WO2015113239A1 - 反型有机太阳能电池及其制备方法 - Google Patents

反型有机太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2015113239A1
WO2015113239A1 PCT/CN2014/071734 CN2014071734W WO2015113239A1 WO 2015113239 A1 WO2015113239 A1 WO 2015113239A1 CN 2014071734 W CN2014071734 W CN 2014071734W WO 2015113239 A1 WO2015113239 A1 WO 2015113239A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
solar cell
organic solar
preparing
anode
Prior art date
Application number
PCT/CN2014/071734
Other languages
English (en)
French (fr)
Inventor
陈强
张春梅
Original Assignee
北京印刷学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京印刷学院 filed Critical 北京印刷学院
Priority to PCT/CN2014/071734 priority Critical patent/WO2015113239A1/zh
Publication of WO2015113239A1 publication Critical patent/WO2015113239A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • preparing an anode on the active layer comprises: preparing an anode modification layer on the active layer, and preparing an anode on the anode modification layer.
  • FIG. 2 is a schematic view of an inversion type organic solar cell in the prior art
  • the metal oxide of the cathode is ITO, and the anode modified layer is further included between the active layer and the anode as an example.
  • the inverse type organic solar cell of the prior art includes a transparent substrate 1, ⁇ 0 2, a cathode modification layer 3, an active layer 4, an anode modification layer 5, and an anode 6 from bottom to top.
  • the inversion type organic solar cell of the embodiment of the present invention comprises, in order from bottom to top, a transparent substrate 1, ⁇ 02, a plasma-treated ruthenium surface 3, an active layer 4, an anode modification layer 5, and an anode 6.
  • FIG. 4 is a schematic diagram of energy levels of a structure of an inversion type organic solar cell device according to an embodiment of the present invention.
  • the inversion type organic solar cell of the embodiment of the present invention improves the energy level mismatch of the erbium level and the electron acceptor LUMO level (Lowest Unoccupied Molecular Orbital) in the active layer.
  • LUMO level Lowest Unoccupied Molecular Orbital
  • denotes the cathode work function, and indicates the work function change Change
  • /?v denotes incident photons, metal anode (Metal Anode), HOMO level (Highest Occupied Molecular Orbital), electron (electron), hole (hole), electron acceptor (Acceptor), electron Donor.
  • an embodiment of the present invention also provides a method for preparing an inverse type organic solar cell, as described in the following embodiments. Since the principle of solving the problem is similar to that of the inverse type organic solar cell, the implementation of the method can be referred to the implementation of the inverse type organic solar cell, and the repetition will not be repeated.
  • the material of the active layer may include a polymer such as P3HT, MDMO-PPV, etc., a fullerene such as C60, PC61BM, PC71BM, etc., a small molecule such as copper phthalocyanine or the like, or a combination thereof.
  • the active layer can be produced by a spin coating method, a dip coating method, a roll coating method, or the like.
  • An anode trim layer may also be included between the active layer and the anode. That is, preparing the anode on the active layer may include: preparing an anode modification layer on the active layer, and preparing an anode on the anode modification layer.
  • the anode can be a metal electrode or a metal oxide electrode.
  • Step 2 Treating the ITO substrate with a plasma of a non-oxygen gas (argon, nitrogen or hydrogen): placing the cleaned ITO into a plasma processing chamber, and discharging it after discharge treatment;
  • a non-oxygen gas argon, nitrogen or hydrogen
  • Embodiment 1 An inverse type organic polymer solar cell, comprising: using a plasma treatment on an ITO substrate electrode; An active layer composed of an organic polymer and a fullerene small molecule, an anode modified layer, and a counter electrode are sequentially prepared on the ITO conductive layer.
  • FIG. 6 is an IV curve of the device prepared by plasma treatment of ITO after three different gases (argon, nitrogen and hydrogen).
  • the table below shows the energy conversion efficiency of the prepared device after plasma treatment of ITO with three different gases (argon, nitrogen and hydrogen).
  • the inversion organic prepared by using the examples of the present invention For solar cells, the energy conversion efficiency is comparable to that of existing inverse organic solar cells with a cathode modified layer.
  • the table indicates the open circuit voltage, Km ⁇ /cm 2 ) indicates the short-circuit current, indicating the fill factor, and / / (%) indicates the energy conversion efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种反型有机太阳能电池及其制备方法,该反型有机太阳能电池包括:透明衬底、所述透明衬底上经非氧气体的等离子体处理的阴极、所述阴极上的活性层,以及,所述活性层上的阳极。该反型有机太阳能电池的制备方法包括:在透明衬底上制备阴极;对所述阴极进行非氧气体的等离子体处理;在经非氧气体的等离子体处理的所述阴极上制备活性层;在所述活性层上制备阳极。该反型有机太阳能电池简化了电池结构,减少了电池器件成本,提高了电池能量转换效率,改善了电池使用寿命。

Description

反型有机太阳能电池及其制备方法 技术领域
本发明涉及有机光电技术太阳能电池领域, 尤其涉及反型有机太阳能电池及其制备 方法。 背景技术
太阳能作为一种安全、 绿色、 可再生的清洁能源, 近年来备受青睐。 太阳能电池是 一种将太阳辐射的光能直接转化成电能的装置, 其中有机太阳能电池因为其原料成本低 廉, 电池制备工艺简单, 可以大面积、 大批量工业化生产而成为有机太阳能电池研究领 域的一个重要方向。 传统正型有机太阳能电池的结构为 ITO ( Indium Tin Oxides, 铟锡 氧化物) 阳极 (金属氧化物透明电极) /PEDOT: PSS (空穴传输层) /有机活性层 /金属 阴极。 针对活泼金属阴极对于空气中氧和水蒸气敏感不稳定, 以及酸性的 PEDOT: PSS 会腐蚀 ITO 电极而影响电池的稳定性和寿命的问题, 人们发明了反型有机太阳能电池, 将 ITO作为阴极而高功函数金属作为阳极, 其典型结构为金属阳极 /阳极修饰层 /有机活 性层 /阴极修饰层 /ITO阴极。 阴极修饰层一般使用 ZnO, J O2等宽禁带半导体、 Mg, Ca 等活泼金属、 碳酸锶等材料, 发挥收集电子阻挡空穴的作用。 阴极修饰层的引入, 不仅 增加了制备太阳能电池的复杂性, 提高了成本, 而且有可能会影响 ITO的透光性, 其中 活泼金属的引入导致了电池稳定性和使用寿命的下降。 发明内容
本发明实施例提供一种反型有机太阳能电池, 用以降低制备太阳能电池的复杂性和 成本, 保证电池稳定性和使用寿命, 该反型有机太阳能电池包括:
透明衬底、 所述透明衬底上经非氧气体的等离子体处理的阴极、 所述阴极上的活性 层, 以及, 所述活性层上的阳极。
一个实施例中, 所述透明衬底上经非氧气体的等离子体处理的阴极包括: 所述透明 衬底上经非氧气体的等离子体处理的阴极的金属氧化物。
一个实施例中, 所述阴极的金属氧化物包括 ITO、 ΑΖΟ ( Aluminum doped Zinc Oxid, 铝掺杂的氧化锌) 、 FTO (Fluorine-doped Tin Oxide, 氟掺杂锡氧化物) 或 IZO (Indium Zinc Oxides, 氧化铟锌) 。 一个实施例中, 所述非氧气体包括氩气、 氮气、 氢气其中之一或任意组合。
一个实施例中, 所述活性层与所述阳极之间还包括阳极修饰层。
本发明实施例中还提供一种反型有机太阳能电池的制备方法, 用以降低制备太阳能 电池的复杂性和成本, 保证电池稳定性和使用寿命, 该方法包括:
在透明衬底上制备阴极;
对所述阴极进行非氧气体的等离子体处理;
在经非氧气体的等离子体处理的所述阴极上制备活性层;
在所述活性层上制备阳极。
一个实施例中, 所述非氧气体包括氩气、 氮气、 氢气其中之一或任意组合。
一个实施例中, 在透明衬底上制备阴极包括: 在透明衬底上制备阴极的金属氧化 物。
一个实施例中, 所述阴极的金属氧化物包括 ITO、 AZO、 FTO或 ΙΖΟ。
一个实施例中, 对所述阴极进行非氧气体的等离子体处理, 包括:
将清洁后的阴极的金属氧化物放入非氧气体的等离子体处理室, 放电处理后取出。 一个实施例中, 所述放电处理为电子回旋共振等离子体放电处理, 放电气压为
5x10— 2 ¾, 放电功率为 500 ;
所述放电处理为 PECVD (Plasma Enhanced Chemical Vapor Deposition, 等离子体增 强化学气相沉积法) 射频放电处理, 放电气压为 57¾, 放电功率为 250 。
一个实施例中, 在所述活性层上制备阳极, 包括: 在所述活性层上制备阳极修饰 层, 在所述阳极修饰层上制备阳极。
本发明实施例通过对阴极表面直接进行等离子体处理, 调控阴极表面功函数, 达到 无阴极修饰层高效率工作的目的。 利用本发明实施例制备得到的反型有机太阳能电池, 能量转换效率与具有阴极修饰层的现有反型有机太阳能电池效率相当, 且成本较低, 工 艺简单, 实用性强。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。 在附图中: 图 1为本发明实施例中的反型有机太阳能电池的示意图;
图 2为现有技术中的反型有机太阳能电池的示意图;
图 3为本发明实施例的反型有机太阳能电池;
图 4为本发明实施例的反型有机太阳能电池器件结构的能级示意图;
图 5为本发明实施例中的反型有机太阳能电池的制备方法示意图;
图 6为三种不同的气体 (氩气、 氮气和氢气) 等离子体处理 ITO后, 制备的器件在 光照下的 I-V曲线图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚明白, 下面结合附图对本发明 实施例做进一步详细说明。 在此, 本发明的示意性实施例及其说明用于解释本发明, 但 并不作为对本发明的限定。
本发明实施例针对现有反型有机太阳能电池因阴极修饰层的引入而导致制备工艺复 杂, 而没有阴极修饰层又会使电池能量转化效率低下的技术问题, 提出了一种新型的没 有阴极修饰层的反型有机太阳能电池。 在本发明实施例的反型有机太阳能电池中, 通过 利用非氧气体放电等离子体技术处理阴极, 有效地降低阴极的表面功函数, 使阴极可以 发挥电子收集电极和空穴阻挡层双重作用, 实现了没有阴极修饰层的反型有机太阳能电 池的高效率工作。
本发明实施例解决其技术问题的原理与依据在于: 在反型有机太阳能电池中, 由于 阴极、 阳极功函数的差异所引起的内建电场, 会抑制光生电子向阴极 (电子收集电极) 和光生空穴向阳极 (空穴收集电极) 的移动, 同时增加电极附近光生载流子的无效复 合, 降低光电转化效率。 本发明实施例采用等离子体技术对阴极表面进行处理, 降低了 阴极表面的功函数和内建电场, 同时改善了阴极能级与活性层中电子受体 LUMO (Lowest Unoccupied Molecular Orbital, 最低未占轨道) 能级的能级失配, 在没有阴极修 饰层的情况下实现电子在阴极的高效抽取, 降低光生载流子在阴极附近的无效复合。
图 1为本发明实施例中的反型有机太阳能电池的示意图。 如图 1所示, 本发明实施 例中的反型有机太阳能电池可以包括:
透明衬底 1、 透明衬底 1上经非氧气体的等离子体处理的阴极 2、 阴极 2上的活性层 4, 以及, 活性层 4上的阳极 6。 具体实施时, 阴极可以采用金属电极, 或者金属氧化物电极。 即透明衬底上经非氧 气体的等离子体处理的阴极可以包括: 透明衬底上经非氧气体的等离子体处理的阴极的 金属氧化物, 具体的, 阴极的金属氧化物可以包括 ITO、 AZO、 FTO或 ΙΖΟ等, 在后续 的实施例中以 ΙΤΟ为例进行说明, 是由于 ΙΤΟ较为常见, 本领域技术人员可以理解的 是, 实施中阴极的金属氧化物采用 AZO、 FTO或 ΙΖΟ等其它金属氧化物也是可行的。
具体实施时, 透明衬底可以是玻璃衬底、 石英衬底、 或塑料衬底等, 实施中也可以 采用其它透明衬底, 实施例中不再一一列举。 非氧气体可以包括氩气、 氮气、 氢气其中 之一或任意组合, 实施中也可以采用其它非氧气体, 实施例中不再一一列举。 实施例 中, 利用非氧气体 (氩气、 氮气、 氢气等) 的等离子气体处理 IT0基片, 可以有效地降 低 IT0表面氧原子的含量, 减小 IT0表面功函数和有机活性层中内建电场强度, 从而实 现对电子的高效抽取。
具体实施时, 活性层的材料可以包括聚合物, 例如 P3HT、 MDMO-PPV等, 富勒烯 例如 C60、 PC61BM、 PC71BM等, 小分子例如酞菁铜等, 也可以是它们的组合。 活性 层与阳极之间还可以包括阳极修饰层。 阳极可以采用金属电极, 或者金属氧化物电极。 为了对比说明本发明实施例的反型有机太阳能电池与现有技术的不同, 可参见图 2和图 3。 图 2为现有技术中的反型有机太阳能电池的示意图。 图 3为本发明实施例的反型有机 太阳能电池。 图 2和图 3中均以阴极的金属氧化物为 ITO, 且活性层与阳极之间还包括 阳极修饰层为例进行说明。 如图 2所示, 现有技术中的反型有机太阳能电池从下至上依 次包括透明衬底 1、 ΙΤ0 2、 阴极修饰层 3、 活性层 4、 阳极修饰层 5、 阳极 6。 如图 3所 示, 本发明实施例的反型有机太阳能电池从下至上依次包括透明衬底 1、 ΙΤ0 2、 等离子 体处理 ΙΤΟ表面 3、 活性层 4、 阳极修饰层 5、 阳极 6。
由上述实施例可知, 以阴极的金属氧化物为 ΙΤΟ为例, 实施例中通过利用非氧气体 放电等离子体技术处理 ΙΤΟ阴极, 有效地降低 ΙΤΟ的表面功函数和内建电场, 使 ΙΤΟ阴 极可以发挥电子收集电极和空穴阻挡层双重作用, 实现了没有阴极修饰层的反型有机太 阳能电池的高效率工作, 同时改善了 ΙΤΟ能级与活性层中电子受体 LUMO能级的能级 失配, 在没有阴极修饰层的情况下实现电子在阴极的高效抽取, 降低光生载流子在阴极 附近的无效复合。 图 4为本发明实施例的反型有机太阳能电池器件结构的能级示意图。 如图 4所示, 本发明实施例的反型有机太阳能电池改善了 ΙΤΟ能级与活性层中电子受体 LUMO能级 (Lowest Unoccupied Molecular Orbital最低未占分子轨道) 的能级失配。 图 4 中 ^ .表示内建电场, 。表示阳极功函数, ^表示阴极功函数, 表示功函数改 变, /?v表示入射光子, 金属阳极 (Metal Anode ) , HOMO 能级 (Highest Occupied Molecular Orbital , 最高占据分子轨道) , 电子 (electron ) , 空穴 (hole ) 、 电子受体 ( Acceptor) 、 电子给体 (Donor) 。
基于同一发明构思, 本发明实施例中还提供了一种反型有机太阳能电池的制备方 法, 如下面的实施例所述。 由于该方法解决问题的原理与反型有机太阳能电池相似, 因 此该方法的实施可以参见反型有机太阳能电池的实施, 重复之处不再赘述。
图 5为本发明实施例中的反型有机太阳能电池的制备方法示意图。 如图 5所示, 本 发明实施例中的反型有机太阳能电池的制备方法可以包括:
步骤 501、 在透明衬底上制备阴极;
步骤 502、 对阴极进行非氧气体的等离子体处理;
步骤 503、 在经非氧气体的等离子体处理的阴极上制备活性层;
步骤 504、 在活性层上制备阳极。
具体实施时, 透明衬底可以是玻璃衬底、 石英衬底、 或塑料衬底等, 实施中也可以 采用其它透明衬底, 实施例中不再一一列举。 非氧气体可以包括氩气、 氮气、 氢气其中 之一或任意组合, 实施中也可以采用其它非氧气体, 实施例中不再一一列举。
具体实施时, 阴极可以采用金属电极, 或者金属氧化物电极。 即在透明衬底上制备 阴极可以包括: 在透明衬底上制备阴极的金属氧化物。 具体的, 阴极的金属氧化物可以 包括 IT0、 AZ0、 FT0或 ΙΖ0等, 在后续的实施例中以 ΙΤ0为例进行说明。
具体实施时, 对阴极进行非氧气体的等离子体处理, 可以包括:
将清洁后的阴极的金属氧化物放入非氧气体的等离子体处理室, 放电处理后取出。 具体实施时, 放电处理为电子回旋共振等离子体放电处理, 放电气压为 5 x10- 2 ¾, 放电功率为 500 ;
放电处理为 PECVD射频放电处理, 放电气压为 5Pa, 放电功率为 250 。
具体实施时, 活性层的材料可以包括聚合物, 例如 P3HT、 MDMO-PPV等, 富勒烯 例如 C60、 PC61BM、 PC71BM等, 小分子例如酞菁铜等, 也可以是它们的组合。 活性 层可以通过旋涂法、 浸涂法、 辊涂法等进行制备。 活性层与阳极之间还可以包括阳极修 饰层。 即在活性层上制备阳极, 可以包括: 在活性层上制备阳极修饰层, 在阳极修饰层 上制备阳极。 阳极可以采用金属电极, 或者金属氧化物电极。
以阴极的金属氧化物为 ITO, 且活性层与阳极之间还包括阳极修饰层为例, 利用等 离子气体处理 ΙΤΟ基片及有机太阳能电池的制作步骤可以包括: 步骤 1、 对 ITO表面进行清洁处理, 去除灰尘和油污;
步骤 2、 利用非氧气体 (氩气、 氮气或氢气) 的等离子体处理 ITO基片: 将清洁后 的 ITO放入等离子体处理室, 放电处理后取出;
步骤 3、 有机太阳能电池活性层和阳极的制备: 在处理后的 ITO上制备活性层、 阳 极修饰层 (氧化钼或 PEDOT: PSS ) 和高功函数电极 (金或银电极) 。
下面举一些实施例详细说明本发明实施例中的反型有机太阳能电池的制备方法: 实施例一: 一种反型的有机聚合物太阳能电池, 它包括: 对 ITO衬底电极使用等离 子体处理; 在 ITO导电层上依次制备有机聚合物和富勒烯小分子组成的活性层、 阳极修 饰层和对电极。
步骤 1、 将 ITO衬底分别放入水、 酒精和丙酮溶液中, 用超声波清洗液清洗, 清洗 干净后用氮气吹干;
步骤 2、 将 ITO衬底放入电子回旋共振等离子体设备的真空腔的基片台上, 对真空 腔抽真空, 使其真空度达到 10- 4 ¾ ;
步骤 3、 向真空腔内通入氩气, 并利用气体流量计控制氩气流量, 使真空腔内气压 保持在 5x10- 2 Ρα ;
步骤 4、 在真空腔内放电, 放电功率为 放电时间为 3 min ;
步骤 5、 真空腔冷却 5 min, 关闭抽真空设备, 向真空腔内充入氮气, 开腔取出 ITO 衬底;
步骤 6、 将 ITO衬底转移至手套箱内, 在 ITO表面旋涂聚噻吩和碳 60衍生物的共混 溶液并室温干燥;
步骤 7、 将表面凃有活性层的 ITO衬底置于热台上热退火 10min, 温度为 110摄氏度; 步骤 8、 将热处理后的衬底转移至双源热蒸发真空腔内并放置在基片台上; 步骤 9、 对热蒸发真空腔抽真空, 使本底真空为 2x10- 4
步骤 10、 加热氧化钼蒸发源, 蒸镀阳极氧化层氧化钼的厚度为 10«m, 控制蒸发速 度为 0.2wm / s ;
步骤 11、 加热银蒸发源, 蒸镀银电极的厚度为 100«m, 控制蒸发速度为 3«m / s。 实施例二: 实施例二与实施例一的区别为等离子体处理的气体为 H2, 其放电参数与 实施例一相同。
实施例三: 实施例三与实施例一的区别为等离子体处理的气体为氮气, 其放电参数 与实施例一相同。 实施例四: 实施例四与实施例一的区别为等离子体放电设备为 PECVD射频放电, 放电气压为 57¾, 放电功率为 250 。
实施例中反型有机太阳能电池的制备效果可以如图 6所示, 图 6为三种不同的气体 (氩气、 氮气和氢气) 等离子体处理 ITO后, 制备的器件在光照下的 I-V曲线图。 下表给 中三种不同的气体 (氩气、 氮气和氢气) 等离子体处理 ITO后, 制备的器件的能量转化 效率表, 从表中可以看出, 利用本发明实施例制备得到的反型有机太阳能电池, 能量转 换效率与具有阴极修饰层的现有反型有机太阳能电池效率相当。 表中 表示开路电 压, Km^/cm2)表示短路电流, 表示填充因子, ;/ / (%)表示能量转化效率。
Figure imgf000008_0001
综上所述, 在现有技术方案中, 反型有机太阳能电池需要在 ITO阴极表面制备修饰 层, 这些阴极修饰层制备工艺复杂, 增加了成本。 本发明实施例通过对阴极 (例如
ITO ) 表面直接进行等离子体处理, 调控阴极 (例如 ITO ) 表面功函数, 达到无阴极修 饰层高效率工作的目的。 利用本发明实施例制备得到的反型有机太阳能电池, 能量转换 效率与具有阴极修饰层的现有反型有机太阳能电池效率相当, 且成本较低, 工艺简单, 实用性强。
本发明实施例的没有阴极修饰层的新型反型有机太阳能电池, 可以简化反型太阳能 电池结构, 减少电池器件成本; 提高反型有机太阳能电池的能量转换效率; 改善反型有 机太阳能电池的使用寿命。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进行了进一步详细 说明, 所应理解的是, 以上所述仅为本发明的具体实施例而已, 并不用于限定本发明的 保护范围, 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
I、 一种反型有机太阳能电池, 其特征在于, 包括:
透明衬底、 所述透明衬底上经非氧气体的等离子体处理的阴极、 所述阴极上的活性 层, 以及, 所述活性层上的阳极。
2、 如权利要求 1所述的反型有机太阳能电池, 其特征在于, 所述透明衬底上经非氧 气体的等离子体处理的阴极包括: 所述透明衬底上经非氧气体的等离子体处理的阴极的 金属氧化物。
3、 如权利要求 2所述的反型有机太阳能电池, 其特征在于, 所述阴极的金属氧化物 包括 ITO、 AZO、 FTO或 ΙΖΟ。
4、 如权利要求 1 所述的反型有机太阳能电池, 其特征在于, 所述非氧气体包括氩 气、 氮气、 氢气其中之一或任意组合。
5、 如权利要求 1所述的反型有机太阳能电池, 其特征在于, 所述活性层与所述阳极 之间还包括阳极修饰层。
6、 一种反型有机太阳能电池的制备方法, 其特征在于, 包括:
在透明衬底上制备阴极;
对所述阴极进行非氧气体的等离子体处理;
在经非氧气体的等离子体处理的所述阴极上制备活性层;
在所述活性层上制备阳极。
7、 如权利要求 6所述的反型有机太阳能电池的制备方法, 其特征在于, 所述非氧气 体包括氩气、 氮气、 氢气其中之一或任意组合。
8、 如权利要求 6所述的反型有机太阳能电池的制备方法, 其特征在于, 在透明衬底 上制备阴极包括: 在透明衬底上制备阴极的金属氧化物。
9、 如权利要求 8所述的反型有机太阳能电池的制备方法, 其特征在于, 所述阴极的 金属氧化物包括 ITO、 AZO、 FTO或 ΙΖΟ。
10、 如权利要求 8所述的反型有机太阳能电池的制备方法, 其特征在于, 对所述阴 极进行非氧气体的等离子体处理, 包括:
将清洁后的阴极的金属氧化物放入非氧气体的等离子体处理室, 放电处理后取出。
I I、 如权利要求 10所述的反型有机太阳能电池的制备方法, 其特征在于, 所述放电 处理为电子回旋共振等离子体放电处理, 放电气压为 5x10- 2 Ρα, 放电功率为 500 ; 所述放电处理为等离子体增强化学气相沉积法 PECVD射频放电处理, 放电气压为 5Pa , 放电功率为 250 。
12、 如权利要求 6所述的反型有机太阳能电池的制备方法, 其特征在于, 在所述活 性层上制备阳极, 包括: 在所述活性层上制备阳极修饰层, 在所述阳极修饰层上制备阳 极。
PCT/CN2014/071734 2014-01-29 2014-01-29 反型有机太阳能电池及其制备方法 WO2015113239A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071734 WO2015113239A1 (zh) 2014-01-29 2014-01-29 反型有机太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071734 WO2015113239A1 (zh) 2014-01-29 2014-01-29 反型有机太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2015113239A1 true WO2015113239A1 (zh) 2015-08-06

Family

ID=53756133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071734 WO2015113239A1 (zh) 2014-01-29 2014-01-29 反型有机太阳能电池及其制备方法

Country Status (1)

Country Link
WO (1) WO2015113239A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961436A (zh) * 2004-04-13 2007-05-09 普林斯顿大学理事会 制造具有本体异质结的光电子器件的方法
CN101577313A (zh) * 2009-06-19 2009-11-11 吉林大学 反型结构聚合物太阳能电池及其制备方法
CN101593812A (zh) * 2009-07-02 2009-12-02 吉林大学 一种半透明倒置有机太阳能电池及其制备方法
US20130037109A1 (en) * 2010-03-09 2013-02-14 The Regents Of The University Of Michigan Methods of making organic photovoltaic cells having improved heterojunction morphology
US20130240853A1 (en) * 2012-03-15 2013-09-19 West Virginia University Plasma-Chlorinated Electrode and Organic Electronic Devices Using the Same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961436A (zh) * 2004-04-13 2007-05-09 普林斯顿大学理事会 制造具有本体异质结的光电子器件的方法
CN101577313A (zh) * 2009-06-19 2009-11-11 吉林大学 反型结构聚合物太阳能电池及其制备方法
CN101593812A (zh) * 2009-07-02 2009-12-02 吉林大学 一种半透明倒置有机太阳能电池及其制备方法
US20130037109A1 (en) * 2010-03-09 2013-02-14 The Regents Of The University Of Michigan Methods of making organic photovoltaic cells having improved heterojunction morphology
US20130240853A1 (en) * 2012-03-15 2013-09-19 West Virginia University Plasma-Chlorinated Electrode and Organic Electronic Devices Using the Same

Similar Documents

Publication Publication Date Title
Pisoni et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices
Ma et al. MgO nanoparticle modified anode for highly efficient SnO2‐based planar perovskite solar cells
Ha et al. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers
Cheng et al. Enhancing the performance of P3HT: ICBA based polymer solar cells using LiF as electron collecting buffer layer and UV–ozone treated MoO3 as hole collecting buffer layer
KR101571528B1 (ko) 광전변환효율이 향상된 페로브스카이트 태양전지 및 페로브스카이트 태양전지의 제조방법
Fan et al. Delayed annealing treatment for high-quality CuSCN: exploring its impact on bifacial semitransparent nip planar perovskite solar cells
Kwon et al. Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency
CN109326715A (zh) 一种p-i-n型钙钛矿太阳能电池及其制造方法
Ntwaeaborwa et al. Post-fabrication annealing effects on the performance of P3HT: PCBM solar cells with/without ZnO nanoparticles
Lee et al. Flexible p-type PEDOT: PSS/a-Si: H hybrid thin film solar cells with boron-doped interlayer
Oh et al. PEDOT: PSS-free organic photovoltaic cells using tungsten oxides as buffer layer on anodes
Gil-Escrig et al. Interface engineering in efficient vacuum deposited perovskite solar cells
Chan et al. High-performance perovskite solar cells based on low-temperature processed electron extraction layer
Yao et al. Electron transport layer driven to improve the open-circuit voltage of CH3NH3PbI3 planar perovskite solar cells
CN102790176A (zh) 混合型异质结作为空穴传输层的有机太阳能电池及其制备方法
Bai et al. Bright prospect of using alcohol-soluble Nb2O5 as anode buffer layer for efficient polymer solar cells based on fullerene and non-fullerene acceptors
CN109166972A (zh) 一种双缓冲层钙钛矿太阳能电池制造方法
CN105098079A (zh) 基于双层阴极缓冲层的有机薄膜太阳能电池及其制备方法
Jiang et al. Inverted polymer solar cells with TiO 2 electron extraction layers prepared by magnetron sputtering
KR20170000422A (ko) 1,8 디아이오도옥탄이 도핑된 페로브스카이트 태양전지 제조방법
WO2014020989A1 (ja) 有機薄膜太陽電池の製造方法
WO2023098038A1 (zh) 一种钙钛矿太阳能电池的柱状电极结构的制备方法
WO2022071302A1 (ja) ペロブスカイト薄膜系太陽電池の製造方法
Li et al. Improving electron transport by using a NaCl/Polyethylenimine ethoxylated double layer for high-efficiency polymer solar cells
Yang et al. Enhanced performance in organic photovoltaic devices with a KMnO4 solution treated indium tin oxide anode modification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880400

Country of ref document: EP

Kind code of ref document: A1