WO2015111717A1 - Composition for forming alkali dissolution-developable high-refractive-index film and pattern forming method - Google Patents

Composition for forming alkali dissolution-developable high-refractive-index film and pattern forming method Download PDF

Info

Publication number
WO2015111717A1
WO2015111717A1 PCT/JP2015/051893 JP2015051893W WO2015111717A1 WO 2015111717 A1 WO2015111717 A1 WO 2015111717A1 JP 2015051893 W JP2015051893 W JP 2015051893W WO 2015111717 A1 WO2015111717 A1 WO 2015111717A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
hydrolyzable silane
varnish
mass
forming composition
Prior art date
Application number
PCT/JP2015/051893
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 拓
中島 誠
淳平 小林
雅規 永井
正睦 鈴木
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014012675A external-priority patent/JP2017052814A/en
Priority claimed from JP2014012676A external-priority patent/JP2017052815A/en
Priority claimed from JP2014012673A external-priority patent/JP2017052812A/en
Priority claimed from JP2014012674A external-priority patent/JP2017052813A/en
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2015111717A1 publication Critical patent/WO2015111717A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a film forming composition containing polysiloxane and inorganic fine particles, and a pattern forming method.
  • LEDs Light emitting diodes
  • LEDs are used as backlight light sources for various displays, traffic lights, lighting, lasers, biosensors, etc., and are widely used for consumer use.
  • LEDs have been mainly developed for devices that increase the light extraction efficiency.
  • element structures and materials for improving light extraction efficiency are being developed.
  • fine particles of at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide, zinc oxide, tantalum oxide, indium oxide, hafnium oxide, tin oxide, niobium oxide, and a composite thereof, and a weight average molecular weight Is an alkoxy group-containing siloxane polymer (b1) in the range of 1,000 to 100,000, a hydroxy group-containing polysiloxane (b2) having a weight average molecular weight of 500 to 100,000, ⁇ -diketone, ketoester, dicarboxylic acid
  • a high refractive material containing at least one chelating agent selected from the group consisting of acids and derivatives thereof, hydroxycarboxylic acids and derivatives thereof, keto alcohols, dihydroxy compounds, oxyaldehyde compounds, and amine compounds and derivatives thereof Composition (patent Document reference 1), Organopolysiloxane containing alkyl group, aryl group, hydroxy group, etc., resin composition for optical
  • the target high refractive index material is required to have high transparency, high heat resistance, high light resistance, and high hardness, but no sufficiently satisfactory material that satisfies all of these required performances has been obtained so far.
  • the high refractive index film for LED is required to have alkali developability, and in order to produce a pattern of 10 ⁇ m or less, dissolution developability is required for alkali. Therefore, it is conceivable that the high refractive index composition itself is imparted with photosensitivity to obtain a pattern. However, since it contains a photosensitizer, it is difficult to satisfy long-term light resistance and reliability as a member of an LED element.
  • a high refractive index composition containing polysiloxane and inorganic particles has not been studied for patterning using a photosensitive material recoated thereon, and 10 ⁇ m or less is considered in consideration of a process for manufacturing an LED. There are no known studies on patterning.
  • the present invention has been made in view of such circumstances, and is a film-forming composition suitable for producing a film for a display device that can achieve high refractive index, high transparency, high heat resistance, high light resistance, and high hardness. It is an object of the present invention to provide an object, a pattern forming method using the same, and a method for preventing film roughness when the resist film is peeled off.
  • R 1 and R 2 are each an alkoxy group having 1 to 20 carbon atoms, show an acyloxy group, or a halogen group having a carbon number of 2 to 20 L is a straight chain of 3 to 6 carbon atoms, branched Or a hydrolyzable condensate of hydrolyzable silane containing a silicon compound (A) having a weight average molecular weight of 700 to 4000 and an average particle diameter of 1 to 100 nm and 1.50 to 2
  • a film-forming composition (1) comprising inorganic particles (B) having a refractive index of .70 and a solvent (C),
  • the silicon compound (A) has a hydrolyzable silane (a1) and hydrolyzable silane (a2) ratio of 90 mol% to 50 mol%,
  • the film-forming composition (1) comprising inorganic particles (B)
  • a film-forming composition (1) according to the third aspect comprising a solvent to be used;
  • the film-forming composition (1) according to the first aspect wherein the inorganic particles (B) are zirconia
  • the film-forming composition (2) according to the third aspect further comprising a curing catalyst (D) selected from ammonium salts, phosphines, phosphonium salts, sulfonium salts, or chelate compounds
  • the film-forming composition (3) according to the third aspect further comprising a diketone compound (E) selected from 1,2-diketone and / or 1,3-diketone
  • the diketone compound (E) is represented by the following formula (3) and / or the following formula (4): (Wherein W represents a carbon atom or an oxygen atom)
  • the film-forming composition (3) according to the ninth aspect which is a compound containing a skeleton represented by:
  • the film-forming composition (3) according to the ninth aspect which is a compound containing a skeleton represented by:
  • the film-forming composition (4) according to the eighth aspect further comprising water (F) and an acid (G),
  • a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000.
  • Obtaining a varnish of A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method; A step of mixing a varnish of a silicon compound (A) and a sol of inorganic particles (B) to obtain a film-forming composition containing the silicon compound (A), inorganic particles (B), and a solvent (C).
  • a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound having a weight average molecular weight of 700 to 4000
  • a step of obtaining the varnish of A A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
  • the varnish of the silicon compound (A), the sol of the inorganic particles (B), and the curing catalyst (D) are mixed, and the silicon compound (A), the inorganic particles (B), the curing catalyst (D), and the solvent (C) are mixed.
  • a method for producing the film-forming composition (2) according to the eighth aspect including a step of obtaining a film-forming composition comprising, As a fifteenth aspect, a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1), and a silicon compound having a weight average molecular weight of 700 to 4000 ( A step of obtaining the varnish of A), A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method; The varnish of the silicon compound (A), the sol of the inorganic particles (B), and the diketone compound (E) are mixed, and the silicon compound (A), the inorganic particles (B), the diketone compound (E), and the solvent (C) are mixed.
  • a method for producing a film-forming composition (3) according to the ninth aspect including a step of obtaining a film-forming composition
  • a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1), and a silicon compound having a weight average molecular weight of 700 to 4000
  • a step of obtaining the varnish of A) A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
  • the varnish of the silicon compound (A), the sol of the inorganic particles (B), the curing catalyst (D), water (F), and the acid (G) are mixed, and the silicon compound (A), the inorganic particles (B), and the curing catalyst ( A process for producing a film-forming composition
  • a pattern forming method comprising irradiating, subsequently developing, and then removing the resist film;
  • the film forming composition according to any one of the first to twelfth aspects is coated on a substrate and heated, and has a refractive index of 1.50 to 1.90 at a wavelength of 633 nm.
  • alkali development is classified into dissolution development and release development. Dissolution development is development in which an alkaline solution dissolves a film, and pattern development is performed. Release development is development in which an alkaline solution hardly dissolves a film, and pattern formation is performed while causing swelling and cracking of the film. It is.
  • the film-forming composition of the present invention comprises a silicon compound (A) having a weight average molecular weight of 700 to 4000, inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70, a solvent A film-forming composition containing (C).
  • the silicon compound (A) has a weight average molecular weight of 700 to 4000, and is obtained by copolymerizing a very specific type of hydrolyzable silane (a2) at a specified ratio with the hydrolyzable silane (a1).
  • the resulting hydrolyzed condensate has a high refractive index in which a film formed from the composition comprising the inorganic particles (B) exhibits dissolution and developability with respect to an alkaline solution and has a pattern of 10 ⁇ m or less. A coating is obtained.
  • the filterability is good and the high transmittance of the film-forming composition can be achieved.
  • the composition is composed of an inorganic compound, so that the light resistance is good.
  • the hydroxy group present on the surface of the silicon compound (A) and the inorganic particles (B) can start polycondensation when heat is applied as an external stimulus and can form a strong and high hardness film.
  • composition comprising the polysiloxane of the present invention and inorganic particles having an average particle size of 1 to 100 nm or less has dissolution developability in an alkaline solution, patterning of 10 ⁇ m or less is possible using a photosensitive resist. It is. Since a process such as dry etching is not performed, the process is simplified and the production cost can be reduced.
  • a comparison between a composition using a fully hydrolyzed polysiloxane and a partially hydrolyzed polysiloxane has the following characteristics.
  • Partially hydrolyzed polysiloxane refers to a polymer obtained by using an alcohol containing a functional group such as a hydroxy group as a solvent during hydrolysis or polycondensation.
  • the partially hydrolyzed polysiloxane is hydrolyzed and in the stage of polycondensation, the alcohol produced from the solvent alcohol or the monomer silane alkoxide reacts with the silanol groups produced by the hydrolysis and remains in the form of silane alkoxide. Further, since the silanol group and the silane alkoxide in the polymer in a solution state are chemically equilibrium reactions, polysiloxane having a large residual ratio of silane alkoxide is obtained when alcohol is selected as a solvent for hydrolysis and condensation.
  • fully hydrolyzed polysiloxane refers to a polymer obtained by using a non-alcohol containing no hydroxy group as a solvent for hydrolysis and condensation.
  • the non-alcohol solvent which is a solvent for hydrolysis and polycondensation, does not have hydroxy groups that end-block the polymer silanol, so the resulting polymer has a high residual ratio of silanol. It becomes polysiloxane. That is, since the fully hydrolyzed polysiloxane contains almost no silane alkoxide as an organic component, it becomes a polymer containing almost no carbon element which is disadvantageous in the light resistance test.
  • Additives include silanol formation accelerators and silane alkoxide decomposition accelerators, but these additives contain organic groups and metals and deteriorate the light resistance, so they are not suitable for the composition of the present invention. is there.
  • the fully hydrolyzed polysiloxane Compared with the partially hydrolyzed polysiloxane, the fully hydrolyzed polysiloxane has more silanol at the end, so that a highly reliable film can be obtained after thermosetting.
  • the solubility becomes too high, and it is difficult to form a pattern of 10 ⁇ m or less using the photosensitive resist of the present invention.
  • Alkali solution resistance can be improved or controlled at the stage of temporary drying, and a pattern of 10 ⁇ m or less can be efficiently formed under conditions suitable for practical processes.
  • composition comprising the polysiloxane of the present invention, inorganic particles having an average particle diameter of 1 to 100 nm or less and a hydrogen bonding film roughening prevention material (for example, diketone compound) can be patterned using a photosensitive resist, Further, film roughness does not occur when the photosensitive resist is recoated or the resist film is peeled off.
  • a hydrogen bonding film roughening prevention material for example, diketone compound
  • the film obtained by the present invention can satisfy all the conditions of high refractive index, high transparency, high heat resistance, high light resistance, and high hardness, and can be patterned, so that it can be patterned.
  • it can be suitably used as an LED member that requires high light resistance.
  • FIG. 11 is a view of the film forming surface after the resist film is peeled off when varnish V (3-1) is used in Example (3-10).
  • FIG. 14 is a view of the film forming surface after the resist film is peeled off when varnish RV (3-1) is used in Reference Example (3-14).
  • FIG. 5 is a film formation surface observation view after patterning using varnish RV (4-1) in Reference Example (4-1).
  • the present invention is a hydrolyzable condensate of hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) and having a weight average molecular weight of 700 to 4000, silicon compound (A), 1 to 100 nm
  • a film-forming composition comprising inorganic particles (B) having an average particle diameter and a refractive index of 1.50 to 2.70, and a solvent (C).
  • R 1 and R 2 in the formula (1) and the formula (2) each represent an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 2 to 20 carbon atoms, or a halogen group, and L represents 3 carbon atoms.
  • the solid content concentration of the film-forming composition may be adjusted so as to obtain the desired film-forming film thickness, and is 0.1 to 50% by mass, 1 to 30% by mass, or 5 to 20%.
  • the concentration range may be mass%.
  • the solid content is the remaining ratio after the solvent is removed from the film-forming composition.
  • the content of the silicon compound (A) and the inorganic particles (B) in the solid content can be 50 to 100% by mass, 70 to 100% by mass, or 70 to 99% by mass.
  • the silicon compound (A) can be added in the range of 0.1 to 200 parts by mass, preferably 0.1 to 100 parts by mass. In order to maintain film quality and storage stability, the amount is more preferably 0.1 to 50 parts by mass.
  • the silicon compound (A) used in the present invention is a hydrolysis obtained by hydrolyzing and copolymerizing a hydrolyzable silane (a1) represented by the formula (a1) and a hydrolyzable silane (a2) represented by the formula (a2). It is a condensate.
  • This hydrolysis-condensation product may contain a hydrolysis product.
  • the ratio of hydrolyzable silane (a1) to hydrolyzable silane (a2) is 90 mol% to 50 mol%, 80 mol% to 60 mol%.
  • hydrolyzable silane (a2) contained in 10 mol% to 50 mol%, 20 mol% to 40 mol%, or 30 mol%, respectively, is hydrolyzed and condensed at 70 mol%. It is a polymer.
  • the silicon compound (A) produced by containing 95 mol% or more of the hydrolyzable silane (a1) has the developability of an alkaline solution as a peel development, and does not exhibit the dissolution developability which is an important object of the present invention. Further, a silicon compound produced by containing 55 mol% or more of hydrolyzable silane (a2) has increased hydrophobicity, repels an alkaline solution, and loses developability itself.
  • the hydrolyzate is a product in which the hydrolyzable group of the silane monomer is hydrolyzed to produce a silanol group.
  • the hydrolyzed condensate is a hydrolyzed condensate in which silanol groups in the hydrolyzed product undergo dehydration condensation and forms a polysiloxane, and the terminal of the condensate usually has a silanol group.
  • the silicon compound (A) is a hydrolyzed condensate (polysiloxane), but may have a hydrolyzate that is a precursor thereof.
  • R 1 and R 2 in formula (a1) and formula (a2) represent an alkoxy group, an acyloxy group, or a halogen group.
  • alkoxy group examples include an alkoxy group having a linear, branched or cyclic alkyl portion having 1 to 20 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group.
  • acyloxy group examples include acyloxy groups having 2 to 20 carbon atoms, such as methylcarbonyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, isopropylcarbonyloxy group, n-butylcarbonyloxy group, isobutylcarbonyloxy group.
  • halogen group as the hydrolyzing group examples include fluorine, chlorine, bromine, iodine and the like.
  • hydrolyzable silane (a1) examples include tetramethoxysilane, tetraacetoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraacetoxysilane, and tetrachlorosilane.
  • examples thereof include, but are not limited to, tetrafunctional (having four hydrolyzable groups) siloxane monomers. Among these, tetramethoxysilane and tetraethoxysilane can be preferably used.
  • a commercially available product can be used as the hydrolyzable silane.
  • L in the hydrolyzable silane (a2) represents a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms.
  • hydrolyzable silane (a2) examples include n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltriethoxysilane, cyclopropyltriethoxysilane, n-butyltriethoxysilane, sec-butyltriethoxysilane, t-butyltriethoxysilane, isobutyltriethoxysilane, cyclobutyltriethoxysilane, n-pentyltriethoxysilane, t-pentyltriethoxysilane, triethoxy (pentan-2-yl) silane, triethoxy (pentan-3-yl) Silane, cyclopentyltrimethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, triethoxy (hexane-2-yl
  • n-propyltrimethoxysilane, n-propyltriethoxysilane, isobutyltriethoxysilane, and n-hexyltrimethoxysilane can be preferably used.
  • a commercially available product can be used as the hydrolyzable silane.
  • a hydrolyzable silane containing a hydrolyzable silane (a1) of the formula (a1) and a hydrolyzable silane (a2) of the formula (a2) is hydrolyzed and condensed to form a copolymer containing the hydrolyzed condensate.
  • the silicon compound (A) can be a condensate having a weight average molecular weight of 700 to 4000 or 1000 to 2000. These molecular weights are molecular weights obtained in terms of polystyrene by GPC analysis. When the weight average molecular weight is less than 700, the polymer is too low in molecular weight and a uniform film cannot be obtained. On the other hand, when the weight average molecular weight is more than 4000, the polymer becomes too high in molecular weight, resulting in peeling development with respect to the alkaline solution.
  • Organic acids as hydrolysis catalysts are, for example, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacin Acid, gallic acid, butyric acid, merit acid, arachidonic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfone Examples include acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthal
  • Examples of the inorganic acid as the hydrolysis catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid and the like.
  • Organic bases as hydrolysis catalysts include, for example, pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, trimethylamine, triethylamine, monoethanolamine, diethanolamine, dimethylmonoethanolamine, monomethyldiethanolamine, triethanolamine, diazabicyclooctane, diazine. And zabicyclononane, diazabicycloundecene, tetramethylammonium hydroxide, 1,8-diazabicyclo [5,4,0] -7-undecene, and the like.
  • inorganic base examples include ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like.
  • metal chelate compounds, organic acids, and inorganic acids are preferred, and these may be used alone or in combination of two or more.
  • a volatile inorganic acid such as hydrochloric acid
  • hydrolysis of an alkoxysilyl group, an acyloxysilyl group, or a halogenated silyl group 0.1 to 100 mol, 0.1 to 10 mol, 1 to 5 mol, or 2 to 2 mol per mol of the above hydrolyzable group. Use 3.5 moles of water.
  • the reaction temperature during the hydrolysis and condensation is usually in the range of 20 ° C. (room temperature) to the reflux temperature under normal pressure of the solvent used for the hydrolysis. Moreover, it can carry out under pressure, for example, can heat up to about 200 degreeC of liquid temperature.
  • Examples of the method for obtaining the silicon compound (A) containing the hydrolysis condensate (polysiloxane) include a method of heating a mixture of hydrolyzable silane, solvent, pure water and acid catalyst. Specifically, the hydrolyzable silane is dissolved in a solvent in advance, and hydrochloric acid and pure water are added to form an aqueous hydrochloric acid solution, which is then dropped into the hydrolyzable silane solution and heated. At that time, the amount of hydrochloric acid is generally 0.0001 to 0.5 mol with respect to 1 mol of all hydrolyzable groups (total alkoxy groups) of the hydrolyzable silane.
  • the heating in this method can be performed at a liquid temperature of 50 to 180 ° C., and preferably performed for several tens of minutes to several tens of hours under reflux in a sealed container so that the liquid does not evaporate or volatilize. Is called.
  • Examples of the solvent (c1) used for hydrolysis and condensation include n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, 2,2,4-trimethylpentane, n-octane, isooctane, cyclohexane, Aliphatic hydrocarbon solvents such as methylcyclohexane; aromatics such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propyl benzene, isopropyl benzene, diethyl benzene, isobutyl benzene, triethyl benzene, diisopropyl benzene and trimethyl benzene Hydrocarbon solvents: acetone, methyl ethyl ketone, methyl n-propyl ket
  • Hydrolyzable silane is hydrolyzed in a solvent (c1), and the hydrolyzate is subjected to a condensation reaction to obtain a hydrolyzed condensate (polysiloxane), which is dissolved in the hydrolyzing solvent. Obtained as a polysiloxane varnish.
  • the solvent (C) used for diluting or replacing the varnish of the silicon compound (A) containing the hydrolysis condensate (polysiloxane) is the same as the solvent (c1) used for hydrolysis and condensation polymerization of the hydrolyzable silane. However, another solvent may be used. And the solvent in the varnish of the silicon compound (A) containing a hydrolysis-condensation product (polysiloxane) can be said solvent (C).
  • the concentration of the silicon compound (A) in the varnish can be used in the range of 0.1 to 60% by mass.
  • the component (C) of the present invention is a solvent.
  • the solvent is preferably the same solvent as the solvent from which component (A) was obtained, but is not particularly limited as long as the storage stability of the film-forming coating solution of the present invention is not significantly impaired.
  • the general organic solvent mentioned above can be used.
  • the solvent (C) is more preferably butanol, di- Acetone alcohol, methyl ethyl ketone, methyl isobutyl ketone, hexylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, Examples include propylene glycol monobutyl ether, cyclohexanone, acetic acid methyl ester, acetic acid ethyl ester, and lactate ethyl ester.
  • the silicon compound (A) obtained by hydrolyzing and condensing a hydrolyzable silane in a non-alcohol solvent can be used.
  • the silicon compound (A) containing the hydrolyzed condensate (polysiloxane) of the present invention is obtained by using a non-alcohol containing no hydroxy group as a solvent for hydrolysis and polycondensation. This is a polysiloxane having a high hydrolysis rate.
  • a polymer obtained by using an alcohol containing a hydroxy group as a solvent for hydrolysis or polycondensation is called a partially hydrolyzed polysiloxane to be distinguished.
  • the major difference between the fully hydrolyzed type and the partially hydrolyzed type is that the abundance of silanol (Si—OH) at the end of the polymer is different.
  • the fully hydrolyzed polysiloxane has a partially hydrolyzed type of polysiloxane. There are more than polysiloxanes.
  • the abundance of Si—OH may be quantified by 1 H-NMR with the same solid content using a varnish substituted with a non-alcohol solvent. The quantification can be determined by comparing the number of protons obtained by integrating the Si-OH peak of polysiloxane and calculating the peak area with the number of protons obtained by integrating the peak of the internal standard or the solvent and calculating the peak area.
  • the calculated proton number of the fully hydrolyzed polysiloxane Si—OH is 0.1 or more, preferably 0.2 or more.
  • the partially hydrolyzed polysiloxane is defined as the number of protons calculated by the Si—OH of the polysiloxane being less than 0.1 when the number of protons calculated from the internal standard or the peak of the solvent is 1.00. .
  • non-alcohol solvent (c1) used for hydrolysis and condensation examples include n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, 2,2,4-trimethylpentane, n-octane, isooctane, Aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, isopropylbenzene, diethylbenzene, isobutylbenzene, triethylbenzene, diisopropylbenzene, trimethylbenzene, etc.
  • Aromatic hydrocarbon solvents such as pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone; ethyl ether, isopropyl ether, n-butyl ether, n-hexyl ether, 2-ethylhexyl ether, tetrahydrofuran And ether solvents such as 2-methyltetrahydrofuran.
  • These solvents can be used alone or in combination of two or more. Of these, ketone solvents such as acetone and ether solvents such as tetrahydrofuran are prefer
  • Hydrolyzable silane is hydrolyzed in a non-alcohol solvent (c1), and the hydrolyzate is subjected to a condensation reaction to obtain a hydrolyzate condensate (polysiloxane), which is dissolved in the hydrolyzate. It is obtained as a polysiloxane varnish.
  • the solvent of the silicon compound (A) containing the obtained hydrolysis condensate may be substituted.
  • acetone is selected as the solvent used during hydrolysis and subsequent condensation (solvent during synthesis)
  • the same amount of substitution as the solvent used in the synthesis is performed.
  • acetone may be distilled off by azeotropic distillation with an evaporator or the like.
  • reactants for example, methanol, ethanol
  • a volatile acid catalyst it can be removed at the same time.
  • This replacement solvent becomes a solvent component (C) when the silicon compound (A) containing the hydrolysis condensate (polysiloxane) is used as a varnish.
  • the boiling point is preferably lower than that of the substitution solvent.
  • the solvent used for hydrolysis and subsequent condensation include acetone and tetrahydrofuran
  • examples of the solvent for substitution include propylene glycol monomethyl ether acetate.
  • the solvent (C) used for diluting or replacing the varnish of the silicon compound (A) containing the hydrolysis condensate (polysiloxane) may be the same as the non-alcohol solvent used for hydrolysis and condensation polymerization of the hydrolyzable silane. Good or another solvent may be used. And the solvent in the varnish of the silicon compound (A) containing a hydrolysis-condensation product (polysiloxane) can be said solvent (C).
  • the concentration of the silicon compound (A) in the varnish can be used in the range of 0.1 to 60% by mass.
  • solvent (C) at this time examples include toluene, p-xylene, o-xylene, styrene, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol, propylene glycol monoethyl ether, ethylene glycol.
  • the component (C) of the present invention is a solvent.
  • the solvent is preferably a non-alcohol solvent similar to the solvent from which component (A) was obtained, but is not particularly limited as long as the storage stability of the coating solution for film formation of the present invention is not significantly impaired.
  • the general organic solvent mentioned above can be used.
  • the solvent (C) is more preferably butanol, di- Acetone alcohol, methyl ethyl ketone, methyl isobutyl ketone, hexylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, Examples include propylene glycol monobutyl ether, cyclohexanone, acetic acid methyl ester, acetic acid ethyl ester, and lactate ethyl ester.
  • the silicon compound (A) which is a hydrolysis condensate of a hydrolyzable silane containing the hydrolyzable silane (a1) and the hydrolyzable silane (a2) of the present invention has a hydrolyzable silane (a2) having the number of carbon atoms.
  • the condensate can be produced at a ratio of 10 mol% to 50 mol% of the hydrolyzable silane (a2), and the weight average molecular weight can be 700 to 4000.
  • a film obtained from the composition containing the silicon compound (A), the inorganic particles (B), and the solvent (C) has a dissolution developability with respect to an alkaline solution, and therefore a photosensitive resist is used. Therefore, patterning of 10 ⁇ m or less is possible, and high refractive index, high light resistance, and prevention of intermixing of a photosensitive resist can be satisfied at the same time.
  • the water contact angle is an important film physical property that is directly related to dissolution and developability in an alkaline solution.
  • the water contact angle of the coating is less than 60 °, peeling development occurs, and when it exceeds 80 °, the alkaline solution is repelled. It will not develop developability.
  • the water contact angle is less than 60 °, the amount of silanol is large and the hydrophilicity is relatively high, so that the alkaline solution easily penetrates into the film.
  • the alkali solution permeates, polycondensation starts before the silanol of the silicon compound existing in the coating comes into direct contact with the base and dissolves, and the molecular weight increases. As the increase in the molecular weight proceeds, peeling development occurs instead of dissolution development.
  • the water contact angle is more than 80 °, the hydrophobicity of the coating surface increases, so that the alkaline solution is repelled, development itself cannot be performed, and a pattern cannot be formed.
  • the inorganic particle (B) component used in the present invention is an inorganic particle (B) having an average particle diameter of 1 to 100 nm, and the refractive index of the inorganic particle (B) is 1.50 to 2.70, 1.50. A range from 1 to 1.70, 1.60 to 2.00, 1.90 to 2.20, or 2.20 to 2.70 can be selected.
  • inorganic particles (B) constituting the composition of the present invention together with the polysiloxane described above, metal oxides such as zirconia can be mentioned.
  • the inorganic particles may be zirconia alone or in combination of two or more.
  • the metal oxide include composite oxides containing SiO 2 and HfO 2 in zirconia in addition to zirconia.
  • the composite oxide is a mixture of two or more inorganic oxides in the particle production stage.
  • these compounds can be used alone or in admixture of two or more, and may be used in admixture with the above oxides.
  • inorganic particle (B) component used in the present invention inorganic particles having an average particle diameter of 1 to 100 nm, 5 to 50 nm, or 1 to 10 nm by a dynamic light scattering method can be used.
  • particle size particles having different average particle sizes may be mixed and used.
  • the said inorganic particle (B) when using the said inorganic particle (B), you may use particle
  • the concentration of the inorganic particles in the sol can be used in the range of 0.1 to 60% by mass.
  • An organic solvent sol in which a dispersion medium of a water sol in which inorganic particles are dispersed in an aqueous medium is replaced with an organic solvent from water can be used.
  • This dispersion medium (c2) is combined with the solvent (C) used in the present invention in combination with the solvent (C) used for diluting or replacing the varnish of the silicon compound (A) containing the hydrolysis condensate (polysiloxane). can do.
  • the same dispersion medium (c2) as the solvent (C) can be used.
  • particles obtained by treating the inorganic particles (B) with silicon oxide, an organosilicon compound, an organometallic compound, or the like may be used.
  • the treatment with silicon oxide is to grow silicon oxide particles on the particle surface in a dispersion containing inorganic particles (B) by a known method.
  • Treatment with an organosilicon compound or an organometallic compound means that these compounds are added to a dispersion containing inorganic particles (B), and these compounds or reaction products of these compounds are adsorbed on the surfaces of the inorganic particles. Or they are to be combined.
  • organosilicon compound examples include silane coupling agents and silanes.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl).
  • silane examples include methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane phenyltriethoxy.
  • Examples thereof include silane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, and hexamethyldisilazane.
  • organometallic compound examples include titanate coupling agents and aluminum coupling agents
  • titanate coupling agents examples include trade names of Plenact KR TTS, KR46B, KR38B, KR138S, KR238S, KR338X, and KR44.
  • KR9SA, KR ET5, KR ET examples include Plenact AL-M (manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like.
  • organic silicon compounds and organometallic compounds are preferably used in an amount of 2 to 100 parts by mass with respect to 100 parts by mass of the inorganic particles (B).
  • the metal oxide colloidal particles used for the inorganic particles (B) can be produced by a known method, for example, an ion exchange method, a peptization method, a hydrolysis method, or a reaction method.
  • Examples of the ion exchange method include a method in which the metal salt is treated with an ion exchange resin to remove counter ions and generate particles.
  • Peptides include a method of neutralizing the metal salt with an acid or base, a method of hydrolyzing the metal alkoxide, a precipitate obtained by hydrolyzing the metal basic salt under heating, or Examples thereof include a method of removing unnecessary electrolyte from the gel or a method of adding ions necessary for dispersion.
  • the reaction method include a method of reacting the metal powder with an acid.
  • the method for preparing the film forming composition (1) of the present invention is not particularly limited. It suffices if the (A) component, (B) component, and (C) component are uniformly mixed. The order of mixing components (A) to (C) is not particularly limited as long as a uniform varnish can be obtained.
  • hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a solvent (c1), and a varnish of a silicon compound (A) having a weight average molecular weight of 700 to 4000 is obtained.
  • Obtaining step A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method; Forming a film comprising: mixing a varnish of a silicon compound (A) and a sol of inorganic particles (B) to obtain a film-forming composition containing the silicon compound (A), inorganic particles (B), and a solvent (C)
  • the manufacturing method of a composition (1) is mentioned.
  • the method for preparing the film forming composition (2) of the present invention is not particularly limited. It suffices if the (A) component, (B) component, (C) component, and (D) component are uniformly mixed.
  • the order of mixing components (A) to (D) is not particularly limited as long as a uniform varnish can be obtained.
  • a hydrolyzable silane containing a hydrolyzable silane (a1) and a hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000.
  • the varnish of the silicon compound (A), the sol of the inorganic particles (B), and the curing catalyst (D) are mixed, and the silicon compound (A), the inorganic particles (B), the curing catalyst (D), and the solvent (C) are mixed.
  • the manufacturing method of the film forming composition (2) including the process of obtaining the film forming composition containing is mentioned.
  • the method for preparing the film forming composition (3) of the present invention is not particularly limited.
  • the component (A), the component (B), the component (C), and the component (E) may be in a uniformly mixed state.
  • the order of mixing the component (A), the component (B), the component (C), and the component (E) is not particularly limited as long as a uniform varnish can be obtained.
  • a hydrolyzable silane containing a hydrolyzable silane (a1) and a hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000.
  • the varnish of the silicon compound (A), the sol of the inorganic particles (B), and the diketone compound (E) are mixed, and the silicon compound (A), the inorganic particles (B), the diketone compound (E), and the solvent (C) are mixed.
  • the manufacturing method of the film formation composition (3) including the process of obtaining the film formation composition containing is mentioned.
  • the method for preparing the film forming composition (4) of the present invention is not particularly limited.
  • the component (A), the component (B), the component (C), the component (D), the component (F), and the component (G) may be in a uniformly mixed state.
  • the order of mixing component (A), component (B), component (C), component (D), component (F), and component (G) is not particularly limited as long as a uniform varnish can be obtained.
  • a hydrolyzable silane containing a hydrolyzable silane (a1) and a hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000.
  • the varnish of the silicon compound (A), the sol of the inorganic particles (B), the curing catalyst (D), water (F), and the acid (G) are mixed, and the silicon compound (A), the inorganic particles (B), and the curing catalyst (
  • a method for producing a film-forming composition (4) including a step of obtaining a film-forming composition containing D), water (F), an acid (G), and a solvent (C).
  • ammonium salts As the curing catalyst for component (D), ammonium salts, phosphines, phosphonium salts, sulfonium salts, or metal chelate compounds can be used.
  • ammonium salt As an ammonium salt, the formula (5): (Wherein p represents an integer of 2 to 11, q represents an integer of 2 to 3, R 11 represents an alkyl group, an aryl group, or a combination thereof, and Y ⁇ represents an anion.) Having formula (6): (Wherein R 12 , R 13 , R 14 and R 15 represent an alkyl group, an aryl group, or a combination thereof, N represents a nitrogen atom, Y ⁇ represents an anion, and R 12 , R 13) , R 14 and R 15 are each bonded to a nitrogen atom by a C—N bond.) A quaternary ammonium salt having the structure represented by formula (7): A quaternary ammonium salt having the structure (wherein R 16 and R 17 represent an alkyl group, an aryl group, or a combination thereof, and Y ⁇ represents an anion): A quaternary ammonium salt having the structure (wherein R 18 represents an alkyl group, an
  • Formula (11) (Wherein R 21 , R 22 , R 23 , and R 24 represent an alkyl group, an aryl group, or a combination thereof, P represents a phosphorus atom, Y ⁇ represents an anion, and R 21 , R 22 , R 23 , and R 24 are each bonded to a phosphorus atom by a CP bond.).
  • the formula (12) (Wherein R 25 , R 26 , and R 27 represent an alkyl group, an aryl group, or a combination thereof, S represents a sulfur atom, Y ⁇ represents an anion, and R 25 , R 26 , and R 27 is each bonded to a sulfur atom by a C—S bond)).
  • the compound of the above formula (5) is a quaternary ammonium salt derived from an amine, p is an integer of 2 to 11, and q is an integer of 2 to 3.
  • R 11 of the quaternary ammonium salt represents an alkyl group having 1 to 18, preferably 2 to 10 carbon atoms, an aryl group, or a combination thereof, and includes, for example, an ethyl group, a propyl group, a butyl group, and the like. Examples thereof include a chain alkyl group, a benzyl group, a cyclohexyl group, a cyclohexylmethyl group, and a dicyclopentadienyl group.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
  • the compound of the above formula (6) is a quaternary ammonium salt represented by R 12 R 13 R 14 R 15 N + Y ⁇ .
  • R 12 , R 13 , R 14 and R 15 of this quaternary ammonium salt are each bonded to a silicon atom by an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof, or a Si—C bond. It is a silane compound.
  • This quaternary ammonium salt can be obtained commercially, for example, tetramethylammonium acetate, tetrabutylammonium acetate, triethylbenzylammonium chloride, triethylbenzylammonium bromide, trioctylmethylammonium chloride, tributylbenzyl chloride. Examples include ammonium and trimethylbenzylammonium chloride. These can be added as ammonium compounds.
  • the compound of the above formula (7) is a quaternary ammonium salt derived from 1-substituted imidazole, R 16 and R 17 have 1 to 18 carbon atoms, and the number of carbon atoms of R 16 and R 17 Is preferably 7 or more.
  • R 16 represents a methyl group, an ethyl group, a propyl group, a phenyl group, a benzyl group, a silane compound bonded to a silicon atom through a Si—C bond, or a combination thereof.
  • R 17 can be exemplified by a benzyl group, an octyl group, and an octadecyl group.
  • This compound can be obtained as a commercial product.
  • imidazole compounds such as 1-methylimidazole and 1-benzylimidazole are reacted with alkyl halides and aryl halides such as benzyl bromide and methyl bromide.
  • the compound of the formula (7) can be used as a 4,5-dihydroimidazole compound in which the 4-position and 5-position are hydrogenated. These can be added as cyclic ammonium compounds.
  • the compound of the above formula (8) is a quaternary ammonium salt derived from pyridine, and R 18 is an alkyl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms, an aryl group, or For example, a butyl group, an octyl group, a benzyl group, and a lauryl group can be exemplified.
  • this compound can be obtained as a commercial product, it is produced, for example, by reacting pyridine with an alkyl halide such as lauryl chloride, benzyl chloride, benzyl bromide, methyl bromide, octyl bromide, or an aryl halide. I can do it. Examples of this compound include N-laurylpyridinium chloride and N-benzylpyridinium bromide.
  • the compound of the above formula (9) is a quaternary ammonium salt derived from a substituted pyridine represented by picoline and the like, and R 19 is an alkyl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms, An aryl group or a combination thereof, and examples thereof include a methyl group, an octyl group, a lauryl group, and a benzyl group.
  • Each R 20 is an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof.
  • R 19 is a methyl group.
  • This compound can also be obtained as a commercial product. For example, a substituted pyridine such as picoline is reacted with an alkyl halide such as methyl bromide, octyl bromide, lauryl chloride, benzyl chloride or benzyl bromide, or an aryl halide. Can be manufactured. Examples of this compound include N-benzylpicolinium chloride, N-benzylpicolinium bromide, N-laurylpicolinium chloride and the like.
  • the compound of the above formula (10) is a tertiary ammonium salt derived from an amine, p is an integer of 2 to 11, and q is an integer of 2 to 3.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ). It can be produced by reacting an amine with a weak acid such as carboxylic acid or phenol. Examples of the carboxylic acid include formic acid and acetic acid.
  • the anion (Y ⁇ ) is (HCOO ⁇ ), and when acetic acid is used, the anion (Y ⁇ ) is (CH 3 COO). - ) When phenol is used, the anion (Y ⁇ ) is (C 6 H 5 O ⁇ ).
  • the compound of the above formula (11) is a quaternary phosphonium salt having a structure of R 21 R 22 R 23 R 24 P + Y — .
  • R 21 , R 22 , R 23 , and R 24 are each an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof, or a silane compound bonded to a silicon atom through a Si—C bond.
  • three of the four substituents of R 21 to R 24 are a phenyl group or a substituted phenyl group.
  • a phenyl group or a tolyl group can be exemplified, and the remaining one is a carbon group.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
  • This compound can be obtained as a commercial product, for example, a halogenated tetraalkylphosphonium such as tetra-n-butylphosphonium halide, tetra-n-propylphosphonium halide, or a trialkylbenzyl halide such as triethylbenzylphosphonium halide.
  • a halogenated tetraalkylphosphonium such as tetra-n-butylphosphonium halide, tetra-n-propylphosphonium halide, or a trialkylbenzyl halide such as triethylbenzylphosphonium halide.
  • Triphenylmonoalkylphosphonium halides such as phosphonium, triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylbenzylphosphonium halide, tetraphenylphosphonium halide, tritolylmonoarylphosphonium halide, or tritolyl monohalogenate Examples thereof include alkylphosphonium (the halogen atom is a chlorine atom or a bromine atom).
  • halogens such as triphenylmonoalkylphosphonium halides such as triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylmonoarylphosphonium halides such as triphenylbenzylphosphonium halide, and halogens such as tritolylmonophenylphosphonium halide.
  • Preferred is a tolylyl monoarylphosphonium halide, or a tolyl monoalkylphosphonium halide such as a tolyl monomethylphosphonium halide (the halogen atom is a chlorine atom or a bromine atom).
  • the phosphines include methylphosphine, ethylphosphine, propylphosphine, isopropylphosphine, isobutylphosphine, phenylphosphine and other first phosphine, dimethylphosphine, diethylphosphine, diisopropylphosphine, diisoamylphosphine, diphenylphosphine and other second phosphine.
  • tertiary phosphines such as trimethylphosphine, triethylphosphine, triphenylphosphine, methyldiphenylphosphine and dimethylphenylphosphine.
  • R 25 R 26 R 27 S + Y - is a tertiary sulfonium salt having a structure.
  • R 25 , R 26 , and R 27 are each an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof, or a silane compound bonded to a silicon atom through a Si—C bond,
  • three substituents of R 25 to R 27 three are phenyl groups or substituted phenyl groups.
  • a phenyl group or a tolyl group can be exemplified, and the remaining ones each have 1 carbon atom.
  • 18 to 18 optionally substituted alkyl groups, aryl groups, or combinations thereof.
  • Anions (Y ⁇ ) include halogen ions such as chlorine ions (Cl ⁇ ), bromine ions (Br ⁇ ), iodine ions (I ⁇ ), carboxylates (—COO ⁇ ), sulfonates (—SO 3 ⁇ ). And acid groups such as alcoholate (—O ⁇ ).
  • This compound can be obtained as a commercial product, for example, halogenated tetraalkylphosphonium such as tri-n-butylsulfonium halide, tri-n-propylsulfonium halide, and trialkylbenzyl halide such as diethylbenzylsulfonium halide.
  • Halogenated diphenylmonoalkylsulfonium such as sulfonium, halogenated diphenylmethylsulfonium, halogenated diphenylethylsulfonium, halogenated triphenylsulfonium, (halogen atom is chlorine or bromine atom), tri-n-butylsulfonium carboxylate, tri-n- Tetraalkylphosphonium carboxylates such as propylsulfonium carboxylate and trialkylbenzyls such as diethylbenzylsulfonium carboxylate Sulfo sulfonium carboxylate, diphenylmethyl sulfonium carboxylate, diphenyl monoalkyl sulfonium carboxylates such as diphenylethyl sulfonium carboxylate, triphenylsulfonium carboxylate, triphenylsulfonium trifluoromethane sulfon
  • metal chelate compounds include triethoxy mono (acetylacetonato) titanium, tri-n-propoxy mono (acetylacetonato) titanium, triisopropoxy mono (acetylacetonato) titanium, tri-n-butoxy mono (Acetylacetonato) titanium, tri-sec-butoxy mono (acetylacetonato) titanium, tri-t-butoxy mono (acetylacetonato) titanium, diethoxy bis (acetylacetonato) titanium, di-n-propoxy Bis (acetylacetonato) titanium, diisopropoxy bis (acetylacetonato) titanium, di-n-butoxy bis (acetylacetonato) titanium, di-sec-butoxy bis (acetylacetonato) titanium, di -T-Butoxy bis ( Cetylacetonato) titanium, monoethoxy-tris (acetylacetonato) titanium, mono-n-propoxy
  • the addition amount of the curing catalyst (D) component is 0.01 to 10 parts by mass, 0.01 to 5 parts by mass, or 0.01 to 3 parts by mass with respect to 100 parts by mass of the silicon compound (A) component.
  • the curing catalyst (D) is added for the purpose of controlling the alkali developability of the silicon compound (A), which is a fully hydrolyzed polysiloxane, and is added for the purpose of control. In some cases, all of them are dissolved with an alkali developer, and when the amount is more than 10 parts by mass, the curing may proceed too much to form a pattern.
  • the component (E) of the present invention is a diketone compound that functions as a hydrogen bonding film roughening prevention material.
  • the diketone compound that functions as a hydrogen bonding film roughening preventing agent refers to a compound that forms a hydrogen bond with the hydroxy group present in the silicon compound (A) and the inorganic particles (B) in the varnish or during temporary drying. In the case where hydrogen bonds are formed, film roughness during recoating of the photosensitive resist and peeling of the resist film can be suppressed.
  • Examples of the diketone compound (E) include 1,2-diketone and / or 1,3-diketone.
  • the diketone compound (E) has a partial structure represented by the formula (3) and / or the formula (4).
  • W represents a carbon atom or an oxygen atom.
  • the diketone compound (E) functioning as a hydrogen bonding film roughening prevention material is preferably a liquid at 23 ° C. and atmospheric pressure from the viewpoint of handling properties, and is a compound having the basic skeleton shown in the above compound (3). is there.
  • component (E) examples include acetylacetone, 3-ethyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, dipivaloylmethane, 2,6-dimethyl-3,5. -Heptanedione, 6-methyl-2,4-heptanedione, methyl pyruvate, ethyl pyruvate, diacetyl, 3,4-hexanedione, 2,3-pentanedione, 2,3-heptanedione, 5-methyl- Examples include 2,3-hexanedione.
  • the component (E) has a partial structure having an O ⁇ C—C ⁇ O bond in the case of the formula (3) and an O ⁇ C—C—C ⁇ O bond in the case of the formula (4).
  • These partial structures can suppress film roughness when the photosensitive resist is peeled off by hydrogen bonding with the hydroxy groups present in the silicon compound (A) and the inorganic particles (B).
  • Preferred examples of the diketone compound (E) include diacetyl, methyl pyruvate, ethyl pyruvate, and acetylacetone.
  • the addition amount of the diketone compound (E) component is 1 to 10000 parts by mass, 100 to 5000 parts by mass, or 500 to 2000 parts by mass, preferably 100 to 5000 parts by mass with respect to 100 parts by mass of the silicon compound (A) component. Part, more preferably 500 to 2000 parts by weight.
  • the water (F) component is preferably ion-exchanged water.
  • the ratio of the water (F) component in the total solvent including water (F) and the solvent (C) needs to be 6% by mass to 18% by mass.
  • a preferable amount of the water (F) component is 8% by mass to 16% by mass in the total solvent, and more preferably 10% by mass to 14% by mass.
  • the acid (G) component is an acid that contains 1 to 2 carboxyl groups in the molecule, and the final film-forming composition (varnish) can have a pH of 3 to 5.
  • the amount of acid (G) added can be added to the film-forming composition (varnish) to adjust the film-forming composition (varnish) to pH 3 to 5.
  • component (G) include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid , Gallic acid, butyric acid, meritic acid, arachidonic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfonic acid Monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid,
  • the stability of silanol present at the terminal of the fully hydrolyzed polysiloxane can be improved.
  • the final varnish has a pH of 3 to 5, preferably around pH 4. It is known that the stability of silanol is best achieved by adjusting the pH of the film-forming composition (varnish) to 4.
  • component (G) is particularly preferably formic acid, acetic acid, propionic acid, oxalic acid, and maleic acid.
  • the storage stability of the film-forming composition (varnish) at 5 ° C. to 23 ° C. is drastically improved, and a good coating is obtained over a long period of time. Can be provided.
  • the solid content of the film-forming composition contains silicon compound (A), inorganic particles (B), curing catalyst (D), diketone compound (E), and acid (G), but contains other components. Also good.
  • other components such as leveling agents and surfactants may be contained.
  • surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonylphenol.
  • Polyoxyethylene alkyl allyl ethers such as ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate
  • Sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene
  • Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as rubitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, trade name EFTOP EF301 , EF303, EF352 (manufactured by Tochem Products Co., Ltd.), trade names MegaFuck F171, F173, F-553, F-554, R-08, R-30, R-30-N (Dainippon Ink Chemical Industries, Ltd
  • surfactants may be used alone or in combination of two or more.
  • the proportion thereof is 0.0001 to 5 parts by mass, 0.001 to 1 part by mass, or 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the silicon compound (A). Part.
  • the method of mixing the other components, the solvent, the leveling agent or the surfactant described above may be performed simultaneously with the addition of the inorganic particles (B) and the solvent (C) to the silicon compound (A). ) It may be after mixing and is not particularly limited.
  • the film-forming composition of the present invention can be applied to a substrate and thermally cured to obtain a desired film.
  • a known or well-known method can be adopted as the coating method. For example, spin coating method, dip method, flow coating method, ink jet method, spray method, bar coating method, gravure coating method, slit coating method, roll coating method, transfer printing method, brush coating, blade coating method, air knife coating method Etc. can be adopted.
  • the base materials used in this case are silicon, indium tin oxide (ITO), indium zinc oxide (IZO), polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene (PE), ionomer (IO), polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polycycloolefin (PCO), polyvinylidene chloride (PVDC), polyvinyl alcohol (PVA), polypropylene (PP), polycarbonate (PC), polystyrene (PS) , Polyacrylonitrile (PAN), ethylene vinyl acetate copolymer (EVA), ethylene vinyl alcohol copolymer (EVOH), ethylene methacrylic acid copolymer (EMMA), polymethacrylic acid (PMMA), nylon, plastic, glass, S Dia, quartz, diamond, ceramics, aluminum gallium arsenide (AlGaAs), gallium arsenide phosphorus (GaAsP), indium gallium n
  • the heating device is not particularly limited, and for example, it may be heated in a suitable atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, or the like using a hot plate, an oven, or a furnace. Thereby, it is possible to obtain a film having a uniform film forming surface.
  • the heating temperature is not particularly limited for the purpose of evaporating the solvent, but can be performed at 40 to 200 ° C., for example. In these cases, the temperature may be changed in two or more steps for the purpose of expressing a higher uniform film forming property or allowing the reaction to proceed on the substrate.
  • the heating temperature and heating time may be selected in accordance with the process steps of the target electronic device, and the heating conditions in which the physical properties of the polysiloxane film are compatible with the required characteristics of the electronic device can be selected.
  • hybridization means mixing solutes having different properties and mixing them in a solution state. Even if different solutes have chemical or physical interaction, they are present. The dispersibility may be maintained as long as it is not necessary.
  • Hybridization is not particularly limited in its preparation method as long as the stability of the final film-forming composition (varnish) can be obtained.
  • Method (1) A silicon compound (A) containing a hydrolysis condensate (polysiloxane) is mixed with a dispersion (sol) of inorganic particles (B) in a solution state (varnish).
  • Method (2) Various methods such as dispersing the inorganic particles (B) in the solution (in the varnish) of the silicon compound (A) containing the hydrolyzed condensate (polysiloxane) can be mentioned, but from the viewpoint of handling properties, hydrolysis condensation A method in which a silicon compound (A) containing a product (polysiloxane) is mixed with a dispersion (sol) of inorganic particles (B) in a solution (varnish) state is preferable.
  • the stability of the final hybridized varnish is due to precipitation due to reduced dispersibility, drastic changes in primary particle size or secondary particle size, poor applicability, coloring (whitening, yellowing), and poor film quality. Don't cause it.
  • the content of the inorganic particles in the composition may be in a range that does not impair the dispersibility of the final varnish obtained, and is controlled in accordance with the intended refractive index, transmittance, and heat resistance of the coating film to be produced. It is possible.
  • the film-forming composition (coating liquid) containing the silicon compound (A) containing the hydrolysis condensate (polysiloxane) of the present invention, the inorganic particles (B), and the solvent (C) is deposited due to a decrease in dispersibility.
  • the storage conditions are not particularly limited as long as the storage conditions do not cause a significant change in the secondary particle size or secondary particle size, deterioration in applicability, coloring (whitening, yellowing), and deterioration in film quality.
  • it may be stored at 23 ° C. (room temperature storage), 5 ° C. (refrigerated storage), and ⁇ 20 ° C. (refrigerated storage).
  • ⁇ 20 ° C. (freezer storage) Is preferably stored.
  • the film-forming composition is coated on a substrate and heated to obtain a refraction of 1.50 to 1.90, 1.50 to 1.70, or 1.70 to 1.90 at a wavelength of 633 nm.
  • the film has a ratio and a hardness with a pencil hardness defined by JIS standard K5600 of H to 9H, H to 5H, or H to 3H.
  • the film-forming composition itself of the present invention has no photosensitivity, patterning of 10 ⁇ m or less is possible by using a photosensitive resist because it has dissolution and developability in an alkaline solution.
  • the reason for not imparting photosensitivity to the film-forming composition is that the photosensitizer added when the photosensitive material is used causes deterioration in light resistance.
  • Step 1 A film-forming composition is applied to a substrate.
  • Step 2 The film on the substrate is temporarily dried.
  • Step 3 A photosensitive resist is applied on the film-forming composition.
  • Step 4 The photosensitive resist is dried.
  • Step 5 Light is irradiated from above the photosensitive resist through a mask.
  • Step 6 Alkali development.
  • Step 7 Rinse with pure water.
  • Step 8 Strip the resist.
  • Step 9 Mainly heat the patterned film-forming composition.
  • Step 2 is a step of temporarily drying the film-forming composition, and is not particularly limited as long as it is heated until it is not dissolved in the main solvent of the photosensitive resist of Step 3, but 40 ° C. to 200 ° C., 80 ° C. to 150 ° C., or Heating may be performed at 90 ° C. to 120 ° C., and the heating time may be 30 seconds to 300 seconds, 60 seconds to 120 seconds, or 180 seconds to 240 seconds.
  • Step 3 is a step of applying a photosensitive resist, and a commercially available general positive photosensitive resist or negative photosensitive resist may be used.
  • a commercially available general positive photosensitive resist or negative photosensitive resist may be used.
  • the positive photoresist THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), AZ3100, AZ1500 (manufactured by AZ ELECTRONIC MATERIALS) or the like may be used.
  • Step 5 is a step of irradiating light through a mask, and a general exposure machine may be used.
  • a general exposure machine may be used.
  • an aligner PLA-600FA manufactured by Canon Inc.
  • i-line stepper NSR-2205i12D manufactured by Nikon Corporation
  • the like may be used.
  • Step 6 is a step of alkali development, and a common tetramethylammonium hydride (TMAH) aqueous solution may be used as the alkali developer.
  • concentration of TMAH may be 0.1% to 2.38%, 0.5% to 1.0%, or 1.0% to 2.0% by weight, and the development time is 10 seconds. Or 180 seconds, 20 seconds to 60 seconds, or 90 seconds to 120 seconds.
  • the alkaline developer may be an inorganic base such as sodium carbonate, sodium hydroxide, or potassium hydroxide aqueous solution.
  • Step 8 is a step of stripping the resist and may be a general resist solvent.
  • Examples thereof include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and ethyl pyruvate.
  • Step 9 is a step of heating the film-forming composition, and it may be heated at 80 ° C. to 300 ° C., 100 ° C. to 150 ° C., 180 ° C. to 230 ° C., or 250 ° C. to 300 ° C.
  • the film made of the composition of the present invention thus obtained can satisfy a high refractive index, high transparency, high heat resistance, high light resistance, and high hardness at the same time.
  • it can be suitably used as an LED member that requires high light resistance.
  • a backlight light source for various displays, traffic lights, illumination, lasers, biosensors, and the like.
  • Solvent heavy acetone
  • Apparatus Multi-angle-of-incidence spectroscopic ellipsometer VASE manufactured by JA Woollam Japan Measured at a wavelength of 450 nm.
  • Apparatus SHIMADSU UV-3600 manufactured by Shimadzu Corporation
  • Refractive index of particles Apparatus: Multi-angle-of-incidence spectroscopic ellipsometer VASE manufactured by JA Woollam Japan Measured at a wavelength of 450 nm.
  • the inorganic particles (B) are diluted with propylene glycol monomethyl ether so as to have a film thickness of 100 nm, spin-coated on a silicon substrate, heated on a hot plate at 100 ° C. for 1 minute, and then heated at 200 ° C. for 5 minutes. The refractive index of the heated film was measured.
  • the dispersion of the inorganic particles (B) was diluted with the same solvent as the dispersion medium, and the particle size (Unimodal mode, intensity average particle size) of the dynamic light scattering method was measured.
  • reaction solution is cooled to room temperature, 116.66 g of PGME is added to the reaction solution, and ethanol, water, and hydrochloric acid as reaction byproducts are distilled off under reduced pressure, and concentrated to a PGME solution of hydrolysis condensate (polymer).
  • PGME was added and adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of polysiloxane (abbreviated as pTEOS) composed only of the hydrolyzable silane (a1) component.
  • pTEOS polysiloxane
  • the weight average molecular weight by GPC of the obtained pTEOS was Mw1800 in terms of polystyrene.
  • the obtained polymer comprises 30 mol% hydrolyzable silane (a1) and 30 silane monomers having a methyl group having 1 carbon atom and three hydrolyzable groups instead of hydrolyzable silane (a2). It is a varnish of polysiloxane (abbreviated as TM73) which is hydrolyzed and copolymerized at a mole percent.
  • TM73 polysiloxane
  • the weight average molecular weight of the obtained TM73 by GPC was Mw1155 in terms of polystyrene.
  • the obtained polymer comprises 30 mol% of hydrolyzable silane (a1) and 30 silane monomers having an ethyl group having 2 carbon atoms and three hydrolyzable groups instead of hydrolyzable silane (a2). It is a varnish of polysiloxane (abbreviated as TE73) hydrolyzed and copolymerized at a mole percentage.
  • TE73 polysiloxane
  • the weight average molecular weight of the obtained TE73 by GPC was Mw1310 in terms of polystyrene.
  • the polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and 30 mol% of a silane monomer having a propyl group having 3 carbon atoms and three hydrolyzable groups as the hydrolyzable silane (a2).
  • the weight average molecular weight of the obtained TT73 by GPC was Mw1041 in terms of polystyrene.
  • the polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and a silane monomer having 4 hydrolyzable isobutyl groups and 3 hydrolyzable groups as hydrolyzable silane (a2).
  • the weight average molecular weight of the obtained TI73 by GPC was Mw1087 in terms of polystyrene.
  • the obtained polymer was composed of 30 mol% of hydrolyzable silane (a1) and 30 hydrolyzable silane (a2), an n-hexyl group having 6 carbon atoms and a silane monomer having three hydrolyzable groups. It is a varnish of polysiloxane (abbreviated as TH73) hydrolyzed and copolymerized at a mole percentage.
  • TH73 polysiloxane
  • the weight average molecular weight of the obtained TH73 by GPC was Mw 1060 in terms of polystyrene.
  • the polymer obtained was 90 mol% hydrolyzable silane (a1) and 10 mol% of a hydrolyzable silane (a2) having a silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups.
  • the obtained polymer was composed of 80 mol% hydrolyzable silane (a1) and 20 mol% of a hydrolyzable silane (a2) having a silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups.
  • the obtained polymer was composed of 60 mol% hydrolyzable silane (a1) and 40 mol% hydrolyzable silane (a2), a silane monomer having 4 isobutyl groups and 3 hydrolyzable groups. It is a varnish of polysiloxane (abbreviated as TI64) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI64 by GPC was Mw1051 in terms of polystyrene.
  • TI64 polysiloxane
  • the obtained polymer was 50 mol% hydrolyzable silane (a1) and 50 mol% of a hydrolyzable silane (a2) silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups. It is a varnish of polysiloxane (abbreviated as TI55) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI55 by GPC was Mw 1025 in terms of polystyrene.
  • TI55 polysiloxane
  • the obtained polymer was composed of 40 mol% hydrolyzable silane (a1) and 60 mol% hydrolyzable silane (a2), a silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups.
  • Synthesis Example (1-13) The TI73 obtained in Synthesis Example (1-5) was heated and stirred in an oil bath at 100 ° C. for 20 hours to confirm that it became Mw3014 in terms of polystyrene, and a varnish of polysiloxane (abbreviated as TI73M2) was obtained. .
  • Synthesis Example (1-14) The TI73 obtained in Synthesis Example (1-5) was heated and stirred for 32 hours in an oil bath at 100 ° C., and was confirmed to be Mw4235 in terms of polystyrene to obtain a varnish of polysiloxane (abbreviated as TI73M3). .
  • the polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and a silane monomer having 4 hydrolyzable isobutyl groups and 3 hydrolyzable groups as hydrolyzable silane (a2).
  • the weight average molecular weight by GPC of the obtained TI73L1 was Mw 760 in terms of polystyrene.
  • the polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and a silane monomer having 4 hydrolyzable isobutyl groups and 3 hydrolyzable groups as hydrolyzable silane (a2).
  • the weight average molecular weight by GPC of the obtained TI73L2 was Mw652 in terms of polystyrene.
  • the obtained polymer was composed of 70 mol% hydrolyzable silane (a1), a silane monomer having an n-octyl group having 8 carbon atoms and three hydrolyzable groups instead of hydrolyzable silane (a2).
  • a varnish of polysiloxane abbreviated as TO73
  • the weight average molecular weight of the obtained TO73 by GPC was Mw998 in terms of polystyrene.
  • reaction solution was cooled to room temperature, 111.49 g of propylene glycol monomethyl ether acetate (abbreviated as PGMEA) was added to the reaction solution, and ethanol, methanol, water, hydrochloric acid and acetone as reaction by-products were distilled off under reduced pressure. Concentration gave a PGMEA solution of hydrolysis condensate (polymer). Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • PGMEA propylene glycol monomethyl ether acetate
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P1).
  • the weight average molecular weight of the obtained P1 by GPC was Mw1541 in terms of polystyrene.
  • PGMEA was added so that the PGMEA varnish of P1 was 6 mass percent in terms of solid residue at 140 ° C., and 1H-NMR was measured.
  • the reaction solution is cooled to room temperature, 121.11 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer).
  • a PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P2).
  • Table 1 shows the weight average molecular weight of P2 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 118.71 g of PGMEA is added to the reaction solution, and ethanol, methanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure, and concentrated to hydrolyzed condensate (polymer). ) PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolysis condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P3). Table 1 shows the weight average molecular weight of P3 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 93.13 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer).
  • a PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P4).
  • Table 1 shows the weight average molecular weight of P4 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 102.89 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer).
  • a PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolysis condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P5).
  • Table 1 shows the weight average molecular weight of P5 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 118.59 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer).
  • a PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P6).
  • Table 1 shows the weight average molecular weight of P6 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 83.33 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid and acetone as reaction by-products are distilled off under reduced pressure, and concentrated to obtain a hydrolysis-condensation product (polymer).
  • a PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P7).
  • Table 1 shows the weight average molecular weight of P7 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 107.78 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer)
  • a PGMEA solution was obtained.
  • PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P8).
  • Table 1 shows the weight average molecular weight of P8 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 113.90 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid and acetone as reaction by-products are distilled off under reduced pressure, and concentrated to obtain a hydrolysis-condensation product (polymer).
  • a PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P11).
  • Table 1 shows the weight average molecular weight of P11 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 116.30 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer).
  • a PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolysis condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P12).
  • Table 1 shows the weight average molecular weight of P12 and the proton number ratio by 1 H-NMR.
  • the reaction solution is cooled to room temperature, 123.47 g of PGMEA is added to the reaction solution, and ethanol, methanol, water, hydrochloric acid, and acetone as reaction byproducts are distilled off under reduced pressure, and concentrated to hydrolyzed condensate (polymer). )
  • PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P13).
  • Table 1 shows the weight average molecular weight of P13 and the proton number ratio by 1H-NMR.
  • reaction solution is cooled to room temperature, 111.49 g of PGMEA is added to the reaction solution, ethanol as a solvent, ethanol, methanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to hydrolytic condensation.
  • a PGMEA solution of the product (polymer) was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound containing a hydrolysis condensate (polysiloxane) and a varnish of a partially hydrolyzed polysiloxane (abbreviated as P14).
  • the weight average molecular weight of the obtained P14 by GPC was Mw1520 in terms of polystyrene.
  • PGMEA was added to PGMEA varnish of P14 at 6 mass percent in terms of solid residue at 140 ° C., and 1H-NMR was measured. From the result of 1H-NMR, when the peak of 5.1 ppm attributed to the proton of PGMEA as a solvent is taken as 1.00, the peak around 6.0 ppm attributed to silanol (Si—OH) of polysiloxane was 0.06, and it was confirmed that Si—OH was very small.
  • the reaction solution is cooled to room temperature, 121.11 g of PGMEA is added to the reaction solution, ethanol as a solvent, ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product (Polymer) PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC.
  • the obtained polymer is a varnish of a silicon compound containing a hydrolysis condensate (polysiloxane), and a varnish of a partially hydrolyzed polysiloxane (abbreviated as P15).
  • Table 1 shows the weight average molecular weight of P15 and the proton number ratio by 1 H-NMR.
  • Example (1-1) 6.5000 g of B1 obtained in Production Example 1 was weighed into a 50 mL eggplant-shaped flask, then 23.8851 g of PGME was added, and 4.9563 g of TT73 (B1 solid matter obtained in Synthesis Example (1-4)) was added. A solid solution of polysiloxane of 35% by mass) was added, and R-30-N manufactured by Dainippon Ink & Chemicals, Inc. as a surfactant was diluted with PGME to obtain 1% by mass.
  • V (1-1) a varnish having a total solid content of 7.5% by mass.
  • the obtained V (1-1) was evaluated for patterning characteristics.
  • V (1-1) was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Ltd., and a hot plate was used. Then, heating was performed at 150 ° C. for 1 minute.
  • HMDS hexamethyldisilazane
  • AZ3100 manufactured by AZ ELECTRONIC MATERIALS was spin-coated on the obtained V (1-1) film so as to have a film thickness of 1.5 ⁇ m, and using a hot plate at 100 ° C. for 1 minute. Heating was performed. Thereafter, using an i-line stepper NSR-2205i12D manufactured by Nikon Corporation, an exposure dose of 300 mJ / cm 2 was irradiated through the mask. After light irradiation, development was performed for 30 seconds using 2.38 mass% tetramethylammonium hydride (abbreviated as TMAH), and after 1 minute of pure water rinse, the film was dried with air.
  • TMAH 2.38 mass% tetramethylammonium hydride
  • the photosensitive resist was immersed in PGME for 2 minutes, the resist was peeled off, and the 5 ⁇ m portion where Line: Space was 1: 1 was observed with an optical microscope.
  • an example in which Line: Space is close to 5 ⁇ m of 1: 1 is evaluated as ⁇ an example in which Line: Space is 1: 1 from 5 ⁇ m, or an example in which the remaining film is left is evaluated as ⁇ . did.
  • the results observed with an optical microscope are shown in FIG.
  • the Space portion was measured from the top direction of the pattern using an electron microscope.
  • the width of the Space portion was 5.15 ⁇ m.
  • the space portion is a portion that dissolves in the alkaline developer, and the closer to 5 ⁇ m, the better the pattern can be formed.
  • the obtained V (1-1) was evaluated for heat resistant refractive index.
  • a silicon substrate was spin-coated so that the film thickness of V (1-1) was 100 nm, and heated at 150 ° C. for 1 minute using a hot plate. After heating, the refractive index at 450 nm was measured. Next, heating was performed at 300 ° C. for 1 hour using a hot plate, and after measuring the refractive index at 450 nm, the refractive indexes before and after heating at 300 ° C. were compared. Table 3 shows the results of the refractive index comparison.
  • the obtained V (1-1) was measured for water contact angle.
  • a silicon substrate was spin-coated so that the film thickness of V (1-1) was 100 nm, and heated using a hot plate at 150 ° C. for 1 minute, and then heated at 100 ° C. for 1 minute.
  • the two-step heating in this hot plate is a heating condition that reproduces the thermal history before alkali development in consideration of applying a photosensitive resist and drying.
  • the fully automatic contact angle meter Drop Master series DM700 manufactured by Kyowa Interface Science Co., Ltd. the resulting coating was made from pure water using a 22G size needle, and the droplet deposited on the coating surface was removed.
  • the water contact angle was calculated by the drop method ( ⁇ / 2 method). The results are shown in Table 3.
  • Example (1-2) The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI73 obtained in Synthesis Example (1-5), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3. The result of the optical microscope observation of the pattern is shown in FIG. In addition, at the 5 ⁇ m portion where Line: Space is 1: 1, the Space portion was measured from the top direction of the pattern using an electron microscope. As a result of measurement, the width of the space portion was 5.12 ⁇ m.
  • Example (1-3) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TH73 obtained in Synthesis Example (1-6). It was measured. The results are shown in Table 3. The result of optical microscope observation of the pattern is shown in FIG. In addition, at the 5 ⁇ m portion where Line: Space is 1: 1, the Space portion was measured from the top direction of the pattern using an electron microscope. As a result of measurement, the width of the space portion was 5.12 ⁇ m.
  • Example (1-4) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI91 obtained in Synthesis Example (1-7), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
  • Example (1-5) The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI82 obtained in Synthesis Example (1-8), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
  • Example (1-6) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI64 obtained in Synthesis Example (1-9), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
  • Example (1-7) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI55 obtained in Synthesis Example (1-10), and the alkali developability, heat resistance and water contact angle were It was measured. The results are shown in Table 3.
  • Example (1-8) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73M1 obtained in Synthesis Example (1-12), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3. The result of observing the pattern with an optical microscope is shown in FIG. In addition, at the 5 ⁇ m portion where Line: Space is 1: 1, the Space portion was measured from the top direction of the pattern using an electron microscope. As a result of the measurement, the width of the Space portion was 5.15 ⁇ m.
  • Example (1-9) The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI73M2 obtained in Synthesis Example (1-13), and the alkali developability, heat resistance, and water contact angle were It was measured. The results are shown in Table 3.
  • Example (1-10) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73L1 obtained in Synthesis Example (1-16), and the alkali developability, heat resistance, and water contact angle were It was measured. The results are shown in Table 3.
  • Example (1-11) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI46 obtained in Synthesis Example (1-11), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
  • Example (1-1) The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with pTEOS obtained in Synthesis Example (1-1), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3. The result of the optical microscope observation of the pattern is shown in FIG.
  • Example (1-1) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TM73 obtained in Synthesis Example (1-2), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
  • Example (1-1) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TE73 obtained in Synthesis Example (1-3), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
  • Example (1-1) The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI73M3 obtained in Synthesis Example (1-14), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
  • Example (1-5) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73M4 obtained in Synthesis Example (1-15). The alkali developability, heat resistance, and water contact angle were It was measured. The results are shown in Table 3. The result of the optical microscope observation of the pattern is shown in FIG.
  • Example (1-1) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73L2 obtained in Synthesis Example (1-17), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. It was found that the spin coat film obtained using TI73L2 was remarkably developed so that radial coating unevenness could be visually confirmed, and the film forming property was poor.
  • Example (1-7) The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TO73 obtained in Synthesis Example (1-18). It was measured. The results are shown in Table 3.
  • Examples (1-1) through (1-11) and Comparative Examples (1-2) through (1-3) are compared with Comparative Examples (1-4) through (1-5) and Comparative Examples. Compared to Example (1-7), it was found that the alkali developability was better when patterning of 5 ⁇ m which was 10 ⁇ m or less was observed.
  • Example (1-11) although the weight average molecular weight is in the range of 700 to 4000, the hydrolyzable silane (a1) constituting the silicon compound (A) is 40 mol%, and the hydrolyzable silane (a2) is Although the composition is copolymerized at 60 mol%, the water contact angle is slightly outside the preferred range, but it can be used depending on the application.
  • Comparative Example (1-4) and Comparative Example (1-5) were copolymerized with 70 mol% of hydrolyzable silane (a1) constituting the silicon compound (A) and 30 mol% of hydrolyzable silane (a2).
  • the polymerization rate is within the range, but the weight average molecular weight is outside the range of 700 to 4000.
  • Comparative Example (1-7) has a weight average molecular weight in the range of 700 to 4000, 70 mol% of hydrolyzable silane (a1) constituting silicon compound (A), and hydrolyzable silane (a2). Although the polymerization ratio copolymerized at 30 mol% is within the range, L of the hydrolyzable silane (a2) is an alkyl group having 8 carbon atoms and is a straight, branched or cyclic group having 3 to 6 carbon atoms Is outside the range of the alkyl group.
  • Examples (1-1) to (1-11), Comparative Example (1-1), Comparative Examples (1-4) to (1-5) and Comparative Example (1-7) are comparative examples ( Compared with 1-2) and Comparative Example (1-3), it was found that the refractive index change during heating was good.
  • L of the hydrolyzable silane (a2) is an alkyl group having 1 and 2 carbon atoms, and is a straight chain, branched or branched group having 3 to 6 carbon atoms. It is outside the range of the cyclic alkyl group.
  • the phenomenon that the refractive index decreases when heated is that when L is a silicon compound (A) having 1 and 2 carbon atoms, the low molecular weight compound that forms a ring in the polymer sublimes when heated and forms an air layer. It is thought to be caused by Since air has a refractive index of 1.0, it is known that the refractive index of a film decreases when an air layer is mixed in the film.
  • Example (1-1) to Example (1-11) and Comparative Example (1-1) to Comparative Example (1-7) are compared.
  • droplets were made from pure water using a 22 G size needle using a fully automatic contact angle meter Drop Master series DM700 manufactured by Kyowa Interface Science Co., Ltd. Then, the contact angle of water calculated by the droplet method ( ⁇ / 2 method) for the droplets deposited on the surface of the coating is in the range of 60 ° to 80 °.
  • Comparative Example (1-2), Comparative Example (1-3), Comparative Example (1-4) and Comparative Example (1-5) the contact angle of water is 60 ° to 80 °, which is within the range.
  • the refractive index changes with heat or when the alkali developability is poor when the patterning of 5 ⁇ m which is 10 ⁇ m or less is seen, the performance as a target film is insufficient.
  • the results shown in Table 3 according to ⁇ Production of film-forming composition (1) and coating film> have a high refractive index and can achieve high transparency, high heat resistance, high light resistance, and high hardness.
  • it can be a film forming composition and pattern forming method suitable for device film preparation, depending on the application to be used, higher level patterning characteristics, film roughening prevention characteristics after resist film peeling, and aging characteristics are required. There are uses to do.
  • water (F) and acid (G) By using water (F) and acid (G), ⁇ Preparation of film-forming composition (2) and film>, ⁇ Preparation of film-forming composition (3) and film>
  • ⁇ Film-forming composition (4) and production of coating film> have shown below that it can be applied to the above applications.
  • Example (2-2) The same operation as in Example (2-1) was conducted except that P1 in Example (2-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-2)) was obtained.
  • Example (2-3) The same operation as in Example (2-1) was performed except that P1 in Example (2-1) was replaced with P3 obtained in Synthesis Example (2-3), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-3)) was obtained.
  • Example (2-4) The same operation as in Example (2-1) was conducted except that P1 in Example (2-1) was replaced with P4 obtained in Synthesis Example (2-4), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-4)) was obtained.
  • Example (2-5) The same operation as in Example (2-1) was conducted except that P1 in Example (2-1) was replaced with P5 obtained in Synthesis Example (2-5), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-5)) was obtained.
  • Example (2-6) The same operation as in Example (2-1) was performed except that P1 in Example (2-1) was replaced with P6 obtained in Synthesis Example (2-6), so that the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (2-6)).
  • Example (2-7) The same operation as in Example (2-1) was performed except that P1 in Example (2-1) was replaced with P9 obtained in Synthesis Example (2-9), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-7)) was obtained.
  • Example (2-8) Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 9.4379 g of PGEE, and adding 2.2875 g of P2 (B1 solid matter obtained in Synthesis Example (2-2)).
  • the solid content of the polysiloxane was 35% by mass), and 1.8300 g of a BTEAC diluted with PGEE as a curing catalyst (D) to 1% by mass was added, and Dainippon Ink & Chemicals, Ltd. as a surfactant ( 0.1830 g of R-30-N manufactured by Co., Ltd. diluted to 1% by mass with PGEE was added and mixed until complete homogeneity at room temperature, and varnish with a total solid content of 7.5% by mass (Abbreviated as V (2-8)).
  • Example (2-9) In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 10.94446 g of PGEE was added, and 2.2875 g of P2 (solid of B1 obtained in Synthesis Example (2-2) was added.
  • the polysiloxane solid content was 35% by mass
  • 0.0915 g of benzyl trimethylammonium chloride (abbreviated as BTMAC) as a curing catalyst (D) was diluted with PGEE to 1% by mass, and the surface activity was added.
  • varnish (abbreviated as V (2-9)) was obtained.
  • Example (2-10) to Example (2-18) and Reference Example (2-14) to Reference Example (2-26)] [Patterning characteristics (tests with more stringent evaluation than alkali developability tests in Table 3)]
  • the obtained V (2-1) to V (2-9) and RV (2-1) to RV (2-13) were evaluated for patterning characteristics.
  • Each varnish was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Co., Ltd., and 150 ° C. using a hot plate. Heating was performed for 1 minute.
  • HMDS hexamethyldisilazane
  • AZ3100 manufactured by AZ ELECTRONIC MATERIALS
  • AZ3100 was spin-coated on the obtained coating so as to have a film thickness of 1.5 ⁇ m, and heated at 100 ° C. for 1 minute using a hot plate.
  • an i-line stepper NSR-2205i12D manufactured by Nikon Corporation
  • an exposure dose of 300 mJ / cm 2 was irradiated through the mask.
  • development was performed for 30 seconds using 2.38% tetramethylammonium hydride (abbreviated as TMAH), and after 1 minute of pure water rinse, the film was dried with air.
  • TMAH tetramethylammonium hydride
  • the space portion was measured from the top direction of the pattern using an electron microscope at a 5 ⁇ m portion where Line: Space was 1: 1.
  • the width of the Space portion in FIG. 7 was 5.10 ⁇ m
  • the width of the Space portion in FIG. 8 was 5.07 ⁇ m
  • the width of the Space portion in FIG. 9 was 5.07 ⁇ m.
  • the space portion is a portion that dissolves in the alkaline developer, and the closer to 5 ⁇ m, the better the pattern can be formed.
  • V (2-1) to V (2-9) and RV (2-1) to RV (2-13) were evaluated for heat resistant refractive index.
  • Each varnish was spin-coated on a silicon substrate so as to have a film thickness of 100 nm, and heated at 150 ° C. for 1 minute using a hot plate. After heating, the refractive index at 450 nm was measured. Next, heating was performed at 300 ° C. for 1 hour using a hot plate, and after measuring the refractive index at 450 nm, the refractive indexes before and after heating at 300 ° C. were compared. Table 4 shows the results of the comparison of refractive indexes.
  • the patterning characteristic test is a test that requires a level higher than that. The case where it did not reach around 5 ⁇ m was marked as x.
  • V (2-1) to V (2-9) and RV (2-1) to RV (2-13) are used as coatings and the patterning characteristics of the coatings are compared, Examples (2-10) to Examples Patterning characteristics were good in (2-18), Reference Example (2-25) and Reference Example (2-26).
  • the silicon compound (A) of the present invention has a weight average molecular weight in the range of 700 to 4000, and the hydrolyzable silane constituting the silicon compound (A) (A1) is 90 to 50 mol%, hydrolyzable silane (a2) is copolymerized at 10 to 50 mol%, and L of hydrolyzable silane (a2) is 3 carbon atoms
  • the water contact angle of the coating obtained from the composition comprising the solvent (D) is in the range of 60 ° to 80 °.
  • Examples (2-10) to (2-14) are compared with Reference Examples (2-14) to (2-18).
  • Examples (2-10) to (2-14) contain BTEAC as a curing catalyst
  • Reference Examples (2-14) to (2-18) are compositions not containing BTEAC. .
  • a curing catalyst By containing a curing catalyst, curing during heating progressed, resist film resistance, alkali developer and resist film stripping solution resistance were imparted to the film, and a pattern of 10 ⁇ m or less could be formed.
  • Reference Example (2-14) to Reference Example (2-18) which do not contain a curing catalyst are not provided with resist solvent resistance, alkali developer and resist film stripping solution resistance, and patterning due to insufficient alkali resistance. Before the film was formed, all the film portions were dissolved in the alkaline developer, and a pattern could not be obtained.
  • Example (2-11), Example (2-15), Example (2-16) and Reference Example (2-21) are compared from the viewpoint of weight average molecular weight.
  • the weight average molecular weight of the polymer is 1500 in Example (2-11), 735 in Example (2-15), 3401 in Example (2-16), and 4545 in Reference Example (2-21).
  • the composition and the coating film had good patterning characteristics. It is considered that the patterning characteristics of the composition and coating film using the polymer having a weight average molecular weight of more than 4000 in Reference Example (2-21) are the residual film, and the solubility of the high molecular weight material is lowered.
  • Example (2-11), Example (2-13), and Example (2-14) and Reference Example (2-20) are compared.
  • the polymer in which the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 to 50 mol% and the hydrolyzable silane (a2) is 10 to 50 mol% is copolymerized.
  • the patterning characteristics of the composition and coating film were good.
  • the polysiloxane having 0 carbon atoms in Reference Example (2-19), the polymer having 1 carbon atom in Reference Example (2-22), and the polymer having 2 carbon atoms in Reference Example (2-23) are patterned.
  • the characteristic was release development, and a uniform 5 ⁇ m pattern could not be formed.
  • a polymer having 0 to 2 carbon atoms was copolymerized, the condensation of the film progressed, and dissolution developability in an alkaline developer was not obtained.
  • the polymer obtained by copolymerizing the monomer having 8 carbon atoms in Reference Example (2-24) did not dissolve in the alkaline developer and had poor patterning characteristics. This result can be explained from the hydrophilicity / hydrophobicity of the film surface during alkali development.
  • the alkaline developer is generally an aqueous solution, and examples thereof include dilute TMAH aqueous solution or potassium hydroxide aqueous solution. Since these developers are aqueous solutions, if the hydrophobicity of the film is high, the film does not penetrate into the film and bounces, so that developability is lost in the first place.
  • the coating may dissolve when immersed in an alkaline developer for a long time, but considering the process throughput, it is preferable to finish the alkali developing step within at least 120 seconds, so that it is hydrophobic enough to repel the alkaline developer. Is not preferable as a film characteristic.
  • the hydrophilicity / hydrophobicity of the film surface at the time of alkali development has already been described above.
  • the parameter of the film having a wide margin for alkali developability and dissolving developability and capable of forming a pattern of 10 ⁇ m or less is that the contact angle of water is in the range of 60 ° to 80 °. Proven.
  • V (2-1) to V (2-2) and RV (2-12) to RV (2-13) were evaluated for light resistance.
  • V (2-1) to V (2-2) and RV (2-12) to RV (2-13) are spin-coated on a silicon substrate to a film thickness of 100 nm, and using a hot plate, Heating was performed at 150 ° C. for 60 minutes. After heating, the film thickness, the refractive index of 450 nm, and the average transmittance were measured. Next, a light resistance test was performed, and the film thickness, refractive index, and average transmittance of the film after the light resistance test were measured. The results are shown in Table 5.
  • the film thickness and refractive index of 450 nm were measured on the film on the silicon substrate, and the average transmittance was measured on the film on the quartz substrate. As the average transmittance, an average transmittance of 400 nm to 800 nm was calculated.
  • light resistance test light irradiation was performed at the Japan Weathering Test Center, and a xenon arc lamp having an illuminance of 38.7 W / m 2 and an exposure wavelength of 320 nm to 400 nm was used as a light source.
  • SX75-AP type manufactured by Suga Test Instruments Co., Ltd. was used as the test machine.
  • the test environment was a temperature of 42 ⁇ 3 ° C. and a relative humidity of 50 ⁇ 5% RH.
  • Example (2-19) to Example (2-20) and Reference Example (2-27) to Reference Example (2-28) are compared.
  • the heat-resistant refractive index and the patterning characteristics were good, respectively.
  • 2-27) to Reference Example (2-28) it was found that the film thickness after light resistance test decreased, the refractive index increased, and the average transmittance decreased.
  • Example (2-19) to Example (2-20) the film thickness, refractive index, and average transmittance after the light resistance test did not change.
  • thermosetting reaction of the film is terminated in the heating process, whereas in the partially hydrolyzed polymer, the thermosetting reaction is not completely terminated in the heating process, and the alkoxy group remains. Therefore, it is considered that the reaction progressed during the light resistance test.
  • the weight average molecular weight of the silicon compound (A) of the present invention is within the range of 700 to 4000 in order to achieve all of the heat resistant refractive index, patterning characteristics, and light resistance required for the LED material.
  • the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 to 50 mol%
  • the hydrolyzable silane (a2) is copolymerized at 10 to 50 mol%
  • L of the hydrolyzable silane (a2) is composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms, and has an average particle diameter of 1 to 100 nm and a refraction of 1.50 to 2.70.
  • a silicon substrate was spin-coated so that the film thickness of V (3-1) was 100 nm, and heated at 150 ° C. for 1 minute using a hot plate. Subsequently, it heated at 300 degreeC with the hotplate for 1 hour, and as a result of measuring the refractive index of 450 nm, it was 1.613.
  • Example (3-2) The same operation as in Example (3-1) was performed except that P1 in Example (3-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (3-2)). V (3-2) obtained was 1.610 as a result of measuring the refractive index in the same manner as in Example (3-1).
  • Example (3-3) The same operation as in Example (3-1) was conducted except that P1 in Example (3-1) was replaced with P3 obtained in Synthesis Example (2-3), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-3)) was obtained. The obtained V (3-3) was 1.603 as a result of measuring the refractive index in the same manner as in Example (3-1).
  • Example (3-4) The same operation as in Example (3-1) was performed except that P1 in Example (3-1) was replaced with P4 obtained in Synthesis Example (2-4), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-4)) was obtained.
  • Example (3-5) The same operation as in Example (3-1) was conducted except that P1 in Example (3-1) was replaced with P5 obtained in Synthesis Example (2-5), so that the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (3-5)).
  • Example (3-6) The procedure was the same as in Example (3-1) except that P1 in Example (3-1) was replaced with P6 obtained in Synthesis Example (2-6), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-6)) was obtained.
  • Example (3-7) The same operation as in Example (3-1) was conducted except that P1 in Example (3-1) was replaced with P8 obtained in Synthesis Example (2-8), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-7)) was obtained.
  • Example (3-8) The procedure of Example (3-1) was repeated except that PE in Example (3-1) was replaced with methyl pyruvate (abbreviated as PM). V (3-8)) was obtained.
  • Example (3-9) The procedure of Example (3-1) was repeated except that PE in Example (3-1) was replaced with acetylacetone (abbreviated as ACA), and a varnish (V ( Abbreviated as 3-9).
  • ACA acetylacetone
  • V a varnish
  • Example (3-10) to Example (3-18) and Reference Example (3-7) to Reference Example (3-12)] [Alkali solubility and film roughening characteristics after resist film peeling]
  • the obtained V (3-1) to V (3-9) and RV (3-1) to RV (3-6) were evaluated for alkali solubility.
  • Each varnish was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Co., Ltd., and 150 ° C. using a hot plate. Heating was performed for 1 minute.
  • HMDS hexamethyldisilazane
  • AZ3100 manufactured by AZ ELECTRONIC MATERIALS
  • AZ3100 was spin-coated on the obtained coating so as to have a film thickness of 1.5 ⁇ m, and heated at 100 ° C. for 1 minute using a hot plate.
  • an i-line stepper NSR-2205i12D manufactured by Nikon Corporation
  • an exposure dose of 300 mJ / cm 2 was irradiated through the mask.
  • development was performed for 30 seconds using 2.38 mass% tetramethylammonium hydride (abbreviated as TMAH), and after 1 minute of pure water rinse, the film was dried with air.
  • TMAH 2.38 mass% tetramethylammonium hydride
  • Table 6 shows an example in which dissolution development was performed with respect to an alkaline developer at this time, and an example in which peeling development or dissolution did not occur, and x.
  • the photosensitive resist was immersed in PGME for 2 minutes, the resist was peeled off, and a portion having no pattern (a portion after the photosensitive resist was laminated and peeled) was observed with an optical microscope.
  • an example in which film roughness did not occur was evaluated as ⁇
  • an example in which film roughness occurred was evaluated as ⁇
  • V (3-1) to V (3-9) and RV (3-1) The results of RV (3-6) are shown in Table 6.
  • observation results of V (3-1) to RV (3-1) are shown in FIGS.
  • the weight average molecular weight of the silicon compound (A) of the present invention is in the range of 700 to 4000 in order to achieve both the alkali solubility required for the LED material and the film roughness characteristics after the resist film is peeled off.
  • the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 to 50 mol%
  • the hydrolyzable silane (a2) is 10 to 50 mol%.
  • L of the hydrolyzable silane (a2) is composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms, and has an average particle diameter of 1 to 100 nm and 1.50 to 2. It was shown that this can be achieved by satisfying the requirements of a composition comprising inorganic particles (B) having a refractive index of 70, a hydrogen bonding film roughening inhibitor (E), and a solvent (C).
  • V (4-1) a total mass of the solid content of 7.5 wt% of varnish
  • Example (4-2) The same operation as in Example (4-1) was performed except that P1 in Example (4-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (4-2)). The obtained V (4-2) was 1.612 as a result of measuring the refractive index in the same manner as in Example (4-1).
  • Example (4-3) The same operation as in Example (4-1) was carried out except that P1 in Example (4-1) was replaced with P3 obtained in Synthesis Example (2-3), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (4-3)). V (4-3) obtained was 1.608 as a result of measuring the refractive index in the same manner as in Example (4-1).
  • Example (4-4) The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P4 obtained in Synthesis Example (2-4), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (4-4)).
  • Example (4-5) The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P5 obtained in Synthesis Example (2-5), and the total mass of the solid content was 7.5% by mass. Varnish (V (abbreviated as 4-5)) was obtained.
  • Example (4-6) The procedure was the same as in Example (4-1) except that P1 in Example (4-1) was replaced with P6 obtained in Synthesis Example (2-6). Varnish (abbreviated as V (4-6)) was obtained.
  • Example (4-7) The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P9 obtained in Synthesis Example (2-9), so that the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (4-7)).
  • Example (4-8) In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 7.9932 g of PGEE, and added 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2). The solid content of the polysiloxane is 35% by mass), and 0.4575 g of a solution of BTEAC diluted with PGEE to 1% by mass is added as a curing catalyst (D), and acetic acid is diluted with PGEE to 1% by mass. 0.9150 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd.
  • Example (4-9) A varnish having a total solid content of 7.5% by mass was operated in the same manner as in Example (4-1) except that BTEAC of Example (4-1) was changed to benzyltrimethylammonium chloride (abbreviated as BTMAC). (Abbreviated as V (4-9)).
  • Example (4-10) Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 8.2252 g of PGEE, and adding 2.2875 g of P2 (B1 solid matter obtained in Synthesis Example (2-2)). 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC with PGEE to make 1% by mass, and acetic acid with 1% by mass diluted with PGEE. 0.9150 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd.
  • Example (4-12) In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, and then added 7.6095 g of PGEE to obtain 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2). 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC with PGEE to make 1% by mass, and acetic acid with 1% by mass diluted with PGEE. 0.9830 g of the prepared solution was added, 0.1830 g of a solution prepared by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd.
  • Example (4-13) In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 6.6121 g of PGEE, and added 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2). 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC with PGEE to make 1% by mass, and acetic acid with 1% by mass diluted with PGEE. 2.7450 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc.
  • Example (4-16) A varnish (V (4-16)) having a total mass of 7.5% by mass was operated in the same manner as in Example (4-10) except that acetic acid in Example (4-10) was replaced with oxalic acid. Abbreviated).
  • Example (4-17) The same procedure as in Example (4-10) was conducted except that acetic acid in Example (4-10) was replaced by maleic acid, and a varnish (V (4-17) having a total solid content of 7.5% by mass was obtained. Abbreviated).
  • Example (4-2) The curing catalyst of Example (4-2) was treated in the same manner as Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P2 obtained in Synthesis Example (2-2). As an example not added, a varnish (abbreviated as RV (4-2)) having a total solid content of 7.5% by mass was obtained.
  • RV (4-2) a varnish having a total solid content of 7.5% by mass was obtained.
  • Example (4-3) The curing catalyst of Example (4-3) was prepared in the same manner as in Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P3 obtained in Synthesis Example (2-3). As an example that was not added, varnish (abbreviated as RV (4-3)) having a total solid content of 7.5% by mass was obtained.
  • Example (4-4) The curing catalyst of Example (4-4) was prepared in the same manner as Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P4 obtained in Synthesis Example (2-4). As an example not added, a varnish (abbreviated as RV (4-4)) having a total solid content of 7.5% by mass was obtained.
  • RV (4-4) a varnish having a total solid content of 7.5% by mass was obtained.
  • Example (4-5) The curing catalyst of Example (4-5) was prepared in the same manner as in Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P5 obtained in Synthesis Example (2-5). As an example not added, a varnish (abbreviated as RV (4-5)) having a total solid content of 7.5% by mass was obtained.
  • RV (4-5) a varnish having a total solid content of 7.5% by mass was obtained.
  • Example (4-1) diluted to 1% by mass with PGEE was added, and 1.8322 g of ion-exchanged water (the ratio in the total solvent was 12% by mass) was completely added at room temperature.
  • a varnish abbreviated as RV (4-11) having a total solid content of 7.5% by mass was obtained. .
  • Example (4-20) The procedure of Example (4-1) was repeated except that P1 of Example (4-1) was replaced with P12 obtained in Synthesis Example (2-12), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (4-20)) was obtained.
  • Reference Example (4-25) The procedure of Reference Example (4-24) was followed except that nitric acid in Reference Example (4-24) was replaced with sulfuric acid, and a varnish (RV (4-25) with a total solid content of 7.5% by mass was used. Abbreviated).
  • Tables 7 to 10 are parameters relating to the present invention, weight average molecular weight, copolymerization ratio of hydrolyzable silane (a1) and hydrolyzable silane (a2) constituting the silicon compound (A), and hydrolyzability.
  • the number of carbon atoms of L in silane (a2), the presence / absence and type of addition of a curing catalyst, the presence / absence and type of acid addition, the presence / absence of water addition and the ratio of water to the total solvent (% by weight) are shown.
  • G1 for acetic acid
  • G2 formic acid
  • G3 for propionic acid
  • G4 for oxalic acid
  • G5 for maleic acid
  • G6 for nitric acid
  • G7 for sulfuric acid.
  • the coating film As for the coating film, the surface of the coating film is observed using an optical microscope, ⁇ is an example in which a foreign film is not generated and a uniform film is obtained, and x is an example in which a foreign material is generated and a storage stability test is defective. It shows in Table 11 thru
  • V (4-1) to V (4-20) and RV (4-1) to RV (4-28) were evaluated for patterning characteristics.
  • Each varnish was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Co., Ltd., and 150 ° C. using a hot plate. Firing was performed for 1 minute.
  • AZ3100 manufactured by AZ ELECTRONIC MATERIALS
  • TMAH tetramethylammonium hydride
  • the width of the space portion of FIG. 15 is 5.04 ⁇ m
  • the width of the space portion of FIG. 16 is 5.02 ⁇ m
  • the width of the space portion of FIG. 17 is 5.02 ⁇ m
  • the width of the Space portion of FIG. 19 is 5.01 ⁇ m
  • the width of the Space portion of FIG. 20 is 5.01 ⁇ m
  • the width of the Space portion of FIG. 21 is 5.01 ⁇ m
  • the space portion is a portion that dissolves in the alkaline developer, and the closer to 5 ⁇ m, the better the pattern can be formed.
  • V (4-1) to V (4-20) and RV (4-1) to RV (4-28) were measured for water contact angle.
  • a silicon substrate was spin-coated so as to have a film thickness of 100 nm, and baked using a hot plate at 150 ° C. for 1 minute, and then baked at 100 ° C. for 1 minute.
  • the two-step baking in this hot plate is a baking condition that reproduces the heat history before alkali development based on applying a photosensitive resist and drying.
  • Drop Master series DM700 manufactured by Kyowa Interface Science Co., Ltd. the resulting coating was made from pure water using a 22G size needle, and the droplet deposited on the coating surface was removed.
  • the water contact angle was calculated by the drop method ( ⁇ / 2 method). The results are shown in Tables 11 to 12.
  • Tables 7 to 12 compare the patterning characteristics of varnish foreign matter and its coating before and after aging of V (4-1) to V (4-20) and RV (4-1) and RV (4-28). .
  • the varnishes V (4-1) to V (4-20) have a weight average molecular weight in the range of 700 to 4000, and the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 mol% to 50%.
  • Inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70, a curing catalyst (D), water (F), and an acid (G)
  • the ratio of water (F) in the total solvent is 6 to 18% by weight, and the pH of the varnish is controlled to 3 to 5 in the varnish before and after aging. Foreign matter does not occur and foreign matter appears on the resulting coating It was found not.
  • Reference Example (4-1) to Reference Example (4-5) are examples in which the curing catalyst (D) was omitted.
  • the patterning characteristics were evaluated, the film was too dissolved in the alkaline developer, and the pattern was changed. Cann't get. From this result, it became clear that the curing catalyst (D) is an essential component.
  • Reference Example (4-6) to Reference Example (4-10) are examples in which water (F) was removed, but when the patterning characteristics were evaluated, the film was not dissolved in the alkaline developer, and a pattern could not be obtained. It was.
  • Water (F) is an essential component for expressing silanol of the silicon compound (A) in the varnish, enhancing and stabilizing the curability when heated, and appropriately expressing the hydrogen ion concentration of the acid (G). It became clear that there was.
  • Reference examples (4-11) to (4-15) are examples in which the acid (G) was removed, but there was a problem that foreign matter was generated after aging. This is because the pH of the varnish is 6.8, and condensation is promoted more than the stabilization of silanol, and it is considered that foreign matters are generated in the varnish. This result revealed that acid (G) is an essential component.
  • Reference Example (4-16), Reference Example (4-19) and Reference Example (4-20) are examples in which L of the hydrolyzable silane (a2) is an alkyl group having 0 to 2 carbon atoms.
  • L of the hydrolyzable silane (a2) is an alkyl group having 0 to 2 carbon atoms.
  • Reference Example (4-21) is an example in which L of the hydrolyzable silane (a2) is an alkyl group having 8 carbon atoms. When the patterning characteristics are evaluated, the coating does not dissolve in the alkaline developer, The pattern could not be obtained.
  • L of the hydrolyzable silane (a2) must be composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms. Further, when the hydrolyzable silane (a2) L is composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms, the water contact angle of the resulting film is in the range of 60 ° to 80 °. Inside. It was clarified that the hydrophilicity / hydrophobicity of the film is very important in order to obtain the solution developability with respect to the alkaline developer, and it was found that the optimum hydrophilicity / hydrophobicity was expressed from the structure of the silicon compound.
  • the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 mol% to 50 mol%, and the hydrolyzable silane (a2) is 10 mol% to 50 mol%. It is an example using a polymer in which the hydrolyzable silane (a1) is 40 mol% and the hydrolyzable silane (a2) is 60 mol%, not a copolymerized polymer. The film did not dissolve in the alkaline developer, and a pattern could not be obtained.
  • the copolymerization ratio of the hydrolyzable silane (a1) and the hydrolyzable silane (a2) is important, the hydrolyzable silane (a1) of Example (4-5) is 50 mol%, In an example in which a polymer in which 50 mol% of the reactive silane (a2) is copolymerized is used, alkali solubility is expressed, so the copolymerization ratio of the hydrolyzable silane (a1) and the hydrolyzable silane (a2) It became clear that there was an optimal value.
  • Reference Example (4-18) is an example using a polymer having a weight average molecular weight of 4545.
  • the film was peeled and developed with an alkaline developer, and a pattern could not be obtained. From this result, it was revealed that when the weight average molecular weight of the silicon compound (A) is too high, peeling development occurs and there is an optimum value for the weight average molecular weight.
  • Reference Example (4-22) and Reference Example (4-23) are both examples using a partially hydrolyzed silicon compound (A). In both cases, the patterning characteristics, no foreign matter was generated before and after aging, and good results were obtained. The results of the light resistance test will be described later.
  • Reference Example (4-24) and Reference Example (4-25) are examples in which the acid type is changed to strong acid and the pH of the varnish is 1.2.
  • a gel insoluble in the solvent (C) was generated after aging. From this result, it became clear that there is an optimum value for the pH of the varnish.
  • Reference Example (4-26) is an example in which the addition amount of acetic acid was decreased, 0.01 phr was added, and the pH of the varnish was 5.6. In Reference Example (4-26), foreign matter was generated after aging. This result also revealed that the pH of the varnish has an optimum value.
  • Reference Example (4-27) and Reference Example (4-28) are examples in which the amount of water (F) added is 4% and 20%.
  • the amount of water (F) added is 4% and 20%.
  • foreign matter was generated after aging, and in Reference Example (4-28), striation occurred when the varnish was applied to the substrate, and a uniform film could not be obtained. From this result, it became clear that there is an optimum value for the amount of water (F) added.
  • V (4-1) to V (4-2) and RV (4-22) to RV (4-23) were evaluated for light resistance.
  • V (4-1) to V (4-2) and RV (4-22) to RV (4-23) are spin-coated on a silicon substrate to a film thickness of 100 nm, and using a hot plate, Firing was performed at 150 ° C. for 60 minutes. After firing, the film thickness, the refractive index of 450 nm, and the average transmittance were measured. Next, a light resistance test was performed, and the film thickness, refractive index, and average transmittance of the film after the light resistance test were measured. The results are shown in Table 13.
  • the film thickness and refractive index of 450 nm were measured on the film on the silicon substrate, and the average transmittance was measured on the film on the quartz substrate. As the average transmittance, an average transmittance of 400 nm to 800 nm was calculated.
  • light resistance test light irradiation was performed at the Japan Weathering Test Center, and a xenon arc lamp having an illuminance of 38.7 W / m 2 and an exposure wavelength of 320 nm to 400 nm was used as a light source.
  • SX75-AP type manufactured by Suga Test Instruments Co., Ltd. was used as the test machine.
  • the test environment was a temperature of 42 ⁇ 3 ° C. and a relative humidity of 50 ⁇ 5% RH.
  • Example (4-21) to Example (4-22) and Reference Example (4-29) to Reference Example (4-30) are compared.
  • Examples (4-21) to (4-22) and Reference Examples (4-29) to (4-30) the patterning characteristics and the generation of foreign matter after the aging were good.
  • (4-29) to Reference Example (4-30) it was found that the film thickness after light resistance test decreased, the refractive index increased, and the average transmittance decreased.
  • the film thickness, refractive index, and average transmittance after the light resistance test did not change.
  • the polymers V (4-1) to V (4-2) are completely hydrolyzed, and the polymers RV (4-22) to RV (4-23) are partially hydrolyzed. Only the difference is that the copolymerization ratio of the monomers is the same and the weight average molecular weight is the same level of the polymer, indicating that the difference in predominance was expressed by the difference in the polymerization method of the polymer. That is, it was found that the completely hydrolyzed polymer had a good light resistance test.
  • thermosetting reaction of the film is terminated in the baking process, whereas in the partially hydrolyzed polymer, the thermosetting reaction is not completely terminated in the baking process, and the alkoxy group remains. Therefore, it is considered that the reaction progressed during the light resistance test.
  • the weight average molecular weight of the silicon compound (A) is in the range of 700 to 4000
  • the hydrolyzable silane (a1) is 90 mol% to 50 mol%
  • the hydrolyzable silane (A2) is a range copolymerized at 10 mol% to 50 mol%
  • L of the hydrolyzable silane (a2) is a range of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms.
  • the alkali developability is good when the patterning of 10 ⁇ m or less which is useful as a coating for LED is observed, and the heat of refractive index.
  • a permanent film with good temporal change can be obtained without going through a process such as a dry process.
  • the film obtained by the present invention can satisfy the patterning characteristics of high refractive index, high transparency, high heat resistance, high light resistance and 10 ⁇ m or less at a time, so that it can be used for liquid crystal displays, plasma displays, cathode ray tubes. It can be suitably used as an electronic device such as an organic light emitting display, electronic paper, LED, solid-state imaging device, solar cell, or organic thin film transistor. In particular, it can be suitably used as an LED member that requires high light resistance.

Abstract

[Problem] To provide: a film forming composition which is suitable for the production of a film having high refractive index, high transparency, high heat resistance, high light resistance and high hardness; and a pattern forming method. [Solution] A film forming composition which contains: a silicon compound (A) that is a hydrolysis-condensation product of a hydrolyzable silane containing a hydrolyzable silane (a1) represented by formula (a1) and a hydrolyzable silane (a2) represented by formula (a2) and has a weight average molecular weight of 700-4,000; inorganic particles (B) having an average particle diameter of 1-100 nm and a refractive index of 1.50-2.70; and a solvent (C). The silicon compound (A) is a polymer that is obtained by hydrolyzing and condensing a hydrolyzable silane which contains the hydrolyzable silane (a1) and the hydrolyzable silane (a2) respectively in an amount of 90-50% by mole and in an amount of 10-50% by mole. Si(R1)4 Formula (a1) L-Si(R2)3 Formula (a2) (In the formulae, each of R1 and R2 represents an alkoxy group having 1-20 carbon atoms, an acyloxy group having 2-20 carbon atoms or a halogen group; and L represents a linear, branched or cyclic alkyl group having 3-6 carbon atoms.)

Description

アルカリ溶解現像性の高屈折率膜形成組成物及びパターン形成方法Alkali-dissolvable and developable high refractive index film forming composition and pattern forming method
 本発明は、ポリシロキサンおよび無機微粒子を含む膜形成組成物、並びにパターン形成方法に関する。 The present invention relates to a film forming composition containing polysiloxane and inorganic fine particles, and a pattern forming method.
 発光ダイオード(LED)は各種ディスプレイのバックライト光源、信号機、照明、レーザー、バイオセンサーなどとして利用されており、民生用途として広く普及している。 Light emitting diodes (LEDs) are used as backlight light sources for various displays, traffic lights, lighting, lasers, biosensors, etc., and are widely used for consumer use.
 LEDは更なる長寿命且つ低消費電力を達成するために、光取出し効率を高めるデバイス開発が主流となってきている。これらの潮流の中で、光取出し効率を高めるための素子構造及び材料の開発が行われている。 In order to achieve further long life and low power consumption, LEDs have been mainly developed for devices that increase the light extraction efficiency. In these currents, element structures and materials for improving light extraction efficiency are being developed.
 光取出し効率を高めるために、光学的な屈折率をコントロールする方法があり、封止材料を高屈折率化する検討が報告されている。 In order to increase the light extraction efficiency, there is a method of controlling the optical refractive index, and studies have been reported to increase the refractive index of the sealing material.
 例えば酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化タンタル、酸化インジウム、酸化ハフニウム、酸化スズ、酸化ニオブおよびこれらの複合体からなる群から選択される少なくとも1種の金属酸化物の微粒子と、重量平均分子量が1,000乃至100,000の範囲にあるアルコキシ基含有シロキサンポリマー(b1)と、重量平均分子量が500乃至100,000であるヒドロキシ基含有ポリシロキサン(b2)と、β-ジケトン、ケトエステル、ジカルボン酸およびその誘導体、ヒドロキシカルボン酸およびその誘導体、ケトアルコール、ジヒドロキシ化合物、オキシアルデヒド化合物、ならびにアミン化合物およびその誘導体からなる群から選択される少なくとも1種のキレート化剤を含有する高屈折材料形成用組成物(特許文献1参照)、
 アルキル基、アリール基、ヒドロキシ基等を含むオルガノポリシロキサン、縮合触媒、および無機微粒子を含有する光関連デバイス封止用樹脂組成物(特許文献2参照)、並びに
 炭素原子数1~20のアルキル基、又は炭素原子数1~8の炭化水素基を有していてもよいフェニル基を有するトリアルコキシシラン(A)と、反応性環状エーテル基を含有する置換基を有するトリアルコキシシラン(B)とを共加水分解、共縮合することによって得られるラダー型又はランダム型構造のシルセスキオキサン誘導体、及び、無機微粒子を主成分とする、Bステージ化された光素子用封止樹脂組成物(特許文献3参照)、が開示されている。
For example, fine particles of at least one metal oxide selected from the group consisting of zirconium oxide, titanium oxide, zinc oxide, tantalum oxide, indium oxide, hafnium oxide, tin oxide, niobium oxide, and a composite thereof, and a weight average molecular weight Is an alkoxy group-containing siloxane polymer (b1) in the range of 1,000 to 100,000, a hydroxy group-containing polysiloxane (b2) having a weight average molecular weight of 500 to 100,000, β-diketone, ketoester, dicarboxylic acid For forming a high refractive material containing at least one chelating agent selected from the group consisting of acids and derivatives thereof, hydroxycarboxylic acids and derivatives thereof, keto alcohols, dihydroxy compounds, oxyaldehyde compounds, and amine compounds and derivatives thereof Composition (patent Document reference 1),
Organopolysiloxane containing alkyl group, aryl group, hydroxy group, etc., resin composition for optical device sealing containing condensation catalyst and inorganic fine particles (see Patent Document 2), and alkyl group having 1 to 20 carbon atoms Or a trialkoxysilane (A) having a phenyl group which may have a hydrocarbon group having 1 to 8 carbon atoms, and a trialkoxysilane (B) having a substituent containing a reactive cyclic ether group, A B-stage encapsulating resin composition for optical elements, which mainly comprises a silsesquioxane derivative having a ladder type structure or a random type structure obtained by cohydrolysis and cocondensation, and inorganic fine particles (patent) Reference 3) is disclosed.
 目的とする高屈折率材料には、高透明性、高耐熱性、高耐光性、高硬度が求められるが、これらの要求性能を全て満たす十分満足な材料はこれまでに得られていない。 The target high refractive index material is required to have high transparency, high heat resistance, high light resistance, and high hardness, but no sufficiently satisfactory material that satisfies all of these required performances has been obtained so far.
 無機粒子を加える場合は膜硬度が低下する場合がある。ポリシロキサンは膜硬度が高い反面、高屈折率を発現しない。これらの背景から無機粒子とポリシロキサンとを組み合わせて高屈折率材料とする方法が公知技術として知られている。 When adding inorganic particles, film hardness may decrease. Polysiloxane has a high film hardness but does not exhibit a high refractive index. From these backgrounds, a method of combining inorganic particles and polysiloxane to obtain a high refractive index material is known as a known technique.
 LED用の高屈折率膜はアルカリ現像性が求められ、10μm以下のパターンを作製するには、アルカリに対し溶解現像性が求められる。そのため、高屈折率組成物自体に感光性を付与し、パターンを得ることが考えられるが感光剤などを含むため、LED素子の部材として長期の耐光性と信頼性を満たすことが困難である。 The high refractive index film for LED is required to have alkali developability, and in order to produce a pattern of 10 μm or less, dissolution developability is required for alkali. Therefore, it is conceivable that the high refractive index composition itself is imparted with photosensitivity to obtain a pattern. However, since it contains a photosensitizer, it is difficult to satisfy long-term light resistance and reliability as a member of an LED element.
 ポリシロキサンと無機粒子とを含む高屈折率組成物はその上にリコートした感光性材料を利用してパターニングしようとする検討は知られておらず、LEDを作製するプロセスを考慮して、10μm以下のパターニングをしようとする検討も知られていない。 A high refractive index composition containing polysiloxane and inorganic particles has not been studied for patterning using a photosensitive material recoated thereon, and 10 μm or less is considered in consideration of a process for manufacturing an LED. There are no known studies on patterning.
特開2006-316264JP 2006-316264 A 特開2006-328315JP 2006-328315 A 特開2008-202008JP2008-202008
 本発明は、このような事情に鑑みてなされたものであり、高屈折率、高透明性、高耐熱性、高耐光性、高硬度を達成し得る表示デバイス用膜作製に好適な膜形成組成物及びこれを用いたパターン形成方法、並びにレジスト膜の剥離時の膜荒れ防止方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a film-forming composition suitable for producing a film for a display device that can achieve high refractive index, high transparency, high heat resistance, high light resistance, and high hardness. It is an object of the present invention to provide an object, a pattern forming method using the same, and a method for preventing film roughness when the resist film is peeled off.
 本発明は第1観点として、式(a1)で表される加水分解性シラン(a1)と式(a2)で表される加水分解性シラン(a2):
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRはそれぞれ炭素原子数1~20のアルコキシ基、炭素原子数2~20のアシルオキシ基、又はハロゲン基を示し、Lは炭素原子数3~6の直鎖、分岐又は環状のアルキル基を示す。)とを含む加水分解性シランの加水分解縮合物であり且つ重量平均分子量700乃至4000のケイ素化合物(A)、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、及び溶剤(C)を含む膜形成組成物(1)、
 第2観点として、ケイ素化合物(A)が、加水分解性シラン(a1)と加水分解性シラン(a2)との割合として、加水分解性シラン(a1)が90モル%乃至50モル%で、加水分解性シラン(a2)が10モル%乃至50モル%でそれぞれ含有される加水分解性シランを加水分解し縮合したポリマーである第1観点に記載の膜形成組成物(1)、
 第3観点として、ケイ素化合物(A)が加水分解性シランを非アルコール溶剤中で加水分解し縮合して得られるものである第1観点に記載の膜形成組成物(1)、
 第4観点として、非アルコール溶剤がケトン又はエーテルである第3観点に記載の膜形成組成物(1)、
 第5観点として、非アルコール溶剤がアセトン又はテトラヒドロフランである第3観点に記載の膜形成組成物(1)、
 第6観点として、溶剤(C)が上記加水分解性シランの加水分解とこれに続く縮合の際に用いる非アルコール溶剤と、加水分解性シランの加水分解によって生じた反応物を除去する溶剤置換に用いる溶剤とを含むものである第3観点に記載の膜形成組成物(1)、
 第7観点として、無機粒子(B)がジルコニアである第1観点に記載の膜形成組成物(1)、
 第8観点として、更に、アンモニウム塩、ホスフィン類、ホスホニウム塩、スルホニウム塩、又はキレート化合物から選ばれる硬化触媒(D)を含む第3観点に記載の膜形成組成物(2)、
 第9観点として、更に、1,2-ジケトン及び/又は1,3-ジケトンから選ばれるジケトン化合物(E)を含む第3観点に記載の膜形成組成物(3)、
 第10観点として、ジケトン化合物(E)が下記式(3)及び/又は下記式(4):
Figure JPOXMLDOC01-appb-C000004
(式中、Wは炭素原子若しくは酸素原子を示す。)で表される骨格を含む化合物である第9観点に記載の膜形成組成物(3)、
 第11観点として、ジケトン化合物(E)がジアセチル、ピルビン酸メチル、ピルビン酸エチル、又はアセチルアセトンである第9観点に記載の膜形成組成物(3)、
 第12観点として、更に、水(F)及び酸(G)を含む第8観点に記載の膜形成組成物(4)、
 第13観点として、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルを混合し、ケイ素化合物(A)と無機粒子(B)と溶剤(C)とを含む膜形成組成物を得る工程、を含む第1観点に記載の膜形成組成物(1)の製造方法、
 第14観点として、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルと硬化触媒(D)とを混合し、ケイ素化合物(A)と無機粒子(B)と硬化触媒(D)と溶剤(C)とを含む膜形成組成物を得る工程、を含む第8観点に記載の膜形成組成物(2)の製造方法、
 第15観点として、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルとジケトン化合物(E)とを混合し、ケイ素化合物(A)と無機粒子(B)とジケトン化合物(E)と溶剤(C)とを含む膜形成組成物を得る工程、を含む第9観点に記載の膜形成組成物(3)の製造方法、
 第16観点として、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルと硬化触媒(D)と水(F)と酸(G)を混合し、ケイ素化合物(A)と無機粒子(B)と硬化触媒(D)と水(F)と酸(G)と溶剤(C)とを含む膜形成組成物を得る工程、を含む第12観点に記載の膜形成組成物(4)の製造方法、
 第17観点として、第1観点乃至第12観点のうちいずれか一つに記載の膜形成組成物から得られる膜の上に感光性レジストを塗布し、乾燥させ、そして該感光性レジスト膜に光照射し、続いて現像し、その後該レジスト膜の剥離を行うことからなるパターン形成方法、
 第18観点として、第1観点乃至第12観点のうちいずれか一つに記載の膜形成組成物を基板上に被覆し加熱して得られ、波長633nmで1.50乃至1.90の屈折率を有する膜、
 第19観点として、膜表面の水の接触角が60°乃至80°であることを特徴とする第18観点に記載の膜、
 第20観点として、光取りだし膜、又は保護膜として用いられる第18観点に記載の膜、
 第21観点として、第18観点に記載の膜を有する電子デバイスを有する装置、並びに
 第22観点として、電子デバイスがLEDである第21観点に記載の装置である。
As a first aspect of the present invention, a hydrolyzable silane (a1) represented by the formula (a1) and a hydrolyzable silane (a2) represented by the formula (a2):
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 and R 2 are each an alkoxy group having 1 to 20 carbon atoms, show an acyloxy group, or a halogen group having a carbon number of 2 to 20 L is a straight chain of 3 to 6 carbon atoms, branched Or a hydrolyzable condensate of hydrolyzable silane containing a silicon compound (A) having a weight average molecular weight of 700 to 4000 and an average particle diameter of 1 to 100 nm and 1.50 to 2 A film-forming composition (1) comprising inorganic particles (B) having a refractive index of .70 and a solvent (C),
As a second aspect, the silicon compound (A) has a hydrolyzable silane (a1) and hydrolyzable silane (a2) ratio of 90 mol% to 50 mol%, The film-forming composition (1) according to the first aspect, which is a polymer obtained by hydrolyzing and condensing hydrolyzable silanes each containing 10 to 50 mol% of the decomposable silane (a2),
As a third aspect, the film-forming composition (1) according to the first aspect, wherein the silicon compound (A) is obtained by hydrolyzing and condensing a hydrolyzable silane in a non-alcohol solvent,
As a fourth aspect, the film-forming composition (1) according to the third aspect, in which the non-alcohol solvent is a ketone or ether,
As a fifth aspect, the film-forming composition (1) according to the third aspect, wherein the non-alcohol solvent is acetone or tetrahydrofuran,
As a sixth aspect, the solvent (C) is used for solvent replacement to remove the non-alcohol solvent used in the hydrolysis of the hydrolyzable silane and the subsequent condensation, and the reactant generated by the hydrolysis of the hydrolyzable silane. A film-forming composition (1) according to the third aspect, comprising a solvent to be used;
As a seventh aspect, the film-forming composition (1) according to the first aspect, wherein the inorganic particles (B) are zirconia,
As an eighth aspect, the film-forming composition (2) according to the third aspect, further comprising a curing catalyst (D) selected from ammonium salts, phosphines, phosphonium salts, sulfonium salts, or chelate compounds,
As a ninth aspect, the film-forming composition (3) according to the third aspect, further comprising a diketone compound (E) selected from 1,2-diketone and / or 1,3-diketone,
As a tenth aspect, the diketone compound (E) is represented by the following formula (3) and / or the following formula (4):
Figure JPOXMLDOC01-appb-C000004
(Wherein W represents a carbon atom or an oxygen atom) The film-forming composition (3) according to the ninth aspect, which is a compound containing a skeleton represented by:
As an eleventh aspect, the film-forming composition (3) according to the ninth aspect, wherein the diketone compound (E) is diacetyl, methyl pyruvate, ethyl pyruvate, or acetylacetone.
As a twelfth aspect, the film-forming composition (4) according to the eighth aspect, further comprising water (F) and an acid (G),
As a thirteenth aspect, a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000. Obtaining a varnish of
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
A step of mixing a varnish of a silicon compound (A) and a sol of inorganic particles (B) to obtain a film-forming composition containing the silicon compound (A), inorganic particles (B), and a solvent (C). A method for producing the film-forming composition (1) according to the aspect,
As a fourteenth aspect, a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound having a weight average molecular weight of 700 to 4000 ( A step of obtaining the varnish of A),
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
The varnish of the silicon compound (A), the sol of the inorganic particles (B), and the curing catalyst (D) are mixed, and the silicon compound (A), the inorganic particles (B), the curing catalyst (D), and the solvent (C) are mixed. A method for producing the film-forming composition (2) according to the eighth aspect, including a step of obtaining a film-forming composition comprising,
As a fifteenth aspect, a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1), and a silicon compound having a weight average molecular weight of 700 to 4000 ( A step of obtaining the varnish of A),
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
The varnish of the silicon compound (A), the sol of the inorganic particles (B), and the diketone compound (E) are mixed, and the silicon compound (A), the inorganic particles (B), the diketone compound (E), and the solvent (C) are mixed. A method for producing a film-forming composition (3) according to the ninth aspect, including a step of obtaining a film-forming composition comprising:
As a sixteenth aspect, a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1), and a silicon compound having a weight average molecular weight of 700 to 4000 ( A step of obtaining the varnish of A),
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
The varnish of the silicon compound (A), the sol of the inorganic particles (B), the curing catalyst (D), water (F), and the acid (G) are mixed, and the silicon compound (A), the inorganic particles (B), and the curing catalyst ( A process for producing a film-forming composition (4) according to the twelfth aspect, including a step of obtaining a film-forming composition comprising D), water (F), an acid (G), and a solvent (C),
As a seventeenth aspect, a photosensitive resist is applied on a film obtained from the film-forming composition according to any one of the first to twelfth aspects, dried, and light is applied to the photosensitive resist film. A pattern forming method comprising irradiating, subsequently developing, and then removing the resist film;
As an eighteenth aspect, the film forming composition according to any one of the first to twelfth aspects is coated on a substrate and heated, and has a refractive index of 1.50 to 1.90 at a wavelength of 633 nm. A membrane having,
As a nineteenth aspect, the film according to the eighteenth aspect, wherein the contact angle of water on the film surface is 60 ° to 80 °,
As a twentieth aspect, the light extraction film or the film according to the eighteenth aspect used as a protective film,
As a twenty-first aspect, an apparatus having an electronic device having the film described in the eighteenth aspect, and as a twenty-second aspect, an apparatus according to the twenty-first aspect, in which the electronic device is an LED.
 LED用の光取出し膜及び保護膜などの部材には、高屈折率で且つ、アルカリ現像性が求められ、10μm以下のパターンを作製する必要がある。10μm以下のパターンを作製するには、ケイ素化合物(A)と無機粒子(B)と溶剤(C)とからなる組成物から作製された被膜にアルカリ現像性が求められる。アルカリ現像は、溶解現像と剥離現像とに区別される。溶解現像とは、アルカリ溶液が膜を溶解させながらパターン形成される現像であり、剥離現像とは、アルカリ溶液が膜を溶解させにくく、膜の膨潤及びクラックを発生させながら、パターン形成される現像である。ここで、10μm以下のパターンを形成させるには溶解現像可能であることが必須であるが、剥離現像ではそのパターン形成が困難である。剥離現像では、クラックが発生するサイズを10μm以下に抑制することができず、均一な10μm以下のパターンを得ることができない。 For members such as light extraction films and protective films for LEDs, a high refractive index and alkali developability are required, and it is necessary to produce a pattern of 10 μm or less. In order to produce a pattern of 10 μm or less, alkali developability is required for a film produced from a composition comprising a silicon compound (A), inorganic particles (B), and a solvent (C). Alkali development is classified into dissolution development and release development. Dissolution development is development in which an alkaline solution dissolves a film, and pattern development is performed. Release development is development in which an alkaline solution hardly dissolves a film, and pattern formation is performed while causing swelling and cracking of the film. It is. Here, in order to form a pattern of 10 μm or less, it is essential to be able to perform dissolution development, but it is difficult to form the pattern by peeling development. In peeling development, the size at which cracks occur cannot be suppressed to 10 μm or less, and a uniform pattern of 10 μm or less cannot be obtained.
 本発明の膜形成組成物は重量平均分子量700乃至4000のケイ素化合物(A)と、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)と、溶剤(C)とを含む膜形成組成物である。 The film-forming composition of the present invention comprises a silicon compound (A) having a weight average molecular weight of 700 to 4000, inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70, a solvent A film-forming composition containing (C).
 ケイ素化合物(A)は重量平均分子量を700乃至4000であり、更に、加水分解性シラン(a1)に極めて特定の種類の加水分解性シラン(a2)を特定された比率で共重合することにより得られた加水分解縮合物であり、これと無機粒子(B)とからなる組成物から作製された被膜がアルカリ溶液に対して溶解現像性を発現し、10μm以下のパターン形成された高屈折率な被膜が得られる。 The silicon compound (A) has a weight average molecular weight of 700 to 4000, and is obtained by copolymerizing a very specific type of hydrolyzable silane (a2) at a specified ratio with the hydrolyzable silane (a1). The resulting hydrolyzed condensate has a high refractive index in which a film formed from the composition comprising the inorganic particles (B) exhibits dissolution and developability with respect to an alkaline solution and has a pattern of 10 μm or less. A coating is obtained.
 また、加水分解性シラン(a2)の種類を特定することで、本加熱した際のリング状の低分子化合物の昇華を抑制でき、加熱時若しくは信頼性試験時の屈折率の低下及び膜密度の低下を防止できる。 Also, by specifying the type of hydrolyzable silane (a2), sublimation of the ring-shaped low molecular weight compound during the main heating can be suppressed, and the refractive index drop and the film density during heating or reliability test can be suppressed. Decrease can be prevented.
 無機粒子(B)が動的光散乱法による平均粒子径が1乃至100nmであることで、ろ過性が良好であり、膜形成組成物の高透過率を達成できる。 Since the average particle diameter of the inorganic particles (B) by the dynamic light scattering method is 1 to 100 nm, the filterability is good and the high transmittance of the film-forming composition can be achieved.
 また、ケイ素化合物(A)はポリシロキサンであり、無機粒子(B)は高屈折率を示すジルコニアであるとき、無機化合物で構成された組成物となることから耐光性が良好である。 Further, when the silicon compound (A) is polysiloxane and the inorganic particles (B) are zirconia having a high refractive index, the composition is composed of an inorganic compound, so that the light resistance is good.
 ケイ素化合物(A)と無機粒子(B)との表面に存在するヒドロキシ基は外部刺激として熱が加わったとき、重縮合を開始し、強固で高硬度な膜を形成できる。 The hydroxy group present on the surface of the silicon compound (A) and the inorganic particles (B) can start polycondensation when heat is applied as an external stimulus and can form a strong and high hardness film.
 本発明のポリシロキサンと平均粒子径が1乃至100nm以下の無機粒子とから成る組成物はアルカリ溶液に対して、溶解現像性を有しているため感光性レジストを用いて10μm以下のパターニングが可能である。ドライエッチングなどのプロセスを経ないため、工程が簡略化され、生産コストを低下できる。 Since the composition comprising the polysiloxane of the present invention and inorganic particles having an average particle size of 1 to 100 nm or less has dissolution developability in an alkaline solution, patterning of 10 μm or less is possible using a photosensitive resist. It is. Since a process such as dry etching is not performed, the process is simplified and the production cost can be reduced.
 また、完全加水分解型のポリシロキサンと部分加水分解型のポリシロキサンを用いた組成物を比較すると以下の特徴がある。 Further, a comparison between a composition using a fully hydrolyzed polysiloxane and a partially hydrolyzed polysiloxane has the following characteristics.
 部分加水分解型のポリシロキサンは、ヒドロキシ基等の官能基を含むアルコールを加水分解又は重縮合時の溶剤に使用して得られたポリマーを指す。部分加水分解型のポリシロキサンは加水分解し、重縮合する段階で溶剤のアルコール又はモノマーのシランアルコキシドから生成するアルコールが加水分解で生成したシラノール基と反応しシランアルコキシドの形で残存している。また、溶液状態でのポリマー中のシラノール基とシランアルコキシドは化学的に平衡反応であるため、アルコールを加水分解及び縮合時の溶剤に選択するとシランアルコキシドの残留割合が多いポリシロキサンとなる。 Partially hydrolyzed polysiloxane refers to a polymer obtained by using an alcohol containing a functional group such as a hydroxy group as a solvent during hydrolysis or polycondensation. The partially hydrolyzed polysiloxane is hydrolyzed and in the stage of polycondensation, the alcohol produced from the solvent alcohol or the monomer silane alkoxide reacts with the silanol groups produced by the hydrolysis and remains in the form of silane alkoxide. Further, since the silanol group and the silane alkoxide in the polymer in a solution state are chemically equilibrium reactions, polysiloxane having a large residual ratio of silane alkoxide is obtained when alcohol is selected as a solvent for hydrolysis and condensation.
 一方で完全加水分解型のポリシロキサンはヒドロキシ基を含まない非アルコールを加水分解及び縮合時の溶剤に用いて得られたポリマーを指す。完全加水分解型のポリシロキサンは加水分解及び重縮合時の溶剤である非アルコール溶剤がポリマーのシラノールを末端封止するヒドロキシ基を有していないため、得られたポリマーはシラノールの残留割合が多いポリシロキサンとなる。すなわち、完全加水分解型のポリシロキサンは有機成分としてシランアルコキシドをほとんど含まないため、耐光性試験で不利となる炭素元素をほとんど含んでいないポリマーとなる。 On the other hand, fully hydrolyzed polysiloxane refers to a polymer obtained by using a non-alcohol containing no hydroxy group as a solvent for hydrolysis and condensation. In the fully hydrolyzed polysiloxane, the non-alcohol solvent, which is a solvent for hydrolysis and polycondensation, does not have hydroxy groups that end-block the polymer silanol, so the resulting polymer has a high residual ratio of silanol. It becomes polysiloxane. That is, since the fully hydrolyzed polysiloxane contains almost no silane alkoxide as an organic component, it becomes a polymer containing almost no carbon element which is disadvantageous in the light resistance test.
 部分加水分解型のポリシロキサンはシランアルコキシドが多く残存しているため、微粒子のシラノールと反応する際に一旦加水分解を経由しなければならず、別途、添加剤などの添加が必要となる。添加剤としてはシラノールの生成促進剤や、シランアルコキシドの分解促進剤が挙げられるが、これらの添加剤は有機基や金属を含んで耐光性を悪化させるため、本発明の組成物には不向きである。 Since the partially hydrolyzed polysiloxane contains a large amount of silane alkoxide, when it reacts with the silanols of fine particles, it must pass through hydrolysis once, and an additional additive or the like is required. Additives include silanol formation accelerators and silane alkoxide decomposition accelerators, but these additives contain organic groups and metals and deteriorate the light resistance, so they are not suitable for the composition of the present invention. is there.
 完全加水分解型のポリシロキサンは部分加水分解型のポリシロキサンと比較して、末端にシラノールが多く残存していることから、熱硬化後に高信頼性の膜が得られるもののアルカリ溶液に対して、溶解性が高まりすぎてしまい、本発明の目的とする感光性レジストを利用して10μm以下のパターンを形成することが困難であるが、硬化触媒(D)を加えることで当該被膜をスピンコート後に仮乾燥させる段階でアルカリ溶液耐性を向上させ、又はコントロールでき、実用工程に合った条件で効率良く10μm以下のパターンを形成することが可能となる。 Compared with the partially hydrolyzed polysiloxane, the fully hydrolyzed polysiloxane has more silanol at the end, so that a highly reliable film can be obtained after thermosetting. The solubility becomes too high, and it is difficult to form a pattern of 10 μm or less using the photosensitive resist of the present invention. However, after spin coating the coating film by adding a curing catalyst (D) Alkali solution resistance can be improved or controlled at the stage of temporary drying, and a pattern of 10 μm or less can be efficiently formed under conditions suitable for practical processes.
 また、本発明のポリシロキサンと平均粒子径が1乃至100nm以下の無機粒子と水素結合性膜荒れ防止材(例えばジケトン化合物)とから成る組成物は感光性レジストを用いてパターニングが可能であり、更に感光性レジストをリコート時、若しくはレジスト膜の剥離時に膜荒れが発生しない。 In addition, a composition comprising the polysiloxane of the present invention, inorganic particles having an average particle diameter of 1 to 100 nm or less and a hydrogen bonding film roughening prevention material (for example, diketone compound) can be patterned using a photosensitive resist, Further, film roughness does not occur when the photosensitive resist is recoated or the resist film is peeled off.
 また、水(F)及び酸(G)を含み、反応性基であるヒドロキシ基を安定させることで、23℃若しくは5℃を保管温度としたワニス状態での品質変化が起こらず、良好な10μm以下のパターンを形成できる被膜を長期に渡って得られる。 In addition, by stabilizing the hydroxy group, which is a reactive group, including water (F) and acid (G), no change in quality occurs in a varnish with a storage temperature of 23 ° C. or 5 ° C., and a good 10 μm A film capable of forming the following pattern can be obtained over a long period of time.
 また、本発明によって得られた膜は高屈折率、高透明性、高耐熱性、高耐光性、高硬度という条件を総て満たすことが可能であり、かつパターニングが可能であることから液晶ディスプレイ、プラズマディスプレイ、カソードレイチューブ、有機発光ディスプレイ、電子ペーパー、LED、固体撮像素子、太陽電池、有機薄膜トランジスタなどの電子デバイスとして好適に用いることができる。特に高耐光性が要求されるLED用部材として好適に用いることができる。 The film obtained by the present invention can satisfy all the conditions of high refractive index, high transparency, high heat resistance, high light resistance, and high hardness, and can be patterned, so that it can be patterned. , Plasma displays, cathode ray tubes, organic light-emitting displays, electronic paper, LEDs, solid-state imaging devices, solar cells, organic thin film transistors, and other electronic devices. In particular, it can be suitably used as an LED member that requires high light resistance.
ポリマーTT73を含有する実施例(1-1)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (1-1) containing polymer TT73. ポリマーTI73を含有する実施例(1-2)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (1-2) containing polymer TI73. ポリマーTH73を含有する実施例(1-3)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (1-3) containing polymer TH73. ポリマーTI73M1を含有する実施例(1-8)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (1-8) containing polymer TI73M1. ポリマーpTEOSを含有する比較例(1-1)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of the comparative example (1-1) containing polymer pTEOS. ポリマーTI73M4を含有する比較例(1-5)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of the comparative example (1-5) containing polymer TI73M4. ワニスV(2-1)を含有する実施例(2-10)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (2-10) containing varnish V (2-1). ワニスV(2-2)を含有する実施例(2-11)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (2-11) containing varnish V (2-2). ワニスV(2-3)を含有する実施例(2-12)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (2-12) containing varnish V (2-3). ワニスRV(2-1)を含有する参考例(2-14)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of the reference example (2-14) containing varnish RV (2-1). ワニスRV(2-2)を含有する参考例(2-15)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of the reference example (2-15) containing varnish RV (2-2). ワニスRV(2-3)を含有する参考例(2-16)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of the reference example (2-16) containing varnish RV (2-3). 実施例(3-10)でワニスV(3-1)を用いた場合のレジスト膜剥離後の製膜面観察図。FIG. 11 is a view of the film forming surface after the resist film is peeled off when varnish V (3-1) is used in Example (3-10). 参考例(3-14)でワニスRV(3-1)を用いた場合のレジスト膜剥離後の製膜面観察図。FIG. 14 is a view of the film forming surface after the resist film is peeled off when varnish RV (3-1) is used in Reference Example (3-14). ワニスV(4-1)を含有する実施例(4-1)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-1) containing varnish V (4-1). ワニスV(4-2)を含有する実施例(4-2)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-2) containing varnish V (4-2). ワニスV(4-3)を含有する実施例(4-3)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-3) containing varnish V (4-3). ワニスV(4-10)を含有する実施例(4-10)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-10) containing varnish V (4-10). ワニスV(4-14)を含有する実施例(4-14)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-14) containing varnish V (4-14). ワニスV(4-15)を含有する実施例(4-15)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-15) containing varnish V (4-15). ワニスV(4-16)を含有する実施例(4-16)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-16) containing varnish V (4-16). ワニスV(4-17)を含有する実施例(4-17)の組成物を用いた場合のパターン観察図。The pattern observation figure at the time of using the composition of Example (4-17) containing varnish V (4-17). 参考例(4-1)でワニスRV(4-1)を用いたパターニング後の製膜面観察図。FIG. 5 is a film formation surface observation view after patterning using varnish RV (4-1) in Reference Example (4-1). 参考例(4-2)でワニスRV(4-2)を用いたパターニング後の製膜面観察図。The film formation surface observation figure after patterning which used varnish RV (4-2) in reference example (4-2). 参考例(4-3)でワニスRV(4-3)を用いたパターニング後の製膜面観察図。The film formation surface observation figure after patterning which used varnish RV (4-3) in the reference example (4-3).
 本発明は加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランの加水分解縮合物であり且つ重量平均分子量700乃至4000のケイ素化合物(A)、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、及び溶剤(C)を含む膜形成組成物である。式(1)及び式(2)中のR及びRはそれぞれ炭素原子数1~20のアルコキシ基、炭素原子数2~20のアシルオキシ基、又はハロゲン基を示し、Lは炭素原子数3~6の直鎖、分岐又は環状のアルキル基を示す。 The present invention is a hydrolyzable condensate of hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) and having a weight average molecular weight of 700 to 4000, silicon compound (A), 1 to 100 nm A film-forming composition comprising inorganic particles (B) having an average particle diameter and a refractive index of 1.50 to 2.70, and a solvent (C). R 1 and R 2 in the formula (1) and the formula (2) each represent an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 2 to 20 carbon atoms, or a halogen group, and L represents 3 carbon atoms. Represents 6 to 6 linear, branched or cyclic alkyl groups;
 上記膜形成組成物の固形分濃度は、目的の膜形成用被膜の膜厚を得られるように調製されていれば良く、0.1~50質量%、1~30質量%、又は5~20質量%の濃度範囲とすることができる。固形分は膜形成組成物から溶剤を除去した残りの割合である。 The solid content concentration of the film-forming composition may be adjusted so as to obtain the desired film-forming film thickness, and is 0.1 to 50% by mass, 1 to 30% by mass, or 5 to 20%. The concentration range may be mass%. The solid content is the remaining ratio after the solvent is removed from the film-forming composition.
 固形分中におけるケイ素化合物(A)と無機粒子(B)の含有量は50~100質量%、70~100質量%、又は70~99質量%とすることができる。 The content of the silicon compound (A) and the inorganic particles (B) in the solid content can be 50 to 100% by mass, 70 to 100% by mass, or 70 to 99% by mass.
 固形分換算で無機粒子(B)を100質量部としたときに、ケイ素化合物(A)を0.1~200質量部の範囲で加えることができ、好ましくは0.1~100質量部であり、膜質を保持し、保存安定性を保持するために、より好ましくは0.1~50質量部である。 When the inorganic particles (B) are 100 parts by mass in terms of solid content, the silicon compound (A) can be added in the range of 0.1 to 200 parts by mass, preferably 0.1 to 100 parts by mass. In order to maintain film quality and storage stability, the amount is more preferably 0.1 to 50 parts by mass.
 本発明に用いられるケイ素化合物(A)は式(a1)で示される加水分解性シラン(a1)と式(a2)で示される加水分解性シラン(a2)とを加水分解し共重合した加水分解縮合物である。この加水分解縮合物には加水分解物を含んでいても良い。 The silicon compound (A) used in the present invention is a hydrolysis obtained by hydrolyzing and copolymerizing a hydrolyzable silane (a1) represented by the formula (a1) and a hydrolyzable silane (a2) represented by the formula (a2). It is a condensate. This hydrolysis-condensation product may contain a hydrolysis product.
 ケイ素化合物(A)は、加水分解性シラン(a1)と加水分解性シラン(a2)との割合として、加水分解性シラン(a1)が90モル%乃至50モル%、80モル%乃至60モル%、又は70モル%で、加水分解性シラン(a2)が10モル%乃至50モル%、20モル%乃至40モル%、又は30モル%でそれぞれ含有される加水分解性シランを加水分解し縮合したポリマーである。 In the silicon compound (A), the ratio of hydrolyzable silane (a1) to hydrolyzable silane (a2) is 90 mol% to 50 mol%, 80 mol% to 60 mol%. Alternatively, hydrolyzable silane (a2) contained in 10 mol% to 50 mol%, 20 mol% to 40 mol%, or 30 mol%, respectively, is hydrolyzed and condensed at 70 mol%. It is a polymer.
 加水分解性シラン(a1)が95モル%以上含有し製造されたケイ素化合物(A)はアルカリ溶液の現像性が剥離現像となり、本発明の重要な目的である溶解現像性を発現しない。また、加水分解性シラン(a2)が55モル%以上含有し製造されたケイ素化合物は疎水性が高まり、アルカリ溶液をはじくようになり、現像性自体を失ってしまう。 The silicon compound (A) produced by containing 95 mol% or more of the hydrolyzable silane (a1) has the developability of an alkaline solution as a peel development, and does not exhibit the dissolution developability which is an important object of the present invention. Further, a silicon compound produced by containing 55 mol% or more of hydrolyzable silane (a2) has increased hydrophobicity, repels an alkaline solution, and loses developability itself.
 加水分解物はシランモノマーの加水分解基が加水分解を生じシラノール基を生成したものである。その加水分解縮合物は加水分解物中のシラノール基同士が脱水縮合を起こした加水分解縮合物であり、ポリシロキサンを形成したものであり、縮合物の末端は通常、シラノール基を有している。ケイ素化合物(A)は加水分解縮合物(ポリシロキサン)であるが、その前駆体である加水分解物を有していても良い。 The hydrolyzate is a product in which the hydrolyzable group of the silane monomer is hydrolyzed to produce a silanol group. The hydrolyzed condensate is a hydrolyzed condensate in which silanol groups in the hydrolyzed product undergo dehydration condensation and forms a polysiloxane, and the terminal of the condensate usually has a silanol group. . The silicon compound (A) is a hydrolyzed condensate (polysiloxane), but may have a hydrolyzate that is a precursor thereof.
 式(a1)及び式(a2)中のR、Rはアルコキシ基、アシルオキシ基、又はハロゲン基を示す。 R 1 and R 2 in formula (a1) and formula (a2) represent an alkoxy group, an acyloxy group, or a halogen group.
 アルコキシ基としては炭素原子数1~20の直鎖、分岐又は環状のアルキル部分を有するアルコキシ基が例示され、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペントキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2,-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基、及び1-エチル-2-メチル-n-プロポキシ基等が挙げられる。 Examples of the alkoxy group include an alkoxy group having a linear, branched or cyclic alkyl portion having 1 to 20 carbon atoms, such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group. Group, sec-butoxy group, t-butoxy group, n-pentoxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl- n-propoxy group, 1,2-dimethyl-n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, n-hexyloxy group, 1-methyl-n-pentyloxy Group, 2-methyl-n-pentyloxy group, 3-methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1,1-dimethyl-n-butoxy group Group, 1,2-dimethyl-n-butoxy group, 1,3-dimethyl-n-butoxy group, 2,2-dimethyl-n-butoxy group, 2,3-dimethyl-n-butoxy group, 3,3- Dimethyl-n-butoxy group, 1-ethyl-n-butoxy group, 2-ethyl-n-butoxy group, 1,1,2-trimethyl-n-propoxy group, 1,2,2, -trimethyl-n-propoxy group Group, 1-ethyl-1-methyl-n-propoxy group, 1-ethyl-2-methyl-n-propoxy group and the like.
 アシルオキシ基としては炭素原子数2~20のアシルオキシ基が例示され、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、t-ブチルカルボニルオキシ基、n-ペンチルカルボニルオキシ基、1-メチル-n-ブチルカルボニルオキシ基、2-メチル-n-ブチルカルボニルオキシ基、3-メチル-n-ブチルカルボニルオキシ基、1,1-ジメチル-n-プロピルカルボニルオキシ基、1,2-ジメチル-n-プロピルカルボニルオキシ基、2,2-ジメチル-n-プロピルカルボニルオキシ基、1-エチル-n-プロピルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、1-メチル-n-ペンチルカルボニルオキシ基、2-メチル-n-ペンチルカルボニルオキシ基、3-メチル-n-ペンチルカルボニルオキシ基、4-メチル-n-ペンチルカルボニルオキシ基、1,1-ジメチル-n-ブチルカルボニルオキシ基、1,2-ジメチル-n-ブチルカルボニルオキシ基、1,3-ジメチル-n-ブチルカルボニルオキシ基、2,2-ジメチル-n-ブチルカルボニルオキシ基、2,3-ジメチル-n-ブチルカルボニルオキシ基、3,3-ジメチル-n-ブチルカルボニルオキシ基、1-エチル-n-ブチルカルボニルオキシ基、2-エチル-n-ブチルカルボニルオキシ基、1,1,2-トリメチル-n-プロピルカルボニルオキシ基、1,2,2-トリメチル-n-プロピルカルボニルオキシ基、1-エチル-1-メチル-n-プロピルカルボニルオキシ基、1-エチル-2-メチル-n-プロピルカルボニルオキシ基、フェニルカルボニルオキシ基、及びトシルカルボニルオキシ基等が挙げられるが、これらに限定されるものではない。 Examples of the acyloxy group include acyloxy groups having 2 to 20 carbon atoms, such as methylcarbonyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, isopropylcarbonyloxy group, n-butylcarbonyloxy group, isobutylcarbonyloxy group. Group, sec-butylcarbonyloxy group, t-butylcarbonyloxy group, n-pentylcarbonyloxy group, 1-methyl-n-butylcarbonyloxy group, 2-methyl-n-butylcarbonyloxy group, 3-methyl-n -Butylcarbonyloxy group, 1,1-dimethyl-n-propylcarbonyloxy group, 1,2-dimethyl-n-propylcarbonyloxy group, 2,2-dimethyl-n-propylcarbonyloxy group, 1-ethyl-n -Propylcarbonyloxy group n-hexylcarbonyloxy group, 1-methyl-n-pentylcarbonyloxy group, 2-methyl-n-pentylcarbonyloxy group, 3-methyl-n-pentylcarbonyloxy group, 4-methyl-n-pentylcarbonyloxy group 1,1-dimethyl-n-butylcarbonyloxy group, 1,2-dimethyl-n-butylcarbonyloxy group, 1,3-dimethyl-n-butylcarbonyloxy group, 2,2-dimethyl-n-butylcarbonyl Oxy group, 2,3-dimethyl-n-butylcarbonyloxy group, 3,3-dimethyl-n-butylcarbonyloxy group, 1-ethyl-n-butylcarbonyloxy group, 2-ethyl-n-butylcarbonyloxy group 1,1,2-trimethyl-n-propylcarbonyloxy group, 1,2,2-trimethyl-n- Examples include propylcarbonyloxy group, 1-ethyl-1-methyl-n-propylcarbonyloxy group, 1-ethyl-2-methyl-n-propylcarbonyloxy group, phenylcarbonyloxy group, and tosylcarbonyloxy group. However, it is not limited to these.
 また、加水分解基としてのハロゲン基はフッ素、塩素、臭素、ヨウ素等が挙げられる。 Also, examples of the halogen group as the hydrolyzing group include fluorine, chlorine, bromine, iodine and the like.
 上記の加水分解性シラン(a1)は、例えばテトラメトキシシラン、テトラアセトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラアセトキシシラン、テトラクロルシラン等が挙げられるが、4官能(4つの加水分解性基を有する)のシロキサンモノマーであれば良く、これらに限定されるものではない。これらの中でもテトラメトキシシラン、テトラエトキシシランは好適に使用することができる。加水分解性シランは、市販品を用いることができる。 Examples of the hydrolyzable silane (a1) include tetramethoxysilane, tetraacetoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetraacetoxysilane, and tetrachlorosilane. Examples thereof include, but are not limited to, tetrafunctional (having four hydrolyzable groups) siloxane monomers. Among these, tetramethoxysilane and tetraethoxysilane can be preferably used. A commercially available product can be used as the hydrolyzable silane.
 加水分解性シラン(a2)中のLは炭素原子数3~6の直鎖、分岐又は環状のアルキル基を示す。例えば、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、及び1-エチル-2-メチル-n-プロピル基、シクロプロピル、シクロブチル、シクロペンチル、シクロへキシル基等が挙げられるが、これらに限定されるものではない。 L in the hydrolyzable silane (a2) represents a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms. For example, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group Group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl-n -Butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group, 2,3-dimethyl-n-butyl group, 3, 3-dimethyl-n-butyl group, 1-ethyl-n-butyl 2-ethyl-n-butyl group, 1,1,2-trimethyl-n-propyl group, 1,2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, and Examples thereof include, but are not limited to, 1-ethyl-2-methyl-n-propyl group, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl group and the like.
 上記加水分解性シラン(a2)は、例えばn-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、シクロプロピルトリエトキシシラン、n-ブチルトリエトキシシラン、sec-ブチルトリエトキシシラン、t-ブチルトリエトキシシラン、イソブチルトリエトキシシラン、シクロブチルトリエトキシシラン、n-ペンチルトリエトキシシラン、t-ペンチルトリエトキシシラン、トリエトキシ(ペンタン-2-イル)シラン、トリエトキシ(ペンタン-3-イル)シラン、シクロペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、トリエトキシ(ヘキサン-2-イル)シラン、トリエトキシ(ヘキサン-3-イル)シラン、トリエトキシ(4-メチルペンタン-2-イル)シラン、トリエトキシ(2-メチルペンタン-2-イル)シラン、トリエトキシ(3-メチルペンタン-3-イル)シラン、シクロヘキシルトリメトキシシラン等が挙げられるが、これらに限定されるものではない。 Examples of the hydrolyzable silane (a2) include n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltriethoxysilane, cyclopropyltriethoxysilane, n-butyltriethoxysilane, sec-butyltriethoxysilane, t-butyltriethoxysilane, isobutyltriethoxysilane, cyclobutyltriethoxysilane, n-pentyltriethoxysilane, t-pentyltriethoxysilane, triethoxy (pentan-2-yl) silane, triethoxy (pentan-3-yl) Silane, cyclopentyltrimethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, triethoxy (hexane-2-yl) silane, triethoxy (hexane-3-yl) silane, triethoxy (4-methylpentan-2-yl) silane, triethoxy (2-methylpentan-2-yl) silane, triethoxy (3-methylpentan-3-yl) silane, cyclohexyltrimethoxysilane and the like can be mentioned. It is not limited.
 これらの中でもn-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシランは好適に使用することができる。加水分解性シランは、市販品を用いることができる。 Among these, n-propyltrimethoxysilane, n-propyltriethoxysilane, isobutyltriethoxysilane, and n-hexyltrimethoxysilane can be preferably used. A commercially available product can be used as the hydrolyzable silane.
 式(a1)の加水分解性シラン(a1)と式(a2)の加水分解性シラン(a2)とを含む加水分解性シランを加水分解し縮合しその加水分解縮合物を含む共重合体であるケイ素化合物(A)は、重量平均分子量700乃至4000、又は1000乃至2000の縮合物とすることができる。これらの分子量はGPC分析によるポリスチレン換算で得られる分子量である。重量平均分子量が700未満の場合、ポリマーが低分子量すぎて、均一な膜が得られない。また、重量平均分子量が4000超の場合、ポリマーが高分子量化しすぎて、アルカリ溶液に対して剥離現像となってしまう。 A hydrolyzable silane containing a hydrolyzable silane (a1) of the formula (a1) and a hydrolyzable silane (a2) of the formula (a2) is hydrolyzed and condensed to form a copolymer containing the hydrolyzed condensate. The silicon compound (A) can be a condensate having a weight average molecular weight of 700 to 4000 or 1000 to 2000. These molecular weights are molecular weights obtained in terms of polystyrene by GPC analysis. When the weight average molecular weight is less than 700, the polymer is too low in molecular weight and a uniform film cannot be obtained. On the other hand, when the weight average molecular weight is more than 4000, the polymer becomes too high in molecular weight, resulting in peeling development with respect to the alkaline solution.
 加水分解触媒としての有機酸は、例えば酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等を挙げることができる。 Organic acids as hydrolysis catalysts are, for example, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacin Acid, gallic acid, butyric acid, merit acid, arachidonic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfone Examples include acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citric acid, tartaric acid and the like.
 加水分解触媒としての無機酸は、例えば塩酸、硝酸、硫酸、フッ酸、リン酸等を挙げることができる。 Examples of the inorganic acid as the hydrolysis catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid and the like.
 加水分解触媒としての有機塩基は、例えばピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクタン、ジアザビシクロノナン、ジアザビシクロウンデセン、テトラメチルアンモニウムハイドロオキサイド、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等を挙げることができる。 Organic bases as hydrolysis catalysts include, for example, pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, trimethylamine, triethylamine, monoethanolamine, diethanolamine, dimethylmonoethanolamine, monomethyldiethanolamine, triethanolamine, diazabicyclooctane, diazine. And zabicyclononane, diazabicycloundecene, tetramethylammonium hydroxide, 1,8-diazabicyclo [5,4,0] -7-undecene, and the like.
 無機塩基としては、例えばアンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等を挙げることができる。これら触媒の内、金属キレート化合物、有機酸、無機酸が好ましく、これらは1種あるいは2種以上を同時に使用しても良い。 Examples of the inorganic base include ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like. Of these catalysts, metal chelate compounds, organic acids, and inorganic acids are preferred, and these may be used alone or in combination of two or more.
 加水分解触媒は揮発性の無機酸、例えば塩酸を好適に用いることができる。アルコキシシリル基、アシロキシシリル基、ハロゲン化シリル基の加水分解には、上記加水分解基の1モル当たり、0.1~100モル、0.1~10モル、1~5モル、又は2~3.5モルの水を用いる。 As the hydrolysis catalyst, a volatile inorganic acid such as hydrochloric acid can be suitably used. For hydrolysis of an alkoxysilyl group, an acyloxysilyl group, or a halogenated silyl group, 0.1 to 100 mol, 0.1 to 10 mol, 1 to 5 mol, or 2 to 2 mol per mol of the above hydrolyzable group. Use 3.5 moles of water.
 加水分解と縮合を行う際の反応温度は、通常は20℃(室温)から加水分解に用いられる溶剤の常圧下の還流温度の範囲で行われる。また、加圧下で行うことができ、例えば液温200℃程度まで昇温することができる。 The reaction temperature during the hydrolysis and condensation is usually in the range of 20 ° C. (room temperature) to the reflux temperature under normal pressure of the solvent used for the hydrolysis. Moreover, it can carry out under pressure, for example, can heat up to about 200 degreeC of liquid temperature.
 加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)を得る方法としては、例えば、加水分解性シラン、溶剤、純水及び酸触媒の混合物を加熱する方法が挙げられる。具体的には、あらかじめ溶剤に加水分解性シランを溶解させ、塩酸と純水を加えて塩酸水溶液とした後、これを加水分解性シラン溶液中に滴下し、加熱する方法である。その際、塩酸の量は、加水分解性シランが有する全加水分解基(全アルコキシ基)の1モルに対して0.0001~0.5モルとすることが一般的である。この方法における加熱は、液温50~180℃で行うことができ、好ましくは、液の蒸発、揮散等が起こらないように、例えば、密閉容器中の還流下で数十分から十数時間行われる。 Examples of the method for obtaining the silicon compound (A) containing the hydrolysis condensate (polysiloxane) include a method of heating a mixture of hydrolyzable silane, solvent, pure water and acid catalyst. Specifically, the hydrolyzable silane is dissolved in a solvent in advance, and hydrochloric acid and pure water are added to form an aqueous hydrochloric acid solution, which is then dropped into the hydrolyzable silane solution and heated. At that time, the amount of hydrochloric acid is generally 0.0001 to 0.5 mol with respect to 1 mol of all hydrolyzable groups (total alkoxy groups) of the hydrolyzable silane. The heating in this method can be performed at a liquid temperature of 50 to 180 ° C., and preferably performed for several tens of minutes to several tens of hours under reflux in a sealed container so that the liquid does not evaporate or volatilize. Is called.
 加水分解と縮合に用いられる溶剤(c1)としては、例えばn-ペンタン、イソペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、イソヘプタン、2,2,4-トリメチルペンタン、n-オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンセン、イソプロピルベンセン、ジエチルベンゼン、イソブチルベンゼン、トリエチルベンゼン、ジイソプロピルベンセン、トリメチルベンゼン等の芳香族炭化水素系溶剤;アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤;エチルエーテル、イソプロピルエーテル、n-ブチルエーテル、n-ヘキシルエーテル、2-エチルヘキシルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル系、p-キシレン、o-キシレン、スチレン、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、1-オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、シクロヘキサノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、γ-ブチルラクトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチル-n-ブチルケトン、シクロヘキサノン、酢酸エチル、酢酸イソプロピルケトン、酢酸n-プロピル、酢酸イソブチル、酢酸n-ブチル、メタノール、エタノール、イソプロパノール、tert-ブタノール、アリルアルコール、n-プロパノール、2-メチル-2-ブタノール、イソブタノール、n-ブタノール、2-メチル-1-ブタノール、1-ペンタノール、2-メチル-1-ペンタノール、2-エチルヘキサノール、イソプロピルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、N-シクロヘキシル-2-ピロリジノン等を挙げることができる。これらの溶剤は1種又は2種以上の組み合わせで用いることができる。 Examples of the solvent (c1) used for hydrolysis and condensation include n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, 2,2,4-trimethylpentane, n-octane, isooctane, cyclohexane, Aliphatic hydrocarbon solvents such as methylcyclohexane; aromatics such as benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propyl benzene, isopropyl benzene, diethyl benzene, isobutyl benzene, triethyl benzene, diisopropyl benzene and trimethyl benzene Hydrocarbon solvents: acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, diethyl ketone, methyl isobutyl ketone, methyl n-pentylke Ketone solvents such as ethyl, n-butyl ketone, methyl-n-hexyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone; ethyl ether, isopropyl ether, n-butyl ether, n-hexyl ether, 2-ethylhexyl ether, tetrahydrofuran, Ethers such as 2-methyltetrahydrofuran, p-xylene, o-xylene, styrene, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monoisopropyl ether, ethylene glycol monomethyl ether acetate, propylene glycol Cole monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monoethyl ether , Triethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol, 1-octanol, ethylene glycol, hexylene glycol, trimethylene glycol, 1-methoxy-2-butanol, cyclohexanol, diacetone alcohol , Furfuryl alcohol, tetrahydrofurfuryl alcohol, benzyl alcohol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, γ-butyllactone, acetone, methyl ethyl ketone, methyl isopropyl ketone, diethyl ketone Methyl isobutyl ketone, methyl n-butyl ketone, cyclohexanone, ethyl acetate, isopropyl ketone, n-propyl acetate, isobutyl acetate, n-butyl acetate, methanol, ethanol, isopropanol, tert-butanol, allyl alcohol, n-propanol, 2-methyl-2-butanol, isobutanol, n-butanol, 2-methyl-1-butanol, 1-pentanol, 2-methyl-1-pentanol, 2-ethylhexanol, isopro Ether, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, N-cyclohexyl-2-pyrrolidinone, etc. Can be mentioned. These solvents can be used alone or in combination of two or more.
 加水分解性シランを溶剤(c1)中で加水分解し、その加水分解物を縮合反応することによって加水分解縮合物(ポリシロキサン)が得られ、その縮合物は加水分解溶剤中に溶解しているポリシロキサンワニスとして得られる。 Hydrolyzable silane is hydrolyzed in a solvent (c1), and the hydrolyzate is subjected to a condensation reaction to obtain a hydrolyzed condensate (polysiloxane), which is dissolved in the hydrolyzing solvent. Obtained as a polysiloxane varnish.
 上記加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスの希釈や置換等に用いる溶剤(C)は、加水分解性シランの加水分解と縮重合に用いた溶媒(c1)と同じでも良いし別の溶剤でも良い。そして加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニス中の溶剤は、上記溶剤(C)とすることができる。 The solvent (C) used for diluting or replacing the varnish of the silicon compound (A) containing the hydrolysis condensate (polysiloxane) is the same as the solvent (c1) used for hydrolysis and condensation polymerization of the hydrolyzable silane. However, another solvent may be used. And the solvent in the varnish of the silicon compound (A) containing a hydrolysis-condensation product (polysiloxane) can be said solvent (C).
 ケイ素化合物(A)のワニスとして用いる場合に、ワニス中でのケイ素化合物(A)の濃度は0.1~60質量%の範囲で用いることができる。 When used as the varnish of the silicon compound (A), the concentration of the silicon compound (A) in the varnish can be used in the range of 0.1 to 60% by mass.
 本発明の(C)成分は溶剤である。溶剤は(A)成分を得た溶剤と同様の溶剤が好ましいが、本発明の膜形成用塗布液の保存安定性を著しく損ねなければ特に限定されない。上述した、一般的な有機溶剤を用いることができる。 The component (C) of the present invention is a solvent. The solvent is preferably the same solvent as the solvent from which component (A) was obtained, but is not particularly limited as long as the storage stability of the film-forming coating solution of the present invention is not significantly impaired. The general organic solvent mentioned above can be used.
 加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)と、平均粒子径が1乃至100nmの無機粒子(B)との相溶性の観点から、溶剤(C)はより好ましくは、ブタノール、ジアセトンアルコール、メチルエチルケトン、メチルイソブチルケトン、へキシレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノブチルエーテル、シクロヘキサノン、酢酸メチルエステル、酢酸エチルエステル、乳酸エチルエステル等が挙げられる。 From the viewpoint of compatibility between the silicon compound (A) containing the hydrolysis condensate (polysiloxane) and the inorganic particles (B) having an average particle diameter of 1 to 100 nm, the solvent (C) is more preferably butanol, di- Acetone alcohol, methyl ethyl ketone, methyl isobutyl ketone, hexylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, Examples include propylene glycol monobutyl ether, cyclohexanone, acetic acid methyl ester, acetic acid ethyl ester, and lactate ethyl ester.
 本発明ではケイ素化合物(A)が加水分解性シランを非アルコール溶剤中で加水分解し縮合して得られるものを用いることができる。 In the present invention, the silicon compound (A) obtained by hydrolyzing and condensing a hydrolyzable silane in a non-alcohol solvent can be used.
 本発明の加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)はヒドロキシ基を含まない非アルコールを加水分解及び重縮合時の溶剤に用いて得られ、本明細書中では完全加水分解型のポリシロキサンと呼称し、加水分解率の高いポリシロキサンである。一方、ヒドロキシ基を含むアルコールを加水分解又は重縮合時の溶剤に用いて得られたポリマーは部分加水分解型のポリシロキサンと呼称し区別する。完全加水分解型と部分加水分解型とは、ポリマー末端のシラノール(Si-OH)の存在量が異なることが大きな違いであり、完全加水分解型のポリシロキサンはSi-OHが部分加水分解型のポリシロキサンよりも多く存在している。Si-OHの存在量は、非アルコール溶剤に置換したワニスを用いて、固形分量を同一とし、H-NMRで定量すれば良い。定量はポリシロキサンのSi-OHのピークを積分してピーク面積を算出したプロトン数と内標若しくは溶媒のピークを積分してピーク面積を算出したプロトン数を比較することで決定できる。 The silicon compound (A) containing the hydrolyzed condensate (polysiloxane) of the present invention is obtained by using a non-alcohol containing no hydroxy group as a solvent for hydrolysis and polycondensation. This is a polysiloxane having a high hydrolysis rate. On the other hand, a polymer obtained by using an alcohol containing a hydroxy group as a solvent for hydrolysis or polycondensation is called a partially hydrolyzed polysiloxane to be distinguished. The major difference between the fully hydrolyzed type and the partially hydrolyzed type is that the abundance of silanol (Si—OH) at the end of the polymer is different. The fully hydrolyzed polysiloxane has a partially hydrolyzed type of polysiloxane. There are more than polysiloxanes. The abundance of Si—OH may be quantified by 1 H-NMR with the same solid content using a varnish substituted with a non-alcohol solvent. The quantification can be determined by comparing the number of protons obtained by integrating the Si-OH peak of polysiloxane and calculating the peak area with the number of protons obtained by integrating the peak of the internal standard or the solvent and calculating the peak area.
 内標若しくは溶媒のピークから算出されたプロトン数を1.00としたときに完全加水分解型のポリシロキサンのSi-OHの算出したプロトン数は0.1以上、好ましくは0.2以上である。一方、部分加水分解型のポリシロキサンは内標若しくは溶媒のピークから算出されたプロトン数を1.00としたときに、ポリシロキサンのSi-OHの算出したプロトン数は0.1未満として定義する。 When the proton number calculated from the internal standard or the peak of the solvent is 1.00, the calculated proton number of the fully hydrolyzed polysiloxane Si—OH is 0.1 or more, preferably 0.2 or more. . On the other hand, the partially hydrolyzed polysiloxane is defined as the number of protons calculated by the Si—OH of the polysiloxane being less than 0.1 when the number of protons calculated from the internal standard or the peak of the solvent is 1.00. .
 加水分解と縮合に用いられる非アルコール溶剤(c1)としては、例えばn-ペンタン、イソペンタン、n-ヘキサン、イソヘキサン、n-ヘプタン、イソヘプタン、2,2,4-トリメチルペンタン、n-オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、メチルエチルベンゼン、n-プロピルベンセン、イソプロピルベンセン、ジエチルベンゼン、イソブチルベンゼン、トリエチルベンゼン、ジイソプロピルベンセン、トリメチルベンゼン等の芳香族炭化水素系溶剤;アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤;エチルエーテル、イソプロピルエーテル、n-ブチルエーテル、n-ヘキシルエーテル、2-エチルヘキシルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル系溶剤等を挙げることができる。これらの溶剤は1種又は2種以上の組み合わせで用いることができる。中でもアセトン等のケトン系溶剤、テトラヒドロフラン等のエーテル系溶剤が好ましく、特にアセトンを好適に用いることができる。 Examples of the non-alcohol solvent (c1) used for hydrolysis and condensation include n-pentane, isopentane, n-hexane, isohexane, n-heptane, isoheptane, 2,2,4-trimethylpentane, n-octane, isooctane, Aliphatic hydrocarbon solvents such as cyclohexane and methylcyclohexane; benzene, toluene, xylene, ethylbenzene, trimethylbenzene, methylethylbenzene, n-propylbenzene, isopropylbenzene, diethylbenzene, isobutylbenzene, triethylbenzene, diisopropylbenzene, trimethylbenzene, etc. Aromatic hydrocarbon solvents; acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl isobutyl ketone, methyl-n Ketone solvents such as pentyl ketone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, diisobutyl ketone, cyclohexanone, methylcyclohexanone; ethyl ether, isopropyl ether, n-butyl ether, n-hexyl ether, 2-ethylhexyl ether, tetrahydrofuran And ether solvents such as 2-methyltetrahydrofuran. These solvents can be used alone or in combination of two or more. Of these, ketone solvents such as acetone and ether solvents such as tetrahydrofuran are preferable, and acetone can be particularly preferably used.
 加水分解性シランを非アルコール溶剤(c1)中で加水分解し、その加水分解物を縮合反応することによって加水分解縮合物(ポリシロキサン)が得られ、その縮合物は加水分解溶剤中に溶解しているポリシロキサンワニスとして得られる。 Hydrolyzable silane is hydrolyzed in a non-alcohol solvent (c1), and the hydrolyzate is subjected to a condensation reaction to obtain a hydrolyzate condensate (polysiloxane), which is dissolved in the hydrolyzate. It is obtained as a polysiloxane varnish.
 得られた加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)の溶剤は置換しても良い。具体的には、加水分解とこれに続く縮合の際に用いる溶剤(合成時溶剤)にアセトンを選択した場合、アセトン中でポリシロキサンが得られた後にその合成の際の溶剤と同量の置換用溶剤を加えて他の溶剤に置き換える時に、エバポレーターなどで共沸させアセトンを留去しても良い。その時に、加水分解性シランの加水分解によって生じた反応物(例えばメタノール、エタノール)を同時に留去することができる。また、揮発性の酸触媒を用いた場合には同時に除去できる。 The solvent of the silicon compound (A) containing the obtained hydrolysis condensate (polysiloxane) may be substituted. Specifically, when acetone is selected as the solvent used during hydrolysis and subsequent condensation (solvent during synthesis), after the polysiloxane is obtained in acetone, the same amount of substitution as the solvent used in the synthesis is performed. When the solvent is added and replaced with another solvent, acetone may be distilled off by azeotropic distillation with an evaporator or the like. At that time, reactants (for example, methanol, ethanol) generated by hydrolysis of the hydrolyzable silane can be distilled off simultaneously. Further, when a volatile acid catalyst is used, it can be removed at the same time.
 この置換用溶剤は加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)をワニスにする時の溶剤成分(C)になる。 This replacement solvent becomes a solvent component (C) when the silicon compound (A) containing the hydrolysis condensate (polysiloxane) is used as a varnish.
 溶剤置換の際の合成時溶剤は共沸して留去するため置換用溶剤よりも沸点が低いことが好ましい。例えば、加水分解とこれに続く縮合の際に用いる溶剤はアセトン、テトラヒドロフラン等が挙げられ、置換用溶剤はプロピレングリコールモノメチルエーテルアセテート等が挙げられる。 Since the solvent during synthesis at the time of solvent substitution is azeotropically distilled off, the boiling point is preferably lower than that of the substitution solvent. For example, examples of the solvent used for hydrolysis and subsequent condensation include acetone and tetrahydrofuran, and examples of the solvent for substitution include propylene glycol monomethyl ether acetate.
 上記加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスの希釈や置換等に用いる溶剤(C)は、加水分解性シランの加水分解と縮重合に用いた非アルコール溶媒と同じでも良いし別の溶剤でも良い。そして加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニス中の溶剤は、上記溶剤(C)とすることができる。 The solvent (C) used for diluting or replacing the varnish of the silicon compound (A) containing the hydrolysis condensate (polysiloxane) may be the same as the non-alcohol solvent used for hydrolysis and condensation polymerization of the hydrolyzable silane. Good or another solvent may be used. And the solvent in the varnish of the silicon compound (A) containing a hydrolysis-condensation product (polysiloxane) can be said solvent (C).
 ケイ素化合物(A)のワニスとして用いる場合に、ワニス中でのケイ素化合物(A)の濃度は0.1~60質量%の範囲で用いることができる。 When used as the varnish of the silicon compound (A), the concentration of the silicon compound (A) in the varnish can be used in the range of 0.1 to 60% by mass.
 この時の溶剤(C)の具体例としては、トルエン、p-キシレン、o-キシレン、スチレン、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコール、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコール、1-オクタノール、エチレングリコール、ヘキシレングリコール、トリメチレングリコール、1-メトキシ-2-ブタノール、シクロヘキサノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、γ-ブチルラクトン、アセトン、メチルエチルケトン、メチルイソプロピルケトン、ジエチルケトン、メチルイソブチルケトン、メチル-n-ブチルケトン、シクロヘキサノン、酢酸エチル、酢酸イソプロピルケトン、酢酸n-プロピル、酢酸イソブチル、酢酸n-ブチル、メタノール、エタノール、イソプロパノール、tert-ブタノール、アリルアルコール、n-プロパノール、2-メチル-2-ブタノール、イソブタノール、n-ブタノール、2-メチル-1-ブタノール、1-ペンタノール、2-メチル-1-ペンタノール、2-エチルヘキサノール、イソプロピルエーテル、1,4-ジオキサン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、N-シクロヘキシル-2-ピロリジノンが挙げられる。 Specific examples of the solvent (C) at this time include toluene, p-xylene, o-xylene, styrene, ethylene glycol dimethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol, propylene glycol monoethyl ether, ethylene glycol. Monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol dimethyl ether, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, dipropylene glycol Nomethyl ether, diethylene glycol monomethyl ether, dipropylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol, 1-octanol, ethylene glycol, hexylene glycol, trimethylene glycol, 1- Methoxy-2-butanol, cyclohexanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, benzyl alcohol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, γ-butyllactone , Acetone, methyl ethyl ketone, methyl isopropyl ketone, diethyl ketone, methyl isobutyl ketone T-methyl-n-butyl ketone, cyclohexanone, ethyl acetate, isopropyl acetate, n-propyl acetate, isobutyl acetate, n-butyl acetate, methanol, ethanol, isopropanol, tert-butanol, allyl alcohol, n-propanol, 2-methyl -2-butanol, isobutanol, n-butanol, 2-methyl-1-butanol, 1-pentanol, 2-methyl-1-pentanol, 2-ethylhexanol, isopropyl ether, 1,4-dioxane, N, Examples thereof include N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide and N-cyclohexyl-2-pyrrolidinone.
 本発明の(C)成分は溶剤である。溶剤は(A)成分を得た溶剤と同様の非アルコール溶剤が好ましいが、本発明の膜形成用塗布液の保存安定性を著しく損ねなければ特に限定されない。上述した、一般的な有機溶剤を用いることができる。 The component (C) of the present invention is a solvent. The solvent is preferably a non-alcohol solvent similar to the solvent from which component (A) was obtained, but is not particularly limited as long as the storage stability of the coating solution for film formation of the present invention is not significantly impaired. The general organic solvent mentioned above can be used.
 加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)と、平均粒子径が1乃至100nmの無機粒子(B)との相溶性の観点から、溶剤(C)はより好ましくは、ブタノール、ジアセトンアルコール、メチルエチルケトン、メチルイソブチルケトン、へキシレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノブチルエーテル、シクロヘキサノン、酢酸メチルエステル、酢酸エチルエステル、乳酸エチルエステル等が挙げられる。 From the viewpoint of compatibility between the silicon compound (A) containing the hydrolysis condensate (polysiloxane) and the inorganic particles (B) having an average particle diameter of 1 to 100 nm, the solvent (C) is more preferably butanol, di- Acetone alcohol, methyl ethyl ketone, methyl isobutyl ketone, hexylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, Examples include propylene glycol monobutyl ether, cyclohexanone, acetic acid methyl ester, acetic acid ethyl ester, and lactate ethyl ester.
 本発明の加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランの加水分解縮合物であるケイ素化合物(A)は、加水分解性シラン(a2)が炭素原子数3~6の直鎖、分岐又は環状のアルキル基を有し、3つの加水分解性基を有する加水分解性シランであり、加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%の割合で縮合物を製造し、重量平均分子量を700乃至4000とすることができる。それにより、ケイ素化合物(A)と無機粒子(B)と溶剤(C)とを含む組成物から得られる膜は、アルカリ溶液に対して、溶解現像性を有しているため感光性レジストを用いて10μm以下のパターニングが可能であり、高屈折率、高耐光性、感光性レジストのインターミキシング防止を同時に満たすことができる。 The silicon compound (A) which is a hydrolysis condensate of a hydrolyzable silane containing the hydrolyzable silane (a1) and the hydrolyzable silane (a2) of the present invention has a hydrolyzable silane (a2) having the number of carbon atoms. A hydrolyzable silane having 3 to 6 linear, branched or cyclic alkyl groups and having three hydrolyzable groups, the hydrolyzable silane (a1) being 90 to 50 mol%, The condensate can be produced at a ratio of 10 mol% to 50 mol% of the hydrolyzable silane (a2), and the weight average molecular weight can be 700 to 4000. As a result, a film obtained from the composition containing the silicon compound (A), the inorganic particles (B), and the solvent (C) has a dissolution developability with respect to an alkaline solution, and therefore a photosensitive resist is used. Therefore, patterning of 10 μm or less is possible, and high refractive index, high light resistance, and prevention of intermixing of a photosensitive resist can be satisfied at the same time.
 ケイ素化合物(A)の重量平均分子量を規定し、加水分解性シラン(a1)と加水分解性シラン(a2)との加水分解縮合物中の共重合比率を規定することで、協和界面科学(株)製 の全自動接触角計、商品名 Drop Masterシリーズ DM700を用いて、純水をサイズが22Gの針から液滴を作製し、被膜表面に着液した液滴を液滴法(θ/2法)で算出した水の接触角が60°乃至80°となり、アルカリ溶液に対して溶解現像となる。 By defining the weight average molecular weight of the silicon compound (A) and the copolymerization ratio in the hydrolyzable condensate of hydrolyzable silane (a1) and hydrolyzable silane (a2), Kyowa Interface Science Co., Ltd. ) Using a fully automatic contact angle meter manufactured by Seikan Co., Ltd., a product name “Drop” Master series “DM700”, droplets were made from pure water with a 22G size needle, and the droplets deposited on the coating surface were subjected to the droplet method (θ / 2). The contact angle of water calculated by (Method) is 60 ° to 80 °, and dissolution development is performed with respect to the alkaline solution.
 水接触角はアルカリ溶液に対する溶解現像性と直接的に関わる重要な膜物性であり、被膜の水接触角が60°未満であると剥離現像となり、80°超であるとアルカリ溶液をはじいて、現像性を発現しなくなる。水接触角が60°未満の場合、シラノールが多く親水性が比較的高いため、膜中にアルカリ溶液が浸透しやすくなる。アルカリ溶液が浸透した場合、被膜に内在するケイ素化合物のシラノールが塩基と直接接することで溶解する前に重縮合が開始し、高分子量化が進行してしまう。高分子量化が進行することで、溶解現像とならずに剥離現像となってしまう。また、水接触角は80°超の場合、被膜表面の疎水性が高まることでアルカリ溶液をはじいてしまい、現像自体ができなくなり、パターンを形成することができなくなる。 The water contact angle is an important film physical property that is directly related to dissolution and developability in an alkaline solution. When the water contact angle of the coating is less than 60 °, peeling development occurs, and when it exceeds 80 °, the alkaline solution is repelled. It will not develop developability. When the water contact angle is less than 60 °, the amount of silanol is large and the hydrophilicity is relatively high, so that the alkaline solution easily penetrates into the film. When the alkali solution permeates, polycondensation starts before the silanol of the silicon compound existing in the coating comes into direct contact with the base and dissolves, and the molecular weight increases. As the increase in the molecular weight proceeds, peeling development occurs instead of dissolution development. On the other hand, when the water contact angle is more than 80 °, the hydrophobicity of the coating surface increases, so that the alkaline solution is repelled, development itself cannot be performed, and a pattern cannot be formed.
 被膜の水の接触角が60°乃至80°となるように、重量平均分子量、共重合比率、粒子(B)との混合比、仮加熱温度条件をコントロールすることでアルカリ溶液に対する最適な溶解現像性を発現することが初めて可能となる。 Optimum dissolution and development in an alkali solution by controlling the weight average molecular weight, copolymerization ratio, mixing ratio with particles (B), and preheating temperature conditions so that the water contact angle of the coating is 60 ° to 80 °. It becomes possible for the first time to express sex.
 本発明に用いられる無機粒子(B)成分は1乃至100nmの平均粒子径を有する無機粒子(B)であり、上記無機粒子(B)の屈折率は1.50乃至2.70、1.50乃至1.70、1.60乃至2.00、1.90乃至2.20、又は2.20乃至2.70の範囲を選択することができる。 The inorganic particle (B) component used in the present invention is an inorganic particle (B) having an average particle diameter of 1 to 100 nm, and the refractive index of the inorganic particle (B) is 1.50 to 2.70, 1.50. A range from 1 to 1.70, 1.60 to 2.00, 1.90 to 2.20, or 2.20 to 2.70 can be selected.
 上述したポリシロキサンと共に本発明の組成物を構成する無機粒子(B)の種類としては、ジルコニア等の金属酸化物が挙げられる。なお、無機粒子はジルコニアを単独で用いても、2種以上組み合わせて用いてもよい。 As the kind of inorganic particles (B) constituting the composition of the present invention together with the polysiloxane described above, metal oxides such as zirconia can be mentioned. The inorganic particles may be zirconia alone or in combination of two or more.
 金属酸化物の具体例としては、ジルコニア以外にジルコニアにSiO、HfOを含んだ複合酸化物などが挙げられる。複合酸化物とは、粒子の製造段階で2種以上の無機酸化物を混合させたものである。 Specific examples of the metal oxide include composite oxides containing SiO 2 and HfO 2 in zirconia in addition to zirconia. The composite oxide is a mixture of two or more inorganic oxides in the particle production stage.
 さらに、これらの化合物は、単独でまたは2種以上を混合して用いることができ、上記の酸化物と混合して用いてもよい。 Furthermore, these compounds can be used alone or in admixture of two or more, and may be used in admixture with the above oxides.
 本発明に用いられる無機粒子(B)成分は動的光散乱法による平均粒子径が1乃至100nm、5乃至50nm、又は1乃至10nmの無機粒子を用いることができる。上記粒子径については平均粒子径の異なる粒子を混合して用いても良い。 As the inorganic particle (B) component used in the present invention, inorganic particles having an average particle diameter of 1 to 100 nm, 5 to 50 nm, or 1 to 10 nm by a dynamic light scattering method can be used. As for the particle size, particles having different average particle sizes may be mixed and used.
 また、上記無機粒子(B)を用いる際には、粒子をそのまま用いてもよく、粒子を水または有機溶媒に予め分散させたコロイド状態のもの(コロイド粒子を分散媒に分散したもの。即ち、ゾル)を用いてもよい。ゾル中での無機粒子の濃度は0.1~60質量%の範囲で用いることができる。 Moreover, when using the said inorganic particle (B), you may use particle | grains as it is, the thing of the colloid state (The colloid particle was disperse | distributed to the dispersion medium) which dispersed the particle | grains beforehand in water or the organic solvent. Sol) may be used. The concentration of the inorganic particles in the sol can be used in the range of 0.1 to 60% by mass.
 水性媒体に無機粒子を分散した水ゾルの分散媒を、水から有機溶媒に置換した有機溶媒ゾルを用いることができる。この分散媒(c2)は、加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスの希釈や置換等に用いる溶剤(C)と合体して本発明に用いられる溶剤(C)とすることができる。 An organic solvent sol in which a dispersion medium of a water sol in which inorganic particles are dispersed in an aqueous medium is replaced with an organic solvent from water can be used. This dispersion medium (c2) is combined with the solvent (C) used in the present invention in combination with the solvent (C) used for diluting or replacing the varnish of the silicon compound (A) containing the hydrolysis condensate (polysiloxane). can do.
 従って、分散媒(c2)は上記溶剤(C)と同じものを用いることができる。さらに、無機粒子(B)を、酸化ケイ素、有機ケイ素化合物、有機金属化合物などにより処理した粒子を用いてもよい。なお、酸化ケイ素による処理とは、無機粒子(B)を含む分散体中で粒子表面に、酸化ケイ素粒子を公知の方法で成長させるものである。有機ケイ素化合物、有機金属化合物による処理とは、無機粒子(B)を含む分散体中に、これらの化合物を添加し、無機粒子の表面にこれらの化合物、又はこれらの化合物の反応生成物を吸着又は結合させるものである。 Therefore, the same dispersion medium (c2) as the solvent (C) can be used. Furthermore, particles obtained by treating the inorganic particles (B) with silicon oxide, an organosilicon compound, an organometallic compound, or the like may be used. The treatment with silicon oxide is to grow silicon oxide particles on the particle surface in a dispersion containing inorganic particles (B) by a known method. Treatment with an organosilicon compound or an organometallic compound means that these compounds are added to a dispersion containing inorganic particles (B), and these compounds or reaction products of these compounds are adsorbed on the surfaces of the inorganic particles. Or they are to be combined.
 上記有機ケイ素化合物としては、シランカップリング剤やシランが挙げられ、シランカップリング剤の具体例としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。 Examples of the organosilicon compound include silane coupling agents and silanes. Specific examples of the silane coupling agent include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl). ) Ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethylditriethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyl Dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- ( Minoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltriethoxysilane, 3-amino Propyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, 3-chloropropyltri Examples include methoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, and 3-isocyanatopropyltriethoxysilane.
 また、シランの具体例としては、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシランフェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン等が挙げられる。 Specific examples of silane include methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane phenyltriethoxy. Examples thereof include silane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, decyltrimethoxysilane, trifluoropropyltrimethoxysilane, and hexamethyldisilazane.
 上記有機金属化合物としては、チタネート系カップリング剤やアルミニウム系カップリング剤が挙げられ、チタネート系カップリング剤の具体例としては、商品名プレンアクト KR TTS、KR46B、KR38B、KR138S、KR238S、KR338X、KR44、KR9SA、KR ET5、KR ET(味の素ファインテクノ(株)製)、アルミニウム系カップリング剤の具体例としては、プレンアクトAL-M(味の素ファインテクノ(株)製)等が挙げられる。 Examples of the organometallic compound include titanate coupling agents and aluminum coupling agents, and specific examples of titanate coupling agents include trade names of Plenact KR TTS, KR46B, KR38B, KR138S, KR238S, KR338X, and KR44. , KR9SA, KR ET5, KR ET (manufactured by Ajinomoto Fine Techno Co., Ltd.), and specific examples of aluminum coupling agents include Plenact AL-M (manufactured by Ajinomoto Fine Techno Co., Ltd.) and the like.
 これら有機ケイ素化合物、有機金属化合物の使用量は、上記無機粒子(B)100質量部に対して2~100質量部が好ましい。 These organic silicon compounds and organometallic compounds are preferably used in an amount of 2 to 100 parts by mass with respect to 100 parts by mass of the inorganic particles (B).
 無機粒子(B)に用いられる金属酸化物コロイド粒子は、公知の方法、例えば、イオン交換法、解こう法、加水分解法、反応法により製造することができる。 The metal oxide colloidal particles used for the inorganic particles (B) can be produced by a known method, for example, an ion exchange method, a peptization method, a hydrolysis method, or a reaction method.
 イオン交換法としては、例えば、上記金属の塩をイオン交換樹脂で処理し、対イオンを除去して粒子を生成する方法が挙げられる。 Examples of the ion exchange method include a method in which the metal salt is treated with an ion exchange resin to remove counter ions and generate particles.
 解こう法としては、上記金属の塩を酸若しくは塩基で中和する方法、上記金属のアルコキシドを加水分解する方法、上記金属の塩基性塩を加熱下で加水分解して得られた沈殿物若しくはゲルから不要の電解質を除去する方法、又は分散に必要なイオンを添加する方法などが挙げられる。反応法の例としては、上記金属の粉末と酸とを反応させる方法等が挙げられる。 Peptides include a method of neutralizing the metal salt with an acid or base, a method of hydrolyzing the metal alkoxide, a precipitate obtained by hydrolyzing the metal basic salt under heating, or Examples thereof include a method of removing unnecessary electrolyte from the gel or a method of adding ions necessary for dispersion. Examples of the reaction method include a method of reacting the metal powder with an acid.
 本発明の(被)膜形成組成物(1)を調製する方法は特に限定されない。(A)成分、(B)成分及び(C)成分が均一に混合した状態であれば良い。成分(A)乃至成分(C)を混合する際の順序は均一なワニスが得られれば問題なく、特に限定されない。 The method for preparing the film forming composition (1) of the present invention is not particularly limited. It suffices if the (A) component, (B) component, and (C) component are uniformly mixed. The order of mixing components (A) to (C) is not particularly limited as long as a uniform varnish can be obtained.
 例えば、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルを混合し、ケイ素化合物(A)と無機粒子(B)と溶剤(C)とを含む膜形成組成物を得る工程、を含む膜形成組成物(1)の製造方法が挙げられる。
For example, a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a solvent (c1), and a varnish of a silicon compound (A) having a weight average molecular weight of 700 to 4000 is obtained. Obtaining step,
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
Forming a film comprising: mixing a varnish of a silicon compound (A) and a sol of inorganic particles (B) to obtain a film-forming composition containing the silicon compound (A), inorganic particles (B), and a solvent (C) The manufacturing method of a composition (1) is mentioned.
 本発明の(被)膜形成組成物(2)を調製する方法は特に限定されない。(A)成分、(B)成分、(C)成分及び(D)成分が均一に混合した状態であれば良い。成分(A)乃至成分(D)を混合する際の順序は均一なワニスが得られれば問題なく、特に限定されない。 The method for preparing the film forming composition (2) of the present invention is not particularly limited. It suffices if the (A) component, (B) component, (C) component, and (D) component are uniformly mixed. The order of mixing components (A) to (D) is not particularly limited as long as a uniform varnish can be obtained.
 例えば、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルと硬化触媒(D)とを混合し、ケイ素化合物(A)と無機粒子(B)と硬化触媒(D)と溶剤(C)とを含む膜形成組成物を得る工程、を含む膜形成組成物(2)の製造方法が挙げられる。
For example, a hydrolyzable silane containing a hydrolyzable silane (a1) and a hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000. Obtaining a varnish,
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
The varnish of the silicon compound (A), the sol of the inorganic particles (B), and the curing catalyst (D) are mixed, and the silicon compound (A), the inorganic particles (B), the curing catalyst (D), and the solvent (C) are mixed. The manufacturing method of the film forming composition (2) including the process of obtaining the film forming composition containing is mentioned.
 本発明の(被)膜形成組成物(3)を調製する方法は特に限定されない。(A)成分、(B)成分、(C)成分及び(E)成分が均一に混合した状態であれば良い。成分(A)、成分(B)、成分(C)、成分(E)を混合する際の順序は均一なワニスが得られれば問題なく、特に限定されない。 The method for preparing the film forming composition (3) of the present invention is not particularly limited. The component (A), the component (B), the component (C), and the component (E) may be in a uniformly mixed state. The order of mixing the component (A), the component (B), the component (C), and the component (E) is not particularly limited as long as a uniform varnish can be obtained.
 例えば、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルとジケトン化合物(E)とを混合し、ケイ素化合物(A)と無機粒子(B)とジケトン化合物(E)と溶剤(C)とを含む膜形成組成物を得る工程、を含む膜形成組成物(3)の製造方法が挙げられる。
For example, a hydrolyzable silane containing a hydrolyzable silane (a1) and a hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000. Obtaining a varnish,
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
The varnish of the silicon compound (A), the sol of the inorganic particles (B), and the diketone compound (E) are mixed, and the silicon compound (A), the inorganic particles (B), the diketone compound (E), and the solvent (C) are mixed. The manufacturing method of the film formation composition (3) including the process of obtaining the film formation composition containing is mentioned.
 本発明の(被)膜形成組成物(4)を調製する方法は特に限定されない。(A)成分、(B)成分、(C)成分、(D)成分、(F)成分及び(G)成分が均一に混合した状態であれば良い。成分(A)、成分(B)、成分(C)、成分(D)、成分(F)、成分(G)を混合する際の順序は均一なワニスが得られれば問題なく、特に限定されない。 The method for preparing the film forming composition (4) of the present invention is not particularly limited. The component (A), the component (B), the component (C), the component (D), the component (F), and the component (G) may be in a uniformly mixed state. The order of mixing component (A), component (B), component (C), component (D), component (F), and component (G) is not particularly limited as long as a uniform varnish can be obtained.
 例えば、加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
ケイ素化合物(A)のワニスと無機粒子(B)のゾルと硬化触媒(D)と水(F)と酸(G)を混合し、ケイ素化合物(A)と無機粒子(B)と硬化触媒(D)と水(F)と酸(G)と溶剤(C)とを含む膜形成組成物を得る工程、を含む膜形成組成物(4)の製造方法が挙げられる。
For example, a hydrolyzable silane containing a hydrolyzable silane (a1) and a hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a silicon compound (A) having a weight average molecular weight of 700 to 4000. Obtaining a varnish,
A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
The varnish of the silicon compound (A), the sol of the inorganic particles (B), the curing catalyst (D), water (F), and the acid (G) are mixed, and the silicon compound (A), the inorganic particles (B), and the curing catalyst ( A method for producing a film-forming composition (4) including a step of obtaining a film-forming composition containing D), water (F), an acid (G), and a solvent (C).
 成分(D)の硬化触媒としては、アンモニウム塩、ホスフィン類、ホスホニウム塩、スルホニウム塩、又は金属キレート化合物を用いることができる。 As the curing catalyst for component (D), ammonium salts, phosphines, phosphonium salts, sulfonium salts, or metal chelate compounds can be used.
 アンモニウム塩としては、式(5):
Figure JPOXMLDOC01-appb-C000005
(式中、pは2~11、qは2~3の整数を示し、R11はアルキル基、アリール基、又はそれらの組み合わせを示し、Yは陰イオンを示す。)で示される構造を有する、式(6):
Figure JPOXMLDOC01-appb-C000006
(式中、R12、R13、R14及びR15はアルキル基、アリール基、又はそれらの組み合わせを示し、Nは窒素原子を示し、Yは陰イオンを示し、且つR12、R13、R14及びR15はそれぞれC-N結合により窒素原子と結合されているものである。)で示される構造を有する第4級アンモニウム塩、式(7):
Figure JPOXMLDOC01-appb-C000007
(式中、R16及びR17はアルキル基、アリール基、又はそれらの組み合わせを示し、Yは陰イオンを示す。)の構造を有する第4級アンモニウム塩、式(8):
Figure JPOXMLDOC01-appb-C000008
(式中、R18はアルキル基、アリール基、又はそれらの組み合わせを示し、Yは陰イオンを示す。)の構造を有する第4級アンモニウム塩、式(9):
Figure JPOXMLDOC01-appb-C000009
(式中、R19及びR20はアルキル基、アリール基、又はそれらの組み合わせを示し、Yは陰イオンを示す。)の構造を有する第4級アンモニウム塩、式(10):
Figure JPOXMLDOC01-appb-C000010
(式中、pは2~11、qは2~3の整数を示し、Hは水素原子を示し、Yは陰イオンを示す。)の構造を有する第3級アンモニウム塩が挙げられる。
As an ammonium salt, the formula (5):
Figure JPOXMLDOC01-appb-C000005
(Wherein p represents an integer of 2 to 11, q represents an integer of 2 to 3, R 11 represents an alkyl group, an aryl group, or a combination thereof, and Y represents an anion.) Having formula (6):
Figure JPOXMLDOC01-appb-C000006
(Wherein R 12 , R 13 , R 14 and R 15 represent an alkyl group, an aryl group, or a combination thereof, N represents a nitrogen atom, Y represents an anion, and R 12 , R 13) , R 14 and R 15 are each bonded to a nitrogen atom by a C—N bond.) A quaternary ammonium salt having the structure represented by formula (7):
Figure JPOXMLDOC01-appb-C000007
A quaternary ammonium salt having the structure (wherein R 16 and R 17 represent an alkyl group, an aryl group, or a combination thereof, and Y represents an anion):
Figure JPOXMLDOC01-appb-C000008
A quaternary ammonium salt having the structure (wherein R 18 represents an alkyl group, an aryl group, or a combination thereof; Y represents an anion):
Figure JPOXMLDOC01-appb-C000009
(Wherein, R 19 and R 20 an alkyl group, an aryl group, or a combination thereof,, Y - represents an anion.) A quaternary ammonium salt of formula (10) having the structure:
Figure JPOXMLDOC01-appb-C000010
And tertiary ammonium salts having the structure (wherein p represents an integer of 2 to 11, q represents an integer of 2 to 3, H represents a hydrogen atom, and Y represents an anion).
 また、ホスホニウム塩としては、式(11):
Figure JPOXMLDOC01-appb-C000011
(式中、R21、R22、R23、及びR24はアルキル基、アリール基、又はそれらの組み合わせを示し、Pはリン原子を示し、Yは陰イオンを示し、且つR21、R22、R23、及びR24はそれぞれC-P結合によりリン原子と結合されているものである。)で示される第4級ホスホニウム塩が挙げられる。
Moreover, as a phosphonium salt, Formula (11):
Figure JPOXMLDOC01-appb-C000011
(Wherein R 21 , R 22 , R 23 , and R 24 represent an alkyl group, an aryl group, or a combination thereof, P represents a phosphorus atom, Y represents an anion, and R 21 , R 22 , R 23 , and R 24 are each bonded to a phosphorus atom by a CP bond.).
 また、スルホニウム塩としては、式(12):
Figure JPOXMLDOC01-appb-C000012
(式中、R25、R26、及びR27はアルキル基、アリール基、又はそれらの組み合わせを示し、Sは硫黄原子を示し、Yは陰イオンを示し、且つR25、R26、及びR27はそれぞれC-S結合により硫黄原子と結合されているものである。)で示される第3級スルホニウム塩が挙げられる。
Further, as the sulfonium salt, the formula (12):
Figure JPOXMLDOC01-appb-C000012
(Wherein R 25 , R 26 , and R 27 represent an alkyl group, an aryl group, or a combination thereof, S represents a sulfur atom, Y represents an anion, and R 25 , R 26 , and R 27 is each bonded to a sulfur atom by a C—S bond)).
 上記の式(5)の化合物は、アミンから誘導される第4級アンモニウム塩であり、pは2~11、qは2~3の整数を示す。この第4級アンモニウム塩のR11はそれぞれ炭素原子数1~18、好ましくは2~10のアルキル基、アリール基、又はそれらの組み合わせを示し、例えば、エチル基、プロピル基、ブチル基等の直鎖アルキル基や、ベンジル基、シクロヘキシル基、シクロヘキシルメチル基、ジシクロペンタジエニル基等が挙げられる。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。 The compound of the above formula (5) is a quaternary ammonium salt derived from an amine, p is an integer of 2 to 11, and q is an integer of 2 to 3. R 11 of the quaternary ammonium salt represents an alkyl group having 1 to 18, preferably 2 to 10 carbon atoms, an aryl group, or a combination thereof, and includes, for example, an ethyl group, a propyl group, a butyl group, and the like. Examples thereof include a chain alkyl group, a benzyl group, a cyclohexyl group, a cyclohexylmethyl group, and a dicyclopentadienyl group. Anions (Y ) include halogen ions such as chlorine ions (Cl ), bromine ions (Br ), iodine ions (I ), carboxylates (—COO ), sulfonates (—SO 3 ). And acid groups such as alcoholate (—O ).
 上記の式(6)の化合物は、R12131415で示される第4級アンモニウム塩である。この第4級アンモニウム塩のR12、R13、R14及びR15はそれぞれ炭素原子数1~18のアルキル基、アリール基、若しくはそれらの組み合わせ、またはSi-C結合によりケイ素原子と結合しているシラン化合物である。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この第4級アンモニウム塩は、市販品で入手する事が可能であり、例えばテトラメチルアンモニウムアセテート、テトラブチルアンモニウムアセテート、塩化トリエチルベンジルアンモニウム、臭化トリエチルベンジルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリブチルベンジルアンモニウム、塩化トリメチルベンジルアンモニウム等が例示される。これらはアンモニウム化合物として添加することができる。 The compound of the above formula (6) is a quaternary ammonium salt represented by R 12 R 13 R 14 R 15 N + Y . R 12 , R 13 , R 14 and R 15 of this quaternary ammonium salt are each bonded to a silicon atom by an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof, or a Si—C bond. It is a silane compound. Anion (Y -), chlorine ion (Cl -), bromine ion (Br -) - or a halogen ion such as, carboxylate (-COO -), iodide ion (I), sulfonato (-SO 3 -), An acid group such as alcoholate (—O ) can be mentioned. This quaternary ammonium salt can be obtained commercially, for example, tetramethylammonium acetate, tetrabutylammonium acetate, triethylbenzylammonium chloride, triethylbenzylammonium bromide, trioctylmethylammonium chloride, tributylbenzyl chloride. Examples include ammonium and trimethylbenzylammonium chloride. These can be added as ammonium compounds.
 上記の式(7)の化合物は、1-置換イミダゾールから誘導される第4級アンモニウム塩であり、R16及びR17は炭素原子数1~18であり、R16及びR17の炭素原子数の総和が7以上で有ることが好ましい。例えばR16はメチル基、エチル基、プロピル基、フェニル基、ベンジル基、Si-C結合によりケイ素原子と結合しているシラン化合物、又はこれらの組み合わせを示す。R17はベンジル基、オクチル基、オクタデシル基を例示する事が出来る。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は、市販品で入手する事も出来るが、例えば1-メチルイミダゾール、1-ベンジルイミダゾール等のイミダゾール系化合物と、臭化ベンジル、臭化メチル等のハロゲン化アルキルやハロゲン化アリールを反応させて製造する事ができる。また、式(7)の化合物は、4位と5位が水素化された4,5-ジヒドロイミダゾール化合物として用いることができる。これらは環状アンモニウム化合物として添加することができる。 The compound of the above formula (7) is a quaternary ammonium salt derived from 1-substituted imidazole, R 16 and R 17 have 1 to 18 carbon atoms, and the number of carbon atoms of R 16 and R 17 Is preferably 7 or more. For example, R 16 represents a methyl group, an ethyl group, a propyl group, a phenyl group, a benzyl group, a silane compound bonded to a silicon atom through a Si—C bond, or a combination thereof. R 17 can be exemplified by a benzyl group, an octyl group, and an octadecyl group. Anion (Y -), chlorine ion (Cl -), bromine ion (Br -) - or a halogen ion such as, carboxylate (-COO -), iodide ion (I), sulfonato (-SO 3 -), An acid group such as alcoholate (—O ) can be mentioned. This compound can be obtained as a commercial product. For example, imidazole compounds such as 1-methylimidazole and 1-benzylimidazole are reacted with alkyl halides and aryl halides such as benzyl bromide and methyl bromide. Can be manufactured. Further, the compound of the formula (7) can be used as a 4,5-dihydroimidazole compound in which the 4-position and 5-position are hydrogenated. These can be added as cyclic ammonium compounds.
 上記の式(8)の化合物は、ピリジンから誘導される第4級アンモニウム塩であり、R18はそれぞれ炭素原子数1~18、好ましくは炭素原子数4~18のアルキル基、アリール基、又はそれらの組み合わせであり、例えばブチル基、オクチル基、ベンジル基、ラウリル基を例示する事が出来る。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は、市販品として入手する事も出来るが、例えばピリジンと、塩化ラウリル、塩化ベンジル、臭化ベンジル、臭化メチル、臭化オクチル等のハロゲン化アルキル、又はハロゲン化アリールを反応させて製造する事が出来る。この化合物は例えば、塩化N-ラウリルピリジニウム、臭化N-ベンジルピリジニウム等を例示する事が出来る。 The compound of the above formula (8) is a quaternary ammonium salt derived from pyridine, and R 18 is an alkyl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms, an aryl group, or For example, a butyl group, an octyl group, a benzyl group, and a lauryl group can be exemplified. Anion (Y -), chlorine ion (Cl -), bromine ion (Br -) - or a halogen ion such as, carboxylate (-COO -), iodide ion (I), sulfonato (-SO 3 -), An acid group such as alcoholate (—O ) can be mentioned. Although this compound can be obtained as a commercial product, it is produced, for example, by reacting pyridine with an alkyl halide such as lauryl chloride, benzyl chloride, benzyl bromide, methyl bromide, octyl bromide, or an aryl halide. I can do it. Examples of this compound include N-laurylpyridinium chloride and N-benzylpyridinium bromide.
 上記の式(9)の化合物は、ピコリン等に代表される置換ピリジンから誘導される第4級アンモニウム塩であり、R19はそれぞれ炭素原子数1~18、好ましくは4~18のアルキル基、アリール基、又はそれらの組み合わせであり、例えばメチル基、オクチル基、ラウリル基、ベンジル基等を例示する事が出来る。R20はそれぞれ炭素原子数1~18のアルキル基、アリール基、又はそれらの組み合わせであり、例えばピコリンから誘導される第4級アンモニウムである場合、R19はメチル基である。陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は市販品として入手する事も出来るが、例えばピコリン等の置換ピリジンと、臭化メチル、臭化オクチル、塩化ラウリル、塩化ベンジル、臭化ベンジル等のハロゲン化アルキル、又はハロゲン化アリールを反応させて製造する事が出来る。この化合物は例えば、N-ベンジルピコリニウムクロライド、N-ベンジルピコリニウムブロマイド、N-ラウリルピコリニウムクロライド等を例示することが出来る。 The compound of the above formula (9) is a quaternary ammonium salt derived from a substituted pyridine represented by picoline and the like, and R 19 is an alkyl group having 1 to 18 carbon atoms, preferably 4 to 18 carbon atoms, An aryl group or a combination thereof, and examples thereof include a methyl group, an octyl group, a lauryl group, and a benzyl group. Each R 20 is an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof. For example, when R 20 is quaternary ammonium derived from picoline, R 19 is a methyl group. Anion (Y -), chlorine ion (Cl -), bromine ion (Br -) - or a halogen ion such as, carboxylate (-COO -), iodide ion (I), sulfonato (-SO 3 -), An acid group such as alcoholate (—O ) can be mentioned. This compound can also be obtained as a commercial product. For example, a substituted pyridine such as picoline is reacted with an alkyl halide such as methyl bromide, octyl bromide, lauryl chloride, benzyl chloride or benzyl bromide, or an aryl halide. Can be manufactured. Examples of this compound include N-benzylpicolinium chloride, N-benzylpicolinium bromide, N-laurylpicolinium chloride and the like.
 上記の式(10)の化合物は、アミンから誘導される第3級アンモニウム塩であり、pは2~11、qは2~3の整数を示す。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。アミンとカルボン酸やフェノール等の弱酸との反応によって製造する事が出来る。カルボン酸としてはギ酸や酢酸が挙げられ、ギ酸を使用した場合は、陰イオン(Y)は(HCOO)であり、酢酸を使用した場合は、陰イオン(Y)は(CHCOO)である。またフェノールを使用した場合は、陰イオン(Y)は(C)である。 The compound of the above formula (10) is a tertiary ammonium salt derived from an amine, p is an integer of 2 to 11, and q is an integer of 2 to 3. Anions (Y ) include halogen ions such as chlorine ions (Cl ), bromine ions (Br ), iodine ions (I ), carboxylates (—COO ), sulfonates (—SO 3 ). And acid groups such as alcoholate (—O ). It can be produced by reacting an amine with a weak acid such as carboxylic acid or phenol. Examples of the carboxylic acid include formic acid and acetic acid. When formic acid is used, the anion (Y ) is (HCOO ), and when acetic acid is used, the anion (Y ) is (CH 3 COO). - ) When phenol is used, the anion (Y ) is (C 6 H 5 O ).
 上記の式(11)の化合物は、R21222324の構造を有する第4級ホスホニウム塩である。R21、R22、R23、及びR24はそれぞれ炭素原子数1~18のアルキル基、アリール基、又はそれらの組み合わせ、またはSi-C結合によりケイ素原子と結合しているシラン化合物であるが、好ましくはR21~R24の4つの置換基の内で3つがフェニル基又は置換されたフェニル基であり、例えばフェニル基やトリル基を例示する事が出来、また残りの1つはそれぞれ炭素原子数1~18のアルキル基、アリール基、又はSi-C結合によりケイ素原子と結合しているシラン化合物である。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は市販品として入手する事が可能であり、例えばハロゲン化テトラn-ブチルホスホニウム、ハロゲン化テトラn-プロピルホスホニウム等のハロゲン化テトラアルキルホスホニウム、ハロゲン化トリエチルベンジルホスホニウム等のハロゲン化トリアルキルベンジルホスホニウム、ハロゲン化トリフェニルメチルホスホニウム、ハロゲン化トリフェニルエチルホスホニウム等のハロゲン化トリフェニルモノアルキルホスホニウム、ハロゲン化トリフェニルベンジルホスホニウム、ハロゲン化テトラフェニルホスホニウム、ハロゲン化トリトリルモノアリールホスホニウム、或いはハロゲン化トリトリルモノアルキルホスホニウム(ハロゲン原子は塩素原子又は臭素原子)が挙げられる。特に、ハロゲン化トリフェニルメチルホスホニウム、ハロゲン化トリフェニルエチルホスホニウム等のハロゲン化トリフェニルモノアルキルホスホニウム、ハロゲン化トリフェニルベンジルホスホニウム等のハロゲン化トリフェニルモノアリールホスホニウム、ハロゲン化トリトリルモノフェニルホスホニウム等のハロゲン化トリトリルモノアリールホスホニウムや、ハロゲン化トリトリルモノメチルホスホニウム等のハロゲン化トリトリルモノアルキルホスホニウム(ハロゲン原子は塩素原子又は臭素原子)が好ましい。 The compound of the above formula (11) is a quaternary phosphonium salt having a structure of R 21 R 22 R 23 R 24 P + Y . R 21 , R 22 , R 23 , and R 24 are each an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof, or a silane compound bonded to a silicon atom through a Si—C bond. Preferably, three of the four substituents of R 21 to R 24 are a phenyl group or a substituted phenyl group. For example, a phenyl group or a tolyl group can be exemplified, and the remaining one is a carbon group. A silane compound bonded to a silicon atom by an alkyl group having 1 to 18 atoms, an aryl group, or a Si—C bond. Anions (Y ) include halogen ions such as chlorine ions (Cl ), bromine ions (Br ), iodine ions (I ), carboxylates (—COO ), sulfonates (—SO 3 ). And acid groups such as alcoholate (—O ). This compound can be obtained as a commercial product, for example, a halogenated tetraalkylphosphonium such as tetra-n-butylphosphonium halide, tetra-n-propylphosphonium halide, or a trialkylbenzyl halide such as triethylbenzylphosphonium halide. Triphenylmonoalkylphosphonium halides such as phosphonium, triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylbenzylphosphonium halide, tetraphenylphosphonium halide, tritolylmonoarylphosphonium halide, or tritolyl monohalogenate Examples thereof include alkylphosphonium (the halogen atom is a chlorine atom or a bromine atom). In particular, halogens such as triphenylmonoalkylphosphonium halides such as triphenylmethylphosphonium halide, triphenylethylphosphonium halide, triphenylmonoarylphosphonium halides such as triphenylbenzylphosphonium halide, and halogens such as tritolylmonophenylphosphonium halide. Preferred is a tolylyl monoarylphosphonium halide, or a tolyl monoalkylphosphonium halide such as a tolyl monomethylphosphonium halide (the halogen atom is a chlorine atom or a bromine atom).
 また、ホスフィン類としては、メチルホスフィン、エチルホスフィン、プロピルホスフィン、イソプロピルホスフィン、イソブチルホスフィン、フェニルホスフィン等の第一ホスフィン、ジメチルホスフィン、ジエチルホスフィン、ジイソプロピルホスフィン、ジイソアミルホスフィン、ジフェニルホスフィン等の第二ホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、メチルジフェニルホスフィン、ジメチルフェニルホスフィン等の第三ホスフィンが上げられる。 The phosphines include methylphosphine, ethylphosphine, propylphosphine, isopropylphosphine, isobutylphosphine, phenylphosphine and other first phosphine, dimethylphosphine, diethylphosphine, diisopropylphosphine, diisoamylphosphine, diphenylphosphine and other second phosphine. And tertiary phosphines such as trimethylphosphine, triethylphosphine, triphenylphosphine, methyldiphenylphosphine and dimethylphenylphosphine.
 上記の式(12)の化合物は、R252627の構造を有する第3級スルホニウム塩である。R25、R26、及びR27はそれぞれ炭素原子数1~18のアルキル基、アリール基、又はそれらの組み合わせ、またはSi-C結合によりケイ素原子と結合しているシラン化合物であるが、好ましくはR25~R27の3つの置換基の内で3つがフェニル基又は置換されたフェニル基であり、例えばフェニル基やトリル基を例示する事が出来、また残りの1つはそれぞれ炭素原子数1~18の置換されても良いアルキル基、アリール基、又はそれらの組み合わせである。また陰イオン(Y)は、塩素イオン(Cl)、臭素イオン(Br)、ヨウ素イオン(I)等のハロゲンイオンや、カルボキシラート(-COO)、スルホナト(-SO )、アルコラート(-O)等の酸基を挙げることが出来る。この化合物は市販品として入手する事が可能であり、例えばハロゲン化トリn-ブチルスルホニウム、ハロゲン化トリn-プロピルスルホニウム等のハロゲン化テトラアルキルホスホニウム、ハロゲン化ジエチルベンジルスルホニウム等のハロゲン化トリアルキルベンジルスルホニウム、ハロゲン化ジフェニルメチルスルホニウム、ハロゲン化ジフェニルエチルスルホニウム等のハロゲン化ジフェニルモノアルキルスルホニウム、ハロゲン化トリフェニルスルホニウム、(ハロゲン原子は塩素原子又は臭素原子)、トリn-ブチルスルホニウムカルボキシラート、トリn-プロピルスルホニウムカルボキシラート等のテトラアルキルホスホニウムカルボキシラート、ジエチルベンジルスルホニウムカルボキシラート等のトリアルキルベンジルスルホニウムカルボキシラート、ジフェニルメチルスルホニウムカルボキシラート、ジフェニルエチルスルホニウムカルボキシラート等のジフェニルモノアルキルスルホニウムカルボキシラート、トリフェニルスルホニウムカルボキシラート、トリフェニルスルホニウムトリフルオロメタンスルホネート等が挙げられる。特に、ハロゲン化トリフェニルスルホニウム、トリフェニルスルホニウムカルボキシラートが好ましい。これらはスルホニウム化合物として添加することができる。 Compounds of formula (12) described above, R 25 R 26 R 27 S + Y - is a tertiary sulfonium salt having a structure. R 25 , R 26 , and R 27 are each an alkyl group having 1 to 18 carbon atoms, an aryl group, or a combination thereof, or a silane compound bonded to a silicon atom through a Si—C bond, Of the three substituents of R 25 to R 27 , three are phenyl groups or substituted phenyl groups. For example, a phenyl group or a tolyl group can be exemplified, and the remaining ones each have 1 carbon atom. 18 to 18 optionally substituted alkyl groups, aryl groups, or combinations thereof. Anions (Y ) include halogen ions such as chlorine ions (Cl ), bromine ions (Br ), iodine ions (I ), carboxylates (—COO ), sulfonates (—SO 3 ). And acid groups such as alcoholate (—O ). This compound can be obtained as a commercial product, for example, halogenated tetraalkylphosphonium such as tri-n-butylsulfonium halide, tri-n-propylsulfonium halide, and trialkylbenzyl halide such as diethylbenzylsulfonium halide. Halogenated diphenylmonoalkylsulfonium, such as sulfonium, halogenated diphenylmethylsulfonium, halogenated diphenylethylsulfonium, halogenated triphenylsulfonium, (halogen atom is chlorine or bromine atom), tri-n-butylsulfonium carboxylate, tri-n- Tetraalkylphosphonium carboxylates such as propylsulfonium carboxylate and trialkylbenzyls such as diethylbenzylsulfonium carboxylate Sulfo sulfonium carboxylate, diphenylmethyl sulfonium carboxylate, diphenyl monoalkyl sulfonium carboxylates such as diphenylethyl sulfonium carboxylate, triphenylsulfonium carboxylate, triphenylsulfonium trifluoromethane sulfonate, and the like. Particularly, triphenylsulfonium halide and triphenylsulfonium carboxylate are preferable. These can be added as sulfonium compounds.
 金属キレート化合物としては、例えばトリエトキシ・モノ(アセチルアセトナート)チタン、トリ-n-プロポキシ・モノ(アセチルアセトナート)チタン、トリイソプロポキシ・モノ(アセチルアセトナート)チタン、トリ-n-ブトキシ・モノ(アセチルアセトナート)チタン、トリ-sec-ブトキシ・モノ(アセチルアセトナート)チタン、トリ-t-ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ-n-プロポキシ・ビス(アセチルアセトナート)チタン、ジイソプロポキシ・ビス(アセチルアセトナート)チタン、ジ-n-ブトキシ・ビス(アセチルアセトナート)チタン、ジ-sec-ブトキシ・ビス(アセチルアセトナート)チタン、ジ-t-ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、モノ-n-プロポキシ・トリス(アセチルアセトナート)チタン、モノイソプロポキシ・トリス(アセチルアセトナート)チタン、モノ-n-ブトキシ・トリス(アセチルアセトナート)チタン、モノ-sec-ブトキシ・トリス(アセチルアセトナート)チタン、モノ-t-ブトキシ・トリス(アセチルアセトナート)チタン、テトラキス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ-n-プロポキシ・モノ(エチルアセトアセテート)チタン、トリイソプロポキシ・モノ(エチルアセトアセテート)チタン、トリ-n-ブトキシ・モノ(エチルアセトアセテート)チタン、トリ-sec-ブトキシ・モノ(エチルアセトアセテート)チタン、トリ-t-ブトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ-n-プロポキシ・ビス(エチルアセトアセテート)チタン、ジイソプロポキシ・ビス(エチルアセトアセテート)チタン、ジ-n-ブトキシ・ビス(エチルアセトアセテート)チタン、ジ-sec-ブトキシ・ビス(エチルアセトアセテート)チタン、ジ-t-ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ-n-プロポキシ・トリス(エチルアセトアセテート)チタン、モノイソプロポキシ・トリス(エチルアセトアセテート)チタン、モノ-n-ブトキシ・トリス(エチルアセトアセテート)チタン、モノ-sec-ブトキシ・トリス(エチルアセトアセテート)チタン、モノ-t-ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)チタン、等のチタンキレート化合物;トリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリイソプロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-sec-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-t-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジイソプロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-sec-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-t-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノイソプロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-sec-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-t-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、テトラキス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリイソプロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-sec-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-t-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジイソプロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-sec-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-t-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノイソプロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-sec-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-t-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム、等のジルコニウムキレート化合物;トリス(アセチルアセトナート)アルミニウム、トリス(エチルアセトアセテート)アルミニウム等のアルミニウムキレート化合物;などを挙げることができる。 Examples of the metal chelate compounds include triethoxy mono (acetylacetonato) titanium, tri-n-propoxy mono (acetylacetonato) titanium, triisopropoxy mono (acetylacetonato) titanium, tri-n-butoxy mono (Acetylacetonato) titanium, tri-sec-butoxy mono (acetylacetonato) titanium, tri-t-butoxy mono (acetylacetonato) titanium, diethoxy bis (acetylacetonato) titanium, di-n-propoxy Bis (acetylacetonato) titanium, diisopropoxy bis (acetylacetonato) titanium, di-n-butoxy bis (acetylacetonato) titanium, di-sec-butoxy bis (acetylacetonato) titanium, di -T-Butoxy bis ( Cetylacetonato) titanium, monoethoxy-tris (acetylacetonato) titanium, mono-n-propoxy-tris (acetylacetonato) titanium, monoisopropoxy-tris (acetylacetonato) titanium, mono-n-butoxy-tris (Acetylacetonato) titanium, mono-sec-butoxy tris (acetylacetonato) titanium, mono-t-butoxy tris (acetylacetonato) titanium, tetrakis (acetylacetonato) titanium, triethoxy mono (ethylacetoacetate) ) Titanium, tri-n-propoxy mono (ethyl acetoacetate) titanium, triisopropoxy mono (ethyl acetoacetate) titanium, tri-n-butoxy mono (ethyl acetoacetate) titanium, tri-sec-but Si mono (ethyl acetoacetate) titanium, tri-t-butoxy mono (ethyl acetoacetate) titanium, diethoxy bis (ethyl acetoacetate) titanium, di-n-propoxy bis (ethyl acetoacetate) titanium, diiso Propoxy bis (ethyl acetoacetate) titanium, di-n-butoxy bis (ethyl acetoacetate) titanium, di-sec-butoxy bis (ethyl acetoacetate) titanium, di-t-butoxy bis (ethyl acetoacetate) Titanium, monoethoxy tris (ethyl acetoacetate) titanium, mono-n-propoxy tris (ethyl acetoacetate) titanium, monoisopropoxy tris (ethyl acetoacetate) titanium, mono-n-butoxy tris (ethyl acetoacetate) ) Tan, mono-sec-butoxy tris (ethyl acetoacetate) titanium, mono-t-butoxy tris (ethyl acetoacetate) titanium, tetrakis (ethyl acetoacetate) titanium, mono (acetylacetonate) tris (ethyl acetoacetate) Titanium chelate compounds such as titanium, bis (acetylacetonato) bis (ethylacetoacetate) titanium, tris (acetylacetonato) mono (ethylacetoacetate) titanium; triethoxy mono (acetylacetonato) zirconium, tri-n- Propoxy mono (acetylacetonato) zirconium, triisopropoxy mono (acetylacetonato) zirconium, tri-n-butoxy mono (acetylacetonato) zirconium, tri-sec-butoxy・ Mono (acetylacetonato) zirconium, tri-t-butoxy ・ mono (acetylacetonato) zirconium, diethoxybis (acetylacetonato) zirconium, di-n-propoxybis (acetylacetonato) zirconium, diisopropoxy・ Bis (acetylacetonato) zirconium, di-n-butoxy ・ bis (acetylacetonato) zirconium, di-sec-butoxybis (acetylacetonato) zirconium, di-t-butoxybis (acetylacetonato) zirconium , Monoethoxytris (acetylacetonato) zirconium, mono-n-propoxytris (acetylacetonato) zirconium, monoisopropoxytris (acetylacetonato) zirconium, mono-n- Toxitris (acetylacetonato) zirconium, mono-sec-butoxytris (acetylacetonato) zirconium, mono-t-butoxytris (acetylacetonato) zirconium, tetrakis (acetylacetonato) zirconium, triethoxymono ( Ethyl acetoacetate) zirconium, tri-n-propoxy mono (ethyl acetoacetate) zirconium, triisopropoxy mono (ethyl acetoacetate) zirconium, tri-n-butoxy mono (ethyl acetoacetate) zirconium, tri-sec- Butoxy mono (ethyl acetoacetate) zirconium, tri-t-butoxy mono (ethyl acetoacetate) zirconium, diethoxy bis (ethyl acetoacetate) zirconi , Di-n-propoxy bis (ethyl acetoacetate) zirconium, diisopropoxy bis (ethyl acetoacetate) zirconium, di-n-butoxy bis (ethyl acetoacetate) zirconium, di-sec-butoxy bis ( Ethyl acetoacetate) zirconium, di-t-butoxy bis (ethyl acetoacetate) zirconium, monoethoxy tris (ethyl acetoacetate) zirconium, mono-n-propoxy tris (ethyl acetoacetate) zirconium, monoisopropoxy tris (Ethyl acetoacetate) zirconium, mono-n-butoxy tris (ethyl acetoacetate) zirconium, mono-sec-butoxy tris (ethyl acetoacetate) zirconium, mono-t-but Si-tris (ethylacetoacetate) zirconium, tetrakis (ethylacetoacetate) zirconium, mono (acetylacetonato) tris (ethylacetoacetate) zirconium, bis (acetylacetonato) bis (ethylacetoacetate) zirconium, tris (acetylacetate) Zirconium chelate compounds such as nato) mono (ethylacetoacetate) zirconium; Aluminum chelate compounds such as tris (acetylacetonato) aluminum and tris (ethylacetoacetate) aluminum;
 硬化触媒(D)成分の添加量はケイ素化合物(A)成分100質量部に対して、0.01~10質量部、0.01~5質量部、または0.01~3質量部である。硬化触媒(D)は完全加水分解型のポリシロキサンであるケイ素化合物(A)のアルカリ現像性を発現し、さらにコントロールする目的で加えられ、添加量が0.01質量部よりも少ないと膜がアルカリ現像液で全て溶解してしまう場合があり、10質量部よりも多いと硬化が進行しすぎてパターンが形成できない場合がある。 The addition amount of the curing catalyst (D) component is 0.01 to 10 parts by mass, 0.01 to 5 parts by mass, or 0.01 to 3 parts by mass with respect to 100 parts by mass of the silicon compound (A) component. The curing catalyst (D) is added for the purpose of controlling the alkali developability of the silicon compound (A), which is a fully hydrolyzed polysiloxane, and is added for the purpose of control. In some cases, all of them are dissolved with an alkali developer, and when the amount is more than 10 parts by mass, the curing may proceed too much to form a pattern.
 本発明の(E)成分は水素結合性膜荒れ防止材として機能するジケトン化合物である。水素結合性膜荒れ防止材として機能するジケトン化合物はケイ素化合物(A)及び無機粒子(B)に存在するヒドロキシ基とワニス中若しくは仮乾燥時に水素結合を形成する化合物を指す。水素結合を形成している場合、感光性レジストのリコート時及びレジスト膜剥離時の膜荒れを抑制できる。 The component (E) of the present invention is a diketone compound that functions as a hydrogen bonding film roughening prevention material. The diketone compound that functions as a hydrogen bonding film roughening preventing agent refers to a compound that forms a hydrogen bond with the hydroxy group present in the silicon compound (A) and the inorganic particles (B) in the varnish or during temporary drying. In the case where hydrogen bonds are formed, film roughness during recoating of the photosensitive resist and peeling of the resist film can be suppressed.
 ジケトン化合物(E)は、1,2-ジケトン及び/又は1,3-ジケトンが挙げられる。ジケトン化合物(E)は、式(3)及び/又は式(4)で表される部分構造を有する。式(3)中でWは炭素原子若しくは酸素原子を示す。 Examples of the diketone compound (E) include 1,2-diketone and / or 1,3-diketone. The diketone compound (E) has a partial structure represented by the formula (3) and / or the formula (4). In formula (3), W represents a carbon atom or an oxygen atom.
 水素結合性膜荒れ防止材として機能するジケトン化合物(E)は、ハンドリング性の観点から23℃、大気圧化で液体であることが好ましく、上記の化合物(3)に示す基本骨格を有する化合物である。 The diketone compound (E) functioning as a hydrogen bonding film roughening prevention material is preferably a liquid at 23 ° C. and atmospheric pressure from the viewpoint of handling properties, and is a compound having the basic skeleton shown in the above compound (3). is there.
 上記(E)成分の具体例としては、アセチルアセトン、3-エチル-2,4-ペンタンジオン、3-エチル-2,4-ペンタンジオン、ジピバロイルメタン、2,6-ジメチル-3,5-ヘプタンジオン、6-メチル-2,4-ヘプタンジオン、ピルビン酸メチル、ピルビン酸エチル、ジアセチル、3,4-ヘキサンジオン、2,3-ペンタンジオン、2,3-ヘプタンジオン、5-メチル-2,3-ヘキサンジオン等が挙げられる。上記(E)成分は式(3)の場合、O=C-C=Oの結合を、式(4)の場合、O=C-C-C=O結合を部分構造として有していれば良く、特定されるものではない。これらの部分構造はケイ素化合物(A)及び無機粒子(B)に存在するヒドロキシ基と水素結合することで、感光性レジストを剥離した際に膜荒れを抑制できる。 Specific examples of the component (E) include acetylacetone, 3-ethyl-2,4-pentanedione, 3-ethyl-2,4-pentanedione, dipivaloylmethane, 2,6-dimethyl-3,5. -Heptanedione, 6-methyl-2,4-heptanedione, methyl pyruvate, ethyl pyruvate, diacetyl, 3,4-hexanedione, 2,3-pentanedione, 2,3-heptanedione, 5-methyl- Examples include 2,3-hexanedione. The component (E) has a partial structure having an O═C—C═O bond in the case of the formula (3) and an O═C—C—C═O bond in the case of the formula (4). Well, not specific. These partial structures can suppress film roughness when the photosensitive resist is peeled off by hydrogen bonding with the hydroxy groups present in the silicon compound (A) and the inorganic particles (B).
 ジケトン化合物(E)はジアセチル、ピルビン酸メチル、ピルビン酸エチル、アセチルアセトンを好ましく挙げることができる。 Preferred examples of the diketone compound (E) include diacetyl, methyl pyruvate, ethyl pyruvate, and acetylacetone.
 ジケトン化合物(E)成分の添加量はケイ素化合物(A)成分100質量部に対して、1~10000質量部、100~5000質量部、または500~2000質量部であり、好ましくは100~5000質量部、より好ましくは500~2000質量部である。 The addition amount of the diketone compound (E) component is 1 to 10000 parts by mass, 100 to 5000 parts by mass, or 500 to 2000 parts by mass, preferably 100 to 5000 parts by mass with respect to 100 parts by mass of the silicon compound (A) component. Part, more preferably 500 to 2000 parts by weight.
 水(F)成分はイオン交換水が好ましい。一般的な水道水を使用した場合、水道水中に含まれるナトリウムイオン、カリウムイオン、塩素イオンなどをワニス中に持ち込み、ポリシロキサンの保管安定性を悪化させたり、均一なワニス品質を損なったりする場合がある。水(F)成分は水(F)と溶剤(C)を含む全溶剤中における割合が6質量%乃至18質量%である必要がある。 The water (F) component is preferably ion-exchanged water. When general tap water is used, sodium ions, potassium ions, chlorine ions, etc. contained in tap water are brought into the varnish, which deteriorates the storage stability of the polysiloxane or impairs the uniform varnish quality. There is. The ratio of the water (F) component in the total solvent including water (F) and the solvent (C) needs to be 6% by mass to 18% by mass.
 (F)成分の全溶剤中における割合が6質量%未満であった場合、保管安定性を損なう場合があり、18質量%超であった場合、塗布性が悪化する場合がある。水(F)成分の好ましい添加量は全溶剤中における割合が8質量%乃至16質量%であり、より好ましくは10質量%乃至14質量%である。 When the ratio of the component (F) in the total solvent is less than 6% by mass, the storage stability may be impaired, and when it exceeds 18% by mass, the coating property may be deteriorated. A preferable amount of the water (F) component is 8% by mass to 16% by mass in the total solvent, and more preferably 10% by mass to 14% by mass.
 酸(G)成分は1乃至2個のカルボキシル基を分子内に含み、最終的な膜形成組成物(ワニス)のpHが3乃至5にすることのできる酸である。 The acid (G) component is an acid that contains 1 to 2 carboxyl groups in the molecule, and the final film-forming composition (varnish) can have a pH of 3 to 5.
 酸(G)の添加量は膜形成組成物(ワニス)をpH3乃至5に調製する量を膜形成組成物(ワニス)に添加することができる。 The amount of acid (G) added can be added to the film-forming composition (varnish) to adjust the film-forming composition (varnish) to pH 3 to 5.
 成分(G)の具体例としては酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸等が挙げられる。最終的な膜形成組成物(ワニス)のpHを3乃至5とすることで、完全加水分解型のポリシロキサンの末端に存在するシラノールの安定性を向上できる。最終的なワニスのpHは3乃至5であるが、好ましくはpH4付近が良い。膜形成組成物(ワニス)のpH4とすることでシラノールの安定性が最も良くなることが知られている。最終的な膜形成組成物(ワニス)のpHを4とする観点で、成分(G)は特にギ酸、酢酸、プロピオン酸、シュウ酸、マレイン酸が好ましい。 Specific examples of component (G) include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid , Gallic acid, butyric acid, meritic acid, arachidonic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfonic acid Monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citric acid, tartaric acid and the like. By setting the final film-forming composition (varnish) to pH 3 to 5, the stability of silanol present at the terminal of the fully hydrolyzed polysiloxane can be improved. The final varnish has a pH of 3 to 5, preferably around pH 4. It is known that the stability of silanol is best achieved by adjusting the pH of the film-forming composition (varnish) to 4. In view of setting the pH of the final film-forming composition (varnish) to 4, component (G) is particularly preferably formic acid, acetic acid, propionic acid, oxalic acid, and maleic acid.
 上述した成分(F)と成分(G)をワニス中に加えることで5℃乃至23℃の膜形成組成物(ワニス)の保管安定性が飛躍的に向上し、良好な被膜を長期に渡って提供できるようになる。 By adding the component (F) and the component (G) described above to the varnish, the storage stability of the film-forming composition (varnish) at 5 ° C. to 23 ° C. is drastically improved, and a good coating is obtained over a long period of time. Can be provided.
 膜形成組成物の固形分中にはケイ素化合物(A)、無機粒子(B)、硬化触媒(D)、ジケトン化合物(E)、酸(G)を含むが、それ以外の成分を含有してもよい。 The solid content of the film-forming composition contains silicon compound (A), inorganic particles (B), curing catalyst (D), diketone compound (E), and acid (G), but contains other components. Also good.
 本発明においては、本発明の効果を損なわない限りにおいて、成分(A)、成分(B)、成分(C)、更に成分(D)、成分(E)、成分(F)、成分(G)、それ以外にその他の成分、例えばレベリング剤、界面活性剤等の成分が含まれていてもよい。 In the present invention, as long as the effects of the present invention are not impaired, the component (A), the component (B), the component (C), the component (D), the component (E), the component (F), and the component (G). In addition, other components such as leveling agents and surfactants may be contained.
 界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、商品名エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、商品名メガファックF171、F173、F-553、F-554、R-08、R-30、R-30-N(大日本インキ化学工業(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、商品名アサヒガードAG710,サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマ-KP341(信越化学工業(株)製)、BYK-302、BYK-307、BYK-322、BYK-323、BYK-330、BYK-333、BYK-370、BYK-375、BYK-378(ビックケミー・ジャパン(株)製)、等を挙げることができる。これらの界面活性剤は単独で使用してもよいし、また二種以上の組み合わせで使用することもできる。界面活性剤が使用される場合、その割合としては、ケイ素化合物(A)100質量部に対して0.0001~5質量部、0.001~1質量部、または0.01~0.5質量部である。 Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonylphenol. Polyoxyethylene alkyl allyl ethers such as ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as polyoxyethylene sorbitan monolaurate, polyoxyethylene Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as rubitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, trade name EFTOP EF301 , EF303, EF352 (manufactured by Tochem Products Co., Ltd.), trade names MegaFuck F171, F173, F-553, F-554, R-08, R-30, R-30-N (Dainippon Ink Chemical Industries, Ltd.) Fluorine, FC430, FC431 (Sumitomo 3M Co., Ltd.), trade names Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) Surface activity , And organosiloxane polymer-KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), BYK-302, BYK-307, BYK-322, BYK-323, BYK-330, BYK-333, BYK-370, BYK-375, BYK -378 (manufactured by Big Chemie Japan Co., Ltd.), and the like. These surfactants may be used alone or in combination of two or more. When a surfactant is used, the proportion thereof is 0.0001 to 5 parts by mass, 0.001 to 1 part by mass, or 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the silicon compound (A). Part.
 上記の他の成分、溶剤、レベリング剤若しくは界面活性剤を混合する方法は、ケイ素化合物(A)に無機粒子(B)及び溶剤(C)を添加すると同時でも、成分(A)乃至成分(C)混合後であっても良く、特に限定されない。 The method of mixing the other components, the solvent, the leveling agent or the surfactant described above may be performed simultaneously with the addition of the inorganic particles (B) and the solvent (C) to the silicon compound (A). ) It may be after mixing and is not particularly limited.
<被膜の形成>
 本発明の膜形成組成物は、基材に塗布し熱硬化することで所望の被膜を得ることができる。塗布方法は、公知又は周知の方法を採用できる。例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等の方法を採用できる。その際に用いる基材は、シリコン、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリエチレン(PE)、アイオノマー(IO)、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリシクロオレフィン(PCO)、ポリ塩化ビニリデン(PVDC)、ポリビニルアルコール(PVA)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリスチレン(PS)、ポリアクリロニトリル(PAN)、エチレン酢酸ビニル共重合体(EVA)、エチレンビニルアルコール共重合体(EVOH)、エチレンメタクリル酸共重合体(EMMA)、ポリメタクリル酸(PMMA)、ナイロン、プラスチック、ガラス、サファイア、石英、ダイヤモンド、セラミックス、アルミニウムガリウムヒ素(AlGaAs)、ガリウムヒ素リン(GaAsP)、インジウム窒化ガリウム(InGaN)、窒化ガリウム(GaN)、アルミニウム窒化ガリウム(AlGaN)、リン化ガリウム(GaP)、セレン化亜鉛(ZnSe)、アルミニウムインジウムガリウムリン(AlGaInP)、酸化亜鉛(ZnO)等からなる基材を挙げることができる。
<Formation of coating>
The film-forming composition of the present invention can be applied to a substrate and thermally cured to obtain a desired film. A known or well-known method can be adopted as the coating method. For example, spin coating method, dip method, flow coating method, ink jet method, spray method, bar coating method, gravure coating method, slit coating method, roll coating method, transfer printing method, brush coating, blade coating method, air knife coating method Etc. can be adopted. The base materials used in this case are silicon, indium tin oxide (ITO), indium zinc oxide (IZO), polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene (PE), ionomer (IO), polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polycycloolefin (PCO), polyvinylidene chloride (PVDC), polyvinyl alcohol (PVA), polypropylene (PP), polycarbonate (PC), polystyrene (PS) , Polyacrylonitrile (PAN), ethylene vinyl acetate copolymer (EVA), ethylene vinyl alcohol copolymer (EVOH), ethylene methacrylic acid copolymer (EMMA), polymethacrylic acid (PMMA), nylon, plastic, glass, S Dia, quartz, diamond, ceramics, aluminum gallium arsenide (AlGaAs), gallium arsenide phosphorus (GaAsP), indium gallium nitride (InGaN), gallium nitride (GaN), aluminum gallium nitride (AlGaN), gallium phosphide (GaP), selenium Examples thereof include a base material made of zinc halide (ZnSe), aluminum indium gallium phosphide (AlGaInP), zinc oxide (ZnO), or the like.
 加熱機器としては、特に限定されるものではなく、例えば、ホットプレート、オーブン、ファーネスを用いて、適切な雰囲気下、すなわち大気、窒素等の不活性ガス、真空中等で加熱させればよい。これにより、均一な製膜面を有する被膜を得ることが可能である。 The heating device is not particularly limited, and for example, it may be heated in a suitable atmosphere, that is, in an inert gas such as air or nitrogen, in a vacuum, or the like using a hot plate, an oven, or a furnace. Thereby, it is possible to obtain a film having a uniform film forming surface.
 加熱温度は、溶媒を蒸発させる目的では、特に限定されないが、例えば、40~200℃で行うことができる。これらの場合、より高い均一製膜性を発現させたり、基材上で反応を進行させたりする目的で2段階以上の温度変化をつけてもよい。 The heating temperature is not particularly limited for the purpose of evaporating the solvent, but can be performed at 40 to 200 ° C., for example. In these cases, the temperature may be changed in two or more steps for the purpose of expressing a higher uniform film forming property or allowing the reaction to proceed on the substrate.
 加熱温度及び加熱時間は目的とする電子デバイスのプロセス工程に適合した条件を選択すれば良く、ポリシロキサン被膜の物性値が電子デバイスの要求特性に適合した加熱条件を選択できる。 The heating temperature and heating time may be selected in accordance with the process steps of the target electronic device, and the heating conditions in which the physical properties of the polysiloxane film are compatible with the required characteristics of the electronic device can be selected.
 本発明の加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)、無機粒子(B)、溶剤(C)、更に成分(D)、成分(E)、成分(F)、成分(G)とを含む膜形成組成物は、これら各成分をハイブリッド化してなる膜形成組成物(ワニス)が均一分散液となっていることが好ましい。 Silicon compound (A) containing the hydrolysis condensate (polysiloxane) of the present invention, inorganic particles (B), solvent (C), further component (D), component (E), component (F), component (G) It is preferable that the film forming composition (varnish) formed by hybridizing these components is a uniform dispersion.
 ここで、ハイブリッド化とは、広義では異なった性質の溶質を混合し、溶液の状態で混和することを意味し、異なる溶質同士が化学的または物理的に相互作用を有していても、有していなくてもよく、分散性が保持されていればよい。 Here, in a broad sense, hybridization means mixing solutes having different properties and mixing them in a solution state. Even if different solutes have chemical or physical interaction, they are present. The dispersibility may be maintained as long as it is not necessary.
 ハイブリッド化は、最終的な膜形成組成物(ワニス)の安定性が得られる限りにおいて、その調製方法は特に限定されない。 Hybridization is not particularly limited in its preparation method as long as the stability of the final film-forming composition (varnish) can be obtained.
 例えば、方法(1):加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)を、溶液状態(ワニス)で無機粒子(B)の分散液(ゾル)に混合させる、方法(2):加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)を溶液中(ワニス中)で無機粒子(B)を分散させる、など種々の方法が挙げられるが、ハンドリング性の観点から、加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)を溶液(ワニス)の状態で無機粒子(B)の分散液(ゾル)に混合させる方法が好ましい。 For example, Method (1): A silicon compound (A) containing a hydrolysis condensate (polysiloxane) is mixed with a dispersion (sol) of inorganic particles (B) in a solution state (varnish). Method (2): Various methods such as dispersing the inorganic particles (B) in the solution (in the varnish) of the silicon compound (A) containing the hydrolyzed condensate (polysiloxane) can be mentioned, but from the viewpoint of handling properties, hydrolysis condensation A method in which a silicon compound (A) containing a product (polysiloxane) is mixed with a dispersion (sol) of inorganic particles (B) in a solution (varnish) state is preferable.
 ハイブリッド化した最終的なワニスの安定性は、分散性の低下による析出、1次粒子径または2次粒子径の大幅な変化、塗布性の悪化、着色(白化、黄変)、膜質の悪化を引き起こさなければよい。 The stability of the final hybridized varnish is due to precipitation due to reduced dispersibility, drastic changes in primary particle size or secondary particle size, poor applicability, coloring (whitening, yellowing), and poor film quality. Don't cause it.
 組成物中における無機粒子の含有量は、得られる最終的なワニスの分散性が損なわれない範囲であればよく、作製する被膜の目的とする屈折率、透過率、耐熱性に合わせてコントロールすることが可能である。 The content of the inorganic particles in the composition may be in a range that does not impair the dispersibility of the final varnish obtained, and is controlled in accordance with the intended refractive index, transmittance, and heat resistance of the coating film to be produced. It is possible.
 本発明の加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)と無機粒子(B)と溶剤(C)とを含む膜形成組成物(塗布液)は、分散性の低下による析出、1次粒子径または2次粒子径の大幅な変化、塗布性の悪化、着色(白化、黄変)、膜質の悪化を引き起こさない保管条件であれば特に限定されない。例えば、23℃(室温保管)、5℃(冷蔵保管)及び-20℃(冷凍保管)で保管すれば良く、ワニス状態でヒドロキシ基同士が反応するのを防止するために-20℃(冷凍保管)で保管することが好ましい。 The film-forming composition (coating liquid) containing the silicon compound (A) containing the hydrolysis condensate (polysiloxane) of the present invention, the inorganic particles (B), and the solvent (C) is deposited due to a decrease in dispersibility. The storage conditions are not particularly limited as long as the storage conditions do not cause a significant change in the secondary particle size or secondary particle size, deterioration in applicability, coloring (whitening, yellowing), and deterioration in film quality. For example, it may be stored at 23 ° C. (room temperature storage), 5 ° C. (refrigerated storage), and −20 ° C. (refrigerated storage). In order to prevent hydroxy groups from reacting with each other in the varnish state, −20 ° C. (freezer storage) ) Is preferably stored.
 本発明では、上記膜形成組成物を基板上に被覆し加熱して得られ、波長633nmで1.50乃至1.90、1.50乃至1.70、又は1.70乃至1.90の屈折率と、JIS規格K5600によって定められた鉛筆硬度がH~9H、H~5H、又はH~3Hの硬度とを有する膜となる。 In the present invention, the film-forming composition is coated on a substrate and heated to obtain a refraction of 1.50 to 1.90, 1.50 to 1.70, or 1.70 to 1.90 at a wavelength of 633 nm. The film has a ratio and a hardness with a pencil hardness defined by JIS standard K5600 of H to 9H, H to 5H, or H to 3H.
<被膜のパターニング方法>
 本発明の上記膜形成組成物自体には感光性はないが、アルカリ溶液に対して溶解現像性を有しているため感光性レジストを利用することで10μm以下のパターニングが可能である。上記膜形成組成物に感光性を付与しない理由は、感光性材料とするときに添加する感光剤が耐光性を悪化させる原因となるためである。
<Pattern patterning method>
Although the film-forming composition itself of the present invention has no photosensitivity, patterning of 10 μm or less is possible by using a photosensitive resist because it has dissolution and developability in an alkaline solution. The reason for not imparting photosensitivity to the film-forming composition is that the photosensitizer added when the photosensitive material is used causes deterioration in light resistance.
 パターニングする方法は以下の工程1乃至工程9を得て完成する。
工程1:膜形成組成物を基材に塗布する。
工程2:基材上の膜を仮乾燥する。
工程3:膜形成組成物の上に感光性レジストを塗布する。
工程4:感光性レジストを乾燥する。
工程5:感光性レジストの上からマスクを介して光照射する。
工程6:アルカリ現像する。
工程7:純水でリンスする。
工程8:レジストを剥離する。
工程9:パターニングされた膜形成組成物を本加熱する。
The patterning method is completed by obtaining the following steps 1 to 9.
Step 1: A film-forming composition is applied to a substrate.
Step 2: The film on the substrate is temporarily dried.
Step 3: A photosensitive resist is applied on the film-forming composition.
Step 4: The photosensitive resist is dried.
Step 5: Light is irradiated from above the photosensitive resist through a mask.
Step 6: Alkali development.
Step 7: Rinse with pure water.
Step 8: Strip the resist.
Step 9: Mainly heat the patterned film-forming composition.
 工程2は膜形成組成物を仮乾燥させる工程であり、工程3の感光性レジストの主溶剤に溶解しなくなるまで加熱すれば特に限定されないが、40℃乃至200℃、80℃乃至150℃、又は90℃乃至120℃で加熱すれば良く、加熱時間は30秒乃至300秒、60秒乃至120秒、又は180秒乃至240秒、加熱すれば良い。 Step 2 is a step of temporarily drying the film-forming composition, and is not particularly limited as long as it is heated until it is not dissolved in the main solvent of the photosensitive resist of Step 3, but 40 ° C. to 200 ° C., 80 ° C. to 150 ° C., or Heating may be performed at 90 ° C. to 120 ° C., and the heating time may be 30 seconds to 300 seconds, 60 seconds to 120 seconds, or 180 seconds to 240 seconds.
 工程3は感光性レジストを塗布する工程であり、市販されている一般的なポジ型感光性レジスト又はネガ型感光性レジストを用いれば良い。例えば、ポジ型フォトレジストとしてはTHMR-iP1800(東京応化工業(株)製)、AZ3100、AZ1500(AZ ELECTRONIC MATERIALS社製)などを用いれば良い。 Step 3 is a step of applying a photosensitive resist, and a commercially available general positive photosensitive resist or negative photosensitive resist may be used. For example, as the positive photoresist, THMR-iP1800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), AZ3100, AZ1500 (manufactured by AZ ELECTRONIC MATERIALS) or the like may be used.
 工程5はマスクを介して光照射する工程であり、一般的な露光機を用いれば良い。例えば、アライナー PLA-600FA(キヤノン(株)製)、i線ステッパー NSR-2205i12D((株)ニコン製)などを用いれば良い。 Step 5 is a step of irradiating light through a mask, and a general exposure machine may be used. For example, an aligner PLA-600FA (manufactured by Canon Inc.), i-line stepper NSR-2205i12D (manufactured by Nikon Corporation) or the like may be used.
 工程6はアルカリ現像する工程であり、アルカリ現像液としては一般的なテトラメチルアンモニウムハイドライド(TMAH)水溶液を用いれば良い。TMAHの濃度は0.1質量%乃至2.38質量%、0.5質量%乃至1.0質量%、又は1.0質量%乃至2.0質量%であれば良く、現像時間は10秒乃至180秒、20秒乃至60秒、又は90秒乃至120秒であれば良い。また、アルカリ現像液は炭酸ナトリウム及び水酸化ナトリウム、水酸化カリウム水溶液などの無機塩基でも良い。 Step 6 is a step of alkali development, and a common tetramethylammonium hydride (TMAH) aqueous solution may be used as the alkali developer. The concentration of TMAH may be 0.1% to 2.38%, 0.5% to 1.0%, or 1.0% to 2.0% by weight, and the development time is 10 seconds. Or 180 seconds, 20 seconds to 60 seconds, or 90 seconds to 120 seconds. The alkaline developer may be an inorganic base such as sodium carbonate, sodium hydroxide, or potassium hydroxide aqueous solution.
 工程8はレジストを剥離する工程であり、一般的なレジスト溶剤であれば良い。例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ピルビン酸エチルなどが挙げられる。 Step 8 is a step of stripping the resist and may be a general resist solvent. Examples thereof include propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and ethyl pyruvate.
 工程9は膜形成組成物を本加熱する工程であり、80℃乃至300℃、100℃乃至150℃、180℃乃至230℃、又は250℃乃至300℃で加熱すれば良い。 Step 9 is a step of heating the film-forming composition, and it may be heated at 80 ° C. to 300 ° C., 100 ° C. to 150 ° C., 180 ° C. to 230 ° C., or 250 ° C. to 300 ° C.
 以上のようなパターニング方法を経ることで、膜形成組成物が非感光性材料であるにも関わらず、アルカリ現像性を有することでパターニングすることが可能となる。 Through the patterning method as described above, it is possible to perform patterning by having alkali developability even though the film forming composition is a non-photosensitive material.
 このようにして得られた本発明の組成物からなる膜は、高屈折率、高透明性、高耐熱性、高耐光性、高硬度を一度に満たすことが可能であり、液晶ディスプレイ、プラズマディスプレイ、カソードレイチューブ、有機発光ディスプレイ、電子ペーパー、LED、固体撮像素子、太陽電池、有機薄膜トランジスタなどの電子デバイスとして好適に用いることができる。特に高耐光性が要求されるLED用部材として好適に用いることができる。 The film made of the composition of the present invention thus obtained can satisfy a high refractive index, high transparency, high heat resistance, high light resistance, and high hardness at the same time. , Cathode ray tubes, organic light-emitting displays, electronic paper, LEDs, solid-state imaging devices, solar cells, organic thin film transistors, and other electronic devices. In particular, it can be suitably used as an LED member that requires high light resistance.
 より具体的には、各種ディスプレイのバックライト光源、信号機、照明、レーザー、バイオセンサーなどとして好適に用いることができる。 More specifically, it can be suitably used as a backlight light source for various displays, traffic lights, illumination, lasers, biosensors, and the like.
 以下、実施例および比較例などを挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、実施例で用いた各測定装置は以下のとおりである。
[GPC]
装置:東ソー(株)製 HLC-8200 GPC
カラム:Shodex KF-804L+KF-805L
カラム温度:40℃
溶媒:テトラヒドロフラン(以下、THF)
検出器:UV(254nm)
検量線:標準ポリスチレン
H-NMR]
装置:日本電子(株)製 ECP300
溶剤:重アセトン
[被膜の屈折率/エリプソメーター]
装置:ジェー・エー・ウーラム・ジャパン製 多入射角分光エリプソメーターVASE 
波長450nmで測定。
[紫外線可視分光光度計]
装置:(株)島津製作所製 SHIMADSU UV-3600
〔粒子の屈折率〕
装置:ジェー・エー・ウーラム・ジャパン製 多入射角分光エリプソメーターVASE 
波長450nmで測定。
無機粒子(B)を膜厚が100nmになるようにプロピレングリコールモノメチルエーテルで希釈し、シリコン基板にスピンコートし、100℃で1分間、ホットプレートで加熱後、200℃で5分間、ホットプレートで加熱した膜の屈折率を測定した。
〔平均粒子径〕
装置:Beckman Coulter製、装置名N5
無機粒子(B)の分散液を分散媒と同じ溶媒で希釈し、動的光散乱法の粒子径(Unimodalモード、強度平均粒子径)を測定した。
〔スピンコート〕
装置:東京エレクトロン(株)製、クリーントラック、装置名ACT8
〔露光〕
装置:(株)ニコン製、i線ステッパー、装置名NSR-2205i12D
〔水接触角〕
協和界面科学(株)製、全自動接触角計 Drop Masterシリーズ、装置名DM700を用いて、純水をサイズが22Gの針から液滴を作製し、被膜表面に着液した液滴を液滴法(θ/2法)で水接触角を算出した。
〔光学顕微鏡〕
装置:Nikon社製、装置名ECLIPSE E600 POL
光学顕微鏡は倍率が50倍で観察した。
〔電子顕微鏡〕
装置:(株)日立ハイテクノロジーズ社製、装置名S-4800
EXAMPLES Hereinafter, although an Example, a comparative example, etc. are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. In addition, each measuring apparatus used in the Example is as follows.
[GPC]
Equipment: HLC-8200 GPC manufactured by Tosoh Corporation
Column: Shodex KF-804L + KF-805L
Column temperature: 40 ° C
Solvent: Tetrahydrofuran (hereinafter THF)
Detector: UV (254 nm)
Calibration curve: Standard polystyrene [ 1 H-NMR]
Device: ECP300 manufactured by JEOL Ltd.
Solvent: heavy acetone [refractive index of coating / ellipsometer]
Apparatus: Multi-angle-of-incidence spectroscopic ellipsometer VASE manufactured by JA Woollam Japan
Measured at a wavelength of 450 nm.
[Ultraviolet visible spectrophotometer]
Apparatus: SHIMADSU UV-3600 manufactured by Shimadzu Corporation
[Refractive index of particles]
Apparatus: Multi-angle-of-incidence spectroscopic ellipsometer VASE manufactured by JA Woollam Japan
Measured at a wavelength of 450 nm.
The inorganic particles (B) are diluted with propylene glycol monomethyl ether so as to have a film thickness of 100 nm, spin-coated on a silicon substrate, heated on a hot plate at 100 ° C. for 1 minute, and then heated at 200 ° C. for 5 minutes. The refractive index of the heated film was measured.
[Average particle size]
Device: Beckman Coulter, device name N5
The dispersion of the inorganic particles (B) was diluted with the same solvent as the dispersion medium, and the particle size (Unimodal mode, intensity average particle size) of the dynamic light scattering method was measured.
[Spin coat]
Equipment: Tokyo Electron Co., Ltd., clean truck, equipment name ACT8
〔exposure〕
Equipment: Nikon Corporation, i-line stepper, equipment name NSR-2205i12D
[Water contact angle]
Using a fully automatic contact angle meter Drop Master series, device name DM700, manufactured by Kyowa Interface Science Co., Ltd., droplets were made from pure water using a 22G size needle, and then dropped onto the coating surface. The water contact angle was calculated by the method (θ / 2 method).
(Optical microscope)
Device: Nikon, device name ECLIPSE E600 POL
The optical microscope was observed at a magnification of 50 times.
〔electronic microscope〕
Apparatus: Hitachi High-Technologies Corporation, apparatus name S-4800
[合成例(1-1)]
 29.17gのテトラエトキシシラン、116.66gのプロピレングリコールモノメチルエーテル(PGMEと略す)を300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸10.09gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に116.66gのPGMEを加え、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGME溶液を得た。次いで、140℃における固形残物換算で14質量パーセントとなるようにPGMEを加え調整した。得られたポリマーは加水分解性シラン(a1)成分のみで構成されたポリシロキサン(pTEOSと略す)のワニスである。得られたpTEOSのGPCによる重量平均分子量はポリスチレン換算でMw1800であった。
[Synthesis Example (1-1)]
29.17 g of tetraethoxysilane and 116.66 g of propylene glycol monomethyl ether (abbreviated as PGME) were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.019 g of 0.01 mol / L hydrochloric acid. Was dropped into the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 116.66 g of PGME is added to the reaction solution, and ethanol, water, and hydrochloric acid as reaction byproducts are distilled off under reduced pressure, and concentrated to a PGME solution of hydrolysis condensate (polymer). Got. Subsequently, PGME was added and adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of polysiloxane (abbreviated as pTEOS) composed only of the hydrolyzable silane (a1) component. The weight average molecular weight by GPC of the obtained pTEOS was Mw1800 in terms of polystyrene.
[合成例(1-2)]
 29.17gのテトラエトキシシラン、10.70gのメチルトリエトキシシラン、159.46gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸13.33gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)の代わりに炭素原子数が1のメチル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TM73と略す)のワニスである。得られたTM73のGPCによる重量平均分子量はポリスチレン換算でMw1155であった。
[Synthesis Example (1-2)]
29.17 g of tetraethoxysilane, 10.70 g of methyltriethoxysilane, and 159.46 g of PGME were placed in a 300 ml flask, and 0.01 mol / L hydrochloric acid 13. 33 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer comprises 30 mol% hydrolyzable silane (a1) and 30 silane monomers having a methyl group having 1 carbon atom and three hydrolyzable groups instead of hydrolyzable silane (a2). It is a varnish of polysiloxane (abbreviated as TM73) which is hydrolyzed and copolymerized at a mole percent. The weight average molecular weight of the obtained TM73 by GPC was Mw1155 in terms of polystyrene.
[合成例(1-3)]
 29.17gのテトラエトキシシラン、11.54gのエチルトリエトキシシラン、162.82gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸13.33gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)の代わりに炭素原子数が2のエチル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TE73と略す)のワニスである。得られたTE73のGPCによる重量平均分子量はポリスチレン換算でMw1310であった。
[Synthesis Example (1-3)]
29.17 g of tetraethoxysilane, 11.54 g of ethyltriethoxysilane and 162.82 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid 13. 33 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer comprises 30 mol% of hydrolyzable silane (a1) and 30 silane monomers having an ethyl group having 2 carbon atoms and three hydrolyzable groups instead of hydrolyzable silane (a2). It is a varnish of polysiloxane (abbreviated as TE73) hydrolyzed and copolymerized at a mole percentage. The weight average molecular weight of the obtained TE73 by GPC was Mw1310 in terms of polystyrene.
[合成例(1-4)]
 29.17gのテトラエトキシシラン、9.86gのプロピルトリメトキシシラン、156.09gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸13.33gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が3のプロピル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TT73と略す)のワニスである。得られたTT73のGPCによる重量平均分子量はポリスチレン換算でMw1041であった。
[Synthesis Example (1-4)]
29.17 g of tetraethoxysilane, 9.86 g of propyltrimethoxysilane and 156.09 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 33 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and 30 mol% of a silane monomer having a propyl group having 3 carbon atoms and three hydrolyzable groups as the hydrolyzable silane (a2). Is a varnish of polysiloxane (abbreviated as TT73) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TT73 by GPC was Mw1041 in terms of polystyrene.
[合成例(1-5)]
 29.17gのテトラエトキシシラン、13.22gのイソブチルトリエトキシシラン、169.56gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸13.33gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TI73と略す)のワニスである。得られたTI73のGPCによる重量平均分子量はポリスチレン換算でMw1087であった。
[Synthesis Example (1-5)]
29.17 g of tetraethoxysilane, 13.22 g of isobutyltriethoxysilane, and 169.56 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 33 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and a silane monomer having 4 hydrolyzable isobutyl groups and 3 hydrolyzable groups as hydrolyzable silane (a2). Is a varnish of polysiloxane (abbreviated as TI73) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI73 by GPC was Mw1087 in terms of polystyrene.
[合成例(1-6)]
 29.17gのテトラエトキシシラン、12.38gのn-ヘキシルトリメトキシシラン、166.19gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸13.33gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が6のn-ヘキシル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TH73と略す)のワニスである。得られたTH73のGPCによる重量平均分子量はポリスチレン換算でMw1060であった。
[Synthesis Example (1-6)]
29.17 g of tetraethoxysilane, 12.38 g of n-hexyltrimethoxysilane, and 166.19 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 13.33 g was dripped at the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer was composed of 30 mol% of hydrolyzable silane (a1) and 30 hydrolyzable silane (a2), an n-hexyl group having 6 carbon atoms and a silane monomer having three hydrolyzable groups. It is a varnish of polysiloxane (abbreviated as TH73) hydrolyzed and copolymerized at a mole percentage. The weight average molecular weight of the obtained TH73 by GPC was Mw 1060 in terms of polystyrene.
[合成例(1-7)]
 29.17gのテトラエトキシシラン、3.43gのイソブチルトリエトキシシラン、130.38gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸10.93gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは90モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを10モル%の割合で加水分解し共重合したポリシロキサン(TI91と略す)のワニスである。得られたTI91のGPCによる重量平均分子量はポリスチレン換算でMw1237であった。
[Synthesis Example (1-7)]
29.17 g of tetraethoxysilane, 3.43 g of isobutyltriethoxysilane, and 130.38 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 93 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The polymer obtained was 90 mol% hydrolyzable silane (a1) and 10 mol% of a hydrolyzable silane (a2) having a silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups. Is a varnish of polysiloxane (abbreviated as TI91) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI91 by GPC was Mw1237 in terms of polystyrene.
[合成例(1-8)]
 29.17gのテトラエトキシシラン、7.71gのイソブチルトリエトキシシラン、147.52gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸11.98gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは80モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを20モル%の割合で加水分解し共重合したポリシロキサン(TI82と略す)のワニスである。得られたTI82のGPCによる重量平均分子量はポリスチレン換算でMw1235であった。
[Synthesis Example (1-8)]
29.17 g of tetraethoxysilane, 7.71 g of isobutyltriethoxysilane, and 147.52 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 98 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer was composed of 80 mol% hydrolyzable silane (a1) and 20 mol% of a hydrolyzable silane (a2) having a silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups. Is a varnish of polysiloxane (abbreviated as TI82) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI82 by GPC was Mw1235 in terms of polystyrene.
[合成例(1-9)]
 20.83gのテトラエトキシシラン、14.69gのイソブチルトリエトキシシラン、140.10gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸10.81gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは60モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを40モル%の割合で加水分解し共重合したポリシロキサン(TI64と略す)のワニスである。得られたTI64のGPCによる重量平均分子量はポリスチレン換算でMw1051であった。
[Synthesis Example (1-9)]
20.83 g of tetraethoxysilane, 14.69 g of isobutyltriethoxysilane, and 140.10 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 81 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer was composed of 60 mol% hydrolyzable silane (a1) and 40 mol% hydrolyzable silane (a2), a silane monomer having 4 isobutyl groups and 3 hydrolyzable groups. It is a varnish of polysiloxane (abbreviated as TI64) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI64 by GPC was Mw1051 in terms of polystyrene.
[合成例(1-10)]
 20.83gのテトラエトキシシラン、22.04gのイソブチルトリエトキシシラン、171.48gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸12.61gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは50モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを50モル%の割合で加水分解し共重合したポリシロキサン(TI55と略す)のワニスである。得られたTI55のGPCによる重量平均分子量はポリスチレン換算でMw1025であった。
[Synthesis Example (1-10)]
20.83 g of tetraethoxysilane, 22.04 g of isobutyltriethoxysilane, and 171.48 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid 12. 61 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer was 50 mol% hydrolyzable silane (a1) and 50 mol% of a hydrolyzable silane (a2) silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups. It is a varnish of polysiloxane (abbreviated as TI55) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI55 by GPC was Mw 1025 in terms of polystyrene.
[合成例(1-11)]
 16.67gのテトラエトキシシラン、26.45gのイソブチルトリエトキシシラン、172.45gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸12.25gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは40モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを60モル%の割合で加水分解し共重合したポリシロキサン(TI46と略す)のワニスである。得られたTI46のGPCによる重量平均分子量はポリスチレン換算でMw1015であった。
[Synthesis Example (1-11)]
16.67 g of tetraethoxysilane, 26.45 g of isobutyltriethoxysilane, and 172.45 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 25 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer was composed of 40 mol% hydrolyzable silane (a1) and 60 mol% hydrolyzable silane (a2), a silane monomer having an isobutyl group having 4 carbon atoms and three hydrolyzable groups. Is a varnish of polysiloxane (abbreviated as TI46) hydrolyzed and copolymerized at a ratio of The weight average molecular weight of the obtained TI46 by GPC was Mw1015 in terms of polystyrene.
[合成例(1-12)]
 合成例(1-5)で得たTI73を100℃のオイルバス中で9時間の加熱攪拌し、ポリスチレン換算でMw2097となったことを確認し、ポリシロキサン(TI73M1と略す)のワニスを得た。
[Synthesis Example (1-12)]
TI73 obtained in Synthesis Example (1-5) was heated and stirred in an oil bath at 100 ° C. for 9 hours to confirm that it became Mw2097 in terms of polystyrene, and a varnish of polysiloxane (abbreviated as TI73M1) was obtained. .
[合成例(1-13)]
 合成例(1-5)で得たTI73を100℃のオイルバス中で20時間の加熱攪拌し、ポリスチレン換算でMw3014となったことを確認し、ポリシロキサン(TI73M2と略す)のワニスを得た。
[Synthesis Example (1-13)]
The TI73 obtained in Synthesis Example (1-5) was heated and stirred in an oil bath at 100 ° C. for 20 hours to confirm that it became Mw3014 in terms of polystyrene, and a varnish of polysiloxane (abbreviated as TI73M2) was obtained. .
[合成例(1-14)]
 合成例(1-5)で得たTI73を100℃のオイルバス中で32時間の加熱攪拌し、ポリスチレン換算でMw4235となったことを確認し、ポリシロキサン(TI73M3と略す)のワニスを得た。
[Synthesis Example (1-14)]
The TI73 obtained in Synthesis Example (1-5) was heated and stirred for 32 hours in an oil bath at 100 ° C., and was confirmed to be Mw4235 in terms of polystyrene to obtain a varnish of polysiloxane (abbreviated as TI73M3). .
[合成例(1-15)]
 合成例(1-5)で得たTI73を100℃のオイルバス中で62時間の加熱攪拌し、ポリスチレン換算でMw6357となったことを確認し、ポリシロキサン(TI73M4と略す)のワニスを得た。
[Synthesis Example (1-15)]
The TI73 obtained in Synthesis Example (1-5) was heated and stirred in an oil bath at 100 ° C. for 62 hours to confirm that it became Mw6357 in terms of polystyrene, and a varnish of polysiloxane (abbreviated as TI73M4) was obtained. .
[合成例(1-16)]
 10.42gのテトラエトキシシラン、4.72gのイソブチルトリエトキシシラン、136.25gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸4.76gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TI73L1と略す)のワニスである。得られたTI73L1のGPCによる重量平均分子量はポリスチレン換算でMw760であった。
[Synthesis Example (1-16)]
10.42 g of tetraethoxysilane, 4.72 g of isobutyltriethoxysilane, and 136.25 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 76 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and a silane monomer having 4 hydrolyzable isobutyl groups and 3 hydrolyzable groups as hydrolyzable silane (a2). Is a varnish of polysiloxane (abbreviated as TI73L1) hydrolyzed and copolymerized at a ratio of The weight average molecular weight by GPC of the obtained TI73L1 was Mw 760 in terms of polystyrene.
[合成例(1-17)]
 5.21gのテトラエトキシシラン、2.36gのイソブチルトリエトキシシラン、143.82gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸2.38gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)として炭素原子数が4のイソブチル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TI73L2と略す)のワニスである。得られたTI73L2のGPCによる重量平均分子量はポリスチレン換算でMw652であった。
[Synthesis Example (1-17)]
5.21 g of tetraethoxysilane, 2.36 g of isobutyltriethoxysilane, and 143.82 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid. 38 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The polymer obtained was 30 mol% of 70 mol% hydrolyzable silane (a1) and a silane monomer having 4 hydrolyzable isobutyl groups and 3 hydrolyzable groups as hydrolyzable silane (a2). Is a varnish of polysiloxane (abbreviated as TI73L2) hydrolyzed and copolymerized at a ratio of The weight average molecular weight by GPC of the obtained TI73L2 was Mw652 in terms of polystyrene.
[合成例(1-18)]
 20.83gのテトラエトキシシラン、9.62gのn-オクチルトリメトキシシラン、121.80gのPGMEを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、100℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、合成例(1-1)と同様に操作し、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは70モル%の加水分解性シラン(a1)と、加水分解性シラン(a2)の代わりに炭素原子数が8のn-オクチル基と3つの加水分解性基を有するシランモノマーとを30モル%の割合で加水分解し共重合したポリシロキサン(TO73と略す)のワニスである。得られたTO73のGPCによる重量平均分子量はポリスチレン換算でMw998であった。
[Synthesis Example (1-18)]
20.83 g of tetraethoxysilane, 9.62 g of n-octyltrimethoxysilane and 121.80 g of PGME were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid. 9.52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 100 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the operation was performed in the same manner as in Synthesis Example (1-1), and the mixture was adjusted to 14 mass percent in terms of solid residue at 140 ° C. The obtained polymer was composed of 70 mol% hydrolyzable silane (a1), a silane monomer having an n-octyl group having 8 carbon atoms and three hydrolyzable groups instead of hydrolyzable silane (a2). Is a varnish of polysiloxane (abbreviated as TO73) which is hydrolyzed and copolymerized at a ratio of 30 mol%. The weight average molecular weight of the obtained TO73 by GPC was Mw998 in terms of polystyrene.
[合成例(2-1)]
 20.83gのテトラエトキシシラン、7.04gのn-プロピルトリメトキシシラン、111.49gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に111.49gのプロピレングリコールモノメチルエーテルアセテート(PGMEAと略す)を加え、反応副生物であるエタノール、メタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P1と略す)のワニスである。得られたP1のGPCによる重量平均分子量はポリスチレン換算でMw1541であった。
 P1のPGMEAワニスは140℃における固形残物換算で6質量パーセントとなるようにPGMEAを加え、1H-NMRを測定した。H-NMRの結果から、溶媒であるPGMEAのプロトンに帰属される5.1ppmのピークを1.00としたときに、ポリシロキサンのシラノール(Si-OH)に帰属される6.0ppm付近のピークが0.32となり、Si-OHが多く残留していることが確認された。重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-1)]
20.83 g of tetraethoxysilane, 7.04 g of n-propyltrimethoxysilane and 111.49 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid. 9.52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution was cooled to room temperature, 111.49 g of propylene glycol monomethyl ether acetate (abbreviated as PGMEA) was added to the reaction solution, and ethanol, methanol, water, hydrochloric acid and acetone as reaction by-products were distilled off under reduced pressure. Concentration gave a PGMEA solution of hydrolysis condensate (polymer). Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P1). The weight average molecular weight of the obtained P1 by GPC was Mw1541 in terms of polystyrene.
PGMEA was added so that the PGMEA varnish of P1 was 6 mass percent in terms of solid residue at 140 ° C., and 1H-NMR was measured. From the result of 1 H-NMR, when the peak of 5.1 ppm attributed to the proton of PGMEA as a solvent is set to 1.00, the peak around 6.0 ppm attributed to silanol (Si—OH) of the polysiloxane is observed. The peak was 0.32, confirming that a large amount of Si—OH remained. Table 1 shows the weight average molecular weight and the proton number ratio by 1 H-NMR.
[合成例(2-2)]
 20.83gのテトラエトキシシラン、9.44gのイソブチルトリエトキシシラン、121.11gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に121.11gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P2と略す)のワニスである。P2の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-2)]
20.83 g of tetraethoxysilane, 9.44 g of isobutyltriethoxysilane, and 121.11 g of acetone were put into a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 121.11 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer). A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P2). Table 1 shows the weight average molecular weight of P2 and the proton number ratio by 1 H-NMR.
[合成例(2-3)]
 20.83gのテトラエトキシシラン、8.84gのn-ヘキシルトリメトキシシラン、118.71gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に118.71gのPGMEAを加え、反応副生物であるエタノール、メタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P3と略す)のワニスである。P3の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-3)]
20.83 g of tetraethoxysilane, 8.84 g of n-hexyltrimethoxysilane and 118.71 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid. 9.52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 118.71 g of PGMEA is added to the reaction solution, and ethanol, methanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure, and concentrated to hydrolyzed condensate (polymer). ) PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolysis condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P3). Table 1 shows the weight average molecular weight of P3 and the proton number ratio by 1 H-NMR.
[合成例(2-4)]
 20.83gのテトラエトキシシラン、2.45gのイソブチルトリエトキシシラン、93.13gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸7.80gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に93.13gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P4と略す)のワニスである。P4の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-4)]
20.83 g of tetraethoxysilane, 2.45 g of isobutyltriethoxysilane, and 93.13 g of acetone were put into a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 80 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 93.13 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer). A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P4). Table 1 shows the weight average molecular weight of P4 and the proton number ratio by 1 H-NMR.
[合成例(2-5)]
 12.50gのテトラエトキシシラン、13.22gのイソブチルトリエトキシシラン、102.89gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸7.56gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に102.89gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P5と略す)のワニスである。P5の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-5)]
12.50 g of tetraethoxysilane, 13.22 g of isobutyltriethoxysilane and 102.89 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 56 g was dripped at the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 102.89 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer). A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolysis condensate (polysiloxane), and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P5). Table 1 shows the weight average molecular weight of P5 and the proton number ratio by 1 H-NMR.
[合成例(2-6)]
 5.21gのテトラエトキシシラン、2.36gのイソブチルトリエトキシシラン、118.59gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸2.38gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に118.59gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P6と略す)のワニスである。P6の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-6)]
5.21 g of tetraethoxysilane, 2.36 g of isobutyltriethoxysilane and 118.59 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid was added. 38 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 118.59 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer). A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P6). Table 1 shows the weight average molecular weight of P6 and the proton number ratio by 1 H-NMR.
[合成例(2-7)]
 20.83gのテトラエトキシシラン、83.33gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸7.20gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に83.33gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P7と略す)のワニスである。P7の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-7)]
20.83 g of tetraethoxysilane and 83.33 g of acetone were placed in a 300 ml flask, and 7.20 g of 0.01 mol / L hydrochloric acid was added dropwise to the mixed solution while stirring the mixed solution with a magnetic stirrer. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 83.33 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid and acetone as reaction by-products are distilled off under reduced pressure, and concentrated to obtain a hydrolysis-condensation product (polymer). A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P7). Table 1 shows the weight average molecular weight of P7 and the proton number ratio by 1 H-NMR.
[合成例(2-8)]
 10.42gのテトラエトキシシラン、16.53gのイソブチルトリエトキシシラン、107.78gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸7.65gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に107.78gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P8と略す)のワニスである。P8の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-8)]
10.42 g of tetraethoxysilane, 16.53 g of isobutyltriethoxysilane, and 107.78 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 65 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 107.78 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer) A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P8). Table 1 shows the weight average molecular weight of P8 and the proton number ratio by 1 H-NMR.
[合成例(2-9)]
 合成例2で得たP2を100℃のオイルバス中で22時間の加熱攪拌し、ポリスチレン換算でMw3401となったことを確認し、ポリシロキサン(P9と略す)のワニスを得た。P9の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-9)]
P2 obtained in Synthesis Example 2 was heated and stirred in an oil bath at 100 ° C. for 22 hours to confirm that it became Mw 3401 in terms of polystyrene, and a varnish of polysiloxane (abbreviated as P9) was obtained. Table 1 shows the weight average molecular weight of P9 and the proton number ratio by 1 H-NMR.
[合成例(2-10)]
 合成例2で得たP2を100℃のオイルバス中で35時間の加熱攪拌し、ポリスチレン換算でMw4545となったことを確認し、ポリシロキサン(P10と略す)のワニスを得た。P10の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-10)]
P2 obtained in Synthesis Example 2 was heated and stirred in an oil bath at 100 ° C. for 35 hours to confirm that it became Mw4545 in terms of polystyrene, and a polysiloxane (abbreviated as P10) varnish was obtained. Table 1 shows the weight average molecular weight of P10 and the proton number ratio by 1 H-NMR.
[合成例(2-11)]
 20.83gのテトラエトキシシラン、7.64gのメチルトリエトキシシラン、113.90gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に113.90gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P11と略す)のワニスである。P11の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-11)]
20.83 g of tetraethoxysilane, 7.64 g of methyltriethoxysilane, and 113.90 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 113.90 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid and acetone as reaction by-products are distilled off under reduced pressure, and concentrated to obtain a hydrolysis-condensation product (polymer). A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P11). Table 1 shows the weight average molecular weight of P11 and the proton number ratio by 1 H-NMR.
[合成例(2-12)]
 20.83gのテトラエトキシシラン、8.24gのエチルトリエトキシシラン、116.30gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に116.30gのPGMEAを加え、反応副生物であるエタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P12と略す)のワニスである。P12の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-12)]
20.83 g of tetraethoxysilane, 8.24 g of ethyltriethoxysilane, and 116.30 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer to 0.01 mol / L hydrochloric acid. 52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 116.30 g of PGMEA is added to the reaction solution, and ethanol, water, hydrochloric acid, and acetone as reaction by-products are distilled off under reduced pressure and concentrated to obtain a hydrolysis-condensation product (polymer). A PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolysis condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P12). Table 1 shows the weight average molecular weight of P12 and the proton number ratio by 1 H-NMR.
[合成例(2-13)]
 20.83gのテトラエトキシシラン、8.24gのn-オクチルトリメトキシシラン、123.47gのアセトンを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に123.47gのPGMEAを加え、反応副生物であるエタノール、メタノール、水、塩酸、アセトンを減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物(A)のワニスであり、完全加水分解型のポリシロキサン(P13と略す)のワニスである。P13の重量平均分子量及び1H-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-13)]
20.83 g of tetraethoxysilane, 8.24 g of n-octyltrimethoxysilane and 123.47 g of acetone were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid. 9.52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 123.47 g of PGMEA is added to the reaction solution, and ethanol, methanol, water, hydrochloric acid, and acetone as reaction byproducts are distilled off under reduced pressure, and concentrated to hydrolyzed condensate (polymer). ) PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound (A) containing a hydrolyzed condensate (polysiloxane) and a varnish of a completely hydrolyzed polysiloxane (abbreviated as P13). Table 1 shows the weight average molecular weight of P13 and the proton number ratio by 1H-NMR.
[合成例(2-14)]
 20.83gのテトラエトキシシラン、7.04gのn-プロピルトリメトキシシラン111.49gのエタノールを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に111.49gのPGMEAを加え、溶媒であるエタノール、反応副生物であるエタノール、メタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)のPGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物のワニスであり、部分加水分解型のポリシロキサン(P14と略す)のワニスである。得られたP14のGPCによる重量平均分子量はポリスチレン換算でMw1520であった。
 P14のPGMEAワニスは140℃における固形残物換算で6質量パーセントとなるようにPGMEAを加え、1H-NMRを測定した。
 1H-NMRの結果から、溶媒であるPGMEAのプロトンに帰属される5.1ppmのピークを1.00としたときに、ポリシロキサンのシラノール(Si-OH)に帰属される6.0ppm付近のピークが0.06となり、Si-OHが非常に少ないことが確認された。
[Synthesis Example (2-14)]
20.83 g of tetraethoxysilane and 7.04 g of n-propyltrimethoxysilane 111.49 g of ethanol were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 0.01 mol / L hydrochloric acid 9 .52 g was added dropwise to the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 111.49 g of PGMEA is added to the reaction solution, ethanol as a solvent, ethanol, methanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to hydrolytic condensation. A PGMEA solution of the product (polymer) was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound containing a hydrolysis condensate (polysiloxane) and a varnish of a partially hydrolyzed polysiloxane (abbreviated as P14). The weight average molecular weight of the obtained P14 by GPC was Mw1520 in terms of polystyrene.
PGMEA was added to PGMEA varnish of P14 at 6 mass percent in terms of solid residue at 140 ° C., and 1H-NMR was measured.
From the result of 1H-NMR, when the peak of 5.1 ppm attributed to the proton of PGMEA as a solvent is taken as 1.00, the peak around 6.0 ppm attributed to silanol (Si—OH) of polysiloxane Was 0.06, and it was confirmed that Si—OH was very small.
[合成例(2-15)]
 20.83gのテトラエトキシシラン、9.44gのイソブチルトリメトキシシラン121.11gのエタノールを300mlのフラスコに入れ、混合溶液をマグネチックスターラーにて撹拌しながら0.01モル/Lの塩酸9.52gを混合溶液に滴下した。添加後、85℃に調整されたオイルバスにフラスコを移し、加温還流下で240分間反応させた。その後、反応溶液を室温まで冷却し、反応溶液に121.11gのPGMEAを加え、溶媒であるエタノール、反応副生物であるエタノール、水、塩酸を減圧留去し、濃縮して加水分解縮合物(ポリマー)PGMEA溶液を得た。さらにPGMEAを加え、140℃における固形残物換算で14質量パーセントとなるように調整した。得られたポリマーは加水分解縮合物(ポリシロキサン)を含むケイ素化合物のワニスであり、部分加水分解型のポリシロキサン(P15と略す)のワニスである。P15の重量平均分子量及びH-NMRによるプロトン数比率を表1に示す。
[Synthesis Example (2-15)]
20.83 g of tetraethoxysilane and 9.44 g of isobutyltrimethoxysilane 121.11 g of ethanol were placed in a 300 ml flask, and the mixed solution was stirred with a magnetic stirrer and 9.52 g of 0.01 mol / L hydrochloric acid was stirred. Was dropped into the mixed solution. After the addition, the flask was transferred to an oil bath adjusted to 85 ° C., and reacted for 240 minutes under heating and reflux. Thereafter, the reaction solution is cooled to room temperature, 121.11 g of PGMEA is added to the reaction solution, ethanol as a solvent, ethanol, water and hydrochloric acid as reaction by-products are distilled off under reduced pressure, and concentrated to a hydrolysis-condensation product ( Polymer) PGMEA solution was obtained. Furthermore, PGMEA was added, and it adjusted so that it might become 14 mass% in conversion of the solid residue in 140 degreeC. The obtained polymer is a varnish of a silicon compound containing a hydrolysis condensate (polysiloxane), and a varnish of a partially hydrolyzed polysiloxane (abbreviated as P15). Table 1 shows the weight average molecular weight of P15 and the proton number ratio by 1 H-NMR.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[製造例1]
ジルコニア分散液;アルコキシシランにより表面処理されたジルコニア粒子を30.5質量%含むプロピレングリコールモノメチルエーテル分散液(B1と略す)(日産化学工業(株)製)
製造例1で得た無機粒子ゾルの各物性値を表2に示す。
[Production Example 1]
Zirconia dispersion; Propylene glycol monomethyl ether dispersion (abbreviated as B1) containing 30.5% by mass of zirconia particles surface-treated with alkoxysilane (manufactured by Nissan Chemical Industries, Ltd.)
Table 2 shows physical property values of the inorganic particle sol obtained in Production Example 1.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<膜形成組成物(1)および被膜の作製>
[実施例(1-1)]
 50mLナス型フラスコに製造例1で得られた6.5000gのB1を秤量し、次いで、23.8851gのPGMEを加え、合成例(1-4)で得た4.9563gのTT73(B1の固形分に対して、ポリシロキサンの固形分が35質量%)を加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGMEで希釈し1質量%とした溶液0.3965gを加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(1-1)と略す)を得た。
 得られたV(1-1)はパターニング特性を評価した。V(1-1)はヘキサメチルジシラザン(HMDS)で処理した8inchのシリコン基板に膜厚が100nmとなるように東京エレクトロン(株)製 クリーントラック ACT8を用いてスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行った。次いで、得られたV(1-1)の被膜の上からAZ3100(AZ ELECTRONIC MATERIALS社製)を膜厚が1.5μmとなるようにスピンコートし、ホットプレートを用いて、100℃1分間で加熱を行った。その後、(株)ニコン製 i線ステッパー NSR-2205i12Dを用いて300mJ/cmの露光量をマスク越しに光照射した。光照射後、2.38質量%のテトラメチルアンモニウムハイドライド(TMAHと略す)を用いて30秒現像し、純水リンス1分後、エアーで乾燥させた。さらに、感光性レジストをPGMEに2分浸漬させ、レジストを剥離し、Line:Spaceが1:1の5μmの箇所を光学顕微鏡で観察した。光学顕微鏡で観察した結果、Line:Spaceが1:1の5μm付近になっている例を○、Line:Spaceが1:1の5μmから離れている例若しくは残膜している例を×と評価した。光学顕微鏡で観察した結果を図1に示す。
 また、Line:Spaceが1:1の5μmの箇所において、Space部分を電子顕微鏡を用いてパターンのトップ方向から測長した。測長した結果、Space部分の幅は5.15μmであった。ここでSpace部分はアルカリ現像液に溶解する部分であり、5μmに近ければ近いほど、良好にパターンが形成できていることを示している。
 得られたV(1-1)は耐熱屈折率を評価した。シリコン基板上にV(1-1)の膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行った。加熱後、450nmの屈折率を測定した。次いで、ホットプレートで300℃1時間加熱を行い、450nmの屈折率を測定後、300℃加熱前後の屈折率を比較した。屈折率の比較の結果を表3に示す。
 得られたV(1-1)は水接触角を測定した。シリコン基板上にV(1-1)の膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行い、次いで、100℃1分間で加熱を行った。このホットプレートにおける2段階加熱は感光性レジストを塗布し、乾燥することを踏まえたアルカリ現像前の熱履歴を再現した加熱条件である。
 得られた被膜は協和界面科学(株)製 全自動接触角計 Drop Masterシリーズ DM700を用いて、純水をサイズが22Gの針から液滴を作製し、被膜表面に着液した液滴を液滴法(θ/2法)で水接触角を算出した。その結果を表3に示す。
<Production of Film-Forming Composition (1) and Film>
[Example (1-1)]
6.5000 g of B1 obtained in Production Example 1 was weighed into a 50 mL eggplant-shaped flask, then 23.8851 g of PGME was added, and 4.9563 g of TT73 (B1 solid matter obtained in Synthesis Example (1-4)) was added. A solid solution of polysiloxane of 35% by mass) was added, and R-30-N manufactured by Dainippon Ink & Chemicals, Inc. as a surfactant was diluted with PGME to obtain 1% by mass. 3965 g was added and mixed until it became completely uniform at room temperature to obtain a varnish (abbreviated as V (1-1)) having a total solid content of 7.5% by mass.
The obtained V (1-1) was evaluated for patterning characteristics. V (1-1) was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Ltd., and a hot plate was used. Then, heating was performed at 150 ° C. for 1 minute. Next, AZ3100 (manufactured by AZ ELECTRONIC MATERIALS) was spin-coated on the obtained V (1-1) film so as to have a film thickness of 1.5 μm, and using a hot plate at 100 ° C. for 1 minute. Heating was performed. Thereafter, using an i-line stepper NSR-2205i12D manufactured by Nikon Corporation, an exposure dose of 300 mJ / cm 2 was irradiated through the mask. After light irradiation, development was performed for 30 seconds using 2.38 mass% tetramethylammonium hydride (abbreviated as TMAH), and after 1 minute of pure water rinse, the film was dried with air. Furthermore, the photosensitive resist was immersed in PGME for 2 minutes, the resist was peeled off, and the 5 μm portion where Line: Space was 1: 1 was observed with an optical microscope. As a result of observation with an optical microscope, an example in which Line: Space is close to 5 μm of 1: 1 is evaluated as ○, an example in which Line: Space is 1: 1 from 5 μm, or an example in which the remaining film is left is evaluated as ×. did. The results observed with an optical microscope are shown in FIG.
In addition, at the 5 μm portion where Line: Space is 1: 1, the Space portion was measured from the top direction of the pattern using an electron microscope. As a result of the measurement, the width of the Space portion was 5.15 μm. Here, the space portion is a portion that dissolves in the alkaline developer, and the closer to 5 μm, the better the pattern can be formed.
The obtained V (1-1) was evaluated for heat resistant refractive index. A silicon substrate was spin-coated so that the film thickness of V (1-1) was 100 nm, and heated at 150 ° C. for 1 minute using a hot plate. After heating, the refractive index at 450 nm was measured. Next, heating was performed at 300 ° C. for 1 hour using a hot plate, and after measuring the refractive index at 450 nm, the refractive indexes before and after heating at 300 ° C. were compared. Table 3 shows the results of the refractive index comparison.
The obtained V (1-1) was measured for water contact angle. A silicon substrate was spin-coated so that the film thickness of V (1-1) was 100 nm, and heated using a hot plate at 150 ° C. for 1 minute, and then heated at 100 ° C. for 1 minute. The two-step heating in this hot plate is a heating condition that reproduces the thermal history before alkali development in consideration of applying a photosensitive resist and drying.
Using the fully automatic contact angle meter Drop Master series DM700 manufactured by Kyowa Interface Science Co., Ltd., the resulting coating was made from pure water using a 22G size needle, and the droplet deposited on the coating surface was removed. The water contact angle was calculated by the drop method (θ / 2 method). The results are shown in Table 3.
[実施例(1-2)]
 実施例(1-1)のTT73を合成例(1-5)で得たTI73に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。パターンの光学顕微鏡観察した結果を図2に示す。
 また、Line:Spaceが1:1の5μmの箇所において、Space部分を電子顕微鏡を用いてパターンのトップ方向から測長した。測長した結果、Space部分の幅は5.12μmであった。
[Example (1-2)]
The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI73 obtained in Synthesis Example (1-5), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3. The result of the optical microscope observation of the pattern is shown in FIG.
In addition, at the 5 μm portion where Line: Space is 1: 1, the Space portion was measured from the top direction of the pattern using an electron microscope. As a result of measurement, the width of the space portion was 5.12 μm.
[実施例(1-3)]
 実施例(1-1)のTT73を合成例(1-6)で得たTH73に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。パターンの光学顕微鏡観察した結果を図3に示す。
 また、Line:Spaceが1:1の5μmの箇所において、Space部分を電子顕微鏡を用いてパターンのトップ方向から測長した。測長した結果、Space部分の幅は5.12μmであった。
[Example (1-3)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TH73 obtained in Synthesis Example (1-6). It was measured. The results are shown in Table 3. The result of optical microscope observation of the pattern is shown in FIG.
In addition, at the 5 μm portion where Line: Space is 1: 1, the Space portion was measured from the top direction of the pattern using an electron microscope. As a result of measurement, the width of the space portion was 5.12 μm.
[実施例(1-4)]
 実施例(1-1)のTT73を合成例(1-7)で得たTI91に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Example (1-4)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI91 obtained in Synthesis Example (1-7), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
[実施例(1-5)]
 実施例(1-1)のTT73を合成例(1-8)で得たTI82に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Example (1-5)]
The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI82 obtained in Synthesis Example (1-8), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
[実施例(1-6)]
 実施例(1-1)のTT73を合成例(1-9)で得たTI64に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Example (1-6)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI64 obtained in Synthesis Example (1-9), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
[実施例(1-7)]
 実施例(1-1)のTT73を合成例(1-10)で得たTI55に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Example (1-7)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI55 obtained in Synthesis Example (1-10), and the alkali developability, heat resistance and water contact angle were It was measured. The results are shown in Table 3.
[実施例(1-8)]
 実施例(1-1)のTT73を合成例(1-12)で得たTI73M1に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。パターンの光学顕微鏡観察した結果を図4に示す。
 また、Line:Spaceが1:1の5μmの箇所において、Space部分を電子顕微鏡を用いてパターンのトップ方向から測長した。測長した結果、Space部分の幅は5.15μmであった。
[Example (1-8)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73M1 obtained in Synthesis Example (1-12), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3. The result of observing the pattern with an optical microscope is shown in FIG.
In addition, at the 5 μm portion where Line: Space is 1: 1, the Space portion was measured from the top direction of the pattern using an electron microscope. As a result of the measurement, the width of the Space portion was 5.15 μm.
[実施例(1-9)]
 実施例(1-1)のTT73を合成例(1-13)で得たTI73M2に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Example (1-9)]
The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI73M2 obtained in Synthesis Example (1-13), and the alkali developability, heat resistance, and water contact angle were It was measured. The results are shown in Table 3.
[実施例(1-10)]
 実施例(1-1)のTT73を合成例(1-16)で得たTI73L1に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Example (1-10)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73L1 obtained in Synthesis Example (1-16), and the alkali developability, heat resistance, and water contact angle were It was measured. The results are shown in Table 3.
[実施例(1-11)]
 実施例(1-1)のTT73を合成例(1-11)で得たTI46に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Example (1-11)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI46 obtained in Synthesis Example (1-11), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
[比較例(1-1)]
 実施例(1-1)のTT73を合成例(1-1)で得たpTEOSに置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。パターンの光学顕微鏡観察した結果を図5に示す。
[Comparative Example (1-1)]
The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with pTEOS obtained in Synthesis Example (1-1), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3. The result of the optical microscope observation of the pattern is shown in FIG.
[比較例(1-2)]
 実施例(1-1)のTT73を合成例(1-2)で得たTM73に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Comparative Example (1-2)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TM73 obtained in Synthesis Example (1-2), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
[比較例(1-3)]
 実施例(1-1)のTT73を合成例(1-3)で得たTE73に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Comparative Example (1-3)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TE73 obtained in Synthesis Example (1-3), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
[比較例(1-4)]
 実施例(1-1)のTT73を合成例(1-14)で得たTI73M3に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Comparative Example (1-4)]
The same procedure as in Example (1-1) was conducted except that TT73 in Example (1-1) was replaced with TI73M3 obtained in Synthesis Example (1-14), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. The results are shown in Table 3.
[比較例(1-5)]
 実施例(1-1)のTT73を合成例(1-15)で得たTI73M4に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。パターンの光学顕微鏡観察した結果を図6に示す。
[Comparative Example (1-5)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73M4 obtained in Synthesis Example (1-15). The alkali developability, heat resistance, and water contact angle were It was measured. The results are shown in Table 3. The result of the optical microscope observation of the pattern is shown in FIG.
[比較例(1-6)]
 実施例(1-1)のTT73を合成例(1-17)で得たTI73L2に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。TI73L2を用いて得られたスピンコート膜は放射線状の塗布ムラが目視で確認できるほど著しく発現しており、製膜性が悪いことが分かった。
[Comparative Example (1-6)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TI73L2 obtained in Synthesis Example (1-17), and the alkali developability, heat resistance, and water contact angle were adjusted. It was measured. It was found that the spin coat film obtained using TI73L2 was remarkably developed so that radial coating unevenness could be visually confirmed, and the film forming property was poor.
[比較例(1-7)]
 実施例(1-1)のTT73を合成例(1-18)で得たTO73に置き換えた以外は実施例(1-1)と同様に操作し、アルカリ現像性、耐熱性、水接触角を測定した。その結果を表3に示す。
[Comparative Example (1-7)]
The same procedure as in Example (1-1) was performed except that TT73 in Example (1-1) was replaced with TO73 obtained in Synthesis Example (1-18). It was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3の結果について、実施例(1-1)乃至実施例(1-11)及び比較例(1-1)乃至比較例(1-7)を比較する。 The results of Table 3 are compared between Example (1-1) to Example (1-11) and Comparative Example (1-1) to Comparative Example (1-7).
 実施例(1-1)乃至実施例(1-11)及び比較例(1-2)乃至比較例(1-3)は、比較例(1-4)乃至比較例(1-5)及び比較例(1-7)と比較して、10μm以下である5μmのパターニングを見たアルカリ現像性が良好なことが分かった。 Examples (1-1) through (1-11) and Comparative Examples (1-2) through (1-3) are compared with Comparative Examples (1-4) through (1-5) and Comparative Examples. Compared to Example (1-7), it was found that the alkali developability was better when patterning of 5 μm which was 10 μm or less was observed.
 実施例(1-11)は重量平均分子量が700乃至4000の範囲内であるものの、ケイ素化合物(A)を構成する加水分解性シラン(a1)が40モル%、加水分解性シラン(a2)が60モル%で共重合された組成であるが、水接触角が若干好ましい範囲を外れるが、用途によっては使用可能である。 In Example (1-11), although the weight average molecular weight is in the range of 700 to 4000, the hydrolyzable silane (a1) constituting the silicon compound (A) is 40 mol%, and the hydrolyzable silane (a2) is Although the composition is copolymerized at 60 mol%, the water contact angle is slightly outside the preferred range, but it can be used depending on the application.
 比較例(1-4)及び比較例(1-5)はケイ素化合物(A)を構成する加水分解性シラン(a1)が70モル%、加水分解性シラン(a2)が30モル%で共重合された重合割合が範囲内の組成であるものの、重量平均分子量が700乃至4000の範囲外である。 Comparative Example (1-4) and Comparative Example (1-5) were copolymerized with 70 mol% of hydrolyzable silane (a1) constituting the silicon compound (A) and 30 mol% of hydrolyzable silane (a2). The polymerization rate is within the range, but the weight average molecular weight is outside the range of 700 to 4000.
 比較例(1-7)は重量平均分子量が700乃至4000の範囲内で、且つ、ケイ素化合物(A)を構成する加水分解性シラン(a1)が70モル%、加水分解性シラン(a2)が30モル%で共重合された重合割合が範囲内であるものの、加水分解性シラン(a2)のLが炭素原子数8のアルキル基であり、炭素原子数3~6の直鎖、分岐又は環状のアルキル基の範囲外である。 Comparative Example (1-7) has a weight average molecular weight in the range of 700 to 4000, 70 mol% of hydrolyzable silane (a1) constituting silicon compound (A), and hydrolyzable silane (a2). Although the polymerization ratio copolymerized at 30 mol% is within the range, L of the hydrolyzable silane (a2) is an alkyl group having 8 carbon atoms and is a straight, branched or cyclic group having 3 to 6 carbon atoms Is outside the range of the alkyl group.
 実施例(1-1)乃至実施例(1-11)及び比較例(1-1)及び比較例(1-4)乃至(1-5)及び比較例(1-7)は、比較例(1-2)及び比較例(1-3)と比較して、屈折率の熱時変化が良好なことがわかった。 Examples (1-1) to (1-11), Comparative Example (1-1), Comparative Examples (1-4) to (1-5) and Comparative Example (1-7) are comparative examples ( Compared with 1-2) and Comparative Example (1-3), it was found that the refractive index change during heating was good.
 比較例(1-2)及び比較例(1-3)は加水分解性シラン(a2)のLが炭素原子数1及び2のアルキル基であり、炭素原子数3~6の直鎖、分岐又は環状のアルキル基の範囲外である。屈折率が熱時で低下する現象はLが炭素原子数1及び2のケイ素化合物(A)を用いた場合、ポリマー中でリングとなった低分子化合物が熱時に昇華し、空気層となることに起因していると考えられる。空気は屈折率が1.0のため、膜中に空気層が混入した場合、膜の屈折率は低下することが知られている。 In Comparative Example (1-2) and Comparative Example (1-3), L of the hydrolyzable silane (a2) is an alkyl group having 1 and 2 carbon atoms, and is a straight chain, branched or branched group having 3 to 6 carbon atoms. It is outside the range of the cyclic alkyl group. The phenomenon that the refractive index decreases when heated is that when L is a silicon compound (A) having 1 and 2 carbon atoms, the low molecular weight compound that forms a ring in the polymer sublimes when heated and forms an air layer. It is thought to be caused by Since air has a refractive index of 1.0, it is known that the refractive index of a film decreases when an air layer is mixed in the film.
 実施例(1-1)乃至実施例(1-11)及び比較例(1-1)乃至比較例(1-7)の水接触角を比較する。実施例(1-1)乃至実施例(1-10)は協和界面科学(株)製、全自動接触角計 Drop Masterシリーズ DM700を用いて、純水をサイズが22Gの針から液滴を作製し、被膜表面に着液した液滴を液滴法(θ/2法)で算出した水の接触角が60°乃至80°であり、範囲内である。比較例(1-2)、比較例(1-3)、比較例(1-4)及び比較例(1-5)は水の接触角が60°乃至80°であり、範囲内であるものの、屈折率の熱時変化が不良であったり、10μm以下である5μmのパターニングを見たアルカリ現像性が不良であったりと、目的とする被膜として性能不足である。 The water contact angles of Example (1-1) to Example (1-11) and Comparative Example (1-1) to Comparative Example (1-7) are compared. In Examples (1-1) to (1-10), droplets were made from pure water using a 22 G size needle using a fully automatic contact angle meter Drop Master series DM700 manufactured by Kyowa Interface Science Co., Ltd. Then, the contact angle of water calculated by the droplet method (θ / 2 method) for the droplets deposited on the surface of the coating is in the range of 60 ° to 80 °. In Comparative Example (1-2), Comparative Example (1-3), Comparative Example (1-4) and Comparative Example (1-5), the contact angle of water is 60 ° to 80 °, which is within the range. When the refractive index changes with heat or when the alkali developability is poor when the patterning of 5 μm which is 10 μm or less is seen, the performance as a target film is insufficient.
 本発明では<膜形成組成物(1)および被膜の作製>による表3に示す結果で、高屈折率を有し、高透明性、高耐熱性、高耐光性、高硬度を達成し得る表示デバイス用膜作製に好適な膜形成組成物及びパターン形成方法とすることができるが、使用する用途によっては更にレベルの高いパターンング特性やレジスト膜剥離後の膜荒れ防止特性、エージング特性を必要とする用途がある。例えば、[1]ケイ素化合物(A)が加水分解性シランを非アルコール溶剤中で加水分解し縮合して得られるものを使用、[2]硬化触媒(D)を使用、[3]ジケトン化合物(E)を使用、[4]水(F)及び酸(G)を使用することにより、<膜形成組成物(2)および被膜の作製>、<膜形成組成物(3)および被膜の作製>、<膜形成組成物(4)および被膜の作製>に示す結果により上記用途へ適用することができることを以下に示した。 In the present invention, the results shown in Table 3 according to <Production of film-forming composition (1) and coating film> have a high refractive index and can achieve high transparency, high heat resistance, high light resistance, and high hardness. Although it can be a film forming composition and pattern forming method suitable for device film preparation, depending on the application to be used, higher level patterning characteristics, film roughening prevention characteristics after resist film peeling, and aging characteristics are required. There are uses to do. For example, [1] silicon compound (A) obtained by hydrolyzing and condensing hydrolyzable silane in a non-alcohol solvent, [2] using curing catalyst (D), [3] diketone compound ( E), [4] By using water (F) and acid (G), <Preparation of film-forming composition (2) and film>, <Preparation of film-forming composition (3) and film> The results shown in <Film-forming composition (4) and production of coating film> have shown below that it can be applied to the above applications.
<膜形成組成物(2)および被膜の作製>
[実施例(2-1)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、10.9446gのプロピレングリコールモノエチルエーテル(PGEEと略す)を加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてベンジルトリエチルアンモニウムクロライド(BTEACと略す)をPGEEで希釈し1質量%とした溶液0.0915gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(2-1)と略す)を得た。
<Production of Film-Forming Composition (2) and Film>
[Example (2-1)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 10.9446 g of propylene glycol monoethyl ether (abbreviated as PGEE) was added to obtain Synthesis Example (2-1). 2.2875 g of P1 (the solid content of polysiloxane is 35% by mass with respect to the solid content of B1), and benzyltriethylammonium chloride (abbreviated as BTEAC) as a curing catalyst (D) was diluted with PGEE to 1% by mass. 0.0915 g of the solution was added, and 0.1830 g of a solution prepared by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc. with PGEE as a surfactant to 1% by mass was added, and the solution became completely uniform at room temperature. To obtain a varnish (abbreviated as V (2-1)) having a total solid content of 7.5% by mass.
[実施例(2-2)]
実施例(2-1)のP1を合成例(2-2)で得たP2に置き換えた以外は実施例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(2-2)と略す)を得た。
[Example (2-2)]
The same operation as in Example (2-1) was conducted except that P1 in Example (2-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-2)) was obtained.
[実施例(2-3)]
実施例(2-1)のP1を合成例(2-3)で得たP3に置き換えた以外は実施例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(2-3)と略す)を得た。
[Example (2-3)]
The same operation as in Example (2-1) was performed except that P1 in Example (2-1) was replaced with P3 obtained in Synthesis Example (2-3), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-3)) was obtained.
[実施例(2-4)]
実施例(2-1)のP1を合成例(2-4)で得たP4に置き換えた以外は実施例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(2-4)と略す)を得た。
[Example (2-4)]
The same operation as in Example (2-1) was conducted except that P1 in Example (2-1) was replaced with P4 obtained in Synthesis Example (2-4), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-4)) was obtained.
[実施例(2-5)]
実施例(2-1)のP1を合成例(2-5)で得たP5に置き換えた以外は実施例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(2-5)と略す)を得た。
[Example (2-5)]
The same operation as in Example (2-1) was conducted except that P1 in Example (2-1) was replaced with P5 obtained in Synthesis Example (2-5), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-5)) was obtained.
[実施例(2-6)]
実施例(2-1)のP1を合成例(2-6)で得たP6に置き換えた以外は実施例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(2-6)と略す)を得た。
[Example (2-6)]
The same operation as in Example (2-1) was performed except that P1 in Example (2-1) was replaced with P6 obtained in Synthesis Example (2-6), so that the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (2-6)).
[実施例(2-7)]
実施例(2-1)のP1を合成例(2-9)で得たP9に置き換えた以外は実施例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(2-7)と略す)を得た。
[Example (2-7)]
The same operation as in Example (2-1) was performed except that P1 in Example (2-1) was replaced with P9 obtained in Synthesis Example (2-9), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (2-7)) was obtained.
[実施例(2-8)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、9.4379gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液1.8300gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(2-8)と略す)を得た。
[Example (2-8)]
Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 9.4379 g of PGEE, and adding 2.2875 g of P2 (B1 solid matter obtained in Synthesis Example (2-2)). The solid content of the polysiloxane was 35% by mass), and 1.8300 g of a BTEAC diluted with PGEE as a curing catalyst (D) to 1% by mass was added, and Dainippon Ink & Chemicals, Ltd. as a surfactant ( 0.1830 g of R-30-N manufactured by Co., Ltd. diluted to 1% by mass with PGEE was added and mixed until complete homogeneity at room temperature, and varnish with a total solid content of 7.5% by mass (Abbreviated as V (2-8)).
[実施例(2-9)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、10.9446gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてベンジルトリメチルアンモニウムクロライド(BTMACと略す)をPGEEで希釈し1質量%とした溶液0.0915gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(2-9)と略す)を得た。
[Example (2-9)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 10.94446 g of PGEE was added, and 2.2875 g of P2 (solid of B1 obtained in Synthesis Example (2-2) was added. The polysiloxane solid content was 35% by mass), 0.0915 g of benzyl trimethylammonium chloride (abbreviated as BTMAC) as a curing catalyst (D) was diluted with PGEE to 1% by mass, and the surface activity was added. Add 0.1830g of R-30-N manufactured by Dainippon Ink & Chemicals, Inc. as a solubilizer and dilute with PGEE to make 1% by mass. Of varnish (abbreviated as V (2-9)) was obtained.
[参考例(2-1)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、11.0239gのPGEEを加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、室温で完全に均一になるまで混合し、硬化触媒が加わっていない固形分の総質量が7.5質量%のワニス(RV(2-1)と略す)を得た。
[Reference Example (2-1)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 11.0239 g of PGEE was added. 0.1830 g of a polysiloxane having a solid content of 35% by mass) and R-30-N manufactured by Dainippon Ink & Chemicals, Inc. as a surfactant diluted to 1% by mass with PGEE. In addition, the mixture was mixed until it became completely uniform at room temperature to obtain a varnish (abbreviated as RV (2-1)) having a total mass of 7.5% by mass with no added curing catalyst.
[参考例(2-2)]
 参考例(2-1)のP1を合成例(2-2)で得たP2に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-2)と略す)を得た。
[Reference Example (2-2)]
The same operation as in Reference Example (2-1) was performed except that P1 in Reference Example (2-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total solid content was 7.5% by mass. Of varnish (abbreviated as RV (2-2)).
[参考例(2-3)]
 参考例(2-1)のP1を合成例(2-3)で得たP3に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-3)と略す)を得た。
[Reference Example (2-3)]
The same operation as in Reference Example (2-1) was carried out except that P1 in Reference Example (2-1) was replaced with P3 obtained in Synthesis Example (2-3). Varnish (abbreviated as RV (2-3)) was obtained.
[参考例(2-4)]
 参考例(2-1)のP1を合成例(2-4)で得たP4に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-4)と略す)を得た。
[Reference Example (2-4)]
The same operation as in Reference Example (2-1) was conducted except that P1 in Reference Example (2-1) was replaced with P4 obtained in Synthesis Example (2-4), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (2-4)) was obtained.
[参考例(2-5)]
 参考例(2-1)のP1を合成例(2-5)で得たP5に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-5)と略す)を得た。
[Reference Example (2-5)]
The same operation as in Reference Example (2-1) was conducted except that P1 in Reference Example (2-1) was replaced with P5 obtained in Synthesis Example (2-5), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (2-5)) was obtained.
[参考例(2-6)]
 参考例(2-1)のP1を合成例(2-7)で得たP7に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV2-6)と略す)を得た。
[Reference Example (2-6)]
The same operation as in Reference Example (2-1) was conducted except that P1 in Reference Example (2-1) was replaced with P7 obtained in Synthesis Example (2-7), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV2-6)).
[参考例(2-7)]
 参考例(2-1)のP1を合成例(2-8)で得たP8に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-7)と略す)を得た。
[Reference Example (2-7)]
The same operation as in Reference Example (2-1) was conducted except that P1 in Reference Example (2-1) was replaced with P8 obtained in Synthesis Example (2-8), so that the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as RV (2-7)).
[参考例(2-8)]
 参考例(2-1)のP1を合成例(2-10)で得たP10に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-8)と略す)を得た。
[Reference Example (2-8)]
The same operation as in Reference Example (2-1) was carried out except that P1 in Reference Example (2-1) was replaced with P10 obtained in Synthesis Example (2-10). Of varnish (abbreviated as RV (2-8)).
[参考例(2-9)]
 参考例(2-1)のP1を合成例(2-11)で得たP11に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-9)と略す)を得た。
[Reference Example (2-9)]
The same operation as in Reference Example (2-1) was conducted except that P1 in Reference Example (2-1) was replaced with P11 obtained in Synthesis Example (2-11), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (2-9)) was obtained.
[参考例(2-10)]
 参考例(2-1)のP1を合成例(2-12)で得たP12に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-10)と略す)を得た。
[Reference Example (2-10)]
The same operation as in Reference Example (2-1) was conducted except that P1 in Reference Example (2-1) was replaced with P12 obtained in Synthesis Example (2-12), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (2-10)) was obtained.
[参考例(2-11)]
 参考例(2-1)のP1を合成例(2-13)で得たP13に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-11)と略す)を得た。
[Reference Example (2-11)]
The same operation as in Reference Example (2-1) was carried out except that P1 in Reference Example (2-1) was replaced with P13 obtained in Synthesis Example (2-13). Varnish (abbreviated as RV (2-11)) was obtained.
[参考例(2-12)]
 参考例(2-1)のP1を合成例(2-14)で得たP14に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-12)と略す)を得た。
[Reference Example (2-12)]
The same operation as in Reference Example (2-1) was carried out except that P1 in Reference Example (2-1) was replaced with P14 obtained in Synthesis Example (2-14). Of varnish (abbreviated as RV (2-12)).
[参考例(2-13)]
 参考例(2-1)のP1を合成例(2-15)で得たP15に置き換えた以外は参考例(2-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(2-13)と略す)を得た。
[Reference Example (2-13)]
The same operation as in Reference Example (2-1) was conducted except that P1 in Reference Example (2-1) was replaced with P15 obtained in Synthesis Example (2-15), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (2-13)) was obtained.
 <被膜の作製>
[実施例(2-10)乃至実施例(2-18)及び参考例(2-14)乃至参考例(2-26)]
[パターニング特性(表3のアルカリ現像性試験より評価を厳しくした試験)]
 得られたV(2-1)乃至V(2-9)及びRV(2-1)乃至RV(2-13)はパターニング特性を評価した。各ワニスはヘキサメチルジシラザン(HMDS)で処理した8inchのシリコン基板に膜厚が100nmとなるように東京エレクトロン(株)製 クリーントラック ACT8を用いてスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行った。次いで、得られた被膜の上からAZ3100(AZ ELECTRONIC MATERIALS社製)を膜厚が1.5μmとなるようにスピンコートし、ホットプレートを用いて、100℃1分間で加熱を行った。その後、(株)ニコン製 i線ステッパー NSR-2205i12Dを用いて300mJ/cmの露光量をマスク越しに光照射した。光照射後、2.38%のテトラメチルアンモニウムハイドライド(TMAHと略す)を用いて30秒現像し、純水リンス1分後、エアーで乾燥させた。さらに、感光性レジストをPGMEに2分浸漬させ、レジストを剥離し、Line:Spaceが1:1の5μmの箇所を光学顕微鏡で観察した。光学顕微鏡で観察した結果、Line:Spaceが1:1の5μm付近になっている例を○、Line:Spaceが1:1の5μmから離れている例若しくは残膜している例を×と評価した。
 V(2-1)乃至V(2-9)及びRV(2-1)乃至RV(2-13)の結果を表4に示す。また、V(2-1)乃至V(2-3)及びRV(2-1)乃至RV(2-3)の観察結果を図7乃至図12に示す。
 さらに、図7乃至図9はLine:Spaceが1:1の5μmの箇所において、Space部分を電子顕微鏡を用いてパターンのトップ方向から測長した。測長した結果、図7のSpace部分の幅は5.10μm、図8のSpace部分の幅は5.07μm、図9のSpace部分の幅は5.07μmとなった。ここでSpace部分はアルカリ現像液に溶解する部分であり、5μmに近ければ近いほど、良好にパターンが形成できていることを示している。
<Preparation of coating>
[Example (2-10) to Example (2-18) and Reference Example (2-14) to Reference Example (2-26)]
[Patterning characteristics (tests with more stringent evaluation than alkali developability tests in Table 3)]
The obtained V (2-1) to V (2-9) and RV (2-1) to RV (2-13) were evaluated for patterning characteristics. Each varnish was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Co., Ltd., and 150 ° C. using a hot plate. Heating was performed for 1 minute. Next, AZ3100 (manufactured by AZ ELECTRONIC MATERIALS) was spin-coated on the obtained coating so as to have a film thickness of 1.5 μm, and heated at 100 ° C. for 1 minute using a hot plate. Thereafter, using an i-line stepper NSR-2205i12D manufactured by Nikon Corporation, an exposure dose of 300 mJ / cm 2 was irradiated through the mask. After light irradiation, development was performed for 30 seconds using 2.38% tetramethylammonium hydride (abbreviated as TMAH), and after 1 minute of pure water rinse, the film was dried with air. Furthermore, the photosensitive resist was immersed in PGME for 2 minutes, the resist was peeled off, and the 5 μm portion where Line: Space was 1: 1 was observed with an optical microscope. As a result of observation with an optical microscope, an example in which Line: Space is close to 5 μm of 1: 1 is evaluated as ○, an example in which Line: Space is 1: 1 from 5 μm, or an example in which the remaining film is left is evaluated as ×. did.
Table 4 shows the results of V (2-1) to V (2-9) and RV (2-1) to RV (2-13). In addition, observation results of V (2-1) to V (2-3) and RV (2-1) to RV (2-3) are shown in FIGS.
Further, in FIGS. 7 to 9, the space portion was measured from the top direction of the pattern using an electron microscope at a 5 μm portion where Line: Space was 1: 1. As a result of the measurement, the width of the Space portion in FIG. 7 was 5.10 μm, the width of the Space portion in FIG. 8 was 5.07 μm, and the width of the Space portion in FIG. 9 was 5.07 μm. Here, the space portion is a portion that dissolves in the alkaline developer, and the closer to 5 μm, the better the pattern can be formed.
[耐熱屈折率]
 得られたV(2-1)乃至V(2-9)及びRV(2-1)乃至RV(2-13)は耐熱屈折率を評価した。各ワニスはシリコン基板上に膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行った。加熱後、450nmの屈折率を測定した。次いで、ホットプレートで300℃1時間加熱を行い、450nmの屈折率を測定後、300℃加熱前後の屈折率を比較した。屈折率の比較の結果を表4に示す。
[Heat-resistant refractive index]
The obtained V (2-1) to V (2-9) and RV (2-1) to RV (2-13) were evaluated for heat resistant refractive index. Each varnish was spin-coated on a silicon substrate so as to have a film thickness of 100 nm, and heated at 150 ° C. for 1 minute using a hot plate. After heating, the refractive index at 450 nm was measured. Next, heating was performed at 300 ° C. for 1 hour using a hot plate, and after measuring the refractive index at 450 nm, the refractive indexes before and after heating at 300 ° C. were compared. Table 4 shows the results of the comparison of refractive indexes.
[水接触角]
 各ワニスは水接触角を測定した。シリコン基板上に膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行い、次いで、100℃1分間で加熱を行った。このホットプレートにおける2段階加熱は感光性レジストを塗布し、乾燥することを踏まえたアルカリ現像前の熱履歴を再現した加熱条件である。
 得られた被膜は協和界面科学(株)製 全自動接触角計 Drop Masterシリーズ DM700を用いて、純水をサイズが22Gの針から液滴を作製し、被膜表面に着液した液滴を液滴法(θ/2法)で水接触角を算出した。その結果を表4に示す。
[Water contact angle]
Each varnish measured the water contact angle. A silicon substrate was spin-coated so as to have a film thickness of 100 nm, and heated at 150 ° C. for 1 minute using a hot plate, and then heated at 100 ° C. for 1 minute. The two-step heating in this hot plate is a heating condition that reproduces the thermal history before alkali development in consideration of applying a photosensitive resist and drying.
Using the fully automatic contact angle meter Drop Master series DM700 manufactured by Kyowa Interface Science Co., Ltd., the resulting coating was made from pure water using a 22G size needle, and the droplet deposited on the coating surface was removed. The water contact angle was calculated by the drop method (θ / 2 method). The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 注)表3のアルカリ現像性試験ではLine:Spaceが1:1の部分の幅が5.12~5.15μmでも○としたが、表4パターニング特性試験はそれ以上のレベルを要求する試験でありそれが5μm付近に達していないものは×とした。 Note) In the alkali developability test of Table 3, even when the width of the portion where Line: Space is 1: 1 is ○ 12 to 5.15 μm, the patterning characteristic test is a test that requires a level higher than that. The case where it did not reach around 5 μm was marked as x.
 V(2-1)乃至V(2-9)及びRV(2-1)乃至RV(2-13)を被膜とし、その被膜のパターニング特性を比較すると、実施例(2-10)乃至実施例(2-18)、参考例(2-25)及び参考例(2-26)はパターニング特性が良好であった。 When V (2-1) to V (2-9) and RV (2-1) to RV (2-13) are used as coatings and the patterning characteristics of the coatings are compared, Examples (2-10) to Examples Patterning characteristics were good in (2-18), Reference Example (2-25) and Reference Example (2-26).
 実施例(2-10)乃至実施例(2-18)は本発明のケイ素化合物(A)の重量平均分子量が700~4000の範囲内であり、ケイ素化合物(A)を構成する加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%で共重合され、且つ、加水分解性シラン(a2)のLが炭素原子数3~6の直鎖、分岐又は環状のアルキル基で構成されており、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、硬化触媒(C)と、溶剤(D)からなる組成物から得られる被膜の水の接触角が60°乃至80°の範囲内である。 In Examples (2-10) to (2-18), the silicon compound (A) of the present invention has a weight average molecular weight in the range of 700 to 4000, and the hydrolyzable silane constituting the silicon compound (A) (A1) is 90 to 50 mol%, hydrolyzable silane (a2) is copolymerized at 10 to 50 mol%, and L of hydrolyzable silane (a2) is 3 carbon atoms An inorganic particle (B) having a mean particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70, a curing catalyst (C), The water contact angle of the coating obtained from the composition comprising the solvent (D) is in the range of 60 ° to 80 °.
 硬化触媒の必要性の観点から、実施例(2-10)乃至実施例(2-14)と参考例(2-14)乃至参考例(2-18)とを比較する。実施例(2-10)乃至実施例(2-14)は硬化触媒としてBTEACを含んでおり、参考例(2-14)乃至参考例(2-18)はBTEACを含んでいない組成物である。硬化触媒を含むことで熱時の硬化が進行し、被膜にレジスト溶剤耐性、アルカリ現像液及びレジスト膜剥離液耐性が付与され10μm以下のパターンを形成することが可能となった。一方、硬化触媒を含まない参考例(2-14)乃至参考例(2-18)はレジスト溶剤耐性、アルカリ現像液及びレジスト膜剥離液耐性が付与されず、特にアルカリ耐性が不足することでパターンが形成する前に全ての被膜部分がアルカリ現像液に溶解してしまい、パターンを得られなかった。 From the viewpoint of the necessity of the curing catalyst, Examples (2-10) to (2-14) are compared with Reference Examples (2-14) to (2-18). Examples (2-10) to (2-14) contain BTEAC as a curing catalyst, and Reference Examples (2-14) to (2-18) are compositions not containing BTEAC. . By containing a curing catalyst, curing during heating progressed, resist film resistance, alkali developer and resist film stripping solution resistance were imparted to the film, and a pattern of 10 μm or less could be formed. On the other hand, Reference Example (2-14) to Reference Example (2-18) which do not contain a curing catalyst are not provided with resist solvent resistance, alkali developer and resist film stripping solution resistance, and patterning due to insufficient alkali resistance. Before the film was formed, all the film portions were dissolved in the alkaline developer, and a pattern could not be obtained.
 重量平均分子量の観点から、実施例(2-11)、実施例(2-15)、実施例(2-16)及び参考例(2-21)を比較する。ポリマーの重量平均分子量は実施例(2-11)が1500、実施例(2-15)が735、実施例(2-16)が3401、参考例(2-21)が4545である。ここで、重量平均分子量が700~4000の範囲内であるポリマーを用いて、組成物、被膜としたもののパターニング特性が良好であった。参考例(2-21)の重量平均分子量が4000超のポリマーを用いて、組成物、被膜としたもののパターニング特性は残膜となり、高分子量体の溶解性が低下したことに起因すると考えられる。 Example (2-11), Example (2-15), Example (2-16) and Reference Example (2-21) are compared from the viewpoint of weight average molecular weight. The weight average molecular weight of the polymer is 1500 in Example (2-11), 735 in Example (2-15), 3401 in Example (2-16), and 4545 in Reference Example (2-21). Here, using a polymer having a weight average molecular weight in the range of 700 to 4,000, the composition and the coating film had good patterning characteristics. It is considered that the patterning characteristics of the composition and coating film using the polymer having a weight average molecular weight of more than 4000 in Reference Example (2-21) are the residual film, and the solubility of the high molecular weight material is lowered.
 ケイ素化合物(A)を構成する加水分解性シラン(a1)と加水分解性シラン(a2)との共重合比率の観点で、実施例(2-11)、実施例(2-13)、実施例(2-14)及び参考例(2-20)を比較する。ポリマーの共重合比率は実施例(2-11)が(a1)/(a2)=70モル%/30モル%、実施例(2-13)が(a1)/(a2)=90モル%/10モル%、実施例(2-14)が(a1)/(a2)=50モル%/50モル%、参考例(2-20)が(a1)/(a2)=40モル%/60モル%である。ここで、ケイ素化合物(A)を構成する加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%で共重合されたポリマーを用いて、組成物、被膜としたもののパターニング特性が良好であった。参考例(2-20)の共重合比率が(a1)/(a2)=40モル%/60モル%のポリマーを用いて、組成物、被膜としたもののパターニング特性はパターンが得られない結果となり、疎水性が高すぎるためにアルカリ現像液に対する溶解性を失ったことに起因すると考えられる。 From the viewpoint of the copolymerization ratio of the hydrolyzable silane (a1) and the hydrolyzable silane (a2) constituting the silicon compound (A), Example (2-11), Example (2-13), and Example (2-14) and Reference Example (2-20) are compared. The copolymerization ratio of the polymer in Example (2-11) was (a1) / (a2) = 70 mol% / 30 mol%, and Example (2-13) was (a1) / (a2) = 90 mol% / 10 mol%, Example (2-14) is (a1) / (a2) = 50 mol% / 50 mol%, Reference Example (2-20) is (a1) / (a2) = 40 mol% / 60 mol %. Here, the polymer in which the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 to 50 mol% and the hydrolyzable silane (a2) is 10 to 50 mol% is copolymerized. The patterning characteristics of the composition and coating film were good. The patterning characteristics of the composition and film obtained using the polymer of the reference example (2-20) having a copolymerization ratio of (a1) / (a2) = 40 mol% / 60 mol% resulted in a pattern not being obtained. This is considered to be due to the loss of solubility in an alkaline developer because the hydrophobicity is too high.
 ケイ素化合物(A)を構成する加水分解性シラン(a2)中のLの炭素原子数の観点で、実施例(2-10)乃至実施例(2-12)及び参考例(2-19)、参考例(2-22)乃至参考例(2-24)を比較する。加水分解性シラン(a2)中のLの炭素原子数は実施例(2-10)が3、実施例(2-11)が4、実施例(2-12)が6、参考例(2-19)が0、参考例(2-22)が1、参考例(2-23)が2、参考例(2-24)が8である。ここで、加水分解性シラン(a2)のLが炭素原子数3~6のポリマーを用いて、組成物、被膜としたもののパターニング特性及び耐熱屈折率が良好であった。参考例(2-19)の炭素原子数が0のポリシロキサン、参考例(2-22)の炭素原子数が1のポリマー、参考例(2-23)の炭素原子数が2のポリマーはパターニング特性が剥離現像となり、均一な5μmのパターンが形成できなかった。炭素原子数が0~2のポリマーを共重合させると、膜の縮合が進み、アルカリ現像液への溶解現像性が得られなかった。 From the viewpoint of the number of carbon atoms of L in the hydrolyzable silane (a2) constituting the silicon compound (A), Examples (2-10) to (2-12) and Reference Example (2-19), Reference examples (2-22) to (2-24) are compared. The number of carbon atoms of L in the hydrolyzable silane (a2) is 3 in Example (2-10), 4 in Example (2-11), 6 in Example (2-12), and Reference Example (2- 19) is 0, Reference Example (2-22) is 1, Reference Example (2-23) is 2, and Reference Example (2-24) is 8. Here, the composition and the film of the hydrolyzable silane (a2) having an L of 3 to 6 carbon atoms were used, and the patterning characteristics and the heat resistant refractive index were good. The polysiloxane having 0 carbon atoms in Reference Example (2-19), the polymer having 1 carbon atom in Reference Example (2-22), and the polymer having 2 carbon atoms in Reference Example (2-23) are patterned. The characteristic was release development, and a uniform 5 μm pattern could not be formed. When a polymer having 0 to 2 carbon atoms was copolymerized, the condensation of the film progressed, and dissolution developability in an alkaline developer was not obtained.
 参考例(2-24)の炭素原子数が8のモノマーを共重合したポリマーはアルカリ現像液に溶解せず、パターニング特性が不良であった。この結果は、アルカリ現像するときの膜表面の親疎水から説明できる。アルカリ現像液は一般的に水溶液であり、希薄なTMAH水溶液若しくは水酸化カリウム水溶液などが挙げられる。これら現像液は水溶液であるため、膜の疎水性が高い場合、膜に浸透せず弾いてしまうため、そもそも現像性を失ってしまう。被膜はアルカリ現像液に長時間浸漬させたとき溶解する場合もあるが、プロセスのスループットを考えたとき少なくとも120秒以内にアルカリ現像工程を終えることが好ましいため、アルカリ現像液を弾くほどの疎水性は膜特性として好ましくない。 The polymer obtained by copolymerizing the monomer having 8 carbon atoms in Reference Example (2-24) did not dissolve in the alkaline developer and had poor patterning characteristics. This result can be explained from the hydrophilicity / hydrophobicity of the film surface during alkali development. The alkaline developer is generally an aqueous solution, and examples thereof include dilute TMAH aqueous solution or potassium hydroxide aqueous solution. Since these developers are aqueous solutions, if the hydrophobicity of the film is high, the film does not penetrate into the film and bounces, so that developability is lost in the first place. The coating may dissolve when immersed in an alkaline developer for a long time, but considering the process throughput, it is preferable to finish the alkali developing step within at least 120 seconds, so that it is hydrophobic enough to repel the alkaline developer. Is not preferable as a film characteristic.
 これらの結果から、パターニング特性と耐熱屈折率を両立するには、特定のモノマーを特定の比率で共重合させることが重要であり、特に加水分解性シラン(a2)中のLの炭素原子数には最適値があることを見出した。 From these results, in order to achieve both patterning characteristics and heat-resistant refractive index, it is important to copolymerize a specific monomer at a specific ratio, and particularly to the number of carbon atoms of L in the hydrolyzable silane (a2). Found that there was an optimal value.
 アルカリ現像性に関して、アルカリ現像するときの膜表面の親疎水性が極めて重要なことは既に上述したが、実施例(2-10)乃至実施例(2-18)及び参考例(2-14)乃至(2-26)の結果から、アルカリ現像性のマージンが広く、且つ溶解現像性となり、10μm以下のパターンが形成できる膜のパラメータは水の接触角が60°乃至80°の範囲であることが証明された。 Regarding the alkali developability, the hydrophilicity / hydrophobicity of the film surface at the time of alkali development has already been described above. However, Examples (2-10) to (2-18) and Reference Examples (2-14) to From the result of (2-26), the parameter of the film having a wide margin for alkali developability and dissolving developability and capable of forming a pattern of 10 μm or less is that the contact angle of water is in the range of 60 ° to 80 °. Proven.
[耐光性試験]
[実施例(2-19)乃至実施例(2-20)及び参考例(2-27)乃至参考例(2-28)]
 得られたV(2-1)乃至V(2-2)及びRV(2-12)乃至RV(2-13)は耐光性を評価した。
 V(2-1)乃至V(2-2)及びRV(2-12)乃至RV(2-13)はシリコン基板上に膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃60分間で加熱を行った。加熱後、膜厚、450nmの屈折率、平均透過率を測定した。次いで、耐光性試験を行い、耐光性試験後の膜の膜厚、屈折率、平均透過率を測定した。その結果を表5に示す。
 膜厚及び450nmの屈折率はシリコン基板上の被膜を測定し、平均透過率は石英基板上の被膜を測定した。平均透過率は400nm乃至800nmの平均透過率を算出した。
 耐光性試験における、光照射は一般財団法人日本ウエザリングテストセンターにて行い、照度が38.7W/m、露光波長が320nm乃至400nmのキセノンアークランプを光源とした。試験機はスガ試験機(株)製 SX75-AP型を用いた。試験環境は温度が42±3℃、相対湿度が50±5%RHとした。
[Light resistance test]
[Example (2-19) to Example (2-20) and Reference Example (2-27) to Reference Example (2-28)]
The obtained V (2-1) to V (2-2) and RV (2-12) to RV (2-13) were evaluated for light resistance.
V (2-1) to V (2-2) and RV (2-12) to RV (2-13) are spin-coated on a silicon substrate to a film thickness of 100 nm, and using a hot plate, Heating was performed at 150 ° C. for 60 minutes. After heating, the film thickness, the refractive index of 450 nm, and the average transmittance were measured. Next, a light resistance test was performed, and the film thickness, refractive index, and average transmittance of the film after the light resistance test were measured. The results are shown in Table 5.
The film thickness and refractive index of 450 nm were measured on the film on the silicon substrate, and the average transmittance was measured on the film on the quartz substrate. As the average transmittance, an average transmittance of 400 nm to 800 nm was calculated.
In the light resistance test, light irradiation was performed at the Japan Weathering Test Center, and a xenon arc lamp having an illuminance of 38.7 W / m 2 and an exposure wavelength of 320 nm to 400 nm was used as a light source. SX75-AP type manufactured by Suga Test Instruments Co., Ltd. was used as the test machine. The test environment was a temperature of 42 ± 3 ° C. and a relative humidity of 50 ± 5% RH.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例(2-19)乃至実施例(2-20)及び参考例(2-27)乃至参考例(2-28)の耐光性を比較する。実施例(2-19)乃至実施例(2-20)及び参考例(2-27)乃至参考例(2-28)はそれぞれ、耐熱屈折率及びパターニング特性が良好であったが、参考例(2-27)乃至参考例(2-28)は耐光性試験後の膜厚が低下、屈折率が増大、平均透過率が低下することが分かった。一方、実施例(2-19)乃至実施例(2-20)は耐光性試験後の膜厚、屈折率、平均透過率が変化しなかった。 The light resistance of Example (2-19) to Example (2-20) and Reference Example (2-27) to Reference Example (2-28) are compared. In Examples (2-19) to (2-20) and Reference Examples (2-27) to (2-28), the heat-resistant refractive index and the patterning characteristics were good, respectively. In 2-27) to Reference Example (2-28), it was found that the film thickness after light resistance test decreased, the refractive index increased, and the average transmittance decreased. On the other hand, in Example (2-19) to Example (2-20), the film thickness, refractive index, and average transmittance after the light resistance test did not change.
 耐光性試験の結果は、V(2-1)乃至V(2-2)のポリマーが完全加水分解型であり、RV(2-12)乃至RV(2-13)のポリマーが部分加水分解型という違いだけで、モノマーの共重合比率が同一で重量平均分子量も同程度のポリマーであることから、ポリマーの重合方法の違いによって優位差が発現したことを示している。即ち、完全加水分解型のポリマーは耐光性試験が良好であることが分かった。完全加水分解型のポリマーは加熱工程で膜の熱硬化反応が終結しているのに対し、部分加水分解型のポリマーは加熱工程で熱硬化反応が完全に終結せず、アルコキシ基が残留しており、耐光性試験中に反応が進行したことに起因すると考えられる。 As a result of the light resistance test, polymers of V (2-1) to V (2-2) are completely hydrolyzed, and polymers of RV (2-12) to RV (2-13) are partially hydrolyzed. Only the difference is that the copolymerization ratio of the monomers is the same and the weight average molecular weight is the same level of the polymer, indicating that the difference in predominance was expressed by the difference in the polymerization method of the polymer. That is, it was found that the completely hydrolyzed polymer had a good light resistance test. In the fully hydrolyzed polymer, the thermosetting reaction of the film is terminated in the heating process, whereas in the partially hydrolyzed polymer, the thermosetting reaction is not completely terminated in the heating process, and the alkoxy group remains. Therefore, it is considered that the reaction progressed during the light resistance test.
 以上の結果を総合すると、LED用材料として要求される耐熱屈折率、パターニング特性、耐光性の全てを両立するには、本発明のケイ素化合物(A)の重量平均分子量が700乃至4000の範囲内であり、ケイ素化合物(A)を構成する加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%で共重合され、且つ、加水分解性シラン(a2)のLが炭素原子数3~6の直鎖、分岐又は環状のアルキル基で構成されており、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、硬化触媒(D)と、溶剤(C)からなる組成物から得られる被膜の水の接触角が60°乃至80°の範囲内となる要件を満たすことで達成されることが示された。 Summing up the above results, the weight average molecular weight of the silicon compound (A) of the present invention is within the range of 700 to 4000 in order to achieve all of the heat resistant refractive index, patterning characteristics, and light resistance required for the LED material. The hydrolyzable silane (a1) constituting the silicon compound (A) is 90 to 50 mol%, the hydrolyzable silane (a2) is copolymerized at 10 to 50 mol%, and L of the hydrolyzable silane (a2) is composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms, and has an average particle diameter of 1 to 100 nm and a refraction of 1.50 to 2.70. Achieved by satisfying the requirement that the water contact angle of the film obtained from the composition comprising the inorganic particles (B) having a rate, the curing catalyst (D), and the solvent (C) is in the range of 60 ° to 80 °. Was shown to be .
<膜形成組成物(3)および被膜の作製>
[実施例(3-1)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、7.9724gのプロピレングリコールモノエチルエーテル(PGEEと略す)を加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、水素結合性膜荒れ防止材であるジケトン化合物(E)としてピルビン酸エチル(PEと略す)を3.0515g加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(3-1)と略す)を得た。
 得られたV(3-1)は屈折率を評価した。シリコン基板上にV(3-1)の膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行った。次いで、ホットプレートで300℃1時間加熱を行い、450nmの屈折率を測定した結果、1.613であった。
<Production of Film-Forming Composition (3) and Film>
[Example (3-1)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 7.9724 g of propylene glycol monoethyl ether (abbreviated as PGEE) was added to obtain Synthesis Example (2-1). 2.875 g of P1 (solid content of polysiloxane is 35% by mass with respect to the solid content of B1), 3 ethyl pyruvate (abbreviated as PE) as diketone compound (E) which is a hydrogen bonding film roughening prevention material Add 0,515 g, add 0.1830 g of R-30-N manufactured by Dainippon Ink & Chemicals, Inc. as a surfactant to 1% by weight with PGEE, and mix until uniform at room temperature. A varnish (abbreviated as V (3-1)) having a total solid content of 7.5% by mass was obtained.
The obtained V (3-1) was evaluated for refractive index. A silicon substrate was spin-coated so that the film thickness of V (3-1) was 100 nm, and heated at 150 ° C. for 1 minute using a hot plate. Subsequently, it heated at 300 degreeC with the hotplate for 1 hour, and as a result of measuring the refractive index of 450 nm, it was 1.613.
[実施例(3-2)]
 実施例(3-1)のP1を合成例(2-2)で得たP2に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-2)と略す)を得た。
 得られたV(3-2)は実施例(3-1)と同様に屈折率を測定した結果、1.610であった。
[Example (3-2)]
The same operation as in Example (3-1) was performed except that P1 in Example (3-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (3-2)).
V (3-2) obtained was 1.610 as a result of measuring the refractive index in the same manner as in Example (3-1).
[実施例(3-3)]
 実施例(3-1)のP1を合成例(2-3)で得たP3に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-3)と略す)を得た。
 得られたV(3-3)は実施例(3-1)と同様に屈折率を測定した結果、1.603であった。
[Example (3-3)]
The same operation as in Example (3-1) was conducted except that P1 in Example (3-1) was replaced with P3 obtained in Synthesis Example (2-3), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-3)) was obtained.
The obtained V (3-3) was 1.603 as a result of measuring the refractive index in the same manner as in Example (3-1).
[実施例(3-4)]
 実施例(3-1)のP1を合成例(2-4)で得たP4に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-4)と略す)を得た。
[Example (3-4)]
The same operation as in Example (3-1) was performed except that P1 in Example (3-1) was replaced with P4 obtained in Synthesis Example (2-4), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-4)) was obtained.
[実施例(3-5)]
 実施例(3-1)のP1を合成例(2-5)で得たP5に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-5)と略す)を得た。
[Example (3-5)]
The same operation as in Example (3-1) was conducted except that P1 in Example (3-1) was replaced with P5 obtained in Synthesis Example (2-5), so that the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (3-5)).
[実施例(3-6)]
 実施例(3-1)のP1を合成例(2-6)で得たP6に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-6)と略す)を得た。
[Example (3-6)]
The procedure was the same as in Example (3-1) except that P1 in Example (3-1) was replaced with P6 obtained in Synthesis Example (2-6), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-6)) was obtained.
[実施例(3-7)]
 実施例(3-1)のP1を合成例(2-8)で得たP8に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-7)と略す)を得た。
[Example (3-7)]
The same operation as in Example (3-1) was conducted except that P1 in Example (3-1) was replaced with P8 obtained in Synthesis Example (2-8), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (3-7)) was obtained.
[実施例(3-8)]
 実施例(3-1)のPEをピルビン酸メチル(PMと略す)に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-8)と略す)を得た。
[Example (3-8)]
The procedure of Example (3-1) was repeated except that PE in Example (3-1) was replaced with methyl pyruvate (abbreviated as PM). V (3-8)) was obtained.
[実施例(3-9)]
 実施例(3-1)のPEをアセチルアセトン(ACAと略す)に置き換えた以外は実施例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(3-9)と略す)を得た。
[Example (3-9)]
The procedure of Example (3-1) was repeated except that PE in Example (3-1) was replaced with acetylacetone (abbreviated as ACA), and a varnish (V ( Abbreviated as 3-9).
[参考例(3-1)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、11.0239gのPGEEを加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、室温で完全に均一になるまで混合し、水素結合性膜荒れ防止材であるジケトン化合物(E)が加わっていない固形分の総質量が7.5質量%のワニス(RV(3-1)と略す)を得た。
[Reference Example (3-1)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 11.0239 g of PGEE was added, and 2.2875 g of P1 (solid of B1 obtained in Synthesis Example (2-1) was added. 0.1830 g of a polysiloxane having a solid content of 35% by mass) and R-30-N manufactured by Dainippon Ink & Chemicals, Inc. as a surfactant diluted to 1% by mass with PGEE. In addition, the mixture was mixed until it became completely uniform at room temperature, and a varnish (RV (3-1) having a total solid content not containing the diketone compound (E), which is a hydrogen bonding film roughening preventing material, was added. )).
[参考例(3-2)]
 参考例(3-1)のP1を合成例(2-2)で得たP2に置き換えた以外は参考例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(3-2)と略す)を得た。
[Reference Example (3-2)]
The same operation as in Reference Example (3-1) was performed except that P1 in Reference Example (3-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as RV (3-2)).
[参考例(3-3)]
 参考例(3-1)のP1を合成例(2-3)で得たP3に置き換えた以外は参考例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(3-3)と略す)を得た。
[Reference Example (3-3)]
The same operation as in Reference Example (3-1) was carried out except that P1 in Reference Example (3-1) was replaced with P3 obtained in Synthesis Example (2-3). Varnish (abbreviated as RV (3-3)) was obtained.
[参考例(3-4)]
 参考例(3-1)のP1を合成例(2-4)で得たP4に置き換えた以外は参考例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(3-4)と略す)を得た。
[Reference Example (3-4)]
The same operation as in Reference Example (3-1) was carried out except that P1 in Reference Example (3-1) was replaced with P4 obtained in Synthesis Example (2-4). Of varnish (abbreviated as RV (3-4)).
[参考例(3-5)]
 参考例(3-1)のP1を合成例(2-5)で得たP5に置き換えた以外は参考例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(3-5)と略す)を得た。
[Reference Example (3-5)]
The same operation as in Reference Example (3-1) was conducted except that P1 in Reference Example (3-1) was replaced with P5 obtained in Synthesis Example (2-5), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (3-5)) was obtained.
[参考例(3-6)]
 参考例(3-1)のP1を合成例(2-7)で得たP7に置き換えた以外は参考例(3-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(3-6)と略す)を得た。
[Reference Example (3-6)]
The same operation as in Reference Example (3-1) was carried out except that P1 in Reference Example (3-1) was replaced with P7 obtained in Synthesis Example (2-7). Varnish (abbreviated as RV (3-6)) was obtained.
 <被膜の作製>
[実施例(3-10)乃至実施例(3-18)及び参考例(3-7)乃至参考例(3-12)]
[アルカリ溶解性とレジスト膜剥離後の膜荒れ特性]
 得られたV(3-1)乃至V(3-9)及びRV(3-1)乃至RV(3-6)はアルカリ溶解性を評価した。各ワニスはヘキサメチルジシラザン(HMDS)で処理した8inchのシリコン基板に膜厚が100nmとなるように東京エレクトロン(株)製 クリーントラック ACT8を用いてスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行った。次いで、得られた被膜の上からAZ3100(AZ ELECTRONIC MATERIALS社製)を膜厚が1.5μmとなるようにスピンコートし、ホットプレートを用いて、100℃1分間で加熱を行った。その後、(株)ニコン製 i線ステッパー NSR-2205i12Dを用いて300mJ/cmの露光量をマスク越しに光照射した。光照射後、2.38質量%のテトラメチルアンモニウムハイドライド(TMAHと略す)を用いて30秒現像し、純水リンス1分後、エアーで乾燥させた。この時にアルカリ現像液に対して溶解現像となった例を○、剥離現像若しくは溶解しなかった例を×とし表6に示す。
 さらに、感光性レジストをPGMEに2分浸漬させ、レジストを剥離し、パターンのない箇所(感光性レジストが積層され、剥離した後の箇所)を光学顕微鏡で観察した。光学顕微鏡で観察した結果、膜荒れが発生しなかった例を○、膜荒れが発生した例を×と評価し、V(3-1)乃至V(3-9)及びRV(3-1)乃至RV(3-6)の結果を表6に示す。また、V(3-1)乃至RV(3-1)の観察結果を図13乃至図14に示す。
<Preparation of coating>
[Example (3-10) to Example (3-18) and Reference Example (3-7) to Reference Example (3-12)]
[Alkali solubility and film roughening characteristics after resist film peeling]
The obtained V (3-1) to V (3-9) and RV (3-1) to RV (3-6) were evaluated for alkali solubility. Each varnish was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Co., Ltd., and 150 ° C. using a hot plate. Heating was performed for 1 minute. Next, AZ3100 (manufactured by AZ ELECTRONIC MATERIALS) was spin-coated on the obtained coating so as to have a film thickness of 1.5 μm, and heated at 100 ° C. for 1 minute using a hot plate. Thereafter, using an i-line stepper NSR-2205i12D manufactured by Nikon Corporation, an exposure dose of 300 mJ / cm 2 was irradiated through the mask. After light irradiation, development was performed for 30 seconds using 2.38 mass% tetramethylammonium hydride (abbreviated as TMAH), and after 1 minute of pure water rinse, the film was dried with air. Table 6 shows an example in which dissolution development was performed with respect to an alkaline developer at this time, and an example in which peeling development or dissolution did not occur, and x.
Further, the photosensitive resist was immersed in PGME for 2 minutes, the resist was peeled off, and a portion having no pattern (a portion after the photosensitive resist was laminated and peeled) was observed with an optical microscope. As a result of observation with an optical microscope, an example in which film roughness did not occur was evaluated as ○, and an example in which film roughness occurred was evaluated as ×, and V (3-1) to V (3-9) and RV (3-1) The results of RV (3-6) are shown in Table 6. In addition, observation results of V (3-1) to RV (3-1) are shown in FIGS.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 V(3-1)乃至V(3-9)及びRV(3-1)乃至RV(3-6)を被膜とし、その被膜のアルカリ溶解性を比較すると、実施例(3-10)乃至実施例(3-18)及び参考例(3-7)乃至参考例(3-11)はアルカリ溶解性が良好であった。一方、参考例(3-12)の加水分解性シラン(a2)中のLの炭素原子数が0の例はアルカリ現像液に対して剥離し、目的とする溶解現像性を得られないことが分かった。 When V (3-1) to V (3-9) and RV (3-1) to RV (3-6) are used as coatings and the alkali solubility of the coatings is compared, Examples (3-10) to Examples (3-18) and Reference Examples (3-7) to Reference Examples (3-11) had good alkali solubility. On the other hand, the example in which the number of carbon atoms of L in the hydrolyzable silane (a2) in Reference Example (3-12) is 0 is peeled off from the alkaline developer, and the target solution developability cannot be obtained. I understood.
 V(3-1)乃至V(3-9)及びRV(3-1)乃至RV(3-6)を被膜とし、その被膜のレジスト膜剥離後の膜荒れ特性を比較すると、実施例(3-10)乃至実施例(3-18)はレジスト膜剥離後の膜荒れが発生せず、参考例(3-7)乃至参考例(3-12)は膜荒れが発生することがわかった。これらの違いは水素結合性膜荒れ防止剤であるジケトン化合物(E)の有無の違いだけである。 When V (3-1) to V (3-9) and RV (3-1) to RV (3-6) are used as coatings, and the film roughness characteristics after the resist film peeling of the coatings are compared, the example (3 It was found that the film roughness after the resist film peeling did not occur in −10) to Example (3-18), and the film roughness occurred in Reference Examples (3-7) to Reference Example (3-12). These differences are only differences in the presence or absence of the diketone compound (E), which is a hydrogen bonding film roughening inhibitor.
 表6の結果から、アルカリ溶解性とレジスト膜剥離後の膜荒れ特性をより良く両立するには、特定のモノマーを特定の比率で共重合させることが重要であり、特に加水分解性シラン(a2)中のLの炭素原子数には最適値があることを見出した。 From the results of Table 6, it is important to copolymerize a specific monomer at a specific ratio in order to better achieve both alkali solubility and film roughness characteristics after resist film peeling, and in particular, hydrolyzable silane (a2 It has been found that there is an optimum value for the number of carbon atoms in L.
 以上の結果を総合すると、LED用材料として要求されるアルカリ溶解性とレジスト膜剥離後の膜荒れ特性を両立するには、本発明のケイ素化合物(A)の重量平均分子量が700~4000の範囲内であり、好ましくはケイ素化合物(A)を構成する加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%で共重合され、且つ、加水分解性シラン(a2)のLが炭素原子数3~6の直鎖、分岐又は環状のアルキル基で構成されており、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、水素結合性膜荒れ防止剤(E)と、溶剤(C)からなる組成物の要件を満たすことで達成されることが示された。 In summary of the above results, the weight average molecular weight of the silicon compound (A) of the present invention is in the range of 700 to 4000 in order to achieve both the alkali solubility required for the LED material and the film roughness characteristics after the resist film is peeled off. Preferably, the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 to 50 mol%, and the hydrolyzable silane (a2) is 10 to 50 mol%. L of the hydrolyzable silane (a2) is composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms, and has an average particle diameter of 1 to 100 nm and 1.50 to 2. It was shown that this can be achieved by satisfying the requirements of a composition comprising inorganic particles (B) having a refractive index of 70, a hydrogen bonding film roughening inhibitor (E), and a solvent (C).
<膜形成組成物(4)および被膜の作製>
[実施例(4-1)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、8.3058gのプロピレングリコールモノエチルエーテル(PGEEと略す)を加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてベンジルトリエチルアンモニウムクロライド(BTEACと略す)をPGEEで希釈し1質量%とした溶液0.0915gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8458g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-1)と略す)を得た。
 得られたV(4-1)は屈折率を評価した。シリコン基板上にV(4-1)の膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃1分間で加熱を行った。次いで、ホットプレートで300℃1時間加熱を行い、450nmの屈折率を測定した結果、1.616であった。
<Production of Film-Forming Composition (4) and Film>
[Example (4-1)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 8.3058 g of propylene glycol monoethyl ether (abbreviated as PGEE) was added to obtain Synthesis Example (2-1). 2.2875 g of P1 (the solid content of polysiloxane is 35% by mass with respect to the solid content of B1), and benzyltriethylammonium chloride (abbreviated as BTEAC) as a curing catalyst (D) was diluted with PGEE to 1% by mass. Add 0.0915 g of the solution, add 0.9150 g of acetic acid diluted with PGEE to 1 mass%, dilute R-30-N made by Dainippon Ink & Chemicals, Ltd. with PGEE as the surfactant. 0.1830 g of a mass solution was added, and 1.8458 g of ion-exchanged water (the ratio in the total solvent was 12 mass%) was added at room temperature. It was mixed until uniform, to obtain a total mass of the solid content of 7.5 wt% of varnish (abbreviated as V (4-1)).
The obtained V (4-1) was evaluated for refractive index. Spin coating was performed on a silicon substrate so that the film thickness of V (4-1) was 100 nm, and heating was performed at 150 ° C. for 1 minute using a hot plate. Subsequently, it heated at 300 degreeC with the hotplate for 1 hour, and as a result of measuring the refractive index of 450 nm, it was 1.616.
[実施例(4-2)]
 実施例(4-1)のP1を合成例(2-2)で得たP2に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-2)と略す)を得た。
 得られたV(4-2)は実施例(4-1)と同様に屈折率を測定した結果、1.612であった。
[Example (4-2)]
The same operation as in Example (4-1) was performed except that P1 in Example (4-1) was replaced with P2 obtained in Synthesis Example (2-2), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (4-2)).
The obtained V (4-2) was 1.612 as a result of measuring the refractive index in the same manner as in Example (4-1).
[実施例(4-3)]
 実施例(4-1)のP1を合成例(2-3)で得たP3に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-3)と略す)を得た。
 得られたV(4-3)は実施例(4-1)と同様に屈折率を測定した結果、1.608であった。
[Example (4-3)]
The same operation as in Example (4-1) was carried out except that P1 in Example (4-1) was replaced with P3 obtained in Synthesis Example (2-3), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as V (4-3)).
V (4-3) obtained was 1.608 as a result of measuring the refractive index in the same manner as in Example (4-1).
[実施例(4-4)]
 実施例(4-1)のP1を合成例(2-4)で得たP4に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-4)と略す)を得た。
[Example (4-4)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P4 obtained in Synthesis Example (2-4), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (4-4)).
[実施例(4-5)]
 実施例(4-1)のP1を合成例(2-5)で得たP5に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-5と略す)を得た。
[Example (4-5)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P5 obtained in Synthesis Example (2-5), and the total mass of the solid content was 7.5% by mass. Varnish (V (abbreviated as 4-5)) was obtained.
[実施例(4-6)]
 実施例(4-1)のP1を合成例(2-6)で得たP6に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-6)と略す)を得た。
[Example (4-6)]
The procedure was the same as in Example (4-1) except that P1 in Example (4-1) was replaced with P6 obtained in Synthesis Example (2-6). Varnish (abbreviated as V (4-6)) was obtained.
[実施例(4-7)]
 実施例(4-1)のP1を合成例(2-9)で得たP9に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-7)と略す)を得た。
[Example (4-7)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P9 obtained in Synthesis Example (2-9), so that the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as V (4-7)).
[実施例(4-8)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、7.9832gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.4575gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8512g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-8)と略す)を得た。
[Example (4-8)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 7.9932 g of PGEE, and added 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2). The solid content of the polysiloxane is 35% by mass), and 0.4575 g of a solution of BTEAC diluted with PGEE to 1% by mass is added as a curing catalyst (D), and acetic acid is diluted with PGEE to 1% by mass. 0.9150 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd. with PGEE as a surfactant to 1% by mass, and 1. Add 8512 g (the ratio in the total solvent is 12% by mass) and mix it at room temperature until it is completely uniform, and add varnish (abbreviated as V (4-8)) whose total mass is 7.5% by mass. Obtained.
[実施例(4-9)]
 実施例(4-1)のBTEACをベンジルトリメチルアンモニウムクロライド(BTMACと略す)に変更した以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-9)と略す)を得た。
[Example (4-9)]
A varnish having a total solid content of 7.5% by mass was operated in the same manner as in Example (4-1) except that BTEAC of Example (4-1) was changed to benzyltrimethylammonium chloride (abbreviated as BTMAC). (Abbreviated as V (4-9)).
[実施例(4-10)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、8.2252gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8471g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-10)と略す)を得た。
[Example (4-10)]
Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 8.2252 g of PGEE, and adding 2.2875 g of P2 (B1 solid matter obtained in Synthesis Example (2-2)). 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC with PGEE to make 1% by mass, and acetic acid with 1% by mass diluted with PGEE. 0.9150 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd. with PGEE as a surfactant to 1% by mass, and 1. 8471 g (the ratio in the total solvent is 12% by mass) is added until it is completely uniform at room temperature, and a varnish (abbreviated as V (4-10)) having a total solid content of 7.5% by mass is added. Obtained.
[実施例(4-11)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、8.8409gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.2314g(全溶剤中における割合が8質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-11)と略す)を得た。
[Example (4-11)]
Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 8.8409 g of PGEE, and adding 2.2875 g of P2 (B1 solid matter obtained in Synthesis Example (2-2)) 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC with PGEE to make 1% by mass, and acetic acid with 1% by mass diluted with PGEE. 0.9150 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd. with PGEE as a surfactant to 1% by mass, and 1. 2314 g (the ratio in the total solvent is 8% by mass) is added to the mixture until it is completely uniform at room temperature, and a varnish having a total solid content of 7.5% by mass (abbreviated as V (4-11)) is added. Obtained.
[実施例(4-12)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、7.6095gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水2.4628g(全溶剤中における割合が16質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-12)と略す)を得た。
[Example (4-12)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, and then added 7.6095 g of PGEE to obtain 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2). 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC with PGEE to make 1% by mass, and acetic acid with 1% by mass diluted with PGEE. 0.9830 g of the prepared solution was added, 0.1830 g of a solution prepared by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd. with PGEE as a surfactant to 1% by mass, and ion-exchanged water 2. 4628 g (the ratio in the total solvent is 16% by mass) is added and mixed until it is completely uniform at room temperature, and a varnish (abbreviated as V (4-12)) having a total solid content of 7.5% by mass is added. Obtained.
[実施例(4-13)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、6.6121gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、酢酸をPGEEで希釈し1質量%とした溶液2.7450gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8742g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-13)と略す)を得た。
[Example (4-13)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 6.6121 g of PGEE, and added 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2). 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC with PGEE to make 1% by mass, and acetic acid with 1% by mass diluted with PGEE. 2.7450 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc. with PGEE as a surfactant to 1% by mass, and 1. 8742 g (the ratio in the total solvent is 12% by mass) is added until it is completely uniform at room temperature, and a varnish (abbreviated as V (4-13)) having a total solid content of 7.5% by mass is added. Obtained.
[実施例(4-14)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、7.4186gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、ギ酸をPGEEで希釈し1質量%とした溶液1.8300gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8607g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-14)と略す)を得た。
[Example (4-14)]
Weigh 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then add 7.4186 g of PGEE, and add 2.2875 g of P2 (B1 solid matter obtained in Synthesis Example (2-2)). 0.1830 g of a polysiloxane having a solid content of 35% by mass), a curing catalyst (D) diluted with BTEAC to 1% by mass with PGEE, and formic acid diluted with PGEE to 1% by mass. 1.8300 g of the prepared solution was added, 0.1830 g of a solution prepared by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc. with PGEE as a surfactant to 1% by mass, and 1. 8607 g (the ratio in the total solvent is 12% by mass) is added and mixed until it is completely uniform at room temperature, and a varnish (abbreviated as V (4-14)) having a total solid content of 7.5% by mass is added. Obtained.
[実施例(4-15)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、4.9990gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、プロピオン酸をPGEEで希釈し1質量%とした溶液4.5750gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.9013g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-15)と略す)を得た。
[Example (4-15)]
Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 4.9990 g of PGEE, and adding 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2) The solid content of polysiloxane is 35% by mass with respect to the component, 0.1830 g of BTEAC diluted to 1% by mass with PGEE as a curing catalyst (D) is added, and propionic acid is diluted with PGEE to 1% by mass 4.5750 g of the above solution was added, 0.1830 g of R-30-N manufactured by Dainippon Ink & Chemicals, Inc. diluted with PGEE as a surfactant was added to 1% by mass, and ion-exchanged water 1 9013 g (the ratio in the total solvent is 12% by mass) and mixed until it is completely uniform at room temperature, and the varnish having a total solid content of 7.5% by mass (abbreviated as V (4-15)) Got
[実施例(4-16)]
 実施例(4-10)の酢酸をシュウ酸に置き換えた以外は実施例(4-10)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-16)と略す)を得た。
[Example (4-16)]
A varnish (V (4-16)) having a total mass of 7.5% by mass was operated in the same manner as in Example (4-10) except that acetic acid in Example (4-10) was replaced with oxalic acid. Abbreviated).
[実施例(4-17)]
 実施例(4-10)の酢酸をマレイン酸に置き換えた以外は実施例(4-10)と同様に操作し、固形分の総質量が7.5質量%のワニス(V(4-17)と略す)を得た。
[Example (4-17)]
The same procedure as in Example (4-10) was conducted except that acetic acid in Example (4-10) was replaced by maleic acid, and a varnish (V (4-17) having a total solid content of 7.5% by mass was obtained. Abbreviated).
[実施例(4-18)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、5.2295gのPGEE、3.0763gのピルビン酸エチル(PEと略す。ジケトン化合物)を加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.0915gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8458g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-18)と略す)を得た。
[Example (4-18)]
To a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, and then 5.2295 g of PGEE and 3.0763 g of ethyl pyruvate (abbreviated as PE. Diketone compound) were added. 2.2875 g of P2 obtained in (2-2) (solid content of polysiloxane was 35% by mass with respect to the solid content of B1), and BTEAC was diluted with PGEE as a curing catalyst (D) to 1% by mass 0.0915 g was added, 0.9150 g of acetic acid diluted to 1% by mass with PGEE was added, and R-30-N manufactured by Dainippon Ink & Chemicals, Ltd. as a surfactant was diluted with PGEE to 1%. 0.1830 g of a solution, and 1.8458 g of ion-exchanged water (the ratio in the total solvent is 12% by mass), and mixed until it is completely uniform at room temperature. The amount was obtained 7.5 mass% of varnish (abbreviated as V (4-18)).
[実施例(4-19)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、5.1466gのPGEE、3.0785gのPEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8471g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-19)と略す)を得た。
[Example (4-19)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, then 5.1466 g of PGEE and 3.0785 g of PE were added, and 2.2875 g obtained in Synthesis Example (2-2). P2 (solid content of polysiloxane is 35% by mass with respect to the solid content of B1), 0.1830 g of BTEAC diluted with PGEE as a curing catalyst (D) to 1% by mass was added, and acetic acid was added with PGEE. 0.90.9 g of a solution diluted to 1% by mass was added, and 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc. with PGEE as a surfactant was added. Further, 1.8471 g of ion-exchanged water (the ratio in the total solvent is 12% by mass) is mixed until it is completely uniform at room temperature, and the varnish (V (4- ( 19) Abbreviated) was obtained.
[実施例(4-20)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、2.8637gのPGEE、3.1237gのPEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.1830gを加え、酢酸をPGEEで希釈し1質量%とした溶液2.7450gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水2.4990g(全溶剤中における割合が16質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(V(4-20)と略す)を得た。
[Example (4-20)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 2.8737 g of PGEE and 3.1237 g of PE, and added 2.2875 g obtained in Synthesis Example (2-2). P2 (solid content of polysiloxane is 35% by mass with respect to the solid content of B1), 0.1830 g of BTEAC diluted with PGEE as a curing catalyst (D) to 1% by mass was added, and acetic acid was added with PGEE. 2.7450 g of a solution diluted to 1% by mass was added, and 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc. with PGEE as a surfactant was added, Further, 2.4990 g of ion-exchanged water (the ratio in the total solvent is 16% by mass) is mixed until it is completely uniform at room temperature, and a varnish (V (4- ( 20) Abbreviated) was obtained.
[参考例(4-1)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、8.3865gのPGEEを加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8444g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、実施例(4-1)の硬化触媒(D)を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-1)と略す)を得た。
[Reference Example (4-1)]
Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 8.3865 g of PGEE, and adding 2.2875 g of P1 (solid B1 obtained in Synthesis Example (2-1)). The solid content of polysiloxane was 35% by mass, and 0.9150 g of a solution obtained by diluting acetic acid with PGEE to 1% by mass was added as a surfactant. R-manufactured by Dainippon Ink & Chemicals, Inc. Add 0.1830 g of 30-N diluted with PGEE to 1% by mass, add 1.8444 g of ion-exchanged water (12% by mass in all solvents), and mix until completely uniform at room temperature. As an example in which the curing catalyst (D) of Example (4-1) was not added, a varnish (abbreviated as RV (4-1)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-2)]
 参考例(4-1)のP1を合成例(2-2)で得たP2に置き換えた以外は参考例(4-1)と同様に操作し、実施例(4-2)の硬化触媒を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-2)と略す)を得た。
[Reference Example (4-2)]
The curing catalyst of Example (4-2) was treated in the same manner as Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P2 obtained in Synthesis Example (2-2). As an example not added, a varnish (abbreviated as RV (4-2)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-3)]
 参考例(4-1)のP1を合成例(2-3)で得たP3に置き換えた以外は参考例(4-1)と同様に操作し、実施例(4-3)の硬化触媒を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-3)と略す)を得た。
[Reference Example (4-3)]
The curing catalyst of Example (4-3) was prepared in the same manner as in Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P3 obtained in Synthesis Example (2-3). As an example that was not added, varnish (abbreviated as RV (4-3)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-4)]
 参考例(4-1)のP1を合成例(2-4)で得たP4に置き換えた以外は参考例(4-1)と同様に操作し、実施例(4-4)の硬化触媒を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-4)と略す)を得た。
[Reference Example (4-4)]
The curing catalyst of Example (4-4) was prepared in the same manner as Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P4 obtained in Synthesis Example (2-4). As an example not added, a varnish (abbreviated as RV (4-4)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-5)]
 参考例(4-1)のP1を合成例(2-5)で得たP5に置き換えた以外は参考例(4-1)と同様に操作し、実施例(4-5)の硬化触媒を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-5)と略す)を得た。
[Reference Example (4-5)]
The curing catalyst of Example (4-5) was prepared in the same manner as in Reference Example (4-1) except that P1 of Reference Example (4-1) was replaced with P5 obtained in Synthesis Example (2-5). As an example not added, a varnish (abbreviated as RV (4-5)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-6)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、10.1516gのPGEEを加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてベンジルトリエチルアンモニウムクロライド(BTEACと略す)をPGEEで希釈し1質量%とした溶液0.0915gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、室温で完全に均一になるまで混合し、実施例(4-1)のイオン交換水を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-6)と略す)を得た。
[Reference Example (4-6)]
In a 20 mL eggplant-shaped flask, 3.0000 g of B1 obtained in Production Example 1 was weighed, then 10.1516 g of PGEE was added, and 2.2875 g of P1 (solid of B1 obtained in Synthesis Example (2-1) was added. 0.095 g of a polysiloxane solid content of 35% by mass), benzyl triethylammonium chloride (abbreviated as BTEAC) as a curing catalyst (D) diluted to 1% by mass with PGEE, and acetic acid 0.9150 g of a solution diluted to 1% by mass with PGEE was added, and 0.1830 g of R-30-N manufactured by Dainippon Ink & Chemicals, Inc. as a surfactant was diluted to 1% by mass with PGEE. In addition, as an example in which the ion exchange water of Example (4-1) was not added until it was completely uniform at room temperature, a varnish (RV (RV ( -6) abbreviated) was obtained.
[参考例(4-7)]
 参考例(4-6)のP1を合成例(2-2)で得たP2に置き換えた以外は参考例(4-6)と同様に操作し、実施例(4-2)のイオン交換水を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-7)と略す)を得た。
[Reference Example (4-7)]
The same procedure as in Reference Example (4-6) was performed except that P1 in Reference Example (4-6) was replaced with P2 obtained in Synthesis Example (2-2), and ion-exchanged water of Example (4-2) As an example in which varnish was not added, a varnish (abbreviated as RV (4-7)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-8)]
 参考例(4-6)のP1を合成例(2-3)で得たP3に置き換えた以外は参考例(4-6)と同様に操作し、実施例(4-3)のイオン交換水を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-8)と略す)を得た。
[Reference Example (4-8)]
The same procedure as in Reference Example (4-6) was conducted except that P1 in Reference Example (4-6) was replaced with P3 obtained in Synthesis Example (2-3), and ion-exchanged water of Example (4-3) As an example in which varnish was not added, a varnish (abbreviated as RV (4-8)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-9)]
 参考例(4-6)のP1を合成例(2-4)で得たP4に置き換えた以外は参考例(4-6)と同様に操作し、実施例(4-4)のイオン交換水を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-9)と略す)を得た。
[Reference Example (4-9)]
The same procedure as in Reference Example (4-6) was carried out except that P1 in Reference Example (4-6) was replaced with P4 obtained in Synthesis Example (2-4), and ion-exchanged water of Example (4-4) As an example in which varnish was not added, a varnish (abbreviated as RV (4-9)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-10)]
 参考例(4-6)のP1を合成例(2-5)で得たP5に置き換えた以外は参考例(4-6)と同様に操作し、実施例(4-5)のイオン交換水を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-10)と略す)を得た。
[Reference Example (4-10)]
The same procedure as in Reference Example (4-6) was performed except that P1 in Reference Example (4-6) was replaced with P5 obtained in Synthesis Example (2-5), and ion-exchanged water of Example (4-5) As an example in which varnish was not added, a varnish (abbreviated as RV (4-10)) having a total solid content of 7.5% by mass was obtained.
[参考例(4-11)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、9.1124gのPGEEを加え、合成例(2-1)で得た2.2875gのP1(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.0915gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8322g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、実施例(4-1)の酸を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-11)と略す)を得た。
[Reference Example (4-11)]
Weighing 3.0000 g of B1 obtained in Production Example 1 into a 20 mL eggplant-shaped flask, then adding 9.1124 g of PGEE, and adding 2.2875 g of P1 (solid of B1) obtained in Synthesis Example (2-1) The solid content of the polysiloxane is 35% by mass), 0.0915 g of BTEAC diluted with PGEE as a curing catalyst (D) to 1% by mass is added, and Dainippon Ink & Chemicals, Ltd. as a surfactant ( 0.1830 g of R-30-N manufactured by Co., Ltd. diluted to 1% by mass with PGEE was added, and 1.8322 g of ion-exchanged water (the ratio in the total solvent was 12% by mass) was completely added at room temperature. As an example in which the acid of Example (4-1) was not added, a varnish (abbreviated as RV (4-11)) having a total solid content of 7.5% by mass was obtained. .
[参考例(4-12)]
 参考例(4-11)のP1を合成例(2-2)で得たP2に置き換えた以外は参考例(4-11)と同様に操作し、実施例(4-2)の酸を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-12)と略す)を得た。
[Reference Example (4-12)]
The procedure of Reference Example (4-11) was repeated, except that P1 of Reference Example (4-11) was replaced by P2 obtained in Synthesis Example (2-2), and the acid of Example (4-2) was added. As an example, there was obtained a varnish (abbreviated as RV (4-12)) having a total solid content of 7.5% by mass.
[参考例(4-13)]
 参考例(4-11)のP1を合成例(2-3)で得たP3に置き換えた以外は参考例(4-11)と同様に操作し、実施例(4-3)の酸を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-13)と略す)を得た。
[Reference Example (4-13)]
The procedure of Reference Example (4-11) was repeated, except that P1 of Reference Example (4-11) was replaced with P3 obtained in Synthesis Example (2-3), and the acid of Example (4-3) was added. As an example, there was obtained a varnish (abbreviated as RV (4-13)) having a total solid content of 7.5% by mass.
[参考例(4-14)]
 参考例(4-11)のP1を合成例(2-4)で得たP4に置き換えた以外は参考例(4-11)と同様に操作し、実施例(4-4)の酸を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-14)と略す)を得た。
[Reference Example (4-14)]
The procedure of Reference Example (4-11) was repeated, except that P1 of Reference Example (4-11) was replaced by P4 obtained in Synthesis Example (2-4), and the acid of Example (4-4) was added. As an example, there was obtained a varnish (abbreviated as RV (4-14)) having a total solid content of 7.5% by mass.
[参考例(4-15)]
 参考例(4-11)のP1を合成例(2-5)で得たP5に置き換えた以外は参考例(4-11)と同様に操作し、実施例(4-5)の酸を加えなかった例として、固形分の総質量が7.5質量%のワニス(RV(4-15)と略す)を得た。
[Reference Example (4-15)]
The procedure of Reference Example (4-11) was repeated, except that P1 of Reference Example (4-11) was replaced by P5 obtained in Synthesis Example (2-5), and the acid of Example (4-5) was added. As an example, there was obtained a varnish (abbreviated as RV (4-15)) having a total solid content of 7.5% by mass.
[参考例(4-16)]
 実施例(4-1)のP1を合成例(2-7)で得たP7に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-16)と略す)を得た。
[Reference Example (4-16)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P7 obtained in Synthesis Example (2-7), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (4-16)) was obtained.
[参考例(4-17)]
 実施例(4-1)のP1を合成例(2-8)で得たP8に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-17)と略す)を得た。
[Reference Example (4-17)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P8 obtained in Synthesis Example (2-8), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as RV (4-17)).
[参考例(4-18)]
 実施例(4-1)のP1を合成例(2-10)で得たP10に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-18)と略す)を得た。
[Reference Example (4-18)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P10 obtained in Synthesis Example (2-10), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as RV (4-18)).
[参考例(4-19)]
 実施例(4-1)のP1を合成例(2-11)で得たP11に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-19)と略す)を得た。
[Reference Example (4-19)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P11 obtained in Synthesis Example (2-11), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (4-19)) was obtained.
[参考例(4-20)]
 実施例(4-1)のP1を合成例(2-12)で得たP12に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-20)と略す)を得た。
[Reference Example (4-20)]
The procedure of Example (4-1) was repeated except that P1 of Example (4-1) was replaced with P12 obtained in Synthesis Example (2-12), so that the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (4-20)) was obtained.
[参考例(4-21)]
 実施例(4-1)のP1を合成例(2-13)で得たP13に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-21)と略す)を得た。
[Reference Example (4-21)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P13 obtained in Synthesis Example (2-13), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as RV (4-21)).
[参考例(4-22)]
 実施例(4-1)のP1を合成例(2-14)で得たP14に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-22)と略す)を得た。
[Reference Example (4-22)]
The same operation as in Example (4-1) was conducted except that P1 in Example (4-1) was replaced with P14 obtained in Synthesis Example (2-14), and the total mass of the solid content was 7.5% by mass. Of varnish (abbreviated as RV (4-22)).
[参考例(4-23)]
 実施例(4-1)のP1を合成例(2-15)で得たP15に置き換えた以外は実施例(4-1)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-23)と略す)を得た。
[Reference Example (4-23)]
The same operation as in Example (4-1) was performed except that P1 in Example (4-1) was replaced with P15 obtained in Synthesis Example (2-15), and the total mass of the solid content was 7.5% by mass. Varnish (abbreviated as RV (4-23)).
[参考例(4-24)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、6.6927gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.0915gを加え、硝酸をPGEEで希釈し1質量%とした溶液2.7450gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8729g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(RV(4-24)と略す)を得た。
[Reference Example (4-24)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 6.6927 g of PGEE, and added 2.2875 g of P2 (solid B1) obtained in Synthesis Example (2-2). The solid content of the polysiloxane is 35% by mass), 0.0915 g of BTEAC diluted with PGEE to 1% by mass is added as a curing catalyst (D), and nitric acid is diluted with PGEE to 1% by mass. 2.7450 g of the solution was added, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc. with PGEE as a surfactant to 1% by mass, and 1. 8729 g (the ratio in the total solvent is 12% by mass) is added until it is completely uniform at room temperature, and a varnish (abbreviated as RV (4-24)) having a total solid content of 7.5% by mass is added. Obtained.
[参考例(4-25)]
 参考例(4-24)の硝酸を硫酸に置き換えた以外は参考例(4-24)と同様に操作し、固形分の総質量が7.5質量%のワニス(RV(4-25)と略す)を得た。
[Reference Example (4-25)]
The procedure of Reference Example (4-24) was followed except that nitric acid in Reference Example (4-24) was replaced with sulfuric acid, and a varnish (RV (4-25) with a total solid content of 7.5% by mass was used. Abbreviated).
[参考例(4-26)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、9.1043gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.0915gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.0092gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水1.8324g(全溶剤中における割合が12質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(RV(4-26)と略す)を得た。
[Reference Example (4-26)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 9.1043 g of PGEE, and added 2.2875 g of P2 (B1 solid matter obtained in Synthesis Example (2-2)). The solid content of the polysiloxane is 35% by mass) and 0.0915 g of a solution of BTEAC diluted with PGEE to 1% by mass is added as a curing catalyst (D), and acetic acid is diluted with PGEE to 1% by mass. 0.0092 g of the prepared solution was added, 0.1830 g of a solution prepared by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Ltd. with PGEE as a surfactant to 1% by mass, and ion-exchanged water 1. Add 8324 g (the ratio in the total solvent is 12% by mass), mix until it is completely uniform at room temperature, and add varnish (abbreviated as RV (4-26)) whose total mass is 7.5% by mass. Obtained.
[参考例(4-27)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、9.5363gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.0915gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水0.6153g(全溶剤中における割合が4質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(RV(4-27)と略す)を得た。
[Reference Example (4-27)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 9.5363 g of PGEE, and added 2.2875 g of P2 (solid B1) obtained in Synthesis Example (2-2). The solid content of the polysiloxane is 35% by mass) and 0.0915 g of a solution of BTEAC diluted with PGEE to 1% by mass is added as a curing catalyst (D), and acetic acid is diluted with PGEE to 1% by mass. 0.9150 g of the prepared solution was added, 0.1830 g of a solution prepared by diluting R-30-N manufactured by Dainippon Ink and Chemicals, Ltd. with PGEE as a surfactant to 1% by mass, Add 6153 g (the ratio in the total solvent is 4% by mass) and mix it at room temperature until it is completely uniform, and add a varnish (abbreviated as RV (4-27)) whose total mass is 7.5% by mass. Obtained.
[参考例(4-28)]
 20mLナス型フラスコに製造例1で得られた3.0000gのB1を秤量し、次いで、7.0753gのPGEEを加え、合成例(2-2)で得た2.2875gのP2(B1の固形分に対して、ポリシロキサンの固形分が35質量%)、硬化触媒(D)としてBTEACをPGEEで希釈し1質量%とした溶液0.0915gを加え、酢酸をPGEEで希釈し1質量%とした溶液0.9150gを加え、界面活性剤として大日本インキ化学工業(株)製のR-30-NをPGEEで希釈し1質量%とした溶液0.1830gを加え、さらにイオン交換水3.0763g(全溶剤中における割合が20質量%)を加え、室温で完全に均一になるまで混合し、固形分の総質量が7.5質量%のワニス(RV(4-28)と略す)を得た。
[Reference Example (4-28)]
In a 20 mL eggplant-shaped flask, weighed 3.0000 g of B1 obtained in Production Example 1, then added 7.0753 g of PGEE, and added 2.2875 g of P2 (solid of B1) obtained in Synthesis Example (2-2). The solid content of the polysiloxane is 35% by mass) and 0.0915 g of a solution of BTEAC diluted with PGEE to 1% by mass is added as a curing catalyst (D), and acetic acid is diluted with PGEE to 1% by mass. 0.9830 g of the prepared solution, 0.1830 g of a solution made by diluting R-30-N manufactured by Dainippon Ink & Chemicals, Inc. with PGEE as a surfactant to 1% by mass, and ion-exchanged water 3. Add 0763 g (the ratio in the total solvent is 20% by mass) and mix it at room temperature until it is completely uniform, and add a varnish (abbreviated as RV (4-28)) whose total mass is 7.5% by mass. Obtained.
 実施例(4-1)乃至実施例(4-20)及び参考例(4-1)乃至参考例(4-28)で得られたV(4-1)乃至V(4-20)及びRV(4-1)乃至RV(4-28)の組成を表7乃至表10にまとめて示す。また、各ワニスはデジタルpHメーターでpHを測定し、その結果を表7に示す。 V (4-1) to V (4-20) and RV obtained in Examples (4-1) to (4-20) and Reference Examples (4-1) to (4-28) The compositions of (4-1) to RV (4-28) are summarized in Tables 7 to 10. Each varnish was measured for pH with a digital pH meter, and the results are shown in Table 7.
 表7乃至表10は本発明に関わるパラメータである、重量平均分子量、ケイ素化合物(A)を構成する加水分解性シラン(a1)と加水分解性シラン(a2)との共重合比率、加水分解性シラン(a2)中のLの炭素原子数、硬化触媒添加の有無とその種類、酸添加の有無とその種類、水添加の有無と水が全溶剤中に占める割合(重量%)を示す。 Tables 7 to 10 are parameters relating to the present invention, weight average molecular weight, copolymerization ratio of hydrolyzable silane (a1) and hydrolyzable silane (a2) constituting the silicon compound (A), and hydrolyzability. The number of carbon atoms of L in silane (a2), the presence / absence and type of addition of a curing catalyst, the presence / absence and type of acid addition, the presence / absence of water addition and the ratio of water to the total solvent (% by weight) are shown.
 表7乃至表10において、酸の種類は酢酸をG1、ギ酸をG2、プロピオン酸をG3、シュウ酸をG4、マレイン酸をG5、硝酸をG6、硫酸をG7と略記する。 In Tables 7 to 10, the types of acids are abbreviated as G1 for acetic acid, G2 for formic acid, G3 for propionic acid, G4 for oxalic acid, G5 for maleic acid, G6 for nitric acid, and G7 for sulfuric acid.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<ワニスの保存安定性試験>
[エージング試験]
 実施例(4-1)乃至実施例(4-20)及び参考例(4-1)乃至参考例(4-28)で得られたV(4-1)乃至V(4-20)及びRV(4-1)乃至RV(4-28)のワニスは調製後、温度が40℃、相対湿度が50%のオーブンの中でエージング試験を行った。エージング試験の時間は336時間とした。
 エージング試験の前後において、各ワニスは被膜を作製し、塗膜表面に異物が発生しているかを確認した。各ワニスは8inchのシリコン基板に膜厚が100nmとなるように東京エレクトロン(株)製 クリーントラック ACT8を用いてスピンコートし、ホットプレートを用いて、150℃1分間で焼成を行った。
 被膜は光学顕微鏡を用いて、塗膜表面を観察し、異物が発生せず、均一な膜が得られた例を○、異物が発生し、保存安定性試験に不具合があった例を×として表11乃至表12に示す。
<被膜の作製>
<Storage stability test of varnish>
[Aging test]
V (4-1) to V (4-20) and RV obtained in Examples (4-1) to (4-20) and Reference Examples (4-1) to (4-28) After preparing the varnishes (4-1) to RV (4-28), an aging test was performed in an oven at a temperature of 40 ° C. and a relative humidity of 50%. The time for the aging test was 336 hours.
Before and after the aging test, each varnish produced a film, and it was confirmed whether foreign matter was generated on the surface of the film. Each varnish was spin-coated on a 8 inch silicon substrate using a clean track ACT8 manufactured by Tokyo Electron Co., Ltd. and fired at 150 ° C. for 1 minute using a hot plate.
As for the coating film, the surface of the coating film is observed using an optical microscope, ○ is an example in which a foreign film is not generated and a uniform film is obtained, and x is an example in which a foreign material is generated and a storage stability test is defective. It shows in Table 11 thru | or Table 12.
<Preparation of coating>
[パターニング特性]
 得られたV(4-1)乃至V(4-20)及びRV(4-1)乃至RV(4-28)はパターニング特性を評価した。各ワニスはヘキサメチルジシラザン(HMDS)で処理した8inchのシリコン基板に膜厚が100nmとなるように東京エレクトロン(株)製 クリーントラック ACT8を用いてスピンコートし、ホットプレートを用いて、150℃1分間で焼成を行った。次いで、得られた被膜の上からAZ3100(AZ ELECTRONIC MATERIALS社製)を膜厚が1.5μmとなるようにスピンコートし、ホットプレートを用いて、100℃1分間で焼成を行った。その後、(株)ニコン製 i線ステッパー NSR-2205i12Dを用いて300mJ/cmの露光量をマスク越しに光照射した。光照射後、2.38%のテトラメチルアンモニウムハイドライド(TMAHと略す)を用いて30秒現像し、純水リンス1分後、エアーで乾燥させた。さらに、感光性レジストをPGMEに2分浸漬させ、レジストを剥離し、Line:Spaceが1:1の5μmの箇所を光学顕微鏡で観察した。光学顕微鏡で観察した結果、Line:Spaceが1:1の5μm付近になっている例を○、Line:Spaceが1:1の5μmから離れている例若しくは残膜している例を×と評価し、V(4-1)乃至V(4-20)及びRV(4-1)乃至RV(4-28)の結果を表11乃至表12に示す。また、V(4-1)乃至V(4-3)、V(4-10)、V(4-14)乃至V(4-17)及びRV(4-1)乃至RV(4-3)の観察結果を図15乃至図25に示す。
 さらに、図15乃至図22はLine:Spaceが1:1の5μmの箇所において、Space部分を電子顕微鏡を用いてパターンのトップ方向から測長した。測長した結果、図15のSpace部分の幅は5.04μm、図16のSpace部分の幅は5.02μm、図17のSpace部分の幅は5.02μm、図18のSpace部分の幅は5.01μm、図19のSpace部分の幅は5.01μm、図20のSpace部分の幅は5.01μm、図21のSpace部分の幅は5.01μm、図22のSpace部分の幅は5.01μmとなった。ここでSpace部分はアルカリ現像液に溶解する部分であり、5μmに近ければ近いほど、良好にパターンが形成できていることを示している。
[Patterning characteristics]
The obtained V (4-1) to V (4-20) and RV (4-1) to RV (4-28) were evaluated for patterning characteristics. Each varnish was spin-coated on a 8 inch silicon substrate treated with hexamethyldisilazane (HMDS) to a thickness of 100 nm using a clean track ACT8 manufactured by Tokyo Electron Co., Ltd., and 150 ° C. using a hot plate. Firing was performed for 1 minute. Next, AZ3100 (manufactured by AZ ELECTRONIC MATERIALS) was spin-coated on the obtained coating so as to have a film thickness of 1.5 μm, and baked at 100 ° C. for 1 minute using a hot plate. Thereafter, using an i-line stepper NSR-2205i12D manufactured by Nikon Corporation, an exposure dose of 300 mJ / cm 2 was irradiated through the mask. After light irradiation, development was performed for 30 seconds using 2.38% tetramethylammonium hydride (abbreviated as TMAH), and after 1 minute of pure water rinse, the film was dried with air. Furthermore, the photosensitive resist was immersed in PGME for 2 minutes, the resist was peeled off, and the 5 μm portion where Line: Space was 1: 1 was observed with an optical microscope. As a result of observation with an optical microscope, an example in which Line: Space is close to 5 μm of 1: 1 is evaluated as ○, an example in which Line: Space is 1: 1 from 5 μm, or an example in which the remaining film is left is evaluated as ×. Tables 11 to 12 show the results of V (4-1) to V (4-20) and RV (4-1) to RV (4-28). Also, V (4-1) to V (4-3), V (4-10), V (4-14) to V (4-17) and RV (4-1) to RV (4-3) The observation results are shown in FIGS.
Further, in FIGS. 15 to 22, the space portion was measured from the top direction of the pattern using an electron microscope at a 5 μm portion where Line: Space was 1: 1. As a result of the measurement, the width of the space portion of FIG. 15 is 5.04 μm, the width of the space portion of FIG. 16 is 5.02 μm, the width of the space portion of FIG. 17 is 5.02 μm, and the width of the space portion of FIG. .01 μm, the width of the Space portion of FIG. 19 is 5.01 μm, the width of the Space portion of FIG. 20 is 5.01 μm, the width of the Space portion of FIG. 21 is 5.01 μm, and the width of the Space portion of FIG. It became. Here, the space portion is a portion that dissolves in the alkaline developer, and the closer to 5 μm, the better the pattern can be formed.
[水接触角]
 得られたV(4-1)乃至V(4-20)及びRV(4-1)乃至RV(4-28)は水接触角を測定した。シリコン基板上に膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃1分間で焼成を行い、次いで、100℃1分間で焼成を行った。このホットプレートにおける2段階焼成は感光性レジストを塗布し、乾燥することを踏まえたアルカリ現像前の熱履歴を再現した焼成条件である。
 得られた被膜は協和界面科学(株)製 全自動接触角計 Drop Masterシリーズ DM700を用いて、純水をサイズが22Gの針から液滴を作製し、被膜表面に着液した液滴を液滴法(θ/2法)で水接触角を算出した。その結果を表11乃至表12に示す。
[Water contact angle]
The obtained V (4-1) to V (4-20) and RV (4-1) to RV (4-28) were measured for water contact angle. A silicon substrate was spin-coated so as to have a film thickness of 100 nm, and baked using a hot plate at 150 ° C. for 1 minute, and then baked at 100 ° C. for 1 minute. The two-step baking in this hot plate is a baking condition that reproduces the heat history before alkali development based on applying a photosensitive resist and drying.
Using the fully automatic contact angle meter Drop Master series DM700 manufactured by Kyowa Interface Science Co., Ltd., the resulting coating was made from pure water using a 22G size needle, and the droplet deposited on the coating surface was removed. The water contact angle was calculated by the drop method (θ / 2 method). The results are shown in Tables 11 to 12.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表7乃至表12において、V(4-1)乃至V(4-20)及びRV(4-1)及びRV(4-28)のエージング前後のワニスの異物とその被膜のパターニング特性を比較する。 Tables 7 to 12 compare the patterning characteristics of varnish foreign matter and its coating before and after aging of V (4-1) to V (4-20) and RV (4-1) and RV (4-28). .
 V(4-1)乃至V(4-20)のワニスは重量平均分子量が700~4000の範囲内であり、ケイ素化合物(A)を構成する加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%で共重合され、且つ、加水分解性シラン(a2)のLが炭素原子数3~6の直鎖、分岐又は環状のアルキル基で構成されており、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、硬化触媒(D)、水(F)、酸(G)と、溶剤(C)からなるワニスは、水(F)の全溶媒中における割合が6重量%乃至18重量%であり、ワニスのpHが3乃至5にコントロールすることでエージング前後のワニス中で異物が発生せず、得られる被膜上に異物が発現しないことがわかった。 The varnishes V (4-1) to V (4-20) have a weight average molecular weight in the range of 700 to 4000, and the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 mol% to 50%. Linear, branched or cyclic, in which hydrolyzable silane (a2) is copolymerized at 10 to 50 mol%, and L of hydrolyzable silane (a2) has 3 to 6 carbon atoms Inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70, a curing catalyst (D), water (F), and an acid (G) In the varnish composed of the solvent (C), the ratio of water (F) in the total solvent is 6 to 18% by weight, and the pH of the varnish is controlled to 3 to 5 in the varnish before and after aging. Foreign matter does not occur and foreign matter appears on the resulting coating It was found not.
 一方、参考例(4-1)乃至参考例(4-5)は硬化触媒(D)を抜いた例であるが、パターニング特性を評価すると被膜がアルカリ現像液に溶解しすぎてしまい、パターンを得ることができなかった。この結果から、硬化触媒(D)が必須成分であることが明らかとなった。 On the other hand, Reference Example (4-1) to Reference Example (4-5) are examples in which the curing catalyst (D) was omitted. However, when the patterning characteristics were evaluated, the film was too dissolved in the alkaline developer, and the pattern was changed. Couldn't get. From this result, it became clear that the curing catalyst (D) is an essential component.
 参考例(4-6)乃至参考例(4-10)は水(F)を抜いた例であるが、パターニング特性を評価すると被膜がアルカリ現像液に溶解せず、パターンを得ることができなかった。水(F)はケイ素化合物(A)のシラノールをワニス中で発現させ、熱時の硬化性を高め、安定化させる、及び酸(G)の水素イオン濃度を適切に発現させるための必須成分であることが明らかとなった。 Reference Example (4-6) to Reference Example (4-10) are examples in which water (F) was removed, but when the patterning characteristics were evaluated, the film was not dissolved in the alkaline developer, and a pattern could not be obtained. It was. Water (F) is an essential component for expressing silanol of the silicon compound (A) in the varnish, enhancing and stabilizing the curability when heated, and appropriately expressing the hydrogen ion concentration of the acid (G). It became clear that there was.
 参考例(4-11)乃至参考例(4-15)は酸(G)を抜いた例であるが、エージング後に異物が発生する不具合が生じた。これは、ワニスのpHが6.8となっており、シラノールが安定化するよりも縮合が促進して、ワニス中で異物が発生したと考えられる。この結果から酸(G)が必須成分であることが明らかとなった。 Reference examples (4-11) to (4-15) are examples in which the acid (G) was removed, but there was a problem that foreign matter was generated after aging. This is because the pH of the varnish is 6.8, and condensation is promoted more than the stabilization of silanol, and it is considered that foreign matters are generated in the varnish. This result revealed that acid (G) is an essential component.
 参考例(4-16)、参考例(4-19)及び参考例(4-20)は加水分解性シラン(a2)のLが炭素原子数0~2のアルキル基である例であるが、パターニング特性を評価すると、被膜がアルカリ現像液に対して剥離現像となり、パターンを得ることができなかった。これは、縮合が進行しすぎてアルカリ現像液に対して、溶解現像性を発現しなかったためと考えられる。また、参考例(4-21)は加水分解性シラン(a2)のLが炭素原子数8のアルキル基である例であるが、パターニング特性を評価すると、被膜がアルカリ現像液に溶解せず、パターンを得ることができなかった。これらの結果から、加水分解性シラン(a2)のLが炭素原子数3~6の直鎖、分岐又は環状のアルキル基で構成されることが必須であることが明らかとなった。更に、加水分解性シラン(a2)のLが炭素原子数3~6の直鎖、分岐又は環状のアルキル基で構成されることで、得られる被膜の水接触角が60°乃至80°の範囲内となる。アルカリ現像液に対して溶解現像性を得るためには、被膜の親疎水性が非常に重要であることが明確化し、最適な親疎水性をケイ素化合物の構造から発現していることが分かった。 Reference Example (4-16), Reference Example (4-19) and Reference Example (4-20) are examples in which L of the hydrolyzable silane (a2) is an alkyl group having 0 to 2 carbon atoms. When the patterning characteristics were evaluated, the film was peeled and developed with respect to the alkaline developer, and a pattern could not be obtained. This is presumably because the condensation progressed too much and did not exhibit dissolution developability with respect to the alkaline developer. Reference Example (4-21) is an example in which L of the hydrolyzable silane (a2) is an alkyl group having 8 carbon atoms. When the patterning characteristics are evaluated, the coating does not dissolve in the alkaline developer, The pattern could not be obtained. From these results, it became clear that L of the hydrolyzable silane (a2) must be composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms. Further, when the hydrolyzable silane (a2) L is composed of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms, the water contact angle of the resulting film is in the range of 60 ° to 80 °. Inside. It was clarified that the hydrophilicity / hydrophobicity of the film is very important in order to obtain the solution developability with respect to the alkaline developer, and it was found that the optimum hydrophilicity / hydrophobicity was expressed from the structure of the silicon compound.
 参考例(4-17)はケイ素化合物(A)を構成する加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%で共重合されたポリマーではなく、加水分解性シラン(a1)が40モル%、加水分解性シラン(a2)が60モル%共重合されたポリマーを使用した例であるが、パターニング特性を評価すると、被膜がアルカリ現像液に溶解せず、パターンを得ることができなかった。この結果から、加水分解性シラン(a1)及び加水分解性シラン(a2)の共重合比率が重要であり、実施例(4-5)の加水分解性シラン(a1)が50モル%、加水分解性シラン(a2)が50モル%共重合されたポリマーを使用した例ではアルカリ溶解性が発現していることから、加水分解性シラン(a1)及び加水分解性シラン(a2)の共重合比率に最適値があることが明らかとなった。 In Reference Example (4-17), the hydrolyzable silane (a1) constituting the silicon compound (A) is 90 mol% to 50 mol%, and the hydrolyzable silane (a2) is 10 mol% to 50 mol%. It is an example using a polymer in which the hydrolyzable silane (a1) is 40 mol% and the hydrolyzable silane (a2) is 60 mol%, not a copolymerized polymer. The film did not dissolve in the alkaline developer, and a pattern could not be obtained. From this result, the copolymerization ratio of the hydrolyzable silane (a1) and the hydrolyzable silane (a2) is important, the hydrolyzable silane (a1) of Example (4-5) is 50 mol%, In an example in which a polymer in which 50 mol% of the reactive silane (a2) is copolymerized is used, alkali solubility is expressed, so the copolymerization ratio of the hydrolyzable silane (a1) and the hydrolyzable silane (a2) It became clear that there was an optimal value.
 参考例(4-18)は重量平均分子量が4545のポリマーを用いた例であるが、パターニング特性を評価すると、被膜がアルカリ現像液に対して剥離現像となり、パターンを得ることができなかった。この結果から、ケイ素化合物(A)の重量平均分子量が高すぎると剥離現像となり、重量平均分子量に最適値があることが明らかとなった。 Reference Example (4-18) is an example using a polymer having a weight average molecular weight of 4545. When the patterning characteristics were evaluated, the film was peeled and developed with an alkaline developer, and a pattern could not be obtained. From this result, it was revealed that when the weight average molecular weight of the silicon compound (A) is too high, peeling development occurs and there is an optimum value for the weight average molecular weight.
 参考例(4-22)及び参考例(4-23)は共に部分加水分解型のケイ素化合物(A)を使用した例である。双方ともに、パターニング特性、エージング前後に異物が発生せず、良好な結果となった。耐光性試験の結果を後記する。 Reference Example (4-22) and Reference Example (4-23) are both examples using a partially hydrolyzed silicon compound (A). In both cases, the patterning characteristics, no foreign matter was generated before and after aging, and good results were obtained. The results of the light resistance test will be described later.
 参考例(4-24)及び参考例(4-25)は酸の種類を強酸に変更し、ワニスのpHを1.2とした例である。参考例(4-24)及び参考例(4-25)のワニスはエージング後に溶媒(C)に不溶なゲルが発生した。この結果から、ワニスのpHには最適値があることが明らかとなった。 Reference Example (4-24) and Reference Example (4-25) are examples in which the acid type is changed to strong acid and the pH of the varnish is 1.2. In the varnishes of Reference Example (4-24) and Reference Example (4-25), a gel insoluble in the solvent (C) was generated after aging. From this result, it became clear that there is an optimum value for the pH of the varnish.
 参考例(4-26)は酢酸の添加量を低下させ、0.01phrの添加とし、ワニスのpHを5.6とした例である。参考例(4-26)はエージング後に異物が発生した。この結果からも、ワニスのpHには最適値があることが明らかとなった。 Reference Example (4-26) is an example in which the addition amount of acetic acid was decreased, 0.01 phr was added, and the pH of the varnish was 5.6. In Reference Example (4-26), foreign matter was generated after aging. This result also revealed that the pH of the varnish has an optimum value.
 参考例(4-27)及び参考例(4-28)は水(F)の添加量を4%及び20%とした例である。参考例(4-27)はエージング後に異物が発生し、参考例(4-28)はワニスを基板に塗布した際にストリエーションが発生し、均一な被膜を得られなかった。この結果から、水(F)の添加量には最適値があることが明らかとなった。 Reference Example (4-27) and Reference Example (4-28) are examples in which the amount of water (F) added is 4% and 20%. In Reference Example (4-27), foreign matter was generated after aging, and in Reference Example (4-28), striation occurred when the varnish was applied to the substrate, and a uniform film could not be obtained. From this result, it became clear that there is an optimum value for the amount of water (F) added.
[耐光性試験]
[実施例(4-21)乃至実施例(4-22)及び参考例(4-29)乃至参考例(4-30)]
 得られたV(4-1)乃至V(4-2)及びRV(4-22)乃至RV(4-23)は耐光性を評価した。
 V(4-1)乃至V(4-2)及びRV(4-22)乃至RV(4-23)はシリコン基板上に膜厚が100nmとなるようにスピンコートし、ホットプレートを用いて、150℃60分間で焼成を行った。焼成後、膜厚、450nmの屈折率、平均透過率を測定した。次いで、耐光性試験を行い、耐光性試験後の膜の膜厚、屈折率、平均透過率を測定した。その結果を表13に示す。
 膜厚及び450nmの屈折率はシリコン基板上の被膜を測定し、平均透過率は石英基板上の被膜を測定した。平均透過率は400nm乃至800nmの平均透過率を算出した。
 耐光性試験における、光照射は一般財団法人日本ウエザリングテストセンターにて行い、照度が38.7W/m、露光波長が320nm乃至400nmのキセノンアークランプを光源とした。試験機はスガ試験機(株)製 SX75-AP型を用いた。試験環境は温度が42±3℃、相対湿度が50±5%RHとした。
[Light resistance test]
[Example (4-21) to Example (4-22) and Reference Example (4-29) to Reference Example (4-30)]
The obtained V (4-1) to V (4-2) and RV (4-22) to RV (4-23) were evaluated for light resistance.
V (4-1) to V (4-2) and RV (4-22) to RV (4-23) are spin-coated on a silicon substrate to a film thickness of 100 nm, and using a hot plate, Firing was performed at 150 ° C. for 60 minutes. After firing, the film thickness, the refractive index of 450 nm, and the average transmittance were measured. Next, a light resistance test was performed, and the film thickness, refractive index, and average transmittance of the film after the light resistance test were measured. The results are shown in Table 13.
The film thickness and refractive index of 450 nm were measured on the film on the silicon substrate, and the average transmittance was measured on the film on the quartz substrate. As the average transmittance, an average transmittance of 400 nm to 800 nm was calculated.
In the light resistance test, light irradiation was performed at the Japan Weathering Test Center, and a xenon arc lamp having an illuminance of 38.7 W / m 2 and an exposure wavelength of 320 nm to 400 nm was used as a light source. SX75-AP type manufactured by Suga Test Instruments Co., Ltd. was used as the test machine. The test environment was a temperature of 42 ± 3 ° C. and a relative humidity of 50 ± 5% RH.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 実施例(4-21)乃至実施例(4-22)及び参考例(4-29)乃至参考例(4-30)の耐光性を比較する。実施例(4-21)乃至実施例(4-22)及び参考例(4-29)乃至参考例(4-30)はパターニング特性及びエージン後に異物が発生せず良好であったが、参考例(4-29)乃至参考例(4-30)は耐光性試験後の膜厚が低下、屈折率が増大、平均透過率が低下することが分かった。一方、実施例(4-21)乃至実施例(4-22)は耐光性試験後の膜厚、屈折率、平均透過率が変化しなかった。 The light resistance of Example (4-21) to Example (4-22) and Reference Example (4-29) to Reference Example (4-30) are compared. In Examples (4-21) to (4-22) and Reference Examples (4-29) to (4-30), the patterning characteristics and the generation of foreign matter after the aging were good. In (4-29) to Reference Example (4-30), it was found that the film thickness after light resistance test decreased, the refractive index increased, and the average transmittance decreased. On the other hand, in Examples (4-21) to (4-22), the film thickness, refractive index, and average transmittance after the light resistance test did not change.
 耐光性試験の結果は、V(4-1)乃至V(4-2)のポリマーが完全加水分解型であり、RV(4-22)乃至RV(4-23)のポリマーが部分加水分解型という違いだけで、モノマーの共重合比率が同一で重量平均分子量も同程度のポリマーであることから、ポリマーの重合方法の違いによって優位差が発現したことを示している。即ち、完全加水分解型のポリマーは耐光性試験が良好であることが分かった。完全加水分解型のポリマーは焼成工程で膜の熱硬化反応が終結しているのに対し、部分加水分解型のポリマーは焼成工程で熱硬化反応が完全に終結せず、アルコキシ基が残留しており、耐光性試験中に反応が進行したことに起因すると考えられる。 As a result of the light resistance test, the polymers V (4-1) to V (4-2) are completely hydrolyzed, and the polymers RV (4-22) to RV (4-23) are partially hydrolyzed. Only the difference is that the copolymerization ratio of the monomers is the same and the weight average molecular weight is the same level of the polymer, indicating that the difference in predominance was expressed by the difference in the polymerization method of the polymer. That is, it was found that the completely hydrolyzed polymer had a good light resistance test. In the fully hydrolyzed polymer, the thermosetting reaction of the film is terminated in the baking process, whereas in the partially hydrolyzed polymer, the thermosetting reaction is not completely terminated in the baking process, and the alkoxy group remains. Therefore, it is considered that the reaction progressed during the light resistance test.
 以上の結果を総合すると、LED用材料として要求される高屈折率、耐熱屈折率、高度なパターニング特性、耐光性、十分なエージング後のワニス安定性の全てを両立するには、本発明の加水分解性シランを非アルコール溶剤中で加水分解し縮合して得られる重量平均分子量700乃至4000のケイ素化合物(A)と、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、硬化触媒(D)、水(F)、酸(G)と、溶剤(C)とを含む膜形成組成物とすることで達成されることが示された。 Summing up the above results, in order to achieve all of the high refractive index, heat-resistant refractive index, advanced patterning characteristics, light resistance, and sufficient varnish stability after aging required for LED materials, A silicon compound (A) having a weight average molecular weight of 700 to 4000 obtained by hydrolyzing and condensing degradable silane in a non-alcohol solvent, an average particle diameter of 1 to 100 nm, and a refractive index of 1.50 to 2.70. It was shown that this can be achieved by forming a film-forming composition containing the inorganic particles (B), the curing catalyst (D), water (F), acid (G), and solvent (C).
 本発明の膜形成組成物はケイ素化合物(A)の重量平均分子量が700乃至4000の範囲であり、構成する加水分解性シラン(a1)が90モル%乃至50モル%であり、加水分解性シラン(a2)が10モル%乃至50モル%で共重合された範囲であり、加水分解性シラン(a2)のLが炭素原子数3~6の直鎖、分岐又は環状のアルキル基の範囲であり、水接触角が60°乃至80°の範囲とした、極めて特徴的な組成を用いることで、LED用の被膜として有用な10μm以下のパターニングを見たアルカリ現像性が良好で、屈折率の熱時変化が良好な永久膜をドライプロセスなどの工程を経ずに得ることができる。 In the film-forming composition of the present invention, the weight average molecular weight of the silicon compound (A) is in the range of 700 to 4000, the hydrolyzable silane (a1) is 90 mol% to 50 mol%, and the hydrolyzable silane (A2) is a range copolymerized at 10 mol% to 50 mol%, and L of the hydrolyzable silane (a2) is a range of a linear, branched or cyclic alkyl group having 3 to 6 carbon atoms. By using a very characteristic composition in which the water contact angle is in the range of 60 ° to 80 °, the alkali developability is good when the patterning of 10 μm or less which is useful as a coating for LED is observed, and the heat of refractive index. A permanent film with good temporal change can be obtained without going through a process such as a dry process.
 本発明によって得られた膜は高屈折率、高透明性、高耐熱性、高耐光性、10μm以下のパターニング特性を一度に満たすことが可能であることから、液晶ディスプレイ、プラズマディスプレイ、カソードレイチューブ、有機発光ディスプレイ、電子ペーパー、LED、固体撮像素子、太陽電池、有機薄膜トランジスタなどの電子デバイスとして好適に用いることができる。特に高耐光性が要求されるLED用部材として好適に用いることができる。 The film obtained by the present invention can satisfy the patterning characteristics of high refractive index, high transparency, high heat resistance, high light resistance and 10 μm or less at a time, so that it can be used for liquid crystal displays, plasma displays, cathode ray tubes. It can be suitably used as an electronic device such as an organic light emitting display, electronic paper, LED, solid-state imaging device, solar cell, or organic thin film transistor. In particular, it can be suitably used as an LED member that requires high light resistance.

Claims (22)

  1.  式(a1)で表される加水分解性シラン(a1)と式(a2)で表される加水分解性シラン(a2):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ炭素原子数1~20のアルコキシ基、炭素原子数2~20のアシルオキシ基、又はハロゲン基を示し、Lは炭素原子数3~6の直鎖、分岐又は環状のアルキル基を示す。)とを含む加水分解性シランの加水分解縮合物であり且つ重量平均分子量700乃至4000のケイ素化合物(A)、1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)、及び溶剤(C)を含む膜形成組成物(1)。
    Hydrolyzable silane (a1) represented by formula (a1) and hydrolyzable silane (a2) represented by formula (a2):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 and R 2 each represent an alkoxy group having 1 to 20 carbon atoms, an acyloxy group having 2 to 20 carbon atoms, or a halogen group, and L represents a straight-chain or branched group having 3 to 6 carbon atoms. Or a hydrolyzable condensate of hydrolyzable silane containing a silicon compound (A) having a weight average molecular weight of 700 to 4000 and an average particle diameter of 1 to 100 nm and 1.50 to 2 A film-forming composition (1) comprising inorganic particles (B) having a refractive index of .70 and a solvent (C).
  2.  ケイ素化合物(A)が、加水分解性シラン(a1)と加水分解性シラン(a2)との割合として、加水分解性シラン(a1)が90モル%乃至50モル%で、加水分解性シラン(a2)が10モル%乃至50モル%でそれぞれ含有される加水分解性シランを加水分解し縮合したポリマーである請求項1に記載の膜形成組成物(1)。 The silicon compound (A) has a hydrolyzable silane (a1) and hydrolyzable silane (a2) ratio of 90 to 50 mol% hydrolyzable silane (a2). Is a polymer obtained by hydrolyzing and condensing hydrolyzable silanes respectively contained in 10 mol% to 50 mol%.
  3.  ケイ素化合物(A)が加水分解性シランを非アルコール溶剤中で加水分解し縮合して得られるものである請求項1に記載の膜形成組成物(1)。 The film-forming composition (1) according to claim 1, wherein the silicon compound (A) is obtained by hydrolyzing and condensing a hydrolyzable silane in a non-alcohol solvent.
  4.  非アルコール溶剤がケトン又はエーテルである請求項3に記載の膜形成組成物(1)。 The film-forming composition (1) according to claim 3, wherein the non-alcohol solvent is ketone or ether.
  5.  非アルコール溶剤がアセトン又はテトラヒドロフランである請求項3に記載の膜形成組成物(1)。 The film-forming composition (1) according to claim 3, wherein the non-alcohol solvent is acetone or tetrahydrofuran.
  6.  溶剤(C)が上記加水分解性シランの加水分解とこれに続く縮合の際に用いる非アルコール溶剤と、加水分解性シランの加水分解によって生じた反応物を除去する溶剤置換に用いる溶剤とを含むものである請求項3に記載の膜形成組成物(1)。 The solvent (C) contains a non-alcohol solvent used for the hydrolysis of the hydrolyzable silane and the subsequent condensation, and a solvent used for solvent replacement for removing a reaction product generated by hydrolysis of the hydrolyzable silane. The film-forming composition (1) according to claim 3, wherein
  7.  無機粒子(B)がジルコニアである請求項1に記載の膜形成組成物(1)。 The film-forming composition (1) according to claim 1, wherein the inorganic particles (B) are zirconia.
  8.  更に、アンモニウム塩、ホスフィン類、ホスホニウム塩、スルホニウム塩、又はキレート化合物から選ばれる硬化触媒(D)を含む請求項3に記載の膜形成組成物(2)。 The film-forming composition (2) according to claim 3, further comprising a curing catalyst (D) selected from ammonium salts, phosphines, phosphonium salts, sulfonium salts, or chelate compounds.
  9.  更に、1,2-ジケトン及び/又は1,3-ジケトンから選ばれるジケトン化合物(E)を含む請求項3に記載の膜形成組成物(3)。 The film-forming composition (3) according to claim 3, further comprising a diketone compound (E) selected from 1,2-diketone and / or 1,3-diketone.
  10.  ジケトン化合物(E)が下記式(3)及び/又は下記式(4):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Wは炭素原子若しくは酸素原子を示す。)で表される骨格を含む化合物である請求項9に記載の膜形成組成物(3)。
    The diketone compound (E) is represented by the following formula (3) and / or the following formula (4):
    Figure JPOXMLDOC01-appb-C000002
    The film forming composition (3) according to claim 9, which is a compound containing a skeleton represented by the formula (W represents a carbon atom or an oxygen atom).
  11.  ジケトン化合物(E)がジアセチル、ピルビン酸メチル、ピルビン酸エチル、又はアセチルアセトンである請求項9に記載の膜形成組成物(3)。 The film-forming composition (3) according to claim 9, wherein the diketone compound (E) is diacetyl, methyl pyruvate, ethyl pyruvate, or acetylacetone.
  12.  更に、水(F)及び酸(G)を含む請求項8に記載の膜形成組成物(4)。 The film-forming composition (4) according to claim 8, further comprising water (F) and an acid (G).
  13.  加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
    動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
    ケイ素化合物(A)のワニスと無機粒子(B)のゾルを混合し、ケイ素化合物(A)と無機粒子(B)と溶剤(C)とを含む膜形成組成物を得る工程、を含む請求項1に記載の膜形成組成物(1)の製造方法。
    A step of hydrolyzing a hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) in a solvent (c1) to obtain a varnish of a silicon compound (A) having a weight average molecular weight of 700 to 4000 ,
    A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
    A step of mixing a varnish of a silicon compound (A) and a sol of inorganic particles (B) to obtain a film-forming composition containing the silicon compound (A), inorganic particles (B) and a solvent (C). A method for producing the film-forming composition (1) according to 1.
  14.  加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
    動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
    ケイ素化合物(A)のワニスと無機粒子(B)のゾルと硬化触媒(D)とを混合し、ケイ素化合物(A)と無機粒子(B)と硬化触媒(D)と溶剤(C)とを含む膜形成組成物を得る工程、を含む請求項8に記載の膜形成組成物(2)の製造方法。
    A hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a varnish of a silicon compound (A) having a weight average molecular weight of 700 to 4000. Obtaining step,
    A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
    The varnish of the silicon compound (A), the sol of the inorganic particles (B), and the curing catalyst (D) are mixed, and the silicon compound (A), the inorganic particles (B), the curing catalyst (D), and the solvent (C) are mixed. The manufacturing method of the film forming composition (2) of Claim 8 including the process of obtaining the film forming composition containing.
  15.  加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
    動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
    ケイ素化合物(A)のワニスと無機粒子(B)のゾルとジケトン化合物(E)とを混合し、ケイ素化合物(A)と無機粒子(B)とジケトン化合物(E)と溶剤(C)とを含む膜形成組成物を得る工程、を含む請求項9に記載の膜形成組成物(3)の製造方法。
    A hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a varnish of a silicon compound (A) having a weight average molecular weight of 700 to 4000. Obtaining step,
    A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
    The varnish of the silicon compound (A), the sol of the inorganic particles (B), and the diketone compound (E) are mixed, and the silicon compound (A), the inorganic particles (B), the diketone compound (E), and the solvent (C) are mixed. The manufacturing method of the film forming composition (3) of Claim 9 including the process of obtaining the film forming composition containing.
  16.  加水分解性シラン(a1)と加水分解性シラン(a2)とを含む加水分解性シランを非アルコール溶剤(c1)中で加水分解し、重量平均分子量700乃至4000のケイ素化合物(A)のワニスを得る工程、
    動的光散乱法による測定において1乃至100nmの平均粒子径と1.50乃至2.70の屈折率を有する無機粒子(B)が分散媒(c2)に分散したゾルを得る工程、
    ケイ素化合物(A)のワニスと無機粒子(B)のゾルと硬化触媒(D)と水(F)と酸(G)を混合し、ケイ素化合物(A)と無機粒子(B)と硬化触媒(D)と水(F)と酸(G)と溶剤(C)とを含む膜形成組成物を得る工程、を含む請求項12に記載の膜形成組成物(4)の製造方法。
    A hydrolyzable silane containing hydrolyzable silane (a1) and hydrolyzable silane (a2) is hydrolyzed in a non-alcohol solvent (c1) to obtain a varnish of a silicon compound (A) having a weight average molecular weight of 700 to 4000. Obtaining step,
    A step of obtaining a sol in which inorganic particles (B) having an average particle diameter of 1 to 100 nm and a refractive index of 1.50 to 2.70 are dispersed in a dispersion medium (c2) in measurement by a dynamic light scattering method;
    The varnish of the silicon compound (A), the sol of the inorganic particles (B), the curing catalyst (D), water (F), and the acid (G) are mixed, and the silicon compound (A), the inorganic particles (B), and the curing catalyst ( The process for producing a film-forming composition (4) according to claim 12, comprising a step of obtaining a film-forming composition comprising D), water (F), acid (G) and solvent (C).
  17.  請求項1乃至請求項12のうちいずれか1項に記載の膜形成組成物から得られる膜の上に感光性レジストを塗布し、乾燥させ、そして該感光性レジスト膜に光照射し、続いて現像し、その後該レジスト膜の剥離を行うことからなるパターン形成方法。 A photosensitive resist is applied on a film obtained from the film-forming composition according to any one of claims 1 to 12, dried, and then irradiated to the photosensitive resist film. A pattern forming method comprising developing and then removing the resist film.
  18.  請求項1乃至請求項12のうちいずれか1項に記載の膜形成組成物を基板上に被覆し加熱して得られる、波長633nmで1.50乃至1.90の屈折率を有する膜。 A film having a refractive index of 1.50 to 1.90 at a wavelength of 633 nm, obtained by coating the film-forming composition according to any one of claims 1 to 12 on a substrate and heating.
  19.  膜表面の水の接触角が60°乃至80°であることを特徴とする請求項18に記載の膜。 The film according to claim 18, wherein a contact angle of water on the film surface is 60 ° to 80 °.
  20.  光取りだし膜、又は保護膜として用いられる請求項18に記載の膜。 The film according to claim 18, which is used as a light extraction film or a protective film.
  21.  請求項18に記載の膜を有する電子デバイスを有する装置。 An apparatus having an electronic device having the film according to claim 18.
  22.  電子デバイスがLEDである請求項21に記載の装置。 The apparatus according to claim 21, wherein the electronic device is an LED.
PCT/JP2015/051893 2014-01-27 2015-01-23 Composition for forming alkali dissolution-developable high-refractive-index film and pattern forming method WO2015111717A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014012675A JP2017052814A (en) 2014-01-27 2014-01-27 Composition containing diketone compound for forming high refractive index film and pattern forming method
JP2014012676A JP2017052815A (en) 2014-01-27 2014-01-27 Composition having high storage stability for forming alkali-soluble developable high refractive index film and pattern forming method
JP2014012673A JP2017052812A (en) 2014-01-27 2014-01-27 Composition for forming alkali-soluble developable high refractive index film and pattern forming method
JP2014-012674 2014-01-27
JP2014-012675 2014-01-27
JP2014-012673 2014-01-27
JP2014-012676 2014-01-27
JP2014012674A JP2017052813A (en) 2014-01-27 2014-01-27 Composition containing curing catalyst for forming alkali-soluble developable high refractive index film and pattern forming method

Publications (1)

Publication Number Publication Date
WO2015111717A1 true WO2015111717A1 (en) 2015-07-30

Family

ID=53681514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051893 WO2015111717A1 (en) 2014-01-27 2015-01-23 Composition for forming alkali dissolution-developable high-refractive-index film and pattern forming method

Country Status (2)

Country Link
TW (1) TW201542694A (en)
WO (1) WO2015111717A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655507B (en) * 2016-03-11 2019-04-01 奇美實業股份有限公司 Positive photosensitive polyoxane composition and application thereof
CN110183661A (en) * 2019-06-10 2019-08-30 中山大学 A kind of high heat resistance, the preparation method of High-heat-conductiviinsulation insulation material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131899A (en) * 2004-10-08 2006-05-25 Tokuyama Corp Composition for coating agent and method for producing the same
JP2006316264A (en) * 2005-04-15 2006-11-24 Jsr Corp Highly refractive material-forming composition and its cured product, and method for producing highly refractive material-forming composition
JP2009155541A (en) * 2007-12-27 2009-07-16 Ito Kogaku Kogyo Kk Hard-coat composition
JP2009162848A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent film for synthetic resin lens, and synthetic resin lens
WO2010134464A1 (en) * 2009-05-20 2010-11-25 株式会社トクヤマ Coating composition and optical article
JP2012037866A (en) * 2010-07-16 2012-02-23 Jsr Corp Radiation-sensitive composition, protective coat, and interlayer dielectric, and method of forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131899A (en) * 2004-10-08 2006-05-25 Tokuyama Corp Composition for coating agent and method for producing the same
JP2006316264A (en) * 2005-04-15 2006-11-24 Jsr Corp Highly refractive material-forming composition and its cured product, and method for producing highly refractive material-forming composition
JP2009155541A (en) * 2007-12-27 2009-07-16 Ito Kogaku Kogyo Kk Hard-coat composition
JP2009162848A (en) * 2007-12-28 2009-07-23 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent film for synthetic resin lens, and synthetic resin lens
WO2010134464A1 (en) * 2009-05-20 2010-11-25 株式会社トクヤマ Coating composition and optical article
JP2012037866A (en) * 2010-07-16 2012-02-23 Jsr Corp Radiation-sensitive composition, protective coat, and interlayer dielectric, and method of forming the same

Also Published As

Publication number Publication date
TW201542694A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
KR101964072B1 (en) Thin film formation composition for lithography which contains titanium and silicon
US10409163B2 (en) Photosensitive resin composition, cured film, element provided with cured film, and method for manufacturing semiconductor device
JP6044792B2 (en) Composition for forming low refractive index film
JP5846335B1 (en) Semiconductor device manufacturing method and semiconductor device
KR101947103B1 (en) Silicon-containing resist underlayer film-forming composition having sulfone structure
KR101947105B1 (en) Composition for formation of resist underlayer film containing silicon having nitrogen-containing ring
CN112368611A (en) Resin composition, light-shielding film, method for producing light-shielding film, and substrate with partition
WO2007049440A1 (en) Siloxane resin composition and method for producing same
TWI787180B (en) Resin composition, cured film and manufacturing method thereof, and solid-state imaging device
KR20170093113A (en) Resist underlayer film forming composition for lithography containing hydrolyzable silane having halogen-containing carboxylic acid amide group
KR20170018816A (en) Resist underlayer film-forming composition containing silicon having phenyl group-containing chromophore
JP2015017195A (en) Composition for forming reflow-type high refractive index film for solid-state imaging device
WO2015111717A1 (en) Composition for forming alkali dissolution-developable high-refractive-index film and pattern forming method
JP6569211B2 (en) Photosensitive resin composition, cured film obtained by curing the same, and light emitting device and solid-state imaging device comprising the same
TW202315908A (en) Composition for forming silicon-containing resist underlayer film, multilayer body using said composition, and method for producing semiconductor element
WO2015005333A1 (en) High-refractive-index film forming composition
WO2015002183A1 (en) Positive photosensitive resin composition, cured film formed by curing same, and optical device equipped with same
JP6237986B2 (en) High refractive index film forming composition for solid-state imaging device
JP2017008239A (en) Film forming composition and pattern forming method
JP6358416B2 (en) High refractive index film forming composition for solid-state imaging device containing alkoxysilyl group
JP2017052815A (en) Composition having high storage stability for forming alkali-soluble developable high refractive index film and pattern forming method
JP2017052813A (en) Composition containing curing catalyst for forming alkali-soluble developable high refractive index film and pattern forming method
JP2017052814A (en) Composition containing diketone compound for forming high refractive index film and pattern forming method
JP2017052812A (en) Composition for forming alkali-soluble developable high refractive index film and pattern forming method
TW202336099A (en) Silicon-containing resist underlayer film forming composition having unsaturated bond and cyclic structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15739965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15739965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP