WO2015114727A1 - Composite separation membrane and separation membrane element using same - Google Patents

Composite separation membrane and separation membrane element using same Download PDF

Info

Publication number
WO2015114727A1
WO2015114727A1 PCT/JP2014/006510 JP2014006510W WO2015114727A1 WO 2015114727 A1 WO2015114727 A1 WO 2015114727A1 JP 2014006510 W JP2014006510 W JP 2014006510W WO 2015114727 A1 WO2015114727 A1 WO 2015114727A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
polyfunctional amine
composite separation
polyfunctional
amine
Prior art date
Application number
PCT/JP2014/006510
Other languages
French (fr)
Japanese (ja)
Inventor
釜田 卓
小原 知海
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015114727A1 publication Critical patent/WO2015114727A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring

Definitions

  • the present invention relates to a composite separation membrane comprising a porous support and a separation functional layer formed thereon, and a separation membrane element comprising the composite separation membrane.
  • Separation membranes for separating a liquid substrate (for example, water) and a dissolved material (for example, salts) are used for production of pure water, desalination of brine such as seawater, and wastewater treatment.
  • a separation membrane is a composite separation membrane comprising a porous support and a separation functional layer formed on the porous support.
  • the separation functional layer is selected from organic compounds such as polyamide, polysulfone and cellulose acetate depending on the use of the composite separation membrane.
  • a composite separation membrane a membrane composed of polyamide formed by a reaction between a polyfunctional amine and a polyfunctional acid halide is known.
  • Patent Document 1 describes a composite semipermeable membrane, which is a kind of composite separation membrane, having a separation functional layer mainly composed of a crosslinked polyamide.
  • the permeation flow rate is still insufficiently improved, or the blocking rate of the dissolved product is excessively lowered.
  • One of the objects of the present disclosure is a composite separation membrane including a porous support and a separation functional layer formed on the porous support, and a reduction in the blocking rate of the dissolved matter contained in the liquid to be separated
  • the present invention provides a composite separation membrane with improved permeation flux while suppressing the above.
  • the composite separation membrane of the present disclosure includes a porous support and a separation functional layer formed on the porous support, and the separation functional layer includes a polyfunctional amine having an aromatic ring, and the polyfunctional Consists of a polyamide formed by the reaction of a compound group including an aliphatic polyfunctional amine excluding an amine and a polyfunctional acid halide, and is derived from the polyfunctional amine having the aromatic ring in the polyfunctional amine unit of the polyamide
  • the proportion of units to be used is 30 mol% or less.
  • the separation membrane element of the present disclosure includes the composite separation membrane of the present disclosure.
  • a composite separation membrane comprising a porous support and a separation functional layer formed on the porous support, which suppresses a decrease in the rejection rate of dissolved substances contained in the liquid to be separated.
  • a composite separation membrane with improved permeation flux can be obtained.
  • the 1st aspect of this indication is equipped with the porous support body and the separation functional layer formed on the said porous support body,
  • the said separation functional layer is a polyfunctional amine which has an aromatic ring,
  • the said polyfunctional amine It is composed of a polyamide formed by the reaction of a compound group including an aliphatic polyfunctional amine excluding and a polyfunctional acid halide, and is derived from the polyfunctional amine having the aromatic ring in the polyfunctional amine unit of the polyamide.
  • a composite separation membrane having a unit ratio of 30 mol% or less is provided.
  • the second aspect of the present disclosure provides, in addition to the first aspect, a composite separation membrane in which the aliphatic polyfunctional amine is an alicyclic polyfunctional amine.
  • the third aspect of the present disclosure provides, in addition to the first aspect, a composite separation membrane in which the aliphatic polyfunctional amine is piperazine or a piperazine derivative.
  • the polyfunctional amine having an aromatic ring is m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1, 3, 5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N-phenylethylenediamine, N, N′-dimethyl-
  • a composite separation membrane that is at least one selected from m-phenylenediamine, 2,4-diaminoanisole, amidole, and xylylenediamine.
  • the proportion of units derived from the polyfunctional amine having an aromatic ring in the polyfunctional amine units of the polyamide is 15 mol% or less.
  • a composite separation membrane is provided.
  • the sixth aspect of the present disclosure provides a composite separation membrane in which the compound group further includes a hydrophilic polymer in addition to any one of the first to fifth aspects.
  • the seventh aspect of the present disclosure provides, in addition to the sixth aspect, a composite separation membrane in which the hydrophilic polymer is polyvinyl alcohol.
  • the eighth aspect of the present disclosure provides a composite separation membrane obtained by further subjecting the composite separation membrane of any of the first to seventh aspects to chlorination.
  • the ninth aspect of the present disclosure provides a separation membrane element using the composite separation membrane according to any one of the first to eighth aspects.
  • the composite separation membrane of the present disclosure includes a porous support and a separation functional layer formed on the porous support.
  • the separation functional layer was formed by the reaction of a compound group including a polyfunctional amine (A) having an aromatic ring, an aliphatic polyfunctional amine (B) excluding the polyfunctional amine (A), and a polyfunctional acid halide.
  • Consists of polyamide This polyamide has, as a structural unit, a polyfunctional amine unit formed by reacting polyfunctional amines (A) and (B) with a polyfunctional acid halide, more specifically, polymerization (polycondensation). And the ratio (unit A) of the unit (unit A) derived from the polyfunctional amine (A) which has the said aromatic ring to all the polyfunctional amine units of this polyamide is 30 mol% or less.
  • a polyfunctional amine having an aromatic ring and an aliphatic polyfunctional amine (excluding amines having an aromatic ring; this “excluded” refers to amines that have an aromatic ring but are classified as aliphatic amines depending on the classification method.
  • a polyfunctional amine having an aromatic ring is more reactive with a polyfunctional acid halide. That is, both amines have a difference in reactivity with polyfunctional acid halides. The difference in reactivity affects the structure of the formed polyamide membrane and the characteristics of the separation functional layer composed of the polyamide reflecting this structure.
  • the proportion of the unit A in the polyfunctional amine unit of the formed polyamide is 30 mol% or less, in the separation functional layer composed of the polyamide, there is a decrease in the blocking rate of the dissolved matter contained in the separation target liquid.
  • the permeation flux is further improved while being suppressed. That is, a composite separation membrane in which the permeation flux is improved while the decrease in the rejection rate of the dissolved matter is suppressed is achieved.
  • the polyfunctional amine unit of the polyamide When the proportion of the unit A in the polyfunctional amine unit of the polyamide exceeds 30 mol%, the polyfunctional amine unit does not contain the unit A in terms of the blocking rate of the lysate and / or the permeation flux in the composite separation membrane. Reduced compared to the case.
  • the proportion of unit A in the polyfunctional amine unit of the polyamide is preferably 20 mol% or less, and more preferably 15 mol% or less. Within these ranges, the effects of the present invention become more prominent.
  • the lower limit of the ratio of the unit A is not particularly limited and is, for example, 0.1 mol% or more.
  • the structural unit other than the unit A is a unit derived from a polyfunctional amine having no aromatic ring (unit B).
  • the unit B is a unit derived from an aliphatic polyfunctional amine (B) other than the polyfunctional amine (A), for example.
  • the proportion of unit B in the polyfunctional amine unit of the polyamide is 70 mol% or more, preferably 80 mol% or more, and more preferably 85 mol% or more.
  • the monomer ratio of the polyfunctional amines (A) and (B) contained in the compound group before the reaction Does not match the composition ratio of the polyfunctional amine units A and B in the polyamide formed by the reaction.
  • the proportion of units derived from the highly functional polyfunctional amine (A) is considerably larger than the value corresponding to the charging ratio.
  • the permeation flux is improved at a higher level while suppressing a decrease in the blocking rate of the dissolved matter. The effect is gained.
  • the proportion of units A and B in the polyfunctional amine unit of the polyamide can be determined by a known composition analysis method for the polymer, for example, infrared spectroscopy (IR), 1 H-nuclear magnetic resonance method ( 1 H-NMR). it can.
  • IR infrared spectroscopy
  • 1 H-NMR 1 H-nuclear magnetic resonance method
  • a polyfunctional amine is an amine having two or more reactive amino groups.
  • the compound group may contain 2 or more types of polyfunctional amines (A), and may contain 2 or more types of polyfunctional amines (B).
  • the polyfunctional amine (A) having an aromatic ring is not particularly limited, and examples thereof include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-trimethyl. Aminobenzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N-phenylethylenediamine, N, N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol , And xylylenediamine.
  • the polyfunctional amine (A) having an aromatic ring is more preferably at least one selected from m-phenylenediamine and N-phenylethylenediamine.
  • the aliphatic polyfunctional amine (B) is, for example, an alicyclic polyfunctional amine.
  • An alicyclic polyfunctional amine is preferable from the viewpoint of improving the permeation flux at a higher level while suppressing a decrease in the blocking rate of the dissolved matter by combination with the polyfunctional amine (A).
  • the alicyclic polyfunctional amine is not particularly limited. For example, at least one selected from 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, and piperazine and derivatives thereof. It is.
  • the alicyclic polyfunctional amine is preferably piperazine or a piperazine derivative.
  • the piperazine derivative means a compound in which at least one hydrogen atom bonded to a carbon atom or a nitrogen atom of piperazine is substituted with a substituent. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms, an amino group, and a hydroxyl group.
  • the piperazine derivative is, for example, at least one selected from 2,5-dimethylpiperazine and 4-aminomethylpiperazine.
  • the polyfunctional acid halide is an acid halide having two or more reactive carbonyl groups.
  • the polyfunctional acid halide may be an aromatic polyfunctional acid halide or an aliphatic polyfunctional acid halide.
  • the aliphatic polyfunctional acid halide may be an alicyclic polyfunctional acid halide.
  • the compound group may contain two or more polyfunctional acid halides. When the compound group includes a polyfunctional acid halide having a valence of 3 or more, a separation functional layer composed of a polyamide having a crosslinked structure can be formed.
  • the aromatic polyfunctional acid halide is not particularly limited, and examples thereof include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid trichloride, benzene disulfonic acid dichloride, and chloro. It is at least one selected from sulfonylbenzene dicarboxylic acid dichloride.
  • the aliphatic polyfunctional acid halide is not particularly limited.
  • the alicyclic polyfunctional acid halide is not particularly limited.
  • the configuration of the porous support is not limited as long as a separation functional layer can be formed thereon.
  • the porous support is, for example, an ultrafiltration membrane in which a microporous layer is formed on a nonwoven fabric.
  • the average pore size of the microporous layer is, for example, about 0.01 to 0.4 ⁇ m.
  • the material of the microporous layer is, for example, polyarylethersulfone such as polysulfone or polyethersulfone; polyimide; polyvinylidene fluoride. Of these, polysulfone and polyarylethersulfone are preferred because of their high chemical, mechanical and thermal stability.
  • the porous support may be a self-supporting support composed of a thermosetting resin such as an epoxy resin. In this case, the porous support has an average pore diameter of, for example, 0.01 to 0.4 ⁇ m.
  • Have The thickness of the porous support is not particularly limited and is, for example, 10 to 200 ⁇ m, preferably
  • the method for forming the separation functional layer on the porous support is not particularly limited, and a known method can be adopted.
  • Examples of the method for forming the separation functional layer include an interfacial condensation method, a phase separation method, and a thin film coating method.
  • an amine aqueous solution containing a polyfunctional amine is brought into contact with an acid halide organic solution containing a polyfunctional acid halide, so that the reaction between the polyfunctional amine and the polyfunctional acid halide at the contact surface (interface)
  • This is a method for forming a separation functional layer composed of polyamide by advancing polycondensation).
  • the formation of the separation functional layer by the interfacial condensation can be performed on the porous support.
  • the separation functional layer is directly formed on the porous support.
  • a separation functional layer formed at a place other than on the porous support, for example, on the transfer substrate, may be placed on the porous support. Details of the interfacial condensation method are described, for example, in JP-A-58-24303 and JP-A-1-180208, and the conditions described in these publicly-known documents can be appropriately employed. Also in the phase separation method and the thin film coating method, methods described in known literatures can be employed.
  • the separation functional layer is formed by applying an aqueous amine solution containing a polyfunctional amine component on a porous support to form an aqueous solution coating layer, and then applying an acid halide organic solution containing a polyfunctional acid halide to the porous support. It is preferably formed by contacting with the coating layer and advancing interfacial polymerization.
  • the concentration of the polyfunctional amine in the amine aqueous solution is not particularly limited, and is, for example, 0.1 to 10% by weight, preferably 1 to 4% by weight. If the concentration of the polyfunctional amine in the aqueous amine solution is excessively low, defects such as pinholes are likely to occur in the formed separation functional layer, and the blocking rate of the dissolved product tends to decrease. On the other hand, when the concentration of the polyfunctional amine is excessively high, the thickness of the formed separation functional layer becomes too large, the permeation resistance increases, and the permeation flux tends to decrease.
  • the concentration of the polyfunctional acid halide in the acid halide organic solution is not particularly limited, and is, for example, 0.01 to 5% by weight, preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide in the organic solution is excessively low, unreacted polyfunctional amines are likely to remain in the formed separation functional layer, and defects such as pinholes are likely to occur, and the blocking rate of dissolved substances. Tend to decrease. On the other hand, if the concentration of the polyfunctional acid halide is excessively high, unreacted polyfunctional acid halide tends to remain in the formed separation functional layer, or the thickness of the separation functional layer becomes too large and the permeation resistance increases. However, the permeation flux tends to decrease.
  • the organic solvent used in the acid halide organic solution is not particularly limited as long as the solubility in water is low, the porous support is not deteriorated, and the polyfunctional acid halide is dissolved.
  • saturation such as cyclohexane, heptane, octane, nonane, etc.
  • Hydrocarbon Halogen-substituted hydrocarbon such as 1,1,2-trichlorotrifluoroethane.
  • the organic solvent is preferably a saturated hydrocarbon having a boiling point of 300 ° C. or lower, more preferably a saturated hydrocarbon having a boiling point of 200 ° C. or lower.
  • the time from application of the aqueous amine solution to the application of the acid halide organic solution on the porous support is 1 to 180 seconds, depending on the composition and viscosity of the aqueous amine solution and the pore size of the surface of the porous support. About 2 to 120 seconds, more preferably 2 to 40 seconds, and particularly preferably 2 to 10 seconds. If the coating interval between the two is excessively long, the aqueous amine solution penetrates and diffuses deeply into the porous support before the acid halide organic solution is applied, so that the unreacted polyfunctional amine is porous supported. May remain in large quantities in the body. Moreover, the unreacted polyfunctional amine that has penetrated deep inside the porous support tends to be difficult to remove by subsequent washing treatment.
  • the excess organic solution present on the porous support is removed and the porous support is removed.
  • a separation functional layer by heating and drying a film formed on the body.
  • the temperature for heat drying is, for example, 70 to 200 ° C., preferably 80 to 130 ° C.
  • the heating time is, for example, about 30 seconds to 10 minutes, and preferably about 40 seconds to 7 minutes.
  • the compound group has various additions for the purpose of facilitating the formation of a separation functional membrane and improving the properties of the resulting composite separation membrane.
  • An agent can be included.
  • the additive may be contained in, for example, an aqueous amine solution and / or an acid halide organic solution in the interfacial condensation method. Depending on the type, the additive remains in the formed separation functional layer and contributes to, for example, improving the characteristics of the composite separation membrane.
  • the additive is, for example, a hydrophilic polymer. That is, the compound group may further contain a hydrophilic polymer.
  • the hydrophilic polymer is, for example, at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, and polyacrylic acid, and polyvinyl alcohol is preferable.
  • the polyfunctional amine aqueous solution may contain a hydrophilic polymer such as polyvinyl alcohol.
  • the hydrophilic polymer is copolymerized with a polyfunctional amine and a polyfunctional acid halide to improve the hydrophilicity of the surface and inside of the formed separation functional layer. Thereby, the permeation flux of the composite separation membrane can be further improved.
  • the improvement in permeation flux by the hydrophilic polymer is larger than that of the conventional separation functional layer.
  • the addition amount of the additive is preferably about 0.01 to 20% by weight, more preferably 0.05 to 5% by weight.
  • additives include, for example, surfactants such as sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate that improve the wettability of the solution to the porous support; polyfunctional amines and polyfunctional acid halides Basic compounds such as sodium hydroxide, trisodium phosphate and triethylamine for removing hydrogen halide produced by the reaction; acylation catalysts for the reaction; solubility parameters described in JP-A-8-224452 Is a compound of 8 to 14 (cal / cm 3 ) 1/2 . These compounds may be added to the aqueous amine solution as necessary.
  • surfactants such as sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate that improve the wettability of the solution to the porous support
  • polyfunctional amines and polyfunctional acid halides Basic compounds such as sodium hydrox
  • the additive is a salt of a tetraalkylammonium halide or trialkylammonium and an organic acid.
  • This salt has the following effects: makes it easier to form a separation functional layer; improves the absorbability of the aqueous amine solution to the porous support; promotes the reaction between the polyfunctional amine and the polyfunctional acid halide; . What is necessary is just to add this salt to amine aqueous solution as needed.
  • the thickness of the separation functional layer is not particularly limited, and is usually about 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the thickness of the separation functional layer is preferably uniform.
  • the shape of the separation functional layer is not particularly limited.
  • One separation functional layer formed on a porous support may be used, or a separation functional layer having a “double pleated structure” described in JP 2011-189340 A may be used.
  • the separation functional layer is composed of polyamide, that is, a layer mainly composed of polyamide.
  • the main component is a component having the largest content, and the content is usually 50% by weight or more, and in the order of 60% by weight, 70% by weight, 80% by weight, 90% by weight or more. preferable.
  • the separation functional layer may be a layer made of polyamide. As long as the effect of the present invention is obtained, the separation functional layer may contain a material other than polyamide.
  • the composite separation membrane of the present disclosure may be a membrane further subjected to chlorination.
  • the permeation flux of the composite separation membrane is further improved by removing the unstable part of the polyamide in the chlorination.
  • the composite separation membrane of the present disclosure characterized by the composition of the polyamide a decrease in the rejection rate of dissolved substances due to chlorination is suppressed as compared with the conventional separation functional layer.
  • chlorination can be carried out by bringing an aqueous solution containing free chlorine into contact with the separation functional layer.
  • the aqueous solution containing free chlorine is not particularly limited, and is, for example, an aqueous solution of a chlorine compound having an action of generating free chlorine in water such as sodium hypochlorite and calcium chloride.
  • the concentration of the chlorine compound in the aqueous solution is preferably about 100 to 1000 mg / L, and the free chlorine concentration at that time is about 10 to 1000 ppm.
  • the conditions for chlorination are not particularly limited and can be controlled according to the concentration of free chlorine in the aqueous solution, the material of the separation functional layer, etc.
  • the treatment time is controlled in the range of 10 minutes to 100 hours.
  • the specific method of bringing the aqueous solution into contact with the separation functional layer is not particularly limited.
  • the composite separation membrane is immersed in the aqueous solution, the aqueous solution is applied or sprayed on the separation functional layer, or the aqueous solution is applied to the composite separation membrane.
  • a coating layer may be provided on the surface of the composite separation membrane of the present disclosure.
  • the coating layer is, for example, a nonionic hydrophilic layer and is a layer composed of a polymer.
  • the coating layer which is a hydrophilic layer is provided, the permeation flux of the composite separation membrane is further improved by improving the hydrophilicity of the composite separation membrane surface.
  • the coating layer is preferably provided on the surface of the composite separation membrane on the separation functional layer side.
  • the polymer used for the coating layer is not particularly limited as long as it does not dissolve the separation functional layer and the porous support and does not elute when the composite separation membrane is used (for example, during water treatment).
  • the polymer is, for example, at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, hydroxypropyl cellulose, polyethylene glycol, and a saponified ethylene-vinyl acetate copolymer.
  • the polymer is preferably polyvinyl alcohol, particularly preferably polyvinyl alcohol having a saponification degree of 99% or more.
  • the coating layer can be formed on the surface of the composite separation membrane by, for example, immersing the composite separation membrane in a solution in which the polymer is dissolved and drying it.
  • the coating layer may have a crosslinked structure with polyamide constituting the separation functional layer. In this case, the elution of the coating layer when using the composite separation membrane can be suppressed.
  • the coating layer having a crosslinked structure with polyamide is, for example, a layer containing polyvinyl alcohol having a saponification degree of 90% or more.
  • the method for crosslinking polyvinyl alcohol and polyamide is not particularly limited.
  • a composite separation membrane in which a polyvinyl alcohol layer is formed on the surface of the separation functional layer may be immersed in a hydrochloric acid-containing polyvalent aldehyde solution.
  • the polyvalent aldehyde is, for example, a dialdehyde such as glutaraldehyde or terephthalaldehyde.
  • An organic crosslinking agent such as an epoxy compound and a polyvalent carboxylic acid and / or an inorganic crosslinking agent such as a boron compound may be used as a crosslinking agent instead of or together with the polyvalent aldehyde.
  • the salt permeability exhibited by the composite separation membrane of the present disclosure is 95% or more as a value at an operating pressure of 1.0 MPa with respect to an aqueous magnesium sulfate solution (concentration 0.20 wt%, pH 6.5, temperature 25 ° C.).
  • an aqueous magnesium sulfate solution concentration 0.20 wt%, pH 6.5, temperature 25 ° C.
  • it is 96% or more, 97% or more, 98% or more, and 99% or more.
  • the permeation flux shown by the composite separation membrane of the present disclosure is 1.5 (m 3 / (m 2 ⁇ day)) or more when the operating pressure is 1.0 MPa. 1.8 (m 3 / (m 2 ⁇ day)) or more, 1.9 (m 3 / (m 2 ⁇ day)) or more, 2.0 (m 3 / (M 2 ⁇ day)) or more, and further 3.0 (m 3 / (m 2 ⁇ day)) or more.
  • the salt permeability value can be achieved at the same time.
  • the composite separation membrane of the present disclosure is generally processed in the form of a separation membrane element and used in a state of being loaded in a pressure vessel (a vessel).
  • a pressure vessel a vessel
  • the spiral membrane element is formed around a central pipe (water collecting pipe) 35 in a state where a composite separation membrane 31, a supply-side flow path member 32, and a permeate-side flow path member 33 are laminated.
  • a laminate 30 wound in a spiral shape is provided.
  • the membrane element is manufactured by fixing the laminate 30 with an end member and an exterior material.
  • the composite separation membrane of the present disclosure can be used for the same applications as conventional composite separation membranes.
  • the application is, for example, use as a reverse osmosis (RO) membrane, ultrafiltration (NF) membrane, microfiltration (MF) membrane, forward osmosis (FO) membrane.
  • More specific applications include, for example, production of pure water or ultrapure water, desalination of brine such as seawater, removal of harmful components or recovery of useful components, concentration or recovery of active ingredients in the food or pharmaceutical field. It can be used for advanced processing.
  • Example 1 An aqueous amine solution containing piperazine 3.582% by weight, m-phenylenediamine (MPD) 0.018% by weight, sodium lauryl sulfate 0.15% by weight, sodium hydroxide 0.45% by weight, and camphorsulfonic acid 6% by weight.
  • MPD m-phenylenediamine
  • a porous polysulfonic acid support which is a porous support (an asymmetric membrane having an average pore diameter of 20 ⁇ m on the side where the separation functional layer is formed, and an average pore diameter on the opposite side is different)
  • the excess aqueous solution is removed. did.
  • an isooctane solution containing 0.4% by weight of trimesic acid chloride is brought into contact with the application surface of the aqueous amine solution on the support to advance the interfacial condensation polymerization reaction. 1 ⁇ m) to form a composite separation membrane.
  • the resulting composite separation membrane had a salt (MgSO 4 ) rejection of 99.7% and a permeation flux of 1.90 (m 3 / (m 2 ⁇ day)).
  • Examples 2 and 3 Comparative Examples 1 to 4
  • a composite separation membrane was obtained in the same manner as in Example 1 except that the feed ratio of piperazine and MPD in the aqueous amine solution was controlled so as to have the values shown in Table 1 below.
  • Table 1 shows the composition ratio of amine units, salt rejection, permeation flux, and the ratio of piperazine and MPD in the aqueous amine solution in the separation functional layers of Examples 1 to 3 and Comparative Examples 1 to 4. Since the composition ratio of amine units in the separation functional layer of Example 3 has not been measured at this stage, it is indicated by “ ⁇ ” in Table 1.
  • Example 4 Comparative Examples 5 and 6 Except for using N-phenylethylenediamine (FED) instead of MPD and controlling the feed ratio of piperazine and FED in the aqueous amine solution so that the composition ratio of amine units in the separation functional layer is the value shown in Table 2 below.
  • a composite separation membrane was obtained in the same manner as in Example 1.
  • Table 2 below shows the composition ratio, salt rejection and permeation flux of amine units in the separation functional layers of Example 4 and Comparative Examples 5 and 6.
  • Example 4 As shown in Table 2, in Example 4, the same salt rejection and permeation flux as those in Example 2 in which the content of the polyfunctional amine unit (unit A) having an aromatic ring was almost the same could be achieved. Then, using Comparative Examples 1 and 4 as a reference, it was possible to achieve a significant improvement in permeation flux while suppressing a decrease in salt rejection compared to Comparative Examples 5 and 6.
  • Examples 5 and 6 Comparative Examples 7 to 10.
  • the composite separation membranes prepared in Examples 1 and 2 and Comparative Examples 1 to 4 were immersed in an aqueous sodium hypochlorite solution having a free chlorine concentration of 100 mg / L for 72 hours to carry out chlorine treatment. 6 and Comparative Examples 7 to 10.
  • Table 3 below shows the composition ratio, salt rejection and permeation flux of amine units in the separation functional layers of Examples 5 and 6 and Comparative Examples 7 to 10.
  • Example 7 Comparative Examples 11 and 12
  • the composite separation membranes prepared in Example 4 and Comparative Examples 5 and 6 were subjected to chlorine treatment by immersing in a sodium hypochlorite aqueous solution having a free chlorine concentration of 100 mg / L for 72 hours. 11 and 12.
  • Table 4 below shows the composition ratio, salt rejection, and permeation flux of amine units in the separation functional layers of Example 7 and Comparative Examples 11 and 12.
  • Example 7 As shown in Table 4, the permeation flux of Example 7 was further improved compared to Example 4 by chlorination. In Comparative Example 11, the salt rejection rate was greatly reduced and fell below 90%.
  • Examples 8 to 12, Comparative Example 13 While adding polyvinyl alcohol (saponification degree 99%) to the aqueous amine solution at a concentration of 0.25% by weight, piperazine and MPD in the aqueous amine solution so that the composition ratio of the amine units in the separation functional layer has the values shown in Table 5 below.
  • a composite separation membrane was obtained in the same manner as in Example 1 except that the charging ratio was controlled.
  • Example 13 to 17, Comparative Example 14 The composite separation membranes produced in Examples 8 to 12 and Comparative Example 13 were immersed in an aqueous sodium hypochlorite solution having a free chlorine concentration of 100 mg / L for 72 hours to perform chlorination, and Examples 13 to 17 and It was set as Comparative Example 14.
  • Table 5 below shows the composition ratio, salt rejection and permeation flux of amine units in the separation functional layers of Examples 8 to 17 and Comparative Examples 13 and 14.
  • Examples 12 and 17 are composite separation membranes prepared with the same ratio of piperazine and MPD as in Example 3. The composition ratio of amine units in the separation functional layers of Examples 12 and 17 was not measured at this stage. Therefore, it is indicated by “ ⁇ ” in Table 5.
  • the permeation flux could be further improved while suppressing a decrease in the salt rejection. Moreover, the permeation flux was further improved by chlorination.
  • the composite separation membrane of the present disclosure can be used for the same applications as conventional composite separation membranes.
  • the application is, for example, use as a reverse osmosis (RO) membrane, ultrafiltration (NF) membrane, microfiltration (MF) membrane, forward osmosis (FO) membrane.
  • More specific applications include, for example, production of pure water or ultrapure water, desalination of brine such as seawater, removal of harmful components or recovery of useful components, concentration or recovery of active ingredients in the food or pharmaceutical field. It can be used for advanced processing.

Abstract

This composite separation membrane is provided with a porous support and a separation function layer formed thereon. The separation function layer is made of a polyamide prepared by reaction of a group of compounds which comprise a polyfunctional amine having an aromatic ring, an aliphatic polyfunctional amine except the polyfunctional amine having an aromatic ring, and a polyfunctional acid halide. The units derived from the polyfunctional amine having an aromatic ring account for 30mol% or less of the polyfunctional amine units of the polyamide. The composite separation membrane is a composite separation membrane which is provided with both a porous support and a separation function layer formed thereon and which can achieve improvement in the permeation flux of the solvent of a liquid to be separated while inhibiting the rejection of solutes contained in the liquid from lowering.

Description

複合分離膜とこれを用いた分離膜エレメントComposite separation membrane and separation membrane element using the same
 本発明は、多孔性支持体とこの上に形成された分離機能層とを備える複合分離膜、および当該複合分離膜を備える分離膜エレメントに関する。 The present invention relates to a composite separation membrane comprising a porous support and a separation functional layer formed thereon, and a separation membrane element comprising the composite separation membrane.
 純水の製造、海水などのかん水の脱塩、および排水処理などに、液体の基質(例えば水)と溶解物(例えば塩類)とを分離する分離膜が使用される。分離膜の一種に、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える複合分離膜がある。分離機能層は、複合分離膜の用途に応じて、ポリアミド、ポリスルホン、酢酸セルロースなどの有機化合物から選択される。複合分離膜として、多官能アミンと多官能酸ハライドとの反応により形成されたポリアミドから構成される膜が知られている。 Separation membranes for separating a liquid substrate (for example, water) and a dissolved material (for example, salts) are used for production of pure water, desalination of brine such as seawater, and wastewater treatment. One type of separation membrane is a composite separation membrane comprising a porous support and a separation functional layer formed on the porous support. The separation functional layer is selected from organic compounds such as polyamide, polysulfone and cellulose acetate depending on the use of the composite separation membrane. As a composite separation membrane, a membrane composed of polyamide formed by a reaction between a polyfunctional amine and a polyfunctional acid halide is known.
 現在、分離特性をさらに改善した複合分離膜が求められている。特に近年、排水処理の用途あるいは海水淡水化の前処理の用途など、溶解物の阻止率よりも基質の透過流束(以下、単に「透過流束」)の大きさが優先的に求められる用途に適合するように分離特性を改善する要求が強い。また、装置の運転エネルギーの低減(省エネルギー化)のために、複合分離膜の透過流束を大きくすることへの需要が常に存在する。 Currently, there is a demand for composite separation membranes with further improved separation characteristics. In particular, in recent years, the use of wastewater treatment or pretreatment for seawater desalination, in which the size of the substrate flux (hereinafter simply referred to as “permeate flux”) is preferentially required over the rejection rate of dissolved substances There is a strong demand to improve the separation characteristics to meet the requirements. In addition, there is always a demand for increasing the permeation flux of the composite separation membrane in order to reduce the operating energy of the apparatus (energy saving).
 特許文献1には、架橋ポリアミドを主成分とする分離機能層を備える、複合分離膜の一種である複合半透膜が記載されている。 Patent Document 1 describes a composite semipermeable membrane, which is a kind of composite separation membrane, having a separation functional layer mainly composed of a crosslinked polyamide.
特開2008-246419号公報JP 2008-246419 JP
 特許文献1に記載の方法で得た複合分離膜では、透過流速の向上が未だ不十分であるか、あるいは溶解物の阻止率が過度に低下する。本開示の目的の一つは、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える複合分離膜であって、分離対象液体に含まれる溶解物の阻止率の低下を抑制しながら透過流束を向上させた複合分離膜の提供にある。 In the composite separation membrane obtained by the method described in Patent Document 1, the permeation flow rate is still insufficiently improved, or the blocking rate of the dissolved product is excessively lowered. One of the objects of the present disclosure is a composite separation membrane including a porous support and a separation functional layer formed on the porous support, and a reduction in the blocking rate of the dissolved matter contained in the liquid to be separated The present invention provides a composite separation membrane with improved permeation flux while suppressing the above.
 本開示の複合分離膜は、多孔性支持体と、前記多孔性支持体上に形成された分離機能層と、を備え、前記分離機能層は、芳香環を有する多官能アミンと、前記多官能アミンを除く脂肪族多官能アミンと、多官能酸ハライドとを含む化合物群の反応により形成されたポリアミドから構成され、前記ポリアミドの多官能アミン単位に占める、前記芳香環を有する多官能アミンに由来する単位の割合が30モル%以下である。 The composite separation membrane of the present disclosure includes a porous support and a separation functional layer formed on the porous support, and the separation functional layer includes a polyfunctional amine having an aromatic ring, and the polyfunctional Consists of a polyamide formed by the reaction of a compound group including an aliphatic polyfunctional amine excluding an amine and a polyfunctional acid halide, and is derived from the polyfunctional amine having the aromatic ring in the polyfunctional amine unit of the polyamide The proportion of units to be used is 30 mol% or less.
 本開示の分離膜エレメントは、上記本開示の複合分離膜を備える。 The separation membrane element of the present disclosure includes the composite separation membrane of the present disclosure.
 本開示によれば、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える複合分離膜であって、分離対象液体に含まれる溶解物の阻止率の低下を抑制しながら透過流束を向上させた複合分離膜が得られる。 According to the present disclosure, there is provided a composite separation membrane comprising a porous support and a separation functional layer formed on the porous support, which suppresses a decrease in the rejection rate of dissolved substances contained in the liquid to be separated. A composite separation membrane with improved permeation flux can be obtained.
本開示の分離膜エレメントの一例を模式的に示す斜視図である。It is a perspective view showing typically an example of a separation membrane element of this indication.
 本開示の第1態様は、多孔性支持体と、前記多孔性支持体上に形成された分離機能層とを備え、前記分離機能層は、芳香環を有する多官能アミンと、前記多官能アミンを除く脂肪族多官能アミンと、多官能酸ハライドとを含む化合物群の反応により形成されたポリアミドから構成され、前記ポリアミドの多官能アミン単位に占める、前記芳香環を有する多官能アミンに由来する単位の割合が30モル%以下である、複合分離膜を提供する。 1st aspect of this indication is equipped with the porous support body and the separation functional layer formed on the said porous support body, The said separation functional layer is a polyfunctional amine which has an aromatic ring, The said polyfunctional amine It is composed of a polyamide formed by the reaction of a compound group including an aliphatic polyfunctional amine excluding and a polyfunctional acid halide, and is derived from the polyfunctional amine having the aromatic ring in the polyfunctional amine unit of the polyamide. A composite separation membrane having a unit ratio of 30 mol% or less is provided.
 本開示の第2態様は、第1態様に加え、前記脂肪族多官能アミンが脂環式多官能アミンである複合分離膜を提供する。 The second aspect of the present disclosure provides, in addition to the first aspect, a composite separation membrane in which the aliphatic polyfunctional amine is an alicyclic polyfunctional amine.
 本開示の第3態様は、第1態様に加え、前記脂肪族多官能アミンがピペラジンまたはピペラジン誘導体である複合分離膜を提供する。 The third aspect of the present disclosure provides, in addition to the first aspect, a composite separation membrane in which the aliphatic polyfunctional amine is piperazine or a piperazine derivative.
 本開示の第4態様は、第1から第3のいずれかの態様に加え、前記芳香環を有する多官能アミンが、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N-フェニルエチレンジアミン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、およびキシリレンジアミンから選ばれる少なくとも1種である複合分離膜を提供する。 In the fourth aspect of the present disclosure, in addition to any one of the first to third aspects, the polyfunctional amine having an aromatic ring is m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1, 3, 5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N-phenylethylenediamine, N, N′-dimethyl- Provided is a composite separation membrane that is at least one selected from m-phenylenediamine, 2,4-diaminoanisole, amidole, and xylylenediamine.
 本開示の第5態様は、第1から第4のいずれかの態様に加え、前記ポリアミドの多官能アミン単位に占める、前記芳香環を有する多官能アミンに由来する単位の割合が15モル%以下である複合分離膜を提供する。 In the fifth aspect of the present disclosure, in addition to any one of the first to fourth aspects, the proportion of units derived from the polyfunctional amine having an aromatic ring in the polyfunctional amine units of the polyamide is 15 mol% or less. A composite separation membrane is provided.
 本開示の第6態様は、第1から第5のいずれかの態様に加え、前記化合物群が親水性ポリマーをさらに含む複合分離膜を提供する。 The sixth aspect of the present disclosure provides a composite separation membrane in which the compound group further includes a hydrophilic polymer in addition to any one of the first to fifth aspects.
 本開示の第7態様は、第6態様に加え、前記親水性ポリマーがポリビニルアルコールである複合分離膜を提供する。 The seventh aspect of the present disclosure provides, in addition to the sixth aspect, a composite separation membrane in which the hydrophilic polymer is polyvinyl alcohol.
 本開示の第8態様は、第1から第7のいずれかの態様の複合分離膜にさらに塩素処理を施した複合分離膜を提供する。 The eighth aspect of the present disclosure provides a composite separation membrane obtained by further subjecting the composite separation membrane of any of the first to seventh aspects to chlorination.
 本開示の第9態様は、第1から第8のいずれかの態様の複合分離膜を用いた分離膜エレメントを提供する。 The ninth aspect of the present disclosure provides a separation membrane element using the composite separation membrane according to any one of the first to eighth aspects.
 本開示の複合分離膜は、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える。分離機能層は、芳香環を有する多官能アミン(A)と、多官能アミン(A)を除く脂肪族多官能アミン(B)と、多官能酸ハライドとを含む化合物群の反応により形成されたポリアミドから構成される。このポリアミドは、多官能アミン(A),(B)が多官能酸ハライドと反応する、より具体的には重合する(重縮合する)ことにより形成された多官能アミン単位を構成単位として有する。そして、このポリアミドの全ての多官能アミン単位に占める、上記芳香環を有する多官能アミン(A)に由来する単位(単位A)の割合は30モル%以下である。 The composite separation membrane of the present disclosure includes a porous support and a separation functional layer formed on the porous support. The separation functional layer was formed by the reaction of a compound group including a polyfunctional amine (A) having an aromatic ring, an aliphatic polyfunctional amine (B) excluding the polyfunctional amine (A), and a polyfunctional acid halide. Consists of polyamide. This polyamide has, as a structural unit, a polyfunctional amine unit formed by reacting polyfunctional amines (A) and (B) with a polyfunctional acid halide, more specifically, polymerization (polycondensation). And the ratio (unit A) of the unit (unit A) derived from the polyfunctional amine (A) which has the said aromatic ring to all the polyfunctional amine units of this polyamide is 30 mol% or less.
 芳香環を有する多官能アミンと、脂肪族多官能アミン(芳香環を有するアミンを除く;この「除く」は、分類法によっては芳香環を有していながらも脂肪族アミンに分類されるアミンが存在することを考慮した趣旨である)とでは、芳香環を有する多官能アミンの方が多官能酸ハライドとの反応性が高い。すなわち、両アミンに、多官能酸ハライドとの反応性の相違が存在する。反応性の相違は、形成されたポリアミド膜の構造、およびこの構造を反映した、当該ポリアミドから構成される分離機能層の特性に影響を与える。形成されたポリアミドの多官能アミン単位に占める単位Aの割合が30モル%以下である場合に、当該ポリアミドから構成される分離機能層において、分離対象液体に含まれる溶解物の阻止率の低下が抑制されながら透過流束がより向上する。すなわち、溶解物の阻止率の低下が抑制されながら透過流束が向上した複合分離膜が達成される。 A polyfunctional amine having an aromatic ring and an aliphatic polyfunctional amine (excluding amines having an aromatic ring; this “excluded” refers to amines that have an aromatic ring but are classified as aliphatic amines depending on the classification method. In other words, a polyfunctional amine having an aromatic ring is more reactive with a polyfunctional acid halide. That is, both amines have a difference in reactivity with polyfunctional acid halides. The difference in reactivity affects the structure of the formed polyamide membrane and the characteristics of the separation functional layer composed of the polyamide reflecting this structure. When the proportion of the unit A in the polyfunctional amine unit of the formed polyamide is 30 mol% or less, in the separation functional layer composed of the polyamide, there is a decrease in the blocking rate of the dissolved matter contained in the separation target liquid. The permeation flux is further improved while being suppressed. That is, a composite separation membrane in which the permeation flux is improved while the decrease in the rejection rate of the dissolved matter is suppressed is achieved.
 ポリアミドの多官能アミン単位に占める単位Aの割合が30モル%を超えると、複合分離膜における溶解物の阻止率もしくは透過流束、またはその双方が、多官能アミン単位に単位Aが含まれない場合に比べて低下する。 When the proportion of the unit A in the polyfunctional amine unit of the polyamide exceeds 30 mol%, the polyfunctional amine unit does not contain the unit A in terms of the blocking rate of the lysate and / or the permeation flux in the composite separation membrane. Reduced compared to the case.
 ポリアミドの多官能アミン単位に占める単位Aの割合は20モル%以下が好ましく、15モル%以下がより好ましい。これらの範囲において、本発明の効果がより顕著となる。単位Aの割合の下限は特に限定されず、例えば、0.1モル%以上である。 The proportion of unit A in the polyfunctional amine unit of the polyamide is preferably 20 mol% or less, and more preferably 15 mol% or less. Within these ranges, the effects of the present invention become more prominent. The lower limit of the ratio of the unit A is not particularly limited and is, for example, 0.1 mol% or more.
 ポリアミドの多官能アミン単位のうち、単位A以外の構成単位は、芳香環を有さない多官能アミンに由来する単位(単位B)である。単位Bは、例えば、多官能アミン(A)以外の脂肪族多官能アミン(B)に由来する単位である。ポリアミドの多官能アミン単位に占める単位Bの割合は、70モル%以上であり、80モル%以上が好ましく、85モル%以上がより好ましい。 Among the polyfunctional amine units of the polyamide, the structural unit other than the unit A is a unit derived from a polyfunctional amine having no aromatic ring (unit B). The unit B is a unit derived from an aliphatic polyfunctional amine (B) other than the polyfunctional amine (A), for example. The proportion of unit B in the polyfunctional amine unit of the polyamide is 70 mol% or more, preferably 80 mol% or more, and more preferably 85 mol% or more.
 芳香環を有する多官能アミン(A)の多官能酸ハライドとの反応性が高いことから、反応前の化合物群に含まれている多官能アミン(A),(B)のモノマー比(仕込み比)と、反応により形成されたポリアミドにおける多官能アミン単位A,Bの組成比とは一致しない。形成されたポリアミドでは、反応性が高い多官能アミン(A)に由来する単位の割合が、仕込み比に相当する値よりもかなり大きくなる。換言すれば、本開示の複合分離膜では、化合物群に少量の多官能アミン(A)を含ませることにより、溶解物の阻止率の低下を抑制しながら透過流束をより高いレベルで向上させる効果を得ている。 Since the reactivity of the polyfunctional amine (A) having an aromatic ring with the polyfunctional acid halide is high, the monomer ratio of the polyfunctional amines (A) and (B) contained in the compound group before the reaction (charge ratio) ) Does not match the composition ratio of the polyfunctional amine units A and B in the polyamide formed by the reaction. In the formed polyamide, the proportion of units derived from the highly functional polyfunctional amine (A) is considerably larger than the value corresponding to the charging ratio. In other words, in the composite separation membrane of the present disclosure, by including a small amount of the polyfunctional amine (A) in the compound group, the permeation flux is improved at a higher level while suppressing a decrease in the blocking rate of the dissolved matter. The effect is gained.
 ポリアミドの多官能アミン単位に占める単位A,Bの割合は、ポリマーに対する公知の組成分析手法、例えば、赤外線分光法(IR)、1H-核磁気共鳴法(1H-NMR)により求めることができる。 The proportion of units A and B in the polyfunctional amine unit of the polyamide can be determined by a known composition analysis method for the polymer, for example, infrared spectroscopy (IR), 1 H-nuclear magnetic resonance method ( 1 H-NMR). it can.
 多官能アミンは、2以上の反応性アミノ基を有するアミンである。化合物群は、2種以上の多官能アミン(A)を含んでいてもよいし、2種以上の多官能アミン(B)を含んでいてもよい。 A polyfunctional amine is an amine having two or more reactive amino groups. The compound group may contain 2 or more types of polyfunctional amines (A), and may contain 2 or more types of polyfunctional amines (B).
 芳香環を有する多官能アミン(A)は特に限定されず、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N-フェニルエチレンジアミン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、およびキシリレンジアミンから選ばれる少なくとも1種である。芳香環を有する多官能アミン(A)は、m-フェニレンジアミンおよびN-フェニルエチレンジアミンから選ばれる少なくとも1種がより好ましい。 The polyfunctional amine (A) having an aromatic ring is not particularly limited, and examples thereof include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-trimethyl. Aminobenzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N-phenylethylenediamine, N, N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol , And xylylenediamine. The polyfunctional amine (A) having an aromatic ring is more preferably at least one selected from m-phenylenediamine and N-phenylethylenediamine.
 脂肪族多官能アミン(B)は、例えば、脂環式多官能アミンである。多官能アミン(A)との組み合わせにより溶解物の阻止率の低下を抑制しながら透過流束をより高いレベルで向上できる観点から、脂環式多官能アミンが好ましい。 The aliphatic polyfunctional amine (B) is, for example, an alicyclic polyfunctional amine. An alicyclic polyfunctional amine is preferable from the viewpoint of improving the permeation flux at a higher level while suppressing a decrease in the blocking rate of the dissolved matter by combination with the polyfunctional amine (A).
 脂環式多官能アミンは特に限定されず、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロへキサン、1,4-ジアミノシクロへキサン、およびピペラジンとその誘導体から選ばれる少なくとも1種である。脂環式多官能アミンは、ピペラジンまたはピペラジン誘導体が好ましい。ここでピペラジン誘導体とは、ピペラジンの炭素原子または窒素原子に結合した水素原子の少なくとも1つが、置換基により置換された化合物をいう。置換基は、例えば、炭素数1~4のアルキル基、アミノ基、水酸基である。なお、多官能アミンであるため、窒素原子に結合した水素原子が置換されている場合、当該置換基はアミノ基である。ピペラジン誘導体は、例えば、2,5-ジメチルピペラジンおよび4-アミノメチルピペラジンから選ばれる少なくとも1種である。 The alicyclic polyfunctional amine is not particularly limited. For example, at least one selected from 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, and piperazine and derivatives thereof. It is. The alicyclic polyfunctional amine is preferably piperazine or a piperazine derivative. Here, the piperazine derivative means a compound in which at least one hydrogen atom bonded to a carbon atom or a nitrogen atom of piperazine is substituted with a substituent. Examples of the substituent include an alkyl group having 1 to 4 carbon atoms, an amino group, and a hydroxyl group. In addition, since it is a polyfunctional amine, when the hydrogen atom couple | bonded with the nitrogen atom is substituted, the said substituent is an amino group. The piperazine derivative is, for example, at least one selected from 2,5-dimethylpiperazine and 4-aminomethylpiperazine.
 多官能酸ハライドは、2以上の反応性カルボニル基を有する酸ハライドである。多官能酸ハライドは、芳香族多官能酸ハライドであっても、脂肪族多官能酸ハライドであってもよい。脂肪族多官能酸ハライドは、脂環式多官能酸ハライドであってもよい。化合物群は、2種以上の多官能酸ハライドを含んでいてもよい。化合物群が3価以上の価数を有する多官能酸ハライドを含む場合、架橋構造を有するポリアミドから構成される分離機能層を形成できる。 The polyfunctional acid halide is an acid halide having two or more reactive carbonyl groups. The polyfunctional acid halide may be an aromatic polyfunctional acid halide or an aliphatic polyfunctional acid halide. The aliphatic polyfunctional acid halide may be an alicyclic polyfunctional acid halide. The compound group may contain two or more polyfunctional acid halides. When the compound group includes a polyfunctional acid halide having a valence of 3 or more, a separation functional layer composed of a polyamide having a crosslinked structure can be formed.
 芳香族多官能酸ハライドは特に限定されず、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライドおよびクロロスルホニルベンゼンジカルボン酸ジクロライドから選ばれる少なくとも1種である。 The aromatic polyfunctional acid halide is not particularly limited, and examples thereof include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid trichloride, benzene disulfonic acid dichloride, and chloro. It is at least one selected from sulfonylbenzene dicarboxylic acid dichloride.
 脂肪族多官能酸ハライドは特に限定されず、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、ブタントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド、および後述の脂環式多官能酸ハライドから選ばれる少なくとも1種である。 The aliphatic polyfunctional acid halide is not particularly limited. For example, propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, butanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide. , Adipoyl halide, and alicyclic polyfunctional acid halide described below.
 脂環式多官能酸ハライドは特に限定されず、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、およびテトラハイドロフランジカルボン酸ジクロライドから選ばれる少なくとも1種である。 The alicyclic polyfunctional acid halide is not particularly limited. For example, cyclopropanetricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, It is at least one selected from tetrahydrofurantetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
 多孔性支持体の構成は、その上に分離機能層を形成しうる限り限定されない。多孔性支持体は、例えば、微多孔層を不織布上に形成した限外濾過膜である。微多孔層の平均孔径は、例えば、0.01~0.4μm程度である。微多孔層の材料は、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン;ポリイミド;ポリフッ化ビニリデンである。なかでも、化学的、機械的および熱的安定性が高いことから、ポリスルホンおよびポリアリールエーテルスルホンが好ましい。多孔性支持体は、エポキシ樹脂のような熱硬化性樹脂から構成される自立型の支持体であってもよく、この場合、多孔性支持体は、例えば0.01~0.4μmの平均孔径を有する。多孔性支持体の厚さは特に限定されず、例えば10~200μmであり、好ましくは20~75μmである。 The configuration of the porous support is not limited as long as a separation functional layer can be formed thereon. The porous support is, for example, an ultrafiltration membrane in which a microporous layer is formed on a nonwoven fabric. The average pore size of the microporous layer is, for example, about 0.01 to 0.4 μm. The material of the microporous layer is, for example, polyarylethersulfone such as polysulfone or polyethersulfone; polyimide; polyvinylidene fluoride. Of these, polysulfone and polyarylethersulfone are preferred because of their high chemical, mechanical and thermal stability. The porous support may be a self-supporting support composed of a thermosetting resin such as an epoxy resin. In this case, the porous support has an average pore diameter of, for example, 0.01 to 0.4 μm. Have The thickness of the porous support is not particularly limited and is, for example, 10 to 200 μm, preferably 20 to 75 μm.
 分離機能層を多孔性支持体上に形成する方法は特に限定されず、公知の手法を採用できる。分離機能層の形成方法は、例えば、界面縮合法、相分離法、薄膜塗布法である。界面縮合法は、多官能アミンを含むアミン水溶液と、多官能酸ハライドを含む酸ハライド有機溶液とを接触させることにより、その接触面(界面)において多官能アミンと多官能酸ハライドとの反応(重縮合)を進行させてポリアミドから構成される分離機能層を形成する方法である。この界面縮合による分離機能層の形成は、多孔性支持体上で行うことができ、この場合、多孔性支持体上に分離機能層が直接形成されることになる。もちろん、多孔性支持体上以外の場所、例えば転写基板上、で形成した分離機能層を多孔性支持体上に載置してもよい。界面縮合法の詳細は、例えば、特開昭58-24303号公報、特開平1-180208号公報等に記載されており、これら公知文献に記載の条件などを適宜、採用できる。相分離法および薄膜塗布法においても、公知文献に記載の方法を採用できる。 The method for forming the separation functional layer on the porous support is not particularly limited, and a known method can be adopted. Examples of the method for forming the separation functional layer include an interfacial condensation method, a phase separation method, and a thin film coating method. In the interfacial condensation method, an amine aqueous solution containing a polyfunctional amine is brought into contact with an acid halide organic solution containing a polyfunctional acid halide, so that the reaction between the polyfunctional amine and the polyfunctional acid halide at the contact surface (interface) ( This is a method for forming a separation functional layer composed of polyamide by advancing polycondensation). The formation of the separation functional layer by the interfacial condensation can be performed on the porous support. In this case, the separation functional layer is directly formed on the porous support. Of course, a separation functional layer formed at a place other than on the porous support, for example, on the transfer substrate, may be placed on the porous support. Details of the interfacial condensation method are described, for example, in JP-A-58-24303 and JP-A-1-180208, and the conditions described in these publicly-known documents can be appropriately employed. Also in the phase separation method and the thin film coating method, methods described in known literatures can be employed.
 分離機能層は、多官能アミン成分を含むアミン水溶液を多孔性支持体上に塗布して水溶液被覆層を形成し、次いで多官能酸ハライドを含む酸ハライド有機溶液を多孔性支持体に塗布して被覆層と接触させ、界面重合を進行させて形成することが好ましい。 The separation functional layer is formed by applying an aqueous amine solution containing a polyfunctional amine component on a porous support to form an aqueous solution coating layer, and then applying an acid halide organic solution containing a polyfunctional acid halide to the porous support. It is preferably formed by contacting with the coating layer and advancing interfacial polymerization.
 この方法においてアミン水溶液における多官能アミンの濃度は特に限定されず、例えば、0.1~10重量%であり、好ましくは1~4重量%である。アミン水溶液における多官能アミンの濃度が過度に低くなると、形成された分離機能層にピンホールなどの欠陥が生じやすくなるとともに溶解物の阻止率が低下する傾向にある。一方、多官能アミンの濃度が過度に高くなると、形成された分離機能層の厚さが大きくなりすぎて透過抵抗が増大し、透過流束が低下する傾向にある。 In this method, the concentration of the polyfunctional amine in the amine aqueous solution is not particularly limited, and is, for example, 0.1 to 10% by weight, preferably 1 to 4% by weight. If the concentration of the polyfunctional amine in the aqueous amine solution is excessively low, defects such as pinholes are likely to occur in the formed separation functional layer, and the blocking rate of the dissolved product tends to decrease. On the other hand, when the concentration of the polyfunctional amine is excessively high, the thickness of the formed separation functional layer becomes too large, the permeation resistance increases, and the permeation flux tends to decrease.
 また、この方法において酸ハライド有機溶液における多官能酸ハライドの濃度は特に限定されず、例えば、0.01~5重量%であり、好ましくは0.05~3重量%である。有機溶液における多官能酸ハライドの濃度が過度に低くなると、形成された分離機能層に未反応の多官能アミンが残留しやすくなったり、ピンホールなどの欠陥が生じやすくなるとともに溶解物の阻止率が低下する傾向にある。一方、多官能酸ハライドの濃度が過度に高くなると、形成された分離機能層に未反応の多官能酸ハライドが残留しやすくなったり、分離機能層の厚さが大きくなりすぎて透過抵抗が増大し、透過流束が低下する傾向にある。 In this method, the concentration of the polyfunctional acid halide in the acid halide organic solution is not particularly limited, and is, for example, 0.01 to 5% by weight, preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide in the organic solution is excessively low, unreacted polyfunctional amines are likely to remain in the formed separation functional layer, and defects such as pinholes are likely to occur, and the blocking rate of dissolved substances. Tend to decrease. On the other hand, if the concentration of the polyfunctional acid halide is excessively high, unreacted polyfunctional acid halide tends to remain in the formed separation functional layer, or the thickness of the separation functional layer becomes too large and the permeation resistance increases. However, the permeation flux tends to decrease.
 酸ハライド有機溶液に用いる有機溶媒は、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライドを溶解する限り特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、ノナンなどの飽和炭化水素;1,1,2-トリクロロトリフルオロエタンなどのハロゲン置換炭化水素である。有機溶媒は、300℃以下の沸点を有する飽和炭化水素が好ましく、200℃以下の沸点を有する飽和炭化水素がより好ましい。 The organic solvent used in the acid halide organic solution is not particularly limited as long as the solubility in water is low, the porous support is not deteriorated, and the polyfunctional acid halide is dissolved. For example, saturation such as cyclohexane, heptane, octane, nonane, etc. Hydrocarbon: Halogen-substituted hydrocarbon such as 1,1,2-trichlorotrifluoroethane. The organic solvent is preferably a saturated hydrocarbon having a boiling point of 300 ° C. or lower, more preferably a saturated hydrocarbon having a boiling point of 200 ° C. or lower.
 多孔性支持体上にアミン水溶液を塗布してから酸ハライド有機溶液を塗布するまでの時間は、アミン水溶液の組成および粘度、ならびに多孔性支持体の表面の孔径にもよるが、1~180秒程度であり、好ましくは2~120秒であり、より好ましくは2~40秒であり、特に好ましくは2~10秒である。両者の塗布間隔が過度に長くなると、酸ハライド有機溶液を塗布するまでの間にアミン水溶液が多孔性支持体の内部深くにまで浸透、拡散することで、未反応の多官能アミンが多孔性支持体中に大量に残留するおそれがある。また、多孔性支持体の内部深くにまで浸透した未反応の多官能アミンは、その後の洗浄処理によっても除去し難い傾向にある。一方、両者の塗布間隔が過度に短くなると、酸ハライド有機溶液の塗布までにアミン水溶液が多孔性支持体にほとんど浸透せず、多孔性支持体上に過剰なアミン水溶液が存在することで、形成された分離機能層の特性が低下する傾向にある。 The time from application of the aqueous amine solution to the application of the acid halide organic solution on the porous support is 1 to 180 seconds, depending on the composition and viscosity of the aqueous amine solution and the pore size of the surface of the porous support. About 2 to 120 seconds, more preferably 2 to 40 seconds, and particularly preferably 2 to 10 seconds. If the coating interval between the two is excessively long, the aqueous amine solution penetrates and diffuses deeply into the porous support before the acid halide organic solution is applied, so that the unreacted polyfunctional amine is porous supported. May remain in large quantities in the body. Moreover, the unreacted polyfunctional amine that has penetrated deep inside the porous support tends to be difficult to remove by subsequent washing treatment. On the other hand, if the coating interval between the two becomes excessively short, the aqueous amine solution hardly penetrates into the porous support until the application of the acid halide organic solution, and there is an excess aqueous amine solution on the porous support. The properties of the separated functional layer tend to be deteriorated.
 この方法では、多孔性支持体上に形成されたアミン水溶液の被覆層と酸ハライド有機溶液とを接触させた後、多孔性支持体上に存在する過剰な有機溶液を除去するとともに、多孔性支持体上に形成された膜を加熱乾燥して分離機能層を形成することが好ましい。加熱乾燥により、分離機能層の機械的強度および耐熱性を高めることができる。加熱乾燥の温度は、例えば、70~200℃であり、80~130℃が好ましい。加熱時間は、例えば、30秒~10分程度であり、40秒~7分程度が好ましい。 In this method, after contacting the coating layer of the aqueous amine solution formed on the porous support and the acid halide organic solution, the excess organic solution present on the porous support is removed and the porous support is removed. It is preferable to form a separation functional layer by heating and drying a film formed on the body. By mechanical drying, the mechanical strength and heat resistance of the separation functional layer can be increased. The temperature for heat drying is, for example, 70 to 200 ° C., preferably 80 to 130 ° C. The heating time is, for example, about 30 seconds to 10 minutes, and preferably about 40 seconds to 7 minutes.
 化合物群は、多官能アミン(A),(B)および多官能酸ハライド以外に、分離機能膜の形成を容易にしたり、得られる複合分離膜の特性を向上させたりする目的で、各種の添加剤を含むことができる。添加剤は、例えば、界面縮合法におけるアミン水溶液および/または酸ハライド有機溶液に含ませればよい。種類によっては、添加剤は形成された分離機能層に残留し、例えば、複合分離膜の特性向上に寄与する。 In addition to the polyfunctional amines (A), (B) and polyfunctional acid halides, the compound group has various additions for the purpose of facilitating the formation of a separation functional membrane and improving the properties of the resulting composite separation membrane. An agent can be included. The additive may be contained in, for example, an aqueous amine solution and / or an acid halide organic solution in the interfacial condensation method. Depending on the type, the additive remains in the formed separation functional layer and contributes to, for example, improving the characteristics of the composite separation membrane.
 添加剤は、例えば親水性ポリマーである。すなわち、化合物群が親水性ポリマーをさらに含んでいてもよい。親水性ポリマーは、例えば、ポリビニルアルコール、ポリビニルピロリドンおよびポリアクリル酸から選ばれる少なくとも1種であり、ポリビニルアルコールが好ましい。界面縮合法により分離機能層を形成する場合、多官能アミン水溶液がポリビニルアルコールなどの親水性ポリマーを含めばよい。親水性ポリマーは、多官能アミンおよび多官能酸ハライドとともに共重合することで、形成された分離機能層の表面および内部の親水性を向上させる。これにより、複合分離膜の透過流束をさらに向上できる。これとともにポリアミドの組成に特徴を有する本開示の複合分離膜では、親水性ポリマーによる透過流束の向上が従来の分離機能層に比べて大きい。添加剤の添加量は、0.01~20重量%程度が好ましく、0.05~5重量%がより好ましい。 The additive is, for example, a hydrophilic polymer. That is, the compound group may further contain a hydrophilic polymer. The hydrophilic polymer is, for example, at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, and polyacrylic acid, and polyvinyl alcohol is preferable. When the separation functional layer is formed by the interfacial condensation method, the polyfunctional amine aqueous solution may contain a hydrophilic polymer such as polyvinyl alcohol. The hydrophilic polymer is copolymerized with a polyfunctional amine and a polyfunctional acid halide to improve the hydrophilicity of the surface and inside of the formed separation functional layer. Thereby, the permeation flux of the composite separation membrane can be further improved. At the same time, in the composite separation membrane of the present disclosure characterized by the composition of the polyamide, the improvement in permeation flux by the hydrophilic polymer is larger than that of the conventional separation functional layer. The addition amount of the additive is preferably about 0.01 to 20% by weight, more preferably 0.05 to 5% by weight.
 他の添加剤は、例えば、多孔性支持体に対する溶液の濡れ性を改善するドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、およびラウリル硫酸ナトリウムなどの界面活性剤;多官能アミンと多官能酸ハライドとの反応により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウムおよびトリエチルアミンなどの塩基性化合物;当該反応の触媒となるアシル化触媒;特開平8-224452号公報に記載されている溶解度パラメータが8~14(cal/cm31/2の化合物である。これらの化合物は、必要に応じて、アミン水溶液に添加すればよい。 Other additives include, for example, surfactants such as sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate that improve the wettability of the solution to the porous support; polyfunctional amines and polyfunctional acid halides Basic compounds such as sodium hydroxide, trisodium phosphate and triethylamine for removing hydrogen halide produced by the reaction; acylation catalysts for the reaction; solubility parameters described in JP-A-8-224452 Is a compound of 8 to 14 (cal / cm 3 ) 1/2 . These compounds may be added to the aqueous amine solution as necessary.
 また例えば、添加剤は、テトラアルキルアンモニウムハライドまたはトリアルキルアンモニウムと、有機酸との塩である。この塩は:分離機能層の形成をより容易にする;アミン水溶液の多孔性支持体への吸収性を改善する;多官能アミンと多官能酸ハライドとの反応を促進する;などの効果を有する。この塩は、必要に応じて、アミン水溶液に添加すればよい。 For example, the additive is a salt of a tetraalkylammonium halide or trialkylammonium and an organic acid. This salt has the following effects: makes it easier to form a separation functional layer; improves the absorbability of the aqueous amine solution to the porous support; promotes the reaction between the polyfunctional amine and the polyfunctional acid halide; . What is necessary is just to add this salt to amine aqueous solution as needed.
 分離機能層の厚さは特に限定されず、通常、0.05~2μm程度であり、好ましくは0.1~1μmである。分離機能層の厚さは均一であることが好ましい。 The thickness of the separation functional layer is not particularly limited, and is usually about 0.05 to 2 μm, preferably 0.1 to 1 μm. The thickness of the separation functional layer is preferably uniform.
 分離機能層の形状は特に限定されない。多孔性支持体上に形成された一層の分離機能層であってもよいし、特開2011-189340号公報に記載されている「二重ひだ構造」を有する分離機能層であってもよい。 The shape of the separation functional layer is not particularly limited. One separation functional layer formed on a porous support may be used, or a separation functional layer having a “double pleated structure” described in JP 2011-189340 A may be used.
 分離機能層はポリアミドから構成される、すなわち、ポリアミドを主成分とする層である。主成分とは、最も含有率が大きい成分のことであり、その含有率は通常50重量%以上であり、60重量%以上、70重量%以上、80重量%以上、90重量%以上の順により好ましい。分離機能層はポリアミドからなる層であってもよい。本発明の効果が得られる限り、分離機能層はポリアミド以外の材料を含んでいてもよい。 The separation functional layer is composed of polyamide, that is, a layer mainly composed of polyamide. The main component is a component having the largest content, and the content is usually 50% by weight or more, and in the order of 60% by weight, 70% by weight, 80% by weight, 90% by weight or more. preferable. The separation functional layer may be a layer made of polyamide. As long as the effect of the present invention is obtained, the separation functional layer may contain a material other than polyamide.
 本開示の複合分離膜は、さらに塩素処理を施した膜であってもよい。塩素処理により、ポリアミドにおける結合が不安定な部分が除去されるなどして、複合分離膜の透過流束がさらに向上する。これとともにポリアミドの組成に特徴を有する本開示の複合分離膜では、塩素処理による溶解物の阻止率の低下が従来の分離機能層に比べて抑制される。 The composite separation membrane of the present disclosure may be a membrane further subjected to chlorination. The permeation flux of the composite separation membrane is further improved by removing the unstable part of the polyamide in the chlorination. At the same time, in the composite separation membrane of the present disclosure characterized by the composition of the polyamide, a decrease in the rejection rate of dissolved substances due to chlorination is suppressed as compared with the conventional separation functional layer.
 塩素処理には公知の方法を採用できる。例えば、遊離塩素を含む水溶液と分離機能層とを接触させることにより、塩素処理を実施できる。遊離塩素を含む水溶液は特に限定されず、例えば次亜塩素酸ナトリウム、塩化カルシウムのような水中で遊離塩素を発生させる作用を有する塩素化合物の水溶液である。当該水溶液における塩素化合物の濃度は、100~1000mg/L程度が好ましく、その際の遊離塩素濃度は10~1000ppm程度である。塩素処理の条件は特に限定されず、水溶液の遊離塩素濃度、分離機能層の材質などに応じて制御でき、例えば処理時間は10分~100時間の範囲で制御する。水溶液と分離機能層とを接触させる具体的な方法は特に限定されず、例えば、複合分離膜を水溶液に浸漬させたり、分離機能層上に水溶液を塗布または噴霧したり、複合分離膜に水溶液を通水させたりする方法がある。通水させる場合、水溶液に1~5MPa程度の圧力を印加して加圧通水することが好ましい。 Known methods can be employed for chlorination. For example, chlorination can be carried out by bringing an aqueous solution containing free chlorine into contact with the separation functional layer. The aqueous solution containing free chlorine is not particularly limited, and is, for example, an aqueous solution of a chlorine compound having an action of generating free chlorine in water such as sodium hypochlorite and calcium chloride. The concentration of the chlorine compound in the aqueous solution is preferably about 100 to 1000 mg / L, and the free chlorine concentration at that time is about 10 to 1000 ppm. The conditions for chlorination are not particularly limited and can be controlled according to the concentration of free chlorine in the aqueous solution, the material of the separation functional layer, etc. For example, the treatment time is controlled in the range of 10 minutes to 100 hours. The specific method of bringing the aqueous solution into contact with the separation functional layer is not particularly limited. For example, the composite separation membrane is immersed in the aqueous solution, the aqueous solution is applied or sprayed on the separation functional layer, or the aqueous solution is applied to the composite separation membrane. There is a way to let water through. When passing water, it is preferable to apply a pressure of about 1 to 5 MPa to the aqueous solution and pressurize the water.
 本開示の複合分離膜の表面にコーティング層が設けられていてもよい。コーティング層は、例えば、非イオン性の親水性層であり、ポリマーにより構成される層である。親水性層であるコーティング層を設けた場合、複合分離膜表面の親水性が向上することで複合分離膜の透過流束がさらに向上する。コーティング層は、複合分離膜の分離機能層側の表面に設けられていることが好ましい。 A coating layer may be provided on the surface of the composite separation membrane of the present disclosure. The coating layer is, for example, a nonionic hydrophilic layer and is a layer composed of a polymer. When the coating layer which is a hydrophilic layer is provided, the permeation flux of the composite separation membrane is further improved by improving the hydrophilicity of the composite separation membrane surface. The coating layer is preferably provided on the surface of the composite separation membrane on the separation functional layer side.
 コーティング層に用いるポリマーは、分離機能層および多孔性支持体を溶解しないとともに、複合分離膜の使用時(例えば水処理時)に溶出しない限り特に限定されない。当該ポリマーは、例えば、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ポリエチレングリコール、およびエチレン-酢酸ビニル共重合体のケン化物から選ばれる少なくとも1種である。ポリマーはポリビニルアルコールが好ましく、特に99%以上のけん化度を有するポリビニルアルコールが好ましい。コーティング層は、例えば、上記ポリマーが溶解した溶液に複合分離膜を浸漬し、乾燥させることによって複合分離膜の表面に形成できる。 The polymer used for the coating layer is not particularly limited as long as it does not dissolve the separation functional layer and the porous support and does not elute when the composite separation membrane is used (for example, during water treatment). The polymer is, for example, at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, hydroxypropyl cellulose, polyethylene glycol, and a saponified ethylene-vinyl acetate copolymer. The polymer is preferably polyvinyl alcohol, particularly preferably polyvinyl alcohol having a saponification degree of 99% or more. The coating layer can be formed on the surface of the composite separation membrane by, for example, immersing the composite separation membrane in a solution in which the polymer is dissolved and drying it.
 コーティング層は分離機能層を構成するポリアミドとの架橋構造を有していてもよい。この場合、複合分離膜の使用時におけるコーティング層の溶出を抑制できる。ポリアミドとの架橋構造を有するコーティング層は、例えば、90%以上のけん化度を有するポリビニルアルコールを含む層である。ポリビニルアルコールとポリアミドとを架橋させる方法は特に限定されず、例えば、ポリビニルアルコール層を分離機能層の表面に形成した複合分離膜を、塩酸酸性の多価アルデヒド溶液に浸漬すればよい。多価アルデヒドは、例えば、グルタルアルデヒド、テレフタルアルデヒドなどのジアルデヒドである。多価アルデヒドの代わりに、または多価アルデヒドとともに、架橋剤としてエポキシ化合物および多価カルボン酸などの有機架橋剤、および/またはホウ素化合物などの無機架橋剤を用いてもよい。 The coating layer may have a crosslinked structure with polyamide constituting the separation functional layer. In this case, the elution of the coating layer when using the composite separation membrane can be suppressed. The coating layer having a crosslinked structure with polyamide is, for example, a layer containing polyvinyl alcohol having a saponification degree of 90% or more. The method for crosslinking polyvinyl alcohol and polyamide is not particularly limited. For example, a composite separation membrane in which a polyvinyl alcohol layer is formed on the surface of the separation functional layer may be immersed in a hydrochloric acid-containing polyvalent aldehyde solution. The polyvalent aldehyde is, for example, a dialdehyde such as glutaraldehyde or terephthalaldehyde. An organic crosslinking agent such as an epoxy compound and a polyvalent carboxylic acid and / or an inorganic crosslinking agent such as a boron compound may be used as a crosslinking agent instead of or together with the polyvalent aldehyde.
 本開示の複合分離膜が示す塩透過率は、硫酸マグネシウム水溶液(濃度0.20重量%、pH6.5、温度25℃)に対する操作圧力1.0MPaのときの値にして、95%以上であり、ポリアミドの組成、塩素処理の有無、添加剤の種類および量によっては、96%以上、97%以上、98%以上、さらには99%以上となる。 The salt permeability exhibited by the composite separation membrane of the present disclosure is 95% or more as a value at an operating pressure of 1.0 MPa with respect to an aqueous magnesium sulfate solution (concentration 0.20 wt%, pH 6.5, temperature 25 ° C.). Depending on the composition of the polyamide, the presence or absence of chlorination, and the type and amount of the additive, it is 96% or more, 97% or more, 98% or more, and 99% or more.
 本開示の複合分離膜が示す透過流束は、操作圧力1.0MPaのときの値にして、1.5(m3/(m2・day))以上であり、ポリアミドの組成、塩素処理の有無、添加剤の種類および量によっては、1.8(m3/(m2・day))以上、1.9(m3/(m2・day))以上、2.0(m3/(m2・day))以上、さらには3.0(m3/(m2・day))以上となる。また、上記塩透過率の値を同時に達成することもできる。 The permeation flux shown by the composite separation membrane of the present disclosure is 1.5 (m 3 / (m 2 · day)) or more when the operating pressure is 1.0 MPa. 1.8 (m 3 / (m 2 · day)) or more, 1.9 (m 3 / (m 2 · day)) or more, 2.0 (m 3 / (M 2 · day)) or more, and further 3.0 (m 3 / (m 2 · day)) or more. In addition, the salt permeability value can be achieved at the same time.
 本開示の複合分離膜は、一般に、分離膜エレメントの形態に加工され、圧力容器(ベッセル)に装填された状態で使用される。例えば図1に示すように、スパイラル型の膜エレメントは、複合分離膜31と供給側流路材32と透過側流路材33とが積層された状態で中心管(集水管)35の周囲にスパイラル状に巻回された積層体30を備えている。膜エレメントは、この積層体30を端部材および外装材で固定して製造される。 The composite separation membrane of the present disclosure is generally processed in the form of a separation membrane element and used in a state of being loaded in a pressure vessel (a vessel). For example, as shown in FIG. 1, the spiral membrane element is formed around a central pipe (water collecting pipe) 35 in a state where a composite separation membrane 31, a supply-side flow path member 32, and a permeate-side flow path member 33 are laminated. A laminate 30 wound in a spiral shape is provided. The membrane element is manufactured by fixing the laminate 30 with an end member and an exterior material.
 本開示の複合分離膜は、従来の複合分離膜と同様の用途に使用できる。当該用途は、例えば、逆浸透(RO)膜、限外濾過(NF)膜、精密濾過(MF)膜、正浸透(FO)膜としての使用である。より具体的な用途として、例えば、純水または超純水の製造、海水などのかん水の脱塩、有害成分の除去あるいは有用成分の回収といった排水処理、食品または医薬分野における有効成分の濃縮あるいは回収といった高度処理、の用途に使用できる。 The composite separation membrane of the present disclosure can be used for the same applications as conventional composite separation membranes. The application is, for example, use as a reverse osmosis (RO) membrane, ultrafiltration (NF) membrane, microfiltration (MF) membrane, forward osmosis (FO) membrane. More specific applications include, for example, production of pure water or ultrapure water, desalination of brine such as seawater, removal of harmful components or recovery of useful components, concentration or recovery of active ingredients in the food or pharmaceutical field. It can be used for advanced processing.
 以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下に示す実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples shown below.
 最初に、本実施例において作製した分離機能層および複合分離膜の評価方法を示す。 First, an evaluation method of the separation functional layer and the composite separation membrane produced in this example is shown.
 [ポリアミドの組成]
 分離機能層を構成するポリアミドにおけるアミン単位のモル組成比(ポリアミドの全アミン単位に占める各アミン単位の割合の比)は、作製した複合分離膜から分離機能層を機械的に分離した後、分離した分離機能層に対して1H-NMR測定を実施して求めた。
[Polyamide composition]
The molar composition ratio of amine units in the polyamide constituting the separation functional layer (ratio of the proportion of each amine unit in the total amine units of the polyamide) is determined after mechanically separating the separation functional layer from the produced composite separation membrane. It was determined by performing 1 H-NMR measurement on the separated functional layer.
 [塩阻止率]
 作製した複合分離膜の塩阻止率は、以下のようにして求めた。複合分離膜に硫酸マグネシウム(MgSO4)水溶液(濃度0.20重量%、温度25℃、pH6.5)を操作圧力1.0MPaで30分間透過させた。電導度測定装置(京都電子製、CM-117)を用いて膜透過液および供給液の電導度測定を行い、その結果および検量線(濃度-電導度)から、下記式に基づいて、MgSO4の阻止率を算出した。
 阻止率=(1-(膜透過液中のMgSO4濃度/供給液中のMgSO4濃度))×100(%)
[Salt rejection]
The salt rejection of the produced composite separation membrane was determined as follows. A magnesium sulfate (MgSO 4 ) aqueous solution (concentration 0.20 wt%, temperature 25 ° C., pH 6.5) was permeated through the composite separation membrane at an operating pressure of 1.0 MPa for 30 minutes. Conductivity measurement of the membrane permeate and the feed solution was performed using a conductivity measuring device (manufactured by Kyoto Electronics Co., Ltd., CM-117). From the results and calibration curve (concentration-conductivity), MgSO 4 The rejection rate was calculated.
Rejection = (1-(MgSO 4 concentration of MgSO 4 concentration / feed in the membrane permeate)) × 100 (%)
 [透過流束]
 作製した複合分離膜の透過流束を、塩阻止率を評価する際に併せて測定した膜透過液量から、以下の式により求めた。
 透過流束(m3/(m2・day))=透過液量/(膜面積×サンプリング時間)
[Transmission flux]
The permeation flux of the produced composite separation membrane was determined from the amount of membrane permeate measured together with the salt rejection rate by the following formula.
Permeation flux (m 3 / (m 2 · day)) = permeate volume / (membrane area × sampling time)
 (実施例1)
 ピペラジン3.582重量%、m-フェニレンジアミン(MPD)0.018重量%、ラウリル硫酸ナトリウム0.15重量%、水酸化ナトリウム0.45重量%、カンファスルホン酸6重量%を含有するアミン水溶液を、多孔性支持体である多孔性ポリスルホン酸支持体(分離機能層を形成する側の平均孔径20μm、当該側と反対側とで平均孔径が異なる非対称膜)に塗布した後、余分の水溶液を除去した。次に、支持体におけるアミン水溶液の塗布面にトリメシン酸クロライド0.4重量%を含有するイソオクタン溶液を接触させて界面縮合重合反応を進行させ、多孔性支持体上にポリアミドの分離機能層(厚さ1μm)を形成して、複合分離膜を得た。
Example 1
An aqueous amine solution containing piperazine 3.582% by weight, m-phenylenediamine (MPD) 0.018% by weight, sodium lauryl sulfate 0.15% by weight, sodium hydroxide 0.45% by weight, and camphorsulfonic acid 6% by weight. After applying to a porous polysulfonic acid support, which is a porous support (an asymmetric membrane having an average pore diameter of 20 μm on the side where the separation functional layer is formed, and an average pore diameter on the opposite side is different), the excess aqueous solution is removed. did. Next, an isooctane solution containing 0.4% by weight of trimesic acid chloride is brought into contact with the application surface of the aqueous amine solution on the support to advance the interfacial condensation polymerization reaction. 1 μm) to form a composite separation membrane.
 このようにして得た複合分離膜の分離機能層におけるアミン単位の組成比(モル比)は、ピペラジン単位:MPD単位=91:9であった。なお、仕込み比は、モル比でピペラジン:MPD=98:2であった。 The composition ratio (molar ratio) of amine units in the separation functional layer of the composite separation membrane thus obtained was piperazine units: MPD units = 91: 9. The charging ratio was piperazine: MPD = 98: 2 in terms of molar ratio.
 得られた複合分離膜の塩(MgSO4)阻止率は99.7%、透過流束は1.90(m3/(m2・day))であった。 The resulting composite separation membrane had a salt (MgSO 4 ) rejection of 99.7% and a permeation flux of 1.90 (m 3 / (m 2 · day)).
 (実施例2,3、比較例1~4)
 以下の表1に示す値となるように、アミン水溶液におけるピペラジンおよびMPDの仕込み比を制御した以外は実施例1と同様にして、複合分離膜を得た。
(Examples 2 and 3, Comparative Examples 1 to 4)
A composite separation membrane was obtained in the same manner as in Example 1 except that the feed ratio of piperazine and MPD in the aqueous amine solution was controlled so as to have the values shown in Table 1 below.
 以下の表1に、実施例1~3および比較例1~4の分離機能層におけるアミン単位の組成比、塩阻止率、透過流束、ならびにアミン水溶液におけるピペラジンおよびMPDの仕込み比を示す。実施例3の分離機能層におけるアミン単位の組成比は現段階で未測定であるため、表1では「-」で示す。 Table 1 below shows the composition ratio of amine units, salt rejection, permeation flux, and the ratio of piperazine and MPD in the aqueous amine solution in the separation functional layers of Examples 1 to 3 and Comparative Examples 1 to 4. Since the composition ratio of amine units in the separation functional layer of Example 3 has not been measured at this stage, it is indicated by “−” in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように実施例1~3では、比較例1,4を基準として、比較例2,3に比べて塩阻止率の低下を抑制しながら透過流束の大幅な向上を達成できた。 As shown in Table 1, in Examples 1 to 3, the permeation flux was significantly improved while suppressing the decrease in the salt rejection rate compared to Comparative Examples 2 and 3 with Comparative Examples 1 and 4 as a reference. .
 (実施例4、比較例5,6)
 MPDの代わりにN-フェニルエチレンジアミン(FED)を用いるとともに、分離機能層におけるアミン単位の組成比が以下の表2に示す値となるようにアミン水溶液におけるピペラジンおよびFEDの仕込み比を制御した以外は実施例1と同様にして、複合分離膜を得た。
(Example 4, Comparative Examples 5 and 6)
Except for using N-phenylethylenediamine (FED) instead of MPD and controlling the feed ratio of piperazine and FED in the aqueous amine solution so that the composition ratio of amine units in the separation functional layer is the value shown in Table 2 below. A composite separation membrane was obtained in the same manner as in Example 1.
 以下の表2に、実施例4および比較例5,6の分離機能層におけるアミン単位の組成比、塩阻止率および透過流束を示す。 Table 2 below shows the composition ratio, salt rejection and permeation flux of amine units in the separation functional layers of Example 4 and Comparative Examples 5 and 6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように実施例4では、芳香環を有する多官能アミン単位(単位A)の含有率がほぼ同じである実施例2と同様の塩阻止率および透過流束を達成できた。そして、比較例1,4を基準として、比較例5,6に比べて塩阻止率の低下を抑制しながら透過流束の大幅な向上を達成できた。 As shown in Table 2, in Example 4, the same salt rejection and permeation flux as those in Example 2 in which the content of the polyfunctional amine unit (unit A) having an aromatic ring was almost the same could be achieved. Then, using Comparative Examples 1 and 4 as a reference, it was possible to achieve a significant improvement in permeation flux while suppressing a decrease in salt rejection compared to Comparative Examples 5 and 6.
 (実施例5,6、比較例7~10)
 実施例1,2および比較例1~4で作製した複合分離膜を、遊離塩素濃度100mg/Lの次亜塩素酸ナトリウム水溶液に72時間浸漬することで塩素処理を実施し、それぞれ実施例5,6および比較例7~10とした。
(Examples 5 and 6, Comparative Examples 7 to 10)
The composite separation membranes prepared in Examples 1 and 2 and Comparative Examples 1 to 4 were immersed in an aqueous sodium hypochlorite solution having a free chlorine concentration of 100 mg / L for 72 hours to carry out chlorine treatment. 6 and Comparative Examples 7 to 10.
 以下の表3に、実施例5,6および比較例7~10の分離機能層におけるアミン単位の組成比、塩阻止率および透過流束を示す。 Table 3 below shows the composition ratio, salt rejection and permeation flux of amine units in the separation functional layers of Examples 5 and 6 and Comparative Examples 7 to 10.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、塩素処理により実施例5,6の透過流束は実施例1,2に比べてさらに大きく向上した。 As shown in Table 3, the permeation flux of Examples 5 and 6 was further improved compared to Examples 1 and 2 by chlorination.
 (実施例7、比較例11,12)
 実施例4および比較例5,6で作製した複合分離膜を、遊離塩素濃度100mg/Lの次亜塩素酸ナトリウム水溶液に72時間浸漬することで塩素処理を実施し、それぞれ実施例7および比較例11,12とした。
(Example 7, Comparative Examples 11 and 12)
The composite separation membranes prepared in Example 4 and Comparative Examples 5 and 6 were subjected to chlorine treatment by immersing in a sodium hypochlorite aqueous solution having a free chlorine concentration of 100 mg / L for 72 hours. 11 and 12.
 以下の表4に、実施例7および比較例11,12の分離機能層におけるアミン単位の組成比、塩阻止率および透過流束を示す。 Table 4 below shows the composition ratio, salt rejection, and permeation flux of amine units in the separation functional layers of Example 7 and Comparative Examples 11 and 12.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、塩素処理により実施例7の透過流束は実施例4に比べてさらに大きく向上した。なお、比較例11では塩阻止率が大きく低下し、90%を割り込んだ。 As shown in Table 4, the permeation flux of Example 7 was further improved compared to Example 4 by chlorination. In Comparative Example 11, the salt rejection rate was greatly reduced and fell below 90%.
 (実施例8~12、比較例13)
 アミン水溶液にポリビニルアルコール(けん化度99%)を濃度0.25重量%で添加するとともに、分離機能層におけるアミン単位の組成比が以下の表5に示す値となるようにアミン水溶液におけるピペラジンおよびMPDの仕込み比を制御した以外は実施例1と同様にして、複合分離膜を得た。
(Examples 8 to 12, Comparative Example 13)
While adding polyvinyl alcohol (saponification degree 99%) to the aqueous amine solution at a concentration of 0.25% by weight, piperazine and MPD in the aqueous amine solution so that the composition ratio of the amine units in the separation functional layer has the values shown in Table 5 below. A composite separation membrane was obtained in the same manner as in Example 1 except that the charging ratio was controlled.
 (実施例13~17、比較例14)
 実施例8~12および比較例13で作製した複合分離膜を、遊離塩素濃度100mg/Lの次亜塩素酸ナトリウム水溶液に72時間浸漬することで塩素処理を実施し、それぞれ実施例13~17および比較例14とした。
(Examples 13 to 17, Comparative Example 14)
The composite separation membranes produced in Examples 8 to 12 and Comparative Example 13 were immersed in an aqueous sodium hypochlorite solution having a free chlorine concentration of 100 mg / L for 72 hours to perform chlorination, and Examples 13 to 17 and It was set as Comparative Example 14.
 以下の表5に、実施例8~17および比較例13,14の分離機能層におけるアミン単位の組成比、塩阻止率および透過流束を示す。なお、実施例12,17は、実施例3と同じピペラジンおよびMPDの仕込み比として作製した複合分離膜であり、実施例12,17の分離機能層におけるアミン単位の組成比は現段階で未測定であるため、表5では「-」で示す。 Table 5 below shows the composition ratio, salt rejection and permeation flux of amine units in the separation functional layers of Examples 8 to 17 and Comparative Examples 13 and 14. Examples 12 and 17 are composite separation membranes prepared with the same ratio of piperazine and MPD as in Example 3. The composition ratio of amine units in the separation functional layers of Examples 12 and 17 was not measured at this stage. Therefore, it is indicated by “−” in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、アミン水溶液に対するポリビニルアルコールの添加により、塩阻止率の低下を抑制しながら、透過流束をさらに向上できた。また、塩素処理により、当該透過流束はさらに向上した。 As shown in Table 5, by adding polyvinyl alcohol to the aqueous amine solution, the permeation flux could be further improved while suppressing a decrease in the salt rejection. Moreover, the permeation flux was further improved by chlorination.
 本発明は、その意図および本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味および範囲にあるすべての変更はそれに含まれる。 The present invention can be applied to other embodiments without departing from the intent and essential features thereof. The embodiments disclosed in this specification are illustrative in all respects and are not limited thereto. The scope of the present invention is shown not by the above description but by the appended claims, and all modifications that fall within the meaning and scope equivalent to the claims are embraced therein.
 本開示の複合分離膜は、従来の複合分離膜と同様の用途に使用できる。当該用途は、例えば、逆浸透(RO)膜、限外濾過(NF)膜、精密濾過(MF)膜、正浸透(FO)膜としての使用である。より具体的な用途として、例えば、純水または超純水の製造、海水などのかん水の脱塩、有害成分の除去あるいは有用成分の回収といった排水処理、食品または医薬分野における有効成分の濃縮あるいは回収といった高度処理、の用途に使用できる。 The composite separation membrane of the present disclosure can be used for the same applications as conventional composite separation membranes. The application is, for example, use as a reverse osmosis (RO) membrane, ultrafiltration (NF) membrane, microfiltration (MF) membrane, forward osmosis (FO) membrane. More specific applications include, for example, production of pure water or ultrapure water, desalination of brine such as seawater, removal of harmful components or recovery of useful components, concentration or recovery of active ingredients in the food or pharmaceutical field. It can be used for advanced processing.

Claims (9)

  1.  多孔性支持体と、前記多孔性支持体上に形成された分離機能層と、を備え、
     前記分離機能層は、芳香環を有する多官能アミンと、前記多官能アミンを除く脂肪族多官能アミンと、多官能酸ハライドとを含む化合物群の反応により形成されたポリアミドから構成され、
     前記ポリアミドの多官能アミン単位に占める、前記芳香環を有する多官能アミンに由来する単位の割合が30モル%以下である、複合分離膜。
    A porous support, and a separation functional layer formed on the porous support,
    The separation functional layer is composed of a polyamide formed by a reaction of a compound group including a polyfunctional amine having an aromatic ring, an aliphatic polyfunctional amine excluding the polyfunctional amine, and a polyfunctional acid halide,
    The composite separation membrane whose ratio of the unit derived from the polyfunctional amine which has the said aromatic ring to the polyfunctional amine unit of the said polyamide is 30 mol% or less.
  2.  前記脂肪族多官能アミンが脂環式多官能アミンである、請求項1に記載の複合分離膜。 The composite separation membrane according to claim 1, wherein the aliphatic polyfunctional amine is an alicyclic polyfunctional amine.
  3.  前記脂肪族多官能アミンが、ピペラジンまたはピペラジン誘導体である、請求項1に記載の複合分離膜。 The composite separation membrane according to claim 1, wherein the aliphatic polyfunctional amine is piperazine or a piperazine derivative.
  4.  前記芳香環を有する多官能アミンが、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N-フェニルエチレンジアミン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、およびキシリレンジアミンから選ばれる少なくとも1種である、請求項1に記載の複合分離膜。 The polyfunctional amine having an aromatic ring is m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diamino. Selected from benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N-phenylethylenediamine, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidole, and xylylenediamine The composite separation membrane according to claim 1, which is at least one kind.
  5.  前記ポリアミドの多官能アミン単位に占める、前記芳香環を有する多官能アミンに由来する単位の割合が15モル%以下である、請求項1に記載の複合分離膜。 The composite separation membrane according to claim 1, wherein the proportion of units derived from the polyfunctional amine having an aromatic ring in the polyfunctional amine units of the polyamide is 15 mol% or less.
  6.  前記化合物群が親水性ポリマーをさらに含む、請求項1に記載の複合分離膜。 The composite separation membrane according to claim 1, wherein the compound group further comprises a hydrophilic polymer.
  7.  前記親水性ポリマーがポリビニルアルコールである、請求項6に記載の複合分離膜。 The composite separation membrane according to claim 6, wherein the hydrophilic polymer is polyvinyl alcohol.
  8.  請求項1に記載の複合分離膜にさらに塩素処理を施した複合分離膜。 A composite separation membrane obtained by further chlorinating the composite separation membrane according to claim 1.
  9.  請求項1~8のいずれかに記載の複合分離膜を用いた分離膜エレメント。 A separation membrane element using the composite separation membrane according to any one of claims 1 to 8.
PCT/JP2014/006510 2014-01-28 2014-12-26 Composite separation membrane and separation membrane element using same WO2015114727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013700 2014-01-28
JP2014013700A JP5961643B2 (en) 2014-01-28 2014-01-28 Composite separation membrane and separation membrane element using the same

Publications (1)

Publication Number Publication Date
WO2015114727A1 true WO2015114727A1 (en) 2015-08-06

Family

ID=53756348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006510 WO2015114727A1 (en) 2014-01-28 2014-12-26 Composite separation membrane and separation membrane element using same

Country Status (2)

Country Link
JP (1) JP5961643B2 (en)
WO (1) WO2015114727A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054119A1 (en) * 2017-09-15 2019-03-21 日東電工株式会社 Composite semipermeable membrane and method for manufacturing same
EP3702020A4 (en) * 2018-07-09 2021-02-17 Lg Chem, Ltd. Water treatment separation membrane, water treatment module comprising same, and manufacturing method therefor
JP7072112B1 (en) 2021-11-05 2022-05-19 日東電工株式会社 Composite semipermeable membrane, spiral membrane element, water treatment system and water treatment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6466696B2 (en) * 2014-11-17 2019-02-06 日東電工株式会社 Composite separation membrane and separation membrane element using the same
KR102085402B1 (en) * 2016-05-18 2020-03-05 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418406A (en) * 1987-07-13 1989-01-23 Toyo Boseki Permselective hollow yarn composite membrane and production thereof
JPH04267936A (en) * 1991-02-25 1992-09-24 Nitto Denko Corp Dual semipermeable membrane and preparation thereof
JPH05329346A (en) * 1992-06-01 1993-12-14 Nitto Denko Corp Composite semipermeable membrane
JPH0623238A (en) * 1990-08-17 1994-02-01 Ciba Geigy Ag Enriching or separating method, copolyamide and copolyimidoamide and use thereof
JP2000033243A (en) * 1998-05-11 2000-02-02 Toray Ind Inc Composite semipermeable membrane
JP2008080187A (en) * 2006-09-26 2008-04-10 Toray Ind Inc Composite semipermeable membrane and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418406A (en) * 1987-07-13 1989-01-23 Toyo Boseki Permselective hollow yarn composite membrane and production thereof
JPH0623238A (en) * 1990-08-17 1994-02-01 Ciba Geigy Ag Enriching or separating method, copolyamide and copolyimidoamide and use thereof
JPH04267936A (en) * 1991-02-25 1992-09-24 Nitto Denko Corp Dual semipermeable membrane and preparation thereof
JPH05329346A (en) * 1992-06-01 1993-12-14 Nitto Denko Corp Composite semipermeable membrane
JP2000033243A (en) * 1998-05-11 2000-02-02 Toray Ind Inc Composite semipermeable membrane
JP2008080187A (en) * 2006-09-26 2008-04-10 Toray Ind Inc Composite semipermeable membrane and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054119A1 (en) * 2017-09-15 2019-03-21 日東電工株式会社 Composite semipermeable membrane and method for manufacturing same
JP2019051480A (en) * 2017-09-15 2019-04-04 日東電工株式会社 Composite semipermeable membrane and method for producing the same
CN111050891A (en) * 2017-09-15 2020-04-21 日东电工株式会社 Composite semipermeable membrane and method for producing same
JP7300810B2 (en) 2017-09-15 2023-06-30 日東電工株式会社 Composite semipermeable membrane and manufacturing method thereof
EP3702020A4 (en) * 2018-07-09 2021-02-17 Lg Chem, Ltd. Water treatment separation membrane, water treatment module comprising same, and manufacturing method therefor
US11517861B2 (en) 2018-07-09 2022-12-06 Lg Chem, Ltd. Water treatment separation membrane, water treatment module comprising same, and manufacturing method therefor
JP7072112B1 (en) 2021-11-05 2022-05-19 日東電工株式会社 Composite semipermeable membrane, spiral membrane element, water treatment system and water treatment method
JP2023069193A (en) * 2021-11-05 2023-05-18 日東電工株式会社 Composite semipermeable membrane, spiral membrane element, water treatment system, and water treatment method

Also Published As

Publication number Publication date
JP5961643B2 (en) 2016-08-02
JP2015139742A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP4472028B2 (en) Composite reverse osmosis membrane and method for producing the same
WO2015114727A1 (en) Composite separation membrane and separation membrane element using same
JP6774841B2 (en) Composite semipermeable membrane and spiral separation membrane element
JP4289757B2 (en) Method for producing composite reverse osmosis membrane
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
WO2015118894A1 (en) Method for producing composite semipermeable membrane
JP2008246419A (en) Production method for composite semi-permeable membrane
JP6466696B2 (en) Composite separation membrane and separation membrane element using the same
WO2016052427A1 (en) Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP2019051480A (en) Composite semipermeable membrane and method for producing the same
JP2006102594A (en) Method for manufacturing composite semipermeable membrane
JPWO2002076594A1 (en) Composite semipermeable membrane, method for producing the same, and water treatment method using the same
JP6645764B2 (en) Composite separation membrane and separation membrane element
JP6582352B2 (en) Water treatment separation membrane production method, water treatment separation membrane produced using the same, and water treatment module comprising water treatment separation membrane
WO2016121600A1 (en) Semipermeable composite membrane, spiral separation membrane element, and method for producing same
JP6521422B2 (en) Spiral type separation membrane element
JP2006102624A (en) Reverse osmosis membrane and its manufacturing method
JPH10165790A (en) Manufacture of composite reverse-osmosis membrane
KR102045108B1 (en) Reverse osmosis membrane and method manufacturing same
JP4177231B2 (en) Liquid separation membrane and method for producing the same
KR102035271B1 (en) A method for preparing membrane having nano-sized pore with good chemical resistance
WO2016121599A1 (en) Ship transport method for spiral separation membrane element
JPH10314557A (en) Composite reverse osmosis membrane
KR102157931B1 (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by thereof, and composition for manufacturing water-treatment separation membrane
JP2015147192A (en) Composite semi-permeable membrane manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881007

Country of ref document: EP

Kind code of ref document: A1