WO2015111580A1 - Method for producing polyene - Google Patents

Method for producing polyene Download PDF

Info

Publication number
WO2015111580A1
WO2015111580A1 PCT/JP2015/051401 JP2015051401W WO2015111580A1 WO 2015111580 A1 WO2015111580 A1 WO 2015111580A1 JP 2015051401 W JP2015051401 W JP 2015051401W WO 2015111580 A1 WO2015111580 A1 WO 2015111580A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon
polyene
reaction
raw material
producing
Prior art date
Application number
PCT/JP2015/051401
Other languages
French (fr)
Japanese (ja)
Inventor
拓真 西尾
川上 公徳
宇都宮 賢
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2015111580A1 publication Critical patent/WO2015111580A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • C07C1/213Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds by splitting of esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina

Definitions

  • the present invention relates to a method for producing polyene.
  • Patent Document 1 describes that 1,3-butadiene is obtained in a yield of 27% by subjecting 2,3-butanediol to a dehydration reaction at 380 ° C. in the presence of a hydroxyapatite catalyst.
  • Non-patent document 1 reports that 1,3-butadiene can be obtained in a yield of 4 to 27% by subjecting 1,3-butanediol to a dehydration reaction at 200 to 250 ° C. in the presence of a silica alumina catalyst. ing.
  • Non-Patent Document 2 discloses that 2,3-butanediol is dehydrated at 200 to 300 ° C. in the presence of an HZSM-5 zeolite catalyst modified with boric acid, and 0,2% of 1,3-butadiene is obtained. It is reported that it can be obtained at a rate.
  • Non-Patent Document 3 1,5-pentanediol diacetate purified by fractional distillation under reduced pressure was heated to 575 ⁇ 5 ° C., and 1,4-pentadiene was obtained in a yield of 64%. It has been reported that 1,2-pentanediol diacetate purified by fractional distillation was heated to 590 ⁇ 5 ° C.
  • Non-Patent Document 4 2,3-butylene glycol diacetate having a purity of 99 to 100% was heated to 475 ° C. to 600 ° C., and 1,3-butadiene was obtained in a yield of 30.0 to 81.5%. Has been reported.
  • Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 polyene is produced by dehydrating a hydrocarbon having a hydroxyl group, but the yield is not sufficient.
  • Non-Patent Document 3 and Non-Patent Document 4 polyene is produced from a hydrocarbon having a carboxylate group.
  • a hydrocarbon having a carboxylate group is eliminated at a high concentration, and side reactions occur. It often contains a large amount of impurities that are difficult to remove.
  • An object of the present invention is to eliminate impurities that are difficult to separate and remove by subjecting a raw material containing hydrocarbons having a plurality of carboxylate groups to a desorption reaction under mild reaction conditions, which could not be achieved by the prior art.
  • An object of the present invention is to provide a method for producing a polyene by suppressing the side reaction to be generated and improving the yield.
  • the present inventors in a method for producing a polyene by removing a carboxylic acid from a raw material containing a hydrocarbon having a plurality of carboxylate groups, It was found that by setting the hydrocarbon concentration in a specific range and performing the elimination reaction in a specific temperature range, side reactions can be suppressed and a high-purity polyene can be obtained in a high yield. It came to be completed.
  • the gist of the present invention is as follows.
  • the polyene according to [1] wherein the raw material contains a product obtained by an esterification reaction between a hydrocarbon having a plurality of hydroxyl groups and at least one of carboxylic acid and carboxylic anhydride. Production method.
  • the raw material further includes a hydrocarbon having a plurality of hydroxyl groups, and a molar ratio of the hydrocarbon having the plurality of hydroxyl groups to the hydrocarbon having the plurality of carboxylate groups is 0.9 or less.
  • [4] The method for producing a polyene according to any one of [1] to [3], wherein the elimination reaction is continuous.
  • [5] The method for producing a polyene according to any one of [1] to [4], wherein the elimination reaction is performed in the presence of a solid packing.
  • the method for producing a polyene of the present invention it is possible to produce a high-purity polyene in a high yield with few impurities that are difficult to remove due to side reactions.
  • the method for producing a polyene of the present invention is a method for producing a polyene by eliminating a carboxylic acid from a raw material containing a hydrocarbon having a plurality of carboxylate groups, wherein the plurality of carboxylates in the raw material are produced.
  • This is a method for producing a polyene in which the concentration of the hydrocarbon having a group is in a specific range and the elimination reaction is performed in a specific temperature range.
  • the carboxylate group is a group represented by the following formula (1).
  • R 1 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • R 1 is preferably a substituted or unsubstituted alkyl group, more preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, because the yield of polyene is increased.
  • examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • a methyl group, an ethyl group, and an n-propyl group are preferable, and a methyl group is more preferable.
  • the substituent include aryl groups such as phenyl group, tolyl group, xylyl group, and naphthyl group, and halogen atoms such as chlorine, bromine, iodine, and fluorine.
  • the number of carboxylate groups in the hydrocarbon having a plurality of carboxylate groups is plural, preferably 2 or more and 3 or less, more preferably 2. If the carboxylate group is 4 or more hydrocarbons, the yield of polyene may be low, and the selectivity of the target polyene may be low.
  • yield represents the ratio of hydrocarbons having a plurality of carboxylate groups to polyenes.
  • Selectivity represents the ratio of a hydrocarbon having a plurality of carboxylate groups converted to another compound by reaction to become a polyene.
  • the number of carbon atoms in the hydrocarbon having a plurality of carboxylate groups is preferably 4 or more and 6 or less, more preferably 4 or more and 5 or less. More preferably. That is, hexane having a plurality of carboxylate groups, pentane having a plurality of carboxylate groups, butane having a plurality of carboxylate groups is preferable, pentane having a plurality of carboxylate groups, and a plurality of carboxylate groups More preferred is butane having a plurality of carboxylate groups.
  • the selectivity of the target polyene produced by the elimination reaction tends to be high, which is preferable.
  • the hydrocarbon having a plurality of carboxylate groups is preferably diacetoxybutane.
  • diacetoxybutane examples include 1,2-diacetoxybutane, 1,3-diacetoxybutane, 1,4-diacetoxybutane, and 2,3-diacetoxybutane, but the selectivity is good. More preferred are 1,3-diacetoxybutane, 1,4-diacetoxybutane and 2,3-diacetoxybutane, and more preferred are 1,3-diacetoxybutane and 2,3-diacetoxybutane.
  • the polyene manufactured by the manufacturing method of the polyene of this invention is a conjugated diene from a viewpoint of industrial applicability.
  • the hydrocarbon concentration having a plurality of carboxylate groups in the raw material is 0.1 mol% or more and 95 mol% or less, and the lower limit is preferably 1 mol%, more preferably 5 mol%.
  • the upper limit is preferably 90 mol%, more preferably 85 mol%, still more preferably 80 mol%, and particularly preferably 70 mol%. If the concentration of the hydrocarbon having a plurality of carboxylate groups is too low, the cost required for the production of the polyene may increase. If the concentration of the hydrocarbon having a plurality of carboxylate groups is too high, there may be many side reactions that produce impurities that are difficult to remove.
  • carboxylic acid elimination reaction for producing polyene by elimination reaction of carboxylic acid from a raw material containing hydrocarbon having a plurality of carboxylate groups
  • the purpose is as follows.
  • the hydrocarbon having a plurality of carboxylate groups has 4 carbon atoms
  • one of the compounds is 1 such as 3-acetoxy-1-butene, 1-acetoxy-2-butene, 4-acetoxy-1-butene, etc.
  • It is a compound from which molecular carboxylic acid has been eliminated, and is an intermediate of the target polyene. These intermediates can be reused as raw materials.
  • the raw material may further contain a hydrocarbon having a plurality of hydroxyl groups.
  • a hydrocarbon having a plurality of carboxylate groups in the present invention a product obtained by esterifying a starting material containing a hydrocarbon having a plurality of hydroxyl groups can be used. When this esterification reaction does not proceed easily, some of the hydrocarbons having a plurality of hydroxyl groups used for charging may remain in the obtained product.
  • These hydrocarbons having a plurality of hydroxyl groups may be contained in the raw material as long as the effects are not impaired in the production method of the present invention.
  • the molar ratio of the hydrocarbon having a plurality of hydroxyl groups to the hydrocarbon having a plurality of carboxylate groups is preferably 0.9 or less, more preferably 0.8 or less, More preferably, it is 0.7 or less. It is preferable that the molar ratio is equal to or less than the upper limit because side reactions in which impurities that are difficult to remove tend to be effectively suppressed.
  • a raw material containing a hydrocarbon having a plurality of carboxylate groups is subjected to elimination reaction of a carboxylic acid within a specific temperature range.
  • the temperature range in which the carboxylic acid is eliminated is 250 ° C. or higher and 800 ° C. or lower.
  • the lower limit is preferably 260 ° C, more preferably 270 ° C, still more preferably 280 ° C, still more preferably 300 ° C, and particularly preferably 350 ° C.
  • the upper limit is preferably 750 ° C, more preferably 700 ° C, still more preferably 650 ° C, still more preferably 600 ° C, and particularly preferably 500 ° C.
  • the elimination reaction rate of the carboxylic acid may decrease. If the temperature for the elimination reaction is too high, there may be a side reaction that produces impurities that are difficult to remove.
  • the MEK derivative which is an impurity that is difficult to remove as well as increasing the yield of the target polyene by performing the elimination reaction under mild reaction conditions in the carboxylic acid elimination reaction. Can be suppressed.
  • the carboxylic acid eliminated by the elimination reaction is a compound represented by the following formula (2).
  • R 1 is the same as in the formula (1). Therefore, as the carboxylic acid to be eliminated, acetic acid, propionic acid, and butyric acid are preferable, and acetic acid is more preferable.
  • the method for producing the polyene of the present invention can be appropriately selected from a batch method and a continuous method, but a raw material containing hydrocarbons having a plurality of carboxylate groups is continuously supplied to the reaction system. In addition, it is preferable to produce the polyene by continuously performing the elimination reaction. As the reaction system, it is preferable that there is a portion for holding a solid packing described later, and the raw material can be continuously supplied, and the produced polyene and the released carboxylic acid are discharged out of the system. However, there is no particular limitation as long as it is a tube reactor, a tank reactor, a fixed bed reactor, a fluidized bed reactor, etc. A type reactor, a fixed bed type reactor, and a tank type reactor are preferred.
  • the ratio of the produced MEK derivative to the hydrocarbon having a plurality of carboxylate groups charged as a raw material can be 5.0% or less.
  • the yield of MEK derivative is more preferably 4.5% or less, further preferably 4.0% or less, and particularly preferably 3.5% or less.
  • the elimination reaction carried out under mild reaction conditions in the carboxylic acid elimination reaction to increase the yield of the target polyene, but it is particularly difficult to remove among the by-products. It is particularly excellent in that it can suppress MEK derivatives, which are undesirable by-products.
  • a raw material containing a hydrocarbon having a plurality of carboxylate groups is continuously supplied to the reaction system, the carboxylic acid elimination reaction is continuously carried out, and the reaction mixture after the elimination reaction is discharged out of the reaction system, Polyene is separated and purified from the discharged reaction mixture. Further, the carboxylic acid is removed from the reaction mixture after separating the polyene, the unreacted hydrocarbon having a plurality of carboxylate groups is recovered, and the recovered hydrocarbon having a plurality of carboxylate groups is newly added. Mix with raw materials and reuse.
  • a polyene is produced by a carboxylic acid elimination reaction, which is generally an endothermic reaction. Therefore, there is a possibility that the elimination reaction temperature gradually decreases.
  • a solid packing hereinafter sometimes referred to as “packing” inert to the elimination reaction is present in the reaction system.
  • the material constituting the packing may be any material that does not induce side reactions in the reaction system, such as silica alumina, zirconium oxide, titanium oxide, magnesium oxide, alundum, silica, mullite, carborundum, stainless steel, Examples thereof include silicon carbide, silicon nitride, steatite, earthenware, porcelain, iron, and various ceramics. Among them, at least one selected from the group consisting of silica alumina, mullite, and stainless steel is preferable.
  • the shape of the filler is not particularly limited.
  • the shape of the filler can be powder, spherical, columnar, cylindrical, wire mesh, plate, or the like. It is commercially available.
  • a Raschig ring, a lessing ring, a ball ring, an interlock saddle, a Berle saddle, a ceramic ball, McMahon, Dixon, etc. can be used as a material that can be obtained easily.
  • the raw material containing a hydrocarbon having a plurality of carboxylate groups supplied to the reaction system may be a gas or a liquid.
  • the state of the raw material is a gas
  • the raw material further contains a gas that does not inhibit the desorption reaction.
  • the gas include nitrogen gas, argon gas, neon gas, carbon dioxide gas, carboxylic acid, and water vapor, which are easy to use and easy to remove after the elimination reaction. Acid and water vapor are more preferable.
  • reaction time of the elimination reaction is preferably 0.1 seconds or more and 50 seconds or less.
  • the lower limit is more preferably 0.5 seconds.
  • the upper limit is more preferably 45 seconds and even more preferably 40 seconds.
  • the “volume flow rate of the raw material in the reaction system” in the above formula (1) is the volume flow rate of the raw material at the reaction temperature in the reaction system.
  • the raw material containing a hydrocarbon having a plurality of carboxylate groups is an esterification of a hydrocarbon having a plurality of hydroxyl groups and at least one of a carboxylic acid and a carboxylic anhydride. It is preferable to include the product obtained by the reaction. That is, the hydrocarbon having a plurality of carboxylate groups is preferably obtained by an esterification reaction between a hydrocarbon having a plurality of hydroxyl groups and at least one of carboxylic acid and carboxylic anhydride. .
  • the product obtained by the esterification reaction may contain a hydrocarbon having one carboxylate group.
  • a hydrocarbon having one carboxylate group is contained in the raw material. You may go out.
  • the esterification reaction between a hydrocarbon having a plurality of hydroxyl groups and a carboxylic acid and / or carboxylic anhydride will be described below.
  • the esterification reaction can be efficiently performed using a reaction apparatus.
  • a hydrocarbon having a plurality of hydroxyl groups is reacted with a carboxylic acid and / or a carboxylic anhydride.
  • a compound having a plurality of hydroxyl groups is supplied to the reaction apparatus, and carboxylic acid and / or carboxylic anhydride is supplied to the reaction apparatus.
  • the product produced by the reaction in the reactor is discharged out of the reactor.
  • the compound having a plurality of hydroxyl groups and the carboxylic acid and / or carboxylic anhydride may be supplied separately to the reaction apparatus, or may be supplied to the reaction apparatus after mixing in advance.
  • the hydrocarbon having a plurality of hydroxyl groups is not particularly limited, but the number of carbons in the hydrocarbon having a plurality of hydroxyl groups is preferably 4 or more and 6 or less, and more preferably 4 or more and 5 or less. 4 is more preferable.
  • the selectivity of the target polyene tends to increase due to the subsequent elimination reaction, which is preferable.
  • hexane having a plurality of hydroxyl groups, pentane having a plurality of hydroxyl groups, butane having a plurality of hydroxyl groups is preferable, pentane having a plurality of hydroxyl groups, butane having a plurality of hydroxyl groups is more preferred.
  • butane having a plurality of hydroxyl groups is more preferable.
  • the number of hydroxyl groups in the hydrocarbon having a plurality of hydroxyl groups is plural, preferably 2 or more and 3 or less, more preferably 2.
  • the hydrocarbon having a plurality of hydroxyl groups is preferably butanediol.
  • the butanediol include 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol, and the selectivity is reduced by an elimination reaction that is performed after the esterification reaction.
  • 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol are more preferable, and 1,3-butanediol and 2,3-butanediol are still more preferable because they are favorable.
  • the butanediol is not particularly limited, and examples thereof include those produced industrially from naphtha-derived raw materials and those produced by fermentation from plant-derived raw materials.
  • the carboxylic acid used in the esterification reaction can be represented by the following formula (3).
  • R 1 is the same as that in the formula (1), and is preferably acetic acid.
  • acetic acid a hydrocarbon having a plurality of hydroxyl groups and 1,3-butanediol and acetic acid as carboxylic acids
  • 1,3 as hydrocarbons having a plurality of carboxylate groups are used.
  • Diacetoxybutane is mainly obtained.
  • 1,6-hexanediol and acetic acid are respectively employed for esterification
  • 1,6-diacetoxyhexane is mainly obtained as a hydrocarbon having a plurality of carboxylate groups.
  • the carboxylic acid anhydride can be represented by the following formula (4).
  • R 2 and R 3 are the same as R 1 in the formula (1), and the R 2 and R 3 may be the same or different.
  • 1,3-butanediol and acetic anhydride are respectively employed as hydrocarbons having a plurality of hydroxyl groups and carboxylic acid and subjected to esterification reaction, 1, hydrocarbons having a plurality of carboxylate groups are 3-diacetoxybutane is mainly obtained.
  • 1,6-hexanediol and acetic anhydride are respectively employed for esterification, 1,6-diacetoxyhexane is mainly obtained as a hydrocarbon having a plurality of carboxylate groups.
  • the esterification reaction can be carried out using a known technique.
  • the esterification reaction may be performed without a catalyst, but may be performed in the presence of a catalyst from the viewpoint of improving the production rate.
  • the catalyst include inorganic acids (mineral acids) such as sulfuric acid, phosphoric acid and hydrochloric acid; organic acids (sulfonic acids) such as p-toluenesulfonic acid and methanesulfonic acid; Lewis acids such as BF 3 ; strong acidic cations Examples thereof include solid acid catalysts represented by exchange resins, zeolites, silica-alumina, and the like; nucleophiles represented by 4-dimethylaminopyridine and the like. Since the esterification reaction with an acid catalyst is an equilibrium reaction, it is preferable to carry out the reaction while removing by-product water. Moreover, as a reaction form, any of a batch type (batch type) and a continuous type can be selected suitably.
  • the mixing ratio of the hydrocarbon having a plurality of hydroxyl groups and the carboxylic acid and / or carboxylic anhydride is not particularly limited.
  • the ratio of the carboxylic acid can be selected from the range of 1.5 to 10 times mol, preferably 2 to 8 times mol, of the number of moles of hydroxyl groups in the hydrocarbon having a plurality of hydroxyl groups.
  • the ratio of the carboxylic acid anhydride is 0.5 to 5 with respect to the number of moles of hydroxyl groups in the hydrocarbon having a plurality of hydroxyl groups. It can be selected from the range of 1 mol, preferably 1 to 4 mol.
  • the reaction temperature, pressure, time, and the like can be appropriately set depending on the types of hydrocarbons having a plurality of hydroxyl groups and carboxylic acid and / or carboxylic anhydride as raw materials, and the reaction temperature is 25 ° C. to 200 ° C.
  • the reaction pressure is 1 kPa to 100 kPa
  • the reaction time is about 0.1 to 48 hours.
  • the esterification reaction may be a batch type or a continuous type. However, since the raw material containing the product obtained by the esterification reaction can be continuously supplied to the subsequent elimination reaction, it is continuous.
  • the formula is preferred.
  • Example 1 A stainless steel tubular reactor having an inner diameter of 10.0 mm and a length of 500 mm was charged with 21.9 g of a mullite ball having a diameter of 2 mm (product name: FFB A-601, manufactured by Fujimi Incorporated), and silica alumina ( 1.0 g of JGC Catalysts & Chemicals N632L) was charged, and 28.0 g of the mullite ball was further charged thereon. The temperature in the stainless steel tubular reactor was measured by installing an insertion tube equipped with a thermocouple.
  • the raw material was supplied to a stainless steel tubular reactor whose internal temperature was previously raised to 350 ° C. by an electric furnace, and a desorption reaction was carried out to produce 1,3-butadiene.
  • the pressure was 50 kPa as a gauge pressure.
  • Detailed conditions of the reaction are shown in Table 1.
  • the reaction time was 5 seconds.
  • Table 1 shows the results of analysis by gas chromatography (model number: GC-4000, manufactured by GL Science).
  • Example 2 The stainless steel tubular reactor was filled with mullite balls only, the reaction temperature was 500 ° C., the nitrogen flow rate was 2.8 L / hour (temperature: 0 ° C., pressure: converted to 1 atm),
  • 1,3-butadiene was produced in the same manner as in Example 1 except that 1,3-diacetoxybutane was used at a flow rate of 1.3 mL / hour.
  • the reaction time was 8 seconds.
  • the raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%.
  • Table 1 The analysis results are shown in Table 1.
  • Example 3 1,3-butadiene was produced in the same manner as in Example 2, except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 8 seconds.
  • Raw material composition nitrogen: 88.6 mol%, 1,3-diacetoxybutane: 8.0 mol%, acetic acid: 3.4 mol%
  • Table 1 The results of analysis are shown in Table 1.
  • Example 4 1,3-butadiene was produced in the same manner as in Example 2 except that 1,3-diacetoxybutane was changed to 2,3-diacetoxybutane in the raw material.
  • the reaction time was 8 seconds.
  • the raw material composition was nitrogen: 92.0 mol% and 2,3-diacetoxybutane: 8.0 mol%.
  • the results of analysis are shown in Table 1.
  • Example 5 1,3-Butadiene was produced in the same manner as in Example 2 except that the stainless steel tubular reactor was not filled and the reaction pressure was 2 kPa as a gauge pressure. The reaction time was 5 seconds.
  • the raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%. The results of analysis are shown in Table 1.
  • Example 6 Except that the flow rate of nitrogen was 2.8 L / hour (temperature: 0 ° C., pressure: converted to 1 atm), and that the flow rate of 1,3-diacetoxybutane was 1.3 mL / hour. In the same manner as in Example 5, 1,3-butadiene was produced. The reaction time was 8 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%. The results of analysis are shown in Table 1.
  • Example 7 1,3-butadiene was produced in the same manner as in Example 5 except that the pressure was changed to 50 kPa as a gauge pressure. The reaction time was 5 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%. The results of analysis are shown in Table 1.
  • Example 8 1,3-Butadiene was produced in the same manner as in Example 6 except that the pressure was changed to 50 kPa as a gauge pressure. The reaction time was 8 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%. Table 2 shows the results of the analysis.
  • Example 9 1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 92.0 mol%, 1,3-diacetoxybutane: 7.2 mol%, 3-acetoxy-1-butanol: 0.3 mol%, 4-acetoxy-2-butanol: 0.5 Mol%
  • Table 2 shows the results of the analysis.
  • Example 10 1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 92.0 mol%, 2,3-diacetoxybutane: 7.2 mol%, 2,3-butanediol: 0.8 mol% Table 2 shows the results of the analysis.
  • Example 11 1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 92.0 mol%, 2,3-diacetoxybutane: 4.0 mol%, 2,3-butanediol: 4.0 mol%
  • Table 2 shows the results of the analysis.
  • Example 12 1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 88.8 mol%, 2,3-diacetoxybutane: 4.0 mol%, 2,3-butanediol: 4.0 mol%, acetic acid: 3.2 mol% Table 2 shows the results of the analysis.
  • Example 13 1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 70.0 mol%, 1,3-diacetoxybutane: 30.0 mol% Table 2 shows the results of the analysis.
  • Example 14 1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 50.0 mol%, 1,3-diacetoxybutane: 50.0 mol% Table 2 shows the results of the analysis.
  • Example 15 1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 10.0 mol%, 1,3-diacetoxybutane: 90.0 mol% Table 3 shows the results of the analysis.
  • Example 16 1,3-butadiene was produced in the same manner as in Example 15, except that the reaction time was changed to 6 seconds. Table 3 shows the results of the analysis.
  • Comparative Example 2 1,3-butadiene was produced in the same manner as in Comparative Example 1, except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
  • Raw material composition nitrogen: 92.0 mol%, 2,3-butanediol: 8.0 mol% Table 3 shows the results of the analysis.
  • the method for producing a polyene of the present invention it is possible to expand a field of use because a high-purity polyene can be produced in a high yield with few impurities caused by side reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 The purpose of the present invention is to provide a method for subjecting a raw material containing a hydrocarbon having a plurality of carboxylate groups to an elimination reaction under moderate reaction conditions, and producing a polyene at improved yield. The present invention pertains to a method for producing a polyene by an elimination reaction of carboxylic acid from a raw material containing a hydrocarbon, wherein the hydrocarbon has a plurality of carboxylate groups, the concentration of the hydrocarbon in the raw material is 0.1-95 mol%, and the elimination reaction is carried out in a temperature range of 250-800ºC.

Description

ポリエンの製造方法Method for producing polyene
 本発明は、ポリエンの製造法に関する。 The present invention relates to a method for producing polyene.
 1,3-ブタンジオール等の複数個の官能基で置換された炭化水素を原料として、脱離反応によりブタジエン等のポリエンを製造する方法が知られている。
 例えば、特許文献1には、2,3-ブタンジオールをヒドロキシアパタイト触媒存在下に380℃で脱水反応させて、1,3-ブタジエンが27%の収率で得られることが記載されている。非特許文献1には、1,3-ブタンジオールをシリカアルミナ触媒存在下に200~250℃で脱水反応させて、1,3-ブタジエンが4~27%の収率で得られることが報告されている。
There is known a method for producing a polyene such as butadiene by an elimination reaction using a hydrocarbon substituted with a plurality of functional groups such as 1,3-butanediol as a raw material.
For example, Patent Document 1 describes that 1,3-butadiene is obtained in a yield of 27% by subjecting 2,3-butanediol to a dehydration reaction at 380 ° C. in the presence of a hydroxyapatite catalyst. Non-patent document 1 reports that 1,3-butadiene can be obtained in a yield of 4 to 27% by subjecting 1,3-butanediol to a dehydration reaction at 200 to 250 ° C. in the presence of a silica alumina catalyst. ing.
 また、非特許文献2には、2,3-ブタンジオールをホウ酸で修飾したHZSM-5ゼオライト触媒存在下に200~300℃で脱水させて、1,3-ブタジエンが0~2%の収率で得られることが報告されている。非特許文献3では減圧下、分別蒸留により精製した1,5-ペンタンジオールジアセテートを575±5℃に加熱し1,4-ペンタジエンが64%の収率で得られたこと、また、減圧下、分別蒸留により精製した1,2-ペンタンジオールジアセテートを590±5℃に加熱し1,3-ペンタジエンが61.1~65.3%の収率で得られたことが報告されている。非特許文献4では純度99~100%の2,3-ブチレングリコールジアセテートを475℃~600℃に加熱し1,3-ブタジエンが30.0~81.5%の収率で得られたことが報告されている。 Non-Patent Document 2 discloses that 2,3-butanediol is dehydrated at 200 to 300 ° C. in the presence of an HZSM-5 zeolite catalyst modified with boric acid, and 0,2% of 1,3-butadiene is obtained. It is reported that it can be obtained at a rate. In Non-Patent Document 3, 1,5-pentanediol diacetate purified by fractional distillation under reduced pressure was heated to 575 ± 5 ° C., and 1,4-pentadiene was obtained in a yield of 64%. It has been reported that 1,2-pentanediol diacetate purified by fractional distillation was heated to 590 ± 5 ° C. and 1,3-pentadiene was obtained in a yield of 61.1 to 65.3%. In Non-Patent Document 4, 2,3-butylene glycol diacetate having a purity of 99 to 100% was heated to 475 ° C. to 600 ° C., and 1,3-butadiene was obtained in a yield of 30.0 to 81.5%. Has been reported.
韓国公開特許第2011-96125号公報Korean Published Patent No. 2011-96125
 しかしながら、これら従前知られた技術、例えば特許文献1、非特許文献1及び非特許文献2においては、ヒドロキシル基を有する炭化水素を脱水してポリエンを製造しているが、収率が充分ではない。更に、非特許文献3、非特許文献4にはカルボキシレート基を有する炭化水素からポリエンを製造しているが、カルボキシレート基を有する炭化水素を高濃度で脱離反応しており、副反応が多く、除去が困難な不純物を多量に含むこととなる。 However, in these conventionally known techniques, for example, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2, polyene is produced by dehydrating a hydrocarbon having a hydroxyl group, but the yield is not sufficient. . Furthermore, in Non-Patent Document 3 and Non-Patent Document 4, polyene is produced from a hydrocarbon having a carboxylate group. However, a hydrocarbon having a carboxylate group is eliminated at a high concentration, and side reactions occur. It often contains a large amount of impurities that are difficult to remove.
 本発明の課題は前記従来技術で到達できなかった、複数個のカルボキシレート基を有する炭化水素を含む原料を温和な反応条件下で脱離反応を行い、分離及び除去することが困難な不純物を発生させる副反応を抑制し、収率を向上させたポリエンの製造方法を提供することにある。 An object of the present invention is to eliminate impurities that are difficult to separate and remove by subjecting a raw material containing hydrocarbons having a plurality of carboxylate groups to a desorption reaction under mild reaction conditions, which could not be achieved by the prior art. An object of the present invention is to provide a method for producing a polyene by suppressing the side reaction to be generated and improving the yield.
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、複数個のカルボキシレート基を有する炭化水素を含む原料からカルボン酸を脱離反応させポリエンを製造する方法において、該原料中の前記炭化水素濃度を特定範囲とし、且つ、該脱離反応を特定温度範囲で行うことにより、副反応を抑制し、高純度なポリエンを高収率で得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors, in a method for producing a polyene by removing a carboxylic acid from a raw material containing a hydrocarbon having a plurality of carboxylate groups, It was found that by setting the hydrocarbon concentration in a specific range and performing the elimination reaction in a specific temperature range, side reactions can be suppressed and a high-purity polyene can be obtained in a high yield. It came to be completed.
 すなわち、本発明の要旨は以下のとおりである。
[1] 炭化水素を含む原料からカルボン酸を脱離反応させてポリエンを製造する方法であって、
 前記炭化水素は複数個のカルボキシレート基を有し、
 前記原料中における前記炭化水素の濃度が0.1モル%以上95モル%以下であり、且つ、
 前記脱離反応を250℃以上800℃以下で行う、ポリエンの製造方法。
[2] 前記原料が複数個のヒドロキシル基を有する炭化水素とカルボン酸及びカルボン酸無水物の少なくともいずれか一方とのエステル化反応により得られた生成物を含む前記[1]に記載のポリエンの製造方法。
[3] 前記原料が複数個のヒドロキシル基を有する炭化水素を更に含み、前記複数個のカルボキシレート基を有する炭化水素に対する前記複数個のヒドロキシル基を有する炭化水素のモル比が0.9以下である前記[1]又は[2]に記載のポリエンの製造方法。
[4] 前記脱離反応が連続的である前記[1]乃至[3]のいずれか1に記載のポリエンの製造方法。
[5] 前記脱離反応が固体充填物の存在下実施される前記[1]乃至[4]のいずれか1に記載のポリエンの製造方法。
[6] 前記固体充填物が、シリカアルミナ、ムライト及びステンレス鋼からなる群より選ばれる少なくとも1種である前記[5]に記載のポリエンの製造方法。
[7] 前記複数個のカルボキシレート基を有する炭化水素がジアセトキシブタンである前記[1]乃至[6]のいずれか1に記載のポリエンの製造方法。
[8] 前記カルボン酸が酢酸である前記[1]乃至[7]のいずれか1に記載のポリエンの製造方法。
[9] 前記複数個のヒドロキシル基を有する炭化水素がブタンジオールである前記[2]乃至[8]のいずれか1に記載のポリエンの製造方法。
That is, the gist of the present invention is as follows.
[1] A method for producing a polyene by desorbing a carboxylic acid from a raw material containing a hydrocarbon,
The hydrocarbon has a plurality of carboxylate groups;
The concentration of the hydrocarbon in the raw material is 0.1 mol% or more and 95 mol% or less, and
A method for producing a polyene, wherein the elimination reaction is performed at 250 ° C or higher and 800 ° C or lower.
[2] The polyene according to [1], wherein the raw material contains a product obtained by an esterification reaction between a hydrocarbon having a plurality of hydroxyl groups and at least one of carboxylic acid and carboxylic anhydride. Production method.
[3] The raw material further includes a hydrocarbon having a plurality of hydroxyl groups, and a molar ratio of the hydrocarbon having the plurality of hydroxyl groups to the hydrocarbon having the plurality of carboxylate groups is 0.9 or less. The method for producing a polyene according to [1] or [2].
[4] The method for producing a polyene according to any one of [1] to [3], wherein the elimination reaction is continuous.
[5] The method for producing a polyene according to any one of [1] to [4], wherein the elimination reaction is performed in the presence of a solid packing.
[6] The method for producing a polyene according to [5], wherein the solid filler is at least one selected from the group consisting of silica alumina, mullite, and stainless steel.
[7] The method for producing a polyene according to any one of [1] to [6], wherein the hydrocarbon having a plurality of carboxylate groups is diacetoxybutane.
[8] The method for producing a polyene according to any one of [1] to [7], wherein the carboxylic acid is acetic acid.
[9] The method for producing a polyene according to any one of [2] to [8], wherein the hydrocarbon having a plurality of hydroxyl groups is butanediol.
 本発明のポリエンの製造方法によれば、副反応に起因する除去が困難な不純物が少なく、高純度なポリエンを高収率で製造することができる。 According to the method for producing a polyene of the present invention, it is possible to produce a high-purity polyene in a high yield with few impurities that are difficult to remove due to side reactions.
 以下、本発明の実施の形態について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本発明のポリエンの製造方法は、複数個のカルボキシレート基を有する炭化水素を含む原料からカルボン酸を脱離反応させてポリエンを製造する方法であって、該原料中における前記複数個のカルボキシレート基を有する炭化水素濃度が特定範囲であり、且つ、該脱離反応を特定温度範囲で行うポリエンの製造方法である。
Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
The method for producing a polyene of the present invention is a method for producing a polyene by eliminating a carboxylic acid from a raw material containing a hydrocarbon having a plurality of carboxylate groups, wherein the plurality of carboxylates in the raw material are produced. This is a method for producing a polyene in which the concentration of the hydrocarbon having a group is in a specific range and the elimination reaction is performed in a specific temperature range.
 前記カルボキシレート基とは、下記式(1)で表される基である。 The carboxylate group is a group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Rは置換基を有する若しくは無置換のアルキル基又は置換基を有する若しくは無置換のアリール基を示す。)
 この中でもポリエンの収率が高くなることより、Rは置換基を有する又は無置換のアルキル基が好ましく、置換基を有する又は無置換の炭素数1~炭素数20のアルキル基がより好ましい。
 Rが置換基を有する又は無置換の炭素数1~炭素数20のアルキル基である場合、例えば、アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、sec-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 これらの中でも、メチル基、エチル基、n-プロピル基が好ましく、メチル基がより好ましい。
 上記の置換基としては、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、塩素、臭素、ヨウ素、フッ素等のハロゲン原子が挙げられる。
(In formula (1), R 1 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.)
Among these, R 1 is preferably a substituted or unsubstituted alkyl group, more preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, because the yield of polyene is increased.
When R 1 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. , Isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, sec-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and the like.
Among these, a methyl group, an ethyl group, and an n-propyl group are preferable, and a methyl group is more preferable.
Examples of the substituent include aryl groups such as phenyl group, tolyl group, xylyl group, and naphthyl group, and halogen atoms such as chlorine, bromine, iodine, and fluorine.
 前記複数個のカルボキシレート基を有する炭化水素におけるカルボキシレート基の数は複数個であり、好ましくは2個以上3個以下であり、より好ましくは2個である。前記カルボキシレート基が4個以上の炭化水素であると、ポリエンの収率が低くなり、また、目的とするポリエンの選択率が低くなる可能性がある。 The number of carboxylate groups in the hydrocarbon having a plurality of carboxylate groups is plural, preferably 2 or more and 3 or less, more preferably 2. If the carboxylate group is 4 or more hydrocarbons, the yield of polyene may be low, and the selectivity of the target polyene may be low.
 尚、「収率」とは複数個のカルボキシレート基を有する炭化水素がポリエンとなった割合を表す。「選択率」とは複数個のカルボキシレート基を有する炭化水素が反応により別の化合物に転化したもののうち、ポリエンとなった割合を表す。 In addition, “yield” represents the ratio of hydrocarbons having a plurality of carboxylate groups to polyenes. “Selectivity” represents the ratio of a hydrocarbon having a plurality of carboxylate groups converted to another compound by reaction to become a polyene.
 前記複数個のカルボキシレート基を有する炭化水素における炭素数(カルボキシレート基の炭素数を除く。)は4以上6以下であることが好ましく、4以上5以下であることがより好ましく、4であることが更に好ましい。すなわち、複数個のカルボキシレート基を有するヘキサン、複数個のカルボキシレート基を有するペンタン、複数個のカルボキシレート基を有するブタンが好ましく、複数個のカルボキシレート基を有するペンタン、複数個のカルボキシレート基を有するブタンがより好ましく、複数個のカルボキシレート基を有するブタンが更に好ましい。該炭素数が前記上限値以下であると、脱離反応により製造される、目的とするポリエンの選択率が高くなる傾向があり好ましい。 The number of carbon atoms in the hydrocarbon having a plurality of carboxylate groups (excluding the carbon number of the carboxylate group) is preferably 4 or more and 6 or less, more preferably 4 or more and 5 or less. More preferably. That is, hexane having a plurality of carboxylate groups, pentane having a plurality of carboxylate groups, butane having a plurality of carboxylate groups is preferable, pentane having a plurality of carboxylate groups, and a plurality of carboxylate groups More preferred is butane having a plurality of carboxylate groups. When the number of carbon atoms is not more than the above upper limit, the selectivity of the target polyene produced by the elimination reaction tends to be high, which is preferable.
 前記複数個のカルボキシレート基を有する炭化水素としてはジアセトキシブタンであることが好ましい。該ジアセトキシブタンとしては、1,2-ジアセトキシブタン、1,3-ジアセトキシブタン、1,4-ジアセトキシブタン、2,3-ジアセトキシブタンが挙げられるが、選択率が良好となることより、1,3-ジアセトキシブタン、1,4-ジアセトキシブタン、2,3-ジアセトキシブタンが好ましく、1,3-ジアセトキシブタン、2,3-ジアセトキシブタンがより好ましい。尚、本発明のポリエンの製造方法により製造されるポリエンは工業的利用可能性の観点より共役ジエンであることが好ましい。 The hydrocarbon having a plurality of carboxylate groups is preferably diacetoxybutane. Examples of the diacetoxybutane include 1,2-diacetoxybutane, 1,3-diacetoxybutane, 1,4-diacetoxybutane, and 2,3-diacetoxybutane, but the selectivity is good. More preferred are 1,3-diacetoxybutane, 1,4-diacetoxybutane and 2,3-diacetoxybutane, and more preferred are 1,3-diacetoxybutane and 2,3-diacetoxybutane. In addition, it is preferable that the polyene manufactured by the manufacturing method of the polyene of this invention is a conjugated diene from a viewpoint of industrial applicability.
 原料中における複数個のカルボキシレート基を有する炭化水素濃度は、0.1モル%以上95モル%以下であり、下限は1モル%が好ましく、5モル%がより好ましい。上限は90モル%が好ましく、85モル%がより好ましく、80モル%がさらに好ましく、70モル%が特に好ましい。複数個のカルボキシレート基を有する炭化水素濃度が低すぎるとポリエンの製造に要する費用が増大となる可能性ある。複数個のカルボキシレート基を有する炭化水素濃度が高すぎると、除去が困難な不純物が生成する副反応が多く生じる場合がある。 The hydrocarbon concentration having a plurality of carboxylate groups in the raw material is 0.1 mol% or more and 95 mol% or less, and the lower limit is preferably 1 mol%, more preferably 5 mol%. The upper limit is preferably 90 mol%, more preferably 85 mol%, still more preferably 80 mol%, and particularly preferably 70 mol%. If the concentration of the hydrocarbon having a plurality of carboxylate groups is too low, the cost required for the production of the polyene may increase. If the concentration of the hydrocarbon having a plurality of carboxylate groups is too high, there may be many side reactions that produce impurities that are difficult to remove.
 本発明における複数個のカルボキシレート基を有する炭化水素を含む原料からカルボン酸を脱離反応させポリエンを製造する反応(以下、「カルボン酸脱離反応」と称する場合がある。)においては、目的とするポリエン以外に生成する可能性のある化合物が複数種ある。複数個のカルボキシレート基を有する炭化水素の炭素数が4の場合、当該化合物の一つは3-アセトキシ-1-ブテン、1-アセトキシ-2-ブテン、4-アセトキシ-1-ブテン等の1分子カルボン酸を脱離させた化合物であり、目的とするポリエンの中間体である。これらの中間体は原料として再利用することも可能である。
 一方で、副反応によって、1-ブテン、cis-2-ブテン、trans-2-ブテン、イソブテン等のブテン類;メチルエチルケトン(MEK)、メチルエチルケトンエノールアセテート等のMEK誘導体類に分類される副生成物が生じる場合があり、これらは目的とするポリエンに変換されることはなく、除去が困難な不純物である。
 本発明の製造方法によれば、カルボン酸脱離反応において温和な反応条件下で脱離反応を行い、目的とするポリエンの収率を高めることだけでなく、除去が困難なMEK誘導体の副生を抑制することができる。
In the reaction of the present invention for producing polyene by elimination reaction of carboxylic acid from a raw material containing hydrocarbon having a plurality of carboxylate groups (hereinafter sometimes referred to as “carboxylic acid elimination reaction”), the purpose is as follows. There are multiple types of compounds that may be produced in addition to the polyene. When the hydrocarbon having a plurality of carboxylate groups has 4 carbon atoms, one of the compounds is 1 such as 3-acetoxy-1-butene, 1-acetoxy-2-butene, 4-acetoxy-1-butene, etc. It is a compound from which molecular carboxylic acid has been eliminated, and is an intermediate of the target polyene. These intermediates can be reused as raw materials.
On the other hand, by-products such as butenes such as 1-butene, cis-2-butene, trans-2-butene, and isobutene; These are impurities that are not converted to the desired polyene and are difficult to remove.
According to the production method of the present invention, the elimination reaction under mild reaction conditions in the carboxylic acid elimination reaction not only increases the yield of the target polyene, but also by-products of MEK derivatives that are difficult to remove. Can be suppressed.
 また、原料中、複数個のヒドロキシル基を有する炭化水素を更に含んでいてもよい。本発明における複数個のカルボキシレート基を有する炭化水素は、後述するように、複数個のヒドロキシル基を有する炭化水素を含む出発原料をエステル化して得られた生成物を用いることができる。このエステル化反応が進行しにくい場合には、得られた生成物中に仕込みに用いた複数個のヒドロキシル基を有する炭化水素が一部残ってしまうことがある。これらの複数個のヒドロキシル基を有する炭化水素は、本発明の製造方法において効果を害さない範囲で、原料中に含まれていても構わない。この場合には、複数個のカルボキシレート基を有する炭化水素に対する複数個のヒドロキシル基を有する炭化水素のモル比が0.9以下であることが好ましく、0.8以下であることがより好ましく、0.7以下であることが更に好ましい。該モル比が前記上限値以下であると、除去が困難な不純物が生成する副反応を効果的に抑制できる傾向があり好ましい。 Further, the raw material may further contain a hydrocarbon having a plurality of hydroxyl groups. As the hydrocarbon having a plurality of carboxylate groups in the present invention, a product obtained by esterifying a starting material containing a hydrocarbon having a plurality of hydroxyl groups can be used. When this esterification reaction does not proceed easily, some of the hydrocarbons having a plurality of hydroxyl groups used for charging may remain in the obtained product. These hydrocarbons having a plurality of hydroxyl groups may be contained in the raw material as long as the effects are not impaired in the production method of the present invention. In this case, the molar ratio of the hydrocarbon having a plurality of hydroxyl groups to the hydrocarbon having a plurality of carboxylate groups is preferably 0.9 or less, more preferably 0.8 or less, More preferably, it is 0.7 or less. It is preferable that the molar ratio is equal to or less than the upper limit because side reactions in which impurities that are difficult to remove tend to be effectively suppressed.
 本発明のポリエンの製造方法は、複数個のカルボキシレート基を有する炭化水素を含む原料を、特定温度範囲でカルボン酸を脱離反応させる。カルボン酸を脱離反応させる温度範囲は250℃以上800℃以下である。下限は好ましくは260℃、より好ましくは270℃、更に好ましくは280℃、なお好ましくは300℃、特に好ましくは350℃である。上限は好ましくは750℃、より好ましくは700℃、更に好ましくは650℃、なお好ましくは600℃、特に好ましくは500℃である。脱離反応させる温度が低すぎるとカルボン酸の脱離反応速度が低下する場合がある。脱離反応させる温度が高すぎると除去が困難な不純物が生成する副反応が生じる場合がある。
 本発明の製造方法によれば、カルボン酸脱離反応において温和な反応条件下で脱離反応を行い、目的とするポリエンの収率を高めることだけでなく、除去が困難な不純物であるMEK誘導体の副生を抑制することができる。
In the method for producing a polyene of the present invention, a raw material containing a hydrocarbon having a plurality of carboxylate groups is subjected to elimination reaction of a carboxylic acid within a specific temperature range. The temperature range in which the carboxylic acid is eliminated is 250 ° C. or higher and 800 ° C. or lower. The lower limit is preferably 260 ° C, more preferably 270 ° C, still more preferably 280 ° C, still more preferably 300 ° C, and particularly preferably 350 ° C. The upper limit is preferably 750 ° C, more preferably 700 ° C, still more preferably 650 ° C, still more preferably 600 ° C, and particularly preferably 500 ° C. If the temperature for the elimination reaction is too low, the elimination reaction rate of the carboxylic acid may decrease. If the temperature for the elimination reaction is too high, there may be a side reaction that produces impurities that are difficult to remove.
According to the production method of the present invention, the MEK derivative which is an impurity that is difficult to remove as well as increasing the yield of the target polyene by performing the elimination reaction under mild reaction conditions in the carboxylic acid elimination reaction. Can be suppressed.
 前記脱離反応により脱離するカルボン酸は下記式(2)で表される化合物である。 The carboxylic acid eliminated by the elimination reaction is a compound represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記式(2)においてRは前記式(1)と同じである。よって、脱離するカルボン酸としては、酢酸、プロピオン酸、酪酸が好ましく、酢酸がより好ましい。
 本発明のポリエンの製造方法は、回分(バッチ)式、連続式いずれの方法も適宜選択することができるが、反応系に複数個のカルボキシレート基を有する炭化水素を含む原料を連続的に供給し、脱離反応を連続的に行うことでポリエンを製造することが好ましい。反応系としては、後述する固体充填物を保持する部位があることが好ましく、原料を連続的に供給することができ、製造されたポリエン及び脱離したカルボン酸を系外に排出する構造を備えていれば特に限定されないが、管型反応器、槽型反応器、固定床式反応器、流動床式反応器等が挙げられ、長期安定的に脱離反応を行う可能性があることより管型反応器、固定床式反応器、槽型反応器が好ましい。
In the formula (2), R 1 is the same as in the formula (1). Therefore, as the carboxylic acid to be eliminated, acetic acid, propionic acid, and butyric acid are preferable, and acetic acid is more preferable.
The method for producing the polyene of the present invention can be appropriately selected from a batch method and a continuous method, but a raw material containing hydrocarbons having a plurality of carboxylate groups is continuously supplied to the reaction system. In addition, it is preferable to produce the polyene by continuously performing the elimination reaction. As the reaction system, it is preferable that there is a portion for holding a solid packing described later, and the raw material can be continuously supplied, and the produced polyene and the released carboxylic acid are discharged out of the system. However, there is no particular limitation as long as it is a tube reactor, a tank reactor, a fixed bed reactor, a fluidized bed reactor, etc. A type reactor, a fixed bed type reactor, and a tank type reactor are preferred.
 本発明のポリエンの製造方法によれば、除去が困難なMEK誘導体の副生を抑制することができる。具体的には、原料として仕込んだ複数個のカルボキシレート基を有する炭化水素に対する生成されたMEK誘導体の割合(MEK誘導体収率)を、5.0%以下とすることができる。MEK誘導体収率は、より好ましくは4.5%以下、さらに好ましくは4.0%以下、特に好ましくは3.5%以下である。
 本発明の製造方法によれば、カルボン酸脱離反応において温和な反応条件下で脱離反応を行い、目的とするポリエンの収率を高めることだけでなく、副生物の中でも特に除去が困難で好ましくない副生物であるMEK誘導体を抑制することができる点で、特に優れている。
According to the method for producing a polyene of the present invention, it is possible to suppress the by-product of the MEK derivative that is difficult to remove. Specifically, the ratio of the produced MEK derivative to the hydrocarbon having a plurality of carboxylate groups charged as a raw material (MEK derivative yield) can be 5.0% or less. The yield of MEK derivative is more preferably 4.5% or less, further preferably 4.0% or less, and particularly preferably 3.5% or less.
According to the production method of the present invention, not only is the elimination reaction carried out under mild reaction conditions in the carboxylic acid elimination reaction to increase the yield of the target polyene, but it is particularly difficult to remove among the by-products. It is particularly excellent in that it can suppress MEK derivatives, which are undesirable by-products.
 前記反応系を含むポリエンの製造フローの一例を下記に示す。
 複数個のカルボキシレート基を有する炭化水素を含む原料を連続的に反応系に供給し、カルボン酸の脱離反応を連続的に行い、脱離反応後の反応混合物を反応系外に排出し、排出された反応混合物よりポリエンを分離精製する。また、ポリエンを分離した後の反応混合物よりカルボン酸を除去し、未反応の複数個のカルボキシレート基を有する炭化水素を回収し、回収された複数個のカルボキシレート基を有する炭化水素を新たな原料と混合し再利用する。
An example of the production flow of polyene containing the reaction system is shown below.
A raw material containing a hydrocarbon having a plurality of carboxylate groups is continuously supplied to the reaction system, the carboxylic acid elimination reaction is continuously carried out, and the reaction mixture after the elimination reaction is discharged out of the reaction system, Polyene is separated and purified from the discharged reaction mixture. Further, the carboxylic acid is removed from the reaction mixture after separating the polyene, the unreacted hydrocarbon having a plurality of carboxylate groups is recovered, and the recovered hydrocarbon having a plurality of carboxylate groups is newly added. Mix with raw materials and reuse.
 本発明のポリエンの製造方法においてはカルボン酸の脱離反応によりポリエンが製造されるが、該脱離反応は一般的に吸熱反応である。よって、脱離反応温度が徐々に低下する可能性がある。該脱離反応温度の低下を抑制するために反応系に、該脱離反応とは不活性な固体充填物(以下「充填物」と称する場合がある。)が存在することが好ましい。
 充填物を構成する物質としては、反応系で副反応を誘発しない材料であればよく、例えば、シリカアルミナ、酸化ジルコニウム、酸化チタン、酸化マグネシウム、アランダム、シリカ、ムライト、カーボランダム、ステンレス鋼、炭化珪素、窒化ケイ素、ステアタイト、陶器、磁器、鉄及び各種セラミック等を挙げることができ、中でもシリカアルミナ、ムライト及びステンレス鋼からなる群より選ばれる少なくとも1種であることが好ましい。
In the polyene production method of the present invention, a polyene is produced by a carboxylic acid elimination reaction, which is generally an endothermic reaction. Therefore, there is a possibility that the elimination reaction temperature gradually decreases. In order to suppress a decrease in the elimination reaction temperature, it is preferable that a solid packing (hereinafter sometimes referred to as “packing”) inert to the elimination reaction is present in the reaction system.
The material constituting the packing may be any material that does not induce side reactions in the reaction system, such as silica alumina, zirconium oxide, titanium oxide, magnesium oxide, alundum, silica, mullite, carborundum, stainless steel, Examples thereof include silicon carbide, silicon nitride, steatite, earthenware, porcelain, iron, and various ceramics. Among them, at least one selected from the group consisting of silica alumina, mullite, and stainless steel is preferable.
 充填物の形状は、特に限定されるものではなく、例えば、粉状、球状、円柱状、円筒状、金網状、板状などとすることができるほか、充填物として既に種々の形状のものが市販されている。実質的に同一のものの入手が容易なものとして、例えば、ラシヒリング、レッシングリング、ボールリング、インタロックスサドル、ベルルサドル、セラミックボール、マクマホン、ディクソンなどを利用することができる。 The shape of the filler is not particularly limited. For example, the shape of the filler can be powder, spherical, columnar, cylindrical, wire mesh, plate, or the like. It is commercially available. For example, a Raschig ring, a lessing ring, a ball ring, an interlock saddle, a Berle saddle, a ceramic ball, McMahon, Dixon, etc. can be used as a material that can be obtained easily.
 前記反応系へ供給される複数個のカルボキシレート基を有する炭化水素を含む原料の状態は気体でも、液体でもよい。該原料の状態が気体である場合、該原料中には前記脱離反応を阻害しない気体が更に含まれていることが脱離反応の温度保持の観点より好ましい。前記気体としては、例えば、窒素ガス、アルゴンガス、ネオンガス、二酸化炭素ガス、カルボン酸、水蒸気が挙げられ、利用が容易であり、且つ脱離反応後の除去が簡便であることから窒素ガス、カルボン酸、水蒸気がより好ましい。 The raw material containing a hydrocarbon having a plurality of carboxylate groups supplied to the reaction system may be a gas or a liquid. When the state of the raw material is a gas, it is preferable from the viewpoint of maintaining the temperature of the desorption reaction that the raw material further contains a gas that does not inhibit the desorption reaction. Examples of the gas include nitrogen gas, argon gas, neon gas, carbon dioxide gas, carboxylic acid, and water vapor, which are easy to use and easy to remove after the elimination reaction. Acid and water vapor are more preferable.
 さらに、前記脱離反応の反応時間は0.1秒以上50秒以下が好ましい。下限は0.5秒がより好ましい。上限は45秒がより好ましく、40秒が更に好ましい。該反応時間が適度な範囲であることにより、前記原料より製造されるポリエンの収率が高く、収量も多くすることができる。
 尚、本発明のポリエンの製造方法における反応時間は下記式に従い求めることができる。
Further, the reaction time of the elimination reaction is preferably 0.1 seconds or more and 50 seconds or less. The lower limit is more preferably 0.5 seconds. The upper limit is more preferably 45 seconds and even more preferably 40 seconds. When the reaction time is in an appropriate range, the yield of polyene produced from the raw material is high and the yield can be increased.
In addition, the reaction time in the manufacturing method of the polyene of this invention can be calculated | required according to a following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(1)における「反応系内における原料の体積流量」は反応系内の反応温度における原料の体積流量である。
 本発明のポリエンの製造方法において、前記複数個のカルボキシレート基を有する炭化水素を含む原料は複数個のヒドロキシル基を有する炭化水素とカルボン酸及びカルボン酸無水物の少なくともいずれか一方とのエステル化反応により得られた生成物を含むことが好ましい。つまり、複数個のカルボキシレート基を有する炭化水素は複数個のヒドロキシル基を有する炭化水素とカルボン酸及びカルボン酸無水物の少なくともいずれか一方とのエステル化反応により得られたものであることが好ましい。ここで、前記エステル化反応により得られた生成物には、1個のカルボキシレート基を有する炭化水素が含まれていてもよい。本発明の効果を奏する範囲、例えば原料中の50モル%以下、好ましくは40モル%以下、さらに好ましくは10モル%以下の範囲で、原料中に1個のカルボキシレート基を有する炭化水素を含んでいてもよい。
The “volume flow rate of the raw material in the reaction system” in the above formula (1) is the volume flow rate of the raw material at the reaction temperature in the reaction system.
In the polyene production method of the present invention, the raw material containing a hydrocarbon having a plurality of carboxylate groups is an esterification of a hydrocarbon having a plurality of hydroxyl groups and at least one of a carboxylic acid and a carboxylic anhydride. It is preferable to include the product obtained by the reaction. That is, the hydrocarbon having a plurality of carboxylate groups is preferably obtained by an esterification reaction between a hydrocarbon having a plurality of hydroxyl groups and at least one of carboxylic acid and carboxylic anhydride. . Here, the product obtained by the esterification reaction may contain a hydrocarbon having one carboxylate group. In the range where the effect of the present invention is exerted, for example, in the range of 50 mol% or less, preferably 40 mol% or less, more preferably 10 mol% or less in the raw material, a hydrocarbon having one carboxylate group is contained in the raw material. You may go out.
 以下に、複数個のヒドロキシル基を有する炭化水素とカルボン酸及び/又はカルボン酸無水物とのエステル化反応について説明する。
 反応装置を用いてエステル化反応を効率的に行うことができる。反応装置内で複数個のヒドロキシル基を有する炭化水素とカルボン酸及び/又はカルボン酸無水物とを反応させる。具体的には、複数個のヒドロキシル基を有する化合物を反応装置へ供給し、カルボン酸及び/又はカルボン酸無水物を反応装置へ供給する。反応装置において反応により生成した生成物は反応装置外に排出される。尚、複数個のヒドロキシル基を有する化合物とカルボン酸及び/又はカルボン酸無水物はそれぞれ別々に反応装置に供給しても、予め混合した後に反応装置に供給してもよい。
The esterification reaction between a hydrocarbon having a plurality of hydroxyl groups and a carboxylic acid and / or carboxylic anhydride will be described below.
The esterification reaction can be efficiently performed using a reaction apparatus. In the reaction apparatus, a hydrocarbon having a plurality of hydroxyl groups is reacted with a carboxylic acid and / or a carboxylic anhydride. Specifically, a compound having a plurality of hydroxyl groups is supplied to the reaction apparatus, and carboxylic acid and / or carboxylic anhydride is supplied to the reaction apparatus. The product produced by the reaction in the reactor is discharged out of the reactor. The compound having a plurality of hydroxyl groups and the carboxylic acid and / or carboxylic anhydride may be supplied separately to the reaction apparatus, or may be supplied to the reaction apparatus after mixing in advance.
 以下に、エステル化反応の詳細について説明する。
 前記複数個のヒドロキシル基を有する炭化水素としては特に制限されないが、該複数個のヒドロキシル基を有する炭化水素における炭素数は4以上6以下であることが好ましく、4以上5以下であることがより好ましく、4であることが更に好ましい。該炭素数が上限値以下であると、次いで行う脱離反応により目的とするポリエンの選択率が高くなる傾向があり好ましい。
 すなわち、複数個のヒドロキシル基を有するヘキサン、複数個のヒドロキシル基を有するペンタン、複数個のヒドロキシル基を有するブタンが好ましく、複数個のヒドロキシル基を有するペンタン、複数個のヒドロキシル基を有するブタンがより好ましく、複数個のヒドロキシル基を有するブタンが更に好ましい。
Details of the esterification reaction will be described below.
The hydrocarbon having a plurality of hydroxyl groups is not particularly limited, but the number of carbons in the hydrocarbon having a plurality of hydroxyl groups is preferably 4 or more and 6 or less, and more preferably 4 or more and 5 or less. 4 is more preferable. When the number of carbon atoms is less than or equal to the upper limit value, the selectivity of the target polyene tends to increase due to the subsequent elimination reaction, which is preferable.
That is, hexane having a plurality of hydroxyl groups, pentane having a plurality of hydroxyl groups, butane having a plurality of hydroxyl groups is preferable, pentane having a plurality of hydroxyl groups, butane having a plurality of hydroxyl groups is more preferred. Preferably, butane having a plurality of hydroxyl groups is more preferable.
 該複数個のヒドロキシル基を有する炭化水素のヒドロキシル基の数は複数個であり、好ましくは2個以上3個以下であり、より好ましくは2個である。
 該複数個のヒドロキシル基を有する炭化水素はブタンジオールであることが好ましい。該ブタンジオールとしては1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオールが挙げられるが、エステル化反応に次いで行う脱離反応により選択率が良好となることより、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオールがより好ましく、1,3-ブタンジオール、2,3-ブタンジオールが更に好ましい。
The number of hydroxyl groups in the hydrocarbon having a plurality of hydroxyl groups is plural, preferably 2 or more and 3 or less, more preferably 2.
The hydrocarbon having a plurality of hydroxyl groups is preferably butanediol. Examples of the butanediol include 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol, and the selectivity is reduced by an elimination reaction that is performed after the esterification reaction. 1,3-butanediol, 1,4-butanediol, and 2,3-butanediol are more preferable, and 1,3-butanediol and 2,3-butanediol are still more preferable because they are favorable.
 前記ブタンジオールは特に限定されないが、ナフサ由来の原料から工業的に製造されたものや、植物由来の原料から発酵法で製造されたものが挙げられる。 The butanediol is not particularly limited, and examples thereof include those produced industrially from naphtha-derived raw materials and those produced by fermentation from plant-derived raw materials.
 上記エステル化反応で用いるカルボン酸としては、下記式(3)で表すことができる。 The carboxylic acid used in the esterification reaction can be represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記式(3)においてRは前記式(1)と同じであり、好ましくは酢酸である。
 なお、例えば複数個のヒドロキシル基を有する炭化水素とカルボン酸として1,3-ブタンジオールと酢酸とをそれぞれ採用しエステル化反応した場合は、複数個のカルボキシレート基を有する炭化水素として1,3-ジアセトキシブタンが主として得られる。また、1,6-ヘキサンジオールと酢酸とをそれぞれ採用しエステル化反応した場合には、複数個のカルボキシレート基を有する炭化水素として1,6-ジアセトキシヘキサンが主として得られる。
In the formula (3), R 1 is the same as that in the formula (1), and is preferably acetic acid.
For example, when a hydrocarbon having a plurality of hydroxyl groups and 1,3-butanediol and acetic acid as carboxylic acids are used for esterification reaction, 1,3 as hydrocarbons having a plurality of carboxylate groups are used. Diacetoxybutane is mainly obtained. When 1,6-hexanediol and acetic acid are respectively employed for esterification, 1,6-diacetoxyhexane is mainly obtained as a hydrocarbon having a plurality of carboxylate groups.
 カルボン酸無水物としては、下記式(4)で表すことができる。 The carboxylic acid anhydride can be represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記式(4)においてR、Rは前記式(1)のRと同じであり、前記R及びRは同一であっても異なっていてもよい。
 なお、例えば複数個のヒドロキシル基を有する炭化水素とカルボン酸として1,3-ブタンジオールと無水酢酸とをそれぞれ採用しエステル化反応した場合は、複数個のカルボキシレート基を有する炭化水素として1,3-ジアセトキシブタンが主として得られる。また、1,6-ヘキサンジオールと無水酢酸とをそれぞれ採用しエステル化反応した場合には、複数個のカルボキシレート基を有する炭化水素として1,6-ジアセトキシヘキサンが主として得られる。
In the formula (4), R 2 and R 3 are the same as R 1 in the formula (1), and the R 2 and R 3 may be the same or different.
For example, when 1,3-butanediol and acetic anhydride are respectively employed as hydrocarbons having a plurality of hydroxyl groups and carboxylic acid and subjected to esterification reaction, 1, hydrocarbons having a plurality of carboxylate groups are 3-diacetoxybutane is mainly obtained. Further, when 1,6-hexanediol and acetic anhydride are respectively employed for esterification, 1,6-diacetoxyhexane is mainly obtained as a hydrocarbon having a plurality of carboxylate groups.
 エステル化反応は公知の技術を用いて実施することができる。エステル化反応は、無触媒で実施してもよいが、生産速度向上の観点から触媒の存在下実施してもよい。
 触媒としては、例えば、硫酸、リン酸、塩酸などの無機酸(鉱酸);p-トルエンスルホン酸、メタンスルホン酸などの有機酸(スルホン酸);BFなどのルイス酸;強酸性陽イオン交換樹脂、ゼオライト、シリカ-アルミナなどに代表される固体酸触媒;4-ジメチルアミノピリジンなどに代表される求核剤等が挙げられる。
 酸触媒によるエステル化反応は平衡反応のため、副生する水を除去しながら反応を行うことが好ましい。
 また、反応形態としては、回分式(バッチ式)及び連続式のいずれの方法も適宜選択することができる。
The esterification reaction can be carried out using a known technique. The esterification reaction may be performed without a catalyst, but may be performed in the presence of a catalyst from the viewpoint of improving the production rate.
Examples of the catalyst include inorganic acids (mineral acids) such as sulfuric acid, phosphoric acid and hydrochloric acid; organic acids (sulfonic acids) such as p-toluenesulfonic acid and methanesulfonic acid; Lewis acids such as BF 3 ; strong acidic cations Examples thereof include solid acid catalysts represented by exchange resins, zeolites, silica-alumina, and the like; nucleophiles represented by 4-dimethylaminopyridine and the like.
Since the esterification reaction with an acid catalyst is an equilibrium reaction, it is preferable to carry out the reaction while removing by-product water.
Moreover, as a reaction form, any of a batch type (batch type) and a continuous type can be selected suitably.
 複数個のヒドロキシル基を有する炭化水素とカルボン酸及び/又はカルボン酸無水物との配合割合は特に制限されず、例えば、複数個のヒドロキシル基を有する炭化水素とカルボン酸の場合、カルボン酸の割合は複数個のヒドロキシル基を有する炭化水素におけるヒドロキシル基のモル数に対して、1.5~10倍モル、好ましくは2~8倍モルの範囲から選択することができる。また、複数個のヒドロキシル基を有する炭化水素とカルボン酸無水物の場合、カルボン酸無水物の割合は複数個のヒドロキシル基を有する炭化水素におけるヒドロキシル基のモル数に対して、0.5~5倍モル、好ましくは1~4倍モルの範囲から選択することができる。 The mixing ratio of the hydrocarbon having a plurality of hydroxyl groups and the carboxylic acid and / or carboxylic anhydride is not particularly limited. For example, in the case of a hydrocarbon having a plurality of hydroxyl groups and a carboxylic acid, the ratio of the carboxylic acid Can be selected from the range of 1.5 to 10 times mol, preferably 2 to 8 times mol, of the number of moles of hydroxyl groups in the hydrocarbon having a plurality of hydroxyl groups. In the case of a hydrocarbon having a plurality of hydroxyl groups and a carboxylic acid anhydride, the ratio of the carboxylic acid anhydride is 0.5 to 5 with respect to the number of moles of hydroxyl groups in the hydrocarbon having a plurality of hydroxyl groups. It can be selected from the range of 1 mol, preferably 1 to 4 mol.
 反応温度、圧力、時間などは原料である複数個のヒドロキシル基を有する炭化水素とカルボン酸及び/又はカルボン酸無水物の種類により適宜設定でき、特に制限されないが、反応温度は、25℃~200℃、反応時圧力は1kPa~100kPa、反応時間は0.1時間~48時間程度が好ましい。更に前記エステル化反応は、バッチ式であっても、連続式であってもよいが、該エステル化反応により得られる生成物を含む原料を、次いで行う脱離反応へ連続的に供給できることより連続式であることが好ましい。
 前記条件によりエステル化反応により得られる生成物を含む原料を用いてポリエンの製造を行うことにより、選択率が高く、高収率でポリエンを得ることができる。
The reaction temperature, pressure, time, and the like can be appropriately set depending on the types of hydrocarbons having a plurality of hydroxyl groups and carboxylic acid and / or carboxylic anhydride as raw materials, and the reaction temperature is 25 ° C. to 200 ° C. Preferably, the reaction pressure is 1 kPa to 100 kPa, and the reaction time is about 0.1 to 48 hours. Furthermore, the esterification reaction may be a batch type or a continuous type. However, since the raw material containing the product obtained by the esterification reaction can be continuously supplied to the subsequent elimination reaction, it is continuous. The formula is preferred.
By producing a polyene using a raw material containing a product obtained by an esterification reaction under the above conditions, the polyene can be obtained with high selectivity and high yield.
 (各生成物の定量)
 反応系より排出された生成物を収集し、収集した生成物をガスクロマトグラフィー(GL Science社製 型番:GC-4000)により分析、定量した。
(Quantification of each product)
The product discharged from the reaction system was collected, and the collected product was analyzed and quantified by gas chromatography (model number: GC-4000 manufactured by GL Science).
 (合成例)
 2,3-ブタンジオール15.04g(167mmol)を、300mL3つ口フラスコに導入後、窒素で3つ口フラスコ内を置換し、ピリジン73.51gを仕込んだ。
 3つ口フラスコを氷浴につけ、撹拌しながら滴下漏斗を用いて無水酢酸51.09gを15分かけて添加した。撹拌をさらに30分継続後、4-ジメチルアミノピリジン(DMAP)を0.05g添加した。約13時間撹拌後、ガスクロマトグラフィーで原料が消失したことを確認したのち、反応液に脱塩水50mL、トルエン70mLを加え、生成物の抽出を行った。有機層を1N-塩酸70mLで2回、脱塩水50mLで1回、飽和重層水70mLで2回、脱塩水50mLで1回、1N-塩酸70mLで1回の順で洗浄した。次いで有機層に硫酸ナトリウムを80g添加して脱水し、硫酸ナトリウムを濾過してエバポレーターで濃縮した。更に、圧力10~20hPa、温度25℃で6時間減圧乾燥して残存するトルエン及びピリジンを除去して、21.33g(122mmol、収率73.4%)の2,3-ジアセトキシブタンを透明液体として得た。
(Synthesis example)
After introducing 15.04 g (167 mmol) of 2,3-butanediol into a 300 mL three-necked flask, the inside of the three-necked flask was replaced with nitrogen, and 73.51 g of pyridine was charged.
The three-necked flask was placed in an ice bath, and 51.09 g of acetic anhydride was added over 15 minutes using a dropping funnel while stirring. Stirring was continued for another 30 minutes, and 0.05 g of 4-dimethylaminopyridine (DMAP) was added. After stirring for about 13 hours, it was confirmed that the raw materials had disappeared by gas chromatography, and then 50 mL of demineralized water and 70 mL of toluene were added to the reaction solution to extract the product. The organic layer was washed with 70 mL of 1N hydrochloric acid twice, once with 50 mL of demineralized water, twice with 70 mL of saturated multistory water, once with 50 mL of demineralized water, and once with 70 mL of 1N hydrochloric acid. Next, 80 g of sodium sulfate was added to the organic layer for dehydration, and the sodium sulfate was filtered and concentrated with an evaporator. Further, the remaining toluene and pyridine were removed by drying under reduced pressure at a pressure of 10 to 20 hPa and a temperature of 25 ° C. for 6 hours to clear 21.33 g (122 mmol, yield 73.4%) of 2,3-diacetoxybutane. Obtained as a liquid.
 (実施例1)
 内径10.0mm、長さ500mmのステンレス製管型反応器に、直径2mmのムライトボール(株式会社フジミインコーポレーテッド製、製品名FFB A-601)21.9gを充填し、その上部にシリカアルミナ(日揮触媒化成製N632L)を1.0g充填し、更にその上部に該ムライトボール28.0gを充填した。ステンレス製管型反応器内の温度測定は熱電対を具備した挿入管を設置し、行った。
Example 1
A stainless steel tubular reactor having an inner diameter of 10.0 mm and a length of 500 mm was charged with 21.9 g of a mullite ball having a diameter of 2 mm (product name: FFB A-601, manufactured by Fujimi Incorporated), and silica alumina ( 1.0 g of JGC Catalysts & Chemicals N632L) was charged, and 28.0 g of the mullite ball was further charged thereon. The temperature in the stainless steel tubular reactor was measured by installing an insertion tube equipped with a thermocouple.
 窒素を4.6L/時間(温度:0℃、圧力:1気圧に換算した値)の流量で350℃に加熱された予熱器に供給し、更に1,3-ジアセトキシブタン(Alfa Aesar試薬)を3mL/時間の流量で該予熱器に供給し、該予熱器内で1,3-ジアセトキシブタンと窒素ガスとの均一混合気体(350℃)を原料とした(原料組成=窒素:92.0モル%、1,3-ジアセトキシブタン:8.0モル%)。該原料を予め内温を電気炉により350℃に昇温されたステンレス製管型反応器に供給し、脱離反応を行い、1,3-ブタジエンの製造を行った。圧力はゲージ圧で50kPaであった。反応の詳細な条件を表1に示す。尚、反応時間は5秒であった。
 ガスクロマトグラフィー(GL Science社製 型番:GC-4000)で分析した結果等を表1に示す。
Nitrogen was supplied to a preheater heated to 350 ° C. at a flow rate of 4.6 L / hour (temperature: 0 ° C., pressure: converted to 1 atm), and 1,3-diacetoxybutane (Alfa Aesar reagent) Was supplied to the preheater at a flow rate of 3 mL / hour, and a uniform mixed gas (350 ° C.) of 1,3-diacetoxybutane and nitrogen gas was used as a raw material in the preheater (raw material composition = nitrogen: 92. 0 mol%, 1,3-diacetoxybutane: 8.0 mol%). The raw material was supplied to a stainless steel tubular reactor whose internal temperature was previously raised to 350 ° C. by an electric furnace, and a desorption reaction was carried out to produce 1,3-butadiene. The pressure was 50 kPa as a gauge pressure. Detailed conditions of the reaction are shown in Table 1. The reaction time was 5 seconds.
Table 1 shows the results of analysis by gas chromatography (model number: GC-4000, manufactured by GL Science).
 (実施例2)
 前記ステンレス製管型反応器にムライトボールのみを充填したこと、反応温度を500℃にしたこと、窒素を2.8L/時間(温度:0℃、圧力:1気圧に換算した値)の流量としたこと、1,3-ジアセトキシブタンを1.3mL/時間の流量にしたこと以外は、実施例1と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は8秒であった。原料組成は窒素:92.0モル%、1,3-ジアセトキシブタン:8.0モル%とした。
 分析した結果等を表1に示す。
(Example 2)
The stainless steel tubular reactor was filled with mullite balls only, the reaction temperature was 500 ° C., the nitrogen flow rate was 2.8 L / hour (temperature: 0 ° C., pressure: converted to 1 atm), In addition, 1,3-butadiene was produced in the same manner as in Example 1 except that 1,3-diacetoxybutane was used at a flow rate of 1.3 mL / hour. The reaction time was 8 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%.
The analysis results are shown in Table 1.
 (実施例3)
 反応器に導入した原料組成を以下に変更した以外は実施例2と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は8秒であった。
 原料組成=窒素:88.6モル%、1,3-ジアセトキシブタン:8.0モル%、酢酸:3.4モル%
 分析の結果等を表1に示す。
Example 3
1,3-butadiene was produced in the same manner as in Example 2, except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 8 seconds.
Raw material composition = nitrogen: 88.6 mol%, 1,3-diacetoxybutane: 8.0 mol%, acetic acid: 3.4 mol%
The results of analysis are shown in Table 1.
 (実施例4)
 原料中、1,3-ジアセトキシブタンを2,3-ジアセトキシブタンとしたこと以外は実施例2と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は8秒であった。原料組成は窒素:92.0モル%、2,3-ジアセトキシブタン:8.0モル%とした。
 分析の結果等を表1に示す。
Example 4
1,3-butadiene was produced in the same manner as in Example 2 except that 1,3-diacetoxybutane was changed to 2,3-diacetoxybutane in the raw material. The reaction time was 8 seconds. The raw material composition was nitrogen: 92.0 mol% and 2,3-diacetoxybutane: 8.0 mol%.
The results of analysis are shown in Table 1.
 (実施例5)
 前記ステンレス製管型反応器内に充填物を充填しなかったこと、反応圧力をゲージ圧で2kPaにしたこと以外は実施例2と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。原料組成は窒素:92.0モル%、1,3-ジアセトキシブタン:8.0モル%とした。
 分析の結果等を表1に示す。
(Example 5)
1,3-Butadiene was produced in the same manner as in Example 2 except that the stainless steel tubular reactor was not filled and the reaction pressure was 2 kPa as a gauge pressure. The reaction time was 5 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%.
The results of analysis are shown in Table 1.
 (実施例6)
 窒素を2.8L/時間(温度:0℃、圧力:1気圧に換算した値)の流量としたこと、1,3-ジアセトキシブタンを1.3mL/時間の流量としたこと以外は、実施例5と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は8秒であった。原料組成は窒素:92.0モル%、1,3-ジアセトキシブタン:8.0モル%とした。
 分析の結果等を表1に示す。
(Example 6)
Except that the flow rate of nitrogen was 2.8 L / hour (temperature: 0 ° C., pressure: converted to 1 atm), and that the flow rate of 1,3-diacetoxybutane was 1.3 mL / hour. In the same manner as in Example 5, 1,3-butadiene was produced. The reaction time was 8 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%.
The results of analysis are shown in Table 1.
 (実施例7)
 圧力をゲージ圧で50kPaにした以外は実施例5と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。原料組成は窒素:92.0モル%、1,3-ジアセトキシブタン:8.0モル%とした。
 分析の結果等を表1に示す。
(Example 7)
1,3-butadiene was produced in the same manner as in Example 5 except that the pressure was changed to 50 kPa as a gauge pressure. The reaction time was 5 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%.
The results of analysis are shown in Table 1.
 (実施例8)
 圧力をゲージ圧で50kPaにした以外は実施例6と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は8秒であった。原料組成は窒素:92.0モル%、1,3-ジアセトキシブタン:8.0モル%とした。
 分析の結果等を表2に示す。
(Example 8)
1,3-Butadiene was produced in the same manner as in Example 6 except that the pressure was changed to 50 kPa as a gauge pressure. The reaction time was 8 seconds. The raw material composition was nitrogen: 92.0 mol% and 1,3-diacetoxybutane: 8.0 mol%.
Table 2 shows the results of the analysis.
 (実施例9)
 反応器に導入した原料組成を以下に変更したこと以外は実施例7と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:92.0モル%、1,3-ジアセトキシブタン:7.2モル%、3-アセトキシ-1-ブタノール:0.3モル%、4-アセトキシ-2-ブタノール:0.5モル%
 分析の結果等を表2に示す。
Example 9
1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 92.0 mol%, 1,3-diacetoxybutane: 7.2 mol%, 3-acetoxy-1-butanol: 0.3 mol%, 4-acetoxy-2-butanol: 0.5 Mol%
Table 2 shows the results of the analysis.
 (実施例10)
 反応器に導入した原料組成を以下に変更した以外は実施例7と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:92.0モル%、2,3-ジアセトキシブタン:7.2モル%、2,3-ブタンジオール:0.8モル%
 分析の結果等を表2に示す。
(Example 10)
1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 92.0 mol%, 2,3-diacetoxybutane: 7.2 mol%, 2,3-butanediol: 0.8 mol%
Table 2 shows the results of the analysis.
 (実施例11)
 反応器に導入した原料組成を以下に変更した以外は実施例7と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:92.0モル%、2,3-ジアセトキシブタン:4.0モル%、2,3-ブタンジオール:4.0モル%
 分析の結果等を表2に示す。
(Example 11)
1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 92.0 mol%, 2,3-diacetoxybutane: 4.0 mol%, 2,3-butanediol: 4.0 mol%
Table 2 shows the results of the analysis.
 (実施例12)
 反応器に導入した原料組成を以下に変更した以外は実施例7と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:88.8モル%、2,3-ジアセトキシブタン:4.0モル%、2,3-ブタンジオール:4.0モル%、酢酸:3.2モル%
 分析の結果等を表2に示す。
Example 12
1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 88.8 mol%, 2,3-diacetoxybutane: 4.0 mol%, 2,3-butanediol: 4.0 mol%, acetic acid: 3.2 mol%
Table 2 shows the results of the analysis.
 (実施例13)
 反応器に導入した原料組成を以下に変更した以外は実施例7と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:70.0モル%、1,3-ジアセトキシブタン:30.0モル%
 分析の結果等を表2に示す。
(Example 13)
1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 70.0 mol%, 1,3-diacetoxybutane: 30.0 mol%
Table 2 shows the results of the analysis.
 (実施例14)
 反応器に導入した原料組成を以下に変更した以外は実施例7と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:50.0モル%、1,3-ジアセトキシブタン:50.0モル%
 分析の結果等を表2に示す。
(Example 14)
1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 50.0 mol%, 1,3-diacetoxybutane: 50.0 mol%
Table 2 shows the results of the analysis.
 (実施例15)
 反応器に導入した原料組成を以下に変更した以外は実施例7と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:10.0モル%、1,3-ジアセトキシブタン:90.0モル%
 分析の結果等を表3に示す。
(Example 15)
1,3-butadiene was produced in the same manner as in Example 7 except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 10.0 mol%, 1,3-diacetoxybutane: 90.0 mol%
Table 3 shows the results of the analysis.
 (実施例16)
 反応時間を6秒に変更した以外は、実施例15と同じ方法で、1,3-ブタジエンの製造を行った。
 分析の結果等を表3に示す。
(Example 16)
1,3-butadiene was produced in the same manner as in Example 15, except that the reaction time was changed to 6 seconds.
Table 3 shows the results of the analysis.
 (比較例1)
 反応器に導入した原料組成を以下に変更し、反応温度を450℃に変更した以外は実施例1と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:92.0モル%、1,3-ブタンジオール:8.0モル%
 分析の結果等を表3に示す。
(Comparative Example 1)
1,3-butadiene was produced in the same manner as in Example 1 except that the raw material composition introduced into the reactor was changed to the following and the reaction temperature was changed to 450 ° C. The reaction time was 5 seconds.
Raw material composition = nitrogen: 92.0 mol%, 1,3-butanediol: 8.0 mol%
Table 3 shows the results of the analysis.
 (比較例2)
 反応器に導入した原料組成を以下に変更した以外は、比較例1と同じ方法で、1,3-ブタジエンの製造を行った。反応時間は5秒であった。
 原料組成=窒素:92.0モル%、2,3-ブタンジオール:8.0モル%
 分析の結果等を表3に示す。
(Comparative Example 2)
1,3-butadiene was produced in the same manner as in Comparative Example 1, except that the raw material composition introduced into the reactor was changed as follows. The reaction time was 5 seconds.
Raw material composition = nitrogen: 92.0 mol%, 2,3-butanediol: 8.0 mol%
Table 3 shows the results of the analysis.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記実施例1~16においては、いずれも高いブタジエン収率を達成し、かつ、メチルエチルケトンやn-ブテン類の生成が十分に抑制されており、比較例よりも副反応に起因する除去が困難な不純物が少なく、高純度なポリエンを高収率で製造することができている。 In each of Examples 1 to 16, a high butadiene yield was achieved, and the production of methyl ethyl ketone and n-butenes was sufficiently suppressed, making it more difficult to remove due to side reactions than in Comparative Examples. Polyenes with few impurities and high purity can be produced in high yield.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2014年1月21日出願の日本特許出願(特願2014-008593)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on January 21, 2014 (Japanese Patent Application No. 2014-008593), the contents of which are incorporated herein by reference.
 本発明のポリエンの製造方法によれば、副反応に起因する不純物が少なく、高純度なポリエンを高収率で製造することができるため利用分野の拡大が可能となる。 According to the method for producing a polyene of the present invention, it is possible to expand a field of use because a high-purity polyene can be produced in a high yield with few impurities caused by side reactions.

Claims (9)

  1.  炭化水素を含む原料からカルボン酸を脱離反応させてポリエンを製造する方法であって、
     前記炭化水素は複数個のカルボキシレート基を有し、
     前記原料中における前記炭化水素の濃度が0.1モル%以上95モル%以下であり、且つ、
     前記脱離反応を250℃以上800℃以下で行う、ポリエンの製造方法。
    A method for producing a polyene by desorbing a carboxylic acid from a raw material containing a hydrocarbon,
    The hydrocarbon has a plurality of carboxylate groups;
    The concentration of the hydrocarbon in the raw material is 0.1 mol% or more and 95 mol% or less, and
    A method for producing a polyene, wherein the elimination reaction is performed at 250 ° C or higher and 800 ° C or lower.
  2.  前記原料が複数個のヒドロキシル基を有する炭化水素とカルボン酸及びカルボン酸無水物の少なくともいずれか一方とのエステル化反応により得られた生成物を含む請求項1に記載のポリエンの製造方法。 The method for producing a polyene according to claim 1, wherein the raw material contains a product obtained by an esterification reaction between a hydrocarbon having a plurality of hydroxyl groups and at least one of carboxylic acid and carboxylic anhydride.
  3.  前記原料が複数個のヒドロキシル基を有する炭化水素を更に含み、前記複数個のカルボキシレート基を有する炭化水素に対する前記複数個のヒドロキシル基を有する炭化水素のモル比が0.9以下である請求項1又は2に記載のポリエンの製造方法。 The raw material further includes a hydrocarbon having a plurality of hydroxyl groups, and the molar ratio of the hydrocarbon having a plurality of hydroxyl groups to the hydrocarbon having a plurality of carboxylate groups is 0.9 or less. A process for producing the polyene according to 1 or 2.
  4.  前記脱離反応が連続的である請求項1乃至3のいずれか1項に記載のポリエンの製造方法。 The method for producing a polyene according to any one of claims 1 to 3, wherein the elimination reaction is continuous.
  5.  前記脱離反応が固体充填物の存在下実施される請求項1乃至4のいずれか1項に記載のポリエンの製造方法。 The method for producing a polyene according to any one of claims 1 to 4, wherein the elimination reaction is carried out in the presence of a solid packing.
  6.  前記固体充填物が、シリカアルミナ、ムライト及びステンレス鋼からなる群より選ばれる少なくとも1種である請求項5に記載のポリエンの製造方法。 The method for producing a polyene according to claim 5, wherein the solid filler is at least one selected from the group consisting of silica alumina, mullite and stainless steel.
  7.  前記複数個のカルボキシレート基を有する炭化水素がジアセトキシブタンである請求項1乃至6のいずれか1項に記載のポリエンの製造方法。 The method for producing a polyene according to any one of claims 1 to 6, wherein the hydrocarbon having a plurality of carboxylate groups is diacetoxybutane.
  8.  前記カルボン酸が酢酸である請求項1乃至7のいずれか1項に記載のポリエンの製造方法。 The method for producing a polyene according to any one of claims 1 to 7, wherein the carboxylic acid is acetic acid.
  9.  前記複数個のヒドロキシル基を有する炭化水素がブタンジオールである請求項2乃至8のいずれか1項に記載のポリエンの製造方法。 The method for producing a polyene according to any one of claims 2 to 8, wherein the hydrocarbon having a plurality of hydroxyl groups is butanediol.
PCT/JP2015/051401 2014-01-21 2015-01-20 Method for producing polyene WO2015111580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-008593 2014-01-21
JP2014008593A JP2017048117A (en) 2014-01-21 2014-01-21 Production method of polyene

Publications (1)

Publication Number Publication Date
WO2015111580A1 true WO2015111580A1 (en) 2015-07-30

Family

ID=53681383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051401 WO2015111580A1 (en) 2014-01-21 2015-01-20 Method for producing polyene

Country Status (2)

Country Link
JP (1) JP2017048117A (en)
WO (1) WO2015111580A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224912A (en) * 1936-07-28 1940-12-17 Ici Ltd Manufacture of butadiene
US2391508A (en) * 1943-03-31 1945-12-25 Universal Oil Prod Co Manufacture of butadiene
US3255271A (en) * 1961-05-31 1966-06-07 Huels Chemische Werke Ag Process for the production of diolefins having terminal non-conjugated double bonds
JP2015044787A (en) * 2013-07-30 2015-03-12 三菱化学株式会社 Method for producing polyene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224912A (en) * 1936-07-28 1940-12-17 Ici Ltd Manufacture of butadiene
US2391508A (en) * 1943-03-31 1945-12-25 Universal Oil Prod Co Manufacture of butadiene
US3255271A (en) * 1961-05-31 1966-06-07 Huels Chemische Werke Ag Process for the production of diolefins having terminal non-conjugated double bonds
JP2015044787A (en) * 2013-07-30 2015-03-12 三菱化学株式会社 Method for producing polyene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORELL, S. A. ET AL.: "Conversion of 2,3-butylene glycol to 1,3-butadiene by pyrolysis of diacetate", INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 37, 1945, pages 877 - 884, XP055214579 *
SHLECHTER, N. ET AL.: "Pyrolysis of 2,3-butylene glycol diacetate to butadiene", INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 37, 1945, pages 905 - 908, XP055214577 *

Also Published As

Publication number Publication date
JP2017048117A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
EP2238094B1 (en) Dehydration of alcohols on crystalline silicates
TWI464143B (en) Carboxylic esters of isononanoic acid proceeding from 2-ethylhexanol, process for preparation thereof and use thereof
JP5890849B2 (en) Method for producing high-purity isobutene using glycol ether
JP2015221838A (en) METHOD FOR PRODUCING t-BUTYL PHENOL FROM C4 RAFFINATE STREAM
KR20230153332A (en) Method for Continuous Production of Anhydrosugar Alcohols
JPS6323825A (en) Manufacture of tertiary olefin
KR20230153971A (en) Method for Effective Production and Purification of Anhydrosugar Alcohols
JP5044947B2 (en) Method for producing carboxylic acid or carboxylic acid ester
WO2015111580A1 (en) Method for producing polyene
JP6456231B2 (en) Method for producing diene compound
JPH01149736A (en) Production of 1-aryl-alkene-1
JP5738439B2 (en) Olefin production method
JP2017502932A5 (en)
JP2005533120A (en) Synthesis of alkenoate esters from lactones and alcohols.
JPH04247043A (en) Suppression of transition of gamma-alumina to alpha-alumina and production of olefins using the same alumina
JP4952208B2 (en) Method for producing Praelputrin A
WO2021075267A1 (en) Method for producing propylene oligomer
Kumbhare et al. Trifluoromethanesulfonic acid promoted Dakin–West reaction: An efficient and convenient synthesis of β-acetamido ketones
RU2412148C1 (en) Single-step method of producing isoprene
JP2015044787A (en) Method for producing polyene
JP2005187425A (en) Method for producing spiroglycol
KR101783517B1 (en) Method for producing conjugated diene
JPWO2017033955A1 (en) Method for producing halogenated acrylic ester derivative
JP2010105966A (en) Process for producing polyglycerin
US20040158106A1 (en) Method of purifying phenol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15740239

Country of ref document: EP

Kind code of ref document: A1