WO2015114936A1 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
WO2015114936A1
WO2015114936A1 PCT/JP2014/081643 JP2014081643W WO2015114936A1 WO 2015114936 A1 WO2015114936 A1 WO 2015114936A1 JP 2014081643 W JP2014081643 W JP 2014081643W WO 2015114936 A1 WO2015114936 A1 WO 2015114936A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
sapphire substrate
layer
semiconductor
Prior art date
Application number
PCT/JP2014/081643
Other languages
French (fr)
Japanese (ja)
Inventor
司 北野
宏一 難波江
昌輝 大矢
上山 智
弘晃 伊藤
Original Assignee
エルシード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルシード株式会社 filed Critical エルシード株式会社
Publication of WO2015114936A1 publication Critical patent/WO2015114936A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Definitions

  • the present invention relates to a light emitting element.
  • an LED element comprising a diffractive surface in which concave or convex portions are formed at a period, and an Al reflective film that is formed on the back side of the substrate and reflects light diffracted by the diffractive surface and re-enters the diffractive surface.
  • the light transmitted by the diffraction action is re-incident on the diffraction surface, and the light is transmitted again using the diffraction action on the diffraction surface, so that the light can be extracted outside the element in a plurality of modes.
  • the inventors have studied to improve the crystal quality of the semiconductor by forming voids having a predetermined density in the vicinity of the sapphire substrate in the semiconductor laminated portion.
  • voids having a predetermined density in the vicinity of the sapphire substrate in the semiconductor laminated portion.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light emitting device capable of achieving both improvement of crystal quality of a semiconductor due to voids and suppression of adverse effects on diffraction effects. It is in.
  • the present invention includes a sapphire substrate in which concave portions or convex portions scattered on the surface with a period of 1 ⁇ m or less are formed, and a light emitting layer formed on the surface of the sapphire substrate.
  • a light emitting device having a semiconductor laminated portion made of a semiconductor and obtaining a diffraction action of light emitted from the light emitting layer at an interface between the sapphire substrate and the semiconductor laminated portion, in the vicinity of the sapphire substrate of the semiconductor laminated portion
  • a light-emitting element that is formed with a size smaller than the period of the concave portion or the convex portion and includes a void having a density of 2.6 ⁇ 10 2 / cm 2 or more and 2.3 ⁇ 10 7 / cm 2 or less.
  • the void density may be 1.0 ⁇ 10 7 / cm 2 or less.
  • the semiconductor stacked portion may have a buffer layer formed on the sapphire substrate side, and the buffer layer may be formed by a sputtering method.
  • the semiconductor stacked portion may have a buffer layer formed on the sapphire substrate side, and the buffer layer may be made of AlN.
  • the light emitting device of the present invention it is possible to achieve both improvement in crystal quality of a semiconductor due to voids and suppression of adverse effects on diffraction effects.
  • FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention.
  • 2A and 2B are explanatory diagrams showing the diffraction action of light at the interface having different refractive indexes, where FIG. 2A shows a state of reflection at the interface, and FIG. 2B shows a state of transmission through the interface.
  • FIG. 3 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a transmission angle.
  • FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention.
  • 2A and 2B are explanatory diagrams showing the diffraction action of light at the interface having different refractive indexes, where FIG. 2A shows a state of reflection at the interface, and FIG
  • FIG. 4 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a reflection angle.
  • FIG. 5 is an explanatory view showing the traveling direction of light inside the device.
  • FIG. 6 is a partially enlarged schematic cross-sectional view of the LED element.
  • FIG. 7 is a graph showing an example of the reflectance of the reflecting portion.
  • FIG. 8 shows a sapphire substrate, where (a) is a schematic perspective view, and (b) is a schematic explanatory view showing an AA cross section.
  • FIG. 9 is a table showing the relationship between the convex period and the void density.
  • FIG. 10 is a graph showing the relationship between the thickness of the buffer layer and the void density.
  • FIG. 11 is a graph showing the relationship between the wavelength and the transmittance in the LED element.
  • FIG. 12 is a graph showing the relationship between the void density and the light extraction efficiency in the LED element.
  • FIG. 13 is a graph showing the relationship between the void density and the threading dislocation density in the semiconductor stack.
  • FIG. 14 is a graph showing the relationship between the thickness of the buffer layer and the transmittance.
  • FIG. 15 is a diagram showing the light distribution characteristics of the LED element in polar coordinates. 16A and 16B show the light distribution characteristics of the LED element, where FIG.
  • FIG. 16A shows a state in which the convex portion is not formed on the sapphire substrate
  • FIGS. 16B to 11H show the state in which the convex portion is formed on the sapphire substrate.
  • FIG. 17 is a table showing calculated values and actually measured values of each substrate.
  • FIG. 18 is a graph showing a change in integrated intensity for light within a predetermined angle range with respect to the optical axis.
  • FIG. 19 is a graph showing the relationship between the allowable order of transmitted diffracted light and the integrated intensity.
  • FIG. 20 is a graph showing the relationship between the allowable order of reflected diffracted light and the integrated intensity.
  • FIG. 21 is a graph showing the relationship between the period of convex portions and the allowable orders of transmitted diffracted light and reflected diffracted light.
  • FIG. 22 is a schematic cross-sectional view of an LED element showing a second embodiment of the present invention.
  • FIG. 23 is a partially enlarged schematic cross-sectional view of the LED element.
  • FIG. 24 is a graph illustrating an example of the reflectance of the reflecting portion.
  • FIG. 25 is a schematic cross-sectional view of an LED element showing a modification.
  • FIG. 26 is a schematic cross-sectional view of an LED element showing a modification.
  • FIG. 27 is a schematic cross-sectional view of an LED element showing a modification.
  • FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention.
  • the LED element 1 includes a sapphire substrate 2 on which a semiconductor stacked portion 19 made of a group III nitride semiconductor layer is formed.
  • the refractive index of sapphire is 1.78
  • the refractive index of the group III nitride semiconductor layer is 2.52.
  • the LED element 1 is a flip chip type, and light is mainly extracted from the back side of the sapphire substrate 2.
  • the semiconductor stacked unit 19 includes a buffer layer 10, an n-type GaN layer 12, a light emitting layer 14, an electron blocking layer 16, and a p-type GaN layer 18 in this order from the sapphire substrate 2 side.
  • a p-side electrode 27 is formed on the p-type GaN layer 18, and an n-side electrode 28 is formed on the n-type GaN layer 12.
  • the buffer layer 10 is made of AlN and is formed on the surface of the sapphire substrate 2.
  • the buffer layer 10 is formed by a sputtering method.
  • the n-type GaN layer 12 as the first conductivity type layer is formed on the buffer layer 10 and is made of n-GaN.
  • the light emitting layer 14 is formed on the n-type GaN layer 12, is made of GalnN / GaN, and emits blue light by injection of electrons and holes. In the present embodiment, the peak wavelength of light emission of the light emitting layer 14 is 450 nm.
  • the electron block layer 16 is formed on the light emitting layer 14 and is made of p-AIGaN.
  • the p-type GaN layer 18 as the second conductivity type layer is formed on the electron block layer 16 and is made of p-GaN.
  • the n-type GaN layer 12 to the p-type GaN layer 18 are formed by MOCVD (Metal-Organic-Chemical-Vapor-Deposition) method.
  • MOCVD Metal-Organic-Chemical-Vapor-Deposition
  • the active layer is formed by recombination of electrons and holes.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the surface of the sapphire substrate 2 forms a diffraction surface 2a.
  • a flat portion 2b and a plurality of convex portions 2c periodically formed on the flat portion 2b are formed.
  • the shape of each convex portion 2c may be a truncated cone shape such as a cone or a polygonal pyramid, or a truncated cone shape such as a truncated cone or a truncated polygonal truncated cone.
  • Each convex portion 2 c is designed to diffract light emitted from the light emitting layer 14.
  • the light verticalizing action can be obtained by the convex portions 2c arranged periodically.
  • the light verticalizing action means that the light intensity distribution is more perpendicular to the interface between the sapphire substrate 2 and the semiconductor stacked portion 19 after being reflected and transmitted than before being incident on the diffraction surface. It is biased in the direction.
  • FIG. 2A and 2B are explanatory diagrams showing the diffraction action of light at the interface having different refractive indexes, where FIG. 2A shows a state of reflection at the interface, and FIG. 2B shows a state of transmission through the interface.
  • P is the period of the concave or convex portion
  • n1 is the refractive index of the medium on the incident side
  • is the wavelength of the incident light
  • m is an integer.
  • n1 is the refractive index of the group III nitride semiconductor. As shown in FIG. 2A, light incident on the interface is reflected at a reflection angle ⁇ ref that satisfies the above equation (1).
  • FIG. 3 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a transmission angle.
  • FIG. 4 shows the incident angle of light incident on the interface from the semiconductor layer side and the diffraction at the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm. It is a graph which shows the relationship of the reflection angle by an effect
  • the light incident on the diffractive surface 2a has a critical angle of total reflection as in a general flat surface.
  • the critical angle is 45.9 °.
  • the critical angle is 45.9 °
  • the light output exceeding the critical angle is about 70%, and the light output not exceeding the critical angle is about 30%. That is, extracting light in a region exceeding the critical angle greatly contributes to improving the light extraction efficiency of the LED element 1.
  • the light transmitted through the diffractive surface 2 a changes in angle toward the perpendicular to the interface between the sapphire substrate 2 and the group III nitride semiconductor layer.
  • this area is indicated by hatching.
  • the angle will change to the side. That is, compared with the intensity distribution of the light incident on the diffractive surface 2a on the semiconductor multilayer part 19 side, the intensity distribution of the light transmitted through the diffractive surface 2a on the sapphire substrate 2 side is different from that of the semiconductor multilayer part 19 and sapphire. It is biased in a direction perpendicular to the interface of the substrate 2.
  • the light reflected by the diffraction surface 2a changes in angle toward the perpendicular to the interface between the sapphire substrate 2 and the group III nitride semiconductor layer. In FIG. 4, this area is indicated by hatching.
  • the intensity distribution of light emitted from the diffractive surface 2a on the semiconductor multilayer portion 19 side is reflected by the semiconductor multilayer portion 19 and sapphire. It is biased in a direction perpendicular to the interface of the substrate 2.
  • FIG. 5 is an explanatory view showing the traveling direction of light inside the device.
  • the light incident on the sapphire substrate 2 beyond the critical angle is transmitted and reflected on the diffractive surface 2a in a direction closer to the vertical than when incident. That is, the light transmitted through the diffractive surface 2a is incident on the back surface of the sapphire substrate 2 with the angle being changed toward the vertical direction. Further, the light reflected by the diffractive surface 2a is reflected by the p-side electrode 27 and the n-side electrode 28 in a state in which the angle is changed toward the vertical direction, and then enters the diffractive surface 2a again. The incident angle at this time is closer to the vertical than the previous incident angle. As a result, the light incident on the back surface of the sapphire substrate 2 can be shifted vertically.
  • FIG. 6 is a partially enlarged schematic cross-sectional view of the LED element.
  • the p-side electrode 27 includes a diffusion electrode 21 formed on the p-type GaN layer 18, a dielectric multilayer film 22 formed in a predetermined region on the diffusion electrode 21, and a dielectric multilayer film. 22 and a metal electrode 23 formed on the substrate 22.
  • the diffusion electrode 21 is formed on the entire surface of the p-type GaN layer 18 and is made of a transparent material such as ITO (Indium Tin Oxide).
  • the dielectric multilayer film 22 is configured by repeating a plurality of pairs of the first material 22a and the second material 22b having different refractive indexes.
  • the first material 22a may be ZrO 2 (refractive index: 2.18)
  • the second material 22b may be SiO 2 (refractive index: 1.46)
  • the number of pairs is five. it can.
  • the dielectric multilayer film 22 may be formed using a material different from ZrO 2 and SiO 2.
  • AlN reffractive index: 2.18
  • Nb 2 O 3 reffractive index: 2.4
  • Ta 2 O 3 reffractive index: 2.35
  • the metal electrode 23 covers the dielectric multilayer film 22 and is made of a metal material such as Al.
  • the metal electrode 23 is electrically connected to the diffusion electrode 21 through a via hole 22 c formed in the dielectric multilayer film 22.
  • the n-side electrode 28 is formed on the exposed n-type GaN layer 12 by etching the n-type GaN layer 12 from the p-type GaN layer 18.
  • the n-side electrode 28 includes a diffusion electrode 24 formed on the n-type GaN layer 12, a dielectric multilayer film 25 formed in a predetermined region on the diffusion electrode 24, and a metal formed on the dielectric multilayer film 25. Electrode 26.
  • the diffusion electrode 24 is formed on the entire surface of the n-type GaN layer 12 and is made of a transparent material such as ITO (Indium Tin Oxide).
  • the dielectric multilayer film 25 is configured by repeating a plurality of pairs of the first material 25a and the second material 25b having different refractive indexes.
  • the first material 25a may be ZrO 2 (refractive index: 2.18)
  • the second material 25b may be SiO 2 (refractive index: 1.46)
  • the number of pairs is five. it can.
  • the dielectric multilayer film 25 may be formed using a material different from ZrO 2 and SiO 2 , for example, AlN (refractive index: 2.18), Nb 2 O 3 (refractive index: 2.4), Ta 2 O 3 (refractive index: 2.35) or the like may be used.
  • the metal electrode 26 covers the dielectric multilayer film 25 and is made of a metal material such as Al. The metal electrode 26 is electrically connected to the diffusion electrode 24 through a via hole 25 c formed in the dielectric multilayer film 25.
  • the p-side electrode 27 and the n-side electrode 28 form a reflecting portion.
  • the p-side electrode 27 and the n-side electrode 28 each have a higher reflectance as the angle is closer to the vertical.
  • the light reflected by the diffractive surface 2a of the sapphire substrate 2 and changed in angle toward the perpendicular to the interface is incident. That is, the intensity distribution of light incident on the reflecting portion is biased toward the vertical as compared with the case where the surface of the sapphire substrate 2 is a flat surface.
  • FIG. 7 is a graph showing an example of the reflectance of the reflecting portion.
  • the dielectric multilayer film formed on the ITO is a combination of ZrO 2 and SiO 2 and the number of pairs is five, and an Al layer is formed on the dielectric multilayer film.
  • a reflectance of 98% or more is realized in an angle range where the incident angle is 0 degree to 45 degrees.
  • a reflectance of 90% or more is realized in an angle range where the incident angle is 0 to 75 degrees.
  • the combination of the dielectric multilayer film and the metal layer is an advantageous reflection condition for the light that is perpendicular to the interface.
  • a constant reflectance of approximately 84% is obtained regardless of the incident angle.
  • FIG. 8 shows a sapphire substrate, where (a) is a schematic perspective view, and (b) is a schematic explanatory view showing an AA cross section.
  • the diffractive surface 2a is aligned with the intersections of the virtual triangular lattice at a predetermined period so that the center of each convex portion 2c is the position of the apex of the regular triangle in plan view. Formed.
  • the period here means the distance of the peak position of the height in the adjacent convex part 2c.
  • the period of the convex portion 2c is P and the peak wavelength of the light emitted from the light emitting layer 14 is ⁇ , 1/2 ⁇ ⁇ ⁇ P ⁇ 16/9 ⁇ ⁇
  • the period of the convex portion 2c is set so as to satisfy the relationship.
  • the period of the convex portion 2c is set so that the transmitted diffracted light includes at least second-order diffracted light and does not include fifth-order diffracted light. Further, the period of the convex portion 2c is set so that the reflected diffracted light includes at least third-order diffracted light.
  • the inventors have studied to improve the crystal quality of the semiconductor by forming voids of a predetermined density in the vicinity of the sapphire substrate 2 in the semiconductor laminated portion 19.
  • the concave portions or the convex portions 2 c that are scattered at a period of 1 ⁇ m or less are formed on the sapphire substrate 2, it is expected that the crystal quality of the semiconductor is improved by forming voids.
  • the influence of the voids on the diffraction effect was investigated.
  • the void here is a size having an optical influence, and those having a size of several nanometers to several tens of nanometers are not considered because the optical influence can be ignored.
  • FIG. 9 is a table showing the relationship between the convex period and the void density.
  • the void density was measured when the buffer layer was made of GaN grown at a low temperature by the MOCVD method and when the buffer layer was made of AlN formed by the sputtering method.
  • the thickness of the buffer layer was 80 nm.
  • the void density is reduced when AlN is used compared to the case where the buffer layer 10 is GaN.
  • the void density increases as the period of the convex portion 2c decreases. That is, it is considered that voids in the semiconductor are caused by the convex portions 2c formed periodically.
  • the buffer layer 10 When the buffer layer 10 is made of GaN grown by the MOCVD method, the void density exceeds 1.0 ⁇ 10 7 / cm 2 regardless of the period of the protrusions 2c. On the other hand, when the buffer layer 10 is made of AlN formed by a sputtering method, the void density is 1.0 ⁇ 10 7 / cm 2 or less. Note that due to the accuracy of the optical microscope in which this measurement was performed, when the void density is 1.0 ⁇ 10 7 / cm 2 or less, an accurate value cannot be grasped, so FIG. 9 shows 1.0 ⁇ 10 7 / It is shown as cm 2 or less.
  • the void density of the buffer layer 10 is changed by changing the material of the buffer layer 10. Further, the void density can be changed by changing the film thickness of the buffer layer 10.
  • FIG. 10 is a graph showing the relationship between the thickness of the buffer layer and the void density.
  • the buffer layer 10 was measured as AlN formed by a sputtering method. The annealing time described later was 5 minutes. As shown in FIG. 10, increasing the film thickness of the buffer layer 10 decreases the void density, and decreasing the film thickness increases the void density.
  • the buffer layer 10 when the buffer layer 10 is formed by the sputtering method, the void density can be changed depending on the presence or absence of annealing after sputtering.
  • the buffer layer 10 is formed by sputtering at 400 ° C. to 700 ° C., for example, and annealed at, for example, 3 ° C. to 10 minutes, for example 900 ° C. to 1100 ° C.
  • LED element 1 was produced.
  • FIG. 11 is a graph showing the relationship between the wavelength and transmittance of the LED element.
  • the transmittance was measured by irradiating light of a predetermined wavelength in a direction perpendicular to the sapphire substrate 2 of the LED element 1.
  • the sample body 1 was made of AlN in which the buffer layer 10 was formed by sputtering and the annealing time was 5 minutes, and the thickness of the buffer layer 10 was 80 nm.
  • the sample body 2 was made of GaN obtained by growing the buffer layer 10 at a low temperature by the MOCVD method, and the thickness of the buffer layer was 25 nm. In each sample body, the period of the convex portion 2c was set to 460 nm. Note that in GaN grown at a low temperature by the MOCVD method, the void density is substantially constant even when the thickness of the buffer layer is changed.
  • the transmittance is improved as compared with the case where GaN is grown at low temperature by MOCVD. Specifically, the transmittance improved by 3.2% for light having a wavelength of 450 nm. This seems to be due to the fact that the generation of voids in the semiconductor stacked portion 19 is suppressed. Moreover, when LED elements were actually produced using each sample body, the light extraction efficiency was improved by 9.4%.
  • the buffer layer 10 is made of AlN formed by sputtering
  • the reason why the generation of voids is suppressed is considered as follows. First, when the buffer layer is formed by using the sputtering method, the raw material goes straight from the target toward the sapphire substrate 2, so that the buffer layer 10 is uniformly formed between the convex portions 2 c of the sapphire substrate 2. In addition, since the buffer layer 10 is made of AlN, migration is suppressed as compared with GaN, so that generation of voids is suppressed.
  • FIG. 12 is a graph showing the relationship between the void density and the light extraction efficiency in the LED element.
  • Each LED element 1 is made of AlN in which the buffer layer 10 is formed by sputtering, and the period of the convex portions 2c is 460 nm.
  • the density of voids was changed by changing the film thickness of the buffer layer 10. Specifically, the void density is 1.0 ⁇ 10 / cm 2 , 2.6 ⁇ 10 2 / cm 2 , 1.3 ⁇ 10 4 / cm 2 , 2.3 ⁇ 10 7 / cm 2 , 5.0 ⁇ . 10 8 / cm 2 .
  • the void density was measured using an electron microscope by exposing the voids by etching the semiconductor stack using a dry etching apparatus. Thereby, data with higher accuracy than the data shown in FIG. 9 could be obtained.
  • the light extraction efficiency was relatively good up to a void density of 2.3 ⁇ 10 7 / cm 2, and the light extraction efficiency decreased when the void density was 5.0 ⁇ 10 8 / cm 2 . That is, it is understood that the light extraction efficiency decreases as the void density increases.
  • FIG. 13 is a graph showing the relationship between the void density and the threading dislocation density in the semiconductor stack.
  • the threading dislocation density is 1.0 ⁇ 10 9 / cm 2 when the void density is 1.0 ⁇ 10 / cm 2 , and 4. 4 when the void density is 2.6 ⁇ 10 2 / cm 2 .
  • it is 0 ⁇ 10 8 / cm 2
  • 1.3 ⁇ 10 4 / cm 2 it is 3.2 ⁇ 10 8 / cm 2
  • it is 2.3 ⁇ 10 7 / cm 2
  • it is 2.2 ⁇ 10 8 / cm 2. 2 and when it was 5.0 ⁇ 10 8 / cm 2 , it was 1.6 ⁇ 10 8 / cm 2 .
  • the threading dislocation density was relatively low when the void density was 2.6 ⁇ 10 2 / cm 2 or more, and the threading dislocation density was high when the void density was 1.0 ⁇ 10 / cm 2 . That is, it is understood that the threading dislocation density increases as the void density decreases.
  • the void is formed in the vicinity of the sapphire substrate 2 of the semiconductor stacked portion 19 with a size smaller than the period of the convex portion 2c, and the density is 2.6 ⁇ 10 2 / cm 2 or more and 2.3 ⁇ 10 7 / cm 2 or less.
  • FIG. 14 is a table showing the relationship between the thickness of the buffer layer and the transmittance.
  • “FSS” indicates the LED element 1 using the sapphire substrate 2 on which the unevenness is not formed
  • “MPSS” uses the sapphire substrate 2 on which the dotted projections are formed as in the present embodiment.
  • the LED element 1 which was found is shown.
  • the period of the convex portion 2c was set to 460 nm
  • the buffer layer 10 was made of AlN formed by a sputtering method, and the thickness was changed to 20 nm, 40 nm, 60 nm, and 80 nm. As shown in FIG.
  • the transmittance is almost constant in “FSS”, but the transmittance decreases in “MPSS” when the thickness of the buffer layer 10 is 20 nm. This is considered because the flatness of the surface of each semiconductor layer in the semiconductor stacked portion 19 is lost. As described above, when the flatness of the surface of each semiconductor layer is lost, the crystal quality of the semiconductor deteriorates.
  • FIG. 15 is a diagram showing the light distribution characteristics of the LED element in polar coordinates.
  • the sample body 3 was “MPSS”, and the buffer layer 10 was made of GaN grown at a low temperature by the MOCVD method, and the thickness of the buffer layer 10 was 25 nm.
  • the void density of the sample body 3 is 5.0 ⁇ 10 7 / cm 2 .
  • the sample body 4 was “FSS”, and the buffer layer 10 was made of GaN grown at a low temperature by the MOCVD method, and the thickness of the buffer layer 10 was 25 nm.
  • the sample body 5 was made of AlN in which the buffer layer 10 was formed by sputtering, and the thickness of the buffer layer 10 was 60 nm.
  • the void density of the sample body 5 is 1.0 ⁇ 10 4 / cm 2 .
  • the direction perpendicular to the sapphire substrate 2 is shown as 0 degree (optical axis).
  • the light emission wavelength of the light emitting layer 14 of each sample body was 450 nm.
  • the convex portion 2 c When the convex portion 2 c is not formed on the surface of the sapphire substrate 2 as in the sample body 4, the light is emitted from the LED element 1 isotropically.
  • the light distribution characteristic is changed by forming the convex portion 2c capable of obtaining a diffraction action.
  • the sample body 5 in the light distribution characteristics, there are portions where the strength is higher than others in a specific angle region. This location has been found to be due to ⁇ first order light that is reflected by the reflector and then transmitted through the diffractive surface.
  • the light distribution characteristic of the sample body 3 is different from that of the sample body 5 due to the influence of light scattering by the voids formed in the semiconductor stacked portion 19. That is, when the void density exceeds 1.0 ⁇ 10 7 / cm 2 , it is considered that the influence of scattering increases and the light distribution characteristics as in the sample body 3 are obtained. Thus, when the influence of scattering becomes large, it will be disadvantageous for the LED element 1 which takes out light using a diffraction effect.
  • FIG. 16 shows the light distribution characteristics of the LED element in polar coordinates, (a) shows a state in which no convex portion is formed on the sapphire substrate, and (b) to (h) show the convex portion formed on the sapphire substrate. It shows the one in the state.
  • (b) has a period of 200 nm
  • (c) has a period of 225 nm
  • (d) has a period of 320 nm
  • (e) has a period of 450 nm
  • (f) Indicates that the period is 600 nm
  • (g) indicates that the period is 700 nm
  • (h) indicates that the period is 800 nm.
  • the direction perpendicular to the sapphire substrate is shown as 0 degree (optical axis).
  • FIG. 17 is a table showing calculated values and actually measured values of each substrate.
  • FSS indicates a substrate on which unevenness is not formed
  • PSS indicates a substrate on which linear unevenness is formed
  • MPSS indicates a recessed portion or a protrusion that is scattered as in the present embodiment.
  • substrate with which the part was formed is shown. As shown in FIG. 17, it is understood that the calculated value and the actually measured value are almost the same regardless of the substrate, and the calculated value of the simulation is appropriate.
  • FIG. 16A when the convex portion 2 c is not formed on the surface of the sapphire substrate 2, light is emitted from the LED element 1 isotropically.
  • FIGS. 16B to 16H the light distribution characteristic is changed by forming the convex portion 2c capable of obtaining the diffraction action.
  • FIGS. 16B, 16C, etc. in the light distribution characteristic, there is a portion A where the intensity is higher than the others in a specific angle region. This portion A has been found to be due to ⁇ first-order light that is reflected by the reflecting portion and then passes through the diffraction surface.
  • FIGS. 16B to 16H by changing the period of the convex portion 2c, the angular area of this portion A changes.
  • FIG. 18 is a graph showing a change in integrated intensity for light within a predetermined angle range with respect to the optical axis.
  • the horizontal axis represents the period of the convex portion
  • the vertical axis represents the integrated intensity within ⁇ 30 degrees with respect to the optical axis.
  • the broken line indicates the integrated intensity of the PSS substrate having the period of the linear protrusions of 3 ⁇ m.
  • the alternate long and short dash line indicates the integrated intensity of the FSS substrate.
  • the integrated intensity is larger than that of the PSS substrate. That is, when the period of the convex portion 2c is P, and the peak wavelength of light emitted from the light emitting layer 14 is ⁇ , 1/2 ⁇ ⁇ ⁇ P ⁇ 16/9 ⁇ ⁇ If the relationship is satisfied, the light intensity on the optical axis can be made larger than that of the PSS substrate. And under the condition where this equation is established, since the diffractive action is obtained, the influence of the voids of the semiconductor stacked portion 19 becomes large.
  • the integrated intensity is higher than that of the FSS substrate when the period of the convex portion 2c is 230 nm or more and 700 nm or less. That is, when the period of the convex portion 2c is P, and the peak wavelength of light emitted from the light emitting layer 14 is ⁇ , 23/45 ⁇ ⁇ ⁇ P ⁇ 14/9 ⁇ ⁇ If the relationship is satisfied, the light intensity on the optical axis can be made larger than that of the FSS substrate. And under the condition where this equation is established, since the diffractive action is obtained, the influence of the voids of the semiconductor stacked portion 19 becomes large.
  • FIG. 19 is a graph showing the relationship between the allowable order of transmitted diffracted light and the integrated intensity.
  • the allowable order means how many order components the transmitted diffracted light contains (allowed).
  • the alternate long and short dash line in FIG. 19 indicates the integrated intensity of the FSS substrate.
  • the transmitted diffracted light when allowed up to the second, third, or fourth order, it always exceeds the integrated intensity of the FSS substrate, whereas the transmitted diffracted light is allowed only the first order. In some cases or when the fifth or higher order is allowed, the integrated intensity of the FSS substrate is lower. That is, the transmitted diffracted light is preferably designed so as to include at least the second-order diffracted light and not include the fifth-order diffracted light.
  • FIG. 20 is a graph showing the relationship between the allowable order of reflected diffracted light and the integrated intensity.
  • the allowable order means how many order components of the reflected diffracted light are included (allowed).
  • the alternate long and short dash line in FIG. 20 indicates the integrated intensity of the FSS substrate.
  • the reflected diffracted light when the third or higher order is allowed, the integrated intensity of the FSS substrate is always exceeded.
  • the reflected diffracted light is allowed only to the second order or lower, the FSS It will be less than the integrated intensity of the substrate. That is, the reflected diffracted light is preferably designed to include at least third-order diffracted light.
  • FIG. 21 is a graph showing the relationship between the period of convex portions and the allowable orders of transmitted diffracted light and reflected diffracted light. Also in FIG. 21, the emission wavelength of the light emitting layer 14 is set to 450 nm. As shown in FIG. 21, the period of the convex portion 2 c that is allowed up to the second, third, or fourth order in the transmitted diffracted light is 260 nm to 620 nm.
  • the allowable order of the transmitted diffracted light is from the second order to the fourth order.
  • the period of the convex part 2c allowed to be higher than the third order is 280 nm. That is, when the period of the convex portion 2c is P, and the peak wavelength of light emitted from the light emitting layer 14 is ⁇ , 28/45 ⁇ ⁇ ⁇ P If the above relationship is satisfied, the allowable order for the reflected diffracted light is the third order or higher. That is, in order to make the allowable order of the transmitted diffracted light between the second order and the fourth order, and the allowable order of the reflected diffracted light be the third order or more, 26/45 ⁇ ⁇ ⁇ P ⁇ 62/45 ⁇ ⁇ It is sufficient to satisfy the relationship.
  • the void density in the semiconductor stacked portion 19 is 1.0 ⁇ 10 7 / cm 2 or less, the influence of scattering can be minimized, The light distribution characteristic due to the diffractive action is not impaired.
  • the buffer layer 10 is formed by the sputtering method, generation of voids in the semiconductor stacked portion 19 can be suppressed.
  • the buffer layer 10 AlN generation of voids in the semiconductor stacked portion 19 can be effectively suppressed.
  • the thickness of the buffer layer 10 to 60 nm or less, the crystal quality of the semiconductor can be improved as compared with the conventional “FSS”.
  • the thickness of the buffer layer 10 exceed 20 nm, it is possible to suppress deterioration of the flatness of the crystal surface of the semiconductor stacked portion 19.
  • the light distribution characteristic of the light emitted from the element can be changed from the vertical direction.
  • the period of the convex part 2c is P and the peak wavelength of the light emitted from the light emitting layer 14 is ⁇ , 1/2 ⁇ ⁇ ⁇ P ⁇ 16/9 ⁇ ⁇
  • the amount of light around the optical axis extracted from the element can be increased. Therefore, appropriate light distribution can be realized using light distribution characteristics resulting from diffraction while improving the light extraction efficiency using the diffraction action.
  • the transmitted diffracted light is allowed up to the second, third or fourth order, and the reflected diffracted light is allowed to be higher than the third order.
  • the amount of light can be increased.
  • the distance until the light emitted from the light emitting layer 14 reaches the back surface of the sapphire substrate 2 can be remarkably shortened, and the absorption of light inside the device is suppressed. can do.
  • the LED element has a problem that light in an angle region exceeding the critical angle of the interface propagates in the lateral direction, so that the light is absorbed inside the element. Since the vertical direction is 2a, the light absorbed inside the device can be drastically reduced.
  • the reflection portion is a combination of the dielectric multilayer films 22 and 25 and the metal layers 23 and 26 so that the reflectivity increases as the angle is closer to the interface. Therefore, the reflection conditions are advantageous for light that is closer to the vertical.
  • FIG. 22 and 23 show a second embodiment of the present invention
  • FIG. 22 is a schematic cross-sectional view of an LED element.
  • the LED element 101 is a face-up type, in which a semiconductor stacked portion 119 made of a group III nitride semiconductor layer is formed on the surface of a sapphire substrate 102.
  • This LED element 101 is a face-up type, and light is mainly extracted from the side opposite to the sapphire substrate 102.
  • the semiconductor stacked unit 119 includes a buffer layer 110, an n-type GaN layer 112, a light emitting layer 114, an electron blocking layer 116, and a p-type GaN layer 118 in this order from the sapphire substrate 102 side.
  • a p-side electrode 127 is formed on the p-type GaN layer 118 and an n-side electrode 128 is formed on the n-type GaN layer 112.
  • the p-side electrode 127 has a diffusion electrode 121 formed on the p-type GaN layer 118 and a pad electrode 122 formed on a part of the diffusion electrode 121.
  • the buffer layer 110 is made of AlN and is formed on the surface of the sapphire substrate 102.
  • the buffer layer 110 has a thickness of 40 nm or less and is formed by a sputtering method.
  • the void density in the semiconductor stacked portion 119 is 1.0 ⁇ 10 7 / cm 2 or less.
  • each convex portion 102c can be a truncated cone shape such as a cone or a polygonal pyramid, or a truncated cone shape such as a truncated cone or a truncated polygonal truncated cone.
  • Each convex part 102c is designed to diffract the light emitted from the light emitting layer 114. In the present embodiment, a light verticalizing action can be obtained by each of the convex portions 102c arranged periodically.
  • the period of the convex portion 102c is P and the peak wavelength of light emitted from the light emitting layer 114 is ⁇ , 1/2 ⁇ ⁇ ⁇ P ⁇ 16/9 ⁇ ⁇
  • the period of the convex portion 102c is set so as to satisfy the above relationship. Further, the period of the convex portion 102c is set so that the transmitted diffracted light includes at least second-order diffracted light and does not include fifth-order diffracted light. The period of the convex portion 102c is set so that the reflected diffracted light includes at least third-order diffracted light.
  • An additional GaN layer grown under a growth condition that promotes facet formation of GaN rather than the growth condition of the n-type GaN layer 112 may be provided between the buffer layer 110 and the n-type GaN layer 112.
  • the temperature in the reactor is lowered, the pressure in the reactor is increased, the supply amount of NH 3 is reduced, the supply amount of (CH 3 ) 3 Ga is reduced, Etc. are considered.
  • the semiconductor stacked portion 119 can have good crystal quality without being affected by the period of the convex portion 102c.
  • the additional GaN layer can be formed, for example, by supplying NH 2 at 2200 sccm and (CH 3 ) 3 Ga at 20 sccm while maintaining the temperature in the reactor at 950 ° C. and the pressure at 930 hPa for a predetermined time.
  • the n-type GaN layer 112 can be formed, for example, by setting the temperature in the reactor to 1040 ° C., the pressure to 500 hPa, and supplying NH 3 at 8000 sccm and (CH 3 ) 3 Ga at 45 sccm.
  • FIG. 23 is a partially enlarged schematic cross-sectional view of the LED element.
  • a dielectric multilayer film 124 is formed on the back side of the sapphire substrate 102.
  • the dielectric multilayer film 124 is covered with an Al layer 126 that is a metal layer.
  • the dielectric multilayer film 124 and the Al layer 126 form a reflecting portion, and the light emitted from the light emitting layer 114 and transmitted through the diffraction surface 102a by the diffraction action is reflected by the reflecting portion.
  • the light transmitted by the diffractive action is re-incident on the diffractive surface 102a, and is transmitted again by using the diffractive action on the diffractive surface 102a, so that the light can be extracted outside the element in a plurality of modes.
  • FIG. 24 is a graph illustrating an example of the reflectance of the reflecting portion.
  • the dielectric multilayer film formed on the sapphire substrate is a combination of ZrO 2 and SiO 2 and the number of pairs is 5, and an Al layer is formed on the dielectric multilayer film.
  • a reflectance of 99% or more is realized in an angle range where the incident angle is 0 degree to 55 degrees.
  • a reflectance of 98% or more is realized in the angle range where the incident angle is 0 degree to 60 degrees.
  • a reflectance of 92% or more is realized in an angle range where the incident angle is 0 degree to 75 degrees.
  • the combination of the dielectric multilayer film and the metal layer is an advantageous reflection condition for the light that is perpendicular to the interface.
  • the reflectance is almost 88% regardless of the incident angle.
  • the void density in the semiconductor stacked portion 119 is 1.0 ⁇ 10 7 / cm 2 or less, the influence of scattering can be minimized, The light distribution characteristic due to the diffractive action is not impaired.
  • the buffer layer 110 is formed by a sputtering method, generation of voids in the semiconductor stacked portion 119 can be suppressed.
  • AlN as the buffer layer 110, generation of voids in the semiconductor stacked portion 119 can be effectively suppressed.
  • the thickness of the buffer layer 110 to 60 nm or less, the crystal quality of the semiconductor can be improved as compared with the conventional “FSS”.
  • the thickness of the buffer layer 110 exceed 20 nm, it is possible to suppress deterioration of the flatness of the crystal surface of the semiconductor stacked portion 119.
  • the diffractive surface 102a and the reflecting portion are provided, the light distribution characteristic of the light emitted from the element can be changed from the vertical.
  • the period of the convex portion 102c is P and the peak wavelength of the light emitted from the light emitting layer 114 is ⁇ , 1/2 ⁇ ⁇ ⁇ P ⁇ 16/9 ⁇ ⁇
  • the amount of light around the optical axis extracted from the element can be increased.
  • the transmitted diffracted light is allowed up to the second order, the third order, or the fourth order, and the reflected diffracted light is allowed to be the third order or higher.
  • the amount of light can be increased.
  • the distance until the light emitted from the light emitting layer 114 reaches the surface of the p-side electrode 127 can be remarkably shortened, and the light absorption inside the device can be suppressed.
  • the LED element has a problem that light in an angle region exceeding the critical angle of the interface propagates in the lateral direction, so that the light is absorbed inside the element.
  • the light absorbed inside the element can be drastically reduced by setting the vertical direction at 102a.
  • the reflection portion is a combination of the dielectric multilayer film 124 and the metal layer 126, and the reflectivity increases as the angle is more perpendicular to the interface. This is a reflection condition that is advantageous with respect to the generated light.
  • the diffractive surface is composed of periodically formed convex portions, but the diffractive surface may be composed of periodically formed concave portions.
  • the convex portions or the concave portions in alignment with the intersections of the triangular lattice, for example, it can be formed in alignment with the intersections of the virtual square lattice.
  • the light emitting surface of the element is flat.
  • the light emitting surface is processed to be uneven. May be.
  • the LED element 1 of FIG. 25 is obtained by performing uneven processing on the back surface of the sapphire substrate 2 in the flip-chip type LED element of the first embodiment.
  • the back surface 2g of the sapphire substrate 2 is formed with a flat portion 2h and a plurality of convex portions 2i that are periodically formed on the flat portion 2h.
  • each convex part 2i can be a truncated cone such as a cone or a polygonal pyramid, or a truncated cone such as a truncated cone or a truncated polygonal truncated cone. It is preferable that the period of each convex part 2i in the back surface 2g of the sapphire substrate 2 is shorter than the period of the diffractive surface 2a. Thereby, the Fresnel reflection in the back surface 2g of the sapphire substrate 2 is suppressed.
  • each convex portion 127i can be a truncated cone such as a cone or a polygonal pyramid, or a truncated cone such as a truncated cone or a truncated polygonal truncated cone.
  • each convex part 127i on the surface 127g of the p-side electrode 127 is preferably shorter than the period of the diffractive surface 102a. Thereby, Fresnel reflection on the surface 127g of the p-side electrode 127 is suppressed.
  • the buffer layer is a single layer formed by the sputtering method.
  • the buffer layer is formed by the sputtering method.
  • the first layer 10a and the second layer 10b grown at a low temperature by the MOCVD method may be used.
  • the threading dislocation density can be further reduced while the void density is made equal.
  • the buffer layer is formed by sputtering. The value was the same as that obtained when the 40 nm single layer AlN was formed, and the threading dislocation density was lower than that obtained when the buffer layer was a 20 nm single layer AlN formed by sputtering.
  • the light emitting layer emits blue light.
  • green light, red light, or the like may be emitted.
  • the light-emitting element of the present invention is industrially useful because it can achieve both improvement of the crystal quality of the semiconductor due to voids and suppression of adverse effects on the diffraction effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Provided is a light emitting element capable of suppressing generation of voids in a semiconductor without deteriorating crystal qualities of the semiconductor. This light emitting element is provided with: a sapphire substrate having recesses and projections that are formed to be scattered in a surface at a pitch of 1 μm or less; and a semiconductor laminated section formed on the surface of the sapphire substrate, said semiconductor laminated section including a light emitting layer, and being formed of a III nitride semiconductor. At the interface between the sapphire substrate and the semiconductor laminated section, there are diffraction operations of light emitted from the light emitting layer. The density of voids having a size smaller than the pitch of the recesses or projections, said voids being in the semiconductor laminated section close to the sapphires substrate, is set at 1.0×102/cm2-2.3×107/cm2.

Description

発光素子Light emitting element
 本発明は、発光素子に関する。 The present invention relates to a light emitting element.
 サファイア基板の表面上に形成され発光層を含むIII族窒化物半導体と、サファイア基板の表面側に形成され発光層から発せられる光が入射し当該光の光学波長より大きく当該光のコヒーレント長より小さい周期で凹部又は凸部が形成された回折面と、基板の裏面側に形成され回折面にて回折した光を反射して回折面へ再入射させるAl反射膜と、を備えるLED素子が知られている(特許文献1参照)。このLED素子では、回折作用により透過した光を回折面に再入射させて、回折面にて再び回折作用を利用して透過させることにより、複数のモードで光を素子外部へ取り出すことができる。 A group III nitride semiconductor formed on the surface of the sapphire substrate and including a light emitting layer, and light emitted from the light emitting layer formed on the surface side of the sapphire substrate is incident and is larger than the optical wavelength of the light and smaller than the coherent length of the light. There is known an LED element comprising a diffractive surface in which concave or convex portions are formed at a period, and an Al reflective film that is formed on the back side of the substrate and reflects light diffracted by the diffractive surface and re-enters the diffractive surface. (See Patent Document 1). In this LED element, the light transmitted by the diffraction action is re-incident on the diffraction surface, and the light is transmitted again using the diffraction action on the diffraction surface, so that the light can be extracted outside the element in a plurality of modes.
国際公開第2011/027679号International Publication No. 2011/0276779
 ところで、半導体積層部におけるサファイア基板近傍に所定密度のボイドを形成することによって、半導体の結晶品質を向上することが発明者らにより検討されている。しかし、ボイドを形成することによる回折作用への悪影響が懸念されている。 By the way, the inventors have studied to improve the crystal quality of the semiconductor by forming voids having a predetermined density in the vicinity of the sapphire substrate in the semiconductor laminated portion. However, there is a concern about the adverse effect on the diffraction effect due to the formation of voids.
 本発明は、前記事情に鑑みてなされたものであり、その目的とするところは、ボイドによる半導体の結晶品質の向上と回折作用への悪影響の抑制を両立させることのできる発光素子を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a light emitting device capable of achieving both improvement of crystal quality of a semiconductor due to voids and suppression of adverse effects on diffraction effects. It is in.
 前記目的を達成するため、本発明では、表面に1μm以下の周期で点在する凹部又は凸部が形成されるサファイア基板と、前記サファイア基板の表面上に形成され発光層を含みIII族窒化物半導体からなる半導体積層部と、を有し、前記サファイア基板と前記半導体積層部の界面にて前記発光層から発せられる光の回折作用を得る発光素子において、前記半導体積層部の前記サファイア基板近傍に前記凹部又は凸部の周期より小さなサイズで形成され、密度が2.6×10/cm以上で2.3×10/cm以下のボイドを備えた発光素子が提供される。 In order to achieve the above object, the present invention includes a sapphire substrate in which concave portions or convex portions scattered on the surface with a period of 1 μm or less are formed, and a light emitting layer formed on the surface of the sapphire substrate. In a light emitting device having a semiconductor laminated portion made of a semiconductor and obtaining a diffraction action of light emitted from the light emitting layer at an interface between the sapphire substrate and the semiconductor laminated portion, in the vicinity of the sapphire substrate of the semiconductor laminated portion There is provided a light-emitting element that is formed with a size smaller than the period of the concave portion or the convex portion and includes a void having a density of 2.6 × 10 2 / cm 2 or more and 2.3 × 10 7 / cm 2 or less.
 上記発光素子において、前記ボイドの密度が1.0×10/cm以下であってもよい。 In the light-emitting element, the void density may be 1.0 × 10 7 / cm 2 or less.
 上記発光素子において、前記半導体積層部は、前記サファイア基板側に形成されるバッファ層を有し、前記バッファ層は、スパッタリング法により形成されてもよい。 In the above light emitting device, the semiconductor stacked portion may have a buffer layer formed on the sapphire substrate side, and the buffer layer may be formed by a sputtering method.
 上記発光素子において、前記半導体積層部は、前記サファイア基板側に形成されるバッファ層を有し、前記バッファ層は、AlNからなってもよい。 In the above light emitting device, the semiconductor stacked portion may have a buffer layer formed on the sapphire substrate side, and the buffer layer may be made of AlN.
 上記発光素子において、前記凹部又は凸部の周期をP、前記発光層から発せられる光のピーク波長をλとしたとき、1/2×λ≦P≦16/9×λの関係を満たしてもよい。 In the above light-emitting element, when the period of the concave portion or the convex portion is P and the peak wavelength of light emitted from the light emitting layer is λ, the relationship of 1/2 × λ ≦ P ≦ 16/9 × λ is satisfied. Good.
 本発明の発光素子によれば、ボイドによる半導体の結晶品質の向上と回折作用への悪影響の抑制を両立させることができる。 According to the light emitting device of the present invention, it is possible to achieve both improvement in crystal quality of a semiconductor due to voids and suppression of adverse effects on diffraction effects.
図1は、本発明の第1の実施形態を示すLED素子の模式断面図である。FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention. 図2は、異なる屈折率の界面における光の回折作用を示す説明図であり、(a)は界面にて反射する状態を示し、(b)は界面を透過する状態を示す。2A and 2B are explanatory diagrams showing the diffraction action of light at the interface having different refractive indexes, where FIG. 2A shows a state of reflection at the interface, and FIG. 2B shows a state of transmission through the interface. 図3は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による透過角の関係を示すグラフである。FIG. 3 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a transmission angle. 図4は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による反射角の関係を示すグラフである。FIG. 4 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a reflection angle. 図5は、素子内部における光の進行方向を示す説明図である。FIG. 5 is an explanatory view showing the traveling direction of light inside the device. 図6は、LED素子の一部拡大模式断面図である。FIG. 6 is a partially enlarged schematic cross-sectional view of the LED element. 図7は、反射部の反射率の一例を示すグラフである。FIG. 7 is a graph showing an example of the reflectance of the reflecting portion. 図8はサファイア基板を示し、(a)が模式斜視図、(b)がA-A断面を示す模式説明図である。FIG. 8 shows a sapphire substrate, where (a) is a schematic perspective view, and (b) is a schematic explanatory view showing an AA cross section. 図9は、凸部の周期とボイド密度の関係を示す表である。FIG. 9 is a table showing the relationship between the convex period and the void density. 図10は、バッファ層の膜厚とボイド密度の関係を示すグラフである。FIG. 10 is a graph showing the relationship between the thickness of the buffer layer and the void density. 図11は、LED素子における波長と透過率の関係を示すグラフである。FIG. 11 is a graph showing the relationship between the wavelength and the transmittance in the LED element. 図12は、LED素子におけるボイド密度と光取り出し効率の関係を示すグラフである。FIG. 12 is a graph showing the relationship between the void density and the light extraction efficiency in the LED element. 図13は、ボイド密度と半導体積層部の貫通転位密度の関係を示すグラフである。FIG. 13 is a graph showing the relationship between the void density and the threading dislocation density in the semiconductor stack. 図14は、バッファ層の厚さと透過率の関係を示すグラフである。FIG. 14 is a graph showing the relationship between the thickness of the buffer layer and the transmittance. 図15は、LED素子の配光特性を極座標で示した図である。FIG. 15 is a diagram showing the light distribution characteristics of the LED element in polar coordinates. 図16はLED素子の配光特性を示し、(a)がサファイア基板に凸部が形成されていない状態のものを示し、(b)~(h)はサファイア基板に凸部が形成された状態のものを示している。16A and 16B show the light distribution characteristics of the LED element, where FIG. 16A shows a state in which the convex portion is not formed on the sapphire substrate, and FIGS. 16B to 11H show the state in which the convex portion is formed on the sapphire substrate. Shows things. 図17は、各基板の計算値と実測値を示す表である。FIG. 17 is a table showing calculated values and actually measured values of each substrate. 図18は、光軸に対する所定角度範囲内の光について積分強度の変化を示すグラフである。FIG. 18 is a graph showing a change in integrated intensity for light within a predetermined angle range with respect to the optical axis. 図19は、透過回折光の許容次数と積分強度の関係を示すグラフである。FIG. 19 is a graph showing the relationship between the allowable order of transmitted diffracted light and the integrated intensity. 図20は、反射回折光の許容次数と積分強度の関係を示すグラフである。FIG. 20 is a graph showing the relationship between the allowable order of reflected diffracted light and the integrated intensity. 図21は、凸部の周期と、透過回折光及び反射回折光の許容次数の関係を示すグラフである。FIG. 21 is a graph showing the relationship between the period of convex portions and the allowable orders of transmitted diffracted light and reflected diffracted light. 図22は、本発明の第2の実施形態を示すLED素子の模式断面図である。FIG. 22 is a schematic cross-sectional view of an LED element showing a second embodiment of the present invention. 図23は、LED素子の一部拡大模式断面図である。FIG. 23 is a partially enlarged schematic cross-sectional view of the LED element. 図24は、反射部の反射率の一例を示すグラフである。FIG. 24 is a graph illustrating an example of the reflectance of the reflecting portion. 図25は、変形例を示すLED素子の模式断面図である。FIG. 25 is a schematic cross-sectional view of an LED element showing a modification. 図26は、変形例を示すLED素子の模式断面図である。FIG. 26 is a schematic cross-sectional view of an LED element showing a modification. 図27は、変形例を示すLED素子の模式断面図である。FIG. 27 is a schematic cross-sectional view of an LED element showing a modification.
 図1は、本発明の第1の実施形態を示すLED素子の模式断面図である。
 図1に示すように、LED素子1は、サファイア基板2の表面上に、III族窒化物半導体層からなる半導体積層部19が形成されたものである。ここで、サファイアの屈折率は1.78であり、III族窒化物半導体層の屈折率は2.52である。このLED素子1は、フリップチップ型であり、サファイア基板2の裏面側から主として光が取り出される。半導体積層部19は、バッファ層10、n型GaN層12、発光層14、電子ブロック層16、p型GaN層18をサファイア基板2側からこの順に有している。p型GaN層18上にはp側電極27が形成されるとともに、n型GaN層12上にはn側電極28が形成されている。
FIG. 1 is a schematic cross-sectional view of an LED element showing a first embodiment of the present invention.
As shown in FIG. 1, the LED element 1 includes a sapphire substrate 2 on which a semiconductor stacked portion 19 made of a group III nitride semiconductor layer is formed. Here, the refractive index of sapphire is 1.78, and the refractive index of the group III nitride semiconductor layer is 2.52. The LED element 1 is a flip chip type, and light is mainly extracted from the back side of the sapphire substrate 2. The semiconductor stacked unit 19 includes a buffer layer 10, an n-type GaN layer 12, a light emitting layer 14, an electron blocking layer 16, and a p-type GaN layer 18 in this order from the sapphire substrate 2 side. A p-side electrode 27 is formed on the p-type GaN layer 18, and an n-side electrode 28 is formed on the n-type GaN layer 12.
 図1に示すように、バッファ層10はAlNからなり、サファイア基板2の表面上に形成される。バッファ層10は、スパッタリング法により形成される。第1導電型層としてのn型GaN層12は、バッファ層10上に形成され、n-GaNで構成されている。発光層14は、n型GaN層12上に形成され、GalnN/GaNで構成され、電子及び正孔の注入により青色光を発する。本実施形態においては、発光層14の発光のピーク波長は450nmである。 As shown in FIG. 1, the buffer layer 10 is made of AlN and is formed on the surface of the sapphire substrate 2. The buffer layer 10 is formed by a sputtering method. The n-type GaN layer 12 as the first conductivity type layer is formed on the buffer layer 10 and is made of n-GaN. The light emitting layer 14 is formed on the n-type GaN layer 12, is made of GalnN / GaN, and emits blue light by injection of electrons and holes. In the present embodiment, the peak wavelength of light emission of the light emitting layer 14 is 450 nm.
 電子ブロック層16は、発光層14上に形成され、p―AIGaNで構成されている。第2導電型層としてのp型GaN層18は、電子ブロック層16上に形成され、p-GaNで構成されている。n型GaN層12からp型GaN層18までは、MOCVD(Metal Organic Chemical Vapor Deposition)法により形成される。尚、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電圧が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。 The electron block layer 16 is formed on the light emitting layer 14 and is made of p-AIGaN. The p-type GaN layer 18 as the second conductivity type layer is formed on the electron block layer 16 and is made of p-GaN. The n-type GaN layer 12 to the p-type GaN layer 18 are formed by MOCVD (Metal-Organic-Chemical-Vapor-Deposition) method. In addition, when a voltage is applied to the first conductive type layer and the second conductive type layer at least including the first conductive type layer, the active layer, and the second conductive type layer, the active layer is formed by recombination of electrons and holes. The layer structure of the semiconductor layer is arbitrary as long as it emits light.
 サファイア基板2の表面は回折面2aをなす。サファイア基板2の表面は、平坦部2bと、平坦部2bに周期的に形成された複数の凸部2cと、が形成されている。各凸部2cの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。各凸部2cは、発光層14から発せられる光を回折するよう設計される。本実施形態においては、周期的に配置される各凸部2cにより、光の垂直化作用を得ることができる。ここで、光の垂直化作用とは、光の強度分布が、回折面へ入射する前よりも、反射及び透過した後の方が、サファイア基板2と半導体積層部19の界面に対して垂直な方向に偏ることをいう。 The surface of the sapphire substrate 2 forms a diffraction surface 2a. On the surface of the sapphire substrate 2, a flat portion 2b and a plurality of convex portions 2c periodically formed on the flat portion 2b are formed. The shape of each convex portion 2c may be a truncated cone shape such as a cone or a polygonal pyramid, or a truncated cone shape such as a truncated cone or a truncated polygonal truncated cone. Each convex portion 2 c is designed to diffract light emitted from the light emitting layer 14. In the present embodiment, the light verticalizing action can be obtained by the convex portions 2c arranged periodically. Here, the light verticalizing action means that the light intensity distribution is more perpendicular to the interface between the sapphire substrate 2 and the semiconductor stacked portion 19 after being reflected and transmitted than before being incident on the diffraction surface. It is biased in the direction.
 図2は、異なる屈折率の界面における光の回折作用を示す説明図であり、(a)は界面にて反射する状態を示し、(b)は界面を透過する状態を示す。
 ここで、ブラッグの回折条件から、界面にて光が反射する場合において、入射角θinに対して反射角θrefが満たすべき条件は、
 P・n1・(sinθin-sinθref)=m・λ・・・(1)
である。ここで、Pは凹部または凸部の周期、n1は入射側の媒質の屈折率、λは入射する光の波長、mは整数である。半導体積層部19からサファイア基板2へ光が入射する場合、n1はIII族窒化物半導体の屈折率となる。図2(a)に示すように、上記(1)式を満たす反射角θrefで、界面へ入射する光は反射される。
2A and 2B are explanatory diagrams showing the diffraction action of light at the interface having different refractive indexes, where FIG. 2A shows a state of reflection at the interface, and FIG. 2B shows a state of transmission through the interface.
Here, from the Bragg diffraction condition, when light is reflected at the interface, the condition that the reflection angle θ ref should satisfy with respect to the incident angle θ in is:
P · n1 · (sin θ in −sin θ ref ) = m · λ (1)
It is. Here, P is the period of the concave or convex portion, n1 is the refractive index of the medium on the incident side, λ is the wavelength of the incident light, and m is an integer. When light is incident on the sapphire substrate 2 from the semiconductor laminated portion 19, n1 is the refractive index of the group III nitride semiconductor. As shown in FIG. 2A, light incident on the interface is reflected at a reflection angle θ ref that satisfies the above equation (1).
 一方、ブラッグの回折条件から、界面にて光が透過する場合において、入射角θinに対して透過角θoutが満たすべき条件は、
 P・(n1・sinθin-n2・sinθout)=m’・λ・・・(2)
である。ここで、n2は出射側の媒質の屈折率であり、m’は整数である。例えば半導体積層部19からサファイア基板2へ光が入射する場合、n2はサファイアの屈折率となる。図2(b)に示すように、上記(2)式を満たす透過角θoutで、界面へ入射する光は透過される。
On the other hand, from the Bragg diffraction condition, when light is transmitted at the interface, the condition that the transmission angle θ out should satisfy with respect to the incident angle θ in is:
P · (n1 · sin θ in −n2 · sin θ out ) = m ′ · λ (2)
It is. Here, n2 is the refractive index of the medium on the exit side, and m ′ is an integer. For example, when light is incident on the sapphire substrate 2 from the semiconductor stacked portion 19, n2 is the refractive index of sapphire. As shown in FIG. 2B, light incident on the interface is transmitted at a transmission angle θ out that satisfies the above equation (2).
 図3は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による透過角の関係を示すグラフである。また、図4は、凹部又は凸部の周期を500nmとした場合の、III属窒化物半導体層とサファイア基板の界面における、半導体層側から界面へ入射する光の入射角と、界面での回折作用による反射角の関係を示すグラフである。 FIG. 3 shows the incident angle of light incident from the semiconductor layer side to the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm, and the diffraction action at the interface. It is a graph which shows the relationship of a transmission angle. FIG. 4 shows the incident angle of light incident on the interface from the semiconductor layer side and the diffraction at the interface at the interface between the group III nitride semiconductor layer and the sapphire substrate when the period of the recesses or protrusions is 500 nm. It is a graph which shows the relationship of the reflection angle by an effect | action.
 回折面2aに入射する光には、一般的な平坦面と同様に全反射の臨界角が存在する。GaN系半導体層とサファイア基板2との界面では、臨界角は45.9°である。図3に示すように、臨界角を超えた領域では、上記(2)式の回折条件を満たすm’=1,2,3,4での回折モードでの透過が可能である。また、図4に示すように、臨界角を超えた領域では、上記(1)式の回折条件を満たすm=1,2,3,4での回折モードでの反射が可能である。臨界角が45.9°の場合、臨界角を超える光出力が約70%、臨界角を超えない光出力が約30%となる。すなわち、臨界角を超えた領域の光を取り出すことは、LED素子1の光取り出し効率の向上に大きく寄与する。 The light incident on the diffractive surface 2a has a critical angle of total reflection as in a general flat surface. At the interface between the GaN-based semiconductor layer and the sapphire substrate 2, the critical angle is 45.9 °. As shown in FIG. 3, in the region exceeding the critical angle, transmission in the diffraction mode is possible at m ′ = 1, 2, 3, 4 satisfying the diffraction condition of the above equation (2). Further, as shown in FIG. 4, in the region exceeding the critical angle, reflection in the diffraction mode is possible at m = 1, 2, 3, 4 satisfying the diffraction condition of the above equation (1). When the critical angle is 45.9 °, the light output exceeding the critical angle is about 70%, and the light output not exceeding the critical angle is about 30%. That is, extracting light in a region exceeding the critical angle greatly contributes to improving the light extraction efficiency of the LED element 1.
 ここで、入射角θinよりも透過角θoutが小さくなる領域では、回折面2aを透過する光は、サファイア基板2とIII族窒化物半導体層の界面に対して垂直寄りに角度変化する。図3中、この領域をハッチングで示す。図3に示すように、回折面2aを透過する光については、臨界角を超えた領域では、m’=1,2,3の回折モードの光は全ての角度域で垂直寄りに角度変化する。m’=4の回折モードの光は一部の角度域で垂直寄りとならないが、回折次数が大きい光の強度は比較的小さいため影響が小さく、この一部の角度域においても実質的に垂直寄りに角度変化することとなる。すなわち、半導体積層部19側にて回折面2aへ入射する光の強度分布と比べて、サファイア基板2側にて回折面2aを透過して出射する光の強度分布が、半導体積層部19とサファイア基板2の界面に対して垂直な方向に偏る。 Here, in the region where the transmission angle θ out is smaller than the incident angle θ in , the light transmitted through the diffractive surface 2 a changes in angle toward the perpendicular to the interface between the sapphire substrate 2 and the group III nitride semiconductor layer. In FIG. 3, this area is indicated by hatching. As shown in FIG. 3, with respect to the light transmitted through the diffractive surface 2a, in the region exceeding the critical angle, the light in the diffraction mode of m ′ = 1, 2, 3 changes in angle toward the vertical in all angle regions. . The light of the diffraction mode of m ′ = 4 does not become vertical in a part of the angle range, but the influence of the light having a large diffraction order is relatively small, so the influence is small. The angle will change to the side. That is, compared with the intensity distribution of the light incident on the diffractive surface 2a on the semiconductor multilayer part 19 side, the intensity distribution of the light transmitted through the diffractive surface 2a on the sapphire substrate 2 side is different from that of the semiconductor multilayer part 19 and sapphire. It is biased in a direction perpendicular to the interface of the substrate 2.
 また、入射角θinよりも反射角θrefが小さくなる領域では、回折面2aで反射する光は、サファイア基板2とIII族窒化物半導体層の界面に対して垂直寄りに角度変化する。図4中、この領域をハッチングで示す。図4に示すように、回折面2aにて反射する光については、臨界角を超えた領域では、m=1,2,3の回折モードの光は全ての角度域で垂直寄りに角度変化する。m=4の回折モードの光は一部の角度域で垂直寄りとならないが、回折次数が大きい光の強度は比較的小さいため影響が小さく、この一部の角度域においても実質的に垂直寄りに角度変化することとなる。すなわち、半導体積層部19側にて回折面2aへ入射する光の強度分布と比べて、半導体積層部19側にて回折面2aから反射により出射する光の強度分布が、半導体積層部19とサファイア基板2の界面に対して垂直な方向に偏る。 In the region where the reflection angle θ ref is smaller than the incident angle θ in , the light reflected by the diffraction surface 2a changes in angle toward the perpendicular to the interface between the sapphire substrate 2 and the group III nitride semiconductor layer. In FIG. 4, this area is indicated by hatching. As shown in FIG. 4, with respect to the light reflected by the diffractive surface 2a, in the region exceeding the critical angle, the light in the diffraction mode of m = 1, 2, 3 changes in angle toward the vertical in all angle regions. . Although the light of the diffraction mode of m = 4 is not vertically inclined in some angle regions, the influence of light having a large diffraction order is relatively small, so the influence is small. The angle will change. That is, compared with the intensity distribution of light incident on the diffractive surface 2a on the semiconductor multilayer portion 19 side, the intensity distribution of light emitted from the diffractive surface 2a on the semiconductor multilayer portion 19 side is reflected by the semiconductor multilayer portion 19 and sapphire. It is biased in a direction perpendicular to the interface of the substrate 2.
 図5は、素子内部における光の進行方向を示す説明図である。
 図5に示すように、発光層14から発せられた光のうち、サファイア基板2へ臨界角を超えて入射する光は、回折面2aで入射時よりも垂直寄りの方向へ透過及び反射する。すなわち、回折面2aを透過した光は、垂直寄りへ角度変化した状態でサファイア基板2の裏面へ入射する。また、回折面2aで反射した光は、垂直寄りへ角度変化した状態でp側電極27及びn側電極28で反射された後、回折面2aに再度入射する。このときの入射角は、先の入射角よりも垂直寄りとなる。この結果、サファイア基板2の裏面へ入射する光を垂直寄りとすることができる。
FIG. 5 is an explanatory view showing the traveling direction of light inside the device.
As shown in FIG. 5, of the light emitted from the light emitting layer 14, the light incident on the sapphire substrate 2 beyond the critical angle is transmitted and reflected on the diffractive surface 2a in a direction closer to the vertical than when incident. That is, the light transmitted through the diffractive surface 2a is incident on the back surface of the sapphire substrate 2 with the angle being changed toward the vertical direction. Further, the light reflected by the diffractive surface 2a is reflected by the p-side electrode 27 and the n-side electrode 28 in a state in which the angle is changed toward the vertical direction, and then enters the diffractive surface 2a again. The incident angle at this time is closer to the vertical than the previous incident angle. As a result, the light incident on the back surface of the sapphire substrate 2 can be shifted vertically.
 図6は、LED素子の一部拡大模式断面図である。
 図6に示すように、p側電極27は、p型GaN層18上に形成される拡散電極21と、拡散電極21上の所定領域に形成される誘電体多層膜22と、誘電体多層膜22上に形成される金属電極23とを有している。拡散電極21は、p型GaN層18に全面的に形成され、例えばITO(Indium Tin Oxide)等の透明材料からなる。また、誘電体多層膜22は、屈折率の異なる第1材料22aと第2材料22bのペアを複数繰り返して構成される。誘電体多層膜22は、例えば、第1材料22aをZrO(屈折率:2.18)、第2材料22bをSiO(屈折率:1.46)とし、ペア数を5とすることができる。尚、ZrOとSiOと異なる材料を用いて誘電体多層膜22を構成してもよく、例えば、AlN(屈折率:2.18)、Nb(屈折率:2.4)、Ta(屈折率:2.35)等を用いてもよい。金属電極23は、誘電体多層膜22を被覆し、例えばAl等の金属材料からなる。金属電極23は、誘電体多層膜22に形成されたビアホール22cを通じて拡散電極21と電気的に接続されている。
FIG. 6 is a partially enlarged schematic cross-sectional view of the LED element.
As shown in FIG. 6, the p-side electrode 27 includes a diffusion electrode 21 formed on the p-type GaN layer 18, a dielectric multilayer film 22 formed in a predetermined region on the diffusion electrode 21, and a dielectric multilayer film. 22 and a metal electrode 23 formed on the substrate 22. The diffusion electrode 21 is formed on the entire surface of the p-type GaN layer 18 and is made of a transparent material such as ITO (Indium Tin Oxide). The dielectric multilayer film 22 is configured by repeating a plurality of pairs of the first material 22a and the second material 22b having different refractive indexes. In the dielectric multilayer film 22, for example, the first material 22a may be ZrO 2 (refractive index: 2.18), the second material 22b may be SiO 2 (refractive index: 1.46), and the number of pairs is five. it can. The dielectric multilayer film 22 may be formed using a material different from ZrO 2 and SiO 2. For example, AlN (refractive index: 2.18), Nb 2 O 3 (refractive index: 2.4), Ta 2 O 3 (refractive index: 2.35) or the like may be used. The metal electrode 23 covers the dielectric multilayer film 22 and is made of a metal material such as Al. The metal electrode 23 is electrically connected to the diffusion electrode 21 through a via hole 22 c formed in the dielectric multilayer film 22.
 図6に示すように、n側電極28は、p型GaN層18からn型GaN層12をエッチングして、露出したn型GaN層12上に形成される。n側電極28は、n型GaN層12上に形成される拡散電極24と、拡散電極24上の所定領域に形成される誘電体多層膜25と、誘電体多層膜25上に形成される金属電極26とを有している。拡散電極24は、n型GaN層12に全面的に形成され、例えばITO(Indium Tin Oxide)等の透明材料からなる。また、誘電体多層膜25は、屈折率の異なる第1材料25aと第2材料25bのペアを複数繰り返して構成される。誘電体多層膜25は、例えば、第1材料25aをZrO(屈折率:2.18)、第2材料25bをSiO(屈折率:1.46)とし、ペア数を5とすることができる。尚、ZrOとSiOと異なる材料を用いて誘電体多層膜25を構成してもよく、例えば、AlN(屈折率:2.18)、Nb(屈折率:2.4)、Ta(屈折率:2.35)等を用いてもよい。金属電極26は、誘電体多層膜25を被覆し、例えばAl等の金属材料からなる。金属電極26は、誘電体多層膜25に形成されたビアホール25cを通じて拡散電極24と電気的に接続されている。 As shown in FIG. 6, the n-side electrode 28 is formed on the exposed n-type GaN layer 12 by etching the n-type GaN layer 12 from the p-type GaN layer 18. The n-side electrode 28 includes a diffusion electrode 24 formed on the n-type GaN layer 12, a dielectric multilayer film 25 formed in a predetermined region on the diffusion electrode 24, and a metal formed on the dielectric multilayer film 25. Electrode 26. The diffusion electrode 24 is formed on the entire surface of the n-type GaN layer 12 and is made of a transparent material such as ITO (Indium Tin Oxide). The dielectric multilayer film 25 is configured by repeating a plurality of pairs of the first material 25a and the second material 25b having different refractive indexes. In the dielectric multilayer film 25, for example, the first material 25a may be ZrO 2 (refractive index: 2.18), the second material 25b may be SiO 2 (refractive index: 1.46), and the number of pairs is five. it can. The dielectric multilayer film 25 may be formed using a material different from ZrO 2 and SiO 2 , for example, AlN (refractive index: 2.18), Nb 2 O 3 (refractive index: 2.4), Ta 2 O 3 (refractive index: 2.35) or the like may be used. The metal electrode 26 covers the dielectric multilayer film 25 and is made of a metal material such as Al. The metal electrode 26 is electrically connected to the diffusion electrode 24 through a via hole 25 c formed in the dielectric multilayer film 25.
 このLED素子1においては、p側電極27及びn側電極28が反射部をなしている。p側電極27及びn側電極28は、それぞれ垂直に近い角度ほど反射率が高くなっている。反射部へは、発光層14から発せられて直接的に入射する光の他、サファイア基板2の回折面2aにて反射して、界面に対して垂直寄りに角度変化した光が入射する。すなわち、反射部へ入射する光の強度分布は、サファイア基板2の表面が平坦面だった場合と比較すると、垂直寄りに偏った状態となっている。 In the LED element 1, the p-side electrode 27 and the n-side electrode 28 form a reflecting portion. The p-side electrode 27 and the n-side electrode 28 each have a higher reflectance as the angle is closer to the vertical. In addition to the light directly emitted from the light emitting layer 14 and directly incident on the reflecting portion, the light reflected by the diffractive surface 2a of the sapphire substrate 2 and changed in angle toward the perpendicular to the interface is incident. That is, the intensity distribution of light incident on the reflecting portion is biased toward the vertical as compared with the case where the surface of the sapphire substrate 2 is a flat surface.
 図7は、反射部の反射率の一例を示すグラフである。図7の例では、ITO上に形成される誘電体多層膜をZrOとSiOの組み合わせでペア数を5とし、誘電体多層膜に重ねてAl層を形成した。図7に示すように、入射角が0度から45度の角度域で、98%以上の反射率を実現している。また、入射角が0度から75度の角度域で、90%以上の反射率を実現している。このように、誘電体多層膜と金属層の組み合わせは、界面に対して垂直寄りとなった光に対して有利な反射条件となる。尚、ITO上にAl層のみを形成した場合は、入射角によらず、ほぼ84%の一定の反射率となることを確認している。 FIG. 7 is a graph showing an example of the reflectance of the reflecting portion. In the example of FIG. 7, the dielectric multilayer film formed on the ITO is a combination of ZrO 2 and SiO 2 and the number of pairs is five, and an Al layer is formed on the dielectric multilayer film. As shown in FIG. 7, a reflectance of 98% or more is realized in an angle range where the incident angle is 0 degree to 45 degrees. In addition, a reflectance of 90% or more is realized in an angle range where the incident angle is 0 to 75 degrees. As described above, the combination of the dielectric multilayer film and the metal layer is an advantageous reflection condition for the light that is perpendicular to the interface. In addition, when only an Al layer is formed on ITO, it has been confirmed that a constant reflectance of approximately 84% is obtained regardless of the incident angle.
 次いで、図8を参照してサファイア基板2について詳述する。図8はサファイア基板を示し、(a)が模式斜視図、(b)がA-A断面を示す模式説明図である。 Next, the sapphire substrate 2 will be described in detail with reference to FIG. FIG. 8 shows a sapphire substrate, where (a) is a schematic perspective view, and (b) is a schematic explanatory view showing an AA cross section.
 図8(a)に示すように、回折面2aは、平面視にて、各凸部2cの中心が正三角形の頂点の位置となるように、所定の周期で仮想の三角格子の交点に整列して形成される。尚、ここでいう周期とは、隣接する凸部2cにおける高さのピーク位置の距離をいう。本実施形態においては、凸部2cの周期をP、発光層14から発せられる光のピーク波長をλとしたとき、
 1/2×λ≦P≦16/9×λ
の関係を満たすように、凸部2cの周期が設定されている。この関係については、
 23/45×λ≦P≦14/9×λ
とすることが好ましい。また、凸部2cの周期は、透過回折光が少なくとも2次の回折光を含み、5次の回折光を含まないよう設定されている。また、凸部2cの周期は、反射回折光が少なくとも3次の回折光を含むよう設定されている。
As shown in FIG. 8A, the diffractive surface 2a is aligned with the intersections of the virtual triangular lattice at a predetermined period so that the center of each convex portion 2c is the position of the apex of the regular triangle in plan view. Formed. In addition, the period here means the distance of the peak position of the height in the adjacent convex part 2c. In the present embodiment, when the period of the convex portion 2c is P and the peak wavelength of the light emitted from the light emitting layer 14 is λ,
1/2 × λ ≦ P ≦ 16/9 × λ
The period of the convex portion 2c is set so as to satisfy the relationship. About this relationship,
23/45 × λ ≦ P ≦ 14/9 × λ
It is preferable that The period of the convex portion 2c is set so that the transmitted diffracted light includes at least second-order diffracted light and does not include fifth-order diffracted light. Further, the period of the convex portion 2c is set so that the reflected diffracted light includes at least third-order diffracted light.
 ところで、半導体積層部19におけるサファイア基板2近傍に所定密度のボイドを形成することによって、半導体の結晶品質を向上することが発明者らにより検討されている。サファイア基板2上に1μm以下の周期で点在する凹部又は凸部2cを形成した場合、ボイドを形成することにより半導体の結晶品質が向上することが予想される。しかし、ボイドを形成することによる回折作用への悪影響が懸念されるため、ボイドによる回折作用への影響を調査した。尚、ここでいうボイドは、光学的な影響のある大きさものであり、数ナノから数十ナノ程度の大きさのものは光学的な影響を無視できるので考慮しない。 Incidentally, the inventors have studied to improve the crystal quality of the semiconductor by forming voids of a predetermined density in the vicinity of the sapphire substrate 2 in the semiconductor laminated portion 19. When the concave portions or the convex portions 2 c that are scattered at a period of 1 μm or less are formed on the sapphire substrate 2, it is expected that the crystal quality of the semiconductor is improved by forming voids. However, since there is a concern about the adverse effect on the diffraction effect due to the formation of voids, the influence of the voids on the diffraction effect was investigated. In addition, the void here is a size having an optical influence, and those having a size of several nanometers to several tens of nanometers are not considered because the optical influence can be ignored.
 図9は、凸部の周期とボイド密度の関係を示す表である。ボイド密度の測定は、バッファ層をMOCVD法により低温で成長させたGaNとした場合と、バッファ層をスパッタリング法で形成したAlNとした場合において行った。尚、バッファ層の厚さは80nmとした。
 図9に示すように、バッファ層10をGaNとした場合と比べ、AlNとした場合にはボイドの密度が減少する。また、凸部2cの周期が小さいほど、ボイド密度が大きくなることが確認された。すなわち、半導体中のボイドは、周期的に形成された凸部2cに起因するものと考えられる。バッファ層10をMOCVD法により成長させたGaNとした場合、凸部2cの周期によらずボイド密度が1.0×10/cmを超えてしまう。一方、バッファ層10をスパッタリング法で形成したAlNとした場合、ボイド密度が1.0×10/cm以下となる。尚、この測定を行った光学顕微鏡の精度の関係上、ボイド密度が1.0×10/cm以下の場合は正確な値を把握できないため、図9には1.0×10/cm以下として示している。
FIG. 9 is a table showing the relationship between the convex period and the void density. The void density was measured when the buffer layer was made of GaN grown at a low temperature by the MOCVD method and when the buffer layer was made of AlN formed by the sputtering method. The thickness of the buffer layer was 80 nm.
As shown in FIG. 9, the void density is reduced when AlN is used compared to the case where the buffer layer 10 is GaN. Further, it was confirmed that the void density increases as the period of the convex portion 2c decreases. That is, it is considered that voids in the semiconductor are caused by the convex portions 2c formed periodically. When the buffer layer 10 is made of GaN grown by the MOCVD method, the void density exceeds 1.0 × 10 7 / cm 2 regardless of the period of the protrusions 2c. On the other hand, when the buffer layer 10 is made of AlN formed by a sputtering method, the void density is 1.0 × 10 7 / cm 2 or less. Note that due to the accuracy of the optical microscope in which this measurement was performed, when the void density is 1.0 × 10 7 / cm 2 or less, an accurate value cannot be grasped, so FIG. 9 shows 1.0 × 10 7 / It is shown as cm 2 or less.
 このように、バッファ層10のボイド密度は、バッファ層10の材質を変更することで変化する。また、バッファ層10の膜厚を変化させることにより、ボイド密度を変化させることもできる。図10は、バッファ層の膜厚とボイド密度の関係を示すグラフである。ここでは、バッファ層10をスパッタリング法により形成されたAlNとして測定を行った。尚、後述するアニール時間は5分とした。図10に示すように、バッファ層10の膜厚を大きくすればボイド密度が低くなり、小さくすればボイド密度が高くなる。 Thus, the void density of the buffer layer 10 is changed by changing the material of the buffer layer 10. Further, the void density can be changed by changing the film thickness of the buffer layer 10. FIG. 10 is a graph showing the relationship between the thickness of the buffer layer and the void density. Here, the buffer layer 10 was measured as AlN formed by a sputtering method. The annealing time described later was 5 minutes. As shown in FIG. 10, increasing the film thickness of the buffer layer 10 decreases the void density, and decreasing the film thickness increases the void density.
 また、バッファ層10をスパッタリング法で形成する場合、スパッタ後のアニールの有無により、ボイド密度を変化させることができる。本実施形態においては、例えば400℃から700℃でバッファ層10をスパッタにより形成し、例えば3分間から10分間、例えば900℃から1100℃でアニールし、そのまま連続的に半導体積層部19を形成してLED素子1を作製した。 Further, when the buffer layer 10 is formed by the sputtering method, the void density can be changed depending on the presence or absence of annealing after sputtering. In the present embodiment, the buffer layer 10 is formed by sputtering at 400 ° C. to 700 ° C., for example, and annealed at, for example, 3 ° C. to 10 minutes, for example 900 ° C. to 1100 ° C. Thus, LED element 1 was produced.
 図11は、LED素子における波長と透過率の関係を示すグラフである。透過率の測定は、LED素子1のサファイア基板2に対して垂直な方向に所定波長の光を照射して行った。ここで、試料体1は、バッファ層10をスパッタリング法で形成しアニール時間を5分としたAlNとし、バッファ層10の厚さを80nmとして作製した。また、試料体2は、バッファ層10をMOCVD法により低温で成長させたGaNとし、バッファ層の厚さを25nmとして作製した。各試料体とも、凸部2cの周期は460nmとした。なお、MOCVD法により低温で成長させたGaNでは、バッファ層の厚さを変化させても、ボイド密度はほぼ一定である。 FIG. 11 is a graph showing the relationship between the wavelength and transmittance of the LED element. The transmittance was measured by irradiating light of a predetermined wavelength in a direction perpendicular to the sapphire substrate 2 of the LED element 1. Here, the sample body 1 was made of AlN in which the buffer layer 10 was formed by sputtering and the annealing time was 5 minutes, and the thickness of the buffer layer 10 was 80 nm. The sample body 2 was made of GaN obtained by growing the buffer layer 10 at a low temperature by the MOCVD method, and the thickness of the buffer layer was 25 nm. In each sample body, the period of the convex portion 2c was set to 460 nm. Note that in GaN grown at a low temperature by the MOCVD method, the void density is substantially constant even when the thickness of the buffer layer is changed.
 図11に示すように、バッファ層10をスパッタリング法で形成したAlNとすると、MOCVD法により低温で成長させたGaNとした場合と比べて、透過率が向上することが理解される。具体的には、450nmの波長の光において、透過率は3.2%向上した。これは、半導体積層部19中のボイドの発生が抑制されていることに起因すると思われる。また、各試料体を用いて実際にLED素子を作製したところ、光取り出し効率は9.4%向上した。 As shown in FIG. 11, when the buffer layer 10 is made of AlN formed by sputtering, it is understood that the transmittance is improved as compared with the case where GaN is grown at low temperature by MOCVD. Specifically, the transmittance improved by 3.2% for light having a wavelength of 450 nm. This seems to be due to the fact that the generation of voids in the semiconductor stacked portion 19 is suppressed. Moreover, when LED elements were actually produced using each sample body, the light extraction efficiency was improved by 9.4%.
 バッファ層10をスパッタリング法で形成したAlNとすると、ボイドの発生が抑制される理由は次のように考えられる。まず、スパッタリング法を利用してバッファ層を形成すると、ターゲットからサファイア基板2へ向けて原料が直進するため、サファイア基板2の各凸部2cの間にも均一にバッファ層10が形成される。これに加え、バッファ層10をAlNとしたことにより、GaNと比べてマイグレーションが抑制されることからボイドの発生が抑制される。 If the buffer layer 10 is made of AlN formed by sputtering, the reason why the generation of voids is suppressed is considered as follows. First, when the buffer layer is formed by using the sputtering method, the raw material goes straight from the target toward the sapphire substrate 2, so that the buffer layer 10 is uniformly formed between the convex portions 2 c of the sapphire substrate 2. In addition, since the buffer layer 10 is made of AlN, migration is suppressed as compared with GaN, so that generation of voids is suppressed.
 また、ボイド密度を変化させたLED素子1を複数作製し、光取り出し効率がどのように変化するのか実験を行った。図12は、LED素子におけるボイド密度と光取り出し効率の関係を示すグラフである。各LED素子1は、バッファ層10をスパッタリング法で形成したAlNとし、凸部2cの周期は460nmとした。ボイドの密度は、バッファ層10の膜厚を変化させることにより変化させた。具体的にボイド密度を、1.0×10/cm,2.6×10/cm,1.3×10/cm,2.3×10/cm,5.0×10/cmとした。尚、ボイド密度の測定は、ドライエッチング装置により半導体積層部をエッチングしてボイドを露出させ、電子顕微鏡を用いて行った。これにより、図9に示すデータよりも高い精度のデータを得ることができた。 In addition, a plurality of LED elements 1 having different void densities were produced, and experiments were conducted to see how the light extraction efficiency changes. FIG. 12 is a graph showing the relationship between the void density and the light extraction efficiency in the LED element. Each LED element 1 is made of AlN in which the buffer layer 10 is formed by sputtering, and the period of the convex portions 2c is 460 nm. The density of voids was changed by changing the film thickness of the buffer layer 10. Specifically, the void density is 1.0 × 10 / cm 2 , 2.6 × 10 2 / cm 2 , 1.3 × 10 4 / cm 2 , 2.3 × 10 7 / cm 2 , 5.0 ×. 10 8 / cm 2 . The void density was measured using an electron microscope by exposing the voids by etching the semiconductor stack using a dry etching apparatus. Thereby, data with higher accuracy than the data shown in FIG. 9 could be obtained.
 図12に示すように、ボイド密度は2.3×10/cmまで光取り出し効率が比較的良好であり、5.0×10/cmとなると光取り出し効率が低下した。すなわち、ボイド密度が高くなると光取り出し効率が低下することが理解される。 As shown in FIG. 12, the light extraction efficiency was relatively good up to a void density of 2.3 × 10 7 / cm 2, and the light extraction efficiency decreased when the void density was 5.0 × 10 8 / cm 2 . That is, it is understood that the light extraction efficiency decreases as the void density increases.
 図13は、ボイド密度と半導体積層部の貫通転位密度の関係を示すグラフである。図13に示すように、貫通転位密度は、ボイド密度が1.0×10/cmのときに1.0×10/cm、2.6×10/cmのときに4.0×10/cm、1.3×10/cmのときに3.2×10/cm、2.3×10/cmのときに2.2×10/cm、5.0×10/cmのときに1.6×10/cmであった。図13に示すように、ボイド密度は2.6×10/cm以上で貫通転位密度が比較的低く、1.0×10/cmとなると貫通転位密度が高くなった。すなわち、ボイド密度が低くなると貫通転位密度が高くなることが理解される。 FIG. 13 is a graph showing the relationship between the void density and the threading dislocation density in the semiconductor stack. As shown in FIG. 13, the threading dislocation density is 1.0 × 10 9 / cm 2 when the void density is 1.0 × 10 / cm 2 , and 4. 4 when the void density is 2.6 × 10 2 / cm 2 . When it is 0 × 10 8 / cm 2 , 1.3 × 10 4 / cm 2 , it is 3.2 × 10 8 / cm 2 , and when it is 2.3 × 10 7 / cm 2 , it is 2.2 × 10 8 / cm 2. 2 and when it was 5.0 × 10 8 / cm 2 , it was 1.6 × 10 8 / cm 2 . As shown in FIG. 13, the threading dislocation density was relatively low when the void density was 2.6 × 10 2 / cm 2 or more, and the threading dislocation density was high when the void density was 1.0 × 10 / cm 2 . That is, it is understood that the threading dislocation density increases as the void density decreases.
 以上より、半導体積層部19のサファイア基板2近傍に凸部2cの周期より小さなサイズで形成され、密度が2.6×10/cm以上で2.3×10/cm以下のボイドを備えることにより、ボイドによる半導体の結晶品質の向上と回折作用への悪影響の抑制を両立させることができる。 As described above, the void is formed in the vicinity of the sapphire substrate 2 of the semiconductor stacked portion 19 with a size smaller than the period of the convex portion 2c, and the density is 2.6 × 10 2 / cm 2 or more and 2.3 × 10 7 / cm 2 or less. By providing the above, it is possible to achieve both improvement in crystal quality of the semiconductor due to voids and suppression of adverse effects on the diffraction action.
 図14は、バッファ層の厚さと透過率の関係を示す表である。図14中、「FSS」は凹凸が形成されていないサファイア基板2を用いたLED素子1を示し、「MPSS」は本実施形態のように点在する凸部が形成されたサファイア基板2を用いたLED素子1を示す。各試料体とも、凸部2cの周期を460nmとし、バッファ層10をスパッタリング法で形成されたAlNとして、厚さを20nm、40nm、60nm及び80nmに変化させた。
 図14に示すように、「FSS」においては透過率はほぼ一定であるが、「MPSS」ではバッファ層10の厚さが20nmとなると、透過率が低下する。これは、半導体積層部19における各半導体層表面の平坦性が失われたためと考えられる。このように各半導体層表面の平坦性が失われると、半導体の結晶品質が悪くなる。
FIG. 14 is a table showing the relationship between the thickness of the buffer layer and the transmittance. In FIG. 14, “FSS” indicates the LED element 1 using the sapphire substrate 2 on which the unevenness is not formed, and “MPSS” uses the sapphire substrate 2 on which the dotted projections are formed as in the present embodiment. The LED element 1 which was found is shown. In each sample body, the period of the convex portion 2c was set to 460 nm, the buffer layer 10 was made of AlN formed by a sputtering method, and the thickness was changed to 20 nm, 40 nm, 60 nm, and 80 nm.
As shown in FIG. 14, the transmittance is almost constant in “FSS”, but the transmittance decreases in “MPSS” when the thickness of the buffer layer 10 is 20 nm. This is considered because the flatness of the surface of each semiconductor layer in the semiconductor stacked portion 19 is lost. As described above, when the flatness of the surface of each semiconductor layer is lost, the crystal quality of the semiconductor deteriorates.
 図15は、LED素子の配光特性を極座標で示した図である。ここで、試料体3は「MPSS」であり、バッファ層10をMOCVD法により低温で成長させたGaNとし、バッファ層10の厚さを25nmとして作製した。試料体3のボイド密度は、5.0×10/cmである。また、試料体4は「FSS」であり、バッファ層10をMOCVD法により低温で成長させたGaNとし、バッファ層10の厚さを25nmとして作製した。また、試料体5は、バッファ層10をスパッタリング法で形成したAlNとし、バッファ層10の厚さを60nmとして作製した。試料体5のボイド密度は、1.0×10/cmである。尚、図15の各図においては、サファイア基板2に垂直な方向を0度(光軸)として示している。また、各試料体の発光層14の発光波長は450nmとした。 FIG. 15 is a diagram showing the light distribution characteristics of the LED element in polar coordinates. Here, the sample body 3 was “MPSS”, and the buffer layer 10 was made of GaN grown at a low temperature by the MOCVD method, and the thickness of the buffer layer 10 was 25 nm. The void density of the sample body 3 is 5.0 × 10 7 / cm 2 . The sample body 4 was “FSS”, and the buffer layer 10 was made of GaN grown at a low temperature by the MOCVD method, and the thickness of the buffer layer 10 was 25 nm. The sample body 5 was made of AlN in which the buffer layer 10 was formed by sputtering, and the thickness of the buffer layer 10 was 60 nm. The void density of the sample body 5 is 1.0 × 10 4 / cm 2 . In each drawing of FIG. 15, the direction perpendicular to the sapphire substrate 2 is shown as 0 degree (optical axis). Moreover, the light emission wavelength of the light emitting layer 14 of each sample body was 450 nm.
 試料体4のように、サファイア基板2の表面に凸部2cが形成されていない場合は、光はLED素子1から等方的に出射される。これに対し、試料体3及び試料体5に示すように、回折作用を得ることのできる凸部2cを形成することにより配光特性が変化する。具体的には、試料体5に示すように、配光特性において、特定の角度域にて他と比べて強度が高くなる箇所が存在するようになる。この箇所は、反射部で反射した後に回折面を透過する±1次の光によるものであることが判明している。 When the convex portion 2 c is not formed on the surface of the sapphire substrate 2 as in the sample body 4, the light is emitted from the LED element 1 isotropically. On the other hand, as shown in the sample body 3 and the sample body 5, the light distribution characteristic is changed by forming the convex portion 2c capable of obtaining a diffraction action. Specifically, as shown in the sample body 5, in the light distribution characteristics, there are portions where the strength is higher than others in a specific angle region. This location has been found to be due to ± first order light that is reflected by the reflector and then transmitted through the diffractive surface.
 ここで、試料体3の配光特性が試料体5と異なってしまうのは、半導体積層部19中に形成されたボイドによる光の散乱の影響と考えられる。すなわち、ボイド密度が1.0×10/cmを超えると、散乱の影響が大きくなり、試料体3のような配光特性となってしまうと考えられる。このように散乱の影響が大きくなると、回折作用を利用して光を取り出すLED素子1に不利となる。 Here, it is considered that the light distribution characteristic of the sample body 3 is different from that of the sample body 5 due to the influence of light scattering by the voids formed in the semiconductor stacked portion 19. That is, when the void density exceeds 1.0 × 10 7 / cm 2 , it is considered that the influence of scattering increases and the light distribution characteristics as in the sample body 3 are obtained. Thus, when the influence of scattering becomes large, it will be disadvantageous for the LED element 1 which takes out light using a diffraction effect.
 さらに、図16から図21を参照して、シミュレーションに基づいてLED素子1から取り出される光の配光特性について説明する。図16はLED素子の配光特性を極座標で示し、(a)がサファイア基板に凸部が形成されていない状態のものを示し、(b)~(h)はサファイア基板に凸部が形成された状態のものを示している。ここで、(b)は周期が200nmのものを、(c)は周期が225nmのものを、(d)は周期が320nmのものを、(e)は周期が450nmのものを、(f)は周期が600nmのものを、(g)は周期が700nmのものを、(h)は周期が800nmのものを示している。尚、図16の各図においては、サファイア基板に垂直な方向を0度(光軸)として示している。 Furthermore, with reference to FIGS. 16 to 21, the light distribution characteristics of the light extracted from the LED element 1 will be described based on the simulation. FIG. 16 shows the light distribution characteristics of the LED element in polar coordinates, (a) shows a state in which no convex portion is formed on the sapphire substrate, and (b) to (h) show the convex portion formed on the sapphire substrate. It shows the one in the state. Here, (b) has a period of 200 nm, (c) has a period of 225 nm, (d) has a period of 320 nm, (e) has a period of 450 nm, (f) Indicates that the period is 600 nm, (g) indicates that the period is 700 nm, and (h) indicates that the period is 800 nm. In each drawing of FIG. 16, the direction perpendicular to the sapphire substrate is shown as 0 degree (optical axis).
 ここで、シミュレーションの計算値等が妥当かどうかを確認するために、シミュレーションによる計算値と、試料体の実測値と比較して検討した。この検討は、シミュレーションにより計算される積分強度と、試料体を発光させて得られた実測値とを比較することによって行った。図17は、各基板の計算値と実測値を示す表である。図17中、「FSS」は凹凸が形成されていない基板を示し、「PSS」は線状の凹凸が形成された基板を示し、「MPSS」は本実施形態のように点在する凹部または凸部が形成された基板を示す。図17に示すように、どのような基板であっても、計算値と実測値がほぼ一致しており、シミュレーションの計算値等が妥当であることが理解される。 Here, in order to confirm whether or not the calculated values of the simulation are appropriate, the simulation calculated values were compared with the measured values of the sample body. This examination was performed by comparing the integrated intensity calculated by the simulation with the actual measurement value obtained by emitting the sample body. FIG. 17 is a table showing calculated values and actually measured values of each substrate. In FIG. 17, “FSS” indicates a substrate on which unevenness is not formed, “PSS” indicates a substrate on which linear unevenness is formed, and “MPSS” indicates a recessed portion or a protrusion that is scattered as in the present embodiment. The board | substrate with which the part was formed is shown. As shown in FIG. 17, it is understood that the calculated value and the actually measured value are almost the same regardless of the substrate, and the calculated value of the simulation is appropriate.
 図16の配光特性について検討する。図16(a)に示すように、サファイア基板2の表面に凸部2cが形成されていない場合は、光はLED素子1から等方的に出射される。これに対し、図16(b)~(h)に示すように、回折作用を得ることのできる凸部2cを形成することにより配光特性が変化する。具体的には、図16(b),(c)等に示すように、配光特性において、特定の角度域にて他と比べて強度が高くなる箇所Aが存在するようになる。この箇所Aは、反射部で反射した後に回折面を透過する±1次の光によるものであることが判明している。そして、図16(b)~(h)に示すように、凸部2cの周期を変化させることにより、この箇所Aの角度域が変化する。 Investigate the light distribution characteristics of FIG. As shown in FIG. 16A, when the convex portion 2 c is not formed on the surface of the sapphire substrate 2, light is emitted from the LED element 1 isotropically. On the other hand, as shown in FIGS. 16B to 16H, the light distribution characteristic is changed by forming the convex portion 2c capable of obtaining the diffraction action. Specifically, as shown in FIGS. 16B, 16C, etc., in the light distribution characteristic, there is a portion A where the intensity is higher than the others in a specific angle region. This portion A has been found to be due to ± first-order light that is reflected by the reflecting portion and then passes through the diffraction surface. Then, as shown in FIGS. 16B to 16H, by changing the period of the convex portion 2c, the angular area of this portion A changes.
 図18は、光軸に対する所定角度範囲内の光について積分強度の変化を示すグラフである。図18では、横軸を凸部の周期、縦軸を光軸に対して±30度以内の積分強度としている。ここで、破線は、線状凸部の周期が3μmのPSS基板の積分強度を示している。また、一点鎖線は、FSS基板の積分強度を示している。 FIG. 18 is a graph showing a change in integrated intensity for light within a predetermined angle range with respect to the optical axis. In FIG. 18, the horizontal axis represents the period of the convex portion, and the vertical axis represents the integrated intensity within ± 30 degrees with respect to the optical axis. Here, the broken line indicates the integrated intensity of the PSS substrate having the period of the linear protrusions of 3 μm. The alternate long and short dash line indicates the integrated intensity of the FSS substrate.
 図18に示すように、凸部2cの周期が225nm以上800nm以下で、PSS基板よりも積分強度が大きくなる。すなわち、凸部2cの周期をPとし、発光層14から発せられる光のピーク波長をλとしたとき、
 1/2×λ≦P≦16/9×λ
の関係を満たすようにすると、PSS基板よりも光軸上の光強度を大きくすることができる。そして、この式が成立する条件下では、回折作用が得られた状態であることから、半導体積層部19のボイドの影響が大きくなる。
As shown in FIG. 18, when the period of the convex portion 2c is 225 nm or more and 800 nm or less, the integrated intensity is larger than that of the PSS substrate. That is, when the period of the convex portion 2c is P, and the peak wavelength of light emitted from the light emitting layer 14 is λ,
1/2 × λ ≦ P ≦ 16/9 × λ
If the relationship is satisfied, the light intensity on the optical axis can be made larger than that of the PSS substrate. And under the condition where this equation is established, since the diffractive action is obtained, the influence of the voids of the semiconductor stacked portion 19 becomes large.
 また、図18に示すように、凸部2cの周期が230nm以上700nm以下で、FSS基板よりも積分強度が大きくなる。すなわち、凸部2cの周期をPとし、発光層14から発せられる光のピーク波長をλとしたとき、
 23/45×λ≦P≦14/9×λ
の関係を満たすようにすると、FSS基板よりも光軸上の光強度を大きくすることができる。そして、この式が成立する条件下では、回折作用が得られた状態であることから、半導体積層部19のボイドの影響が大きくなる。
Further, as shown in FIG. 18, the integrated intensity is higher than that of the FSS substrate when the period of the convex portion 2c is 230 nm or more and 700 nm or less. That is, when the period of the convex portion 2c is P, and the peak wavelength of light emitted from the light emitting layer 14 is λ,
23/45 × λ ≦ P ≦ 14/9 × λ
If the relationship is satisfied, the light intensity on the optical axis can be made larger than that of the FSS substrate. And under the condition where this equation is established, since the diffractive action is obtained, the influence of the voids of the semiconductor stacked portion 19 becomes large.
 図19は、透過回折光の許容次数と積分強度の関係を示すグラフである。ここで、許容次数とは、透過回折光が何次の成分まで含んでいるのか(許容されているのか)ということである。尚、図19中の一点鎖線は、FSS基板の積分強度を示している。 FIG. 19 is a graph showing the relationship between the allowable order of transmitted diffracted light and the integrated intensity. Here, the allowable order means how many order components the transmitted diffracted light contains (allowed). Note that the alternate long and short dash line in FIG. 19 indicates the integrated intensity of the FSS substrate.
 図19に示すように、透過回折光については、2次、3次あるいは4次まで許容されると、FSS基板の積分強度を常に上回ることとなる、一方、透過回折光が1次しか許容されない場合や、5次以上許容される場合は、FSS基板の積分強度を下回ってしまう。すなわち、透過回折光については、少なくとも2次の回折光を含み、5次の回折光を含まないように設計することが好ましい。 As shown in FIG. 19, when the transmitted diffracted light is allowed up to the second, third, or fourth order, it always exceeds the integrated intensity of the FSS substrate, whereas the transmitted diffracted light is allowed only the first order. In some cases or when the fifth or higher order is allowed, the integrated intensity of the FSS substrate is lower. That is, the transmitted diffracted light is preferably designed so as to include at least the second-order diffracted light and not include the fifth-order diffracted light.
 図20は、反射回折光の許容次数と積分強度の関係を示すグラフである。ここで、許容次数とは、反射回折光が何次の成分まで含んでいるのか(許容されているのか)ということである。尚、図20中の一点鎖線は、FSS基板の積分強度を示している。 FIG. 20 is a graph showing the relationship between the allowable order of reflected diffracted light and the integrated intensity. Here, the allowable order means how many order components of the reflected diffracted light are included (allowed). Note that the alternate long and short dash line in FIG. 20 indicates the integrated intensity of the FSS substrate.
 図20に示すように、反射回折光については、3次以上許容されると、FSS基板の積分強度を常に上回ることとなる、一方、反射回折光が2次以下までしか許容されない場合は、FSS基板の積分強度を下回ってしまう。すなわち、反射回折光については、少なくとも3次の回折光を含むように設計することが好ましい。 As shown in FIG. 20, for the reflected diffracted light, when the third or higher order is allowed, the integrated intensity of the FSS substrate is always exceeded. On the other hand, when the reflected diffracted light is allowed only to the second order or lower, the FSS It will be less than the integrated intensity of the substrate. That is, the reflected diffracted light is preferably designed to include at least third-order diffracted light.
 図21は、凸部の周期と、透過回折光及び反射回折光の許容次数の関係を示すグラフである。図21においても、発光層14の発光波長を450nmとしている。
 図21に示すように、透過回折光について、2次、3次あるいは4次まで許容される凸部2cの周期は、260nmから620nmである。すなわち、凸部2cの周期をPとし、発光層14から発せられる光のピーク波長をλとしたとき、
 26/45×λ≦P≦62/45×λ
の関係を満たすようにすると、透過回折光について、許容次数が2次から4次となる。
FIG. 21 is a graph showing the relationship between the period of convex portions and the allowable orders of transmitted diffracted light and reflected diffracted light. Also in FIG. 21, the emission wavelength of the light emitting layer 14 is set to 450 nm.
As shown in FIG. 21, the period of the convex portion 2 c that is allowed up to the second, third, or fourth order in the transmitted diffracted light is 260 nm to 620 nm. That is, when the period of the convex portion 2c is P, and the peak wavelength of light emitted from the light emitting layer 14 is λ,
26/45 × λ ≦ P ≦ 62/45 × λ
If the relationship is satisfied, the allowable order of the transmitted diffracted light is from the second order to the fourth order.
 一方、反射回折光について、3次以上許容される凸部2cの周期は、280nmである。すなわち、凸部2cの周期をPとし、発光層14から発せられる光のピーク波長をλとしたとき、
 28/45×λ≦P
の関係を満たすようにすると、反射回折光について、許容次数が3次以上となる。つまり、透過回折光の許容次数が2次から4次の間となり、反射回折光の許容次数が3次以上となるようにするには、
 26/45×λ≦P≦62/45×λ
の関係を満たすようにすればよい。
On the other hand, with respect to the reflected diffracted light, the period of the convex part 2c allowed to be higher than the third order is 280 nm. That is, when the period of the convex portion 2c is P, and the peak wavelength of light emitted from the light emitting layer 14 is λ,
28/45 × λ ≦ P
If the above relationship is satisfied, the allowable order for the reflected diffracted light is the third order or higher. That is, in order to make the allowable order of the transmitted diffracted light between the second order and the fourth order, and the allowable order of the reflected diffracted light be the third order or more,
26/45 × λ ≦ P ≦ 62/45 × λ
It is sufficient to satisfy the relationship.
 以上のように構成されたLED素子1では、半導体積層部19中のボイド密度が1.0×10/cm以下となるようにしたので、散乱の影響を最小限とすることができ、回折作用による配光特性が損なわれることはない。また、バッファ層10をスパッタリング法で形成したので、半導体積層部19中のボイドの発生を抑制することができる。さらに、バッファ層10をAlNとすることによって、半導体積層部19中のボイドの発生を効果的に抑制することができる。さらに、バッファ層10の厚さを60nm以下とすることにより、従来の「FSS」と比較して半導体の結晶品質を向上させることができる。さらにまた、バッファ層10の厚さを20nmを超えるようにすることにより、半導体積層部19の結晶表面の平坦性が悪化することを抑制することができる。 In the LED element 1 configured as described above, since the void density in the semiconductor stacked portion 19 is 1.0 × 10 7 / cm 2 or less, the influence of scattering can be minimized, The light distribution characteristic due to the diffractive action is not impaired. Further, since the buffer layer 10 is formed by the sputtering method, generation of voids in the semiconductor stacked portion 19 can be suppressed. Furthermore, by making the buffer layer 10 AlN, generation of voids in the semiconductor stacked portion 19 can be effectively suppressed. Furthermore, by setting the thickness of the buffer layer 10 to 60 nm or less, the crystal quality of the semiconductor can be improved as compared with the conventional “FSS”. Furthermore, by making the thickness of the buffer layer 10 exceed 20 nm, it is possible to suppress deterioration of the flatness of the crystal surface of the semiconductor stacked portion 19.
 また、本実施形態のLED素子1では、回折面2a及び反射部を設けたので、素子から出射される光の配光特性を垂直よりに変化させることができる。そして、凸部2cの周期をP、発光層14から発せられる光のピーク波長をλとしたとき、
 1/2×λ≦P≦16/9×λ
の関係を満たすようにしたので、素子から取り出される光軸まわりの光量を大きくすることができる。従って、回折作用を利用して光の取り出し効率を向上させつつ、回折に起因する配光特性を利用して適切な配光を実現することができる。
Moreover, in the LED element 1 of this embodiment, since the diffraction surface 2a and the reflection part are provided, the light distribution characteristic of the light emitted from the element can be changed from the vertical direction. And when the period of the convex part 2c is P and the peak wavelength of the light emitted from the light emitting layer 14 is λ,
1/2 × λ ≦ P ≦ 16/9 × λ
Thus, the amount of light around the optical axis extracted from the element can be increased. Therefore, appropriate light distribution can be realized using light distribution characteristics resulting from diffraction while improving the light extraction efficiency using the diffraction action.
 また、回折面2aにおいて、透過回折光については2次、3次あるいは4次まで許容されるようにし、反射回折光については3次以上許容されるようにしたので、素子から取り出される光軸まわりの光量を大きくすることができる。 Further, in the diffractive surface 2a, the transmitted diffracted light is allowed up to the second, third or fourth order, and the reflected diffracted light is allowed to be higher than the third order. The amount of light can be increased.
 また、回折面2aにおける光の垂直化により、発光層14から発せられた光が、サファイア基板2の裏面に到達するまでの距離を格段に短くすることができ、素子内部における光の吸収を抑制することができる。LED素子においては、界面の臨界角を超える角度領域の光が横方向に伝搬してしまうので素子内部で光が吸収されてしまう問題があったが、臨界角を超える角度領域の光を回折面2aで垂直寄りとされることから、素子内部にて吸収される光を飛躍的に減じることができる。さらに、本実施形態においては、反射部を誘電体多層膜22,25と金属層23,26の組み合わせとして、界面に対して垂直に近い角度ほど反射率が高くなるようにしたので、界面に対して垂直寄りとなった光に対して有利な反射条件となっている。 Further, by verticalizing the light on the diffraction surface 2a, the distance until the light emitted from the light emitting layer 14 reaches the back surface of the sapphire substrate 2 can be remarkably shortened, and the absorption of light inside the device is suppressed. can do. The LED element has a problem that light in an angle region exceeding the critical angle of the interface propagates in the lateral direction, so that the light is absorbed inside the element. Since the vertical direction is 2a, the light absorbed inside the device can be drastically reduced. Furthermore, in the present embodiment, the reflection portion is a combination of the dielectric multilayer films 22 and 25 and the metal layers 23 and 26 so that the reflectivity increases as the angle is closer to the interface. Therefore, the reflection conditions are advantageous for light that is closer to the vertical.
 図22及び図23は本発明の第2の実施形態を示し、図22はLED素子の模式断面図である。
 図22に示すように、このLED素子101はフェイスアップタイプであり、サファイア基板102の表面上に、III族窒化物半導体層からなる半導体積層部119が形成されたものである。このLED素子101は、フェイスアップ型であり、サファイア基板102と反対側から主として光が取り出される。半導体積層部119は、バッファ層110、n型GaN層112、発光層114、電子ブロック層116、p型GaN層118をサファイア基板102側からこの順に有している。p型GaN層118上にはp側電極127が形成されるとともに、n型GaN層112上にはn側電極128が形成されている。また、p側電極127は、p型GaN層118上に形成される拡散電極121と、拡散電極121上の一部に形成されるパッド電極122と、を有している。
22 and 23 show a second embodiment of the present invention, and FIG. 22 is a schematic cross-sectional view of an LED element.
As shown in FIG. 22, the LED element 101 is a face-up type, in which a semiconductor stacked portion 119 made of a group III nitride semiconductor layer is formed on the surface of a sapphire substrate 102. This LED element 101 is a face-up type, and light is mainly extracted from the side opposite to the sapphire substrate 102. The semiconductor stacked unit 119 includes a buffer layer 110, an n-type GaN layer 112, a light emitting layer 114, an electron blocking layer 116, and a p-type GaN layer 118 in this order from the sapphire substrate 102 side. A p-side electrode 127 is formed on the p-type GaN layer 118 and an n-side electrode 128 is formed on the n-type GaN layer 112. The p-side electrode 127 has a diffusion electrode 121 formed on the p-type GaN layer 118 and a pad electrode 122 formed on a part of the diffusion electrode 121.
 バッファ層110はAlNからなり、サファイア基板102の表面上に形成される。バッファ層110は、厚さ40nm以下で、スパッタリング法により形成される。また、半導体積層部119中のボイド密度は、1.0×10/cm以下となっている。 The buffer layer 110 is made of AlN and is formed on the surface of the sapphire substrate 102. The buffer layer 110 has a thickness of 40 nm or less and is formed by a sputtering method. Moreover, the void density in the semiconductor stacked portion 119 is 1.0 × 10 7 / cm 2 or less.
 このLED素子101においては、サファイア基板102の表面が回折面102aをなしている。サファイア基板102の表面は、平坦部102bと、平坦部102bに周期的に形成された複数の凸部102cと、が形成されている。各凸部102cの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。各凸部102cは、発光層114から発せられる光を回折するよう設計される。本実施形態においては、周期的に配置される各凸部102cにより、光の垂直化作用を得ることができる。 In this LED element 101, the surface of the sapphire substrate 102 forms a diffraction surface 102a. On the surface of the sapphire substrate 102, a flat portion 102b and a plurality of convex portions 102c periodically formed on the flat portion 102b are formed. The shape of each convex portion 102c can be a truncated cone shape such as a cone or a polygonal pyramid, or a truncated cone shape such as a truncated cone or a truncated polygonal truncated cone. Each convex part 102c is designed to diffract the light emitted from the light emitting layer 114. In the present embodiment, a light verticalizing action can be obtained by each of the convex portions 102c arranged periodically.
 本実施形態の回折面102aは、凸部102cの周期をP、発光層114から発せられる光のピーク波長をλとしたとき、
 1/2×λ≦P≦16/9×λ
の関係を満たすように、凸部102cの周期が設定されている。また、凸部102cの周期は、透過回折光が少なくとも2次の回折光を含み、5次の回折光を含まないよう設定されている。また、凸部102cの周期は、反射回折光が少なくとも3次の回折光を含むよう設定されている。
In the diffractive surface 102a of the present embodiment, when the period of the convex portion 102c is P and the peak wavelength of light emitted from the light emitting layer 114 is λ,
1/2 × λ ≦ P ≦ 16/9 × λ
The period of the convex portion 102c is set so as to satisfy the above relationship. Further, the period of the convex portion 102c is set so that the transmitted diffracted light includes at least second-order diffracted light and does not include fifth-order diffracted light. The period of the convex portion 102c is set so that the reflected diffracted light includes at least third-order diffracted light.
 なお、バッファ層110とn型GaN層112の間に、n型GaN層112の成長条件よりもGaNのファセット形成が促される成長条件により成長された追加のGaN層を設けてもよい。ファセット形成に有利な成長条件とするには、リアクタ内の温度を低くする、リアクタ内の圧力を高くする、NHの供給量を少なくする、(CHGaの供給量を少なくする、等が考えられる。このGaN層を設けることにより、凸部102cの周期の影響を受けることなく、半導体積層部119を良好な結晶品質とすることができる。追加のGaN層は、例えば、所定時間、リアクタ内の温度を950℃、圧力を930hPaに保ちながら、NHを2200sccm、(CHGaを20sccm供給することにより形成することができる。また、n型GaN層112は、例えば、リアクタ内の温度を1040℃、圧力を500hPaとし、NHを8000sccm、(CHGaを45sccm供給することにより形成することができる。 An additional GaN layer grown under a growth condition that promotes facet formation of GaN rather than the growth condition of the n-type GaN layer 112 may be provided between the buffer layer 110 and the n-type GaN layer 112. In order to achieve growth conditions advantageous for facet formation, the temperature in the reactor is lowered, the pressure in the reactor is increased, the supply amount of NH 3 is reduced, the supply amount of (CH 3 ) 3 Ga is reduced, Etc. are considered. By providing this GaN layer, the semiconductor stacked portion 119 can have good crystal quality without being affected by the period of the convex portion 102c. The additional GaN layer can be formed, for example, by supplying NH 2 at 2200 sccm and (CH 3 ) 3 Ga at 20 sccm while maintaining the temperature in the reactor at 950 ° C. and the pressure at 930 hPa for a predetermined time. The n-type GaN layer 112 can be formed, for example, by setting the temperature in the reactor to 1040 ° C., the pressure to 500 hPa, and supplying NH 3 at 8000 sccm and (CH 3 ) 3 Ga at 45 sccm.
 図23は、LED素子の一部拡大模式断面図である。
 図23に示すように、サファイア基板102の裏面側には、誘電体多層膜124が形成されている。誘電体多層膜124は金属層であるAl層126により被覆される。この発光素子101においては、誘電体多層膜124及びAl層126が反射部をなしており、発光層114から発せられ回折面102aを回折作用によって透過した光を当該反射部で反射する。そして、回折作用により透過した光を回折面102aに再入射させて、回折面102aにて再び回折作用を利用して透過させることにより、複数のモードで光を素子外部へ取り出すことができる。
FIG. 23 is a partially enlarged schematic cross-sectional view of the LED element.
As shown in FIG. 23, a dielectric multilayer film 124 is formed on the back side of the sapphire substrate 102. The dielectric multilayer film 124 is covered with an Al layer 126 that is a metal layer. In the light emitting element 101, the dielectric multilayer film 124 and the Al layer 126 form a reflecting portion, and the light emitted from the light emitting layer 114 and transmitted through the diffraction surface 102a by the diffraction action is reflected by the reflecting portion. Then, the light transmitted by the diffractive action is re-incident on the diffractive surface 102a, and is transmitted again by using the diffractive action on the diffractive surface 102a, so that the light can be extracted outside the element in a plurality of modes.
 図24は、反射部の反射率の一例を示すグラフである。図24では、サファイア基板上に形成される誘電体多層膜をZrOとSiOの組み合わせでペア数を5とし、誘電体多層膜に重ねてAl層を形成した。図24に示すように、入射角が0度から55度の角度域で、99%以上の反射率を実現している。また、入射角が0度から60度の角度域で、98%以上の反射率を実現している。また、入射角が0度から75度の角度域で、92%以上の反射率を実現している。このように、誘電体多層膜と金属層の組み合わせは、界面に対して垂直寄りとなった光に対して有利な反射条件となる。尚、サファイア基板上にAl層のみを形成した場合は、入射角によらず、ほぼ88%の一定の反射率となることを確認している。 FIG. 24 is a graph illustrating an example of the reflectance of the reflecting portion. In FIG. 24, the dielectric multilayer film formed on the sapphire substrate is a combination of ZrO 2 and SiO 2 and the number of pairs is 5, and an Al layer is formed on the dielectric multilayer film. As shown in FIG. 24, a reflectance of 99% or more is realized in an angle range where the incident angle is 0 degree to 55 degrees. In addition, a reflectance of 98% or more is realized in the angle range where the incident angle is 0 degree to 60 degrees. In addition, a reflectance of 92% or more is realized in an angle range where the incident angle is 0 degree to 75 degrees. As described above, the combination of the dielectric multilayer film and the metal layer is an advantageous reflection condition for the light that is perpendicular to the interface. When only the Al layer is formed on the sapphire substrate, it has been confirmed that the reflectance is almost 88% regardless of the incident angle.
 以上のように構成されたLED素子101では、半導体積層部119中のボイド密度が1.0×10/cm以下となるようにしたので、散乱の影響を最小限とすることができ、回折作用による配光特性が損なわれることはない。また、バッファ層110をスパッタリング法で形成したので、半導体積層部119中のボイドの発生を抑制することができる。さらに、バッファ層110をAlNとすることによって、半導体積層部119中のボイドの発生を効果的に抑制することができる。さらに、バッファ層110の厚さを60nm以下とすることにより、従来の「FSS」と比較して半導体の結晶品質を向上させることができる。さらにまた、バッファ層110の厚さを20nmを超えるようにすることにより、半導体積層部119の結晶表面の平坦性が悪化することを抑制することができる。 In the LED element 101 configured as described above, since the void density in the semiconductor stacked portion 119 is 1.0 × 10 7 / cm 2 or less, the influence of scattering can be minimized, The light distribution characteristic due to the diffractive action is not impaired. In addition, since the buffer layer 110 is formed by a sputtering method, generation of voids in the semiconductor stacked portion 119 can be suppressed. Furthermore, by using AlN as the buffer layer 110, generation of voids in the semiconductor stacked portion 119 can be effectively suppressed. Furthermore, by setting the thickness of the buffer layer 110 to 60 nm or less, the crystal quality of the semiconductor can be improved as compared with the conventional “FSS”. Furthermore, by making the thickness of the buffer layer 110 exceed 20 nm, it is possible to suppress deterioration of the flatness of the crystal surface of the semiconductor stacked portion 119.
 また、回折面102a及び反射部を設けたので、素子から出射される光の配光特性を垂直よりに変化させることができる。そして、凸部102cの周期をP、発光層114から発せられる光のピーク波長をλとしたとき、
 1/2×λ≦P≦16/9×λ
の関係を満たすようにしたので、素子から取り出される光軸まわりの光量を大きくすることができる。
Further, since the diffractive surface 102a and the reflecting portion are provided, the light distribution characteristic of the light emitted from the element can be changed from the vertical. When the period of the convex portion 102c is P and the peak wavelength of the light emitted from the light emitting layer 114 is λ,
1/2 × λ ≦ P ≦ 16/9 × λ
Thus, the amount of light around the optical axis extracted from the element can be increased.
 また、回折面102aにおいて、透過回折光については2次、3次あるいは4次まで許容されるようにし、反射回折光については3次以上許容されるようにしたので、素子から取り出される光軸まわりの光量を大きくすることができる。 Further, in the diffractive surface 102a, the transmitted diffracted light is allowed up to the second order, the third order, or the fourth order, and the reflected diffracted light is allowed to be the third order or higher. The amount of light can be increased.
 また、発光層114から発せられた光が、p側電極127の表面に到達するまでの距離を格段に短くすることができ、素子内部における光の吸収を抑制することができる。LED素子においては、界面の臨界角を超える角度領域の光が横方向に伝搬してしまうので素子内部で光が吸収されてしまう問題があったが、臨界角を超える角度領域の光を回折面102aで垂直寄りとすることで、素子内部にて吸収される光を飛躍的に減じることができる。さらに、本実施形態においては、反射部を誘電体多層膜124と金属層126の組み合わせとして、界面に対して垂直に近い角度ほど反射率が高くなるようにしたので、界面に対して垂直寄りとなった光に対して有利な反射条件となっている。 Further, the distance until the light emitted from the light emitting layer 114 reaches the surface of the p-side electrode 127 can be remarkably shortened, and the light absorption inside the device can be suppressed. The LED element has a problem that light in an angle region exceeding the critical angle of the interface propagates in the lateral direction, so that the light is absorbed inside the element. The light absorbed inside the element can be drastically reduced by setting the vertical direction at 102a. Furthermore, in the present embodiment, the reflection portion is a combination of the dielectric multilayer film 124 and the metal layer 126, and the reflectivity increases as the angle is more perpendicular to the interface. This is a reflection condition that is advantageous with respect to the generated light.
 尚、第1及び第2の実施形態においては、回折面を周期的に形成された凸部で構成するものを示したが、回折面を周期的に形成された凹部で構成してもよいことは勿論である。また、凸部又は凹部を、三角格子の交点に整列して形成する他、例えば、仮想の正方格子の交点に整列して形成することもできる。 In the first and second embodiments, the diffractive surface is composed of periodically formed convex portions, but the diffractive surface may be composed of periodically formed concave portions. Of course. In addition to forming the convex portions or the concave portions in alignment with the intersections of the triangular lattice, for example, it can be formed in alignment with the intersections of the virtual square lattice.
 また、第1及び第2の実施形態においては、素子における光の出射面が平坦なものを示したが、例えば図25及び図26に示すように、光の出射面に凹凸加工を施すようにしてもよい。図25のLED素子1は、フリップチップタイプの第1の実施形態のLED素子において、サファイア基板2の裏面に凹凸加工を施したものである。このサファイア基板2の裏面2gは、平坦部2hと、平坦部2hに周期的に形成された複数の凸部2iと、が形成されている。各凸部2iの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。サファイア基板2の裏面2gにおける各凸部2iの周期は、回折面2aの周期より短くすることが好ましい。これにより、サファイア基板2の裏面2gにおけるフレネル反射が抑制される。 In the first and second embodiments, the light emitting surface of the element is flat. However, as shown in FIGS. 25 and 26, for example, the light emitting surface is processed to be uneven. May be. The LED element 1 of FIG. 25 is obtained by performing uneven processing on the back surface of the sapphire substrate 2 in the flip-chip type LED element of the first embodiment. The back surface 2g of the sapphire substrate 2 is formed with a flat portion 2h and a plurality of convex portions 2i that are periodically formed on the flat portion 2h. The shape of each convex part 2i can be a truncated cone such as a cone or a polygonal pyramid, or a truncated cone such as a truncated cone or a truncated polygonal truncated cone. It is preferable that the period of each convex part 2i in the back surface 2g of the sapphire substrate 2 is shorter than the period of the diffractive surface 2a. Thereby, the Fresnel reflection in the back surface 2g of the sapphire substrate 2 is suppressed.
 また、図26のLED素子101は、フェイスアップタイプの第2の実施形態のLED素子において、p側電極127の表面に凹凸加工を施したものである。このp型電極127の表面127gは、平坦部127hと、平坦部127hに周期的に形成された複数の凸部127iと、が形成されている。各凸部127iの形状は、円錐、多角錐等の錐状の他、錐の上部を切り落とした円錐台、多角錐台等の錐台状とすることができる。p側電極127の表面127gにおける各凸部127iの周期は、回折面102aの周期より短くすることが好ましい。これにより、p側電極127の表面127gにおけるフレネル反射が抑制される。 In addition, the LED element 101 in FIG. 26 is obtained by performing uneven processing on the surface of the p-side electrode 127 in the LED element of the second embodiment of the face-up type. The surface 127g of the p-type electrode 127 includes a flat portion 127h and a plurality of convex portions 127i that are periodically formed on the flat portion 127h. The shape of each convex portion 127i can be a truncated cone such as a cone or a polygonal pyramid, or a truncated cone such as a truncated cone or a truncated polygonal truncated cone. The period of each convex part 127i on the surface 127g of the p-side electrode 127 is preferably shorter than the period of the diffractive surface 102a. Thereby, Fresnel reflection on the surface 127g of the p-side electrode 127 is suppressed.
 また、第1及び第2の実施形態においては、バッファ層をスパッタリング法で形成される単層としたものを示したが、例えば図27に示すように、バッファ層がスパッタリング法で形成される第1層10aと、MOCVD法で低温で成長される第2層10bとにより構成されるものであってもよい。これにより、バッファ層をスパッタリング法で形成される単層とした場合と比べ、ボイド密度を同等としつつ貫通転位密度をさらに低減することができる。具体的に、第1層10aをスパッタリング法で形成される20nmのAlNとし、第2層10bをMOCVD法で低温で成長される20nmのGaNとしたところ、ボイド密度についてはバッファ層をスパッタリング法で形成される40nmの単層のAlNとした場合と同等の値となり、貫通転位密度についてはバッファ層をスパッタリング法で形成される20nmの単層のAlNとした場合の値より低くなった。 In the first and second embodiments, the buffer layer is a single layer formed by the sputtering method. However, for example, as shown in FIG. 27, the buffer layer is formed by the sputtering method. The first layer 10a and the second layer 10b grown at a low temperature by the MOCVD method may be used. Thereby, compared with the case where the buffer layer is a single layer formed by sputtering, the threading dislocation density can be further reduced while the void density is made equal. Specifically, when the first layer 10a is 20 nm AlN formed by sputtering and the second layer 10b is 20 nm GaN grown at a low temperature by MOCVD, the buffer layer is formed by sputtering. The value was the same as that obtained when the 40 nm single layer AlN was formed, and the threading dislocation density was lower than that obtained when the buffer layer was a 20 nm single layer AlN formed by sputtering.
 また、第1及び第2の実施形態においては、発光層から青色光が発せられるものを示したが、例えば、緑色、赤色等の光が発せられるものであってもよい。要は、凹部又は凸部の周期と、発光層から発せられる光のピーク波長の関係が、所定の条件を満たしていればよい。 In the first and second embodiments, the light emitting layer emits blue light. However, for example, green light, red light, or the like may be emitted. In short, it is only necessary that the relationship between the period of the concave portion or the convex portion and the peak wavelength of the light emitted from the light emitting layer satisfy a predetermined condition.
 本発明の発光素子は、ボイドによる半導体の結晶品質の向上と回折作用への悪影響の抑制を両立させることができるので、産業上有用である。 The light-emitting element of the present invention is industrially useful because it can achieve both improvement of the crystal quality of the semiconductor due to voids and suppression of adverse effects on the diffraction effect.
 1  LED素子
 2  サファイア基板
 2a  回折面
 2c  凸部
 10a 第1層
 10b 第2層
 14  発光層
 19  半導体積層部
 27  p側電極
 28  n側電極
 101 LED素子
 102 サファイア基板
 102a 回折面
 114 発光層
 119 半導体積層部
 124 誘電体多層膜
 126 Al層
DESCRIPTION OF SYMBOLS 1 LED element 2 Sapphire substrate 2a Diffraction surface 2c Convex part 10a 1st layer 10b 2nd layer 14 Light emitting layer 19 Semiconductor laminated part 27 P side electrode 28 n side electrode 101 LED element 102 Sapphire substrate 102a Diffraction surface 114 Light emitting layer 119 Semiconductor laminated part Part 124 Dielectric multilayer 126 Al layer

Claims (5)

  1.  表面に1μm以下の周期で点在する凹部又は凸部が形成されるサファイア基板と、
     前記サファイア基板の表面上に形成され発光層を含みIII族窒化物半導体からなる半導体積層部と、を有し、
     前記サファイア基板と前記半導体積層部の界面にて前記発光層から発せられる光の回折作用を得る発光素子において、
     前記半導体積層部の前記サファイア基板近傍に前記凹部又は凸部の周期より小さなサイズで形成され、密度が2.6×10/cm以上で2.3×10/cm以下のボイドを備えた発光素子。
    A sapphire substrate in which concave portions or convex portions scattered on the surface with a period of 1 μm or less are formed;
    A semiconductor multilayer part formed on the surface of the sapphire substrate and including a light emitting layer and made of a group III nitride semiconductor,
    In the light emitting element that obtains the diffraction action of the light emitted from the light emitting layer at the interface between the sapphire substrate and the semiconductor stacked portion,
    A void having a size smaller than the period of the concave portion or the convex portion and having a density of 2.6 × 10 2 / cm 2 or more and 2.3 × 10 7 / cm 2 or less is formed near the sapphire substrate of the semiconductor stacked portion. A light emitting device provided.
  2.  前記ボイドの密度が1.0×10/cm以下である請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the density of the voids is 1.0 × 10 7 / cm 2 or less.
  3.  前記半導体積層部は、前記サファイア基板側に形成されるバッファ層を有し、
     前記バッファ層は、スパッタリング法により形成される請求項2に記載の発光素子。
    The semiconductor stacked portion has a buffer layer formed on the sapphire substrate side,
    The light emitting device according to claim 2, wherein the buffer layer is formed by a sputtering method.
  4.  前記半導体積層部は、前記サファイア基板側に形成されるバッファ層を有し、
     前記バッファ層は、AlNからなる請求項3に記載の発光素子。
    The semiconductor stacked portion has a buffer layer formed on the sapphire substrate side,
    The light emitting device according to claim 3, wherein the buffer layer is made of AlN.
  5.  前記凹部又は凸部の周期をP、前記発光層から発せられる光のピーク波長をλとしたとき、
     1/2×λ≦P≦16/9×λ
    の関係を満たす請求項4に記載の発光素子。
    When the period of the concave or convex part is P, and the peak wavelength of light emitted from the light emitting layer is λ,
    1/2 × λ ≦ P ≦ 16/9 × λ
    The light emitting device according to claim 4, satisfying the relationship:
PCT/JP2014/081643 2014-01-30 2014-11-28 Light emitting element WO2015114936A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014016237 2014-01-30
JP2014-016237 2014-01-30
JP2014-124300 2014-06-17
JP2014124300 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015114936A1 true WO2015114936A1 (en) 2015-08-06

Family

ID=53756530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081643 WO2015114936A1 (en) 2014-01-30 2014-11-28 Light emitting element

Country Status (2)

Country Link
TW (1) TW201530810A (en)
WO (1) WO2015114936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069463A (en) * 2015-09-30 2017-04-06 旭化成株式会社 Semiconductor light-emitting element and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI553901B (en) * 2015-09-07 2016-10-11 環球晶圓股份有限公司 Ultraviolet led and method of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081717A1 (en) * 2006-12-22 2008-07-10 Showa Denko K.K. Method for producing group iii nitride semiconductor layer, group iii nitride semiconductor light-emitting device, and lamp
WO2011027679A1 (en) * 2009-09-07 2011-03-10 エルシード株式会社 Semiconductor light emitting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081717A1 (en) * 2006-12-22 2008-07-10 Showa Denko K.K. Method for producing group iii nitride semiconductor layer, group iii nitride semiconductor light-emitting device, and lamp
WO2011027679A1 (en) * 2009-09-07 2011-03-10 エルシード株式会社 Semiconductor light emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069463A (en) * 2015-09-30 2017-04-06 旭化成株式会社 Semiconductor light-emitting element and manufacturing method thereof

Also Published As

Publication number Publication date
TW201530810A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
JP5553292B1 (en) LED element
US7518153B2 (en) Nitride semiconductor light emitting device
US9252330B2 (en) Semiconductor light emitting element
JP4713190B2 (en) Semiconductor light emitting device including in-plane light emitting layer
US20180026154A1 (en) Led element and method for producing same
TWI611595B (en) LED component
JP2015509669A (en) Light emitting diode with low refractive index material layer to reduce guided light effect
US20130126901A1 (en) Semiconductor light-emitting element
JP2012023121A (en) Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
US20210074883A1 (en) Light emitting device and manufacturing method thereof
US20180097144A1 (en) Method for manufacturing light emitting element and light emitting element
TWI730079B (en) Deep ultraviolet light emitting element
WO2015114936A1 (en) Light emitting element
JP2011091251A (en) Nitride semiconductor light-emitting device
JP5866044B1 (en) Light emitting device manufacturing method and light emitting device
JP2015109477A (en) Led element
JP5740031B2 (en) LED element
TW201013993A (en) Optoelectronic semiconductor chip and method for its manufacture
Huang et al. GaN-based high-voltage light-emitting diodes with backside reflector
Zhou et al. High-Efficiency Top-Emitting III-Nitride LEDs
WO2015194382A1 (en) Method for manufacturing light emitting element and light emitting element
JP2011233689A (en) Semiconductor light-emitting element and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP