WO2015114930A1 - 装置 - Google Patents

装置 Download PDF

Info

Publication number
WO2015114930A1
WO2015114930A1 PCT/JP2014/081429 JP2014081429W WO2015114930A1 WO 2015114930 A1 WO2015114930 A1 WO 2015114930A1 JP 2014081429 W JP2014081429 W JP 2014081429W WO 2015114930 A1 WO2015114930 A1 WO 2015114930A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbsfn
unit
delay
measurement result
base station
Prior art date
Application number
PCT/JP2014/081429
Other languages
English (en)
French (fr)
Inventor
水澤 錦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP14881286.0A priority Critical patent/EP3104642A4/en
Priority to US15/114,016 priority patent/US10020972B2/en
Publication of WO2015114930A1 publication Critical patent/WO2015114930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • This disclosure relates to an apparatus.
  • MBMS Multicast Broadcast Multimedia Services
  • LTE Long Term Evolution
  • MBSFN MBMS over Single Frequency Network
  • reception signals from a plurality of base stations can be combined at a terminal, and reception quality can be improved.
  • a plurality of base stations transmit the same data using the same radio resource. Therefore, in order to allow a long delay spread, 16.7 us or 33.3 us in the MBSFN area of the MBSFN subframe.
  • the extended cyclic prefix (Cyclic Prefix: CP) is used.
  • CP Cyclic Prefix
  • 6 OFDM symbols are included in one slot. That is, 12 OFDM symbols are included in one subframe.
  • 3 OFDM symbols are included in one slot. That is, 6 OFDM symbols are included in one subframe.
  • Non-Patent Document 1 discloses a standardized technique regarding MBMS and MBSFN.
  • the delay spread of the MBSFN area can be reduced. Therefore, for example, when an extended CP is used, the CP length is larger than necessary, and as a result, the overhead can be increased.
  • an acquisition unit that acquires a measurement result of a delay between identical signals transmitted in an MBSFN area, and a cyclic prefix length for an MBSFN subframe of the MBSFN area based on the measurement result
  • a determination unit for determining
  • an acquisition unit that acquires a measurement result of a delay between identical signals transmitted in an MBSFN area, and a control device that determines a cyclic prefix length for an MBSFN subframe in the MBSFN area
  • a providing unit that provides the measurement result.
  • an apparatus including a measurement unit that measures a delay between the same signals transmitted in the MBSFN area is provided.
  • an apparatus including a control unit that controls transmission so that only the MBSFN reference signal is transmitted in at least one symbol in the MBSFN region of a specific MBSFN subframe.
  • a CP having a more appropriate length can be used in the MBSFN subframe.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a communication system according to an embodiment of the present disclosure.
  • FIG. It is a block diagram which shows an example of a structure of the control apparatus which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the example of a delay measurement result. It is explanatory drawing for demonstrating the example of a MBMS sub-frame. It is a block diagram which shows an example of a structure of the small base station which concerns on 1st Embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the example of the specific method of a delay spread measurement.
  • MBSFN area In MBSFN, a plurality of base stations distribute the same content in synchronization with each other. That is, in MBSFN, a plurality of base stations transmit the same data using the same radio resource.
  • the cells of the plurality of base stations (that is, a plurality of cells) are called MBSFN areas. Each cell can belong to a maximum of 8 MBSFN areas.
  • MBSFN area a specific example of the MBSFN area will be described with reference to FIG.
  • FIG. 1 is an explanatory diagram for explaining an example of the MBSFN area.
  • MBSFN area 0 includes cells # 1 to # 3 and # 5 to # 8
  • MBSFN area 1 includes cells # 7, # 9, # 10, and # 13,
  • MBSFN area 255 includes # 8. , # 9, and cells # 11 to # 15.
  • cell # 7 belongs to both MBSFN area 0 and MBSFN area 1.
  • the cell # 8 belongs to both the MBSFN area 0 and the MBSFN area 255.
  • the cell # 9 belongs to both the MBSFN area 1 and the MBSFN area 255.
  • the cell # 4 does not belong to any MBSFN area.
  • FIG. 2 is an explanatory diagram for explaining a channel for MBMS.
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • MCCH is a channel for transmitting control information such as an MBSFN area configuration message (MBSFN Area Configuration message) and an MBMS counting request message (MBM Counting Request messega).
  • MBSFN area configuration message MBSFN Area Configuration message
  • MM Counting Request messega MMS counting request message
  • MTCH is a channel for transmitting MBMS data.
  • PMCH Physical Multicast Channel
  • Both control information mapped to MCCH and data mapped to MTCH are mapped to PMCH through MCH (Multicast Channel) which is a transport channel.
  • MCH Multicast Channel
  • the MBSFN transmission is performed in the MBSFN subframe.
  • the MBSFN subframe is indicated by a radio frame allocation period, a radio frame allocation offset, and a subframe allocation.
  • a specific example of the MBSFN subframe will be described with reference to FIG.
  • FIG. 3 is an explanatory diagram for explaining an example of the MBSFN subframe.
  • SFN System Frame Number
  • the radio frame allocation period is 8 and the radio frame allocation offset is 2.
  • FDD Frequency Division Duplexing
  • each bit of subframe allocation indicates subframes # 1, # 2, # 3, # 6, # 7, and # 8, so # 2 of the above radio frames,
  • the # 3 and # 7 subframes are MBSFN subframes.
  • the subframe in which system information and paging information are transmitted is not used as an MBSFN subframe. Therefore, when FDD is adopted, the subframes # 0, # 4, # 5, and # 9 are not used as MBSFN subframes. When TDD (Time Division Duplexing) is adopted, the subframes # 0, # 1, # 2, # 5, and # 6 are not used as MBSFN subframes.
  • the MBSFN subframe is notified to the terminal device in, for example, an SIB (System Information Block) 2. Thereby, the terminal device can know the MBSFN area. Also, the MBSFN subframe for each MBSFN area is notified to the terminal device even in control information (MBSFN area configuration message) mapped to the MCCH, as will be described later.
  • SIB System Information Block
  • MBSFN subframe resources and signals -Number of OFDM symbols
  • 16.S. An extended CP of 7 us or 33.3 us is used.
  • 6 OFDM symbols are included in one slot. That is, 12 OFDM symbols are included in one subframe.
  • 3 OFDM symbols are included in one slot. That is, 6 OFDM symbols are included in one subframe.
  • RS -Reference signal
  • the base stations of the cells belonging to the MBSFN area transmit the same signal, particularly in the MBSFN area of the MBSFN subframe. For this reason, these base stations do not transmit a cell-specific reference signal (CRS) in the MBSFN region. Instead, these base stations transmit an MBSFN reference signal (MBSFN-RS) which is a reference signal for MBSFN.
  • MBSFN-RS MBSFN reference signal
  • the MBSFN-RS is transmitted with the same radio resource (that is, the same resource element) in all cells belonging to the MBSFN area.
  • FIG. 4 is an explanatory diagram for describing a first example of resources and signals of an MBSFN subframe.
  • two resource blocks (RBs) arranged in the time direction in the MBSFN subframe are shown.
  • an extended CP of 16.7 us is used, and the MBSFN subframe includes 12 OFDM symbols in the time direction.
  • the MBSFN subframe includes a non-MBSFN region that extends over the first two OFDM symbols of the 12 OFDM symbols, and an MBSFN region that follows the non-MBSFN region.
  • CRS may be transmitted.
  • a common MBSFN-RS is transmitted between cells belonging to the MBSFN area.
  • control information mapped to MCCH and / or data mapped to MTCH are transmitted.
  • FIG. 5 is an explanatory diagram for explaining a second example of resources and signals of the MBSFN subframe.
  • two resource blocks (RB) arranged in the time direction in the MBSFN subframe are shown.
  • the MBSFN subframe includes 6 OFDM symbols in the time direction.
  • the MBSFN subframe includes a non-MBSFN region that covers the first OFDM symbol among the six OFDM symbols, and a subsequent MBSFN region.
  • CRS may be transmitted (not shown).
  • a common MBSFN-RS is transmitted between cells belonging to the MBSFN area.
  • control information mapped to MCCH and / or data mapped to MTCH are transmitted.
  • a normal CP Normal CP
  • an extended CP of 16.7 us is used.
  • the normal CP length is 5.1 us for the first OFDM symbol in the slot and 4.7 us for the other OFDM symbols.
  • normal CP 7 OFDM symbols are included in one slot. That is, 14 OFDM symbols are included in one subframe.
  • an extended CP of 16.7 us 6 OFDM symbols are included in one slot. That is, 12 OFDM symbols are included in one subframe.
  • the base station transmits a CRS in a normal subframe.
  • CRS is used for cell selection, channel estimation, synchronous detection of downlink data, and the like.
  • FIG. 6 is an explanatory diagram for describing a first example of normal subframe resources and signals.
  • two resource blocks (RBs) arranged in the time direction in a normal subframe are shown.
  • normal CP is used, and the subframe includes 14 OFDM symbols in the time direction.
  • the CRS is transmitted by a predetermined resource element (RE) in each RB.
  • the predetermined RE is set for each cell.
  • FIG. 7 is an explanatory diagram for explaining a second example of normal subframe resources and signals.
  • two resource blocks (RB) arranged in the time direction in a normal subframe are shown.
  • an extended CP of 16.7 us is used, and the subframe includes 12 OFDM symbols in the time direction.
  • the CRS is transmitted by a predetermined resource element (RE) in each RB.
  • the predetermined RE is set for each cell.
  • the OFDM symbol includes a cyclic prefix (CP) and a main body.
  • CP is generated by copying a part of the waveform of the main body.
  • FIG. 8 is an explanatory diagram for explaining an example of a cyclic prefix (CP).
  • CP cyclic prefix
  • the delay spread due to multipath is within the CP length, the signal is completely expressed in the FFT (Fast Fourier Transform) processing window and is correctly synthesized by the FFT processing.
  • the delay spread due to multipath does not fall within the CP length, the signal is not completely expressed within the FFT processing window, and intersymbol interference may occur. As a result, reception performance can be degraded.
  • FFT Fast Fourier Transform
  • FIG. 9 is an explanatory diagram for explaining an example of a cyclic prefix (CP) and an FFT processing window.
  • CP cyclic prefix
  • FIG. 9 a first delay spread component and a second delay spread component are shown.
  • the second delay spread component is received by the receiver later than the first delay spread component, and the difference in reception timing between the first delay spread component and the second delay spread component is the delay spread. . If this delay spread is shorter than the CP length, the signal is fully represented within the FFT processing window and synthesized correctly.
  • the terminal device can also determine the CP length being used.
  • the terminal apparatus may determine a CP length that enables optimal demodulation of a synchronization signal, a reference signal, master broadcast information, or the like among a plurality of CP lengths as a used CP length.
  • the terminal device may determine the CP length being used by analyzing the waveform of the synchronization signal or the reference signal.
  • the terminal apparatus can determine the number of symbols in the subframe and determine the CP length from the number of symbols.
  • the terminal apparatus can determine the CP length from the arrangement of the reference signals in the subframe.
  • MCCH (MCCH, MTCH and PMCH) -Relationship between MBSFN area and MCCH
  • One MCCH corresponds to one MBSFN area. That is, the MCCH exists for each MBSFN area to which the cell belongs.
  • the SIB 13 indicates a subframe in which the MCCH is arranged and is notified to the terminal device. More specifically, the SIB 13 includes an MCCH repetition period, an MCCH offset, and subframe allocation information.
  • the SIB 13 includes an MCCH repetition period, an MCCH offset, and subframe allocation information.
  • FIG. 10 is an explanatory diagram for explaining an example of a subframe in which MCCH is arranged.
  • SFN System Frame Number
  • the MBSFN subframe in this example is the same as the MBSFN subframe shown in FIG.
  • the subframe allocation information is “010000”.
  • each bit of subframe allocation indicates subframes # 1, # 2, # 3, # 6, # 7, and # 8.
  • a subframe is a subframe in which MCCH is arranged.
  • the MCCH is periodically arranged in the MBSFN subframe.
  • the terminal device can demodulate MCCH and MTCH by multiplexing information in the MAC header.
  • MAC Media Access Control
  • An MBSFN area configuration message is mapped to the MCCH.
  • the MBSFN area configuration message includes a common subframe allocation (CSA) pattern list and a CSA period, and these pieces of information indicate MBSFN subframes in the MBSFN area.
  • the CSA pattern list includes a radio frame allocation period, a radio frame allocation offset, and a subframe allocation.
  • FIG. 11 is an explanatory diagram for explaining an example of the MBSFN subframe.
  • a radio frame over a CSA period is shown.
  • the CSA period is 32 radio frames.
  • the CSA pattern list includes entry 1 and entry 2.
  • the radio frame allocation period is 16
  • the radio frame allocation offset is 0,
  • the subframe allocation is “100100” of 1 frame pattern (6 bits). Therefore, the MBSFN subframe of entry 1 is the subframes # 1 and # 6 of the two radio frames having SFNs 0 and 16.
  • the radio frame allocation period is 4, the radio frame allocation offset is 3, and the subframe allocation is “001001” of 1 frame pattern (6 bits).
  • the MBSFN subframe of entry 2 is the # 3 and # 8 subframes among the eight radio frames having SFNs of 3, 7, 11, 15, 19, 23, 27, and 31. Therefore, in this example, a total of 20 subframes in the CSA period are shown as MBSFN subframes.
  • the MBSFN area configuration message includes a PMCH information list, and the PMCH information list indicates an MBSFN subframe in which each PMCH is arranged, and one or more MTCHs mapped to each PMCH. Also, in the first subframe in the PMCH, MSI (MCH Scheduling Information) that is scheduling information of the MTCH mapped to the PMCH is transmitted, and the PMCH information list also indicates a transmission period of the MSI. This period is called an MCH Scheduling Period (MSP).
  • MSP MCH Scheduling Period
  • FIG. 12 is an explanatory diagram for explaining an example of MTCH mapped to PMCH and PMCH.
  • four sets of 20 MBSFN subframes described with reference to FIG. 11 are shown. That is, 80 MBSFN subframes over four CSA periods (ie, CSA periods 1 to 4) are shown.
  • the first to seventh subframes are allocated to PMCH1.
  • PMCH2 from the 8th subframe to the 11th subframe, PMCH2, from the 12th subframe to the 15th subframe, to PMCH3, from the 16th subframe to the 20th subframe, Assigned to PMCH4.
  • logical channels 1 and 2 are mapped to PMCH1. Further, logical channel 3 (that is, MTCH3) is mapped to PMCH2, logical channel 4 (that is, MTCH4) is mapped to PMCH3, and logical channel 5 (that is, MTCH5) is mapped to PMCH4. Paying attention to PMCH1, the MSP of PMCH1 is 64 radio frames, and MSI is transmitted every two CSA periods in PMCH1. In CSA periods 1 and 2, logical channel 1 (that is, MTCH1) is arranged in the first through ninth subframes of the MBSFN subframes allocated to PMCH1. Further, logical channel 2 (that is, MTCH2) is arranged in the 10th to 13th subframes.
  • No logical channel (MTCH) is arranged in the 14th subframe. Further, in the CSA periods 3 and 4, the logical channel 1 is arranged in the first to eighth subframes of the MBSFN subframes allocated to PMCH1. In addition, the logical channel 2 is arranged in the ninth to twelfth subframes. Note that no logical channel (MTCH) is arranged in the 13th subframe and the 14th subframe. As shown in FIG. 12, MCCH is also arranged in the MBSFN subframe.
  • the change in the MCCH information is all the DCI (Downlink Control Information) transmitted in the PDCCH (Physical Downlink Control Channel) in the non-MBSFN area of the MBSFN subframe. It is notified to the terminal device.
  • the DCI includes an MCCH change notification indicator.
  • the MCCH change notification indicator is an 8-bit bitmap corresponding to each MBSFN area. For this notification, MBMS RNTI (Radio Network Temporary Identity), that is, M-RNTI is used.
  • FIG. 13 is an explanatory diagram for explaining an example of a notification timing related to a change in MCCH information.
  • a first MCCH change period (n) followed by a second MCCH change period (n + 1) is shown.
  • the MCCH information change notification is performed in the first MCCH change period (n), and then the changed information is notified in the first MCCH change period (n + 1).
  • the changed information is transmitted not only in the first MCCH but also in the subsequent MCCH.
  • MCCH information is changed over a relatively long time.
  • FIG. 14 is an explanatory diagram for explaining an example of a configuration of an LTE network that supports MBSFN.
  • the LTE network includes MCE (Multi-cell / Multicast Coordination Entity), BM-SC (Broadcast / Multicast Service Center), MBMS GW (gateway), MME (Mobility Management Entity), and the like. These nodes are logical nodes.
  • the MCE causes the eNB (evolved Node B) of the cell belonging to the MBSNF area to transmit the same data using the same radio resource.
  • the MCE performs scheduling related to the MBSNF in the MBSNF area.
  • the BM-SC performs content provider authentication, billing, data flow control in the core network, and the like.
  • the MBMS-GW performs multicast IP packet transfer from the BM-SC to the eNB, processing of session control signals via the MME, and the like.
  • the MME processes a NAS (Non-Access Stratum) signal.
  • NAS Non-Access Stratum
  • each eNB may include an MCE.
  • FIG. 15 is an explanatory diagram for explaining an example of the MBMS counting procedure.
  • the terminal apparatus receives an MBMS counting request message together with the MBSFN area configuration message.
  • the terminal device is in the RRC connection mode, if the MBMS service that the terminal device is interested in is included in the list of MBMS counting requests, the terminal device sends an MBMS counting response message including the identifier of the MBMS service. (MBMS Counting Response message) is sent to the network.
  • MBMS Counting Response message is sent to the network.
  • the terminal device receives the SIB 13 and specifies a subframe in which the MCCH is arranged. Then, the terminal apparatus receives the MBSFN area configuration message as MCCH information in the subframe, and specifies the PMCH to which the MTCH of the desired MBMS session is mapped. Thereafter, the terminal apparatus receives the MSI of the PMCH to which the MTCH is mapped, and specifies a subframe in which the MTCH is arranged. Then, the terminal apparatus receives the MTCH data (that is, the desired MBMS session data) in the subframe. According to such an operation, the terminal apparatus can perform reception using only the minimum necessary subframe and can sleep in other subframes. Therefore, power consumption of the terminal device can be suppressed.
  • FIG. 16 is an explanatory diagram illustrating an example of a schematic configuration of the communication system 1 according to the embodiment of the present disclosure.
  • the communication system 1 includes a macro base station 11, a control device 100, a small base station 200, and a terminal device 400.
  • the communication system 1 is, for example, a system that conforms to LTE, LTE-Advanced, or a communication standard based on these.
  • the macro base station 11 performs wireless communication with a terminal device located in the macro cell 10.
  • the macro base station 11 is connected to the core network 40.
  • the small base station 200 performs wireless communication with a terminal device located in the small cell 20.
  • the small cell 20 partially or entirely overlaps with the macro cell 10.
  • a plurality of small cells 20 belong to the same MBSNF area 30, and in the MBSNF area 30, a plurality of small base stations 200 transmit the same signal with the same radio resource in the MBSNF subframe.
  • the small cell 20 is a femto cell, and the small base station 200 is connected to the Internet 50.
  • the control device 100 operates as an MCE for the small base station 200.
  • the control device 100 also operates as an MBMS-GW.
  • the control device 100 is connected to the Internet 50 and communicates with the small base station 200 via the Internet 50.
  • the control device 100 can communicate with a core network node (for example, an MME) located in the core network 40 and / or the macro base station 11 via the Internet 50.
  • a core network node for example, an MME
  • the terminal device 400 performs wireless communication with the base station. For example, the terminal device 400 performs wireless communication with the macro base station 11 when located in the macro cell 10. Further, the terminal device 400 performs wireless communication with the small base station 200 when located in the small cell 20.
  • the control device 100 acquires a measurement result of a delay between the same signals transmitted in the MBSFN area 30. And the control apparatus 100 determines CP length for the MBSFN sub-frame of the MBSFN area 30 based on the said measurement result. Thereby, for example, a CP having a more appropriate length can be used in the MBSFN subframe.
  • the control device 100-1 acquires a measurement result of a delay between the same signals transmitted in the MBSFN area 30. Then, control device 100-1 determines the CP length for the MBSFN subframe of MBSFN area 30 based on the measurement result. In particular, according to the first embodiment, the delay is measured by the terminal device 400-1.
  • FIG. 17 is a block diagram illustrating an example of the configuration of the control device 100-1 according to the first embodiment.
  • the control device 100-1 includes a communication unit 110, a storage unit 120, and a processing unit 150.
  • the communication unit 110 communicates with other devices.
  • the communication unit 110 communicates with the small base station 200-1. More specifically, for example, the communication unit 110 communicates with the small base station 200-1 via the Internet 50.
  • the communication unit 110 can communicate with a core network node (for example, MME or the like) located in the core network 40 and / or the macro base station 11 via the Internet 50.
  • a core network node for example, MME or the like
  • Storage unit 120 The storage unit 120 temporarily or permanently stores a program and data for the operation of the control device 100-1.
  • the processing unit 150 provides various functions of the control device 100-1.
  • the processing unit 150 includes a request unit 151, an information acquisition unit 153, a determination unit 155, and a control unit 157.
  • the request unit 151 provides a small base station of the small cell 20 belonging to the MBSFN area 30 so as to provide a measurement result of delay between the same signals transmitted in the MBSFN area 30 (hereinafter referred to as “delay measurement result”). Request to 200-1.
  • the request unit 151 requests the small base station 200-1 of one small cell 20 belonging to the MBSFN area 30 to provide the delay measurement result.
  • the requesting unit 151 may request the small base stations 200-1 of two or more small cells 20 belonging to the MBSFN area 30 to provide the delay measurement result.
  • the information acquisition unit 153 acquires a measurement result of a delay between the same signals transmitted in the MBSFN area 30 (that is, a delay measurement result).
  • the same signal is transmitted by the base stations 200-1 of a plurality of small cells 20 belonging to the MBSFN area 30.
  • the request unit 151 requests the small base station 200-1 to provide the delay measurement result. Then, the small base station 200-1 provides the delay measurement result to the control device 100-1. Then, the delay measurement result is stored in the storage unit 120. The information acquisition unit 153 acquires the delay measurement result from the storage unit 120.
  • the delay measurement result is a result of measurement by the terminal device 400-1. That is, the terminal apparatus 400-1 performs the delay measurement and provides the delay measurement result (that is, the delay measurement result) to the small base station 200-1. Then, the small base station 200-1 provides the delay measurement result to the control device 100-1, for example. Thereby, for example, even when the small base station 200-1 does not have a delay measurement function, the delay measurement result can be obtained.
  • the delay measurement result is a delay spread between identical signals transmitted in the MBSFN area 30.
  • the delay measurement result is a delay spread between one signal (for example, a signal received first) of the same signals transmitted in the MBSFN area 30 and another signal.
  • one signal for example, a signal received first
  • another signal for example, a signal received first
  • FIG. 18 is an explanatory diagram for explaining an example of a delay measurement result.
  • four identical signals received at different timings are shown.
  • received first to fourth signals are shown.
  • the first signal is received first, and then the second signal, the third signal, and the fourth signal are sequentially received.
  • the delay spread between the first signal and the second signal is D 2
  • the delay spread is D 3 between the first signal and the third signal
  • the first signal and the second delay spread between the fourth signal is D 4.
  • the delay measurement result is, for example, a set of delay spreads D 2 , D 3 , and D 4 .
  • Such a delay measurement result can be said to be information indicating a delay distribution.
  • the delay measurement result is a delay spread between the first received signal and the last received signal among the same signals transmitted in the MBSFN area 30. That is, the delay measurement result is the maximum delay spread.
  • the delay measurement is a delay spread D 4.
  • the delay measurement result may be another delay spread.
  • the delay spread may not be the measurement value itself but may be information corresponding to the measurement value (for example, an index corresponding to the measurement value among a plurality of indexes indicating the delay spread).
  • delay spread makes it possible to determine an appropriate CP length that allows the delay spread, for example.
  • the delay measurement result is not limited to the delay spread, and may be other information.
  • the delay measurement result may be other information indicating a delay between the same signals.
  • the delay measurement result may be information indicating a CP length that allows the measured delay.
  • the determining unit 155 determines the CP length for the MBSFN subframe of the MBSFN area 30 based on the delay measurement result.
  • the determination unit 155 determines one CP length candidate among the plurality of CP length candidates as the CP length for the MBSFN subframe of the MBSFN area 30.
  • the plurality of CP length candidates include the length of a normal CP (Normal CP) and the length of each of an extended CP (Extended CP).
  • the plurality of CP length candidates are the length of a normal CP (for example, 5.1 us for the first symbol in the slot and 4.7 us for the other symbols) and the length of the extended CP. 3 CP lengths including 7 us and 33.3 us. Therefore, for example, the determination unit 155 can determine the normal CP length and the CP length for the MBSFN subframe of the MBSFN area 30. Thereby, for example, when the delay spread in the MBSFN area 30 is small, the overhead can be reduced.
  • the determination unit 155 determines the CP length that allows the maximum delay in the MBSFN area 30 and the CP length for the MBSFN subframe of the MBSFN area 30 based on the delay measurement result. To do.
  • the delay measurement result is, for example, a delay spread between the same signals transmitted in the MBSFN area 30.
  • the determination unit 155 identifies the maximum delay spread from the delay measurement result, and selects a CP length candidate longer than the maximum delay spread among the plurality of CP length candidates as the MBSFN area 30. As the CP length for the MBSFN subframe. For example, when the maximum delay spread is shorter than the normal CP length, the determination unit 155 determines the normal CP length as the CP length for the MBSFN subframe of the MBSFN area 30.
  • the determination unit 155 determines the number of symbols included in the MBSFN subframe.
  • the normal CP length is determined as the CP length for the MBSFN subframe of the MBSFN area 30.
  • the number of symbols included in the MBSFN subframe is 14. That is, the MBSFN subframe includes 14 OFDM symbols when the CP length for the MBSFN subframe is a normal CP length.
  • FIG. 19 is an explanatory diagram for explaining an example of an MBMS subframe.
  • two resource blocks (RBs) arranged in the time direction in the MBSFN subframe are shown.
  • the CP length is the normal CP length
  • the MBSFN subframe includes 14 OFDM symbols in the time direction.
  • the MBSFN subframe includes a non-MBSFN region that extends over the first three OFDM symbols of the 14 OFDM symbols, and a subsequent MBSFN region.
  • CRS may be transmitted.
  • MBSFN-RS is transmitted.
  • 16.7 us which is the length of the extended CP is determined as the CP length for the MBSFN subframe of the MBSFN area 30.
  • the number of symbols included in the MBSFN subframe is 12, and the non-MBSFN region length is 2.
  • 33.3 us which is the length of the extended CP is determined as the CP length for the MBSFN subframe of the MBSFN area 30. In this case, as shown in FIG. 5, the number of symbols included in the MBSFN subframe is 6, and the non-MBSFN region length is 1.
  • the determination unit 155 determines the non-MBSFN region length of the MBSFN subframe.
  • Control unit 157 The control unit 157 causes the small base station 200-1 to perform MBSFN operation.
  • control unit 157 requests the small base station 200-1 to start an MBMS session. More specifically, for example, the control unit 157 transmits an MBMS session start request message to the small base station 200-1.
  • control unit 157 performs MBMS scheduling and provides MBMS scheduling information to the small base station 200-1. More specifically, for example, the control unit 157 transmits an MBMS scheduling information message to the small base station 200-1.
  • the control unit 137 transmits the MBMS session start request message or the MBMS scheduling information message including the specific information (for example, the CP length, the number of symbols, or the non-MBSFN region length) for specifying the CP length to the MBSFN area. 30 to the small base station 200-1 of the small cell 20 belonging to 30. As a result, the small base station 200-1 uses the determined CP length.
  • FIG. 20 is a block diagram showing an example of the configuration of the small base station 200-1 according to the first embodiment.
  • the small base station 200-1 includes an antenna unit 210, a wireless communication unit 220, a network communication unit 230, a storage unit 240, and a processing unit 270.
  • the antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 performs wireless communication. For example, the radio communication unit 220 transmits a downlink signal to the terminal device 400-1. Further, the radio communication unit 220 receives an uplink signal from the terminal device 400-1.
  • the network communication unit 230 communicates with other nodes.
  • the network communication unit 230 communicates with the control device 100-1.
  • the network communication unit 230 communicates with the core network node and / or the macro base station 11 located in the core network 40.
  • the network communication unit 230 communicates with other nodes via the Internet 50.
  • the storage unit 240 temporarily or permanently stores a program and data for the operation of the small base station 200-1.
  • the processing unit 270 provides various functions of the small base station 200-1.
  • the processing unit 270 includes a request unit 271, a first information acquisition unit 273, an information provision unit 275, a second information acquisition unit 277, and a transmission control unit 279.
  • the request unit 271 provides the terminal device 400-1 connected to the small base station 200-1 to provide a measurement result of delay between the same signals transmitted in the MBSFN area 30 (that is, a delay measurement result). Request.
  • the control device 100-1 requests the small base station 200-1 to provide the delay measurement result. Then, the request unit 271 requests the terminal device 400-1 connected to the small base station 200-1 to provide the delay measurement result.
  • the request unit 271 requests one terminal apparatus 400-1 connected to the small base station 200-1 to provide the delay measurement result.
  • the request unit 271 may request two or more terminal devices 400-1 connected to the small base station 200-1 to provide the delay measurement result.
  • the request unit 271 notifies the terminal device 400-1 of the specific MBSFN subframe.
  • the first information acquisition unit 273 acquires a measurement result of delay between the same signals transmitted in the MBSFN area 30 (that is, a delay measurement result).
  • the same signal is transmitted by the base stations 200-1 of a plurality of small cells 20 belonging to the MBSFN area 30.
  • the request unit 271 requests the terminal device 400-1 connected to the small base station 200-1 to provide the delay measurement result. Then, the terminal device 400-1 provides the delay measurement result to the small base station 200-1.
  • the delay measurement result is stored in the storage unit 240.
  • the first information acquisition unit 273 acquires the delay measurement result from the storage unit 240.
  • the delay measurement result is, for example, a delay spread between the same signals transmitted in the MBSFN area 30.
  • a specific example of the delay spread is as described above.
  • the delay measurement result is not limited to the delay spread, and may be other information.
  • the delay measurement result may be other information indicating the delay between the same signals.
  • the delay measurement result may be information indicating a CP length that allows the measured delay.
  • the request unit 271 requests the two or more terminal devices 400-1 connected to the small base station 200-1 to provide the delay measurement result
  • the first information acquisition unit 273 may acquire the delay measurement result by two or more terminal devices 400-1.
  • the first information acquisition unit 273 may acquire a delay measurement result by each of the two or more terminal devices 400-1.
  • the processing unit 270 generates an overall delay measurement result (for example, the maximum delay spread) from the individual delay measurement results by each of the two or more terminal devices 400-1, and the first information The acquisition unit 273 may acquire the entire delay measurement result.
  • the information providing unit 275 provides the delay measurement result to the control device 100-1.
  • the information providing unit 275 provides the result of the measurement to the control device 100-1 via the network communication unit 230.
  • the second information acquisition unit 277 acquires specific information for specifying the CP length for the MBSFN subframe of the MBSFN area 30.
  • the control device 100-1 provides the specific information to the small base station 200-1.
  • the control device 100-1 provides the specific information to the small base station 200-1 in the MBMS session start request message or the MBMS scheduling information message.
  • the specific information is stored in the storage unit 240.
  • the second information acquisition unit 277 acquires the specific information from the storage unit 240.
  • the second information acquisition unit 277 acquires a system information block including the specific information.
  • the system information block is, for example, SIB13.
  • the specific information is, for example, the CP length for the MBSFN subframe of the MBSFN area 30, the number of symbols of the MBSFN subframe, or the non-MBSFN region length of the MBSFN subframe.
  • the said specific information may be contained in SIB13 as non-MBSFN area
  • Transmission control unit 279 Transmission of specific information
  • the transmission control unit 279 controls transmission of the specific information (that is, information for specifying the CP length for the MBSFN subframe of the MBSFN area 30) in the small cell 20.
  • the transmission control unit 279 controls transmission of the system information block (for example, SIB13) including the specific information.
  • the transmission control unit 279 maps the signal of the system information block to a radio resource (for example, a resource block) for the system information block.
  • the system information block is transmitted within the small cell 20.
  • the determined CP length can be actually used by the terminal device 400-1. Further, the burden of determining the CP length by the terminal device 400-1 may be eliminated.
  • the transmission control section 279 controls transmission so that only the MBSFN-RS is transmitted in at least one symbol of the MBSFN region of a specific MBSFN subframe.
  • the transmission control unit 279 inserts an MBSFN-RS in at least one symbol in the MBSFN area of the MBSFN subframe and does not map other signals. As a result, only the MBSFN-RS is transmitted in the at least one symbol.
  • the time signal waveform in at least one symbol in the MBSFN region becomes a waveform known to the terminal device 400-1. Therefore, the terminal device 400-1 can know the reception timing of each MBSFN-RS transmitted by the small base stations 200-1 of the plurality of small cells 20 belonging to the MBSFN area 30. Therefore, the terminal device 400-1 can measure the delay between MBSFN-RSs (that is, the same signal) transmitted in the MBSFN area 30.
  • FIG. 21 is a block diagram showing an example of the configuration of the terminal device 400-1 according to the first embodiment.
  • the terminal device 400-1 includes an antenna unit 410, a wireless communication unit 420, a storage unit 430, and a processing unit 460.
  • the antenna unit 410 radiates a signal output from the wireless communication unit 420 to the space as a radio wave.
  • the antenna unit 410 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 420.
  • the wireless communication unit 420 performs wireless communication. For example, the wireless communication unit 420 receives a downlink signal from a base station. In addition, the radio communication unit 420 transmits an uplink signal to the base station.
  • the base station includes a small base station 200-1 and a macro base station 11.
  • the storage unit 430 temporarily or permanently stores a program and data for the operation of the terminal device 400-1.
  • the processing unit 460 provides various functions of the terminal device 400-1.
  • the processing unit 460 includes a measuring unit 461 and an information providing unit 463.
  • the measurement unit 461 measures a delay between the same signals transmitted in the MBSFN area 30.
  • the same signal is MBSFN-RS.
  • MBSFN-RS is transmitted in at least one symbol in the MBSFN area of a specific MBSFN subframe. Therefore, measurement section 461 measures the delay between MBSFN-RS transmitted in the at least one symbol.
  • the measurement result (that is, the delay measurement result) is a delay spread between the same signals transmitted in the MBSFN area 30. That is, the delay measurement result is, for example, a delay spread between MBSFN and RS.
  • the delay measurement result is, for example, a delay spread between MBSFN and RS.
  • a specific example of the delay spread is as described above.
  • an example of a specific technique for measuring the delay spread will be described with reference to FIG.
  • FIG. 22 is an explanatory diagram for explaining an example of a specific technique for measuring the delay spread.
  • an example configuration for measuring delay spread is shown.
  • MBSFN-RS a predetermined signal corresponding to the MBSFN area 30
  • IFFT Fast Fourier Transform
  • CP insertion a time signal waveform transmitted in the at least one symbol.
  • the reproduced time signal waveform is input to the correlator as a pilot signal through delay adjustment.
  • the received time signal waveform is also input to the correlator through an RF (Radio Frequency) unit and an A / D converter. Then, a delay spread between MBSFN-RSs (that is, the same signal) transmitted in the MBSFN area 30 is measured through a correlator and an integrator.
  • RF Radio Frequency
  • the delay measurement result is not limited to the delay spread, and may be other information.
  • the delay measurement result may be other information indicating a delay between the same signals.
  • the delay measurement result may be information indicating a CP length that allows the measured delay.
  • the information providing unit 463 provides the measurement result (that is, the delay measurement result) to the small base station 200-1.
  • the information providing unit 463 provides the delay measurement result to the small base station 200-1 via the wireless communication unit 420.
  • FIG. 23 is a sequence diagram illustrating an example of a schematic flow of a process according to the first embodiment.
  • the control apparatus 100-1 provides a small cell belonging to the MBSFN area 30 so as to provide a measurement result (that is, a delay measurement result) of a delay between the same signals (for example, MBSFN-RS) transmitted in the MBSFN area 30.
  • a measurement result that is, a delay measurement result
  • a request is made to 20 small base stations 200-1 (S601).
  • the small base station 200-1 requests the terminal device 400-1 connected to the small base station 200-1 to provide the delay measurement result (S603).
  • the terminal device 400-1 measures a delay between the same signals (for example, MBSFN-RS) transmitted in the MBSFN area 30 (S605).
  • the terminal apparatus 400-1 provides the measurement result (that is, the delay measurement result) to the small base station 200-1 (S607).
  • the small base station 200-1 provides the delay measurement result to the control device 100-1 (S609). Then, the control device 100-1 determines the CP length for the MBSFN subframe in the MBSFN area 30 based on the delay measurement result (S611).
  • the control device 100-1 transmits an MBMS session start request message and an MBMS scheduling information message to the small base station 200-1 (S613, S615).
  • the MBMS session start request message or the MBMS scheduling information message includes specific information for specifying the determined CP length.
  • the small base station 200-1 broadcasts a system information block (for example, SIB13) including the specific information (S617).
  • control device 100-1 acquires a measurement result of a delay between the same signals transmitted in the MBSFN area 30. Then, control device 100-1 determines the CP length for the MBSFN subframe of MBSFN area 30 based on the measurement result. Thereby, for example, a CP having a more appropriate length can be used in the MBSFN subframe.
  • the delay is measured by the terminal device 400-1.
  • the delay is measured by the terminal device 400-1.
  • the control device 100-2 acquires the measurement result of the delay between the same signals transmitted in the MBSFN area 30. Then, control device 100-2 determines the CP length for the MBSFN subframe of MBSFN area 30 based on the measurement result.
  • the second embodiment is the same as the first embodiment.
  • the delay measurement is performed by the small base station 200-2.
  • control device 100-2 The description of the control device 100-2 according to the second embodiment is the same as the description of the control device 100-1 according to the first embodiment, except for the following points (measurement subject), for example. Excluding differences). Therefore, the other description which overlaps here is abbreviate
  • the control device 100-1 acquires a measurement result (delay measurement result) by the terminal device 400-1.
  • the control device 100-2 acquires a measurement result (delay measurement result) by the small base station 200-2. That is, the small base station 200-2 measures a delay between the same signals in the MBSFN area 30, and provides a measurement result (that is, a delay measurement result) of the delay to the control device 100-1. Thereby, for example, it becomes possible to obtain a delay measurement result without imposing a burden on the terminal device 400-2.
  • FIG. 24 is a block diagram illustrating an example of a configuration of the small base station 200-2 according to the second embodiment.
  • the small base station 200-2 includes an antenna unit 210, a wireless communication unit 225, a network communication unit 230, a storage unit 240, and a processing unit 280.
  • storage part 240 does not differ between 1st Embodiment and 2nd Embodiment (except for the difference of a code
  • the wireless communication unit 225 performs wireless communication. For example, the radio communication unit 225 transmits a downlink signal to the terminal device 400-2. Further, the radio communication unit 225 receives an uplink signal from the terminal device 400-2.
  • the radio communication unit 225 receives a downlink signal from another small base station 200-2.
  • the downlink signal includes a reference signal.
  • the processing unit 280 provides various functions of the small base station 200-2.
  • the processing unit 280 includes a measurement unit 281, a first information acquisition unit 283, an information provision unit 285, a second information acquisition unit 287, and a transmission control unit 289.
  • the description of the information providing unit 285 and the second information acquiring unit 287 according to the second embodiment is the same as the description of the information providing unit 275 and the second information acquiring unit 277 according to the first embodiment. . Therefore, here, only the measurement unit 281, the first information acquisition unit 283, and the transmission control unit 289 will be described, and redundant description will be omitted.
  • the measuring unit 281 measures a delay between the same signals transmitted in the MBSFN area 30.
  • the same signal is transmitted by the base stations 200-1 of a plurality of small cells 20 belonging to the MBSFN area 30.
  • the same signal is a signal transmitted in the MBSFN area of the MBSFN subframe (that is, PMCH signal and MBSFN-RS).
  • the measurement unit 281 measures a delay between the signals transmitted in the MBSFN region. Since the small cell 20 of the small base station 200-2 belongs to the MBSFN area 30, the signal transmitted in the MBSFN area of the MBSFN subframe is provided in advance to the small base station 200-2. Therefore, it can be said that the signal transmitted in the MBSFN region is known to the small base station 200-2.
  • the measurement result (that is, the delay measurement result) is a delay spread between the same signals transmitted in the MBSFN area 30. That is, the delay measurement result is, for example, a delay spread between the signals transmitted in the MBSFN region.
  • the delay spread is as described in the first embodiment.
  • a time signal waveform transmitted in the MBSFN region can be reproduced by symbol mapping, IFFT and CP insertion of signals transmitted in the MBSFN region (ie, PMCH signal and MBSFN-RS). .
  • the reproduced time signal waveform is input to the correlator as a pilot signal through delay adjustment.
  • the received time signal waveform is also input to the correlator through the RF unit and the A / D converter. Then, a delay spread between signals in the MBSFN area (that is, the same signal) transmitted in the MBSFN area 30 is measured through a correlator and an integrator.
  • the delay between signals may be measured in each symbol included in the MBSFN area, or the delay between signals may be measured in some symbols included in the MBSFN area.
  • only the MBSFN-RS may be transmitted in at least one symbol in the MBSFN area of a specific MBSFN subframe. Then, the delay between MBSFN-RS transmitted in the at least one symbol may be measured.
  • the delay measurement result is not limited to the delay spread, and may be other information.
  • the delay measurement result may be other information indicating a delay between the same signals.
  • the delay measurement result may be information indicating a CP length that allows the measured delay.
  • the first information acquisition unit 283 acquires a measurement result of delay between the same signals transmitted in the MBSFN area 30 (that is, a delay measurement result). In the second embodiment, the first information acquisition unit 283 acquires a measurement result (that is, a delay measurement result) by the small base station 200-2 (measurement unit 281).
  • Transmission control unit 289) Transmission of specific information
  • the transmission control unit 289 controls transmission of the specific information (that is, information for specifying the CP length for the MBSFN subframe of the MBSFN area 30) in the small cell 20.
  • the specific information that is, information for specifying the CP length for the MBSFN subframe of the MBSFN area 30.
  • only the MBSFN-RS may not be transmitted in at least one symbol of the MBSFN region of a specific MBSFN subframe.
  • the transmission control unit 289 may control the transmission so that only the MBSFN-RS is transmitted in the at least one symbol.
  • the small base station 200-2 (measurement unit 281) measures the delay between the same signals transmitted in the MBSFN area 30.
  • the transmission control unit 289 may stop signal transmission while the same signal as the measurement target is being transmitted.
  • the transmission control unit 289 may stop the transmission of the same signal by the small base station 200-2.
  • FIG. 25 is a sequence diagram illustrating an example of a schematic flow of a process according to the second embodiment.
  • the control device 100-2 provides a small cell belonging to the MBSFN area 30 so as to provide a measurement result (that is, a delay measurement result) of a delay between the same signals (for example, MBSFN-RS) transmitted in the MBSFN area 30.
  • a measurement result that is, a delay measurement result
  • a request is made to 20 small base stations 200-2 (S621).
  • the small base station 200-2 measures a delay between the same signals transmitted in the MBSFN area 30 (for example, signals transmitted in the MBSFN area) (S623).
  • the small base station 200-2 provides the measurement result (that is, the delay measurement result) to the control device 100-2 (S625).
  • the control device 100-2 determines the CP length for the MBSFN subframe of the MBSFN area 30 based on the delay measurement result (S627).
  • the control device 100-2 transmits an MBMS session start request message and an MBMS scheduling information message to the small base station 200-2 (S629, S631).
  • the MBMS session start request message or the MBMS scheduling information message includes specific information for specifying the determined CP length.
  • the small base station 200-2 broadcasts a system information block (for example, SIB13) including the specific information (S633).
  • control device 100-2 acquires the measurement result of the delay between the same signals transmitted in the MBSFN area 30. Then, control device 100-2 determines the CP length for the MBSFN subframe of MBSFN area 30 based on the measurement result. Thereby, for example, a CP having a more appropriate length can be used in the MBSFN subframe.
  • the delay measurement is performed by the small base station 200-2. Therefore, for example, it becomes possible to obtain a delay measurement result without imposing a burden on the terminal device 400-2.
  • control device 100 may be realized as any type of server such as a tower server, a rack server, or a blade server. Further, at least a part of the components of the control device 100 is realized as a module mounted on the server (for example, an integrated circuit module configured by one die, or a card or a blade inserted into a slot of the blade server). May be.
  • the small base station 200 may be realized as an eNB (evolved Node B).
  • the small base station 200 may be a small eNB that covers a cell smaller than a macro cell.
  • the small base station 200 may be a home (femto) eNB.
  • the small base station 200 may be a pico eNB or a micro eNB.
  • the small base station 200 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Each of the small base stations 200 may include a main body (also referred to as a base station apparatus) that controls wireless communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the small base station 200 by temporarily or semi-permanently executing the base station function.
  • a main body also referred to as a base station apparatus
  • RRHs Remote Radio Heads
  • the terminal device 400 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. Also, the terminal device 400 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least a part of the components of the terminal device 400 may be realized as a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • MTC Machine Type Communication
  • FIG. 26 is a block diagram illustrating an example of a schematic configuration of a server 700 to which the technology according to the present disclosure can be applied.
  • the server 700 includes a processor 701, a memory 702, a storage 703, a network interface 704, and a bus 706.
  • the processor 701 may be a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), for example, and controls various functions of the server 700.
  • the memory 702 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 701.
  • the storage 703 may include a storage medium such as a semiconductor memory or a hard disk.
  • the network interface 704 is a wired communication interface for connecting the server 700 to the wired communication network 705.
  • the wired communication network 705 may be a core network such as EPC (Evolved Packet Core) or a PDN (Packet Data Network) such as the Internet.
  • EPC Evolved Packet Core
  • PDN Packet Data Network
  • the bus 706 connects the processor 701, the memory 702, the storage 703, and the network interface 704 to each other.
  • the bus 706 may include two or more buses with different speeds (eg, a high speed bus and a low speed bus).
  • the server 700 shown in FIG. 26 at least some of the components (that is, the request unit 151, the information acquisition unit 153, the determination unit 155, and the control unit 157) included in the processing unit 130 described with reference to FIG. May be implemented in the processor 701.
  • a program for causing a processor to function as at least a part of the above components is installed in the server 700.
  • the program may be executed.
  • the server 700 may include a module including a processor 701 and a memory 702, and at least a part of the above components may be mounted on the module.
  • the module may store a program for causing the processor to function as at least part of the components in the memory 702 and execute the program by the processor 701.
  • the server 700 or the module may be provided as an apparatus including at least a part of the components, and the program for causing a processor to function as at least a part of the components may be provided.
  • a readable storage medium storing the program may be provided.
  • FIG. 27 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 27, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Note that although FIG. 27 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as shown in FIG. 27, and the plurality of BB processors 826 may correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 27, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • 27 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the components included in the processing unit 270 described with reference to FIG. 20 may be implemented in the wireless communication interface 825.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and in the module, at least a part of the above components is mounted. Also good.
  • the module stores a program for causing the processor to function as at least a part of the component (in other words, a program for causing the processor to execute at least a part of the operation of the component). You may run the program.
  • a program for causing a processor to function as at least a part of the above components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program. Good.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including at least a part of the components, and a program for causing a processor to function as at least a part of the components is provided. May be.
  • a readable storage medium storing the program may be provided.
  • at least some of the components included in the processing unit 280 described with reference to FIG. 24 are the same as at least some of the components included in the processing unit 270.
  • FIG. 28 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 28, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 28 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 27 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 28 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 28, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 28 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the constituent elements included in the processing unit 270 described with reference to FIG. 20 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863.
  • the controller 851 may be implemented in the eNB 830.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and at least a part of the above-described components may be mounted in the module. Good.
  • the module stores a program for causing the processor to function as at least a part of the component (in other words, a program for causing the processor to execute at least a part of the operation of the component). You may run the program.
  • a program for causing a processor to function as at least a part of the above components is installed in the eNB 830, and the radio communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program. Good.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including at least a part of the above-described components, and a program for causing a processor to function as at least a part of the above-described components is provided. May be.
  • a readable storage medium storing the program may be provided.
  • at least some of the components included in the processing unit 280 described with reference to FIG. 24 are the same as at least some of the components included in the processing unit 270.
  • FIG. 29 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 29 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 29 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 29 via a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the measurement unit 461 and the information providing unit 463 described with reference to FIG. 21 may be implemented in the wireless communication interface 912.
  • the smartphone 900 illustrated in FIG. at least one of the measurement unit 461 and the information providing unit 463 may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the measurement unit 461 and the information providing unit in the module. At least one of 463 may be mounted.
  • the module is a program for causing the processor to function as at least one of the measuring unit 461 and the information providing unit 463 (in other words, a program for executing the operation of at least one of the measuring unit 461 and the information providing unit 463).
  • the program may be executed.
  • a program for causing a processor to function as at least one of the measurement unit 461 and the information providing unit 463 is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or an auxiliary device is installed.
  • the controller 919 may execute the program.
  • the smartphone 900 or the module may be provided as a device including at least one of the measurement unit 461 and the information providing unit 463, and the processor functions as at least one of the measurement unit 461 and the information providing unit 463.
  • a program may be provided.
  • a readable storage medium storing the program may be provided.
  • FIG. 30 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 30 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. Note that FIG. 30 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, but the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 in FIG. 30 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 30 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and at least the measurement unit 461 and the information providing unit 463 in the module.
  • a module including a part for example, the BB processor 934
  • the whole of the wireless communication interface 933 and / or the processor 921 and at least the measurement unit 461 and the information providing unit 463 in the module.
  • One may be implemented.
  • the module performs a program for causing the processor to function as at least one of the measurement unit 461 and the information providing unit 463 (in other words, causing the processor to execute at least one operation of the measurement unit 461 and the information providing unit 463). May be stored and the program may be executed.
  • a program for causing a processor to function as at least one of the measurement unit 461 and the information providing unit 463 is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 is installed. The program may be executed.
  • the car navigation device 920 or the module may be provided as a device including at least one of the measurement unit 461 and the information providing unit 463, and the processor functions as at least one of the measurement unit 461 and the information providing unit 463.
  • a program may be provided.
  • a readable storage medium storing the program may be provided.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including at least one of the measurement unit 461 and the information providing unit 463.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the control device 100 acquires a measurement result of delay between the same signals transmitted in the MBSFN area 30, and based on the measurement result, for the MBSFN subframe of the MBSFN area 30 The CP length is determined.
  • the small base station 200 acquires a measurement result of delay between the same signals transmitted in the MBSFN area, and cyclic prefix for the MBSFN subframe of the MBSFN area.
  • the measurement result is provided to the control device 100 that determines the length.
  • the small base station 200 or the terminal device 400 measures a delay between the same signals transmitted in the MBSFN area.
  • a CP having a more appropriate length can be used in the MBSFN subframe.
  • the small base station 200 controls transmission so that only the MBSFN reference signal is transmitted in at least one symbol in the MBSFN region of the specific MBSFN subframe.
  • the time signal waveform in at least one symbol in the MBSFN region becomes a waveform known to the terminal device 400. Therefore, the terminal device 400 can know the reception timing of each MBSFN-RS transmitted by the small base stations 200 of the plurality of small cells 20 belonging to the MBSFN area 30. Therefore, the terminal device 400 can measure the delay between MBSFN-RSs (that is, the same signal) transmitted in the MBSFN area 30.
  • the small base station 200 acquires the specific information for specifying the cyclic prefix length for the MBSFN subframe of the MBSFN area, and acquires the specific information in the cell. Control transmission.
  • the terminal device 400 it is possible to cause the terminal device 400 to actually use the determined CP length. Further, the burden of determining the CP length by the terminal device 400 may be eliminated.
  • the present disclosure is not limited to such an example.
  • the macro base station may perform the operation of the small base station described above. That is, the technology according to the present disclosure can be applied not only to the small base station but also to the macro base station.
  • the communication system is a system compliant with LTE, LTE-Advanced, or a communication standard based on these has been described, the present disclosure is not limited to such an example.
  • the communication system may be a system that complies with another communication standard.
  • processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
  • the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a processor for example, a CPU, a DSP, etc.
  • a node for example, a control device, a small base station, and / or a terminal device
  • a component for example, an information acquisition unit and a determination unit
  • Can also be created in other words, a computer program for causing the processor to execute the operation of the constituent elements of the node.
  • a storage medium storing the computer program may also be provided.
  • a device for example, a main device or a module (processing circuit or chip) for the main device including a memory for storing the computer program and one or more processors capable of executing the computer program. May be.
  • a device comprising: (11) An acquisition unit for acquiring specific information for specifying a cyclic prefix length for the MBSFN subframe of the MBSFN area; A control unit for controlling transmission of the specific information in a cell;
  • a device comprising: (12) The acquisition unit acquires a system information block including the specific information, The control unit controls transmission of the system information block; The apparatus according to (11) above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】より適切な長さのCPをMBSFNサブフレームにおいて用いることを可能にする。 【解決手段】MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得する取得部と、上記測定結果に基づいて、上記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する決定部と、を備える装置が提供される。

Description

装置
 本開示は、装置に関する。
 セルラーネットワークにおいて、放送コンテンツのような同一のコンテンツを複数のユーザに配信する方式として、MBMS(Multicast Broadcast Multimedia Services)が実用化されている。とりわけLTE(Long Term Evolution)では、複数のセルの基地局が互いに同期して同一コンテンツを配信するMBSFN(MBMS over Single Frequency Network)が規格化されている。MBSFNにより、端末において、複数の基地局からの受信信号が合成され、受信品質が改善され得る。
技術が提案されている。
 MBSFNでは、複数の基地局が、同一の無線リソースで同一のデータを送信するので、長い遅延スプレッド(delay spread)を許容するために、MBSFNサブフレームのMBSFN領域では、16.7us又は33.3usの拡張サイクリックプレフィクス(Cyclic Prefix:CP)が使用される。16.7usの拡張CPが使用される場合には、1スロットに6OFDMシンボルが含まれる。即ち、1サブフレームに12OFDMシンボルが含まれる。一方、33.3usの拡張CPが使用される場合には、1スロットに3OFDMシンボルが含まれる。即ち、1サブフレームに6OFDMシンボルが含まれる。
 例えば、非特許文献1には、MBMS及びMBSFNに関して規格化された技術が開示されている。
3GPP TS 36.331 V11.5.0 (2013-09) LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification
 しかし、複数のスモールセルがMBSFNエリアを形成する場合には当該MBSFNエリアのサイズは小さいので、当該MBSFNエリアの遅延スプレッドは小さくなり得る。そのため、例えば、拡張CPを使用するとCP長が必要以上に大きく、その結果、オーバーヘッドが大きくなり得る。
 そこで、より適切な長さのCPをMBSFNサブフレームにおいて用いることを可能にする仕組みが提供されることが望ましい。
 本開示によれば、MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得する取得部と、上記測定結果に基づいて、上記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する決定部と、を備える装置が提供される。
 また、本開示によれば、MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得する取得部と、上記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する制御装置に上記測定結果を提供する提供部と、を備える装置が提供される。
 また、本開示によれば、MBSFNエリアにおいて送信される同一の信号間の遅延の測定を行う測定部、を備える装置が提供される。
 また、本開示によれば、特定のMBSFNサブフレームのMBSFN領域のうちの少なくとも1つのシンボルにおいてMBSFNリファレンス信号のみが送信されるように送信を制御する制御部、を備える装置が提供される。
 また、本開示によれば、MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を特定するための特定情報を取得する取得部と、セル内での上記特定情報の送信を制御する制御部と、を備える装置が提供される。
 以上説明したように本開示によれば、より適切な長さのCPをMBSFNサブフレームにおいて用いることが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
MBSFNエリアの例を説明するための説明図である。 MBMSのためのチャネルを説明するための説明図である。 MBSFNサブフレームの例を説明するための説明図である。 MBSFNサブフレームのリソース及び信号の第1の例を説明するための説明図である。 MBSFNサブフレームのリソース及び信号の第2の例を説明するための説明図である。 通常のサブフレームのリソース及び信号の第1の例を説明するための説明図である。 通常のサブフレームのリソース及び信号の第2の例を説明するための説明図である。 サイクリックプレフィクス(CP)の例を説明するための説明図である。 サイクリックプレフィクス(CP)とFFT処理ウィンドウの例を説明するための説明図である。 MCCHが配置されるサブフレームの例を説明するための説明図である。 MBSFNサブフレームの例を説明するための説明図である。 PMCH及びPMCHにマッピングされるMTCHの例を説明するための説明図である。 MCCHの情報の変更に関する通知のタイミングの例を説明するための説明図である。 MBSFNをサポートするLTEネットワークの構成の一例を説明するための説明図である。 MBMSカウンティング手続きの例を説明するための説明図である。 本開示の実施形態に係る通信システムの概略的な構成の一例を示す説明図である。 第1の実施形態に係る制御装置の構成の一例を示すブロック図である。 遅延測定結果の例を説明するための説明図である。 MBMSサブフレームの例を説明するための説明図である。 第1の実施形態に係るスモール基地局の構成の一例を示すブロック図である。 第1の実施形態に係る端末装置の構成の一例を示すブロック図である。 遅延スプレッドの測定の具体的な手法の例を説明するための説明図である。 第1の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。 第2の実施形態に係るスモール基地局の構成の一例を示すブロック図である。 第2の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。 サーバの概略的な構成の一例を示すブロック図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.通信システムの概略的な構成
 3.第1の実施形態
  3.1.制御装置の構成
  3.2.スモール基地局の構成
  3.3.端末装置の構成
  3.4.処理の流れ
 4.第2の実施形態
  4.1.制御装置の構成
  4.2.スモール基地局の構成
  4.3.処理の流れ
 5.応用例
  5.1.制御装置に関する応用例
  5.2.スモール基地局に関する応用例
  5.3.端末装置に関する応用例
 6.まとめ
 <<1.はじめに>>
 まず、図1~図15を参照して、MBMS及びMBSFNに関する技術を説明する。
 (MBSFNエリア)
 MBSFNでは、複数の基地局が、互いに同期して同一のコンテンツを配信する。即ち、MBSFNでは、複数の基地局が、同一の無線リソースで同一のデータを送信する。当該複数の基地局のセル(即ち、複数のセル)は、MBSFNエリアと呼ばれる。各セルは、最大8個のMBSFNエリアに属することができる。以下、図1を参照して、MBSFNエリアの具体例を説明する。
 図1は、MBSFNエリアの例を説明するための説明図である。図1を参照すると、#1~#15のセルが示されている。この例では、MBSFNエリア0は#1~#3、#5~#8のセルを含み、MBSFNエリア1は#7、#9、#10、#13のセルを含み、MBSFNエリア255は#8、#9、#11~#15のセルを含む。なお、#7のセルは、MBSFNエリア0及びMBSFNエリア1の両方に属する。また、#8のセルは、MBSFNエリア0及びMBSFNエリア255の両方に属する。また、#9のセルは、MBSFNエリア1及びMBSFNエリア255の両方に属する。また、#4のセルは、いずれのMBSFNエリアにも属さない。
 (MBMSに関するチャネル)
 MBMSのための論理チャネル、トランスポートチャネル及び物理チャネルが定められている。以下、この点について図2を参照して説明する。
 図2は、MBMSのためのチャネルを説明するための説明図である。図2を参照すると、LTEにおいて定められている論理チャネル、トランスポートチャネル及び物理チャネルが示されている。とりわけ、MBMSのための論理チャネルとして、MCCH(Multicast Control Channel)及びMTCH(Multicast Traffic Channel)が定められている。MCCHは、MBSFNエリアコンフィギュレーションメッセージ(MBSFN Area Configuration message)及びMBMSカウンティング要求メッセージ(MBM Counting Request messega)などの制御情報を送信するためのチャネルである。また、MTCHは、MBMSのデータを送信するためのチャネルである。また、MBMSのための物理チャネルとして、PMCH(Physical Multicast Channel)が定められている。MCCHにマッピングされる制御情報及びMTCHにマッピングされるデータの両方が、トランスポートチャネルであるMCH(Multicast Channel)を通じてPMCHにマッピングされる。
 (MBSFNサブフレーム)
 MBSFNの送信は、MBSFNサブフレームで行われる。MBSFNサブフレームは、無線フレーム割当て期間(Radio Frame Allocation Period)、無線フレーム割当てオフセット(Radio Frame Allocation Offset)、及びサブフレーム割当て(Subframe Allocation)により示される。以下、図3を参照して、MBSFNサブフレームの具体例を説明する。
 図3は、MBSFNサブフレームの例を説明するための説明図である。図3を参照すると、各SFN(System Frame Number)の無線フレームに含まれるサブフレームが示されている。この例では、無線フレーム割当て期間は8であり、無線フレーム割当てオフセットは2である。また、サブフレーム割当ては、4フレームパターン(24ビット)である。そのため、「SFN mod 8 =2」を満たすSFN(即ち、2、10、18などのSFN)の無線フレームと、その後に続く3つの無線フレームとが、MBSFNのための無線フレームである。また、この例では、FDD(Frequency Division Duplexing)が採用され、サブフレーム割当ては、「011010 011010 011010 011010」である。FDDが採用される場合には、サブフレーム割当ての各ビットは、#1、#2、#3、#6、#7及び#8のサブフレームを示すので、上記無線フレームのうちの#2、#3及び#7のサブフレームが、MBSFNサブフレームである。
 システム情報及びページング情報が送信されるサブフレームは、MBSFNサブフレームとして使用されない。よって、FDDが採用される場合には、#0、#4、#5及び#9のサブフレームは、MBSFNサブフレームとして使用されない。また、TDD(Time Division Duplexing)が採用される場合には、#0、#1、#2、#5及び#6のサブフレームは、MBSFNサブフレームとして使用されない。
 なお、MBSFNサブフレームは、例えば、SIB(System Information Block)2の中で端末装置に通知される。これにより、端末装置は、MBSFNエリアを知ることができる。また、MBSFNエリアごとのMBSFNサブフレームは、後述するように、MCCHにマッピングされる制御情報(MBSFNエリアコンフィギュレーションメッセージ)の中でも端末装置に通知される。
 (MBSFNサブフレームのリソース及び信号)
 -OFDMシンボルの数
 MBSFNでは、複数の基地局が、同一の無線リソースで同一のデータを送信するので、長い遅延スプレッド(delay spread)を許容するために、MBSFNサブフレームのMBSFN領域では、16.7us又は33.3usの拡張CP(Extended CP)が使用される。16.7usの拡張CPが使用される場合には、1スロットに6OFDMシンボルが含まれる。即ち、1サブフレームに12OFDMシンボルが含まれる。一方、33.3usの拡張CPが使用される場合には、1スロットに3OFDMシンボルが含まれる。即ち、1サブフレームに6OFDMシンボルが含まれる。
 -リファレンス信号(RS)
 MBSFNエリアに属するセルの基地局は、MBSFNサブフレームのうちのとりわけMBSFN領域内で、同一の信号を送信する。そのため、これらの基地局は、MBSFN領域内ではセル固有のリファレンス信号(Cell-specific Reference Signal:CRS)を送信しない。その代わりに、これらの基地局は、MBSFN用のリファレンス信号であるMBSFNリファレンス信号(MBSFN-RS)を送信する。MBSFN-RSは、MBSFNエリアに属する全てのセルにおいて、同一の無線リソース(即ち、同一のリソースエレメント)で送信される。
 -具体例
 図4は、MBSFNサブフレームのリソース及び信号の第1の例を説明するための説明図である。図4を参照すると、MBSFNサブフレーム内で時間方向に並ぶ2つのリソースブロック(RB)が示されている。この例では、16.7usの拡張CPが使用され、MBSFNサブフレームは、時間方向において12個のOFDMシンボルを含む。また、MBSFNサブフレームは、12個のOFDMシンボルのうちの最初の2つのOFDMシンボルにわたる非MBSFN領域と、その後に続くMBSFN領域とを含む。非MBSFN領域では、CRSが送信され得る。一方、MBSFN領域では、MBSFNエリアに属するセル間で共通のMBSFN-RSが送信される。また、MBSFN領域では、MCCHにマッピングされる制御情報及び/又はMTCHにマッピングされるデータが送信される。
 図5は、MBSFNサブフレームのリソース及び信号の第2の例を説明するための説明図である。図5を参照すると、MBSFNサブフレーム内で時間方向に並ぶ2つのリソースブロック(RB)が示されている。この例では、33.3usの拡張CPが使用され、MBSFNサブフレームは、時間方向において6個のOFDMシンボルを含む。また、MBSFNサブフレームは、6個のOFDMシンボルのうちの最初の1つのOFDMシンボルにわたる非MBSFN領域と、その後に続くMBSFN領域とを含む。非MBSFN領域では、CRSが送信され得る(図示せず)。一方、MBSFN領域では、MBSFNエリアに属するセル間で共通のMBSFN-RSが送信される。また、MBSFN領域では、MCCHにマッピングされる制御情報及び/又はMTCHにマッピングされるデータが送信される。
 (通常のサブフレームのリソース及び信号)
 -OFDMシンボルの数
 MBSFNサブフレームではない通常のサブフレームでは、通常のCP(Normal CP)又は16.7usの拡張CPが使用される。通常のCPの長さは、スロット中の1番目のOFDMシンボルで5.1usであり、他のOFDMシンボルで4.7usである。通常のCPが使用される場合には、1スロットに7OFDMシンボルが含まれる。即ち、1サブフレームに14OFDMシンボルが含まれる。一方、16.7usの拡張CPが使用される場合には、1スロットに6OFDMシンボルが含まれる。即ち、1サブフレームに12OFDMシンボルが含まれる。
 -リファレンス信号(RS)
 基地局は、通常のサブフレームにおいて、CRSを送信する。CRSは、セル選択、チャネル推定、及びダウンリンクデータの同期検波などのために使用される。
 -具体例
 図6は、通常のサブフレームのリソース及び信号の第1の例を説明するための説明図である。図6を参照すると、通常のサブフレーム内で時間方向に並ぶ2つのリソースブロック(RB)が示されている。この例では、通常のCPが使用され、サブフレームは、時間方向において14個のOFDMシンボルを含む。CRSは、各RB内の所定のリソースエレメント(RE)で送信される。なお、上記所定のREは、セルごとに設定される。
 図7は、通常のサブフレームのリソース及び信号の第2の例を説明するための説明図である。図7を参照すると、通常のサブフレーム内で時間方向に並ぶ2つのリソースブロック(RB)が示されている。この例では、16.7usの拡張CPが使用され、サブフレームは、時間方向において12個のOFDMシンボルを含む。この場合も、CRSは、各RB内の所定のリソースエレメント(RE)で送信される。なお、上記所定のREは、セルごとに設定される。
 (サイクリックプレフィクス(CP))
 OFDMシンボルは、サイクリックプレフィクス(CP)とメインボディとを含む。CPは、メインボディの波形の一部をコピーすることにより生成される。以下、この点について図8を参照して具体例を説明する。
 図8は、サイクリックプレフィクス(CP)の例を説明するための説明図である。図8を参照すると、OFDMシンボルの波形が示されている。OFDMシンボルは、CP及びメインボディを含む。CPは、メインボディのうちの末尾の部分をコピーすることにより生成され、メインボディの前に付される。
 マルチパスによる遅延スプレッドがCP長に収まっていれば、信号は、FFT(Fast Fourier Transform)処理ウィンドウ内で完全に表現され、FFT処理により正しく合成される。一方、マルチパスによる遅延スプレッドがCP長に収まっていなければ、信号はFFT処理ウィンドウ内で完全に表現されず、シンボル間干渉が生じ得る。その結果、受信性能が劣化し得る。以下、この点について図9を参照して具体例を説明する。
 図9は、サイクリックプレフィクス(CP)とFFT処理ウィンドウの例を説明するための説明図である。図9を参照すると、第1の遅延スプレッドコンポーネントと第2の遅延スプレッドコンポーネントとが示されている。第2の遅延スプレッドコンポーネントは、第1の遅延スプレッドコンポーネントよりも遅れて受信機により受信され、第1の遅延スプレッドコンポーネントと第2の遅延スプレッドコンポーネントとの間の受信タイミングの差が遅延スプレッドになる。この遅延スプレッドがCP長よりも短ければ、信号は、FFT処理ウィンドウ内で完全に表され、正しく合成される。
 なお、端末装置は、使用されているCP長を判定することもできる。一例として、端末装置は、複数のCP長のうちの、同期信号、リファレンス信号又はマスタ報知情報などの最適な復調を可能にするCP長を、使用されているCP長として判定し得る。別の例として、端末装置は、同期信号又はリファレンス信号の波形解析により、使用されているCP長を判定し得る。さらに別の例として、端末装置は、サブフレーム内のシンボル数を判定し、当該シンボル数からCP長を判定し得る。さらに別の例として、端末装置は、サブフレーム内のリファレンス信号の配置から、CP長を判定し得る。
 (MCCH、MTCH及びPMCH)
 -MBSFNエリアとMCCHとの関係
 1つのMCCHは、1つのMBSFNエリアに対応する。即ち、MCCHは、セルが属するMBSFNエリアごとに存在する。
 -SIB13
 SIB13は、MCCHが配置されるサブフレームなどを示し、端末装置に通知される。より具体的には、SIB13は、MCCH反復期間(MCCH Repetition Period)、MCCHオフセット及びサブフレーム割当て情報(Subframe Allocation Information)などを含む。以下、図10を参照して、MCCHが配置されるサブフレームの具体例を説明する。
 図10は、MCCHが配置されるサブフレームの例を説明するための説明図である。図10を参照すると、各SFN(System Frame Number)の無線フレームに含まれるサブフレームが示されている。この例のMBSFNサブフレームは、図3に示されるMBSFNサブフレームと同一である。この例では、MCCH反復期間は32であり、MCCHオフセットは5である。そのため、「SFN mod 32 =5」を満たすSFN(即ち、5、37などのSFN)の無線フレームが、MCCHが配置される無線フレームである。さらに、この例では、サブフレーム割当て情報が、「010000」である。FDDが採用される場合には、サブフレーム割当ての各ビットは、#1、#2、#3、#6、#7及び#8のサブフレームを示すので、上記無線フレームのうちの#2のサブフレームが、MCCHが配置されるサブフレームである。このように、MCCHは、MBSFNサブフレームの中に定期的に配置される。
 なお、MCCH及びMTCHはMAC(Media Access Control)レイヤで多重されるが、端末装置はMACヘッダの多重情報によりMCCH及びMTCHを復調できる。
 -MBSFNエリアコンフィギュレーションメッセージ
 MCCHには、MBSFNエリアコンフィギュレーションメッセージがマッピングされる。
  --共通サブフレーム割当て(CSA)
 まず、MBSFNエリアコンフィギュレーションメッセージは、共通サブフレーム割当て(Common Subframe Allocation:CSA)パターンリスト、及びCSA期間を含み、これらの情報は、MBSFNエリアのMBSFNサブフレームを示す。CSAパターンリストは、無線フレーム割当て期間、無線フレーム割当てオフセット及びサブフレーム割当てを含む。以下、図11を参照して、これらの情報により示されるMBSFNサブフレームの具体例を説明する。
 図11は、MBSFNサブフレームの例を説明するための説明図である。図11を参照すると、CSA期間にわたる無線フレームが示されている。この例では、CSA期間は、32無線フレームである。また、この例では、CSAパターンリストは、エントリ1及びエントリ2を含む。エントリ1では、無線フレーム割当て期間が16であり、無線フレーム割当てオフセットが0であり、サブフレーム割当てが1フレームパターン(6ビット)の「100100」である。よって、エントリ1のMBSFNサブフレームは、SFNが0及び16である2つの無線フレームの中の、#1及び#6のサブフレームである。エントリ2では、無線フレーム割当て期間が4であり、無線フレーム割当てオフセットが3であり、サブフレーム割当てが1フレームパターン(6ビット)の「001001」である。よって、エントリ2のMBSFNサブフレームは、SFNが3、7、11、15、19、23、27及び31である8つの無線フレームの中の、#3及び#8のサブフレームである。よって、この例では、MBSFNサブフレームとして、CSA期間の中の合計20個のサブフレームが示される。
  --PMCH情報
 さらに、MBSFNエリアコンフィギュレーションメッセージは、PMCH情報リストを含み、当該PMCH情報リストは、各PMCHが配置されるMBSFNサブフレーム、及び各PMCHにマッピングされる1つ以上のMTCHを示す。また、PMCHの中の最初のサブフレームでは、当該PMCHにマッピングされるMTCHのスケジューリング情報であるMSI(MCH Scheduling Information)が送信され、PMCH情報リストは、当該MSIの送信の周期も示す。当該周期は、MCHスケジューリング期間(MCH Scheduling Period:MSP)と呼ばれる。以下、図12を参照して、PMCH及びPMCHにマッピングされるMTCHの例を説明する。
 図12は、PMCH及びPMCHにマッピングされるMTCHの例を説明するための説明図である。図12を参照すると、図11を参照して説明した20個のMBSFNサブフレームの4つのセットが示されている。即ち、4つのCSA期間(即ち、CSA期間1~4)にわたる80個のMBSFNサブフレームが示されている。この例では、CSA期間(32無線フレーム)内の20個のMBSFNサブフレームのうちの、1番目のサブフレームから7番目のサブフレームまでが、PMCH1に割り当てられている。また、8番目のサブフレームから11番目のサブフレームまでが、PMCH2に、12番目のサブフレームから15番目のサブフレームまでが、PMCH3に、16番目のサブフレームから20番目のサブフレームまでが、PMCH4に、割り当てられている。また、PMCH1には、論理チャネル1及び2(即ち、MTCH1及び2)がマッピングされる。また、PMCH2には論理チャネル3(即ち、MTCH3)がマッピングされ、PMCH3には論理チャネル4(即ち、MTCH4)がマッピングされ、PMCH4には論理チャネル5(即ち、MTCH5)がマッピングされる。PMCH1に注目すると、PMCH1のMSPは64無線フレームであり、PMCH1では2つのCSA期間ごとにMSIが送信される。CSA期間1及び2では、PMCH1に割り当てられたMBSFNサブフレームのうちの、1番目のサブフレームから9番目までのサブフレームに、論理チャネル1(即ち、MTCH1)が配置される。また、10番目から13番目のサブフレームに、論理チャネル2(即ち、MTCH2)が配置される。14番目のサブフレームには、いずれの論理チャネル(MTCH)も配置されない。また、CSA期間3及び4では、PMCH1に割り当てられたMBSFNサブフレームのうちの、1番目のサブフレームから8番目までのサブフレームに、論理チャネル1が配置される。また、9番目から12番目のサブフレームに、論理チャネル2が配置される。なお、13番目のサブフレーム及び14番目のサブフレームには、いずれの論理チャネル(MTCH)も配置されない。なお、図12に示されるように、MBSFNサブフレームには、MCCHも配置される。
 (MCCHについての変更の通知)
 MCCHの情報に変更がある場合には、MCCHの情報の変更が、MBSFNサブフレームの非MBSFN領域内のPDCCH(Physical Downlink Control Channel)上で送信されるDCI(Downlink Control Information)の中で全ての端末装置に通知される。具体的には、上記DCIには、MCCH変更通知インジケータ(MCCH Change Notification Indicator)が含まれる。当該MCCH変更通知インジケータは、MBSFNエリアにそれぞれ対応する8ビットのビットマップである。なお、この通知には、MBMS RNTI(Radio Network Temporary Identity)、即ちM-RNTIが使用される。
 まず、MCCH変更期間(MCCH modification period)に、MCCHの情報の変更の通知が行われ、その次のMCCH変更期間に、変更された情報の通知が行われる。以下、この点について、図13を参照して具体例を説明する。
 図13は、MCCHの情報の変更に関する通知のタイミングの例を説明するための説明図である。図13を参照すると、第1のMCCH変更期間(n)とそれに続く第2のMCCHの変更期間(n+1)とが示されている。このように、第1のMCCH変更期間(n)において、MCCHの情報の変更の通知が行われ、その後、第1のMCCH変更期間(n+1)において、変更された情報の通知が行われる。なお、端末装置のモビリティの確保のために、変更された情報は、最初のMCCHだけではなく、その後のMCCHでも送信される。MCCHの情報は、比較的長時間をかけて変更される。
 (MBSFNのためのシステム構成)
 図14を参照して、MBSFNをサポートするLTEネットワークの構成の例を説明する。図14は、MBSFNをサポートするLTEネットワークの構成の一例を説明するための説明図である。図14を参照すると、LTEネットワークは、MCE(Multi-cell/Multicast Coordination Entity)、BM-SC(Broadcast/Multicast Service Center)、MBMS GW(gateway)及びMME(Mobility Management Entity)などを含む。これらのノードは、論理ノードである。MCEは、MBSNFエリアに属するセルのeNB(evolved Node B)に、同一の無線リソースで同一のデータを送信させる。具体的には、例えば、MCEは、MBSNFエリア内のMBSNFに関するスケジューリングを行う。BM-SCは、コンテンツプロバイダの認証、課金、及びコアネットワーク内のデータフロー制御などを行う。MBMS-GWは、BM-SCからeNBまでのマルチキャストIPパケットの転送、及びMME経由のセッション制御信号の処理などを行う。MMEは、NAS(Non-Access Stratum)信号の処理を行う。
 なお、1つのMCEが複数のeNBに対応する例を説明したが、MCEは係る例に限定されない。例えば、各eNBがMCEを備えてもよい。
 (カウンティング手続き)
 MBSFNでは、MBMSカウンティング手続きを通じて、MBMSサービスへの関心の情報が収集される。以下、図15を参照して、MBMSカウンティング手続きを説明する。
 図15は、MBMSカウンティング手続きの例を説明するための説明図である。図15を参照すると、まず、MCCHの情報が変更されたとき、及び端末装置がMBSFNエリアに入ったときに、端末装置は、MBSFNエリアコンフィギュレーションメッセージとともに、MBMSカウンティング要求メッセージを受信する。そして、端末装置がRRC接続モードである場合に、端末装置が関心を有するMBMSサービスが、MBMSカウンティング要求のリストに含まれていれば、端末装置は、当該MBMSサービスの識別子を含むMBMSカウンティング応答メッセージ(MBMS Counting Response message)をネットワークへ送信する。これにより、MBMSサービスごとに、MBMSサービスを受信し又はサービスに関心を有する端末装置の数をカウントすることが可能になる。そのため、カウンティングの結果に応じてMBMSサービスの開始及び終了を制御することが可能になる。
 (端末の動作)
 端末装置は、SIB13を受信し、MCCHが配置されるサブフレームなどを特定する。そして、端末装置は、当該サブフレームで、MCCHの情報としてMBSFNエリアコンフィギュレーションメッセージを受信し、所望のMBMSセッションのMTCHがマッピングされるPMCHを特定する。その後、端末装置は、上記MTCHがマッピングされる上記PMCHのMSIを受信し、上記MTCHが配置されるサブフレームを特定する。そして、端末装置は、当該サブフレームで、上記MTCHのデータ(即ち、上記所望のMBMSセッションのデータ)を受信する。このような動作によれば、端末装置は、必要最小限のサブフレームのみでの受信を行い、その他のサブフレームでスリープすることができる。そのため、端末装置の消費電力が抑えられる。
 <<2.通信システムの概略的な構成>>
 続いて、図16を参照して、本開示の実施形態に係る通信システム1の概略的な構成を説明する。図16は、本開示の実施形態に係る通信システム1の概略的な構成の一例を示す説明図である。図16を参照すると、通信システム1は、マクロ基地局11、制御装置100、スモール基地局200及び端末装置400を含む。通信システム1は、例えば、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
 マクロ基地局11は、マクロセル10内に位置する端末装置との無線通信を行う。マクロ基地局11は、コアネットワーク40に接続されている。
 スモール基地局200は、スモールセル20内に位置する端末装置との無線通信を行う。スモールセル20は、例えば、マクロセル10と一部又は全体で重なる。また、複数のスモールセル20が、同一のMBSNFエリア30に属し、MBSNFエリア30では、複数のスモール基地局200が、MBSNFサブフレーム内で、同一の無線リソースで同一の信号を送信する。なお、例えば、スモールセル20は、フェムトセルであり、スモール基地局200は、インターネット50に接続されている。
 制御装置100は、スモール基地局200にとってのMCEとして動作する。例えば、制御装置100は、MBMS-GWとしても動作する。制御装置100は、例えば、インターネット50に接続され、インターネット50を介してスモール基地局200と通信する。また、制御装置100は、インターネット50を介して、コアネットワーク40内に位置するコアネットワークノード(例えば、MMEなど)、及び/又はマクロ基地局11と通信し得る。
 端末装置400は、基地局との無線通信を行う。例えば、端末装置400は、マクロセル10内に位置する場合に、マクロ基地局11との無線通信を行う。また、端末装置400は、スモールセル20内に位置する場合に、スモール基地局200との無線通信を行う。
 以上、本開示の実施形態に係る通信システム1の概略的な構成を説明した。本開示の実施形態によれば、制御装置100は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果を取得する。そして、制御装置100は、当該測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。これにより、例えば、より適切な長さのCPをMBSFNサブフレームにおいて用いることが可能になる。
 <<3.第1の実施形態>>
 続いて、図17~図23を参照して、本開示の第1の実施形態を説明する。第1の実施形態によれば、制御装置100-1は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果を取得する。そして、制御装置100-1は、当該測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。とりわけ第1の実施形態によれば、上記遅延の測定は、端末装置400-1により行われる。
 <3.1.制御装置の構成>
 まず、図17~図19を参照して、第1の実施形態に係る制御装置100-1の構成を説明する。図17は、第1の実施形態に係る制御装置100-1の構成の一例を示すブロック図である。図17を参照すると、制御装置100-1は、通信部110、記憶部120及び処理部150を備える。
 (通信部110)
 通信部110は、他の装置と通信する。例えば、通信部110は、スモール基地局200-1と通信する。より具体的には、例えば、通信部110は、インターネット50を介してスモール基地局200-1と通信する。また、通信部110は、インターネット50を介して、コアネットワーク40内に位置するコアネットワークノード(例えば、MMEなど)、及び/又はマクロ基地局11と通信し得る。
 (記憶部120)
 記憶部120は、制御装置100-1の動作のためのプログラム及びデータを一時的にまたは恒久的に記憶する。
 (処理部150)
 処理部150は、制御装置100-1の様々な機能を提供する。処理部150は、要求部151、情報取得部153、決定部155及び制御部157を含む。
 (要求部151)
 要求部151は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果(以下、「遅延測定結果」と呼ぶ)を提供するように、MBSFNエリア30に属するスモールセル20のスモール基地局200-1に要求する。
 例えば、要求部151は、上記MBSFNエリア30に属する1つのスモールセル20のスモール基地局200-1に、上記遅延測定結果を提供するように要求する。なお、要求部151は、上記MBSFNエリア30に属する2つ以上のスモールセル20のスモール基地局200-1に、上記遅延測定結果を提供するように要求してもよい。
 (情報取得部153)
 情報取得部153は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果(即ち、遅延測定結果)を取得する。なお、上記同一の信号は、MBSFNエリア30に属する複数のスモールセル20の基地局200-1により送信される。
 例えば、上述したように、要求部151が、上記遅延測定結果を提供するように、スモール基地局200-1に要求する。すると、スモール基地局200-1は、上記遅延測定結果を制御装置100-1に提供する。そして、当該遅延測定結果は、記憶部120に記憶される。情報取得部153は、記憶部120から、上記遅延測定結果を取得する。
 -測定の主体
 第1の実施形態では、上記遅延測定結果は、端末装置400-1による測定の結果である。即ち、端末装置400-1が、上記遅延の測定を行い、当該遅延の測定結果(即ち、遅延測定結果)をスモール基地局200-1に提供する。そして、スモール基地局200-1は、例えば、上記遅延測定結果を制御装置100-1に提供する。これにより、例えば、スモール基地局200-1が遅延測定機能を有しない場合であっても、上記遅延測定結果を得ることが可能になる。
 -遅延測定結果
 例えば、上記遅延測定結果は、MBSFNエリア30において送信される同一の信号間の遅延スプレッド(delay spread)である。
 第1の例として、上記遅延測定結果は、MBSFNエリア30において送信される同一の信号のうちの1つの信号(例えば、最初に受信される信号)と他の信号との間の遅延スプレッドである。以下、この点について、図18を参照して具体例を説明する。
 図18は、遅延測定結果の例を説明するための説明図である。図18を参照すると、異なるタイミングで受信される4つの同一の信号が示されている。図18を参照すると、受信される第1~第4の信号が示されている。例えば、第1の信号が最初に受信され、その後、第2の信号、第3の信号及び第4の信号が順に受信される。そして、第1の信号と第2の信号との間の遅延スプレッドがDであり、第1の信号と第3の信号との間の遅延スプレッドがDであり、第1の信号と第4の信号との間の遅延スプレッドがDである。この場合に、上記遅延測定結果は、例えば、遅延スプレッドD、D、Dのセットである。このような遅延測定結果は、遅延の分布を示す情報とも言える。
 第2の例として、上記遅延測定結果は、MBSFNエリア30において送信される同一の信号のうちの最初に受信される信号と最後に受信される信号との間の遅延スプレッドである。即ち、上記遅延測定結果は、最大の遅延スプレッドである。例えば、図18を再び参照すると、上記遅延測定結果は、遅延スプレッドDである。
 当然ながら、上記遅延測定結果は、さらに別の遅延スプレッドであってもよい。また、当然ながら、遅延スプレッドは、測定値そのものではなく、測定値に対応する情報(例えば、遅延スプレッドを示す複数のインデックスのうちの、測定値に対応するインデックス)であってもよい。
 このような遅延測定結果(遅延スプレッド)により、例えば、遅延スプレッドを許容する適切なCP長を決定することが可能になる。
 なお、上記遅延測定結果は、遅延スプレッドに限られず、別の情報であってもよい。例えば、上記遅延測定結果は、同一の信号間の遅延を示す別の情報であってもよい。また、上記遅延測定結果は、測定された遅延を許容するCP長を示す情報であってもよい。
 (決定部155)
 決定部155は、上記遅延測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。
 -CP長候補
 例えば、決定部155は、複数のCP長候補の中の1つのCP長候補を、MBSFNエリア30のMBSFNサブフレームのためのCP長として決定する。
 上記複数のCP長候補は、通常のCP(Normal CP)の長さ及び拡張CP(Extended CP)の各々の長さを含む。一例として、当該複数のCP長候補は、通常のCPの長さ(例えば、スロット中の1番目のシンボルで5.1us、他のシンボルで4.7us)と拡張CPの長さである16.7us及び33.3usとを含む3つのCP長である。そのため、例えば、決定部155は、通常のCPの長さを、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定し得る。これにより、例えば、MBSFNエリア30における遅延スプレッドが小さい場合に、オーバーヘッドを小さくすることが可能になる。
 -遅延測定結果に基づく決定
 例えば、決定部155は、上記遅延測定結果に基づいて、MBSFNエリア30における最大の遅延を許容するCP長を、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。
 上述したように、上記遅延測定結果は、例えば、MBSFNエリア30において送信される同一の信号間の遅延スプレッド(delay spread)である。この場合に、例えば、決定部155は、上記遅延測定結果から最大の遅延スプレッドを特定し、上記複数のCP長候補のうちの、当該最大の遅延スプレッドよりも長いCP長候補を、MBSFNエリア30のMBSFNサブフレームのためのCP長として決定する。例えば、上記最大の遅延スプレッドが、通常のCPの長さよりも短い場合には、決定部155は、通常のCPの長さを、MBSFNエリア30のMBSFNサブフレームのためのCP長として決定する。
 -MBSFNサブフレームのシンボル数の決定
 例えば、CP長が決まると、MBSFNサブフレームに含まれるシンボル数も決定される。そのため、決定部155がMBSFNサブフレームに含まれるシンボル数を決定するとも言える。
 例えば、通常のCPの長さが、MBSFNエリア30のMBSFNサブフレームのためのCP長として決定される。この場合に、当該MBSFNサブフレームに含まれるシンボル数は14になる。即ち、上記MBSFNサブフレームは、上記MBSFNサブフレームのためのCP長が通常のCPの長さである場合に、14個のOFDMシンボルを含む。以下、この点について図19を参照して具体例を説明する。
 図19は、MBMSサブフレームの例を説明するための説明図である。図19を参照すると、MBSFNサブフレーム内で時間方向に並ぶ2つのリソースブロック(RB)が示されている。この例では、CP長は、通常のCPの長さであり、MBSFNサブフレームは、時間方向において14個のOFDMシンボルを含む。また、MBSFNサブフレームは、14のOFDMシンボルのうちの最初の3つのOFDMシンボルにわたる非MBSFN領域と、その後に続くMBSFN領域とを含む。非MBSFN領域では、CRSが送信され得る。また、MBSFN領域では、MBSFN-RSが送信される。
 また、例えば、拡張CPの長さである16.7usが、MBSFNエリア30のMBSFNサブフレームのためのCP長として決定される。この場合に、図4に示されるように、当該MBSFNサブフレームに含まれるシンボル数は12であり、非MBSFN領域長は2である。また、例えば、拡張CPの長さである33.3usが、MBSFNエリア30のMBSFNサブフレームのためのCP長として決定される。この場合に、図5に示されるように、当該MBSFNサブフレームに含まれるシンボル数は6であり、非MBSFN領域長は1である。
 なお、上述したように、MBSFNサブフレームに含まれるシンボル数が決まると、MBSFNサブフレームの非MBSFN領域長(Non-MBSFN Region Length)も決まる。
そのため、決定部155がMBSFNサブフレームの非MBSFN領域長を決定するとも言える。
 (制御部157)
 制御部157は、スモール基地局200-1にMBSFNの動作を行わせる。
 例えば、制御部157は、MBMSセッションの開始をスモール基地局200-1に要求する。より具体的には、例えば、制御部157は、MBMSセッション開始要求メッセージをスモール基地局200-1へ送信する。
 また、例えば、制御部157は、MBMSのスケジューリングを行い、MBMSのスケジューリングの情報をスモール基地局200-1に提供する。より具体的には、例えば、制御部157は、MBMSスケジューリング情報メッセージをスモール基地局200-1へ送信する。
 なお、上述したように、MBSFNエリア30のMBSFNサブフレームのためのCP長が決定される。すると、制御部137は、当該CP長を特定するための特定情報(例えば、CP長、シンボル数、又は非MBSFN領域長など)を含むMBMSセッション開始要求メッセージ又はMBMSスケジューリング情報メッセージを、上記MBSFNエリア30に属するスモールセル20のスモール基地局200-1へ送信する。その結果、スモール基地局200-1は、決定された上記CP長を使用する。
 <3.2.スモール基地局の構成>
 次に、図20を参照して、第1の実施形態に係るスモール基地局200-1の構成を説明する。図20は、第1の実施形態に係るスモール基地局200-1の構成の一例を示すブロック図である。図20を参照すると、スモール基地局200-1は、アンテナ部210、無線通信部220、ネットワーク通信部230、記憶部240及び処理部270を備える。
 (アンテナ部210)
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (無線通信部220)
 無線通信部220は、無線通信を行う。例えば、無線通信部220は、端末装置400-1へのダウンリンク信号を送信する。また、無線通信部220は、端末装置400-1からのアップリンク信号を受信する。
 (ネットワーク通信部230)
 ネットワーク通信部230は、他のノードと通信する。例えば、ネットワーク通信部230は、制御装置100-1と通信する。また、例えば、ネットワーク通信部230は、コアネットワーク40内に位置するコアネットワークノード、及び/又はマクロ基地局11と通信する。なお、ネットワーク通信部230は、インターネット50を介して他のノードと通信する。
 (記憶部240)
 記憶部240は、スモール基地局200-1の動作のためのプログラム及びデータを一時的にまたは恒久的に記憶する。
 (処理部270)
 処理部270は、スモール基地局200-1の様々な機能を提供する。処理部270は、要求部271、第1情報取得部273、情報提供部275、第2情報取得部277及び送信制御部279を含む。
 (要求部271)
 要求部271は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果(即ち、遅延測定結果)を提供するように、スモール基地局200-1に接続される端末装置400-1に要求する。
 例えば、スモール基地局200-1のスモールセル20が、上記MBSFNエリア30に属する場合に、制御装置100-1が、上記遅延測定結果を提供するように、スモール基地局200-1に要求する。すると、要求部271は、上記遅延測定結果を提供するように、スモール基地局200-1に接続される端末装置400-1に要求する。
 例えば、要求部271は、スモール基地局200-1に接続される1つの端末装置400-1に、上記遅延測定結果を提供するように要求する。なお、要求部271は、スモール基地局200-1に接続される2つ以上の端末装置400-1に、上記遅延測定結果を提供するように要求してもよい。
 なお、後述するように、例えば、上記遅延の測定のために、特定のMBSFNサブフレームのMBSFN領域の少なくとも1つのシンボルにおいてMBSFN-RSのみが送信される。そのため、要求部271は、例えば、上記特定のMBSFNサブフレームを端末装置400-1に通知する。
 (第1情報取得部273)
 第1情報取得部273は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果(即ち、遅延測定結果)を取得する。なお、上記同一の信号は、MBSFNエリア30に属する複数のスモールセル20の基地局200-1により送信される。
 例えば、上述したように、要求部271が、上記遅延測定結果を提供するように、スモール基地局200-1に接続される端末装置400-1に要求する。すると、端末装置400-1は、上記遅延測定結果をスモール基地局200-1に提供する。そして、当該遅延測定結果は、記憶部240に記憶される。第1情報取得部273は、記憶部240から、上記遅延測定結果を取得する。
 上記遅延測定結果は、例えば、MBSFNエリア30において送信される同一の信号間の遅延スプレッドである。遅延スプレッドの具体例は上述したとおりである。なお、上記遅延測定結果は、遅延スプレッドに限られず、別の情報であってもよい。例えば、上記遅延測定結果は、上記同一の信号間の遅延を示す別の情報であってもよい。また、上記遅延測定結果は、測定された遅延を許容するCP長を示す情報であってもよい。
 なお、上述したように、要求部271が、スモール基地局200-1に接続される2つ以上の端末装置400-1に、上記遅延測定結果を提供するように要求し、第1情報取得部273は、2つ以上の端末装置400-1による上記遅延測定結果を取得してもよい。この場合に、一例として、第1情報取得部273は、2つ以上の端末装置400-1の各々による遅延測定結果を取得してもよい。別の例として、処理部270が、2つ以上の端末装置400-1の各々による個別の遅延測定結果から、全体の遅延測定結果(例えば、最大の遅延スプレッドなど)を生成し、第1情報取得部273は、当該全体の遅延測定結果を取得してもよい。
 (情報提供部275)
 情報提供部275は、制御装置100-1に上記遅延測定結果を提供する。例えば、情報提供部275は、ネットワーク通信部230を介して、制御装置100-1に上記測定の上記結果を提供する。
 (第2情報取得部277)
 第2情報取得部277は、MBSFNエリア30のMBSFNサブフレームのためのCP長を特定するための特定情報を取得する。
 例えば、制御装置100-1が、上記特定情報をスモール基地局200-1に提供する。上述したように、例えば、制御装置100-1は、MBMSセッション開始要求メッセージ又はMBMSスケジューリング情報メッセージの中で、上記特定情報をスモール基地局200-1に提供する。そして、上記特定情報が、記憶部240に記憶される。第2情報取得部277は、記憶部240から、上記特定情報を取得する。例えば、第2情報取得部277は、上記特定情報を含むシステム情報ブロックを取得する。当該システム情報ブロックは、例えばSIB13である。
 上記特定情報は、例えば、MBSFNエリア30のMBSFNサブフレームのためのCP長、上記MBSFNサブフレームのシンボル数、又は上記MBSFNサブフレームの非MBSFN領域長である。なお、上記特定情報は、上記非MBSFN領域長である場合には、非MBSFN領域長としてSIB13に含まれてもよい。
 (送信制御部279)
 -特定情報の送信
 送信制御部279は、スモールセル20内での上記特定情報(即ち、MBSFNエリア30のMBSFNサブフレームのためのCP長を特定するための情報)の送信を制御する。
 例えば、送信制御部279は、上記特定情報を含む上記システム情報ブロック(例えば、SIB13)の送信を制御する。具体的な処理として、例えば、送信制御部279は、上記システム情報ブロックの信号を、当該システム情報ブロックのための無線リソース(例えば、リソースブロック)にマッピングする。その結果、上記システム情報ブロックは、スモールセル20内で送信される。
 これにより、例えば、決定されるCP長を端末装置400-1に実際に使用させることが可能になる。また、端末装置400-1によるCP長の判定の負担がなくなり得る。
 -MBSFN領域における信号の送信
 第1の実施形態では、例えば、送信制御部279は、特定のMBSFNサブフレームのMBSFN領域の少なくとも1つのシンボルにおいてMBSFN-RSのみが送信されるように送信を制御する。
 具体的な処理として、例えば、送信制御部279は、MBSFNサブフレームのMBSFN領域の少なくとも1つのシンボルにおいて、MBSFN-RSを挿入し、他の信号をマッピングしない。その結果、当該少なくとも1つのシンボルにおいて、MBSFN-RSのみが送信される。
 これにより、例えば、MBSFN領域の少なくとも1つのシンボルにおける時間信号波形が、端末装置400-1にとって既知の波形となる。そのため、端末装置400-1は、MBSFNエリア30に属する複数のスモールセル20のスモール基地局200-1により送信されるMBSFN-RSの各々の受信のタイミングを知ることが可能になる。よって、端末装置400-1が、MBSFNエリア30において送信されるMBSFN-RS(即ち、同一の信号)間の遅延を測定し得る。
 <3.3.端末装置の構成>
 次に、図21及び図22を参照して、第1の実施形態に係る端末装置400-1の構成を説明する。図21は、第1の実施形態に係る端末装置400-1の構成の一例を示すブロック図である。図21を参照すると、端末装置400-1は、アンテナ部410、無線通信部420、記憶部430及び処理部460を備える。
 (アンテナ部410)
 アンテナ部410は、無線通信部420により出力される信号を電波として空間に放射する。また、アンテナ部410は、空間の電波を信号に変換し、当該信号を無線通信部420へ出力する。
 (無線通信部420)
 無線通信部420は、無線通信を行う。例えば、無線通信部420は、基地局からのダウンリンク信号を受信する。また、無線通信部420は、基地局へのアップリンク信号を送信する。当該基地局は、スモール基地局200-1及びマクロ基地局11を含む。
 (記憶部430)
 記憶部430は、端末装置400-1の動作のためのプログラム及びデータを一時的にまたは恒久的に記憶する。
 (処理部460)
 処理部460は、端末装置400-1の様々な機能を提供する。処理部460は、測定部461及び情報提供部463を含む。
 (測定部461)
 測定部461は、MBSFNエリア30において送信される同一の信号間の遅延の測定を行う。
 例えば、上記同一の信号は、MBSFN-RSである。上述したように、例えば、特定のMBSFNサブフレームのMBSFN領域の少なくとも1つのシンボルにおいてMBSFN-RSのみが送信される。そのため、測定部461は、上記少なくとも1つのシンボルにおいて送信されるMBSFN-RS間の遅延の測定を行う。
 例えば、上記測定の結果(即ち、遅延測定結果)は、MBSFNエリア30において送信される同一の信号間の遅延スプレッドである。即ち、上記遅延測定結果は、例えば、MBSFN-RS間の遅延スプレッドである。遅延スプレッドの具体例は上述したとおりである。以下、図22を参照して、遅延スプレッドの測定の具体的な手法の例を説明する。
 図22は、遅延スプレッドの測定の具体的な手法の例を説明するための説明図である。図22を参照すると、遅延スプレッドの測定のための構成の例が示されている。例えば、上述したように、特定のMBSFNサブフレームのMBSFN領域の少なくとも1つのシンボルにおいてMBSFN-RSのみが送信される。よって、MBSFN-RS(MBSFNエリア30に応じた所定の信号)のシンボルマッピング、IFFT(Fast Fourier Transform)及びCP挿入によって、上記少なくとも1つのシンボルにおいて送信される時間信号波形を再現することができる。そして、再現された時間信号波形は、ディレイ調整を通じて、パイロット信号として相関器に入力される。また、RF(Radio Frequency)部及びA/Dコンバータなどを通じて、受信された時間信号波形も、相関器に入力される。そして、相関器及び積分器を通じて、MBSFNエリア30において送信されるMBSFN-RS(即ち、同一の信号)間の遅延スプレッドが測定される。
 なお、上記遅延測定結果は、遅延スプレッドに限られず、別の情報であってもよい。例えば、上記遅延測定結果は、同一の信号間の遅延を示す別の情報であってもよい。また、上記遅延測定結果は、測定された遅延を許容するCP長を示す情報であってもよい。
 (情報提供部463)
 情報提供部463は、上記測定の結果(即ち、遅延測定結果)をスモール基地局200-1に提供する。例えば、情報提供部463は、無線通信部420を介して、上記遅延測定結果をスモール基地局200-1に提供する。
 <3.4.処理の流れ>
 次に、図23を参照して、第1の実施形態に係る処理の一例を説明する。図23は、第1の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。
 制御装置100-1は、MBSFNエリア30において送信される同一の信号(例えば、MBSFN-RS)間の遅延の測定結果(即ち、遅延測定結果)を提供するように、MBSFNエリア30に属するスモールセル20のスモール基地局200-1に要求する(S601)。そして、スモール基地局200-1は、上記遅延測定結果を提供するように、スモール基地局200-1に接続される端末装置400-1に要求する(S603)。すると、端末装置400-1は、MBSFNエリア30において送信される同一の信号(例えば、MBSFN-RS)間の遅延の測定を行う(S605)。そして、端末装置400-1は、スモール基地局200-1に上記測定の結果(即ち、遅延測定結果)を提供する(S607)。その後、スモール基地局200-1は、当該遅延測定結果を制御装置100-1に提供する(S609)。そして、制御装置100-1は、上記遅延測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する(S611)。
 その後、制御装置100-1は、MBMSセッション開始要求メッセージ及びMBMSスケジューリング情報メッセージをスモール基地局200-1へ送信する(S613、S615)。当該MBMSセッション開始要求メッセージ又は当該MBMSスケジューリング情報メッセージは、決定された上記CP長を特定するための特定情報を含む。そして、スモール基地局200-1は、上記特定情報を含むシステム情報ブロック(例えば、SIB13)を報知する(S617)。
 以上、第1の実施形態を説明した。第1の実施形態によれば、制御装置100-1は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果を取得する。そして、制御装置100-1は、当該測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。これにより、例えば、より適切な長さのCPをMBSFNサブフレームにおいて用いることが可能になる。
 また、第1の実施形態によれば、上記遅延の測定は、端末装置400-1により行われる。これにより、例えば、スモール基地局200-1が遅延測定機能を有しない場合であっても、遅延測定結果を得ることが可能になる。
 <<4.第2の実施形態>>
 続いて、図24及び図25を参照して、本開示の第2の実施形態を説明する。第2の実施形態によれば、制御装置100-2は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果を取得する。そして、制御装置100-2は、当該測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。この点については、第2の実施形態は、第1の実施形態と同じである。とりわけ第2の実施形態によれば、上記遅延の測定は、スモール基地局200-2により行われる。
 <4.1.制御装置の構成>
 第2の実施形態に係る制御装置100-2についての説明は、例えば、以下の点(測定の主体)を除き、第1の実施形態に係る制御装置100-1の説明と同一である(符号の相違を除く)。よって、ここでは、重複する他の説明は省略する。
 (情報取得部153)
 -測定の主体
 第1の実施形態に係る制御装置100-1(情報取得部153)は、端末装置400-1による測定の結果(遅延測定結果)を取得する。一方、第2の実施形態に係る制御装置100-2(情報取得部153)は、スモール基地局200-2による測定の結果(遅延測定結果)を取得する。即ち、スモール基地局200-2が、MBSFNエリア30における同一の信号間の遅延の測定を行い、当該遅延の測定結果(即ち、遅延測定結果)を制御装置100-1に提供する。これにより、例えば、端末装置400-2に負担をかけることなく、遅延測定結果を得ることが可能になる。
 <4.2.スモール基地局の構成>
 次に、図24を参照して、第2の実施形態に係るスモール基地局200-2の構成を説明する。図24は、第2の実施形態に係るスモール基地局200-2の構成の一例を示すブロック図である。図24を参照すると、スモール基地局200-2は、アンテナ部210、無線通信部225、ネットワーク通信部230、記憶部240及び処理部280を備える。
 なお、アンテナ部210、ネットワーク通信部230及び記憶部240ついての説明は、例えば、第1の実施形態と第2の実施形態との間で差異はない(符号の相違を除く)。よって、ここでは、無線通信部225及び処理部280のみを説明し、重複する説明を省略する。
 (無線通信部225)
 無線通信部225は、無線通信を行う。例えば、無線通信部225は、端末装置400-2へのダウンリンク信号を送信する。また、無線通信部225は、端末装置400-2からのアップリンク信号を受信する。
 さらに、とりわけ第2の実施形態では、無線通信部225は、他のスモール基地局200-2からのダウンリンク信号を受信する。当該ダウンリンク信号は、リファレンス信号を含む。
 (処理部280)
 処理部280は、スモール基地局200-2の様々な機能を提供する。処理部280は、測定部281、第1情報取得部283、情報提供部285、第2情報取得部287及び送信制御部289を含む。
 なお、第2の実施形態に係る情報提供部285及び第2情報取得部287ついての説明は、第1の実施形態に係る情報提供部275及び第2情報取得部277ついての説明と同一である。よって、ここでは、測定部281、第1情報取得部283及び送信制御部289のみを説明し、重複する説明を省略する。
 (測定部281)
 測定部281は、MBSFNエリア30において送信される同一の信号間の遅延の測定を行う。なお、上記同一の信号は、MBSFNエリア30に属する複数のスモールセル20の基地局200-1により送信される。
 例えば、上記同一の信号は、MBSFNサブフレームのMBSFN領域において送信される信号(即ち、PMCHの信号及びMBSFN-RS)である。測定部281は、MBSFN領域において送信される上記信号間の遅延の測定を行う。スモール基地局200-2のスモールセル20は、MBSFNエリア30に属するので、MBSFNサブフレームのMBSFN領域において送信される上記信号は、スモール基地局200-2に予め提供される。そのため、MBSFN領域において送信される上記信号はスモール基地局200-2にとって既知であると言える。
 例えば、上記測定の結果(即ち、遅延測定結果)は、MBSFNエリア30において送信される同一の信号間の遅延スプレッドである。即ち、上記遅延測定結果は、例えば、MBSFN領域において送信される上記信号間の遅延スプレッドである。遅延スプレッドの具体例は第1の実施形態において説明したとおりである。
 図22を再び参照すると、MBSFN領域において送信される信号(即ち、PMCHの信号及びMBSFN-RS)のシンボルマッピング、IFFT及びCP挿入によって、MBSFN領域において送信される時間信号波形を再現することができる。そして、再現された時間信号波形は、ディレイ調整を通じて、パイロット信号として相関器に入力される。また、RF部及びA/Dコンバータなどを通じて、受信された時間信号波形も、相関器に入力される。そして、相関器及び積分器を通じて、MBSFNエリア30において送信されるMBSFN領域の信号(即ち、同一の信号)間の遅延スプレッドが測定される。
 なお、MBSFN領域に含まれる各シンボルにおいて信号間の遅延の測定が行われてもよく、あるいは、MBSFN領域に含まれる一部のシンボルにおいて信号間の遅延の測定が行われてもよい。
 また、第2の実施形態においても、第1の実施形態の例と同様に、特定のMBSFNサブフレームのMBSFN領域の少なくとも1つのシンボルにおいてMBSFN-RSのみが送信されてもよい。そして、当該少なくとも1つのシンボルにおいて送信されるMBSFN-RS間の遅延の測定が行われてもよい。
 また、上記遅延測定結果は、遅延スプレッドに限られず、別の情報であってもよい。例えば、上記遅延測定結果は、同一の信号間の遅延を示す別の情報であってもよい。また、上記遅延測定結果は、測定された遅延を許容するCP長を示す情報であってもよい。
 (第1情報取得部283)
 第1情報取得部283は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果(即ち、遅延測定結果)を取得する。第2の実施形態では、第1情報取得部283は、スモール基地局200-2(測定部281)による測定の結果(即ち、遅延測定結果)を取得する。
 (送信制御部289)
 -特定情報の送信
 送信制御部289は、スモールセル20内での上記特定情報(即ち、MBSFNエリア30のMBSFNサブフレームのためのCP長を特定するための情報)の送信を制御する。この点については、第1の実施形態と第2の実施形態との間に差異はない。よって、ここでは重複する説明を省略する。
 -MBSFN領域における信号の送信
 第2の実施形態では、特定のMBSFNサブフレームのMBSFN領域の少なくとも1つのシンボルにおいてMBSFN-RSのみが送信されなくてもよい。なお、当然ながら、送信制御部289は、上記少なくとも1つのシンボルにおいてMBSFN-RSのみが送信されるように送信を制御してもよい。
 また、上述したように、スモール基地局200-2(測定部281)がMBSFNエリア30において送信される同一の信号間の遅延の測定を行う。この場合に、送信制御部289は、測定対象である上記同一の信号が送信されている間には、信号の送信を停止してもよい。例えば、送信制御部289は、スモール基地局200-2による上記同一の信号の送信を停止してもよい。
 <4.4.処理の流れ>
 次に、図25を参照して、第2の実施形態に係る処理の一例を説明する。図25は、第2の実施形態に係る処理の概略的な流れの一例を示すシーケンス図である。
 制御装置100-2は、MBSFNエリア30において送信される同一の信号(例えば、MBSFN-RS)間の遅延の測定結果(即ち、遅延測定結果)を提供するように、MBSFNエリア30に属するスモールセル20のスモール基地局200-2に要求する(S621)。すると、スモール基地局200-2は、MBSFNエリア30において送信される同一の信号(例えば、MBSFN領域で送信される信号)間の遅延の測定を行う(S623)。その後、スモール基地局200-2は、上記測定の結果(即ち、遅延測定結果)を制御装置100-2に提供する(S625)。そして、制御装置100-2は、上記遅延測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する(S627)。
 その後、制御装置100-2は、MBMSセッション開始要求メッセージ及びMBMSスケジューリング情報メッセージをスモール基地局200-2へ送信する(S629、S631)。当該MBMSセッション開始要求メッセージ又は当該MBMSスケジューリング情報メッセージは、決定された上記CP長を特定するための特定情報を含む。そして、スモール基地局200-2は、上記特定情報を含むシステム情報ブロック(例えば、SIB13)を報知する(S633)。
 以上、第2の実施形態を説明した。第2の実施形態によれば、制御装置100-2は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果を取得する。そして、制御装置100-2は、当該測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。これにより、例えば、より適切な長さのCPをMBSFNサブフレームにおいて用いることが可能になる。
 また、第2の実施形態によれば、上記遅延の測定は、スモール基地局200-2により行われる。これにより、例えば、端末装置400-2に負担をかけることなく、遅延測定結果を得ることが可能になる。
 <<5.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、制御装置100は、タワーサーバ、ラックサーバ、又はブレードサーバなどのいずれかの種類のサーバとして実現されてもよい。また、制御装置100の少なくとも一部の構成要素は、サーバに搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール、又はブレードサーバのスロットに挿入されるカード若しくはブレード)として実現されてもよい。
 また、例えば、スモール基地局200は、eNB(evolved Node B)として実現されてもよい。とりわけ、スモール基地局200は、マクロセルよりも小さいセルをカバーするスモールeNBであってよい。一例として、スモール基地局200は、ホーム(フェムト)eNBであってもよい。別の例として、スモール基地局200は、ピコeNB又はマイクロeNBであってもよい。その代わりに、スモール基地局200は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。スモール基地局200の各々は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、スモール基地局200として動作してもよい。
 また、例えば、端末装置400は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置400は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置400の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)として実現されてもよい。
 <5.1.制御装置に関する応用例>
 図26は、本開示に係る技術が適用され得るサーバ700の概略的な構成の一例を示すブロック図である。サーバ700は、プロセッサ701、メモリ702、ストレージ703、ネットワークインタフェース704及びバス706を備える。
 プロセッサ701は、例えばCPU(Central Processing Unit)又はDSP(Digital Signal Processor)であってよく、サーバ700の各種機能を制御する。メモリ702は、RAM(Random Access Memory)及びROM(Read Only Memory)を含み、プロセッサ701により実行されるプログラム及びデータを記憶する。ストレージ703は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。
 ネットワークインタフェース704は、サーバ700を有線通信ネットワーク705に接続するための有線通信インタフェースである。有線通信ネットワーク705は、EPC(Evolved Packet Core)などのコアネットワークであってもよく、又はインターネットなどのPDN(Packet Data Network)であってもよい。
 バス706は、プロセッサ701、メモリ702、ストレージ703及びネットワークインタフェース704を互いに接続する。バス706は、速度の異なる2つ以上のバス(例えば、高速バス及び低速バス)を含んでもよい。
 図26に示したサーバ700において、図17を参照して説明した処理部130に含まれる構成要素(即ち、要求部151、情報取得部153、決定部155及び制御部157)の少なくとも一部は、プロセッサ701において実装されてもよい。一例として、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラム(換言すると、プロセッサに上記構成要素の少なくとも一部の動作を実行させるためのプログラム)がサーバ700にインストールされ、プロセッサ701が当該プログラムを実行してもよい。別の例として、サーバ700は、プロセッサ701及びメモリ702を含むモジュールを搭載し、当該モジュールにおいて上記構成要素の少なくとも一部が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラムをメモリ702に記憶し、当該プログラムをプロセッサ701により実行してもよい。以上のように、上記構成要素の少なくとも一部を備える装置としてサーバ700又は上記モジュールが提供されてもよく、プロセッサを上記構成要素の少なくとも一部として機能させるための上記プログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。
 <5.2.スモール基地局に関する応用例>
 (第1の応用例)
 図27は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図27に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図27にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図27に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図27に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図27には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図27に示したeNB800において、図20を参照して説明した処理部270に含まれる構成要素(即ち、要求部271、第1情報取得部273、情報提供部275、第2情報取得部277及び送信制御部279)の少なくとも一部は、無線通信インタフェース825において実装されてもよい。あるいは、上記構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又コントローラ821を含むモジュールを搭載し、当該モジュールにおいて、上記構成要素の少なくとも一部が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラム(換言すると、プロセッサに上記構成要素の少なくとも一部の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又コントローラ821が当該プログラムを実行してもよい。以上のように、上記構成要素の少なくとも一部を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。この点については、図24を参照して説明した処理部280に含まれる構成要素の少なくとも一部も、処理部270に含まれる上記構成要素の上記少なくとも一部と同様である。
 (第2の応用例)
 図28は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図28に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図27を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図27を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図28に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図28に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図28には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図28に示したeNB830において、図20を参照して説明した処理部270に含まれる構成要素(即ち、要求部271、第1情報取得部273、情報提供部275、第2情報取得部277及び送信制御部279)の少なくとも一部は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、上記構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又コントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記構成要素の少なくとも一部が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラム(換言すると、プロセッサに上記構成要素の少なくとも一部の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又コントローラ851が当該プログラムを実行してもよい。以上のように、上記構成要素の少なくとも一部を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記構成要素の少なくとも一部として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。この点については、図24を参照して説明した処理部280に含まれる構成要素の少なくとも一部も、処理部270に含まれる上記構成要素の上記少なくとも一部と同様である。
 <5.3.端末装置に関する応用例>
 (第1の応用例)
 図29は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図29に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図29には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図29に示したように複数のアンテナ916を有してもよい。なお、図29にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図29に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図29に示したスマートフォン900において、図21を参照して説明した測定部461及び情報提供部463の少なくとも一方は、無線通信インタフェース912において実装されてもよい。あるいは、測定部461及び情報提供部463の少なくとも一方は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて測定部461及び情報提供部463の少なくとも一方が実装されてもよい。この場合に、上記モジュールは、プロセッサを測定部461及び情報提供部463の少なくとも一方として機能させるためのプログラム(換言すると、測定部461及び情報提供部463の少なくとも一方の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを測定部461及び情報提供部463の少なくとも一方として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、測定部461及び情報提供部463の少なくとも一方を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを測定部461及び情報提供部463の少なくとも一方として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。
 (第2の応用例)
 図30は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図30に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図30には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図30に示したように複数のアンテナ937を有してもよい。なお、図30にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、図30カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図30に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図30に示したカーナビゲーション装置920において、図21を参照して説明した測定部461及び情報提供部463の少なくとも一方は、無線通信インタフェース933において実装されてもよい。あるいは、測定部461及び情報提供部463の少なくとも一方は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて測定部461及び情報提供部463の少なくとも一方が実装されてもよい。この場合に、上記モジュールは、プロセッサを測定部461及び情報提供部463の少なくとも一方として機能させるためのプログラム(換言すると、プロセッサに測定部461及び情報提供部463の少なくとも一方の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを測定部461及び情報提供部463の少なくとも一方として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、測定部461及び情報提供部463の少なくとも一方を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを測定部461及び情報提供部463の少なくとも一方として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記憶した読み取り可能な記憶媒体が提供されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、測定部461及び情報提供部463の少なくとも一方を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<6.まとめ>>
 ここまで、図1~図30を参照して、本開示の実施形態に係る各装置及び各処理を説明した。
 本開示の実施形態によれば、制御装置100は、MBSFNエリア30において送信される同一の信号間の遅延の測定結果を取得し、当該測定結果に基づいて、MBSFNエリア30のMBSFNサブフレームのためのCP長を決定する。
 また、本開示の実施形態によれば、スモール基地局200は、MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得し、上記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する制御装置100に上記測定結果を提供する。
 また、本開示の実施形態によれば、スモール基地局200又は端末装置400は、MBSFNエリアにおいて送信される同一の信号間の遅延の測定を行う。
 これにより、例えば、より適切な長さのCPをMBSFNサブフレームにおいて用いることが可能になる。
 また、第1の実施形態によれば、スモール基地局200は、特定のMBSFNサブフレームのMBSFN領域のうちの少なくとも1つのシンボルにおいてMBSFNリファレンス信号のみが送信されるように送信を制御する。
 これにより、例えば、MBSFN領域の少なくとも1つのシンボルにおける時間信号波形が、端末装置400にとって既知の波形となる。そのため、端末装置400は、MBSFNエリア30に属する複数のスモールセル20のスモール基地局200により送信されるMBSFN-RSの各々の受信のタイミングを知ることが可能になる。よって、端末装置400が、MBSFNエリア30において送信されるMBSFN-RS(即ち、同一の信号)間の遅延を測定し得る。
 また、第1の実施形態によれば、スモール基地局200は、MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を特定するための特定情報を取得し、セル内での上記特定情報の送信を制御する。
 これにより、例えば、決定されるCP長を端末装置400に実際に使用させることが可能になる。また、端末装置400によるCP長の判定の負担がなくなり得る。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、スモール基地局に着目した実施形態を説明したが、本開示は係る例に限定されない。例えば、上述したスモール基地局の動作をマクロ基地局が行ってもよい。即ち、本開示に係る技術は、スモール基地局のみではなく、マクロ基地局にも適用され得る。
 また、例えば、通信システムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、通信システムは、別の通信規格に準拠したシステムであってもよい。
 また、本明細書の処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書のノード(例えば、制御装置、スモール基地局及び/又は端末装置)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記ノードの構成要素(例えば、情報取得部及び決定部など)として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記ノードの構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記憶した記憶媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、本体装置、又は本体装置のためのモジュール(処理回路若しくはチップなど))も提供されてもよい。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得する取得部と、
 前記測定結果に基づいて、前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する決定部と、
を備える装置。
(2)
 前記決定部は、通常のサイクリックプレフィクスの長さを、前記サイクリックプレフィクス長として決定する、前記(1)に記載の装置。
(3)
 前記MBSFNサブフレームは、前記MBSFNサブフレームのための前記サイクリックプレフィクス長が前記通常のサイクリックプレフィクスの前記長さである場合に、14個のシンボルを含む、前記(2)に記載の装置。
(4)
 前記測定結果は、前記同一の信号間の遅延スプレッドである、前記(1)~(3)のいずれか1項に記載の装置。
(5)
 前記同一の信号は、MBSFNリファレンス信号である、請求項前記(1)~(4)のいずれか1項に記載の装置。
(6)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得する取得部と、
 前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する制御装置に前記測定結果を提供する提供部と、
を備える装置。
(7)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定を行う測定部、
を備える装置。
(8)
 前記装置は、端末装置、又は端末装置のためのモジュールである、前記(7)に記載の装置。
(9)
 前記装置は、基地局、基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(7)に記載の装置。
(10)
 特定のMBSFNサブフレームのMBSFN領域のうちの少なくとも1つのシンボルにおいてMBSFNリファレンス信号のみが送信されるように送信を制御する制御部、
を備える装置。
(11)
 MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を特定するための特定情報を取得する取得部と、
 セル内での前記特定情報の送信を制御する制御部と、
を備える装置。
(12)
 前記取得部は、前記特定情報を含むシステム情報ブロックを取得し、
 前記制御部は、前記システム情報ブロックの送信を制御する、
前記(11)に記載の装置。
(13)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得することと、
 プロセッサにより、前記測定結果に基づいて、前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定することと、
を含む方法。
(14)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得することと、
 前記測定結果に基づいて、前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定することと、
をプロセッサに実行させるためのプログラム。
(15)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得することと、
 前記測定結果に基づいて、前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(16)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得することと、
 プロセッサにより、前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する制御装置に前記測定結果を提供することと、
を含む方法。
(17)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得することと、
 前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する制御装置に前記測定結果を提供することと、
をプロセッサに実行させるためのプログラム。
(18)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得することと、
 前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する制御装置に前記測定結果を提供することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(19)
 プロセッサにより、MBSFNエリアにおいて送信される同一の信号間の遅延の測定を行うこと、
を含む方法。
(20)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定を行うこと、
をプロセッサに実行させるためのプログラム。
(21)
 MBSFNエリアにおいて送信される同一の信号間の遅延の測定を行うこと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(22)
 プロセッサにより、特定のMBSFNサブフレームのMBSFN領域のうちの少なくとも1つのシンボルにおいてMBSFNリファレンス信号のみが送信されるように送信を制御すること、
を含む方法。
(23)
 特定のMBSFNサブフレームのMBSFN領域のうちの少なくとも1つのシンボルにおいてMBSFNリファレンス信号のみが送信されるように送信を制御すること、
をプロセッサに実行させるためのプログラム。
(24)
 特定のMBSFNサブフレームのMBSFN領域のうちの少なくとも1つのシンボルにおいてMBSFNリファレンス信号のみが送信されるように送信を制御すること、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(25)
 MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を特定するための特定情報を取得することと、
 プロセッサにより、セル内での前記特定情報の送信を制御することと、
を含む方法。
(26)
 MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を特定するための特定情報を取得することと、
 セル内での前記特定情報の送信を制御することと、
をプロセッサに実行させるためのプログラム。
(27)
 MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を特定するための特定情報を取得することと、
 セル内での前記特定情報の送信を制御することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
 1       通信システム
 10      マクロセル
 11      マクロ基地局
 20      スモールセル
 100     制御装置
 151     要求部
 153     情報取得部
 155     決定部
 157     制御部
 200     スモール基地局
 281     測定部
 275、285 情報提供部
 271     要求部
 273、283 第1情報取得部
 277、287 第2情報取得部
 279、289 送信制御部
 400     端末装置
 461    測定部
 463    情報提供部

Claims (12)

  1.  MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得する取得部と、
     前記測定結果に基づいて、前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する決定部と、
    を備える装置。
  2.  前記決定部は、通常のサイクリックプレフィクスの長さを、前記サイクリックプレフィクス長として決定する、請求項1に記載の装置。
  3.  前記MBSFNサブフレームは、前記MBSFNサブフレームのための前記サイクリックプレフィクス長が前記通常のサイクリックプレフィクスの前記長さである場合に、14個のシンボルを含む、請求項2に記載の装置。
  4.  前記測定結果は、前記同一の信号間の遅延スプレッドである、請求項1に記載の装置。
  5.  前記同一の信号は、MBSFNリファレンス信号である、請求項請求項1に記載の装置。
  6.  MBSFNエリアにおいて送信される同一の信号間の遅延の測定結果を取得する取得部と、
     前記MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を決定する制御装置に前記測定結果を提供する提供部と、
    を備える装置。
  7.  MBSFNエリアにおいて送信される同一の信号間の遅延の測定を行う測定部、
    を備える装置。
  8.  前記装置は、端末装置、又は端末装置のためのモジュールである、請求項7に記載の装置。
  9.  前記装置は、基地局、基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項7に記載の装置。
  10.  特定のMBSFNサブフレームのMBSFN領域のうちの少なくとも1つのシンボルにおいてMBSFNリファレンス信号のみが送信されるように送信を制御する制御部、
    を備える装置。
  11.  MBSFNエリアのMBSFNサブフレームのためのサイクリックプレフィクス長を特定するための特定情報を取得する取得部と、
     セル内での前記特定情報の送信を制御する制御部と、
    を備える装置。
  12.  前記取得部は、前記特定情報を含むシステム情報ブロックを取得し、
     前記制御部は、前記システム情報ブロックの送信を制御する、
    請求項11に記載の装置。
PCT/JP2014/081429 2014-02-03 2014-11-27 装置 WO2015114930A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14881286.0A EP3104642A4 (en) 2014-02-03 2014-11-27 Apparatus
US15/114,016 US10020972B2 (en) 2014-02-03 2014-11-27 Apparatus for multicast broadcast multimedia services over a single frequency network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014018875 2014-02-03
JP2014-018875 2014-02-03

Publications (1)

Publication Number Publication Date
WO2015114930A1 true WO2015114930A1 (ja) 2015-08-06

Family

ID=53756524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081429 WO2015114930A1 (ja) 2014-02-03 2014-11-27 装置

Country Status (3)

Country Link
US (1) US10020972B2 (ja)
EP (1) EP3104642A4 (ja)
WO (1) WO2015114930A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193378A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 子帧配置方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016003198A1 (ko) * 2014-07-01 2016-01-07 엘지전자 주식회사 Mbms를 위한 통신 방법 및 이를 이용한 장치
KR102606781B1 (ko) * 2016-09-02 2023-11-27 삼성전자 주식회사 무선 통신 시스템에서 효율적인 데이터 송수신 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109134A1 (en) * 2005-04-15 2006-10-19 Nokia Corporation Method for synchronisation in a multi-carrier system using variable guard intervals
JP2010516066A (ja) * 2007-01-10 2010-05-13 日本電気株式会社 Ofdm通信システムにおけるmbmsの送信方法
WO2010090215A1 (ja) * 2009-02-05 2010-08-12 シャープ株式会社 無線通信システム及び基地局

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014160A1 (de) 2005-03-29 2006-10-12 Siemens Ag Verfahren zum Herstellen eines polykristallinen Keramikfilms auf einem Substrat, Kondensatorstruktur mit dem Keramikfilm und Verwendung der Kondensatorstruktur
CN103648166B (zh) * 2007-12-17 2017-01-18 Tcl通讯科技控股有限公司 移动通信系统
WO2012059131A1 (en) * 2010-11-04 2012-05-10 Nokia Siemens Networks Oy Handover control for networks with several types of backhaul connections
US9131460B2 (en) * 2011-02-15 2015-09-08 Intel Mobile Communications GmbH Radio relay communication device, method for relaying data, mobile terminal, and method for determining a sender of a signal
US9160511B2 (en) * 2012-01-30 2015-10-13 Qualcomm Incorporated Cyclic prefix in evolved multimedia broadcast multicast service with high transmit power
US20130235783A1 (en) * 2012-03-09 2013-09-12 Qualcomm Incorporated Evolved multimedia broadcast multicast service capacity enhancements
US8792399B2 (en) * 2012-07-11 2014-07-29 Blackberry Limited Phase-rotated reference signals for multiple antennas
US9191842B2 (en) * 2012-07-16 2015-11-17 Qualcomm Incorporated Methods and apparatus for reporting signal quality in overlapping multimedia broadcast single frequency network (MBSFN) areas
US9226266B2 (en) * 2013-09-03 2015-12-29 Telefonaktiebolaget L M Ericsson (Publ) Method for determining delay parameters for user data flow synchronization for eMBMS
JP2015142332A (ja) * 2014-01-30 2015-08-03 ソニー株式会社 装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109134A1 (en) * 2005-04-15 2006-10-19 Nokia Corporation Method for synchronisation in a multi-carrier system using variable guard intervals
JP2010516066A (ja) * 2007-01-10 2010-05-13 日本電気株式会社 Ofdm通信システムにおけるmbmsの送信方法
WO2010090215A1 (ja) * 2009-02-05 2010-08-12 シャープ株式会社 無線通信システム及び基地局

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol Specification", 3GPP TS 36.331 VLL. 5.0, September 2013 (2013-09-01)
See also references of EP3104642A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193378A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 子帧配置方法及装置

Also Published As

Publication number Publication date
US20160352554A1 (en) 2016-12-01
US10020972B2 (en) 2018-07-10
EP3104642A4 (en) 2017-06-28
EP3104642A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
US10045328B2 (en) Apparatus enabling multicast to a specific terminal group
JP6851822B2 (ja) 装置
WO2016163206A1 (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
CN111684857B (zh) 电子设备、用户设备、无线通信方法和存储介质
CN104812053A (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2015114930A1 (ja) 装置
US10057801B2 (en) Apparatus for deciding a multimedia broadcast multicast service over single frequency network area
EP3203764B1 (en) Device for improved multicast reception
US10314010B2 (en) Apparatus for radio communication systems
JP6421761B2 (ja) 装置及び方法
WO2018058445A1 (zh) 一种通信方法及装置
WO2015170494A1 (ja) 装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881286

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114016

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014881286

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881286

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP