substance, and using a solution obtained by dissolving 0.85 g / ml sodium nitrate in a 10% by volume aqueous solution of dimethylformamide as a developing solvent.
The GPC measuring device is HLC-8220GPC (manufactured by Tosoh Corporation), the detector is HLC-8320GPC RI detector (manufactured by Tosoh Corporation), and the measuring column is TSKgel SuperHZM-M (manufactured by Tosoh Corporation). Measurement was performed at 40 ° C., a developing solvent flow rate of 0.6 mL / min, and a sample injection amount of 20 μl.

(実施例1)
(アンカー層の製造)
厚さ12μmの銅集電体にダイより、カチオン性化合物としてポリエチレンイミン(エポミン、日本触媒社製、数平均分子量700000、固形分濃度30%水溶液)を吐出し、30m/分の成形速度で、前記集電体の片面に塗布し、120℃で5分間乾燥して、厚さ0.5μmのアンカー層を形成した。
Example 1
(Manufacture of anchor layer)
Polyethyleneimine (Epomin, Nippon Shokubai Co., Ltd., number average molecular weight 700,000, 30% solid content aqueous solution) is discharged from a die onto a 12 μm thick copper current collector as a cationic compound, at a molding speed of 30 m / min. The current collector was applied on one side and dried at 120 ° C. for 5 minutes to form an anchor layer having a thickness of 0.5 μm.

(負極用バインダーの製造)
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン(以下、「BD」ということがある。)33部、イタコン酸3.5部、スチレン(以下、「ST」ということがある。)62.5部、2−ヒドロキシエチルアクリレート(以下、「β−HEA」ということがある。)1部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状の負極用バインダー(スチレン−ブタジエン共重合体(SBR))を含む混合物を得た。上記粒子状の負極用バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の粒子状の負極用バインダーを含む水分散液を得た。
(Manufacture of binder for negative electrode)
In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene (hereinafter sometimes referred to as “BD”), 3.5 parts of itaconic acid, and 62.5 of styrene (hereinafter sometimes referred to as “ST”). 1 part, 2-hydroxyethyl acrylate (hereinafter sometimes referred to as “β-HEA”), 0.4 part sodium dodecylbenzenesulfonate as an emulsifier, 150 parts ion-exchanged water, and potassium persulfate as a polymerization initiator 0 .5 parts was added, and after sufficiently stirring, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion reached 96%, the reaction was stopped by cooling to obtain a mixture containing particulate negative electrode binder (styrene-butadiene copolymer (SBR)). After adding 5% aqueous sodium hydroxide solution to the mixture containing the particulate negative electrode binder and adjusting to pH 8, the unreacted monomer is removed by heating under reduced pressure, and then cooled to 30 ° C or lower. An aqueous dispersion containing the desired particulate negative electrode binder was obtained.

(負極用スラリーの製造)
人造黒鉛(平均粒子径:15.6μm)100部、増粘剤としてカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」;以下、「CMC−Na塩」ということがある。)の2%水溶液を固形分相当で1部、イオン交換水で固形分濃度68%に調製した後、25℃60分間混合した。さらにイオン交換水で固形分濃度62%に調製した後、さらに25℃15分間混合した。上記混合液に、上記粒子状の負極用バインダーを固形分相当量で1.5部、及びイオン交換水を入れ、最終固形分濃度52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い負極用スラリーを得た。
(Manufacture of negative electrode slurry)
Artificial graphite (average particle diameter: 15.6 μm) 100 parts, 2% aqueous solution of carboxymethyl cellulose sodium salt (“MAC350HC” manufactured by Nippon Paper Industries Co., Ltd .; hereinafter sometimes referred to as “CMC-Na salt”) as a thickener. The solid content was 1 part, and the solid content concentration was adjusted to 68% with ion-exchanged water, followed by mixing at 25 ° C. for 60 minutes. Further, the solid content was adjusted to 62% with ion-exchanged water, and further mixed at 25 ° C. for 15 minutes. In the mixed solution, 1.5 parts of the particulate negative electrode binder in an amount corresponding to the solid content and ion-exchanged water were added, adjusted to a final solid content concentration of 52%, and further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a negative electrode slurry having good fluidity.

(リチウムイオン二次電池用負極の製造)
前記アンカー層を有する銅集電体上に、上記で得られた負極用スラリーを、コンマコーターで、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理してプレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極組成物層の厚みが80μmのプレス後のリチウムイオン二次電池用負極(以下、「負極」ということがある。)を得た。
(Manufacture of negative electrodes for lithium ion secondary batteries)
On the copper current collector having the anchor layer, the negative electrode slurry obtained above was applied with a comma coater so that the film thickness after drying was about 150 μm, and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode original fabric before pressing was rolled with a roll press to obtain a negative electrode for a lithium ion secondary battery after pressing (hereinafter, also referred to as “negative electrode”) having a negative electrode composition layer thickness of 80 μm.

(正極用スラリーおよびリチウムイオン二次電池用正極の製造)
正極活物質としてLiCoO2(以下、「LCO」ということがある。)92部に、正極用バインダーとしてポリフッ化ビニリデン(PVDF;クレハ化学社製「KF−1100」)を固形分量が2部となるように加え、さらに、アセチレンブラック(電気化学工業社製「HS−100」)を6部、N−メチルピロリドン20部を加えて、プラネタリーミキサーで混合して正極用スラリーを得た。この正極用スラリーを厚さ18μmのアルミニウム箔に塗布し、120℃で30分乾燥した後、ロールプレスして厚さ60μmのリチウムイオン二次電池用正極(以下、「正極」ということがある。)を得た。
(Production of slurry for positive electrode and positive electrode for lithium ion secondary battery)
92 parts of LiCoO 2 (hereinafter sometimes referred to as “LCO”) as the positive electrode active material and 2 parts of solid content of polyvinylidene fluoride (PVDF; “KF-1100” manufactured by Kureha Chemical Co., Ltd.) as the binder for the positive electrode In addition, 6 parts of acetylene black (“HS-100” manufactured by Denki Kagaku Kogyo Co., Ltd.) and 20 parts of N-methylpyrrolidone were added and mixed with a planetary mixer to obtain a slurry for a positive electrode. This positive electrode slurry is applied to an aluminum foil having a thickness of 18 μm, dried at 120 ° C. for 30 minutes, and then roll-pressed to form a positive electrode for a lithium ion secondary battery having a thickness of 60 μm (hereinafter, referred to as “positive electrode”). )

(セパレーターの用意)
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、55×5.5cm2に切り抜いた。
(Preparation of separator)
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by dry method, porosity 55%) was cut out to 55 × 5.5 cm 2 .

(リチウムイオン二次電池の製造)
上記で得られたプレス後の正極を49×5cm2に切り出し、その上に55×5.5cm2に切り出したセパレーターを配置した。さらに、得られたプレス後の負極を、50×5.2cm2に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。これを捲回機により、捲回し、捲回体を得た。この捲回体を60℃、0.5MPaでプレスし、扁平体とし、電池の外装として、アルミ包材外装で包み、電解液(溶媒:EC/DEC/VC=68.5/30/1.5体積比、電解質:濃度1MのLiPF6)を空気が残らないように注入し、さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、800mAhの捲回型リチウムイオン二次電池を製造した。
(Manufacture of lithium ion secondary batteries)
Cut out positive electrode after pressing obtained above in 49 × 5 cm 2, were placed separator was cut into 55 × 5.5cm 2 thereon. Furthermore, the obtained negative electrode after pressing was cut out to 50 × 5.2 cm 2 , and this was arranged on the separator so that the surface on the negative electrode active material layer side faces the separator. This was wound with a winding machine to obtain a wound body. The wound body is pressed at 60 ° C. and 0.5 MPa to form a flat body, and is wrapped with an aluminum packaging exterior as a battery exterior, and an electrolytic solution (solvent: EC / DEC / VC = 68.5 / 30/1. 5 volume ratio, electrolyte: 1M LiPF 6 ) was injected so as not to leave air, and in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior, and 800 mAh A wound type lithium ion secondary battery was manufactured.

(実施例2)
負極用バインダーの製造において、イタコン酸の量を0.2部、スチレンの量を63.8部とした以外は、実施例1と同様にアンカー層の製造、負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Example 2)
Production of anchor layer, production of negative electrode slurry, production of negative electrode in the same manner as in Example 1 except that the amount of itaconic acid was 0.2 parts and the amount of styrene was 63.8 parts in the production of the negative electrode binder. And the lithium ion secondary battery was manufactured.

(実施例3)
負極用バインダーの製造において、1,3−ブタジエンの量を30部、イタコン酸の量9.5部、スチレンの量を59.5部とした以外は、実施例1と同様にアンカー層の製造、負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
Example 3
In the production of the negative electrode binder, the anchor layer was produced in the same manner as in Example 1 except that the amount of 1,3-butadiene was 30 parts, the amount of itaconic acid was 9.5 parts, and the amount of styrene was 59.5 parts. The production of slurry for negative electrode, the production of negative electrode and the production of lithium ion secondary battery were carried out.

(実施例4)
負極用スラリーの製造において、用いる粒子状の負極用バインダーの量を固形分相当量で0.2部とした以外は、実施例1と同様にアンカー層の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Example 4)
In the production of the negative electrode slurry, the production of the anchor layer, the production of the negative electrode, and the lithium ion secondary were the same as in Example 1 except that the amount of the particulate negative electrode binder used was 0.2 parts in terms of solid content. The battery was manufactured.

(実施例5)
負極用スラリーの製造において、粒子状バインダーの量を固形分相当量で18部とした以外は、実施例1と同様にアンカー層の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Example 5)
In the production of the negative electrode slurry, the anchor layer, the negative electrode, and the lithium ion secondary battery were produced in the same manner as in Example 1 except that the amount of the particulate binder was 18 parts in terms of solid content. .

(実施例6)
負極用バインダーの製造において、イタコン酸に代えてスチレンスルホン酸ナトリウム(以下、「NaSS」ということがある。)を用いた以外は、実施例1と同様にアンカー層の製造、負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Example 6)
In the production of the negative electrode binder, in the same manner as in Example 1, except that sodium styrenesulfonate (hereinafter sometimes referred to as “NaSS”) was used instead of itaconic acid, production of the anchor layer and production of the negative electrode slurry were performed. The negative electrode and the lithium ion secondary battery were manufactured.

(実施例7)
負極用バインダーの製造において、イタコン酸に代えてリン酸メチル−2−メタアクリロイルオキシエチルを用いた以外は、実施例1と同様にアンカー層の製造、負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Example 7)
In the production of the negative electrode binder, except that methyl-2-methacryloyloxyethyl phosphate was used instead of itaconic acid, the production of the anchor layer, the production of the negative electrode slurry, the production of the negative electrode, and lithium were performed in the same manner as in Example 1. An ion secondary battery was manufactured.

(実施例8)
アンカー層の製造において、カチオン性化合物としてポリエチレンイミンに代えてカルボキシメチル化ポリエチレンイミン・ナトリウム塩(数平均分子量50000、固形分濃度3%水溶液)を用いた以外は、実施例1と同様に負極用スラリーの製造、負極の製造おおよびリチウムイオン二次電池の製造を行った。
(Example 8)
In the production of the anchor layer, as in Example 1, except that carboxymethylated polyethyleneimine sodium salt (number average molecular weight 50000, solid content concentration 3% aqueous solution) was used as the cationic compound instead of polyethyleneimine. Production of a slurry, production of a negative electrode, and production of a lithium ion secondary battery were performed.

(実施例9)
アンカー層の製造において、カチオン性化合物としてポリエチレンイミンに代えてカチオン化セルロース(ポイズC−60H、数平均分子量600000、固形分濃度3%水溶液)を用いた以外は、実施例1と同様に負極用スラリーの製造、負極の製造おおよびリチウムイオン二次電池の製造を行った。
Example 9
In the production of the anchor layer, as in Example 1, except that cationized cellulose (poise C-60H, number average molecular weight 600000, solid content concentration 3% aqueous solution) was used as the cationic compound instead of polyethyleneimine. Production of a slurry, production of a negative electrode, and production of a lithium ion secondary battery were performed.

(実施例10)
(アンカー層の製造)
厚さ18μmのアルミ集電体にダイより、カチオン性化合物としてポリエチレンイミン(エポミン、日本触媒社製、数平均分子量700000、固形分濃度30%水溶液)を吐出し、30m/分の成形速度で、前記集電体の片面に塗布し、120℃で5分間乾燥して、厚さ0.5μmのアンカー層を形成した。
(Example 10)
(Manufacture of anchor layer)
Polyethyleneimine (epomine, manufactured by Nippon Shokubai Co., Ltd., number average molecular weight 700,000, 30% solid content aqueous solution) is discharged from a die onto an aluminum current collector having a thickness of 18 μm as a cationic compound, and at a molding speed of 30 m / min. The current collector was applied on one side and dried at 120 ° C. for 5 minutes to form an anchor layer having a thickness of 0.5 μm.

(正極用バインダーの製造)
攪拌機付き5MPa耐圧容器に、2−エチルヘキシルアクリレート(以下、「2−EHA」ということがある。)76部、イタコン酸4.0部、アクリロニトリル(以下、「AN」ということがある。)20部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部及び重合開始剤として過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状の正極用バインダー(アクリル系重合体(ACL))を含む混合物を得た。上記粒子状の正極用バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った後、30℃以下まで冷却し、所望の粒子状の正極用バインダーを含む水分散液を得た。
(Manufacture of binder for positive electrode)
In a 5 MPa pressure vessel with a stirrer, 76 parts of 2-ethylhexyl acrylate (hereinafter sometimes referred to as “2-EHA”), 4.0 parts of itaconic acid, and 20 parts of acrylonitrile (hereinafter sometimes referred to as “AN”). Then, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were stirred sufficiently, and then heated to 50 ° C. to initiate polymerization. . When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing particulate positive electrode binder (acrylic polymer (ACL)). After adding 5% aqueous sodium hydroxide solution to the mixture containing the particulate positive electrode binder and adjusting the pH to 8, the unreacted monomer is removed by heating under reduced pressure, and then cooled to 30 ° C or lower. Thus, an aqueous dispersion containing a desired positive electrode binder was obtained.

(正極用スラリーの製造)
ディスパー付きのプラネタリーミキサーに、正極活物質としてLCOを100部、粘性付与剤としてCMC−Na塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部をそれぞれ加え、イオン交換水で固形分濃度60%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度57%に調整した後、さらに25℃で15分混合し混合液を得た。
(Production of positive electrode slurry)
To a planetary mixer with a disper, add 100 parts of LCO as a positive electrode active material, 1 part of a 2% aqueous solution of CMC-Na salt (“MAC350HC” manufactured by Nippon Paper Industries Co., Ltd.) as a viscosity-imparting agent. After adjusting the solid content concentration to 60% with exchange water, the mixture was mixed at 25 ° C. for 60 minutes. Next, after adjusting to 57% of solid content concentration with ion-exchange water, it mixed for 15 minutes at 25 degreeC, and the liquid mixture was obtained.

上記混合液に、上記で製造した正極用バインダー3部(固形分基準)及びイオン交換水を入れ、最終固形分濃度54%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い正極用スラリーを得た。   3 parts of the positive electrode binder (based on solid content) produced above and ion-exchanged water were added to the mixed solution, adjusted to a final solid content concentration of 54%, and mixed for another 10 minutes. This was defoamed under reduced pressure to obtain a positive electrode slurry having good fluidity.

前記アンカー層を有するアルミ集電体上に、前記正極用スラリーをコンマコーターで、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。なお、この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極を得た。このプレス前の正極原反をロールプレスで圧延して、正極活物質層の厚みが80μmのプレス後の正極を得た。   The positive electrode slurry was applied onto the aluminum current collector having the anchor layer with a comma coater so that the film thickness after drying was about 150 μm, and dried. This drying was performed by transporting the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, it heat-processed for 2 minutes at 120 degreeC, and obtained the positive electrode. The positive electrode raw material before pressing was rolled by a roll press to obtain a positive electrode after pressing with a positive electrode active material layer having a thickness of 80 μm.

(負極用スラリーおよびリチウムイオン二次電池負極の製造)
負極活物質として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値):0.354nm)96部、スチレン−ブタジエン共重合ラテックス(BM−400B)を固形分換算量で3.0部、分散剤としてカルボキシメチルセルロースの1.5%水溶液(DN−800H:ダイセル化学工業社製)を固形分換算量で1.0部混合し、さらにイオン交換水を固形分濃度が50%となるように加え、混合分散して負極用スラリーを得た。この負極用スラリーを厚さ18μmの銅箔に塗布し、120℃で30分間乾燥した後、ロールプレスして厚さ50μmの負極を得た。
(Manufacture of negative electrode slurry and lithium ion secondary battery negative electrode)
Artificial graphite as the negative electrode active material (average particle size: 24.5 μm, graphite interlayer distance ((002) plane spacing (d value): 0.354 nm by X-ray diffraction method) 96 parts, styrene-butadiene copolymer latex ( BM-400B) is 3.0 parts in terms of solid content, and 1.5 parts of a carboxymethylcellulose 1.5% aqueous solution (DN-800H: manufactured by Daicel Chemical Industries) as a dispersant is mixed in 1.0 part in terms of solid content. Further, ion exchange water was added so as to have a solid content concentration of 50%, and mixed and dispersed to obtain a negative electrode slurry, which was applied to a copper foil having a thickness of 18 μm and dried at 120 ° C. for 30 minutes. Thereafter, roll pressing was performed to obtain a negative electrode having a thickness of 50 μm.

(セパレーターの用意)
単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、55×5.5cm2に切り抜いた。
(Preparation of separator)
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, manufactured by dry method, porosity 55%) was cut out to 55 × 5.5 cm 2 .

(リチウムイオン二次電池の製造)
上記で得られたプレス後の正極を49×5cm2に切り出し、その上に55×5.5cm2に切り出したセパレーターを配置した。さらに、得られたプレス後の負極を、50×5.2cm2に切り出し、これをセパレーター上に、負極活物質層側の表面がセパレーターに向かい合うよう配置した。これを捲回機により、捲回し、捲回体を得た。この捲回体を60℃、0.5MPaでプレスし、扁平体とし、電池の外装として、アルミ包材外装で包み、電解液(溶媒:EC/DEC/VC=68.5/30/1.5体積比、電解質:濃度1MのLiPF6)を空気が残らないように注入し、さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、800mAhの捲回型リチウムイオン二次電池を製造した。
(Manufacture of lithium ion secondary batteries)
Cut out positive electrode after pressing obtained above in 49 × 5 cm 2, were placed separator was cut into 55 × 5.5cm 2 thereon. Furthermore, the obtained negative electrode after pressing was cut out to 50 × 5.2 cm 2 , and this was arranged on the separator so that the surface on the negative electrode active material layer side faces the separator. This was wound with a winding machine to obtain a wound body. The wound body is pressed at 60 ° C. and 0.5 MPa to form a flat body, and is wrapped with an aluminum packaging exterior as a battery exterior, and an electrolytic solution (solvent: EC / DEC / VC = 68.5 / 30/1. 5 volume ratio, electrolyte: 1M LiPF 6 ) was injected so as not to leave air, and in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior, and 800 mAh A wound type lithium ion secondary battery was manufactured.

(比較例1)
負極用バインダーの製造において、1,3−ブタジエンの量を30部、イタコン酸の量11.0部、スチレンの量を58部とした以外は、実施例1と同様にアンカー層の製造、負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Comparative Example 1)
In the production of the negative electrode binder, the anchor layer was produced in the same manner as in Example 1, except that the amount of 1,3-butadiene was 30 parts, the amount of itaconic acid was 11.0 parts, and the amount of styrene was 58 parts. Slurry production, negative electrode production and lithium ion secondary battery production were carried out.

(比較例2)
負極用スラリーの製造において、用いる粒子状の負極用バインダーの量を固形分相当量で22部とした以外は、実施例1と同様にアンカー層の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Comparative Example 2)
In the production of the negative electrode slurry, the production of the anchor layer, the production of the negative electrode, and the lithium ion secondary battery was the same as in Example 1 except that the amount of the particulate negative electrode binder used was 22 parts in terms of solid content. Manufactured.

(比較例3)
負極用バインダーの製造において、1,3−ブタジエンの量を30部、イタコン酸の量11.0部、スチレンの量を58部とし、負極用スラリーの製造において、用いる粒子状の負極用バインダーの量を固形分相当量で22部とした以外は、実施例1と同様にアンカー層の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Comparative Example 3)
In the production of the negative electrode binder, the amount of 1,3-butadiene was 30 parts, the amount of itaconic acid was 11.0 parts, and the amount of styrene was 58 parts. An anchor layer, a negative electrode, and a lithium ion secondary battery were manufactured in the same manner as in Example 1 except that the amount was 22 parts in terms of solid content.

(比較例4)
負極用バインダーの製造において、イタコン酸を用いずに、1,3−ブタジエンの量を34部、スチレンの量を65部とした以外は、実施例1と同様にアンカー層の製造、負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Comparative Example 4)
In the production of the binder for the negative electrode, the anchor layer was produced in the same manner as in Example 1, except that itaconic acid was not used and the amount of 1,3-butadiene was 34 parts and the amount of styrene was 65 parts. , Negative electrode, and lithium ion secondary battery.

(比較例5)
アンカー層の製造において、カチオン性化合物を用いずにポリアクリル酸ナトリウム塩を用いた以外は、実施例1と同様に負極用スラリーの製造、負極の製造おおよびリチウムイオン二次電池の製造を行った。
(Comparative Example 5)
In the production of the anchor layer, except for using polyacrylic acid sodium salt without using a cationic compound, the production of the slurry for the negative electrode, the production of the negative electrode, and the production of the lithium ion secondary battery were performed in the same manner as in Example 1. It was.

(比較例6)
(アンカー層の製造)
分散剤(ポリビニルアルコール)5部をイオン交換水80部に溶解させた水溶液に、導電性フィラーとしての炭素材料(黒鉛/カーボンブラック=80/20)100部を添加し、さらにカチオン性化合物としてポリエチレンイミン(エポミン、日本触媒社製、数平均分子量700000、固形分濃度30%水溶液)を固形分相当で2部添加したアンカー層用スラリーを作製した。厚さ12μmの銅集電体にダイより、アンカー層用スラリーを吐出し、30m/分の成形速度で、前記集電体の片面に塗布し、120℃で5分間乾燥して、厚さ0.5μmのアンカー層を形成した。
上記導電性フィラーを含むアンカー層を有する銅集電体を用いた以外は、実施例1と同様に負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Comparative Example 6)
(Manufacture of anchor layer)
100 parts of carbon material (graphite / carbon black = 80/20) as a conductive filler is added to an aqueous solution in which 5 parts of a dispersant (polyvinyl alcohol) is dissolved in 80 parts of ion-exchanged water, and polyethylene is added as a cationic compound. An anchor layer slurry was prepared by adding 2 parts of imine (epomine, manufactured by Nippon Shokubai Co., Ltd., number average molecular weight 700,000, solid content concentration 30% aqueous solution) in an amount equivalent to solid content. The anchor layer slurry was discharged from a die onto a 12 μm thick copper current collector, applied to one side of the current collector at a molding speed of 30 m / min, and dried at 120 ° C. for 5 minutes to obtain a thickness of 0 An anchor layer of 0.5 μm was formed.
Except for using a copper current collector having an anchor layer containing the conductive filler, a negative electrode slurry, a negative electrode, and a lithium ion secondary battery were manufactured in the same manner as in Example 1.

(比較例7)
アンカー層の製造において、厚さ3μmのアンカー層を形成した以外は、比較例6と同様に負極用スラリーの製造、負極の製造及びリチウムイオン二次電池の製造を行った。
(Comparative Example 7)
In the production of the anchor layer, except for forming the anchor layer having a thickness of 3 μm, the production of the slurry for the negative electrode, the production of the negative electrode, and the production of the lithium ion secondary battery were performed in the same manner as in Comparative Example 6.

Figure 0006436101
Figure 0006436101

Figure 0006436101
Figure 0006436101

表1及び表2に示すように、集電体上に、電極活物質およびバインダーを含む電極活物質層が形成されてなる電気化学素子用電極であって、前記集電体上に、カチオン性化合物を含むアンカー層を有し、前記バインダーは酸基含有単量体単位を0.1〜10重量%有し、前記電極活物質層中の前記バインダーの含有割合が電極活物質100重量部に対して0.1〜20重量部である、電気化学素子用電極の接着性は良好であり、この電気化学素子用電極を用いたリチウムイオン二次電池の耐久性及び低温特性は良好であった。   As shown in Tables 1 and 2, an electrode for an electrochemical device, in which an electrode active material layer containing an electrode active material and a binder is formed on a current collector, the cationic current on the current collector An anchor layer containing a compound, the binder has an acid group-containing monomer unit in an amount of 0.1 to 10% by weight, and the binder content in the electrode active material layer is 100 parts by weight of the electrode active material; On the other hand, the adhesion of the electrode for an electrochemical element, which is 0.1 to 20 parts by weight, was good, and the durability and low-temperature characteristics of a lithium ion secondary battery using this electrode for an electrochemical element were good. .

Claims (6)

集電体上に、電極活物質およびバインダーを含む電極活物質層が形成されてなる電気化学素子用電極であって、
前記集電体上に、カチオン性化合物のみを含むアンカー層を有し、
前記バインダーは酸基含有単量体単位を0.1〜10重量%有し、前記電極活物質層中の前記バインダーの含有割合が電極活物質100重量部に対して0.1〜20重量部である、電気化学素子用電極。
An electrode for an electrochemical element in which an electrode active material layer containing an electrode active material and a binder is formed on a current collector,
On the current collector, having an anchor layer containing only a cationic compound,
The binder has an acid group-containing monomer unit in an amount of 0.1 to 10% by weight, and the content ratio of the binder in the electrode active material layer is 0.1 to 20 parts by weight with respect to 100 parts by weight of the electrode active material. An electrode for an electrochemical element.
前記カチオン性化合物の数平均分子量が、10000〜2000000である請求項1記載の電気化学素子用電極。   The electrode for an electrochemical element according to claim 1, wherein the cationic compound has a number average molecular weight of 10,000 to 2,000,000. 前記アンカー層の厚みが、0.01μm以上1μm未満である請求項1または2記載の電気化学素子用電極。   The electrode for an electrochemical element according to claim 1 or 2, wherein the anchor layer has a thickness of 0.01 µm or more and less than 1 µm. 前記酸基含有単量体単位が、カルボキシル基、スルホン酸基、リン酸基のいずれかを含む請求項1〜3のいずれか一項に記載の電気化学素子用電極。   The electrode for electrochemical devices according to any one of claims 1 to 3, wherein the acid group-containing monomer unit includes any of a carboxyl group, a sulfonic acid group, and a phosphoric acid group. 請求項1〜4のいずれか一項に記載の電気化学素子用電極、セパレーターおよび電解液を含む電気化学素子。   The electrochemical element containing the electrode for electrochemical elements as described in any one of Claims 1-4, a separator, and electrolyte solution. 前記電気化学素子が、リチウムイオン二次電池である請求項5記載の電気化学素子。

The electrochemical device according to claim 5, wherein the electrochemical device is a lithium ion secondary battery.

JP2015559866A 2014-01-29 2015-01-16 Electrode for electrochemical element and electrochemical element Active JP6436101B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014013871 2014-01-29
JP2014013871 2014-01-29
PCT/JP2015/051005 WO2015115201A1 (en) 2014-01-29 2015-01-16 Electrode for electrochemical elements, and electrochemical element

Publications (2)

Publication Number Publication Date
JPWO2015115201A1 JPWO2015115201A1 (en) 2017-03-23
JP6436101B2 true JP6436101B2 (en) 2018-12-12

Family

ID=53756778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015559866A Active JP6436101B2 (en) 2014-01-29 2015-01-16 Electrode for electrochemical element and electrochemical element

Country Status (4)

Country Link
JP (1) JP6436101B2 (en)
KR (1) KR102302761B1 (en)
CN (1) CN105814717A (en)
WO (1) WO2015115201A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021641B2 (en) * 2016-12-02 2022-02-17 日産化学株式会社 Method for manufacturing thin film containing conductive carbon material
WO2018168502A1 (en) * 2017-03-13 2018-09-20 日本ゼオン株式会社 Binder composition for nonaqueous secondary battery electrode, conductive-material paste composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2019188558A1 (en) * 2018-03-29 2019-10-03 日産化学株式会社 Energy storage device electrode and energy storage device
CN112585787A (en) 2018-08-23 2021-03-30 日产化学株式会社 Composition for forming thin film for energy storage device electrode, composite current collector for energy storage device electrode, and energy storage device
CN109546127B (en) * 2018-11-27 2021-03-09 横店集团东磁股份有限公司 Silicon-carbon cathode slurry and preparation method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134739B2 (en) 1972-03-18 1976-09-28
JP3784494B2 (en) * 1997-04-28 2006-06-14 株式会社クレハ Binder for battery, binder solution, electrode mixture, electrode structure and battery
JP4117420B2 (en) * 1997-05-08 2008-07-16 Jsr株式会社 Conductive composition for battery electrode
JP2000021408A (en) * 1998-06-30 2000-01-21 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
KR100276966B1 (en) * 1998-07-31 2001-02-01 이병길 Pretreatment method for metal aluminum and copper current collectors for secondary batteries
JP2003187807A (en) * 2001-12-19 2003-07-04 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and the nonaqueous secondary battery
KR100669335B1 (en) * 2005-08-19 2007-01-16 삼성에스디아이 주식회사 Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP5090028B2 (en) 2007-03-16 2012-12-05 福田金属箔粉工業株式会社 Copper foil for negative electrode current collector of lithium secondary battery and method for producing the same
US9123940B2 (en) * 2008-06-02 2015-09-01 Dainichiseika Color & Chemicals Mfg. Co, Ltd. Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
JP2010272399A (en) 2009-05-22 2010-12-02 Hitachi Cable Ltd Lithium ion secondary battery negative electrode and its forming method
WO2011068215A1 (en) * 2009-12-03 2011-06-09 日本ゼオン株式会社 Binder particles for electrochemical element
CN102656723B (en) * 2009-12-10 2014-09-24 丰田自动车株式会社 Process for producing electrode for battery
JP2011134623A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2012108212A1 (en) * 2011-02-10 2012-08-16 昭和電工株式会社 Current collector
EP2679637B1 (en) * 2011-02-23 2017-05-10 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous liquid composition, aqueous coating, functional coating film, and composite material
JP5861845B2 (en) * 2011-03-18 2016-02-16 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2012248436A (en) * 2011-05-27 2012-12-13 Dainippon Printing Co Ltd Alkali metal ion secondary battery electrode plate, alkali metal ion secondary battery and battery pack
JP5708301B2 (en) * 2011-06-28 2015-04-30 日本ゼオン株式会社 Secondary battery negative electrode, secondary battery, negative electrode slurry composition, and method for producing secondary battery negative electrode
JP5704401B2 (en) * 2011-07-12 2015-04-22 トヨタ自動車株式会社 Secondary battery electrode and manufacturing method thereof
CN103456508B (en) * 2012-05-31 2017-04-12 海洋王照明科技股份有限公司 Method for manufacturing graphene composite electrode
JP2014075415A (en) * 2012-10-03 2014-04-24 Yokohama Rubber Co Ltd:The Conductive composition
CN103326027B (en) * 2013-05-29 2017-12-08 宁德新能源科技有限公司 A kind of negative electrode of lithium ion battery and lithium ion battery

Also Published As

Publication number Publication date
WO2015115201A1 (en) 2015-08-06
JPWO2015115201A1 (en) 2017-03-23
CN105814717A (en) 2016-07-27
KR20160113582A (en) 2016-09-30
KR102302761B1 (en) 2021-09-14

Similar Documents

Publication Publication Date Title
JP5713198B2 (en) Method for manufacturing lithium secondary battery
JP6273956B2 (en) Binder for secondary battery porous membrane, slurry composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
KR102232551B1 (en) Binder for use in electrochemical device electrodes, particle composite for use in electrochemical device electrodes, electrochemical device electrode, electrochemical device, and electrochemical device electrode manufacturing method
CN110383546B (en) Conductive material dispersion for electrochemical element electrode, slurry composition and method for producing same, electrode, and electrochemical element
JP7264062B2 (en) Conductive material paste for electrochemical element, slurry composition for electrochemical element positive electrode and manufacturing method thereof, positive electrode for electrochemical element, and electrochemical element
US10529989B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP6436101B2 (en) Electrode for electrochemical element and electrochemical element
KR102468252B1 (en) Binder composition for secondary cell electrode, slurry composition for secondary cell electrode, secondary cell electrode, and secondary cell
WO2011078263A1 (en) Electrode for secondary battery, and secondary battery
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JPWO2014192652A6 (en) Electrochemical element electrode binder, electrochemical element electrode particle composite, electrochemical element electrode, electrochemical element, and method for producing electrochemical element electrode
JP6471697B2 (en) Adhesive coating solution for current collector coating
US10249879B2 (en) Binder composition for secondary battery electrode-use, slurry composition for secondary battery electrode-use, electrode for secondary battery-use and production method therefor, and secondary battery
TWI668906B (en) Positive electrode slurry, positive electrode of power storage device, and power storage device
JP2012256544A (en) Manufacturing method of electrode for secondary battery
JP2023529531A (en) Binder composition for secondary battery
JP7327942B2 (en) Composition for forming porous insulating layer, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing electrode for non-aqueous electrolyte secondary battery
JP2015138687A (en) Adhesive agent coating liquid for collector coat
JP7371497B2 (en) Adhesive composition for power storage device, functional layer for power storage device, power storage device, and manufacturing method of power storage device
JP6455015B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery
WO2020137435A1 (en) Conductive material paste for all-solid secondary battery electrode
JP5796742B2 (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery using the negative electrode
WO2021193665A1 (en) Positive electrode for secondary battery, and secondary battery
WO2022172843A1 (en) Negative electrode binder composition, negative electrode, and secondary battery
JPWO2019054173A1 (en) Slurry composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method for producing slurry composition for electrochemical device electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6436101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250