WO2015115010A1 - Method for capturing organic compound - Google Patents

Method for capturing organic compound Download PDF

Info

Publication number
WO2015115010A1
WO2015115010A1 PCT/JP2014/084280 JP2014084280W WO2015115010A1 WO 2015115010 A1 WO2015115010 A1 WO 2015115010A1 JP 2014084280 W JP2014084280 W JP 2014084280W WO 2015115010 A1 WO2015115010 A1 WO 2015115010A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
collection
agent
collected
solvent
Prior art date
Application number
PCT/JP2014/084280
Other languages
French (fr)
Japanese (ja)
Inventor
恒昭 前田
高弘 大塚
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to JP2015559787A priority Critical patent/JPWO2015115010A1/en
Publication of WO2015115010A1 publication Critical patent/WO2015115010A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2205Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling with filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2241Sampling from a closed space, e.g. food package, head space purpose-built sampling enclosure for emissions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds

Definitions

  • the present invention relates to a collection method for collecting a semi-volatile organic compound (SVOC) contained in a particulate material such as PM2.5.
  • SVOC semi-volatile organic compound
  • a collection tube for gas chromatography for example, highly heat-resistant polymer particles such as Tenax (trade name, 2,6-diphenyl-p-phenylene-oxide), activated carbon, carbon polymer and the like gas-solid adsorption type
  • a collecting agent When this gas-solid adsorption type collecting agent is used, the sample components are adsorbed on the surface of the collecting agent by physical and chemical bonds.
  • This collection tube is a container filled with a gas-liquid distribution type collection agent containing silica gel having hydrocarbon chains on the surface.
  • the hydrocarbon chain chemically modified on the surface of silica gel functions in the same manner as the liquid phase, and the sample components are concentrated and collected by the gas-liquid distribution mechanism.
  • the silica gel has micropores called micropores and mesopores, and has a large specific surface area (for example, 280 m 2 / g). Therefore, there is a problem that desorption from the collecting agent cannot be performed sufficiently and the recovery efficiency is poor.
  • the present invention has been made to solve the above-mentioned problems, and its main problem is to easily remove the semivolatile organic compound after collecting the semivolatile organic compound. is there.
  • the method for collecting semivolatile organic compounds according to the present invention is a collection method in which a carbon chain is chemically modified on a substrate made of silica gel having a specific surface area of 1.8 m 2 / g or more and less than 50 m 2 / g.
  • a semi-volatile organic compound is collected using an agent.
  • the organic compound collected in the collection agent is eluted by storing a solvent in a storage container containing the collection agent. It is desirable to make it.
  • a semi-volatile organic compound gas chromatographic scavenger which adsorbs a specific surface area of 1.8 m 2 / g or more 50 m 2 / g It is characterized in that a carbon chain is chemically modified on a base material made of less silica gel.
  • the semivolatile organic compound contained in the particulate matter such as PM2.5 can be reliably collected, and the semivolatile organic compound after the collection can be easily captured.
  • a concentrated sample solution can be generated by desorption from the collecting agent.
  • the schematic diagram which shows the collection tube for gas chromatography of this embodiment The schematic diagram which shows the collection method using the collection tube of the embodiment.
  • the collector for gas chromatography of this embodiment is used for collecting a semi-volatile organic compound (SVOC) contained in particulate matter such as PM2.5 as a sample component. As shown, it is provided inside a gas chromatography collection tube.
  • SVOC semi-volatile organic compound
  • a semivolatile organic compound (SVOC) is an organic compound having a boiling point range of 240 ° C to 400 ° C. Further, the particulate matter is fine particles having a particle diameter of approximately micrometers ( ⁇ m), and PM2.5 is a particle having a particle diameter of approximately 2.5 ⁇ m or less.
  • the collection tube of FIG. 1 will be briefly described.
  • a storage container having a cylindrical shape made of glass, a collection agent accommodated in the accommodation container, and one end and the other end of the collection agent And a filter made of glass fiber, for example, and a cap member with a stopper for closing the one end opening and the other end opening of the container.
  • the inorganic component contained in the sample gas introduced into the collection tube is mainly removed by a filter.
  • Particulate matter collected by the collection agent of this collection tube is eluted and collected using a solvent (recovery agent) such as methanol, and analyzed by gas chromatography as a concentrated liquid sample.
  • a solvent recovery agent
  • the collector for gas chromatography uses a silica gel having a specific surface area of 1.8 m 2 / g or more and less than 50 m 2 / g as a base material (support), and a carbon chain (the number of carbon atoms is, for example, 18). Are chemically modified.
  • the specific surface area of said silica gel is the value measured using the nitrogen adsorption (BET) method.
  • BET nitrogen adsorption
  • the semi-volatile organic compound contained in the particulate matter is collected by the collecting agent 3 when the semi-volatile organic compound is partially dissolved in the carbon chain of the collecting agent in a molecular state. It also includes being collected.
  • the cap members on one end side and the other end side of the collection tube are removed, one end side of the collection tube (one end opening of the container) is opened to the atmosphere, and the other end side of the collection tube is connected to the suction line.
  • the suction line is provided with a flow rate control device such as a mass flow controller (MFC) and a suction pump. Then, the air is sucked by the suction pump, and the flow rate is controlled to be constant by the flow rate control device. The amount collected is determined by the suction flow rate and the suction time.
  • MFC mass flow controller
  • the semivolatile organic compound (SVOC) in the atmosphere is collected by the collection agent.
  • cap members are attached to one end side and the other end side of the collection tube, the caps of the cap members are closed, and stored until recovery with a solvent such as methanol.
  • the flow rate control device and the suction pump are arranged on the downstream side of the collection tube, but may be arranged on the upstream side of the collection tube.
  • FIG. 2B shows a method for collecting PM2.5 precursor components generated from plants.
  • a plant that is a source of precursor components is housed in a container.
  • the container is connected to a carrier gas supply line for supplying a carrier gas such as high-purity air and an introduction line for introducing a precursor component generated from a plant in the container into a collection tube.
  • the carrier gas supply line is provided with a high-pressure cylinder filled with a carrier gas such as high-purity air and a flow rate control device such as a mass flow controller (MFC).
  • a carrier gas such as high-purity air
  • MFC mass flow controller
  • the cap member on one end side of the collecting tube is removed, and the cap member on the other end side is opened. Then, in a state where the collection tube is set up so that the cap member on the other end side is on the lower side, a predetermined amount (for example, 2 mL) of a solvent such as methanol from one end side of the collection tube (the upper end opening of the container) inject.
  • a predetermined amount for example, 2 mL
  • a solvent such as methanol from one end side of the collection tube (the upper end opening of the container) inject.
  • the solvent may be introduced by opening the cap member on one end side without removing the cap member on one end side, or the cap member on the other end side may be kept closed when the solvent is introduced. . Thereby, the solvent permeates downward between the collection agents.
  • the solution methanol solution
  • the stopper is closed before the solution flows out from the stopper of the cap member on the lower end side.
  • the solvent injection amount into the collection tube is such that the entire collection agent is immersed in the solvent.
  • a predetermined time for example, 15 minutes
  • the semivolatile organic compound collected in the collection agent is eluted.
  • the solution (methanol solution) accumulated in the collection tube is taken out and measured by gas chromatography.
  • the cap member on the other end side may be removed, and the solution may be taken out with a microsyringe and introduced into the gas chromatography. Since the collection agent of this embodiment can easily desorb the semivolatile organic compound, it is not necessary to keep the solvent flowing, and the semivolatile organic compound can be desorbed only by storing the solvent. As a result, the amount of solvent used for the elution of the semivolatile organic compound can be reduced by the above elution method.
  • a recovery experiment by a solvent recovery method using the gas chromatographic collecting agent thus configured was performed.
  • 500 mg / mL of caryophyllene and 100 ⁇ L were added to the collection agent, and high-purity air was allowed to flow at a flow rate of 100 mL / min for 10 minutes, and then 2 mL to 4 mL of methanol (solvent) was captured. It was stored in the collecting tube and eluted, and measured by gas chromatography every time.
  • An example of the present invention used in this recovery experiment is a silica chain having a specific surface area of 1.8 m 2 / g (Shinwasorb manufactured by Shinwa Kako, particle size (Mesh) is 20 to 40), 2.9 g and a carbon chain having 18 carbon atoms.
  • a silica gel having a specific surface area of 280 m 2 / g (Unibeads 3S manufactured by GL Sciences Co., Ltd., particle size 30 to 60) is added to 1.6 g of a carbon chain having 18 carbon atoms and a carbon number. It is a collecting agent obtained by chemically modifying 30 carbon chains.
  • the peak area increases with the passage of the extraction time, and is stable after about 45 minutes.
  • 45 minutes after the start of extraction 45 minutes after the start of extraction. It turned out to be substantially constant and stable until the passage.
  • the semivolatile organic compound contained in the particulate matter such as PM2.5 can be reliably collected, and the semivolatile organic compound after the collection can be easily collected.
  • a concentrated sample solution can be generated by solvent desorption from the collection agent.
  • the present invention is not limited to the above embodiment.
  • the particulate matter collected by the collection agent is a method of collecting by solvent desorption, but may be collected by heat desorption.
  • the semivolatile organic compound can be easily detached after the semivolatile organic compound is collected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The purpose of the present invention is to capture a semi-volatile organic compound contained in a particulate substance such as PM 2.5 and detach the captured semi-volatile organic compound from a capturing agent easily. A semi-volatile organic compound contained in a particulate substance such as PM 2.5 can be captured using a capturing agent which is produced by chemically modifying a base material comprising silica gel having a specific surface area of 1.8 m2/g or more and less than 50 m2/g with a carbon chain.

Description

有機化合物の捕集方法Collection method of organic compounds
 本発明は、例えばPM2.5等の粒子状物質に含まれる半揮発性有機化合物(SVOC)等を捕集する捕集方法に関するものである。 The present invention relates to a collection method for collecting a semi-volatile organic compound (SVOC) contained in a particulate material such as PM2.5.
 従来、ガスクロマトグラフィー用捕集管としては、例えばTenax(商品名、2,6-diphenyl-p-phenylene oxide)等の高耐熱性の高分子粒子、活性炭、炭素重合体等の気固吸着形捕集剤を容器に充填したものがある。この気固吸着形捕集剤を用いた場合には、試料成分が捕集剤の表面に物理的・化学的結合により吸着される。 Conventionally, as a collection tube for gas chromatography, for example, highly heat-resistant polymer particles such as Tenax (trade name, 2,6-diphenyl-p-phenylene-oxide), activated carbon, carbon polymer and the like gas-solid adsorption type There is a container filled with a collecting agent. When this gas-solid adsorption type collecting agent is used, the sample components are adsorbed on the surface of the collecting agent by physical and chemical bonds.
 ところが、この気固吸着型捕集剤に捕集された試料成分を溶媒脱着させる場合、PM2.5等の粒子状物質に含まれる半揮発性有機化合物(SVOC)等を脱着させるためには、多量の溶媒が必要となってしまい、脱着効率が悪いという問題がある。また、捕集剤に捕集された試料成分を加熱脱着させる場合、SVOC等の比較的沸点の高い試料成分を脱着させると、捕集剤が熱分解を起こしてしまい、これによって生じた加熱分解物が試料成分を分析する際に測定誤差を引き起こす等の問題が生じる。 However, in the case of desorbing the sample components collected in this gas-solid adsorption type collector, in order to desorb the semi-volatile organic compound (SVOC) contained in the particulate matter such as PM2.5, There is a problem that a large amount of solvent is required and the desorption efficiency is poor. In addition, when the sample component collected by the collection agent is heat-desorbed, if the sample component having a relatively high boiling point such as SVOC is desorbed, the collection agent is thermally decomposed, and the heat decomposition caused thereby. Problems such as causing measurement errors when an object analyzes sample components.
 また、捕集剤の熱安定性に優れたガスクロマトグラフィー用捕集管としては、特許文献1に示すものが考えられている。この捕集管は、表面に炭化水素鎖を有するシリカゲルを含む気液分配形捕集剤を容器に充填したものである。この気液分配形の捕集剤は、シリカゲルの表面に化学修飾された炭化水素鎖が液相と同等に機能して、試料成分を気液分配機構により濃縮捕集する。 Further, as a gas chromatography collecting tube excellent in the thermal stability of the collecting agent, the one shown in Patent Document 1 is considered. This collection tube is a container filled with a gas-liquid distribution type collection agent containing silica gel having hydrocarbon chains on the surface. In this gas-liquid distribution type collection agent, the hydrocarbon chain chemically modified on the surface of silica gel functions in the same manner as the liquid phase, and the sample components are concentrated and collected by the gas-liquid distribution mechanism.
 ここで、上記捕集剤に捕集された試料成分を溶媒脱着させる場合には、シリカゲルがマイクロ孔、メソ孔と呼ばれる微細孔を持っており、その比表面積が大きい(例えば280m/g)ため、捕集剤からの脱着を十分に行うことができず、回収効率が悪いという問題がある。 Here, in the case where the sample components collected by the collection agent are desorbed, the silica gel has micropores called micropores and mesopores, and has a large specific surface area (for example, 280 m 2 / g). Therefore, there is a problem that desorption from the collecting agent cannot be performed sufficiently and the recovery efficiency is poor.
特開2005-147994号公報JP 2005-147994 A
 そこで本発明は、上記問題点を解決すべくなされたものであり、半揮発性有機化合物を捕集した後に、半揮発性有機化合物の脱離を容易に行うことをその主たる課題とするものである。 Therefore, the present invention has been made to solve the above-mentioned problems, and its main problem is to easily remove the semivolatile organic compound after collecting the semivolatile organic compound. is there.
 すなわち本発明に係る半揮発性有機化合物の捕集方法は、比表面積が1.8m/g以上50m/g未満のシリカゲルからなる基材に炭素鎖を化学修飾して構成された捕集剤を用いて半揮発性有機化合物を捕集することを特徴とする。 That is, the method for collecting semivolatile organic compounds according to the present invention is a collection method in which a carbon chain is chemically modified on a substrate made of silica gel having a specific surface area of 1.8 m 2 / g or more and less than 50 m 2 / g. A semi-volatile organic compound is collected using an agent.
 上記の捕集方法により捕集された有機化合物を溶出する溶出方法としては、前記捕集剤を収容する収容容器に溶媒を貯留することによって、前記捕集剤に捕集された有機化合物を溶出させることが望ましい。 As an elution method for eluting the organic compound collected by the above-described collection method, the organic compound collected in the collection agent is eluted by storing a solvent in a storage container containing the collection agent. It is desirable to make it.
 また、上記捕集方法に好適に用いられる捕集剤としては、半揮発性有機化合物を吸着するガスクロマトグラフィー用捕集剤であって、比表面積が1.8m/g以上50m/g未満のシリカゲルからなる基材に炭素鎖を化学修飾して構成されていることを特徴とする。 As the scavenger suitably used in the collection process, a semi-volatile organic compound gas chromatographic scavengers which adsorbs a specific surface area of 1.8 m 2 / g or more 50 m 2 / g It is characterized in that a carbon chain is chemically modified on a base material made of less silica gel.
 このように構成した本発明によれば、PM2.5等の粒子状物質に含まれる半揮発性有機化合物を確実に捕集することができ、捕集後の半揮発性有機化合物を容易に捕集剤から脱離して濃縮した試料溶液を生成することができる。 According to the present invention configured as described above, the semivolatile organic compound contained in the particulate matter such as PM2.5 can be reliably collected, and the semivolatile organic compound after the collection can be easily captured. A concentrated sample solution can be generated by desorption from the collecting agent.
本実施形態のガスクロマトグラフィー用捕集管を示す模式図。The schematic diagram which shows the collection tube for gas chromatography of this embodiment. 同実施形態の捕集管を用いた捕集方法を示す模式図。The schematic diagram which shows the collection method using the collection tube of the embodiment. 従来の捕集剤と本発明の捕集剤との回収実験の結果を示す図。The figure which shows the result of the collection | recovery experiment of the conventional collection agent and the collection agent of this invention.
 以下に本発明に係るガスクロマトグラフィー用捕集剤の一実施形態について図面を参照して説明する。 Hereinafter, an embodiment of a gas chromatography scavenger according to the present invention will be described with reference to the drawings.
 本実施形態のガスクロマトグラフィー用捕集剤は、試料成分としてPM2.5等の粒子状物質に含まれる半揮発性有機化合物(SVOC)を捕集するために用いられるものであり、図1に示すように、ガスクロマトグラフィー用捕集管の内部に設けられるものである。なお、半揮発性有機化合物(SVOC)とは、沸点範囲が240℃~400℃である有機化合物である。また、粒子状物質とは、粒子径が概ねマイクロメートル(μm)の微粒子であり、PM2.5とは、粒子径が概ね2.5μm以下のものである。 The collector for gas chromatography of this embodiment is used for collecting a semi-volatile organic compound (SVOC) contained in particulate matter such as PM2.5 as a sample component. As shown, it is provided inside a gas chromatography collection tube. A semivolatile organic compound (SVOC) is an organic compound having a boiling point range of 240 ° C to 400 ° C. Further, the particulate matter is fine particles having a particle diameter of approximately micrometers (μm), and PM2.5 is a particle having a particle diameter of approximately 2.5 μm or less.
 ここで、図1の捕集管について簡単に説明すると、例えばガラス製の筒状をなす収容容器と、当該収容容器内に収容される捕集剤と、当該捕集剤の一端部及び他端部にそれぞれ設けられた例えばガラス繊維からなるフィルタと、前記収容容器の一端開口及び他端開口を閉塞する栓(コック)付きのキャップ部材とを備えている。なお、捕集管に導入された試料ガスに含まれる無機成分は、主としてフィルタで除去される。 Here, the collection tube of FIG. 1 will be briefly described. For example, a storage container having a cylindrical shape made of glass, a collection agent accommodated in the accommodation container, and one end and the other end of the collection agent And a filter made of glass fiber, for example, and a cap member with a stopper for closing the one end opening and the other end opening of the container. The inorganic component contained in the sample gas introduced into the collection tube is mainly removed by a filter.
 この捕集管の捕集剤により捕集された粒子状物質は、例えばメタノール等の溶媒(回収剤)を用いて溶出及び回収されて、濃度が濃縮された液体試料としてガスクロマトグラフィーにより分析される。 Particulate matter collected by the collection agent of this collection tube is eluted and collected using a solvent (recovery agent) such as methanol, and analyzed by gas chromatography as a concentrated liquid sample. The
 具体的にガスクロマトグラフィー用捕集剤は、比表面積が1.8m/g以上50m/g未満のシリカゲルを基材(担体)として、当該基材に、炭素鎖(炭素数が例えば18個)を化学修飾することによって構成されている。なお、上記のシリカゲルの比表面積は、窒素吸着(BET)法を用いて測定した値である。ここで、比表面積の上限を50m/g未満としたのは、比表面積が50m/g未満であれば、マイクロ孔及びメソ孔がほぼ無くなると考えられるためである。 Specifically, the collector for gas chromatography uses a silica gel having a specific surface area of 1.8 m 2 / g or more and less than 50 m 2 / g as a base material (support), and a carbon chain (the number of carbon atoms is, for example, 18). Are chemically modified. In addition, the specific surface area of said silica gel is the value measured using the nitrogen adsorption (BET) method. Here, the upper limit of the specific surface area was less than 50 m 2 / g, the specific surface area is less than 50 m 2 / g, because the micro and mesopores are considered substantially eliminated.
 このガスクロマトグラフィー用捕集剤を収容したガスクロマトグラフィー用捕集管にサンプルガスを流すことによって、当該サンプルガスに含まれるPM2.5等の粒子状物質に含まれる半揮発性有機化合物(SVOC)を捕集する。ここで、粒子状物質に含まれる半揮発性有機化合物が捕集剤3により捕集されるとは、半揮発性有機化合物の一部が捕集剤の炭素鎖に分子状態で溶け込むことにより捕集されることも含む。 A semi-volatile organic compound (SVOC) contained in particulate matter such as PM2.5 contained in the sample gas by flowing the sample gas through the gas chromatography collection tube containing the gas chromatography collection agent. ). Here, the semi-volatile organic compound contained in the particulate matter is collected by the collecting agent 3 when the semi-volatile organic compound is partially dissolved in the carbon chain of the collecting agent in a molecular state. It also includes being collected.
 ここで、大気中の半揮発性有機化合物(SVOC)を捕集する方法について図2(A)を参照して説明する。
 まず捕集管の一端側及び他端側のキャップ部材を取り外し、捕集管の一端側(収容容器の一端開口)を大気開放するとともに、捕集管の他端側を吸引ラインに接続する。ここで、吸引ラインは、マスフローコントローラ(MFC)等の流量制御装置及び吸引ポンプが設けられている。そして、吸引ポンプにより大気を吸引するとともに、流量制御装置により流量を一定に制御する。捕集量は、吸引流量と吸引時間によって決定される。これにより、大気中の半揮発性有機化合物(SVOC)が捕集剤により捕集される。なお、捕集後は、捕集管の一端側及び他端側にキャップ部材を取り付けて、各キャップ部材の栓を閉めて、メタノール等の溶媒で回収するまで保管する。
 図2(A)では、流量制御装置及び吸引ポンプを捕集管の下流側に配置しているが、捕集管の上流側に配置する構成としても良い。
Here, a method for collecting the semivolatile organic compound (SVOC) in the atmosphere will be described with reference to FIG.
First, the cap members on one end side and the other end side of the collection tube are removed, one end side of the collection tube (one end opening of the container) is opened to the atmosphere, and the other end side of the collection tube is connected to the suction line. Here, the suction line is provided with a flow rate control device such as a mass flow controller (MFC) and a suction pump. Then, the air is sucked by the suction pump, and the flow rate is controlled to be constant by the flow rate control device. The amount collected is determined by the suction flow rate and the suction time. Thereby, the semivolatile organic compound (SVOC) in the atmosphere is collected by the collection agent. In addition, after collection, cap members are attached to one end side and the other end side of the collection tube, the caps of the cap members are closed, and stored until recovery with a solvent such as methanol.
In FIG. 2A, the flow rate control device and the suction pump are arranged on the downstream side of the collection tube, but may be arranged on the upstream side of the collection tube.
 また、本実施形態は、PM2.5等の粒子状物質に含まれる半揮発性有機化合物を捕集するものの他に、例えば植物が代謝により排出するセスキテルペン類といったPM2.5の前駆体を捕集するものにも適用できる。図2(B)に、植物から発生するPM2.5の前駆体成分の捕集方法を示す。
 まず、前駆体成分の発生源である植物を容器内に収容する。この容器には、高純度空気等のキャリアガスを供給するキャリアガス供給ラインと、容器内で植物から発生した前駆体成分を捕集管に導入するための導入ラインとが接続されている。キャリアガス供給ラインには、高純度空気等のキャリアガスが充填された高圧ボンベ及びマスフローコントローラ(MFC)等の流量制御装置が設けられている。また、導入ラインには、一端側及び他端側のキャップ部材が取り外された捕集管の一端側が接続される。そして、高純度空気等のキャリアガスを一定流量で一定時間(例えば100mL/minで30分間(合計3L))流すことにより、PM2.5の前駆体成分が捕集剤により捕集される。なお、捕集後は、捕集管の一端側及び他端側にキャップ部材を取り付けて、各キャップ部材の栓を閉めて、メタノール等の溶媒で回収するまで保管する。
In addition, this embodiment captures PM2.5 precursors such as sesquiterpenes that are excreted by metabolism by plants in addition to those that collect semivolatile organic compounds contained in particulate matter such as PM2.5. It can also be applied to what you collect. FIG. 2B shows a method for collecting PM2.5 precursor components generated from plants.
First, a plant that is a source of precursor components is housed in a container. The container is connected to a carrier gas supply line for supplying a carrier gas such as high-purity air and an introduction line for introducing a precursor component generated from a plant in the container into a collection tube. The carrier gas supply line is provided with a high-pressure cylinder filled with a carrier gas such as high-purity air and a flow rate control device such as a mass flow controller (MFC). Moreover, the one end side of the collection tube from which the cap member of the one end side and the other end side was removed is connected to the introduction line. Then, by flowing a carrier gas such as high-purity air at a constant flow rate for a fixed time (for example, 100 mL / min for 30 minutes (3 L in total)), the precursor component of PM2.5 is collected by the collection agent. In addition, after collection, cap members are attached to one end side and the other end side of the collection tube, the caps of the cap members are closed, and stored until recovery with a solvent such as methanol.
 次に、ガスクロマトグラフィー用捕集管により捕集された半揮発性有機化合物の溶出方法について説明する。
 まず捕集管の一端側のキャップ部材を取り外すとともに、他端側のキャップ部材の栓を開ける。そして、他端側のキャップ部材が下側となるように捕集管を立てた状態で、捕集管の一端側(収容容器の上端開口)から例えばメタノール等の溶媒を所定量(例えば2mL)注入する。なお、一端側のキャップ部材を取り外さずに一端側のキャップ部材の栓を開けて溶媒を導入しても良いし、溶媒を導入する際に他端側のキャップ部材の栓を閉めたままでも良い。これにより、溶媒は、捕集剤の間を下側に向かって浸透していく。溶媒が捕集剤の下端に達すると、溶液(メタノール溶液)が捕集剤と下端側のキャップ部材との間の空間に溜まる。ここで、溶液が下端側のキャップ部材の栓から外部に流れ出す前に栓を閉める。なお、捕集管への溶媒注入量としては、捕集剤全体が溶剤で浸かる程度とすることが望ましい。この溶媒が収容容器内に貯留された状態で、所定時間(例えば15分)経過させて、捕集剤に捕集された半揮発性有機化合物を溶出させる。その後、下端側のキャップ部材の栓を開けることにより、捕集管に溜まった溶液(メタノール溶液)を取り出してガスクロマトグラフィーにより測定する。なお、例えば他端側のキャップ部材を取り外して、マイクロシリンジ等で溶液を取り出してガスクロマトグラフィーに導入しても良い。
 本実施形態の捕集剤は、半揮発性有機化合物の脱着が容易であるため、溶媒を流し続ける必要が無く、溶媒を貯留するだけで半揮発性有機化合物を脱着させることができる。その結果、上記の溶出方法により、半揮発性有機化合物の溶出に用いる溶媒量を少なくすることができる。
Next, the elution method of the semivolatile organic compound collected by the gas chromatography collection tube will be described.
First, the cap member on one end side of the collecting tube is removed, and the cap member on the other end side is opened. Then, in a state where the collection tube is set up so that the cap member on the other end side is on the lower side, a predetermined amount (for example, 2 mL) of a solvent such as methanol from one end side of the collection tube (the upper end opening of the container) inject. Note that the solvent may be introduced by opening the cap member on one end side without removing the cap member on one end side, or the cap member on the other end side may be kept closed when the solvent is introduced. . Thereby, the solvent permeates downward between the collection agents. When the solvent reaches the lower end of the collection agent, the solution (methanol solution) accumulates in a space between the collection agent and the cap member on the lower end side. Here, the stopper is closed before the solution flows out from the stopper of the cap member on the lower end side. In addition, it is desirable that the solvent injection amount into the collection tube is such that the entire collection agent is immersed in the solvent. In a state where this solvent is stored in the storage container, a predetermined time (for example, 15 minutes) elapses, and the semivolatile organic compound collected in the collection agent is eluted. Then, by opening the cap of the cap member on the lower end side, the solution (methanol solution) accumulated in the collection tube is taken out and measured by gas chromatography. For example, the cap member on the other end side may be removed, and the solution may be taken out with a microsyringe and introduced into the gas chromatography.
Since the collection agent of this embodiment can easily desorb the semivolatile organic compound, it is not necessary to keep the solvent flowing, and the semivolatile organic compound can be desorbed only by storing the solvent. As a result, the amount of solvent used for the elution of the semivolatile organic compound can be reduced by the above elution method.
 このように構成したガスクロマトグラフィー用捕集剤を用いた溶媒回収方式による回収実験を行った。
 この回収実験は、濃度500mg/mLのカリオフィレン(caryophyllene)、100μLを捕集剤に添加して、高純度空気を流速100mL/minで10分間流し、その後、2mL~4mLのメタノール(溶媒)を捕集管内に貯留して溶出させ、時間経過毎にガスクロマトグラフィーで測定した。この回収実験に用いた本発明の実施例は、比表面積が1.8m/gのシリカゲル(信和化工製のShinwasorb、粒度(Mesh)が20~40)2.9gに炭素数18の炭素鎖を化学修飾した捕集剤であり、比較例は、比表面積が280m/gのシリカゲル(ジーエルサイエンス社製のUnibeads 3S,粒度30~60)1.6gに炭素数18の炭素鎖及び炭素数30の炭素鎖を化学修飾した捕集剤である。この回収実験の結果を図2に示す。
A recovery experiment by a solvent recovery method using the gas chromatographic collecting agent thus configured was performed.
In this recovery experiment, 500 mg / mL of caryophyllene and 100 μL were added to the collection agent, and high-purity air was allowed to flow at a flow rate of 100 mL / min for 10 minutes, and then 2 mL to 4 mL of methanol (solvent) was captured. It was stored in the collecting tube and eluted, and measured by gas chromatography every time. An example of the present invention used in this recovery experiment is a silica chain having a specific surface area of 1.8 m 2 / g (Shinwasorb manufactured by Shinwa Kako, particle size (Mesh) is 20 to 40), 2.9 g and a carbon chain having 18 carbon atoms. In the comparative example, a silica gel having a specific surface area of 280 m 2 / g (Unibeads 3S manufactured by GL Sciences Co., Ltd., particle size 30 to 60) is added to 1.6 g of a carbon chain having 18 carbon atoms and a carbon number. It is a collecting agent obtained by chemically modifying 30 carbon chains. The results of this recovery experiment are shown in FIG.
 図3に示すように、比較例では、抽出時間の経過とともにピークエリアが増加していき、約45分経過後に安定しているが、実施例では、抽出開始後、15分経過後から45分経過まで略一定で安定していることが分かった。 As shown in FIG. 3, in the comparative example, the peak area increases with the passage of the extraction time, and is stable after about 45 minutes. In the example, 45 minutes after the start of extraction, 45 minutes after the start of extraction. It turned out to be substantially constant and stable until the passage.
 このように構成した捕集方法によれば、PM2.5等の粒子状物質に含まれる半揮発性有機化合物を確実に捕集することができ、捕集後の半揮発性有機化合物を容易に捕集剤から溶媒脱着して濃縮した試料溶液を生成することができる。 According to the collection method configured as described above, the semivolatile organic compound contained in the particulate matter such as PM2.5 can be reliably collected, and the semivolatile organic compound after the collection can be easily collected. A concentrated sample solution can be generated by solvent desorption from the collection agent.
 なお、本発明は前記実施形態に限られるものではない。
 例えば、前記実施形態では、捕集剤に捕集された粒子状物質を溶媒脱着により回収する方法であったが、加熱脱着により回収するものであっても良い。
The present invention is not limited to the above embodiment.
For example, in the above-described embodiment, the particulate matter collected by the collection agent is a method of collecting by solvent desorption, but may be collected by heat desorption.
 その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 本発明であれば、半揮発性有機化合物を捕集した後に、半揮発性有機化合物の脱離を容易に行うことができる。
 
According to the present invention, the semivolatile organic compound can be easily detached after the semivolatile organic compound is collected.

Claims (3)

  1.  比表面積が1.8m/g以上50m/g以下のシリカゲルからなる基材に炭素鎖を化学修飾して構成された捕集剤を用いて有機化合物を捕集する捕集方法。 Collecting method specific surface area to trap organic compound using a scavenger constructed by chemically modifying the carbon chain to a substrate consisting of silica gel 1.8 m 2 / g or more 50 m 2 / g.
  2.  請求項1記載の捕集方法により捕集された有機化合物を溶出する溶出方法であって、
     前記捕集剤を収容する収容容器に溶媒を貯留することによって、前記捕集剤に捕集された有機化合物を溶出させる溶出方法。
    An elution method for eluting an organic compound collected by the collection method according to claim 1,
    An elution method for eluting an organic compound collected in the collection agent by storing a solvent in a storage container containing the collection agent.
  3.  有機化合物を吸着する捕集剤であって、
     比表面積が1.8m/g以上50m/g以下のシリカゲルからなる基材に炭素鎖を化学修飾して構成されている捕集剤。
    A scavenger for adsorbing organic compounds,
    A collector formed by chemically modifying a carbon chain on a base material made of silica gel having a specific surface area of 1.8 m 2 / g or more and 50 m 2 / g or less.
PCT/JP2014/084280 2014-01-30 2014-12-25 Method for capturing organic compound WO2015115010A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559787A JPWO2015115010A1 (en) 2014-01-30 2014-12-25 Collection method of organic compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-016103 2014-01-30
JP2014016103 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015115010A1 true WO2015115010A1 (en) 2015-08-06

Family

ID=53756598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084280 WO2015115010A1 (en) 2014-01-30 2014-12-25 Method for capturing organic compound

Country Status (2)

Country Link
JP (1) JPWO2015115010A1 (en)
WO (1) WO2015115010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758699A (en) * 2016-03-01 2016-07-13 宁波市机电工业研究设计院有限公司 Solvent desorbing device and determination method thereof
CN109001320A (en) * 2018-07-18 2018-12-14 谱尼测试集团股份有限公司 A kind of method of determination of the environment benzene in air system object content

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427641A (en) * 1987-07-23 1989-01-30 Nitto Denko Corp Solvent-resistant porous particles
JPH07237917A (en) * 1994-02-23 1995-09-12 Nippon Silica Ind Co Ltd Low specific surface area silica and method for producing the same
JP2005147994A (en) * 2003-11-19 2005-06-09 National Institute Of Advanced Industrial & Technology Gas-liquid distribution type gas sample collecting tube
JP2005265419A (en) * 2004-03-16 2005-09-29 Yokohama Tlo Co Ltd Carbonyl compound trapping material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101791A (en) * 1997-07-30 1999-04-13 Wako Pure Chem Ind Ltd Analysis of aldehyde
JP2006192420A (en) * 2004-03-31 2006-07-27 Showa Denko Kk Pretreatment column for analysis
JP5183905B2 (en) * 2006-11-01 2013-04-17 バンドー化学株式会社 Carrier, method for producing carrier, and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427641A (en) * 1987-07-23 1989-01-30 Nitto Denko Corp Solvent-resistant porous particles
JPH07237917A (en) * 1994-02-23 1995-09-12 Nippon Silica Ind Co Ltd Low specific surface area silica and method for producing the same
JP2005147994A (en) * 2003-11-19 2005-06-09 National Institute Of Advanced Industrial & Technology Gas-liquid distribution type gas sample collecting tube
JP2005265419A (en) * 2004-03-16 2005-09-29 Yokohama Tlo Co Ltd Carbonyl compound trapping material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758699A (en) * 2016-03-01 2016-07-13 宁波市机电工业研究设计院有限公司 Solvent desorbing device and determination method thereof
CN109001320A (en) * 2018-07-18 2018-12-14 谱尼测试集团股份有限公司 A kind of method of determination of the environment benzene in air system object content

Also Published As

Publication number Publication date
JPWO2015115010A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
Kou et al. Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: efficient adsorbents for selective CO2 capture
Erto et al. Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas
Liu et al. Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal
Wang et al. Chemical liquid deposition modified 4A zeolite as a size-selective adsorbent for methane upgrading, CO2 capture and air separation
Feng et al. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry
US10502664B2 (en) Vacuum-assisted sample extraction device and method
JP2005338081A (en) Adsorbent collecting material of polyorganosiloxane base
Tian et al. Arsenic preconcentration via solid phase extraction and speciation by HPLC-gradient hydride generation atomic absorption spectrometry
WO2015115010A1 (en) Method for capturing organic compound
CN111569840A (en) Adsorption material for organic pollutants, paper spray mass spectrometry detection device and detection method
CN101893613A (en) Purge and trap device
Wei et al. Integrated two‐stage adsorption for selective removal of CO2 and SO2 by amine‐functionalized SBA‐15
CN101947393A (en) Split-type nanometer fibre solid-phase extraction column and application thereof
CN103091150A (en) Multifunctional needle type filter
Lin et al. KI and TEDA influences towards the retention of radiotoxic CH3I by activated carbons
Selmert et al. CO2/N2 separation on highly selective carbon nanofibers investigated by dynamic gas adsorption
Louzada et al. New insights in the treatment of real oilfield produced water: Feasibility of adsorption process with coconut husk activated charcoal
CN201799135U (en) Split nano-fiber solid phase extraction column
Guerrero et al. Synthesis and characterization of a novel mesoporous silica functionalized with [1, 5 bis (di-2-pyridyl) methylene thiocarbohydrazide] and its application as enrichment sorbent for determination of antimony by FI–HG–ETAAS
CN204422279U (en) A kind of for enrichment, the sampling pipe analyzing trace semi-volatile organic matter in air
CN102419273A (en) Device for sampling and enriching gaseous volatile matters in high vacuum environment
CN202255986U (en) Gaseous volatile matter sampling enricher in high vacuum environment
Gui et al. Amine‐functionalization of multi‐walled carbon nanotubes for adsorption of carbon dioxide
CN102008941A (en) Preparation method of adsorbing material taking microspheres as carrier
LI et al. Adsorption equilibrium and kinetics of SO2 on activated carbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881371

Country of ref document: EP

Kind code of ref document: A1