JP5044947B2 - Method for producing carboxylic acid or carboxylic acid ester - Google Patents

Method for producing carboxylic acid or carboxylic acid ester Download PDF

Info

Publication number
JP5044947B2
JP5044947B2 JP2006054346A JP2006054346A JP5044947B2 JP 5044947 B2 JP5044947 B2 JP 5044947B2 JP 2006054346 A JP2006054346 A JP 2006054346A JP 2006054346 A JP2006054346 A JP 2006054346A JP 5044947 B2 JP5044947 B2 JP 5044947B2
Authority
JP
Japan
Prior art keywords
carboxylic acid
acid ester
ppm
fluorine content
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006054346A
Other languages
Japanese (ja)
Other versions
JP2006282658A (en
Inventor
光晴 北村
金司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006054346A priority Critical patent/JP5044947B2/en
Publication of JP2006282658A publication Critical patent/JP2006282658A/en
Application granted granted Critical
Publication of JP5044947B2 publication Critical patent/JP5044947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、カルボン酸あるいはカルボン酸エステルの製造方法に関する。詳しくは、フッ素化合物(無機フッ素化合物および有機フッ素化合物)の含量が少ないカルボン酸あるいはカルボン酸エステルの製造方法に関する。   The present invention relates to a method for producing a carboxylic acid or a carboxylic acid ester. In detail, it is related with the manufacturing method of carboxylic acid or carboxylic acid ester with little content of a fluorine compound (an inorganic fluorine compound and an organic fluorine compound).

強酸触媒を用いてオレフィン類よりカルボン酸エステルを製造する方法としては、いわゆるコッホ反応によりオレフィン類を一酸化炭素によりカルボニル化しアシル化合物を生成させ、その後水と反応させてカルボン酸を得た後、アルコールと反応させてカルボン酸エステルを得る方法が知られている。   As a method for producing a carboxylic acid ester from an olefin using a strong acid catalyst, an olefin is carbonylated with carbon monoxide by a so-called Koch reaction to form an acyl compound, and then reacted with water to obtain a carboxylic acid. A method of reacting with an alcohol to obtain a carboxylic acid ester is known.

コッホ反応の例としては、イソブテンからピバリン酸、C5〜C10オレフィンからC6〜C11カルボン酸の製造例があげられ、この反応により二級や三級のカルボン酸が得られている。
コッホ反応によるカルボン酸合成時の触媒としては、硫酸、HF、リン酸等の無機酸単独か、またBFかSbFと組み合わせて、例えばHF・SbFやHPO・BFのようなものが用いられるが、反応後半に水を添加して生成物と触媒の分離が行われるために、水等で希釈された触媒を再生しなければならないという問題がある。
Examples of the Koch reaction include production of pivalic acid from isobutene and C6-C11 carboxylic acid from C5 to C10 olefin, and secondary or tertiary carboxylic acid is obtained by this reaction.
As the catalyst for carboxylic acid synthesis by the Koch reaction, inorganic acids such as sulfuric acid, HF, phosphoric acid alone, or in combination with BF 3 or SbF 5 are used, for example, HF · SbF 5 or H 3 PO 4 · BF 3 . However, since the product and the catalyst are separated by adding water in the latter half of the reaction, there is a problem that the catalyst diluted with water or the like must be regenerated.

またカルボン酸とアルコールからエステルを製造するには、例えば、硫酸、HF、燐酸、塩酸等の無機酸やメタンスルホン酸、トリフルオロメタンスルホン酸等のアルキルスルホン酸、P−トルエンスルホン酸等のアリールスルホン酸、更にテトラブトキシチタン等のアルコキシ金属、フッ化ホウ素エチラート等のルイス酸等の酸触媒下に水を除去しながら反応させるが、二級や三級の分岐カルボン酸の場合はエステル化反応が遅く、工業的に実施するには困難な問題を抱えている。   In order to produce an ester from a carboxylic acid and an alcohol, for example, inorganic acids such as sulfuric acid, HF, phosphoric acid and hydrochloric acid, alkylsulfonic acids such as methanesulfonic acid and trifluoromethanesulfonic acid, and arylsulfones such as P-toluenesulfonic acid. The reaction is carried out while removing water under an acid catalyst such as an acid, an alkoxy metal such as tetrabutoxytitanium, or a Lewis acid such as boron fluoride ethylate. In the case of a secondary or tertiary branched carboxylic acid, an esterification reaction occurs. Slow and difficult to implement industrially.

これに対して、酸触媒としてHFを用いてオレフィンのカルボニル化でアシルフロライドを合成し、該アシルフロライドとアルコールをHF存在下に反応させてエステルを得る方法が開示されている(特許文献1参照。)。この方法は触媒回収も容易で、しかもカルボニル化反応もエステル化反応も極めて容易に進行することから優れた方法であるが、アシルフロライドとアルコールとの化学量論的な制御法や製品中の有機フッ素化合物含量の低減化法については記載されていない。   On the other hand, a method is disclosed in which an acyl fluoride is synthesized by carbonylation of an olefin using HF as an acid catalyst, and the acyl fluoride is reacted with an alcohol in the presence of HF to obtain an ester (Patent Literature). 1). This method is excellent because the catalyst can be easily recovered and the carbonylation reaction and the esterification reaction proceed very easily. However, the stoichiometric control method of acyl fluoride and alcohol and in the product There is no description of a method for reducing the content of organic fluorine compounds.

上記方法の問題を解決するため発明者等は検討を行い、先にオレフィンと一酸化炭素、アルコールからカルボン酸エステルが効率的に製造できること見出し特許出願を行った(特許文献2参照。)。この方法では、HF触媒存在下でのエステル化をアルコールの添加量を制御して行うことにより、生成エステル中の残存アシルフロライド量を特定範囲内にし、未反応アルコールの脱水反応による水の生成を避けている。HF触媒を分離した後、残存アシルフロライドはアルコールによりエステル化される。分離が困難な水の生成が避けられるので高性能なHF触媒を循環使用することができ、また製品中のフッ素不純物含量が少ないカルボン酸エステルを容易に安定して製造できるので工業的に有利なプロセスである。しかし、カルボン酸エステルの蒸留精製をする際、加熱により高沸点生成物が分解して、製品中にHFやアシルフロライド等のフッ素不純物が混入してしまうことが判明した。このフッ素不純物は、製品純度を悪化させるのみでなく、装置腐食トラブルを起こさせる問題があった。
米国特許第5463095号明細書 特開平9−328451号公報
In order to solve the problem of the above-mentioned method, the inventors have studied and previously filed a patent application that found that a carboxylic acid ester can be efficiently produced from olefin, carbon monoxide, and alcohol (see Patent Document 2). In this method, esterification in the presence of an HF catalyst is carried out by controlling the amount of alcohol added, so that the amount of residual acyl fluoride in the produced ester falls within a specific range, and water is generated by dehydration of unreacted alcohol. Avoid. After separating the HF catalyst, the remaining acyl fluoride is esterified with alcohol. Since generation of water that is difficult to separate is avoided, a high-performance HF catalyst can be recycled, and a carboxylic acid ester having a low fluorine impurity content in the product can be easily and stably produced, which is industrially advantageous. Is a process. However, it has been found that when the carboxylic acid ester is purified by distillation, the high-boiling product is decomposed by heating, and fluorine impurities such as HF and acyl fluoride are mixed in the product. This fluorine impurity not only deteriorates the product purity, but also causes a problem of equipment corrosion.
US Pat. No. 5,463,095 JP 9-328451 A

本発明は、フッ素化合物の含量が少ない精製カルボン酸あるいはカルボン酸エステルを工業的に有利に製造する方法を提供することを目的とするものである。   An object of the present invention is to provide a method for industrially advantageously producing a purified carboxylic acid or carboxylic acid ester having a low fluorine compound content.

本発明者らは、上記課題を解決するために鋭意検討を行った結果、HFの存在下、オレフィンを一酸化炭素及び水あるいはアルコールと反応させて得られたカルボン酸あるいはカルボン酸エステルの粗精製物に酸触媒を添加し、加熱処理を行うことにより、有機フッ素化合物の含量が少ない精製カルボン酸あるいはカルボン酸エステルが得られることを見出した。また、有機フッ素化合物が分解して発生したHFは、処理液中に微量混入していることが分かった。そこで、酸吸着剤を酸触媒と共に添加し、カルボン酸あるいはカルボン酸エステルの粗精製物を加熱処理することにより、フッ素化合物の含量が少ない精製カルボン酸あるいはカルボン酸エステルを、装置腐食トラブルを起こさせることなく工業的に有利に得られることを見出し、本発明を完成したものである。
すなわち、本発明は、HFの存在下、オレフィンを一酸化炭素及び水あるいはアルコールと反応させてカルボン酸あるいはカルボン酸エステルを含む反応生成物を得、次いで、該反応生成物の少なくとも一部を、酸触媒及び酸吸着剤の存在下に加熱処理することを特徴とするカルボン酸あるいはカルボン酸エステルの製造方法に関するものである。
As a result of intensive studies to solve the above problems, the present inventors have roughly purified carboxylic acid or carboxylic acid ester obtained by reacting olefin with carbon monoxide and water or alcohol in the presence of HF. It was found that a purified carboxylic acid or a carboxylic acid ester having a low content of an organic fluorine compound can be obtained by adding an acid catalyst to the product and performing a heat treatment. It was also found that a small amount of HF generated by decomposition of the organic fluorine compound was mixed in the treatment liquid. Therefore, an acid adsorbent is added together with an acid catalyst, and the carboxylic acid or carboxylic acid ester crude product is heat-treated, thereby causing the apparatus corrosion trouble of the purified carboxylic acid or carboxylic acid ester having a low fluorine compound content. The present invention has been completed by finding that it can be advantageously obtained industrially without any problems.
That is, in the present invention, an olefin is reacted with carbon monoxide and water or an alcohol in the presence of HF to obtain a reaction product containing a carboxylic acid or a carboxylic ester, and then at least a part of the reaction product is The present invention relates to a method for producing a carboxylic acid or a carboxylic acid ester, wherein the heat treatment is carried out in the presence of an acid catalyst and an acid adsorbent.

本発明の方法によれば、フッ素化合物の含量が少ない精製カルボン酸あるいはカルボン酸エステルを、装置腐食トラブルを起こさせることなく工業的に有利に製造することができる。   According to the method of the present invention, a purified carboxylic acid or a carboxylic acid ester having a small fluorine compound content can be produced industrially advantageously without causing trouble of apparatus corrosion.

本発明においては、HFの存在下、オレフィンを一酸化炭素及び水あるいはアルコールと反応させ、得られたカルボン酸あるいはカルボン酸エステルを含む反応生成物の少なくとも一部を酸触媒及び酸吸着剤の存在下に加熱処理する。本発明においては、HFの存在下、オレフィン、一酸化炭素、及び水あるいはアルコールとの反応の条件は重要ではなく、従来公知の条件下の反応で得られたカルボン酸あるいはカルボン酸エステルを含む反応生成物を使用することができる。
該反応生成物からHFを留去して得られるカルボン酸あるいはカルボン酸エステル粗精製物を加熱処理に供することが好ましい。ここで、得られたカルボン酸あるいはカルボン酸エステル粗精製物は、そのまま酸触媒および酸吸着剤の存在下で処理を行うこともできるが、簡単な蒸留操作にて低沸分および高沸分を除いた後に処理してもよい。また、カルボン酸あるいはカルボン酸エステル粗精製物に新たなエステル化触媒の存在下で残留カルボン酸フルオライドと水あるいはアルコールを反応させてフッ素化合物含量が少ないものとしたものを加熱処理に用いてもよいし、そのフッ素低減処理を行わないで得られるフッ素化合物含量が多いものを用いてもよい。
In the present invention, olefin is reacted with carbon monoxide and water or alcohol in the presence of HF, and at least a part of the obtained reaction product containing carboxylic acid or carboxylic acid ester is present in the presence of an acid catalyst and an acid adsorbent. Heat treatment below. In the present invention, the reaction conditions of olefin, carbon monoxide, and water or alcohol in the presence of HF are not important, and the reaction includes a carboxylic acid or a carboxylic acid ester obtained by a reaction under a conventionally known condition. The product can be used.
It is preferable to subject the carboxylic acid or carboxylic acid ester crude purified product obtained by distilling off HF from the reaction product to a heat treatment. Here, the obtained crude carboxylic acid or carboxylic acid ester crude product can be processed as it is in the presence of an acid catalyst and an acid adsorbent, but low boiling and high boiling points can be reduced by a simple distillation operation. You may process after removing. In addition, a product obtained by reacting residual carboxylic acid fluoride with water or alcohol in the presence of a new esterification catalyst in a carboxylic acid or a crude purified product of carboxylic acid ester to reduce the fluorine compound content may be used for the heat treatment. However, a high fluorine compound content obtained without performing the fluorine reduction treatment may be used.

前記オレフィンとしては特に制限はなく、目的とする製品によって脂肪族鎖状オレフィン、脂環式オレフィン等より選ばれる。これらオレフィンには、プロピレン、ブチレン、イソブチレン、ペンテン、ヘキセン、オクテン、シクロヘキセン、シクロドデセン、ジヒドロジシクロペンタジエン(以下、DHDCPDと称す)等が例示される。   There is no restriction | limiting in particular as said olefin, According to the target product, it selects from an aliphatic chain olefin, an alicyclic olefin, etc. Examples of these olefins include propylene, butylene, isobutylene, pentene, hexene, octene, cyclohexene, cyclododecene, dihydrodicyclopentadiene (hereinafter referred to as DHDCPD) and the like.

前記アルコールとしては特に制限はなく、目的とする製品により鎖式または脂環式の一価または多価アルコールから決定される。これらアルコールには、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノールやエチレングリコール、プロピレングリコール、グリセロール、ソルビトール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等が例示される。   There is no restriction | limiting in particular as said alcohol, It determines from the monovalent | monohydric or polyhydric alcohol of a chain type or alicyclic by the target product. These alcohols include methanol, ethanol, propanol, isopropanol, butanol, pentanol, hexanol, heptanol, octanol and ethylene glycol, propylene glycol, glycerol, sorbitol, neopentyl glycol, trimethylol ethane, trimethylol propane, pentaerythritol and the like. Illustrated.

前記酸触媒としては、硫酸等の液体の酸や、活性白土、酸性白土、ホージヤサイト、X型ゼオライト、Y型ゼオライト、モルデナイト、シリカアルミナ、強酸性イオン交換樹脂等の固体酸が挙げられ、中でも触媒分離の観点から、固体酸が好ましい。これらは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。この酸触媒の添加量については、カルボン酸エステル粗精製物に対する重量比(酸触媒/カルボン酸あるいはカルボン酸エステル)として0.005〜0.1、好ましくは0.01〜0.05の範囲である。上記範囲内であると、有機フッ素化合物の分解が十分であり、装置の容積効率が良好であり、触媒の分離費用も嵩まない。重量比0.05を超えて多量に使用しても有機フッ素化合物を分解する効果はほとんど増大しない。   Examples of the acid catalyst include liquid acids such as sulfuric acid, and solid acids such as activated clay, acidic clay, faujasite, X-type zeolite, Y-type zeolite, mordenite, silica alumina, and strongly acidic ion exchange resin. From the viewpoint of separation, a solid acid is preferable. These may be used individually by 1 type, and may be used in combination of 2 or more types. The addition amount of the acid catalyst is in the range of 0.005 to 0.1, preferably 0.01 to 0.05 as a weight ratio (acid catalyst / carboxylic acid or carboxylic acid ester) to the carboxylic acid ester crude product. is there. Within the above range, the organic fluorine compound is sufficiently decomposed, the volumetric efficiency of the apparatus is good, and the cost for separating the catalyst does not increase. Even if it is used in a large amount exceeding 0.05 by weight, the effect of decomposing the organic fluorine compound hardly increases.

前記酸吸着剤としては、酸化マグネシウム、水酸化アルミニウムゲル、水酸化マグネシウム、塩基性アルミニウム、ケイ酸マグネシウム、合成ケイ酸アルミニウム、塩基性アニオン交換樹脂等の酸吸着剤が挙げられる。これらは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。この酸吸着剤の添加量については、カルボン酸あるいはカルボン酸エステル粗精製物に対する重量比(酸吸着剤/カルボン酸あるいはカルボン酸エステル)として0.0005〜0.01、好ましくは0.001〜0.005の範囲である。上記範囲内であると、HFが酸吸着剤に十分に吸着され、また、吸着剤を分離する費用も嵩まない。重量比0.005を超えて多量に使用してもHFを吸着する効果はほとんど増大しない。   Examples of the acid adsorbent include acid adsorbents such as magnesium oxide, aluminum hydroxide gel, magnesium hydroxide, basic aluminum, magnesium silicate, synthetic aluminum silicate, and basic anion exchange resin. These may be used individually by 1 type, and may be used in combination of 2 or more types. The addition amount of the acid adsorbent is 0.0005 to 0.01, preferably 0.001 to 0 as a weight ratio (acid adsorbent / carboxylic acid or carboxylic acid ester) to the carboxylic acid or carboxylic acid ester crude product. The range is 0.005. Within the above range, HF is sufficiently adsorbed by the acid adsorbent, and the cost for separating the adsorbent does not increase. Even if it is used in a large amount exceeding the weight ratio of 0.005, the effect of adsorbing HF hardly increases.

本発明において、加熱処理温度としては120〜250℃の範囲が好ましく、特に150〜200℃の範囲が好ましい。処理時間は1〜5時間程度で十分である。加熱処理温度が上記範囲内であると、カルボン酸あるいはカルボン酸エステルを分解することなく有機フッ素化合物が十分に分解される。250℃を超えても、有機フッ素化合物を分解する効果はほとんど増大しない。   In the present invention, the heat treatment temperature is preferably in the range of 120 to 250 ° C, particularly preferably in the range of 150 to 200 ° C. A treatment time of about 1 to 5 hours is sufficient. When the heat treatment temperature is within the above range, the organic fluorine compound is sufficiently decomposed without decomposing the carboxylic acid or the carboxylic acid ester. Even if it exceeds 250 degreeC, the effect which decomposes | disassembles an organic fluorine compound hardly increases.

本発明においては、加熱処理後の液から固液分離等により酸触媒および酸吸着剤を分離し、さらに蒸留することにより、フッ素化合物含量が少ない精製カルボン酸あるいはカルボン酸エステルが得られる。本発明の製造方法によれば、精製カルボン酸あるいはカルボン酸エステル中の全フッ素含量(無機フッ素化合物と有機フッ素化合物に由来するフッ素の含量)を好ましくは5ppm以下、より好ましくは2ppm以下、さらに好ましくは1ppm以下にすることができる。   In the present invention, the acid catalyst and the acid adsorbent are separated from the liquid after the heat treatment by solid-liquid separation or the like, and further distilled to obtain a purified carboxylic acid or carboxylic acid ester having a small fluorine compound content. According to the production method of the present invention, the total fluorine content in the purified carboxylic acid or carboxylic acid ester (the content of fluorine derived from the inorganic fluorine compound and the organic fluorine compound) is preferably 5 ppm or less, more preferably 2 ppm or less, even more preferably. Can be 1 ppm or less.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
尚、実施例等においてフッ素分の分析は以下の方法により行った。
(フッ素分析)
サンプルについて、酸水素炎式ハロゲン定量装置を用いて燃焼によって分解し、蒸留水中にFとして吸収させた後、検量線を用いてイオン電極でFを定量し、サンプル中の全フッ素分を求めた。また、水洗後のサンプルを同様に処理することにより、有機フッ素分(有機フッ素化合物由来のフッ素分)を求めた。無機フッ素分(無機フッ素化合物由来のフッ素分)は、(全フッ素分−有機フッ素分)により求めた。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In Examples and the like, analysis of fluorine content was performed by the following method.
(Fluorine analysis)
The sample was decomposed by combustion using an oxyhydrogen flame type halogen determination device, absorbed as F in distilled water, then F was quantified with an ion electrode using a calibration curve, and the total fluorine content in the sample was determined. Asked. Moreover, the organic fluorine content (fluorine content derived from an organic fluorine compound) was calculated | required by processing the sample after water washing similarly. The inorganic fluorine content (fluorine content derived from an inorganic fluorine compound) was determined by (total fluorine content-organic fluorine content).

<合成例1>
(カルボニル化反応)
攪拌機と上部に3個の入口ノズル、底部に1個の抜き出しノズルを備え、ジャケットにより内部温度を制御できる内容積10リットルのステンレス製オートクレーブを一酸化炭素で置換した後、フッ化水素3kg(150モル)を導入し、一酸化炭素で2MPaまで加圧した。
反応温度を−20℃に保持し、かつ反応圧力を2MPaに保ちながら、1−オクテン1222g(10モル)をオートクレーブ上部より約60分かけて供給しカルボニル化を行った。一酸化炭素の吸収が認められなくなるまで約15分間攪拌を継続した。この時の一酸化炭素の吸収量は7.2モルであった。
(エステル化反応)
次に常圧まで落圧して未反応の一酸化炭素をパージした後、反応液の温度を0℃として、メタノール224g(7.0モル)をオートクレーブ上部より約20分かけて供給し、1時間攪拌下エステル化反応を行った。触媒のフッ化水素を蒸留により除去し、得られた反応液を2重量%NaOH水溶液で中和水洗した。反応液を分析した結果、6種類のエステル異性体が生成しており、これら合計に対して2.0重量%のアシルフロライドが残存していた。
<Synthesis Example 1>
(Carbonylation reaction)
A stainless steel autoclave with an internal volume of 10 liters equipped with a stirrer and three inlet nozzles at the top and one extraction nozzle at the bottom and whose internal temperature can be controlled by a jacket was replaced with carbon monoxide, and then 3 kg of hydrogen fluoride (150 Mol) was introduced and pressurized to 2 MPa with carbon monoxide.
While maintaining the reaction temperature at −20 ° C. and maintaining the reaction pressure at 2 MPa, 1222 g (10 mol) of 1-octene was supplied from the upper part of the autoclave over about 60 minutes for carbonylation. Stirring was continued for about 15 minutes until no carbon monoxide absorption was observed. At this time, the amount of carbon monoxide absorbed was 7.2 mol.
(Esterification reaction)
Next, after reducing the pressure to normal pressure and purging unreacted carbon monoxide, the temperature of the reaction solution was set to 0 ° C., and 224 g (7.0 mol) of methanol was supplied over about 20 minutes from the top of the autoclave. The esterification reaction was carried out with stirring. Hydrogen fluoride of the catalyst was removed by distillation, and the resulting reaction solution was washed with 2% by weight NaOH aqueous solution and neutralized water. As a result of analyzing the reaction solution, six types of ester isomers were formed, and 2.0% by weight of acyl fluoride remained based on the total.

(カルボン酸エステル粗精製物の調製)
さらに、得られたエステル800g(アシルフロライドを0.72モル含有)を還流冷却器の装備した2リットルの蓋付ステンレス製容器に入れ、98%硫酸をエステルに対して0.2wt%になるように攪拌下に加えた後、70℃に昇温した。これにメタノール93g(2.9モル)を添加して30分間攪拌下に反応させたところ、アシルフロライドは全てエステル化され、該反応液の全フッ素分は18ppmであった。また、有機フッ素分(主に高沸点生成物中のもの)は17ppmであり、無機フッ素分(主にHF中のもの)は1ppmであった。
該反応液を2重量%NaOH水溶液で中和水洗後、理論段数5段の蒸留塔を用いて精製し、730gの主留分を得た。この主留分の全フッ素分は19ppmであった。これは、蒸留中に高沸点生成物中の有機フッ素化合物が熱分解し混入したため増加したものである。該主留分(カルボン酸エステル粗精製物)中の無機フッ素分は4ppm、有機フッ素分は15ppmであった。
(Preparation of carboxylic acid ester crude product)
Further, 800 g of the obtained ester (containing 0.72 mol of acyl fluoride) is placed in a 2-liter lidded stainless steel vessel equipped with a reflux condenser, and 98% sulfuric acid is 0.2 wt% with respect to the ester. Thus, the mixture was added with stirring and then heated to 70 ° C. When 93 g (2.9 mol) of methanol was added and reacted with stirring for 30 minutes, all of the acyl fluoride was esterified, and the total fluorine content of the reaction solution was 18 ppm. Further, the organic fluorine content (mainly in the high boiling point product) was 17 ppm, and the inorganic fluorine content (mainly in HF) was 1 ppm.
The reaction solution was neutralized with 2 wt% NaOH aqueous solution and then purified using a distillation column with 5 theoretical plates to obtain 730 g of a main fraction. The total fluorine content of this main fraction was 19 ppm. This is because the organic fluorine compound in the high boiling point product was thermally decomposed and mixed during the distillation. In the main fraction (the carboxylic acid ester crude product), the inorganic fluorine content was 4 ppm, and the organic fluorine content was 15 ppm.

<実施例1>
メカニカル攪拌機、窒素導入ノズル、温度計、排ガスラインを装備した300ml4つ口フラスコに、上記のフッ素化合物を含有したカルボン酸エステル粗精製物を100gと、酸触媒として活性白土を2.0g、酸吸着剤として水酸化アルミニウムゲル(キョーワード200B、協和化学工業株式会社製)を0.2g仕込み、窒素気流下で180℃に加熱・攪拌を行った。排ガスラインのガスを、pH試験紙を用いて調べたところHFの発生は確認されなかった。3時間同条件を維持した後、室温まで冷却した。冷却後、活性白土とキョーワード200Bを濾別し、得られた液をフッ素分析したところ、無機フッ素分は1ppm未満であり、有機フッ素分は1ppmであった。全量を、理論段数20段の蒸留塔を用いて精製し、92gの精製カルボン酸エステルを得た。無機フッ素分および有機フッ素分は1ppm以下であった。
<Example 1>
In a 300 ml four-necked flask equipped with a mechanical stirrer, nitrogen introduction nozzle, thermometer and exhaust gas line, 100 g of carboxylic acid ester crude product containing the above fluorine compound, 2.0 g of activated clay as an acid catalyst, acid adsorption 0.2 g of aluminum hydroxide gel (KYOWARD 200B, manufactured by Kyowa Chemical Industry Co., Ltd.) was charged as an agent, and heated and stirred at 180 ° C. under a nitrogen stream. When the gas in the exhaust gas line was examined using a pH test paper, generation of HF was not confirmed. After maintaining the same conditions for 3 hours, it was cooled to room temperature. After cooling, activated clay and KYOWARD 200B were separated by filtration, and the resulting liquid was analyzed for fluorine. As a result, the inorganic fluorine content was less than 1 ppm and the organic fluorine content was 1 ppm. The whole amount was purified using a distillation column having 20 theoretical plates to obtain 92 g of a purified carboxylic acid ester. The inorganic fluorine content and the organic fluorine content were 1 ppm or less.

<比較例1>
実施例1において水酸化アルミニウムゲルを添加しなかった。排ガスラインから大量のHF発生を確認した。活性白土を濾別し、得られた液中の無機フッ素分は4ppm、有機フッ素分は1ppmであった。酸吸着剤を用いなかったために、製品中にHFが混入した。
<Comparative Example 1>
In Example 1, no aluminum hydroxide gel was added. A large amount of HF was confirmed from the exhaust gas line. The activated clay was separated by filtration, and the inorganic fluorine content in the obtained liquid was 4 ppm, and the organic fluorine content was 1 ppm. Since no acid adsorbent was used, HF was mixed in the product.

<比較例2>
実施例1において水酸化アルミニウムゲルを2.0g添加し、活性白土を添加しなかった。排ガスラインからHF発生は確認されなかったが、水酸化アルミニウムゲルを濾別し、得られた液中の無機フッ素分は1ppm未満であり、有機フッ素分は15ppmであった。酸触媒を用いなかったために、有機フッ素化合物が分解されなかった。
<Comparative example 2>
In Example 1, 2.0 g of aluminum hydroxide gel was added, and no activated clay was added. Although generation of HF was not confirmed from the exhaust gas line, the aluminum hydroxide gel was separated by filtration, and the inorganic fluorine content in the obtained liquid was less than 1 ppm, and the organic fluorine content was 15 ppm. Since the acid catalyst was not used, the organic fluorine compound was not decomposed.

<実施例2>
処理温度を150℃とした以外は実施例1と同様な操作を行った。排ガスラインからHF発生は確認されなく、活性白土とキョーワード200Bを濾別し、得られた液中の無機フッ素分は1ppm未満であり、有機フッ素分は2ppmであった。全量を、理論段数20段の蒸留塔を用いて精製し、92gの精製カルボン酸エステルを得た。無機フッ素分は1ppm未満であり、有機フッ素分は1ppmであった。
<Example 2>
The same operation as in Example 1 was performed except that the treatment temperature was 150 ° C. HF generation was not confirmed from the exhaust gas line, the activated clay and KYOWARD 200B were separated by filtration, the inorganic fluorine content in the obtained liquid was less than 1 ppm, and the organic fluorine content was 2 ppm. The whole amount was purified using a distillation column having 20 theoretical plates to obtain 92 g of a purified carboxylic acid ester. The inorganic fluorine content was less than 1 ppm, and the organic fluorine content was 1 ppm.

<実施例3>
活性白土を1.0gとした以外は実施例1と同様な操作を行った。排ガスラインからHF発生は確認されなく、活性白土とキョーワード200Bを濾別し、得られた液中の無機フッ素分は1ppm未満であり、有機フッ素分は2ppmであった。全量を、理論段数20段の蒸留塔を用いて精製し、94gの精製カルボン酸エステルを得た。無機フッ素分は1ppm未満であり、有機フッ素分は1ppmであった。
<Example 3>
The same operation as in Example 1 was performed except that the activated clay was changed to 1.0 g. HF generation was not confirmed from the exhaust gas line, the activated clay and KYOWARD 200B were separated by filtration, the inorganic fluorine content in the obtained liquid was less than 1 ppm, and the organic fluorine content was 2 ppm. The entire amount was purified using a distillation column having 20 theoretical plates to obtain 94 g of a purified carboxylic acid ester. The inorganic fluorine content was less than 1 ppm, and the organic fluorine content was 1 ppm.

<実施例4>
水酸化アルミニウムゲルを0.1gとした以外は実施例1と同様な操作を行った。排ガスラインからHF発生は確認されなく、活性白土と水酸化アルミニウムゲルを濾別し、得られた液中の無機フッ素分は1ppm未満であり、有機フッ素分は1ppmであった。全量を、理論段数20段の蒸留塔を用いて精製し、93gの精製カルボン酸エステルを得た。無機フッ素分および有機フッ素分は1ppm以下であった。
<Example 4>
The same operation as in Example 1 was performed except that 0.1 g of aluminum hydroxide gel was used. The generation of HF was not confirmed from the exhaust gas line, the activated clay and the aluminum hydroxide gel were separated by filtration, the inorganic fluorine content in the obtained liquid was less than 1 ppm, and the organic fluorine content was 1 ppm. The entire amount was purified using a distillation column having 20 theoretical plates to obtain 93 g of purified carboxylic acid ester. The inorganic fluorine content and the organic fluorine content were 1 ppm or less.

<合成例2>
(カルボニル化反応)
撹拌機と上部に3個の入口ノズル、底部に1個の抜き出しノズルを備え、ジャケットにより内部温度を制御できる内容積500mlのステンレス製オートクレーブ内部を一酸化炭素で置換した後、フッ化水素150g(7.5モル)を導入し30℃に冷却し、一酸化炭素で2MPaまで加圧した。
反応温度を30℃に保持し、かつ反応圧力を2MPaに保ちながら、DHDCPD/エタノール/n−ヘプタン=1/0.10/0.68(重量比)(モル比:1/0.30/0.91)224gをオートクレーブ上部より供給しカルボニル化によりアシルフロライドを合成した。DHDCPDの供給終了後、一酸化炭素の吸収が認められなくなるまで約10分間撹拌を継続した。この時の一酸化炭素の吸収量は0.71モルであった。
(エステル化反応)
次に、反応温度を0℃に保ちながら、エタノールをオートクレーブ上部より0.7倍モル(DHDCPD基準)供給して、撹拌下にて1時間エステル化を行った。
反応液をオートクレーブ底部より氷水中に抜き出し油相と水相を分離した後、油相を2重量%苛性ソーダ水溶液100mlで2回,蒸留水100mlで2回洗浄し、10gの無水硫酸ナトリウムで脱水した。得られた油相を内部標準法によりガスクロマトグラフィーで分析した。その結果、トリシクロ[5.2.1.02,6]デカン−2−カルボン酸エチル(以下、TCDCEと称する)収率63.1%(DHDCPD基準)、エキソ−トリシクロ[5.2.1.02,6]デカン−エンド−2−カルボン酸エステル(以下、エステル基に着目し、Endo体TCDCEと称すことがある。)/エンド−トリシクロ[5.2.1.02,6]デカン−エキソ−2−カルボン酸エステル(Exo体TCDCE)比=0.45の反応成績が得られた。
(カルボン酸エステル粗精製物の調製)
該油相を理論段数5段の蒸留塔を用いて精製し、110gの主留分を得た。この主留分(カルボン酸エステル粗精製物)は無機フッ素分50ppm、有機フッ素分870ppm含有されていた。
<実施例5>
合成例2で調製したカルボン酸エステル粗精製物を用いた以外は実施例1と同様な操作を行った。排ガスラインからHF発生は確認されなく、活性白土とキョーワード200Bを濾別し、得られた液中の無機フッ素分は1ppm未満であり、有機フッ素分は4ppmであった。全量を、理論段数20段の蒸留塔を用いて精製し、92gの精製カルボン酸エステルを得た。無機フッ素分は1ppm未満であり、有機フッ素分は3ppmであった。Endo体TCDCE/Exo体TCDCE比は、0.45であった。
<Synthesis Example 2>
(Carbonylation reaction)
After replacing the inside of a 500 ml stainless steel autoclave with a stirrer and three inlet nozzles at the top and one extraction nozzle at the bottom and controlling the internal temperature by a jacket with carbon monoxide, 150 g of hydrogen fluoride ( 7.5 mol) was introduced, cooled to 30 ° C., and pressurized to 2 MPa with carbon monoxide.
While maintaining the reaction temperature at 30 ° C. and maintaining the reaction pressure at 2 MPa, DHDCPD / ethanol / n-heptane = 1 / 0.10 / 0.68 (weight ratio) (molar ratio: 1 / 0.30 / 0) .91) 224 g was supplied from the top of the autoclave and acyl fluoride was synthesized by carbonylation. After completion of the supply of DHDCPD, stirring was continued for about 10 minutes until no absorption of carbon monoxide was observed. At this time, the amount of carbon monoxide absorbed was 0.71 mol.
(Esterification reaction)
Next, while maintaining the reaction temperature at 0 ° C., ethanol was supplied from the upper part of the autoclave at 0.7 times mol (based on DHDCPD), and esterification was performed for 1 hour with stirring.
The reaction solution was extracted from the bottom of the autoclave into ice water, and the oil phase and the aqueous phase were separated. Then, the oil phase was washed twice with 100 ml of 2% by weight aqueous sodium hydroxide solution and twice with 100 ml of distilled water, and dehydrated with 10 g of anhydrous sodium sulfate. . The obtained oil phase was analyzed by gas chromatography by the internal standard method. As a result, the yield of ethyl tricyclo [5.2.1.0 2,6 ] decane-2-carboxylate (hereinafter referred to as TCDCE) 63.1% (based on DHDCPD), exo-tricyclo [5.2.1.0 2,6 ] decane- Endo-2-carboxylic acid ester (hereinafter focusing on the ester group, sometimes referred to as Endo form TCDCE) / Endo-tricyclo [5.2.1.0 2,6 ] decane-exo-2-carboxylic acid ester (Exo form) A reaction result of TCDCE) ratio = 0.45 was obtained.
(Preparation of carboxylic acid ester crude product)
The oil phase was purified using a distillation column having 5 theoretical plates to obtain 110 g of a main fraction. This main fraction (crude carboxylic acid ester crude product) contained an inorganic fluorine content of 50 ppm and an organic fluorine content of 870 ppm.
<Example 5>
The same operation as in Example 1 was performed except that the carboxylic acid ester crude product prepared in Synthesis Example 2 was used. HF generation was not confirmed from the exhaust gas line, the activated clay and KYOWARD 200B were separated by filtration, the inorganic fluorine content in the obtained liquid was less than 1 ppm, and the organic fluorine content was 4 ppm. The whole amount was purified using a distillation column having 20 theoretical plates to obtain 92 g of a purified carboxylic acid ester. The inorganic fluorine content was less than 1 ppm, and the organic fluorine content was 3 ppm. The ratio of Endo TCDCE / Exo TCDCE was 0.45.

<合成例3>
(カルボニル化反応)
攪拌機と上部に3個の入口ノズル、底部に1個の抜き出しノズルを備え、ジャケットにより内部温度を抑制できる内容積1000mlのステンレス製オートクレープを用いて実験を行った。
まずオートクレープ内部を一酸化炭素で置換した後、フッ化水素256g(12.8モル)を導入し、液温30℃とした後、一酸化炭素にて2MPaまで加圧した。
反応温度を30℃に保持し、かつ反応圧力を2MPaに保ちながら、DHDCPD214.7g(1.60モル)を溶解させたn−ヘプタン溶液358gをオートクレープ上部より供給してカルボニル化反応を行った。DHDCPDの供給終了後、一酸化炭素の吸収が認められなくなるまで約10分間攪拌を継続した。
得られた反応液の一部を氷水中にサンプリングし、油相と水相とを分離した。油相を中和、水洗した後、得られた油相をガスクロマトグラフィーで分析したところ、Endo体/Exo体比は0.53であった。
引き続き、反応圧力を2MPaに保ちながら反応液温度を55℃に昇温し、8時間この温度を維持し、異性化反応を行った。8時間保持後、反応液温度を−10℃に冷却し、水をオートクレープ上部より28.8g(1.60モル)供給して、攪拌下にて1時間加水分解を行った。
反応液をオートクレープ底部より氷水中に抜き出し、油相と水相を分離した後、油相を2重量%水酸化ナトリウム水溶液100mlで2回、蒸留水100mlで2回洗浄し、無水硫酸ナトリウム10gで脱水した。得られた液を内部標準法によりガスクロマトグラフィーで分析した。その結果、トリシクロ[5.2.1.02,6]デカン−2−カルボン酸(以下、TCDAと称すことがある。)収率51.5%(DHDCPD基準)、Endo体/Exo体比=10.3の反応成績が得られた。
(カルボン酸粗精製物の調製)
さらに、得られた液を理論段数20段の精留塔を用いて精留を行ったところ、主留部分としてEndo体TCDA90.24重量%、Exo体TCDA8.76重量%(Endo体/Exo体比=10.3)のものが蒸留収率86.6%で得られた。この主留分は無機フッ素分30ppm、有機フッ素分550ppm含有されていた。蒸留による異性体比率の変動はなかった。
<実施例6>
合成例2で調製したカルボン酸粗精製物をカルボン酸エステル粗精製物の代わりに用いた以外は実施例1と同様な操作を行った。排ガスラインからHF発生は確認されなく、活性白土とキョーワード200Bを濾別し、得られた液中の無機フッ素分は1ppm未満であり、有機フッ素分は3ppmであった。全量を、理論段数20段の蒸留塔を用いて精製し、91gの精製カルボン酸を得た。無機フッ素分は1ppm未満であり、有機フッ素分は2ppmであった。Endo体/Exo体比は、10.3であった。
<Synthesis Example 3>
(Carbonylation reaction)
The experiment was carried out using a stainless steel autoclave having an internal volume of 1000 ml, which was equipped with a stirrer, three inlet nozzles at the top and one extraction nozzle at the bottom, and the internal temperature could be suppressed by the jacket.
First, after replacing the inside of the autoclave with carbon monoxide, 256 g (12.8 mol) of hydrogen fluoride was introduced, the liquid temperature was adjusted to 30 ° C., and the pressure was increased to 2 MPa with carbon monoxide.
While maintaining the reaction temperature at 30 ° C. and maintaining the reaction pressure at 2 MPa, 358 g of n-heptane solution in which 214.7 g (1.60 mol) of DHDCPD was dissolved was supplied from the top of the autoclave to carry out the carbonylation reaction. . After completion of the supply of DHDCPD, stirring was continued for about 10 minutes until no absorption of carbon monoxide was observed.
A part of the obtained reaction solution was sampled in ice water to separate the oil phase and the aqueous phase. After neutralizing and washing the oil phase with water, the obtained oil phase was analyzed by gas chromatography. The Endo / Exo body ratio was 0.53.
Subsequently, while maintaining the reaction pressure at 2 MPa, the reaction solution temperature was raised to 55 ° C., and this temperature was maintained for 8 hours to carry out the isomerization reaction. After holding for 8 hours, the temperature of the reaction solution was cooled to −10 ° C., and 28.8 g (1.60 mol) of water was supplied from the top of the autoclave, and hydrolysis was carried out for 1 hour with stirring.
The reaction solution is extracted from the bottom of the autoclave into ice water, and the oil phase and the aqueous phase are separated. Then, the oil phase is washed twice with 100 ml of 2 wt% aqueous sodium hydroxide solution and twice with 100 ml of distilled water, and 10 g of anhydrous sodium sulfate And dehydrated. The obtained liquid was analyzed by gas chromatography by an internal standard method. As a result, tricyclo [5.2.1.0 2,6 ] decane-2-carboxylic acid (hereinafter sometimes referred to as TCDA) yield 51.5% (based on DHDCPD), Endo isomer / Exo isomer ratio A reaction result of 10.3 was obtained.
(Preparation of carboxylic acid crude product)
Furthermore, when the obtained liquid was subjected to rectification using a rectification tower having a theoretical plate number of 20 plates, Endo TCDA 90.24% by weight, Exo TCDA 8.76% by weight (Endo isomer / Exo isomer) as main fractions. Ratio = 10.3) was obtained with a distillation yield of 86.6%. This main fraction contained an inorganic fluorine content of 30 ppm and an organic fluorine content of 550 ppm. There was no change in the isomer ratio due to distillation.
<Example 6>
The same operation as in Example 1 was performed except that the crude carboxylic acid product prepared in Synthesis Example 2 was used instead of the crude carboxylic acid ester product. No generation of HF was confirmed from the exhaust gas line, the activated clay and KYOWARD 200B were separated by filtration, the inorganic fluorine content in the obtained liquid was less than 1 ppm, and the organic fluorine content was 3 ppm. The whole amount was purified using a distillation column having 20 theoretical plates to obtain 91 g of purified carboxylic acid. The inorganic fluorine content was less than 1 ppm, and the organic fluorine content was 2 ppm. The ratio of Endo isomer / Exo isomer was 10.3.

本発明によりカルボン酸あるいはカルボン酸エステルの精製を行えば、フッ素化合物の含量が少ない製品を、装置腐食トラブルを起こさせることなく工業的に有利に製造することができるので、本発明の工業的意義は大きい。   By purifying the carboxylic acid or carboxylic acid ester according to the present invention, a product with a low content of fluorine compounds can be produced industrially advantageously without causing trouble of equipment corrosion. Is big.

Claims (5)

HFの存在下、オレフィンを一酸化炭素及び水あるいはアルコールと反応させてカルボン酸あるいはカルボン酸エステルを生成せしめ、次いで、該反応生成物の少なくとも一部を、活性白土、酸性白土、ホージヤサイト、X型ゼオライト、Y型ゼオライト、モルデナイト、シリカアルミナ、および強酸性イオン交換樹脂からなる群より選ばれる少なくとも1種の酸触媒、及び酸吸着剤である水酸化アルミニウムゲルの存在下に加熱処理することを特徴とする無機フッ素分1ppm未満かつ有機フッ素分3ppm以下であるカルボン酸あるいはカルボン酸エステルの製造方法。 In the presence of HF, an olefin is reacted with carbon monoxide and water or an alcohol to form a carboxylic acid or a carboxylic acid ester, and then at least a part of the reaction product is activated clay, acid clay, hojiyasite, X-type. Heat-treating in the presence of at least one acid catalyst selected from the group consisting of zeolite, Y-type zeolite, mordenite, silica alumina, and strongly acidic ion exchange resin, and aluminum hydroxide gel as an acid adsorbent A method for producing a carboxylic acid or carboxylic acid ester having an inorganic fluorine content of less than 1 ppm and an organic fluorine content of 3 ppm or less . 前記加熱処理を120〜250℃の範囲の温度で実施する請求項1記載の製造方法。   The manufacturing method of Claim 1 which implements the said heat processing at the temperature of the range of 120-250 degreeC. 前記加熱処理を1〜5時間行う請求項1又は2記載の製造方法。   The manufacturing method of Claim 1 or 2 which performs the said heat processing for 1 to 5 hours. 前記酸触媒の量が、カルボン酸あるいはカルボン酸エステルに対する重量比(酸触媒/カルボン酸あるいはカルボン酸エステル)として0.005〜0.1の範囲である請求項1〜3のいずれかに記載の製造方法。   The amount of the acid catalyst is in the range of 0.005 to 0.1 as a weight ratio to the carboxylic acid or carboxylic acid ester (acid catalyst / carboxylic acid or carboxylic acid ester). Production method. 前記酸吸着剤の量が、カルボン酸あるいはカルボン酸エステルに対する重量比(酸吸着剤/カルボン酸あるいはカルボン酸エステル)として0.0005〜0.01の範囲である請求項1〜4のいずれかに記載の製造方法。   The amount of the acid adsorbent is in the range of 0.0005 to 0.01 as a weight ratio to the carboxylic acid or carboxylic acid ester (acid adsorbent / carboxylic acid or carboxylic acid ester). The manufacturing method as described.
JP2006054346A 2005-03-10 2006-03-01 Method for producing carboxylic acid or carboxylic acid ester Active JP5044947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054346A JP5044947B2 (en) 2005-03-10 2006-03-01 Method for producing carboxylic acid or carboxylic acid ester

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005066573 2005-03-10
JP2005066573 2005-03-10
JP2006054346A JP5044947B2 (en) 2005-03-10 2006-03-01 Method for producing carboxylic acid or carboxylic acid ester

Publications (2)

Publication Number Publication Date
JP2006282658A JP2006282658A (en) 2006-10-19
JP5044947B2 true JP5044947B2 (en) 2012-10-10

Family

ID=37404928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054346A Active JP5044947B2 (en) 2005-03-10 2006-03-01 Method for producing carboxylic acid or carboxylic acid ester

Country Status (1)

Country Link
JP (1) JP5044947B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157839B2 (en) * 2008-11-12 2013-03-06 三菱瓦斯化学株式会社 Novel naphthol compounds and process for producing the same
JP5441526B2 (en) 2009-07-01 2014-03-12 三菱瓦斯化学株式会社 Method for producing alicyclic alcohol
CN103230788A (en) * 2013-05-13 2013-08-07 青岛中海泉化工科技有限公司 Refining catalyst for removing olefin in reformate
KR101511701B1 (en) * 2013-07-30 2015-04-13 대림산업 주식회사 Apparatus and method for recirculation of raw material used during the polyisobutylene preparation process
KR102598771B1 (en) * 2021-09-27 2023-11-06 재원산업 주식회사 Purification method of akylene glycol monoalkyl ether carboxylic acid ester having hihg-purity used in phtoto resist process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951289A1 (en) * 1979-12-20 1981-07-02 Röhm GmbH, 6100 Darmstadt Isobutyric acid prodn. from isopropyl formate - by Koch synthesis using mineral acid catalyst
DE3145311A1 (en) * 1981-11-14 1983-05-26 Röhm GmbH, 6100 Darmstadt METHOD FOR PRODUCING ISOBUTTERIC ACID OR ITS ALKYL ESTER
US4661296A (en) * 1982-09-13 1987-04-28 Ashland Oil, Inc. HF separation in a carbonylation process
DE3821155A1 (en) * 1988-06-23 1989-12-28 Roehm Gmbh METHOD FOR SEPARATING FLUORINE FROM ISOBUTTERIC ACID OR ITS ALKYL ESTERS
JPH04356441A (en) * 1991-06-03 1992-12-10 Satoru Matsumoto Complex ester of ether-ester
JPH05155809A (en) * 1991-12-05 1993-06-22 Satoru Matsumoto Diester complex ester having ether ester end structure and polyester
JP3296885B2 (en) * 1993-06-15 2002-07-02 三菱瓦斯化学株式会社 Method for producing esters
JPH083075A (en) * 1994-06-20 1996-01-09 Tokuyama Corp Purification of fluorine-based inactive liquid
JP4552246B2 (en) * 1999-12-28 2010-09-29 株式会社クレハ Method for producing purified fluorocarbon or chlorofluorocarbon
JP4267417B2 (en) * 2003-09-19 2009-05-27 三菱瓦斯化学株式会社 Process for producing purified tricyclo [5.2.1.02,6] decane-2-carboxylic acid ethyl ester

Also Published As

Publication number Publication date
JP2006282658A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
EP1877361B1 (en) Process for carbonylation of alkyl ethers
US7678940B2 (en) Process for producing carboxylic acid
EP1125915B1 (en) Process for simultaneous production of ethylene glycol and carbonate ester
TWI745381B (en) Production method of isopropanol and isopropanol with reduced impurities
US7432390B2 (en) Production of carboxylic acids or carboxylic acid esters
JP5044947B2 (en) Method for producing carboxylic acid or carboxylic acid ester
WO2006082965A1 (en) METHOD FOR SYNTHESIZING t-BUTYL (METH)ACRYLATE
JP7004913B2 (en) New alicyclic diol compound
JPH0625031A (en) Method of synthesizing oxygenated acetyl compound
CA1140945A (en) Process for preparation of high purity isobutylene
JP5305036B2 (en) Method for producing dimethyl ether
EP1275633B1 (en) Method for decomposition of Michael type adduct
JP2012515751A (en) Method for purifying azeotropic fraction generated during synthesis of N, N-dimethylaminoethyl acrylate
JP4106494B2 (en) Method for producing carboxylic acid ester using HF catalyst
KR20230011394A (en) Process for recovering heavy by-products from acrylic acid and esters of said acids by thermal cracking with partial condensation
JP4725136B2 (en) Method for producing tricyclo [5.2.1.02,6] decane-2-carboxylic acid ester
JP4275498B2 (en) Method for producing high-purity tricyclo [5.2.1.02,6] decane-2-carboxylic acid ester
JP2737297B2 (en) Method for producing methyl isobutyl ketone
JP2006504789A (en) Removal of impurities formed during the production of 1,3-propanediol
JP4267417B2 (en) Process for producing purified tricyclo [5.2.1.02,6] decane-2-carboxylic acid ethyl ester
JP4725137B2 (en) Process for producing exo-tricyclo [5.2.1.02,6] decane-endo-2-carboxylic acid
US20030187308A1 (en) Process for splitting water-soluble ethers
JP2005089399A (en) Method for producing tricyclo[5.2.1.02,6]decane-2-carboxylic acid ester
AU2004201511B2 (en) Process for the simultaneous production of maleic anhydride and its hydrogenated derivatives
WO2019159906A1 (en) Method for producing tricyclo[5.2.1.02,6]decane-2-carboxylic acid esters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5044947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151