JP6466696B2 - Composite separation membrane and separation membrane element using the same - Google Patents

Composite separation membrane and separation membrane element using the same Download PDF

Info

Publication number
JP6466696B2
JP6466696B2 JP2014232470A JP2014232470A JP6466696B2 JP 6466696 B2 JP6466696 B2 JP 6466696B2 JP 2014232470 A JP2014232470 A JP 2014232470A JP 2014232470 A JP2014232470 A JP 2014232470A JP 6466696 B2 JP6466696 B2 JP 6466696B2
Authority
JP
Japan
Prior art keywords
separation membrane
composite separation
polyfunctional amine
composite
polyfunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014232470A
Other languages
Japanese (ja)
Other versions
JP2016093797A (en
Inventor
釜田 卓
卓 釜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014232470A priority Critical patent/JP6466696B2/en
Publication of JP2016093797A publication Critical patent/JP2016093797A/en
Application granted granted Critical
Publication of JP6466696B2 publication Critical patent/JP6466696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多孔性支持体とこの上に形成された分離機能層とを備える複合分離膜、および当該複合分離膜を備える分離膜エレメントに関する。   The present invention relates to a composite separation membrane comprising a porous support and a separation functional layer formed thereon, and a separation membrane element comprising the composite separation membrane.

純水の製造、海水などのかん水の脱塩、および排水処理などに、液体の基質(例えば水)と溶解物(例えば塩類)とを分離する分離膜が使用される。分離膜の一種に、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える複合分離膜がある。分離機能層は、複合分離膜の用途に応じて、ポリアミド、ポリスルホン、酢酸セルロースなどの有機化合物から選択される。複合分離膜として、多官能アミンと多官能酸ハライドとの反応により形成されたポリアミドから構成される膜が知られている。   A separation membrane that separates a liquid substrate (for example, water) from a dissolved material (for example, salts) is used for the production of pure water, desalination of brine such as seawater, and wastewater treatment. One type of separation membrane is a composite separation membrane comprising a porous support and a separation functional layer formed on the porous support. The separation functional layer is selected from organic compounds such as polyamide, polysulfone and cellulose acetate depending on the use of the composite separation membrane. As a composite separation membrane, a membrane composed of polyamide formed by a reaction between a polyfunctional amine and a polyfunctional acid halide is known.

現在、分離特性をさらに改善した複合分離膜が求められている。特に近年、排水処理の用途あるいは海水淡水化の前処理の用途など、溶解物の阻止率よりも基質の透過流束(以下、単に「透過流束」)の大きさが優先的に求められる用途に適合するように分離特性を改善する要求が強い。また、装置の運転エネルギーの低減(省エネルギー化)のために、複合分離膜の透過流束を大きくすることへの需要が常に存在する。   Currently, there is a demand for composite separation membranes with further improved separation characteristics. In particular, in recent years, the use of wastewater treatment or pretreatment for seawater desalination, in which the size of the substrate flux (hereinafter simply referred to as “permeate flux”) is preferentially required over the rejection rate of dissolved substances There is a strong demand to improve the separation characteristics to meet the requirements. In addition, there is always a demand for increasing the permeation flux of the composite separation membrane in order to reduce the operating energy of the apparatus (energy saving).

特許文献1には、多官能酸ハロゲン化物および多官能酸無水物ハロゲン化物の混合物と、脂肪族多官能アミンおよび芳香族多官能アミンの混合物との反応による架橋ポリアミドの分離機能層を備える複合半透膜が開示されている。特許文献1には、当該複合半透膜が高い溶質除去性と高い水透過性とを有することが記載されている。   Patent Document 1 discloses a composite half provided with a separation functional layer of a crosslinked polyamide by reaction of a mixture of a polyfunctional acid halide and a polyfunctional acid anhydride halide with a mixture of an aliphatic polyfunctional amine and an aromatic polyfunctional amine. A permeable membrane is disclosed. Patent Document 1 describes that the composite semipermeable membrane has high solute removal properties and high water permeability.

特開2000-33243号公報JP 2000-33243 A

特許文献1に開示されている複合半透膜をはじめとする従来の複合分離膜では、透過流束の大きさが未だ不十分である。本発明の目的の一つは、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える複合分離膜であって、分離対象液体に含まれる溶解物の阻止率を維持しながら、透過流束をさらに向上させた複合分離膜の提供にある。   In the conventional composite separation membrane including the composite semipermeable membrane disclosed in Patent Document 1, the size of the permeation flux is still insufficient. One of the objects of the present invention is a composite separation membrane comprising a porous support and a separation functional layer formed on the porous support, and maintains the rejection rate of dissolved substances contained in the liquid to be separated. On the other hand, it is to provide a composite separation membrane having further improved permeation flux.

本発明の複合分離膜は、多孔性支持体と、前記多孔性支持体上に形成された分離機能層と、を備え、前記分離機能層は、芳香族多官能アミンと、脂肪族多官能アミンと、多官能酸ハライドとを含む化合物群の反応により形成されたポリアミドから構成され、前記化合物群において、多官能アミンに占める前記芳香族多官能アミンの割合が1モル%以上5モル%未満である。   The composite separation membrane of the present invention comprises a porous support and a separation functional layer formed on the porous support, the separation functional layer comprising an aromatic polyfunctional amine and an aliphatic polyfunctional amine. And a polyamide formed by the reaction of a compound group containing a polyfunctional acid halide, and the ratio of the aromatic polyfunctional amine in the polyfunctional amine in the compound group is 1 mol% or more and less than 5 mol% is there.

本発明の分離膜エレメントは、上記本発明の複合分離膜を備える。   The separation membrane element of the present invention includes the composite separation membrane of the present invention.

本発明によれば、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える複合分離膜であって、分離対象液体に含まれる溶解物の阻止率を維持しながら、透過流束をさらに向上させた複合分離膜が得られる。   According to the present invention, a composite separation membrane comprising a porous support and a separation functional layer formed on the porous support, while maintaining the rejection rate of the lysate contained in the separation target liquid, A composite separation membrane with further improved permeation flux is obtained.

本発明の分離膜エレメントの一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the separation membrane element of this invention.

本発明の複合分離膜は、多孔性支持体と、多孔性支持体上に形成された分離機能層とを備える。分離機能層は、芳香族多官能アミン(A)と、脂肪族多官能アミン(B)と、多官能酸ハライドとを含む化合物群の反応により形成されたポリアミドから構成される。ここで上記化合物群において、多官能アミンに占める芳香族多官能アミン(A)の割合が1モル%以上5モル%未満である。   The composite separation membrane of the present invention comprises a porous support and a separation functional layer formed on the porous support. The separation functional layer is composed of a polyamide formed by the reaction of a compound group including an aromatic polyfunctional amine (A), an aliphatic polyfunctional amine (B), and a polyfunctional acid halide. Here, in the compound group, the ratio of the aromatic polyfunctional amine (A) in the polyfunctional amine is 1 mol% or more and less than 5 mol%.

このポリアミドは、多官能アミン(A),(B)が多官能酸ハライドと反応する、より具体的には重合する(重縮合する)ことにより形成された構成単位を有する。このうち、脂肪族多官能アミン(B)と多官能酸ハライドとの反応により形成された構成単位(C)と、芳香族多官能アミン(A)と多官能酸ハライドとの反応により形成された構成単位(D)とでは、前者の方が柔軟性に富み、後者の方が剛直な傾向にある。このため、構成単位(D)の存在により、ポリアミドの分子鎖に部分的に剛直な部位、換言すれば分子鎖が動き難い部位、が生じ、この部位がポリアミドの分子鎖中に適度に存在することにより、分離対象液体に含まれる溶解物の阻止率を維持しながら、透過流束をさらに向上させた複合分離膜が得られる。そして、ポリアミドを形成する化合物群において、多官能アミンに占める芳香族多官能アミン(A)の割合が1モル%以上5モル%未満のとき、ポリアミドの分子鎖中への構成単位(D)の上記「適度な存在」が達成される。当該割合が1モル%未満では透過流束が向上せず、5モル%以上になると透過流束が却って低下する。   This polyamide has structural units formed by reacting polyfunctional amines (A) and (B) with polyfunctional acid halides, more specifically, polymerizing (polycondensation). Among these, the structural unit (C) formed by the reaction of the aliphatic polyfunctional amine (B) and the polyfunctional acid halide, and the reaction of the aromatic polyfunctional amine (A) and the polyfunctional acid halide. In the structural unit (D), the former tends to be more flexible and the latter tends to be more rigid. For this reason, due to the presence of the structural unit (D), a partially rigid part in the polyamide molecular chain, in other words, a part where the molecular chain is difficult to move, is generated, and this part is appropriately present in the polyamide molecular chain. As a result, it is possible to obtain a composite separation membrane that further improves the permeation flux while maintaining the rejection rate of the dissolved substances contained in the liquid to be separated. And in the compound group which forms polyamide, when the ratio of the aromatic polyfunctional amine (A) in the polyfunctional amine is 1 mol% or more and less than 5 mol%, the structural unit (D) in the molecular chain of the polyamide The “moderate presence” is achieved. If the ratio is less than 1 mol%, the permeation flux is not improved, and if it is 5 mol% or more, the permeation flux decreases.

化合物群における多官能アミンに占める脂肪族多官能アミン(B)の割合は、95モル%を超え99モル%以下である。   The ratio of the aliphatic polyfunctional amine (B) in the polyfunctional amine in the compound group is more than 95 mol% and 99 mol% or less.

多官能アミンは、2以上の反応性アミノ基を有するアミンであり、例えば反応性アミノ基を2つ有するジアミンである。化合物群は、2種以上の芳香族多官能アミン(A)を含んでいてもよいし、2種以上の脂肪族多官能アミン(B)を含んでいてもよい。   The polyfunctional amine is an amine having two or more reactive amino groups, for example, a diamine having two reactive amino groups. The compound group may contain 2 or more types of aromatic polyfunctional amines (A), and may contain 2 or more types of aliphatic polyfunctional amines (B).

芳香族多官能アミン(A)は特に限定されず、例えば、m−フェニレンジアミン、p−フェニレンジアミン、o−フェニレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸、2,4−ジアミノトルエン、2,6−ジアミノトルエン、N,N’−ジメチル−m−フェニレンジアミン、2,4−ジアミノアニソール、アミドール、およびキシリレンジアミンから選ばれる少なくとも1種である。芳香族多官能アミン(A)は、m−フェニレンジアミン、p−フェニレンジアミンおよびo−フェニレンジアミンから選ばれる少なくとも1種が好ましく、m−フェニレンジアミンがより好ましい。また、化合物群が2種以上の芳香族多官能アミン(A)を含むとき、当該多官能アミン(A)としてm−フェニレンジアミンを含むことが好ましい。   The aromatic polyfunctional amine (A) is not particularly limited. For example, m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene. , 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol, and xylylenediamine At least one kind. The aromatic polyfunctional amine (A) is preferably at least one selected from m-phenylenediamine, p-phenylenediamine and o-phenylenediamine, and more preferably m-phenylenediamine. Moreover, when a compound group contains 2 or more types of aromatic polyfunctional amines (A), it is preferable that m-phenylenediamine is included as the said polyfunctional amine (A).

脂肪族多官能アミン(B)は、例えば、脂環式多官能アミンである。この場合、芳香族多官能アミン(A)との組み合わせによって、透過流束をより高いレベルで向上できる。   The aliphatic polyfunctional amine (B) is, for example, an alicyclic polyfunctional amine. In this case, the permeation flux can be improved at a higher level by the combination with the aromatic polyfunctional amine (A).

脂環式多官能アミン(B)は特に限定されず、例えば、1,3−ジアミノシクロヘキサン、1,2−ジアミノシクロへキサン、1,4−ジアミノシクロへキサン、およびピペラジンとその誘導体から選ばれる少なくとも1種である。脂環式多官能アミン(B)は、ピペラジンまたはピペラジン誘導体が好ましい。ここでピペラジン誘導体とは、ピペラジンの炭素原子または窒素原子に結合した水素原子の少なくとも1つが、置換基により置換された化合物をいう。置換基は、例えば、炭素数1〜4のアルキル基、アミノ基、水酸基である。なお、多官能アミンであるため、窒素原子に結合した水素原子が置換されている場合、当該置換基はアミノ基である。ピペラジン誘導体は、例えば、2,5−ジメチルピペラジンおよび4−アミノメチルピペラジンから選ばれる少なくとも1種である。   The alicyclic polyfunctional amine (B) is not particularly limited, and is selected from, for example, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, and piperazine and derivatives thereof. At least one. The alicyclic polyfunctional amine (B) is preferably piperazine or a piperazine derivative. Here, the piperazine derivative means a compound in which at least one hydrogen atom bonded to a carbon atom or a nitrogen atom of piperazine is substituted with a substituent. A substituent is a C1-C4 alkyl group, an amino group, and a hydroxyl group, for example. In addition, since it is a polyfunctional amine, when the hydrogen atom couple | bonded with the nitrogen atom is substituted, the said substituent is an amino group. The piperazine derivative is at least one selected from, for example, 2,5-dimethylpiperazine and 4-aminomethylpiperazine.

多官能酸ハライドは、2以上の反応性カルボニル基を有する酸ハライドである。多官能性酸ハライドは、芳香族多官能酸ハライドであっても、脂肪族多官能酸ハライドであってもよい。脂肪族多官能酸ハライドは、脂環式多官能酸ハライドであってもよい。化合物群は、2種以上の多官能酸ハライドを含んでいてもよい。化合物群が3価以上の価数を有する多官能酸ハライドを含む場合、架橋構造を有するポリアミドから構成される分離機能層を形成できる。   The polyfunctional acid halide is an acid halide having two or more reactive carbonyl groups. The polyfunctional acid halide may be an aromatic polyfunctional acid halide or an aliphatic polyfunctional acid halide. The aliphatic polyfunctional acid halide may be an alicyclic polyfunctional acid halide. The compound group may contain two or more polyfunctional acid halides. When the compound group includes a polyfunctional acid halide having a valence of 3 or more, a separation functional layer composed of a polyamide having a crosslinked structure can be formed.

芳香族多官能酸ハライドは特に限定されず、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライドおよびクロロスルホニルベンゼンジカルボン酸ジクロライドから選ばれる少なくとも1種である。   The aromatic polyfunctional acid halide is not particularly limited, and examples thereof include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzene trisulfonic acid trichloride, benzene disulfonic acid dichloride, and chloro. It is at least one selected from sulfonylbenzene dicarboxylic acid dichloride.

脂肪族多官能酸ハライドは特に限定されず、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、ブタントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド、および後述の脂環式多官能酸ハライドから選ばれる少なくとも1種である。   The aliphatic polyfunctional acid halide is not particularly limited. For example, propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, butanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide. , Adipoyl halide, and alicyclic polyfunctional acid halide described below.

脂環式多官能酸ハライドは特に限定されず、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、およびテトラハイドロフランジカルボン酸ジクロライドから選ばれる少なくとも1種である。   The alicyclic polyfunctional acid halide is not particularly limited. For example, cyclopropanetricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, It is at least one selected from tetrahydrofurantetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.

多孔性支持体の構成は、その上に分離機能層を形成しうる限り限定されない。多孔性支持体は、例えば、微多孔層を不織布上に形成した限外濾過膜である。微多孔層の平均孔径は、例えば、0.01〜0.4μm程度である。微多孔層の材料は、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン;ポリイミド;ポリフッ化ビニリデンである。なかでも、化学的、機械的および熱的安定性が高いことから、ポリスルホンおよびポリアリールエーテルスルホンが好ましい。多孔性支持体は、エポキシ樹脂のような熱硬化性樹脂から構成される自立型の支持体であってもよく、この場合、多孔性支持体は、例えば0.01〜0.4μmの平均孔径を有する。多孔性支持体の厚さは特に限定されず、例えば10〜200μmであり、好ましくは20〜75μmである。   The structure of the porous support is not limited as long as the separation functional layer can be formed thereon. The porous support is, for example, an ultrafiltration membrane in which a microporous layer is formed on a nonwoven fabric. The average pore diameter of the microporous layer is, for example, about 0.01 to 0.4 μm. The material of the microporous layer is, for example, polyarylethersulfone such as polysulfone or polyethersulfone; polyimide; polyvinylidene fluoride. Of these, polysulfone and polyarylethersulfone are preferred because of their high chemical, mechanical and thermal stability. The porous support may be a self-supporting support composed of a thermosetting resin such as an epoxy resin. In this case, the porous support has an average pore diameter of, for example, 0.01 to 0.4 μm. Have The thickness of a porous support body is not specifically limited, For example, it is 10-200 micrometers, Preferably it is 20-75 micrometers.

分離機能層を多孔性支持体上に形成する方法は特に限定されず、公知の手法を採用できる。分離機能層の形成方法は、例えば、界面縮合法、相分離法、薄膜塗布法である。界面縮合法は、多官能アミンを含むアミン水溶液と、多官能酸ハライドを含む酸ハライド有機溶液とを接触させることにより、その接触面(界面)において多官能アミンと多官能酸ハライドとの反応(重縮合)を進行させてポリアミドから構成される分離機能層を形成する方法である。この界面縮合による分離機能層の形成は多孔性支持体上で行うことができ、この場合、多孔性支持体上に分離機能層が直接形成されることになる。もちろん、多孔性支持体上以外の場所、例えば転写基板上、で形成した分離機能層を多孔性支持体上に載置してもよい。界面縮合法の詳細は、例えば、特開昭58-24303号公報、特開平1-180208号公報などに記載されており、これら公知文献に記載の条件などを適宜、採用できる。相分離法および薄膜塗布法においても、公知文献に記載の方法を採用できる。   The method for forming the separation functional layer on the porous support is not particularly limited, and a known method can be employed. Examples of the method for forming the separation functional layer include an interfacial condensation method, a phase separation method, and a thin film coating method. In the interfacial condensation method, an amine aqueous solution containing a polyfunctional amine is brought into contact with an acid halide organic solution containing a polyfunctional acid halide, so that the reaction between the polyfunctional amine and the polyfunctional acid halide at the contact surface (interface) ( This is a method for forming a separation functional layer composed of polyamide by advancing polycondensation). Formation of the separation functional layer by this interfacial condensation can be performed on the porous support, and in this case, the separation functional layer is directly formed on the porous support. Of course, a separation functional layer formed at a place other than on the porous support, for example, on the transfer substrate, may be placed on the porous support. Details of the interfacial condensation method are described in, for example, JP-A-58-24303 and JP-A-1-180208, and the conditions described in these known documents can be appropriately employed. Also in the phase separation method and the thin film coating method, methods described in known literatures can be employed.

分離機能層は、多官能アミン成分を含むアミン水溶液を多孔性支持体上に塗布して水溶液被覆層を形成し、次いで多官能酸ハライドを含む酸ハライド有機溶液を多孔性支持体に塗布して被覆層と接触させ、界面重合を進行させて形成することが好ましい。   The separation functional layer is formed by applying an aqueous amine solution containing a polyfunctional amine component on a porous support to form an aqueous solution coating layer, and then applying an acid halide organic solution containing a polyfunctional acid halide to the porous support. It is preferably formed by contacting with the coating layer and advancing interfacial polymerization.

この方法においてアミン水溶液における多官能アミンの濃度は特に限定されず、例えば、0.1〜10重量%であり、好ましくは1〜4重量%である。また、この方法において酸ハライド有機溶液における多官能酸ハライドの濃度は特に限定されず、例えば、0.01〜5重量%であり、好ましくは0.05〜3重量%である。   In this method, the concentration of the polyfunctional amine in the aqueous amine solution is not particularly limited, and is, for example, 0.1 to 10% by weight, preferably 1 to 4% by weight. In this method, the concentration of the polyfunctional acid halide in the acid halide organic solution is not particularly limited, and is, for example, 0.01 to 5% by weight, preferably 0.05 to 3% by weight.

酸ハライド有機溶液に用いる有機溶媒は、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライドを溶解する限り特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、ノナンなどの飽和炭化水素;1,1,2−トリクロロトリフルオロエタンなどのハロゲン置換炭化水素である。有機溶媒は、300℃以下の沸点を有する飽和炭化水素が好ましく、200℃以下の沸点を有する飽和炭化水素がより好ましい。   The organic solvent used in the acid halide organic solution is not particularly limited as long as the solubility in water is low, the porous support is not deteriorated, and the polyfunctional acid halide is dissolved. For example, saturation such as cyclohexane, heptane, octane, nonane, etc. Hydrocarbon: Halogen-substituted hydrocarbon such as 1,1,2-trichlorotrifluoroethane. The organic solvent is preferably a saturated hydrocarbon having a boiling point of 300 ° C. or lower, more preferably a saturated hydrocarbon having a boiling point of 200 ° C. or lower.

多孔性支持体上にアミン水溶液を塗布してから酸ハライド有機溶液を塗布するまでの時間は、アミン水溶液の組成および粘度、ならびに多孔性支持体の表面の孔径にもよるが、1〜180秒程度であり、好ましくは2〜120秒であり、より好ましくは2〜40秒であり、特に好ましくは2〜10秒である。両者の塗布間隔が過度に長くなると、酸ハライド有機溶液を塗布するまでの間にアミン水溶液が多孔性支持体の内部深くにまで浸透、拡散することで、未反応の多官能アミンが多孔性支持体中に大量に残留するおそれがある。また、多孔性支持体の内部深くにまで浸透した未反応の多官能アミンは、その後の洗浄処理によっても除去し難い傾向にある。一方、両者の塗布間隔が過度に短くなると、酸ハライド有機溶液の塗布までにアミン水溶液が多孔性支持体にほとんど浸透せず、多孔性支持体上に過剰なアミン水溶液が存在することで、形成された分離機能層の特性が低下することがある。   The time from application of the aqueous amine solution to the application of the acid halide organic solution on the porous support depends on the composition and viscosity of the aqueous amine solution and the pore size of the surface of the porous support. About 2 to 120 seconds, more preferably 2 to 40 seconds, and particularly preferably 2 to 10 seconds. If the coating interval between the two is excessively long, the aqueous amine solution penetrates and diffuses deeply into the porous support before the acid halide organic solution is applied, so that the unreacted polyfunctional amine is porous supported. May remain in large quantities in the body. Moreover, the unreacted polyfunctional amine that has penetrated deep inside the porous support tends to be difficult to remove by subsequent washing treatment. On the other hand, if the coating interval between the two becomes excessively short, the aqueous amine solution hardly penetrates into the porous support until the application of the acid halide organic solution, and there is an excess aqueous amine solution on the porous support. The characteristics of the separated functional layer may be deteriorated.

この方法では、多孔性支持体上に形成されたアミン水溶液の被覆層と酸ハライド有機溶液とを接触させた後、多孔性支持体上に存在する過剰な有機溶液を除去するとともに、多孔性支持体上に形成された膜を加熱乾燥して分離機能層を形成することが好ましい。加熱乾燥により、分離機能層の機械的強度および耐熱性を高めることができる。加熱乾燥の温度は、例えば、70〜200℃であり、80〜130℃が好ましい。加熱時間は、例えば、30秒〜10分程度であり、40秒〜7分程度が好ましい。   In this method, after contacting the coating layer of the aqueous amine solution formed on the porous support and the acid halide organic solution, the excess organic solution present on the porous support is removed and the porous support is removed. It is preferable to form a separation functional layer by heating and drying a film formed on the body. By mechanical drying, the mechanical strength and heat resistance of the separation functional layer can be increased. The temperature of heat drying is, for example, 70 to 200 ° C, and preferably 80 to 130 ° C. The heating time is, for example, about 30 seconds to 10 minutes, and preferably about 40 seconds to 7 minutes.

化合物群は、多官能アミン(A),(B)および多官能酸ハライド以外に、分離機能膜の形成を容易にしたり、得られる複合分離膜の特性を向上させたりする目的で、各種の添加剤を含むことができる。添加剤は、例えば、界面縮合法におけるアミン水溶液および/または酸ハライド有機溶液に含ませればよい。添加剤の種類によっては、形成された分離機能層に残留し、例えば、複合分離膜の特性向上に寄与する。   In addition to the polyfunctional amines (A), (B) and polyfunctional acid halides, the compound group has various additions for the purpose of facilitating the formation of a separation functional membrane and improving the properties of the resulting composite separation membrane. An agent can be included. The additive may be contained in, for example, an aqueous amine solution and / or an acid halide organic solution in the interfacial condensation method. Depending on the type of the additive, it remains in the formed separation functional layer, and contributes to, for example, improving the characteristics of the composite separation membrane.

添加剤は、例えば親水性ポリマーである。すなわち、化合物群が親水性ポリマーをさらに含んでいてもよい。親水性ポリマーは、例えば、ポリビニルアルコール、ポリビニルピロリドンおよびポリアクリル酸から選ばれる少なくとも1種であり、ポリビニルアルコールが好ましい。界面縮合法により分離機能層を形成する場合、多官能アミン水溶液がポリビニルアルコールなどの親水性ポリマーを含めばよい。親水性ポリマーは、多官能アミンおよび多官能酸ハライドとともに共重合することで、形成された分離機能層の表面および内部の親水性を向上させる。これにより、複合分離膜の透過流束をさらに向上できる。添加剤の添加量は、0.01〜20重量%程度が好ましく、0.05〜5重量%がより好ましい。   The additive is, for example, a hydrophilic polymer. That is, the compound group may further contain a hydrophilic polymer. The hydrophilic polymer is, for example, at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, and polyacrylic acid, and polyvinyl alcohol is preferable. When the separation functional layer is formed by the interfacial condensation method, the polyfunctional amine aqueous solution may contain a hydrophilic polymer such as polyvinyl alcohol. The hydrophilic polymer is copolymerized with a polyfunctional amine and a polyfunctional acid halide to improve the hydrophilicity of the surface and inside of the formed separation functional layer. Thereby, the permeation flux of the composite separation membrane can be further improved. The amount of the additive added is preferably about 0.01 to 20% by weight, and more preferably 0.05 to 5% by weight.

他の添加剤は、例えば、多孔性支持体に対する溶液の濡れ性を改善するドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、およびラウリル硫酸ナトリウムなどの界面活性剤;多官能アミンと多官能酸ハライドとの反応により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウムおよびトリエチルアミンなどの塩基性化合物;当該反応の触媒となるアシル化触媒;特開平8-224452号公報に記載されている溶解度パラメータが8〜14(cal/cm31/2の化合物である。これらの化合物は、必要に応じて、アミン水溶液に添加すればよい。 Other additives include, for example, surfactants such as sodium dodecylbenzene sulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate that improve the wettability of the solution to the porous support; polyfunctional amines and polyfunctional acid halides Basic compounds such as sodium hydroxide, trisodium phosphate and triethylamine for removing hydrogen halide produced by the reaction; acylation catalysts for the reaction; solubility parameters described in JP-A-8-224452 Is a compound of 8 to 14 (cal / cm 3 ) 1/2 . These compounds may be added to the aqueous amine solution as necessary.

また例えば、添加剤は、テトラアルキルアンモニウムハライドまたはトリアルキルアンモニウムと、有機酸との塩である。この塩は、分離機能層の形成をより容易にする、アミン水溶液の多孔性支持体への吸収性を改善する、多官能アミンと多官能酸ハライドとの反応を促進するなどの効果を有する。この塩は、必要に応じてアミン水溶液に添加すればよい。   For example, the additive is a salt of a tetraalkylammonium halide or trialkylammonium and an organic acid. This salt has effects such as making the separation functional layer easier to form, improving the absorbability of the aqueous amine solution to the porous support, and promoting the reaction between the polyfunctional amine and the polyfunctional acid halide. What is necessary is just to add this salt to amine aqueous solution as needed.

分離機能層の厚さは特に限定されず、通常0.05〜2μm程度であり、好ましくは0.1〜1μmである。分離機能層の厚さは均一であることが好ましい。   The thickness of the separation functional layer is not particularly limited, and is usually about 0.05 to 2 μm, preferably 0.1 to 1 μm. The thickness of the separation functional layer is preferably uniform.

分離機能層の形状は特に限定されない。多孔性支持体上に形成された一層の分離機能層であってもよいし、特開2011-189340号公報に記載されている「二重ひだ構造」を有する分離機能層であってもよい。   The shape of the separation functional layer is not particularly limited. One separation functional layer formed on a porous support may be used, or a separation functional layer having a “double pleated structure” described in JP 2011-189340 A may be used.

分離機能層はポリアミドから構成される層である。本発明の効果が得られる限り、分離機能層はポリアミド以外の材料を含んでいてもよい。このとき分離機能層は、ポリアミドを主成分とする層である。主成分とは最も含有率が大きい成分のことであり、当該含有率は通常50重量%以上であり、60重量%以上、70重量%以上、80重量%以上、90重量%以上の順により好ましい。分離機能層はポリアミドからなる層であってもよい。   The separation functional layer is a layer made of polyamide. As long as the effect of the present invention is obtained, the separation functional layer may contain a material other than polyamide. At this time, the separation functional layer is a layer mainly composed of polyamide. The main component is a component having the largest content, and the content is usually 50% by weight or more, and more preferably 60% by weight, 70% by weight, 80% by weight, 90% by weight or more. . The separation functional layer may be a layer made of polyamide.

本発明の複合分離膜は、塩素処理をさらに施した膜であってもよい。塩素処理により、ポリアミドにおける結合が不安定な部分が除去されるなどして、複合分離膜の透過流束がさらに向上する。また、本発明の複合分離膜では、塩素処理による溶解物の阻止率の低下が抑制される。   The composite separation membrane of the present invention may be a membrane further subjected to chlorination. The permeation flux of the composite separation membrane is further improved by removing the unstable part of the polyamide in the chlorination. Moreover, in the composite separation membrane of this invention, the fall of the rejection rate of the melt | dissolution by chlorination is suppressed.

塩素処理には公知の方法を採用できる。例えば、遊離塩素を含む水溶液と分離機能層とを接触させることにより、塩素処理を実施できる。遊離塩素を含む水溶液は特に限定されず、例えば次亜塩素酸ナトリウム、塩化カルシウムのような水中で遊離塩素を発生させる作用を有する塩素化合物の水溶液である。当該水溶液における塩素化合物の濃度は、100〜1000mg/L程度が好ましく、その際の遊離塩素濃度は10〜1000ppm程度である。塩素処理の条件は特に限定されず、水溶液の遊離塩素濃度、分離機能層の材質などに応じて制御でき、例えば処理時間は10分〜100時間の範囲で制御する。水溶液と分離機能層とを接触させる具体的な方法は特に限定されず、例えば、複合分離膜を水溶液に浸漬させたり、分離機能層上に水溶液を塗布または噴霧したり、複合分離膜に水溶液を通水させたりする方法がある。通水させる場合、水溶液に1〜5MPa程度の圧力を印加して加圧通水することが好ましい。   A well-known method is employable for chlorination. For example, chlorination can be carried out by bringing an aqueous solution containing free chlorine into contact with the separation functional layer. The aqueous solution containing free chlorine is not particularly limited, and is, for example, an aqueous solution of a chlorine compound having an action of generating free chlorine in water such as sodium hypochlorite and calcium chloride. The concentration of the chlorine compound in the aqueous solution is preferably about 100 to 1000 mg / L, and the free chlorine concentration at that time is about 10 to 1000 ppm. The conditions for the chlorination are not particularly limited and can be controlled according to the free chlorine concentration of the aqueous solution, the material of the separation functional layer, etc. For example, the treatment time is controlled in the range of 10 minutes to 100 hours. The specific method of bringing the aqueous solution into contact with the separation functional layer is not particularly limited. For example, the composite separation membrane is immersed in the aqueous solution, the aqueous solution is applied or sprayed on the separation functional layer, or the aqueous solution is applied to the composite separation membrane. There is a way to let water through. When passing water, it is preferable to apply a pressure of about 1 to 5 MPa to the aqueous solution and pressurize the water.

本発明の複合分離膜の表面にコーティング層が設けられていてもよい。コーティング層は、例えば、非イオン性の親水性層であり、ポリマーにより構成される層である。親水性層であるコーティング層を設けた場合、複合分離膜表面の親水性が向上することで複合分離膜の透過流束がさらに向上する。コーティング層は、複合分離膜の分離機能層側の表面に設けられていることが好ましい。   A coating layer may be provided on the surface of the composite separation membrane of the present invention. The coating layer is, for example, a nonionic hydrophilic layer and is a layer composed of a polymer. When the coating layer which is a hydrophilic layer is provided, the permeation flux of the composite separation membrane is further improved by improving the hydrophilicity of the composite separation membrane surface. The coating layer is preferably provided on the surface of the composite separation membrane on the separation functional layer side.

コーティング層に用いるポリマーは、分離機能層および多孔性支持体を溶解しないとともに、複合分離膜の使用時(例えば水処理時)に溶出しない限り特に限定されない。当該ポリマーは、例えば、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、ポリエチレングリコール、およびエチレン−酢酸ビニル共重合体のケン化物から選ばれる少なくとも1種である。ポリマーはポリビニルアルコールが好ましく、特に99%以上のけん化度を有するポリビニルアルコールが好ましい。コーティング層は、例えば、上記ポリマーが溶解した溶液に複合分離膜を浸漬し、乾燥させることによって複合分離膜の表面に形成できる。   The polymer used for the coating layer is not particularly limited as long as it does not dissolve the separation functional layer and the porous support and does not dissolve when the composite separation membrane is used (for example, during water treatment). The polymer is, for example, at least one selected from polyvinyl alcohol, polyvinyl pyrrolidone, hydroxypropyl cellulose, polyethylene glycol, and a saponified ethylene-vinyl acetate copolymer. The polymer is preferably polyvinyl alcohol, particularly preferably polyvinyl alcohol having a saponification degree of 99% or more. The coating layer can be formed on the surface of the composite separation membrane by, for example, immersing the composite separation membrane in a solution in which the polymer is dissolved and drying it.

コーティング層は分離機能層を構成するポリアミドとの架橋構造を有していてもよい。この場合、複合分離膜の使用時におけるコーティング層の溶出を抑制できる。ポリアミドとの架橋構造を有するコーティング層は、例えば、90%以上のけん化度を有するポリビニルアルコールを含む層である。ポリビニルアルコールとポリアミドとを架橋させる方法は特に限定されず、例えば、ポリビニルアルコール層を分離機能層の表面に形成した複合分離膜を、塩酸酸性の多価アルデヒド溶液に浸漬すればよい。多価アルデヒドは、例えば、グルタルアルデヒド、テレフタルアルデヒドなどのジアルデヒドである。多価アルデヒドの代わりに、または多価アルデヒドとともに、架橋剤としてエポキシ化合物および多価カルボン酸などの有機架橋剤、および/またはホウ素化合物などの無機架橋剤を用いてもよい。   The coating layer may have a crosslinked structure with the polyamide constituting the separation functional layer. In this case, the elution of the coating layer when using the composite separation membrane can be suppressed. The coating layer having a crosslinked structure with polyamide is, for example, a layer containing polyvinyl alcohol having a saponification degree of 90% or more. The method for crosslinking polyvinyl alcohol and polyamide is not particularly limited. For example, a composite separation membrane in which a polyvinyl alcohol layer is formed on the surface of the separation functional layer may be immersed in a hydrochloric acid-containing polyvalent aldehyde solution. The polyvalent aldehyde is, for example, a dialdehyde such as glutaraldehyde or terephthalaldehyde. An organic crosslinking agent such as an epoxy compound and a polyvalent carboxylic acid and / or an inorganic crosslinking agent such as a boron compound may be used as a crosslinking agent instead of or together with the polyvalent aldehyde.

本発明の複合分離膜が示す阻止率(塩阻止率)は、硫酸マグネシウム水溶液(濃度0.20重量%、pH6.5、温度25℃)に対する操作圧力1.0MPaのときの値にして、例えば95%以上であり、ポリアミドの組成、塩素処理の有無、添加剤の種類および量によっては、96%以上、97%以上、98%以上、さらには99%以上となりうる。   The rejection rate (salt rejection rate) exhibited by the composite separation membrane of the present invention is a value at an operating pressure of 1.0 MPa with respect to an aqueous magnesium sulfate solution (concentration 0.20 wt%, pH 6.5, temperature 25 ° C.), for example, It is 95% or more, and can be 96% or more, 97% or more, 98% or more, or 99% or more depending on the composition of polyamide, the presence or absence of chlorination, and the type and amount of additives.

本発明の複合分離膜が示す透過流束は、操作圧力1.0MPaのときの値にして、例えば1.5(m3/(m2・day))以上であり、ポリアミドの組成、塩素処理の有無、添加剤の種類および量によっては、1.6(m3/(m2・day))以上、1.8(m3/(m2・day))以上、2.0(m3/(m2・day))以上、2.2(m3/(m2・day))以上、さらには2.5(m3/(m2・day))以上となりうる。また、上記阻止率の値を同時に達成することもできる。 The permeation flux exhibited by the composite separation membrane of the present invention is, for example, 1.5 (m 3 / (m 2 · day)) or more when the operating pressure is 1.0 MPa. 1.6 (m 3 / (m 2 · day)) or more, 1.8 (m 3 / (m 2 · day)) or more, 2.0 (m 3 / (M 2 · day)) or more, 2.2 (m 3 / (m 2 · day)) or more, and further 2.5 (m 3 / (m 2 · day)) or more. Also, the rejection rate can be achieved at the same time.

本発明の複合分離膜は、一般に、分離膜エレメントの形態に加工され、圧力容器(ベッセル)に装填された状態で使用される。例えば図1に示すように、スパイラル型の膜エレメントは、複合分離膜31と供給側流路材32と透過側流路材33とが積層された状態で中心管(集水管)35の周囲にスパイラル状に巻回された積層体30を備えている。膜エレメントは、この積層体30を端部材および外装材で固定して製造される。   The composite separation membrane of the present invention is generally processed into a form of a separation membrane element and used in a state of being loaded in a pressure vessel (vessel). For example, as shown in FIG. 1, the spiral membrane element is formed around a central pipe (water collecting pipe) 35 in a state where a composite separation membrane 31, a supply-side flow path member 32, and a permeate-side flow path member 33 are laminated. A laminate 30 wound in a spiral shape is provided. The membrane element is manufactured by fixing the laminate 30 with an end member and an exterior material.

本発明の複合分離膜は、従来の複合分離膜と同様の用途に使用できる。当該用途は、例えば、逆浸透(RO)膜、限外濾過(NF)膜、精密濾過(MF)膜、正浸透(FO)膜としての使用である。より具体的な用途として、例えば、純水または超純水の製造、海水などのかん水の脱塩、有害成分の除去あるいは有用成分の回収といった排水処理、食品または医薬分野における有効成分の濃縮あるいは回収といった高度処理、の用途に使用できる。   The composite separation membrane of this invention can be used for the same use as the conventional composite separation membrane. The application is, for example, use as a reverse osmosis (RO) membrane, ultrafiltration (NF) membrane, microfiltration (MF) membrane, forward osmosis (FO) membrane. More specific applications include, for example, production of pure water or ultrapure water, desalination of brine such as seawater, removal of harmful components or recovery of useful components, concentration or recovery of active ingredients in the food or pharmaceutical field. It can be used for advanced processing.

以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下に示す実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples shown below.

最初に、本実施例において作製した複合分離膜の評価方法を示す。   First, a method for evaluating the composite separation membrane produced in this example is shown.

[阻止率]
作製した複合分離膜の阻止率(塩阻止率)は、以下のようにして求めた。複合分離膜に硫酸マグネシウム(MgSO4)水溶液(濃度0.20重量%、温度25℃、pH6.5)を操作圧力1.0MPaで30分間透過させた。電導度測定装置(京都電子製、CM−117)を用いて膜透過液および供給液の電導度測定を行い、その結果および検量線(濃度−電導度)から、下記式に基づいて、MgSO4の阻止率を算出した。
阻止率=(1−(膜透過液中のMgSO4濃度/供給液中のMgSO4濃度))×100(%)
[Blocking rate]
The rejection rate (salt rejection rate) of the produced composite separation membrane was determined as follows. A magnesium sulfate (MgSO 4 ) aqueous solution (concentration 0.20 wt%, temperature 25 ° C., pH 6.5) was permeated through the composite separation membrane at an operating pressure of 1.0 MPa for 30 minutes. Conductivity measurement of the membrane permeate and the feed solution was performed using a conductivity measuring device (Kyoto Denshi, CM-117), and from the results and calibration curve (concentration-conductivity), MgSO 4 The rejection rate was calculated.
Rejection = (1-(MgSO 4 concentration of MgSO 4 concentration / feed in the membrane permeate)) × 100 (%)

[透過流束]
作製した複合分離膜の透過流束を、阻止率を評価する際に併せて測定した膜透過液量から、以下の式により求めた。
透過流束(m3/(m2・day))=透過液量/(膜面積×サンプリング時間)
[Transmission flux]
The permeation flux of the produced composite separation membrane was determined from the amount of membrane permeate measured together with the rejection rate when it was evaluated by the following formula.
Permeation flux (m 3 / (m 2 · day)) = permeate volume / (membrane area × sampling time)

(実施例1)
ピペラジン3.16重量%、m−フェニレンジアミン(MPD)0.04重量%、ラウリル硫酸ナトリウム0.15重量%、水酸化ナトリウム0.45重量%、カンファスルホン酸6重量%を含有するアミン水溶液を、多孔性支持体である多孔性ポリスルホン支持膜(分離機能層を形成する側の平均孔径20nm、当該側と反対側とで平均孔径が異なる非対称膜)に塗布した後、余分の水溶液を除去した。アミン水溶液に含まれる多官能アミンに占めるピペラジンの割合は99.1モル%、MPDの割合は0.9モル%であった。次に、支持体におけるアミン水溶液の塗布面に、トリメシン酸クロライド0.4重量%を含有するイソオクタン溶液を接触させて界面縮合重合反応を進行させ、多孔性支持体上にポリアミドの分離機能層(厚さ1μm)を形成して複合分離膜を得た。
Example 1
An aqueous amine solution containing 3.16% by weight of piperazine, 0.04% by weight of m-phenylenediamine (MPD), 0.15% by weight of sodium lauryl sulfate, 0.45% by weight of sodium hydroxide and 6% by weight of camphorsulfonic acid. Then, after applying to a porous polysulfone support membrane (an asymmetric membrane having an average pore size of 20 nm on the side where the separation functional layer is formed and an average pore size different on the opposite side) that is a porous support, an excess aqueous solution was removed. . The ratio of piperazine in the polyfunctional amine contained in the aqueous amine solution was 99.1 mol%, and the ratio of MPD was 0.9 mol%. Next, an isooctane solution containing 0.4% by weight of trimesic acid chloride is brought into contact with the application surface of the aqueous amine solution on the support to advance the interfacial condensation polymerization reaction, and the separation function layer of polyamide ( A composite separation membrane was obtained by forming a thickness of 1 μm.

このようにして得た複合分離膜の阻止率(MgSO4阻止率)は99.9%、透過流束は1.69(m3/(m2・day))であった。 The composite separation membrane thus obtained had a rejection rate (MgSO 4 rejection rate) of 99.9% and a permeation flux of 1.69 (m 3 / (m 2 · day)).

(実施例2、比較例1〜3)
アミン水溶液に含まれる多官能アミンに占めるピペラジンおよびMPDの割合(モノマー仕込み比)を以下の表1に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。得られた複合分離膜の阻止率および透過流束を、実施例1の結果と併せて以下の表1に示す。
(Example 2, Comparative Examples 1-3)
A composite separation membrane was produced in the same manner as in Example 1 except that the ratio of piperazine and MPD (monomer charge ratio) in the polyfunctional amine contained in the aqueous amine solution was as shown in Table 1 below. The rejection rate and permeation flux of the obtained composite separation membrane are shown in Table 1 below together with the results of Example 1.

Figure 0006466696
Figure 0006466696

表1に示すように、実施例1,2では、比較例に比べて阻止率を維持したまま透過流束が向上した。   As shown in Table 1, in Examples 1 and 2, the permeation flux was improved while maintaining the blocking rate as compared with the comparative example.

(実施例3、比較例4〜6)
MPDの代わりにp−フェニレンジアミン(PPD)を用いるとともに、アミン水溶液に含まれる多官能アミンに占めるピペラジンおよびPPDの割合(モノマー仕込み比)を以下の表2に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。得られた複合分離膜の阻止率および透過流束を以下の表2に示す。
(Example 3, Comparative Examples 4-6)
Example except that p-phenylenediamine (PPD) was used instead of MPD, and the ratio (monomer charge ratio) of piperazine and PPD in the polyfunctional amine contained in the aqueous amine solution was as shown in Table 2 below. In the same manner as in Example 1, a composite separation membrane was prepared. The rejection rate and permeation flux of the obtained composite separation membrane are shown in Table 2 below.

Figure 0006466696
Figure 0006466696

表2に示すように、実施例3では、比較例に比べて阻止率を維持したまま透過流束が向上した。   As shown in Table 2, in Example 3, the permeation flux was improved while maintaining the blocking rate as compared with the comparative example.

(実施例4〜6、比較例7〜10)
芳香族多官能アミンとしてMPD以外にもPDPを用いるとともに、アミン水溶液に含まれる多官能アミンに占めるピペラジン、MPDおよびPPDの割合(モノマー仕込み比)を以下の表3に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。得られた複合分離膜の阻止率および透過流束を以下の表3に示す。
(Examples 4-6, Comparative Examples 7-10)
Except for using PDP as an aromatic polyfunctional amine in addition to MPD, and the ratio of piperazine, MPD and PPD in the polyfunctional amine contained in the aqueous amine solution (monomer charge ratio) as shown in Table 3 below, A composite separation membrane was produced in the same manner as in Example 1. The rejection rate and permeation flux of the obtained composite separation membrane are shown in Table 3 below.

Figure 0006466696
Figure 0006466696

表3に示すように、実施例4〜6では、比較例に比べて阻止率を維持したまま透過流束が向上した。   As shown in Table 3, in Examples 4 to 6, the permeation flux was improved while maintaining the blocking rate as compared with the comparative example.

(実施例7,8、比較例11〜14)
芳香族多官能アミンとしてMPD以外にもo−フェニレンジアミン(OPD)を用いるとともに、アミン水溶液に含まれる多官能アミンに占めるピペラジン、MPDおよびOPDの割合(モノマー仕込み比)を以下の表4に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。得られた複合分離膜の阻止率および透過流束を以下の表4に示す。
(Examples 7 and 8, Comparative Examples 11 to 14)
In addition to MPD as an aromatic polyfunctional amine, o-phenylenediamine (OPD) is used, and the ratio (monomer charge ratio) of piperazine, MPD and OPD in the polyfunctional amine contained in the aqueous amine solution is shown in Table 4 below. A composite separation membrane was produced in the same manner as in Example 1 except for the above. The rejection rate and permeation flux of the obtained composite separation membrane are shown in Table 4 below.

Figure 0006466696
Figure 0006466696

表4に示すように、実施例7,8では、比較例に比べて塩阻止率を維持したまま透過流束が向上した。   As shown in Table 4, in Examples 7 and 8, the permeation flux was improved while maintaining the salt rejection rate as compared with the comparative example.

(実施例9,10、比較例15〜18)
アミン水溶液に含まれる多官能アミンに占めるピペラジンおよびMPDの割合(モノマー仕込み比)を以下の表5に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。次に、作製した各複合分離膜を、遊離塩素濃度100mg/Lの次亜塩素酸ナトリウム水溶液に72時間浸漬することで塩素処理を実施した。このようにして得た複合分離膜の阻止率および透過流束を以下の表5に示す。
(Examples 9 and 10, Comparative Examples 15 to 18)
A composite separation membrane was prepared in the same manner as in Example 1 except that the ratio of piperazine and MPD (monomer charge ratio) in the polyfunctional amine contained in the aqueous amine solution was as shown in Table 5 below. Next, chlorination was carried out by immersing each produced composite separation membrane in an aqueous sodium hypochlorite solution having a free chlorine concentration of 100 mg / L for 72 hours. The rejection rate and permeation flux of the composite separation membrane thus obtained are shown in Table 5 below.

Figure 0006466696
Figure 0006466696

表5に示すように、実施例9,10では、比較例に比べて塩阻止率を維持したまま透過流束が向上した。また、透過流束の値は、塩素処理を実施しなかった場合よりも大きくなった。   As shown in Table 5, in Examples 9 and 10, the permeation flux was improved while maintaining the salt rejection rate as compared with the comparative example. Moreover, the value of permeation flux became larger than the case where chlorination was not implemented.

(実施例11,12、比較例19〜23)
芳香族多官能アミンとしてMPD以外にもPDPを用いるとともに、アミン水溶液に含まれる多官能アミンに占めるピペラジン、MPDおよびPPDの割合(モノマー仕込み比)を以下の表6に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。次に、作製した各複合分離膜を、遊離塩素濃度100mg/Lの次亜塩素酸ナトリウム水溶液に72時間浸漬することで塩素処理を実施した。このようにして得た複合分離膜の阻止率および透過流束を以下の表6に示す。
(Examples 11 and 12, Comparative Examples 19 to 23)
Except for using PDP in addition to MPD as an aromatic polyfunctional amine, the ratio of piperazine, MPD and PPD in the polyfunctional amine contained in the aqueous amine solution (monomer charge ratio) is as shown in Table 6 below. A composite separation membrane was produced in the same manner as in Example 1. Next, chlorination was carried out by immersing each produced composite separation membrane in an aqueous sodium hypochlorite solution having a free chlorine concentration of 100 mg / L for 72 hours. The rejection rate and permeation flux of the composite separation membrane thus obtained are shown in Table 6 below.

Figure 0006466696
Figure 0006466696

表6に示すように、実施例11,12では、比較例に比べて阻止率を維持したまま透過流束が向上した。また、透過流束の値は、塩素処理を実施しなかった場合よりも大きくなった。   As shown in Table 6, in Examples 11 and 12, the permeation flux was improved while maintaining the blocking rate as compared with the comparative example. Moreover, the value of permeation flux became larger than the case where chlorination was not implemented.

(実施例13,14、比較例24)
アミン水溶液にポリビニルアルコール(けん化度99%)を濃度0.25重量%でさらに添加するとともに、アミン水溶液に含まれる多官能アミンに占めるピペラジンおよびMPDの割合(モノマー仕込み比)を以下の表7に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。このようにして得た複合分離膜の阻止率および透過流束を以下の表7に示す。
(Examples 13 and 14, Comparative Example 24)
Polyvinyl alcohol (degree of saponification 99%) was further added to the aqueous amine solution at a concentration of 0.25 wt%, and the ratios of piperazine and MPD in the polyfunctional amine contained in the aqueous amine solution (monomer charge ratio) are shown in Table 7 below. A composite separation membrane was produced in the same manner as in Example 1 except for the above. The rejection rate and permeation flux of the composite separation membrane thus obtained are shown in Table 7 below.

Figure 0006466696
Figure 0006466696

表7に示すように、実施例13,14では、比較例に比べて阻止率を維持したまま透過流束が向上した。また、透過流束の値は、アミン水溶液にポリビニルアルコールを添加しなかった場合よりも大きくなった。   As shown in Table 7, in Examples 13 and 14, the permeation flux was improved while maintaining the blocking rate as compared with the comparative example. Further, the value of the permeation flux was larger than when polyvinyl alcohol was not added to the amine aqueous solution.

(実施例15,16、比較例25)
アミン水溶液にポリビニルアルコール(けん化度99%)を濃度0.25重量%でさらに添加するとともに、アミン水溶液に含まれる多官能アミンに占めるピペラジンおよびMPDの割合(モノマー仕込み比)を以下の表8に示すようにした以外は、実施例1と同様にして複合分離膜を作製した。次に、作製した各複合分離膜を、遊離塩素濃度100mg/Lの次亜塩素酸ナトリウム水溶液に72時間浸漬することで塩素処理を実施した。このようにして得た複合分離膜の阻止率および透過流束を以下の表8に示す。
(Examples 15 and 16, Comparative Example 25)
Polyvinyl alcohol (degree of saponification 99%) was further added to the aqueous amine solution at a concentration of 0.25% by weight, and the ratios of piperazine and MPD in the polyfunctional amine contained in the aqueous amine solution (monomer charge ratio) are shown in Table 8 below. A composite separation membrane was produced in the same manner as in Example 1 except for the above. Next, chlorination was carried out by immersing each produced composite separation membrane in an aqueous sodium hypochlorite solution having a free chlorine concentration of 100 mg / L for 72 hours. The rejection and permeation flux of the composite separation membrane thus obtained are shown in Table 8 below.

Figure 0006466696
Figure 0006466696

表8に示すように、実施例15,16では、比較例に比べて塩阻止率を維持したまま透過流束が向上した。また、透過流束の値は、アミン水溶液にポリビニルアルコールを添加せず、塩素処理を実施しなかった場合よりも大きくなった。   As shown in Table 8, in Examples 15 and 16, the permeation flux was improved while maintaining the salt rejection rate as compared with the comparative example. Moreover, the value of the permeation flux was larger than the case where chlorination was not performed without adding polyvinyl alcohol to the amine aqueous solution.

本発明の複合分離膜は、従来の複合分離膜と同様の用途に使用できる。当該用途は、例えば、逆浸透(RO)膜、限外濾過(NF)膜、精密濾過(MF)膜、正浸透(FO)膜としての使用である。より具体的な用途として、例えば、純水または超純水の製造、海水などのかん水の脱塩、有害成分の除去あるいは有用成分の回収といった排水処理、食品または医薬分野における有効成分の濃縮あるいは回収といった高度処理、の用途に使用できる。   The composite separation membrane of this invention can be used for the same use as the conventional composite separation membrane. The application is, for example, use as a reverse osmosis (RO) membrane, ultrafiltration (NF) membrane, microfiltration (MF) membrane, forward osmosis (FO) membrane. More specific applications include, for example, production of pure water or ultrapure water, desalination of brine such as seawater, removal of harmful components or recovery of useful components, concentration or recovery of active ingredients in the food or pharmaceutical field. It can be used for advanced processing.

30 積層体
31 複合分離膜
32 供給側流路材
33 透過側流路材
35 中心管(集水管)
30 Laminate 31 Composite Separation Membrane 32 Supply Side Channel Material 33 Permeation Side Channel Material 35

Claims (8)

多孔性支持体と、前記多孔性支持体上に形成された分離機能層と、を備え、
前記分離機能層は、芳香族多官能アミンと、脂肪族多官能アミンと、多官能酸ハライドとを含む化合物群の反応により形成されたポリアミドから構成され、
前記化合物群において、多官能アミンに占める前記芳香族多官能アミンの割合が1モル%以上モル%以下である、複合分離膜。
A porous support, and a separation functional layer formed on the porous support,
The separation functional layer is composed of a polyamide formed by a reaction of a compound group including an aromatic polyfunctional amine, an aliphatic polyfunctional amine, and a polyfunctional acid halide,
In the compound group, a composite separation membrane in which a ratio of the aromatic polyfunctional amine to a polyfunctional amine is 1 mol% or more and 4 mol% or less .
前記脂肪族多官能アミンが脂環式多官能アミンである、請求項1に記載の複合分離膜。   The composite separation membrane according to claim 1, wherein the aliphatic polyfunctional amine is an alicyclic polyfunctional amine. 前記脂肪族多官能アミンがピペラジンまたはピペラジン誘導体である、請求項1に記載の複合分離膜。   The composite separation membrane according to claim 1, wherein the aliphatic polyfunctional amine is piperazine or a piperazine derivative. 前記芳香族多官能アミンが、m−フェニレンジアミン、p−フェニレンジアミン、o−フェニレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸、2,4−ジアミノトルエン、2,6−ジアミノトルエン、N,N’−ジメチル−m−フェニレンジアミン、2,4−ジアミノアニソール、アミドール、およびキシリレンジアミンから選ばれる少なくとも1種である、請求項1〜3のいずれかに記載の複合分離膜。   The aromatic polyfunctional amine is m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid. 2,4-diaminotoluene, 2,6-diaminotoluene, N, N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidole, and xylylenediamine, Item 4. The composite separation membrane according to any one of Items 1 to 3. 前記芳香族多官能アミンが、m−フェニレンジアミン、p−フェニレンジアミンおよびo−フェニレンジアミンから選ばれる少なくとも1種である、請求項1〜3のいずれかに記載の複合分離膜。   The composite separation membrane according to any one of claims 1 to 3, wherein the aromatic polyfunctional amine is at least one selected from m-phenylenediamine, p-phenylenediamine, and o-phenylenediamine. 前記化合物群が親水性ポリマーをさらに含む、請求項1〜5のいずれかに記載の複合分離膜。   The composite separation membrane according to any one of claims 1 to 5, wherein the compound group further comprises a hydrophilic polymer. 前記親水性ポリマーがポリビニルアルコールである、請求項6に記載の複合分離膜。   The composite separation membrane according to claim 6, wherein the hydrophilic polymer is polyvinyl alcohol. 請求項1〜のいずれかに記載の複合分離膜を用いた分離膜エレメント。 Separation membrane element using a composite separation membrane according to any one of claims 1-7.
JP2014232470A 2014-11-17 2014-11-17 Composite separation membrane and separation membrane element using the same Active JP6466696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232470A JP6466696B2 (en) 2014-11-17 2014-11-17 Composite separation membrane and separation membrane element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232470A JP6466696B2 (en) 2014-11-17 2014-11-17 Composite separation membrane and separation membrane element using the same

Publications (2)

Publication Number Publication Date
JP2016093797A JP2016093797A (en) 2016-05-26
JP6466696B2 true JP6466696B2 (en) 2019-02-06

Family

ID=56070356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232470A Active JP6466696B2 (en) 2014-11-17 2014-11-17 Composite separation membrane and separation membrane element using the same

Country Status (1)

Country Link
JP (1) JP6466696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300810B2 (en) * 2017-09-15 2023-06-30 日東電工株式会社 Composite semipermeable membrane and manufacturing method thereof
CN113797770B (en) * 2020-06-12 2023-04-14 三达膜科技(厦门)有限公司 Dopamine-modified molybdenum oxide-molybdenum disulfide-doped piperazine polyamide composite ceramic nanofiltration membrane and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179111A (en) * 1983-03-31 1984-10-11 Teijin Ltd Manufacture of durable composite membrane
JPH05329346A (en) * 1992-06-01 1993-12-14 Nitto Denko Corp Composite semipermeable membrane
JP3780734B2 (en) * 1998-05-11 2006-05-31 東レ株式会社 Composite semipermeable membrane
JP2000202257A (en) * 1999-01-14 2000-07-25 Toray Ind Inc Composite semipermeable membrane and its production
JP2000237559A (en) * 1999-02-16 2000-09-05 Nitto Denko Corp Production of high permeability composite reverse osmosis membrane
JP2000246074A (en) * 1999-02-26 2000-09-12 Toray Ind Inc Composite semipermeable membrane and fresh water generator
JP2001327840A (en) * 2000-05-25 2001-11-27 Toray Ind Inc Composite semipermeable membrane and its manufacturing method
JP2008080187A (en) * 2006-09-26 2008-04-10 Toray Ind Inc Composite semipermeable membrane and use thereof
JP5961643B2 (en) * 2014-01-28 2016-08-02 日東電工株式会社 Composite separation membrane and separation membrane element using the same

Also Published As

Publication number Publication date
JP2016093797A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
JP5961643B2 (en) Composite separation membrane and separation membrane element using the same
JP6774841B2 (en) Composite semipermeable membrane and spiral separation membrane element
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
KR102172281B1 (en) Forward osmosis membrane having excellent inteflayer adhesion and manufacturing method thereof
WO2015118894A1 (en) Method for producing composite semipermeable membrane
JP2008246419A (en) Production method for composite semi-permeable membrane
JP6466696B2 (en) Composite separation membrane and separation membrane element using the same
WO2016052427A1 (en) Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP2019051480A (en) Composite semipermeable membrane and method for producing the same
JPWO2002076594A1 (en) Composite semipermeable membrane, method for producing the same, and water treatment method using the same
JP6521422B2 (en) Spiral type separation membrane element
JP2006102624A (en) Reverse osmosis membrane and its manufacturing method
JP6582352B2 (en) Water treatment separation membrane production method, water treatment separation membrane produced using the same, and water treatment module comprising water treatment separation membrane
JP4563093B2 (en) Method for producing high salt rejection composite reverse osmosis membrane
JP6645764B2 (en) Composite separation membrane and separation membrane element
KR102079845B1 (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by using the same, and composition for manufacturing water-treatment separation membrane
JPH10165790A (en) Manufacture of composite reverse-osmosis membrane
KR102045108B1 (en) Reverse osmosis membrane and method manufacturing same
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP2010099549A (en) Manufacturing method of composite semi-permeable membrane
JP2005137964A (en) Liquid separation membrane and its manufacturing method
JPH10314557A (en) Composite reverse osmosis membrane
KR102157931B1 (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by thereof, and composition for manufacturing water-treatment separation membrane
KR20190076245A (en) Method for manufacturing water-treatment separation membrane, water-treatment separation membrane manufactured by thereof, and composition for manufacturing water-treatment separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190110

R150 Certificate of patent or registration of utility model

Ref document number: 6466696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250