WO2015112261A1 - Configuring neural network for low spiking rate - Google Patents
Configuring neural network for low spiking rate Download PDFInfo
- Publication number
- WO2015112261A1 WO2015112261A1 PCT/US2014/068417 US2014068417W WO2015112261A1 WO 2015112261 A1 WO2015112261 A1 WO 2015112261A1 US 2014068417 W US2014068417 W US 2014068417W WO 2015112261 A1 WO2015112261 A1 WO 2015112261A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- neuron model
- neuron
- model
- firing rate
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0495—Quantised networks; Sparse networks; Compressed networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding, deleting or silencing nodes or connections
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
Definitions
- FIGURE 3 illustrates an exemplary diagram 300 of a synaptic weight change as a function of relative timing of presynaptic and postsynaptic spikes in accordance with the STDP.
- a presynaptic neuron fires before a postsynaptic neuron, then a corresponding synaptic weight may be increased, as illustrated in a portion 302 of the graph 300.
- This weight increase can be referred to as an LTP of the synapse.
- the reverse order of firing may reduce the synaptic weight, as illustrated in a portion 304 of the graph 300, causing an LTD of the synapse.
- the regime and the coupling p may be computed upon events.
- the regime and coupling (transformation) variables may be defined based on the state at the time of the last (prior) event.
- the regime and coupling variable may be defined based on the state at the time of the next (current) event.
- the neurons 912 of the hidden layer 904 may, for example, be configured in accordance with a neuron model such as a Leaky Integrate and Fire (LIF) neuron model, a quadratic integrate and Fire (QIF) model, a Linear Threshold (LT) neuron model, and a Cold neuron Model, or the like.
- a neuron model such as a Leaky Integrate and Fire (LIF) neuron model, a quadratic integrate and Fire (QIF) model, a Linear Threshold (LT) neuron model, and a Cold neuron Model, or the like.
- the regularization term ( ⁇ ) of Equation 24 may be selected to reduce or even minimize the number of effective neurons for a given value of expected desired performance. That is, the regularization term ( ⁇ ) may be selected for example, based on an error rate, a number of neurons, other system and/or performance consideration or metrics. For example, for Method 1, a performance target (e.g., in terms of MSE (mean square error)) may be set and used to find the reduced number of effective neurons to meet the desired level of performance target by varying ⁇ . The error tolerance can be user selected, and then the regularization term can be set accordingly.
- MSE mean square error
- LASSO processing may be performed to estimate or learn the postsynaptic weights represented by the decoding vectors (e.g., 1008). Applying the LI regularization, some of the estimated or learned decoding vectors weights may be set to zero, while the remainder may be set to a non-zero value.
- the decoding vectors having a zero weight may be removed thereby generating a reduced set or more sparse set of decoding vectors, which may be referred to as a sparse-set M ⁇ N non-zero decoding vectors 1008a, ..., 1008m (which may be collectively referred to as non-zero decoding vectors 1008).
- FIGURE 10B illustrates a reduced set of model neurons generated according to Method 2 described above.
- FIGURE 10B shows a modified hidden layer 1006 of a neural network including M effective model neurons generated according to Method 1 (and shown in FIGURE 10A) and a new set of N-M model neurons 1010.
- the weights of the presynaptic connections for the M effective model neurons (1006) may be fixed, while the weights of the presynaptic connections for new set of N- M model neurons may be random.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Feedback Control In General (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP14819207.3A EP3097516A1 (en) | 2014-01-23 | 2014-12-03 | Configuring neural network for low spiking rate |
| JP2016547861A JP2017509953A (ja) | 2014-01-23 | 2014-12-03 | 低スパイキングレートのためのニューラルネットワークを構成すること |
| CN201480071680.4A CN105900115A (zh) | 2014-01-23 | 2014-12-03 | 配置用于实现低尖峰发放率的神经网络 |
Applications Claiming Priority (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461930849P | 2014-01-23 | 2014-01-23 | |
| US201461930858P | 2014-01-23 | 2014-01-23 | |
| US61/930,849 | 2014-01-23 | ||
| US61/930,858 | 2014-01-23 | ||
| US201461939537P | 2014-02-13 | 2014-02-13 | |
| US61/939,537 | 2014-02-13 | ||
| US14/449,092 US20150206050A1 (en) | 2014-01-23 | 2014-07-31 | Configuring neural network for low spiking rate |
| US14/449,092 | 2014-07-31 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015112261A1 true WO2015112261A1 (en) | 2015-07-30 |
Family
ID=53545086
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/068417 Ceased WO2015112261A1 (en) | 2014-01-23 | 2014-12-03 | Configuring neural network for low spiking rate |
| PCT/US2014/068449 Ceased WO2015112262A1 (en) | 2014-01-23 | 2014-12-03 | Configuring sparse neuronal networks |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2014/068449 Ceased WO2015112262A1 (en) | 2014-01-23 | 2014-12-03 | Configuring sparse neuronal networks |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US10339447B2 (enExample) |
| EP (2) | EP3097519A1 (enExample) |
| JP (2) | JP2017509953A (enExample) |
| CN (2) | CN105874477A (enExample) |
| TW (2) | TW201531966A (enExample) |
| WO (2) | WO2015112261A1 (enExample) |
Families Citing this family (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016187500A1 (en) * | 2015-05-21 | 2016-11-24 | Cory Merkel | Method and apparatus for training memristive learning systems |
| CN107545303B (zh) * | 2016-01-20 | 2021-09-07 | 中科寒武纪科技股份有限公司 | 用于稀疏人工神经网络的计算装置和运算方法 |
| JP6453785B2 (ja) * | 2016-01-21 | 2019-01-16 | 日本電信電話株式会社 | 回帰分析装置、回帰分析方法および回帰分析プログラム |
| WO2017136665A1 (en) * | 2016-02-05 | 2017-08-10 | Google Inc. | Augmenting neural networks with sparsely-accessed external memory |
| US10643125B2 (en) | 2016-03-03 | 2020-05-05 | International Business Machines Corporation | Methods and systems of neuron leaky integrate and fire circuits |
| US11222263B2 (en) | 2016-07-28 | 2022-01-11 | Samsung Electronics Co., Ltd. | Neural network method and apparatus |
| CN107239825B (zh) * | 2016-08-22 | 2021-04-09 | 赛灵思电子科技(北京)有限公司 | 考虑负载均衡的深度神经网络压缩方法 |
| EP3520038A4 (en) | 2016-09-28 | 2020-06-03 | D5A1 Llc | LEARNING TRAINER FOR MACHINE LEARNING SYSTEM |
| CN110298443B (zh) * | 2016-09-29 | 2021-09-17 | 中科寒武纪科技股份有限公司 | 神经网络运算装置及方法 |
| US20180164866A1 (en) * | 2016-12-13 | 2018-06-14 | Qualcomm Incorporated | Low-power architecture for sparse neural network |
| US10679118B2 (en) | 2016-12-20 | 2020-06-09 | Intel Corporation | Solving matrix inverse problems using neuromorphic computing |
| US10871964B2 (en) * | 2016-12-29 | 2020-12-22 | Qualcomm Incorporated | Architecture for sparse neural network acceleration |
| US11551074B2 (en) * | 2017-01-20 | 2023-01-10 | Tsinghua University | Self-adaptive threshold neuron information processing method, self-adaptive leakage value neuron information processing method, system computer device and readable storage medium |
| KR102390379B1 (ko) * | 2017-03-06 | 2022-04-26 | 삼성전자주식회사 | 뉴럴 네트워크 프로세서, 뉴럴 네트워크 프로세서의 동작 방법, 및 뉴럴 네트워크 장치 |
| WO2018175098A1 (en) | 2017-03-24 | 2018-09-27 | D5Ai Llc | Learning coach for machine learning system |
| CN110914829B (zh) * | 2017-04-07 | 2025-08-12 | 英特尔公司 | 使用改进的卷积神经网络用于图像处理的方法和系统 |
| US10795836B2 (en) * | 2017-04-17 | 2020-10-06 | Microsoft Technology Licensing, Llc | Data processing performance enhancement for neural networks using a virtualized data iterator |
| CN108734279B (zh) * | 2017-04-20 | 2021-04-23 | 上海寒武纪信息科技有限公司 | 一种运算装置和方法 |
| EP3699826A1 (en) | 2017-04-20 | 2020-08-26 | Shanghai Cambricon Information Technology Co., Ltd | Operation device and related products |
| CN109146069B (zh) * | 2017-06-16 | 2020-10-13 | 上海寒武纪信息科技有限公司 | 运算装置、运算方法和芯片 |
| WO2018231708A2 (en) * | 2017-06-12 | 2018-12-20 | D5Ai Llc | Robust anti-adversarial machine learning |
| KR102601604B1 (ko) | 2017-08-04 | 2023-11-13 | 삼성전자주식회사 | 뉴럴 네트워크의 파라미터들을 양자화하는 방법 및 장치 |
| CN107609641B (zh) * | 2017-08-30 | 2020-07-03 | 清华大学 | 稀疏神经网络架构及其实现方法 |
| TWI653584B (zh) | 2017-09-15 | 2019-03-11 | 中原大學 | 利用非揮發性記憶體完成類神經網路訓練的方法 |
| US10366322B2 (en) * | 2017-10-06 | 2019-07-30 | DeepCube LTD. | System and method for compact and efficient sparse neural networks |
| US11580194B2 (en) | 2017-11-01 | 2023-02-14 | Nec Corporation | Information processing apparatus, information processing method, and program |
| CN109902812B (zh) | 2017-12-11 | 2020-10-09 | 中科寒武纪科技股份有限公司 | 板卡和神经网络运算方法 |
| US10803379B2 (en) | 2017-12-12 | 2020-10-13 | Amazon Technologies, Inc. | Multi-memory on-chip computational network |
| US10846621B2 (en) * | 2017-12-12 | 2020-11-24 | Amazon Technologies, Inc. | Fast context switching for computational networks |
| CN108268938B (zh) * | 2018-01-24 | 2020-04-21 | 清华大学 | 神经网络及其信息处理方法、信息处理系统 |
| US11321612B2 (en) | 2018-01-30 | 2022-05-03 | D5Ai Llc | Self-organizing partially ordered networks and soft-tying learned parameters, such as connection weights |
| CN110197272B (zh) * | 2018-02-27 | 2020-08-25 | 上海寒武纪信息科技有限公司 | 集成电路芯片装置及相关产品 |
| EP3576019B1 (en) * | 2018-05-29 | 2024-10-09 | Nokia Technologies Oy | Artificial neural networks |
| KR102675781B1 (ko) * | 2018-06-27 | 2024-06-18 | 삼성전자주식회사 | 뉴로모픽 프로세서 및 그것의 동작 방법 |
| US20200019838A1 (en) * | 2018-07-11 | 2020-01-16 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatus for spiking neural network computing based on randomized spatial assignments |
| US11537856B2 (en) * | 2018-08-08 | 2022-12-27 | Applied Brain Research Inc. | Digital circuits for evaluating neural engineering framework style neural networks |
| US11537855B2 (en) * | 2018-09-24 | 2022-12-27 | International Business Machines Corporation | Low spike count ring buffer mechanism on neuromorphic hardware |
| US11922314B1 (en) | 2018-11-30 | 2024-03-05 | Ansys, Inc. | Systems and methods for building dynamic reduced order physical models |
| US11556778B2 (en) * | 2018-12-07 | 2023-01-17 | Microsoft Technology Licensing, Llc | Automated generation of machine learning models |
| CN110619905A (zh) * | 2019-08-09 | 2019-12-27 | 上海集成电路研发中心有限公司 | 一种基于rram忆阻器单元的集合模块及其形成方法 |
| KR20210023401A (ko) * | 2019-08-23 | 2021-03-04 | 삼성전자주식회사 | 뉴럴 네트워크 연산 방법 및 이를 포함하는 시스템 |
| CN110708341B (zh) * | 2019-11-15 | 2020-09-29 | 中国科学院信息工程研究所 | 一种基于远程桌面加密网络流量模式差异的用户行为检测方法及系统 |
| US11556384B2 (en) | 2020-03-13 | 2023-01-17 | Cisco Technology, Inc. | Dynamic allocation and re-allocation of learning model computing resources |
| EP4107671A1 (en) * | 2020-06-05 | 2022-12-28 | DeepMind Technologies Limited | System and method for training a sparse neural network whilst maintaining sparsity |
| DE102020209538A1 (de) * | 2020-07-29 | 2022-02-03 | Robert Bosch Gesellschaft mit beschränkter Haftung | Vorrichtung und Verfahren zum Ermitteln einer physikalischen Eigenschaft eines physikalischen Objekts |
| CN114511062A (zh) * | 2021-11-22 | 2022-05-17 | 北京中科凡语科技有限公司 | 可解释神经解码模型的生成方法、电子设备和存储介质 |
| CN116842993B (zh) * | 2023-06-15 | 2025-07-25 | 北京工业大学 | 一种基于多属性二型模糊神经网络的总氮去除量检测方法 |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030105409A1 (en) | 2001-11-14 | 2003-06-05 | Donoghue John Philip | Neurological signal decoding |
| MY138544A (en) | 2003-06-26 | 2009-06-30 | Neuramatix Sdn Bhd | Neural networks with learning and expression capability |
| JP4848492B2 (ja) | 2006-08-03 | 2011-12-28 | パナソニック電工Sunx株式会社 | 信号識別方法及び信号識別装置 |
| US8095210B2 (en) | 2007-01-19 | 2012-01-10 | California Institute Of Technology | Prosthetic devices and methods and systems related thereto |
| EP2263165A4 (en) | 2008-03-14 | 2011-08-24 | Hewlett Packard Development Co | NEUROMORPHIC CIRCUIT |
| US8630966B2 (en) | 2009-01-27 | 2014-01-14 | Salk Institute For Biological Studies | Temporally dynamic artificial neural networks |
| US8615476B2 (en) | 2009-04-15 | 2013-12-24 | University Of Southern California | Protecting military perimeters from approaching human and vehicle using biologically realistic neural network |
| US8250010B2 (en) | 2009-05-21 | 2012-08-21 | International Business Machines Corporation | Electronic learning synapse with spike-timing dependent plasticity using unipolar memory-switching elements |
| US10223632B2 (en) | 2009-07-27 | 2019-03-05 | International Business Machines Corporation | Modeling states of an entity |
| US20120117012A1 (en) | 2010-04-08 | 2012-05-10 | Neurosciences Research Foundation, Inc. | Spike-timing computer modeling of working memory |
| US20120023051A1 (en) * | 2010-07-22 | 2012-01-26 | Ramin Pishehvar | Signal coding with adaptive neural network |
| US8606732B2 (en) | 2010-08-04 | 2013-12-10 | Qualcomm Incorporated | Methods and systems for reward-modulated spike-timing-dependent-plasticity |
| US8577820B2 (en) | 2011-03-04 | 2013-11-05 | Tokyo Electron Limited | Accurate and fast neural network training for library-based critical dimension (CD) metrology |
| US8521670B2 (en) | 2011-05-25 | 2013-08-27 | HGST Netherlands B.V. | Artificial neural network application for magnetic core width prediction and modeling for magnetic disk drive manufacture |
| US9092726B2 (en) | 2011-08-11 | 2015-07-28 | Greenray Industries, Inc. | Neural network frequency control |
| KR101912165B1 (ko) | 2011-12-09 | 2018-10-29 | 삼성전자주식회사 | 스파이킹 뉴런 기반 작업 기억 장치 |
| US9111225B2 (en) | 2012-02-08 | 2015-08-18 | Qualcomm Incorporated | Methods and apparatus for spiking neural computation |
| US9208431B2 (en) | 2012-05-10 | 2015-12-08 | Qualcomm Incorporated | Method and apparatus for strategic synaptic failure and learning in spiking neural networks |
| US20130325767A1 (en) | 2012-05-30 | 2013-12-05 | Qualcomm Incorporated | Dynamical event neuron and synapse models for learning spiking neural networks |
| US9367798B2 (en) | 2012-09-20 | 2016-06-14 | Brain Corporation | Spiking neuron network adaptive control apparatus and methods |
| US9367519B2 (en) * | 2013-08-30 | 2016-06-14 | Microsoft Technology Licensing, Llc | Sparse matrix data structure |
-
2014
- 2014-07-31 US US14/449,101 patent/US10339447B2/en active Active
- 2014-07-31 US US14/449,092 patent/US20150206050A1/en not_active Abandoned
- 2014-12-03 EP EP14824192.0A patent/EP3097519A1/en not_active Withdrawn
- 2014-12-03 JP JP2016547861A patent/JP2017509953A/ja active Pending
- 2014-12-03 EP EP14819207.3A patent/EP3097516A1/en not_active Withdrawn
- 2014-12-03 JP JP2016547855A patent/JP2017509951A/ja active Pending
- 2014-12-03 CN CN201480071677.2A patent/CN105874477A/zh active Pending
- 2014-12-03 CN CN201480071680.4A patent/CN105900115A/zh active Pending
- 2014-12-03 WO PCT/US2014/068417 patent/WO2015112261A1/en not_active Ceased
- 2014-12-03 WO PCT/US2014/068449 patent/WO2015112262A1/en not_active Ceased
- 2014-12-08 TW TW103142629A patent/TW201531966A/zh unknown
- 2014-12-08 TW TW103142628A patent/TW201531965A/zh unknown
Non-Patent Citations (4)
| Title |
|---|
| J. C. TAPSON ET AL: "Synthesis of neural networks for spatio-temporal spike pattern recognition and processing", FRONTIERS IN NEUROSCIENCE, vol. 7, 153, 30 August 2013 (2013-08-30), XP055192522, DOI: 10.3389/fnins.2013.00153 * |
| K. D. CARLSON ET AL: "An efficient automated parameter tuning framework for spiking neural networks", FRONTIERS IN NEUROSCIENCE, vol. 8, 10, 17 January 2014 (2014-01-17), XP055192436, DOI: 10.3389/fnins.2014.00010 * |
| M. A. FARRIES, A. L. FAIRHALL: "Reinforcement learning with modulated spike timing-dependent synaptic plasticity", JOURNAL OF NEUROPHYSIOLOGY, vol. 98, no. 6, 10 October 2007 (2007-10-10), pages 3648 - 3665, XP055192453, DOI: 10.1152/jn.00364.2007 * |
| T. STEWART ET AL: "Python scripting in the Nengo simulator", FRONTIERS IN NEUROINFORMATICS, vol. 3, 7, 10 October 2008 (2008-10-10), XP055192431, DOI: 10.3389/neuro.11.007.2009 * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3097516A1 (en) | 2016-11-30 |
| TW201531965A (zh) | 2015-08-16 |
| CN105900115A (zh) | 2016-08-24 |
| JP2017509953A (ja) | 2017-04-06 |
| US20150206048A1 (en) | 2015-07-23 |
| TW201531966A (zh) | 2015-08-16 |
| US20150206050A1 (en) | 2015-07-23 |
| WO2015112262A1 (en) | 2015-07-30 |
| US10339447B2 (en) | 2019-07-02 |
| CN105874477A (zh) | 2016-08-17 |
| JP2017509951A (ja) | 2017-04-06 |
| EP3097519A1 (en) | 2016-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10339447B2 (en) | Configuring sparse neuronal networks | |
| US9542643B2 (en) | Efficient hardware implementation of spiking networks | |
| EP3170126A1 (en) | Decomposing convolution operation in neural networks | |
| EP3123404A2 (en) | Differential encoding in neural networks | |
| WO2015088774A2 (en) | Neuronal diversity in spiking neural networks and pattern classification | |
| EP3129921A2 (en) | Modulating plasticity by global scalar values in a spiking neural network | |
| US20150278685A1 (en) | Probabilistic representation of large sequences using spiking neural network | |
| WO2015167765A2 (en) | Temporal spike encoding for temporal learning | |
| WO2015127130A2 (en) | Dynamic spatial target selection | |
| US20140310216A1 (en) | Method for generating compact representations of spike timing-dependent plasticity curves | |
| US20150213356A1 (en) | Method for converting values into spikes | |
| EP3058518A2 (en) | Congestion avoidance in networks of spiking neurons | |
| US9542645B2 (en) | Plastic synapse management | |
| US9342782B2 (en) | Stochastic delay plasticity | |
| WO2015057305A1 (en) | Dynamically assigning and examining synaptic delay | |
| WO2014197175A2 (en) | Efficient implementation of neural population diversity in neural system | |
| US20150242742A1 (en) | Imbalanced cross-inhibitory mechanism for spatial target selection |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14819207 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| REEP | Request for entry into the european phase |
Ref document number: 2014819207 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014819207 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2016547861 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |