JPH04247043A - Suppression of transition of gamma-alumina to alpha-alumina and production of olefins using the same alumina - Google Patents

Suppression of transition of gamma-alumina to alpha-alumina and production of olefins using the same alumina

Info

Publication number
JPH04247043A
JPH04247043A JP3013516A JP1351691A JPH04247043A JP H04247043 A JPH04247043 A JP H04247043A JP 3013516 A JP3013516 A JP 3013516A JP 1351691 A JP1351691 A JP 1351691A JP H04247043 A JPH04247043 A JP H04247043A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
reaction
reactor
olefins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3013516A
Other languages
Japanese (ja)
Other versions
JP2976396B2 (en
Inventor
Shintaro Araki
荒 木 信太郎
Katsuo Taniguchi
谷 口 捷 生
Toshiyuki Isaka
井 坂 俊 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP3013516A priority Critical patent/JP2976396B2/en
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to SG1996002780A priority patent/SG59937A1/en
Priority to EP92300837A priority patent/EP0498573B1/en
Priority to DE69212854T priority patent/DE69212854T2/en
Priority to KR1019920001434A priority patent/KR100219691B1/en
Priority to AT92300837T priority patent/ATE141579T1/en
Priority to CN92100723A priority patent/CN1034214C/en
Priority to CA002060527A priority patent/CA2060527A1/en
Publication of JPH04247043A publication Critical patent/JPH04247043A/en
Priority to US08/161,061 priority patent/US5475183A/en
Application granted granted Critical
Publication of JP2976396B2 publication Critical patent/JP2976396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain an olefin useful as for various organic synthetic raw materials and polymer raw materials from a lower alcohol by a simple device in high yield and in high selectivity for a long period of time by using a specific catalyst. CONSTITUTION:In producing an olefin by dehydrating 2-4c alcohol, the objective compound is industrially and advantageously obtained preferably under a pressure condition so a to liquefy the compound at a normal temperature at 150-500 deg.C, preferably 250-400 deg.C by using a catalyst prepared by blending gamma-alumina catalyst with 0.5-5wt.%, preferably 0.5-3wt.% SiO2 and suppressing the transition of crystal phase from gamma-alumina to alpha-alumina and not making the reaction product into a heavy substance without deteriorating the catalyst for many hours.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭素数が2〜4までの
低級アルコールを特定の触媒を用いて脱水し、オレフィ
ン類を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing olefins by dehydrating lower alcohols having 2 to 4 carbon atoms using a specific catalyst.

【0002】0002

【従来の技術】オレフィン類の製造方法として、古くは
、アルコール類を硫酸のような強酸の存在下に脱水させ
る方法が知られている。しかしながら、この方法は強酸
を使用するため耐酸性の製造装置を用いなければならず
、また、反応後に排出される廃硫酸の処理が困難なため
近年では殆ど採用されない方法となった。
BACKGROUND OF THE INVENTION As a method for producing olefins, a method has long been known in which alcohols are dehydrated in the presence of a strong acid such as sulfuric acid. However, since this method uses a strong acid, it is necessary to use acid-resistant production equipment, and it is difficult to dispose of the waste sulfuric acid discharged after the reaction, so this method has rarely been adopted in recent years.

【0003】近年、オレフィン類の製造方法は、ナフサ
をクラッキングして製造する方法が主流である。例えば
、エチレン、プロピレン、ブテン類、ブタジエン類など
の工業的に重要なオレフィン類がこの方法で製造されて
いる。
[0003] In recent years, the mainstream method for producing olefins is to crack naphtha. For example, industrially important olefins such as ethylene, propylene, butenes and butadienes are produced by this method.

【0004】ところが、最近、オレフィン類の製造原料
の多角化を図るため、あるいは、高純度のオレフィン類
を得るためにアルコール類を脱水してオレフィン類を製
造する方法が見直され、低級アルコールを脱水してオレ
フィン類を製造する方法が各種提案されている。
However, recently, in order to diversify the raw materials for producing olefins or to obtain highly pure olefins, the method of producing olefins by dehydrating alcohols has been reviewed. Various methods have been proposed for producing olefins.

【0005】例えば、エタノールを脱水してエチレンを
製造する方法(特公昭59−40057号公報、特公昭
59−19927号公報)、ターシャリーブタノールを
脱水して高純度イソブチレンを製造する方法(特公昭6
1−23771号公報、特開昭61−26号公報)等が
提案されている。また、エタノールを脱水してエチレン
を製造する場合に触媒としてアルミナ、シリカ、シリカ
アルミナ、ゼオライト類、固体燐酸等の固体酸触媒を使
用する方法が提案されている(特開昭64−34929
号公報)。
For example, a method for producing ethylene by dehydrating ethanol (Japanese Patent Publication No. 40057/1982, Japanese Patent Publication No. 19927/1982), a method for producing high purity isobutylene by dehydrating tertiary butanol (Japanese Patent Publication No. 59-40057, Japanese Patent Publication No. 59-19927), 6
1-23771, Japanese Unexamined Patent Publication No. 61-26), etc. have been proposed. Furthermore, a method has been proposed in which solid acid catalysts such as alumina, silica, silica alumina, zeolites, and solid phosphoric acid are used as catalysts when producing ethylene by dehydrating ethanol (Japanese Patent Laid-Open No. 64-34929
Publication No.).

【0006】[0006]

【発明が解決しようとする課題】しかし、上述したよう
に強酸を触媒に用いる方法は耐食性の高価な製造装置を
用いなければならず、廃液の処理も困難となる。また、
生成したオレフィン類が強酸の存在下、反応して異性化
を起こしたり、重合して高分子量化を起こし目的外の化
合物になり収率を低下させる恐れがある。
However, as mentioned above, the method using a strong acid as a catalyst requires the use of expensive corrosion-resistant manufacturing equipment, and it is also difficult to treat the waste liquid. Also,
The produced olefins may react in the presence of a strong acid and cause isomerization, or polymerize and increase the molecular weight, resulting in unintended compounds, which may reduce the yield.

【0007】他方固体酸を触媒に用いて脱水反応を行な
う場合、アルコールの脱水反応は多大な吸熱反応である
ため、250〜300℃以上の反応温度が必要であり、
シリカアルミナ、ゼオライト類、固体燐酸等の固体酸触
媒は強酸性であるため、これらの触媒を用いた場合、生
成したオレフィン類が重合し重質化が起こり、オレフィ
ンの収率の低下を招き、また、重質物が触媒表面へ付着
して触媒活性の低下の原因となるため好ましくない。
On the other hand, when the dehydration reaction is carried out using a solid acid as a catalyst, since the dehydration reaction of alcohol is a highly endothermic reaction, a reaction temperature of 250 to 300°C or higher is required.
Solid acid catalysts such as silica alumina, zeolites, and solid phosphoric acid are strongly acidic, so when these catalysts are used, the produced olefins polymerize and become heavy, leading to a decrease in the yield of olefins. Further, heavy substances adhere to the catalyst surface and cause a decrease in catalyst activity, which is not preferable.

【0008】γ−アルミナを触媒に用いれば、γ−アル
ミナは弱酸性であり、生成したオレフィン類の重質化等
が起きず有利であるが、γ−アルミナは、加圧条件下、
300〜350℃で反応に使用した場合、結晶相の一部
がγ体から不活性なα体に転移し、触媒活性が大きく低
下することがわかった。さらに、この傾向は圧力が高い
ほど顕著であるため加圧条件ではγ−アルミナ触媒を工
業的に使用することが困難である。
[0008] If γ-alumina is used as a catalyst, it is advantageous because γ-alumina is weakly acidic and the produced olefins do not become heavy.
It was found that when used in a reaction at 300 to 350°C, a part of the crystal phase transitions from the γ form to the inactive α form, resulting in a significant decrease in catalytic activity. Furthermore, since this tendency becomes more pronounced as the pressure increases, it is difficult to use the γ-alumina catalyst industrially under pressurized conditions.

【0009】従来、1000℃以上の高温ではγ−アル
ミナがα体に転移することが知られており、この転移を
抑制する手段として触媒にLa2 O3 、MgO、S
iO2 等の金属酸化物を第二成分として添加する方法
が一般に知られている。しかし、300℃程度の温度で
結晶相が転移する現象は全く知られておらず機構も不明
のため、従来の高温での結晶転移を抑制する方法を適用
することは困難である。
Conventionally, it has been known that γ-alumina transforms into the α form at high temperatures of 1000°C or higher, and as a means of suppressing this transition, La2O3, MgO, and S are added to the catalyst.
A method of adding a metal oxide such as iO2 as a second component is generally known. However, the phenomenon of crystal phase transition at a temperature of about 300° C. is completely unknown and the mechanism is unknown, so it is difficult to apply conventional methods for suppressing crystal phase transition at high temperatures.

【0010】また、加圧せずに脱水反応を行なうことは
可能であるが、生成する炭素数2〜4のオレフィン類は
常温常圧下では気体であり、蒸留などの精製を行なうた
めには液化することを必要とし、気体で得られると冷凍
機による冷却や昇圧機による加圧により液化を行なわな
ければならず、プロセス上の工程数が増え操作が煩雑に
なる上、経済的にも不利益である。
[0010]Although it is possible to carry out the dehydration reaction without applying pressure, the produced olefins having 2 to 4 carbon atoms are gaseous at normal temperature and pressure, and must be liquefied for purification such as distillation. If it is obtained as a gas, it must be liquefied by cooling with a refrigerator or pressurizing with a booster, which increases the number of steps in the process, complicates the operation, and is economically disadvantageous. It is.

【0011】そこで、本発明の目的は、簡略な装置によ
り、長期間に渡り、高収率、高選択率で低級アルコール
からオレフィンを製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing olefins from lower alcohols over a long period of time with high yield and high selectivity using a simple apparatus.

【0012】0012

【課題を解決するための手段】本発明者らは、低級アル
コールを脱水してオレフィンを製造する方法を開発する
にあたり、固体酸触媒を用いることに着目し、鋭意検討
した結果本発明に至った。
[Means for Solving the Problems] In developing a method for producing olefins by dehydrating lower alcohols, the present inventors focused on the use of solid acid catalysts, and as a result of intensive studies, they arrived at the present invention. .

【0013】即ち、本発明の方法は、炭素数が2〜4ま
での低級アルコールを脱水してオレフィン類を製造する
に当たり、SiO2 を0.5〜5重量%含有するγ−
アルミナ触媒を用いることを特徴とするオレフィン類の
製造方法である。
That is, in the method of the present invention, when producing olefins by dehydrating lower alcohols having 2 to 4 carbon atoms, γ- containing 0.5 to 5% by weight of SiO2 is used.
This is a method for producing olefins characterized by using an alumina catalyst.

【0014】また、脱水反応に用いるγ−アルミナ触媒
に、SiO2 を0.5〜5重量%含有させてγ−アル
ミナのα体への転移を抑制する方法である。
Another method is to contain 0.5 to 5% by weight of SiO2 in the γ-alumina catalyst used in the dehydration reaction to suppress the transition of γ-alumina to the α form.

【0015】以下に本発明を詳細に説明する。本発明の
出発原料に用いるアルコールは炭素数2〜4の低級アル
コールであり、エタノール、n−プロパノール、i−プ
ロパノール、n−ブタノール、i−ブタノールまたはこ
れらの混合物であり、第1アルコール、第2アルコール
、第3アルコールのいずれでもよい。
The present invention will be explained in detail below. The alcohol used as the starting material of the present invention is a lower alcohol having 2 to 4 carbon atoms, such as ethanol, n-propanol, i-propanol, n-butanol, i-butanol, or a mixture thereof. Either alcohol or tertiary alcohol may be used.

【0016】本発明法は、脱水反応に用いる触媒に特徴
がある。この触媒は、γ−アルミナ触媒であり、SiO
2 を0.5〜5重量%、好ましくは0.5〜3重量%
含有する。SiO2 の量がこの範囲であると、酸性の
ため生成物の重質化を起こすことなく、γ体からα体へ
の結晶相転移を抑制することができる。
The method of the present invention is characterized by the catalyst used in the dehydration reaction. This catalyst is a γ-alumina catalyst and is a SiO
0.5 to 5% by weight, preferably 0.5 to 3% by weight of
contains. When the amount of SiO2 is within this range, the crystal phase transition from the γ-form to the α-form can be suppressed without making the product heavier due to acidity.

【0017】SiO2 を所定量含有するγ−アルミナ
は、SiO2 をγ−アルミナの製造段階または触媒と
して使用する際にSiO2 を添加して行なう。SiO
2 の添加はγ−アルミナの製造段階のどの部分で行な
ってもよい。例えばγ−アルミナの原料であるベーマイ
ト、擬ベーマイト等にSiO2 源を加えてもよく、更
には、硫酸アルミやアルミン酸ソーダー等のγ−アルミ
ナの原料の段階で加えてもよい。また最終製品としてこ
のγ−アルミナの粉末に添加してもよい。SiO2 の
添加効果を充分にするためγ−アルミナ中にSiO2 
をある程度均一に分散させることが必要である。また、
添加物は最終的にSiO2 の形態になるのであれば、
いかなるSiO2 源を使用してもよい。例えばSiO
2 のヒドロゲルやヒドロゾル、あるいはケイ酸エチル
等のアルキル化合物で添加することができる。
[0017] γ-alumina containing a predetermined amount of SiO2 is produced by adding SiO2 during the production stage of γ-alumina or when using it as a catalyst. SiO
2 may be added at any part of the production stage of γ-alumina. For example, the SiO2 source may be added to boehmite, pseudoboehmite, etc., which are raw materials for γ-alumina, or may be added at the stage of raw materials for γ-alumina, such as aluminum sulfate or sodium aluminate. It may also be added to this γ-alumina powder as a final product. In order to obtain a sufficient effect of adding SiO2, SiO2 is added to γ-alumina.
It is necessary to disperse them evenly to some extent. Also,
If the additive is ultimately in the form of SiO2,
Any SiO2 source may be used. For example, SiO
It can be added in the form of a hydrogel or hydrosol, or an alkyl compound such as ethyl silicate.

【0018】他の金属酸化物、例えば、高温でのα体へ
の転移抑制に効果があると知られているLa2 O3 
やMgO等の添加は逆に触媒を早く劣化させてしまうた
め、出来る限り混入しないようにすることが好ましい。
Other metal oxides, such as La2O3, which is known to be effective in suppressing the transition to the alpha form at high temperatures.
On the contrary, the addition of substances such as MgO or MgO causes premature deterioration of the catalyst, so it is preferable to avoid mixing them as much as possible.

【0019】本発明に用いるγ−アルミナ触媒の製造方
法は特に限定されない。一般に知られている方法、例え
ば、硫酸アルミニウムとアルミン酸ソーダを混合する製
造方法や、有機アルミニウム化合物を加水分解する方法
、硫酸アルミニウムと炭酸カルシウムを混合する方法等
が挙げられる。γ−アルミナの他の物性としては、特に
限定されないが、好ましくは、平均細孔径50〜150
Å、比表面積100〜350m2 /g、Na、Fe、
SO4 イオン等の不純物の総和が0.8重量%以下と
するのがよい。
The method for producing the γ-alumina catalyst used in the present invention is not particularly limited. Generally known methods include, for example, a manufacturing method of mixing aluminum sulfate and sodium aluminate, a method of hydrolyzing an organic aluminum compound, and a method of mixing aluminum sulfate and calcium carbonate. Other physical properties of γ-alumina are not particularly limited, but preferably have an average pore diameter of 50 to 150
Å, specific surface area 100-350m2/g, Na, Fe,
The total amount of impurities such as SO4 ions is preferably 0.8% by weight or less.

【0020】触媒の形状は粉末状、粒状の何れでもよい
。打錠成型してペレット状とし、固定床として用いても
よい。触媒の前処理は特に必要ないが、焼成処理等の前
処理を行ってもよい。
The shape of the catalyst may be either powder or granule. It may be compressed into pellets and used as a fixed bed. Although pretreatment of the catalyst is not particularly necessary, pretreatment such as calcination treatment may be performed.

【0021】本発明法で製造されるオレフィン類は、エ
チレン、プロピレン、1−ブテン、2−ブテン、イソブ
テンである。好ましくは、エチレン、プロピレン、イソ
ブテンを製造する。
The olefins produced by the method of the present invention are ethylene, propylene, 1-butene, 2-butene, and isobutene. Preferably, ethylene, propylene, and isobutene are produced.

【0022】本発明の方法において脱水反応の好適な条
件は次の通りである。反応温度は150〜500℃、好
ましくは250〜400℃である。この範囲とする理由
は、反応が高収率で進行し、工業生産が可能なためであ
る。反応圧力は減圧、常圧、加圧の何れでもよいが、前
述のように精製する事を考慮すると生成するオレフィン
類が常温で液化する程度の加圧状態で反応を行うことが
好ましい。反応器への原料の供給量はLHSVとして0
.1〜20hr−1、好ましくは0.5〜10hr−1
である。この範囲とする理由は、これより小さいと生産
性が低く大きな装置が必要となり、これより大きいと反
応収率が低下し、生産物の分離回収にエネルギーを必要
とし経済的ではないからである。
[0022] Preferred conditions for the dehydration reaction in the method of the present invention are as follows. The reaction temperature is 150-500°C, preferably 250-400°C. The reason for this range is that the reaction proceeds in high yield and industrial production is possible. The reaction pressure may be reduced pressure, normal pressure, or increased pressure, but in consideration of purification as described above, it is preferable to carry out the reaction under a pressure such that the olefins produced are liquefied at room temperature. The amount of raw material supplied to the reactor is 0 as LHSV.
.. 1-20 hr-1, preferably 0.5-10 hr-1
It is. The reason for setting this range is that if it is smaller than this, the productivity will be low and a large equipment will be required, and if it is larger than this, the reaction yield will decrease and energy will be required to separate and recover the product, which is not economical.

【0023】本発明の方法では、反応で生成したオレフ
ィンを系内から速やかに排出させるため、脱水反応に不
活性なガス状物質を混合させてもよい。この様なガス状
物質としては、例えば、窒素、ヘリウム、アルゴン、メ
タン、エタン、プロパン、ブタン等が例示される。ただ
し、水は触媒の結晶相転移を促進する恐れがあるので極
力存在させないことが好ましい。また、このガス状物質
には反応器に供給される前は液状物質であっても、反応
器内の反応条件下においてガス状になる物質が含まれる
。この様な物質としては、例えば、ペンタン、ヘキサン
、ヘプタン、シクロペンタン、シクロヘキサン等の脂肪
族炭化水素類;ベンゼン、トルエン、キシレン、エチル
ベンゼン、クメン等の芳香族炭化水素類等が挙げられる
In the method of the present invention, an inert gaseous substance may be mixed into the dehydration reaction in order to quickly discharge the olefin produced in the reaction from the system. Examples of such gaseous substances include nitrogen, helium, argon, methane, ethane, propane, and butane. However, since water may accelerate the crystal phase transition of the catalyst, it is preferable to avoid its presence as much as possible. Further, the gaseous substances include substances that are liquid before being supplied to the reactor but become gaseous under the reaction conditions within the reactor. Examples of such substances include aliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and cumene.

【0024】このガス状物質をアルコールと混合して反
応器に供給する場合に、その使用量は、通常、アルコー
ル1モルに対して0.05〜10モルの範囲が好ましい
。ガス状物質の使用量が多すぎると、反応生成物である
オレフィン類と水との混合物から、ガス状物質を分離し
て再使用する必要が生じ、オレフィン類の製造コストが
高くなるなどの経済的な不利益を生じる。
[0024] When this gaseous substance is mixed with alcohol and supplied to the reactor, the amount used is usually preferably in the range of 0.05 to 10 moles per mole of alcohol. If too much gaseous material is used, it becomes necessary to separate and reuse the gaseous material from the mixture of olefins and water, which is the reaction product, resulting in economic problems such as increased production costs of olefins. causing a disadvantage.

【0025】本発明の方法において反応方式は連続反応
が好ましく、反応器の形式としては、粒状の触媒を用い
た固定床方式が好ましい。
[0025] In the method of the present invention, a continuous reaction is preferable, and a fixed bed type using a granular catalyst is preferable as a reactor type.

【0026】[0026]

【実施例】以下に、実施例及び比較例によって本発明を
具体的に説明するが、これらにより本発明はなんら制限
されるものではない。なお、γ−アルミナ触媒が結晶相
の転移を起こすかどうかについては、以下の簡単な方法
を用いて調べた。
[Examples] The present invention will be specifically explained below with reference to Examples and Comparative Examples, but the present invention is not limited by these in any way. In addition, whether or not the γ-alumina catalyst causes a crystal phase transition was investigated using the following simple method.

【0027】(触媒の耐スチーム性試験方法)触媒1g
〜50gをとり、これを200メッシュのSUS316
の網に包み、SUS316のコイル状充填剤(ヘリパッ
ク)と共に2000ccオートクレーブに充填する。こ
の時触媒はできだけ中央に位置するようにする。その後
、電気炉で400℃まで加熱し、高圧ポンプを用いて水
をフィードし、圧力を80kg/cm2G まであげる
。6時間後に触媒を取り出し、X線分析を行い結晶相を
調べる。また、必要に応じて取り出した触媒の比表面積
の測定並びにオレフィン製造の触媒活性を評価する。
(Catalyst steam resistance test method) 1 g of catalyst
Take ~50g and transfer it to 200 mesh SUS316
wrapped in a mesh and filled into a 2000cc autoclave with a SUS316 coiled filler (helipak). At this time, the catalyst should be located as centrally as possible. Thereafter, it is heated to 400°C in an electric furnace, and water is fed using a high-pressure pump to raise the pressure to 80kg/cm2G. After 6 hours, the catalyst is taken out and subjected to X-ray analysis to examine the crystal phase. In addition, the specific surface area of the catalyst taken out is measured and the catalytic activity for olefin production is evaluated as necessary.

【0028】(触媒1の調製)市販の試薬の硫酸アルミ
ニウム水溶液とアルミン酸ソーダ水溶液を混合し沈澱を
採取した。この沈澱にシリカゾル(商品名:スノーテッ
クス)を沈澱に対して3重量%添加した後、pHを13
に調節したアンモニア水溶液中で一昼夜撹拌した。沈澱
をろ別して水洗した後、電気炉で600℃、5時間焼成
した。得られたアルミナを分析した結果、SiO2 の
含有量は約2重量%であった。生成したアルミナは3m
m×3mmに打錠成型した。
(Preparation of Catalyst 1) A commercially available aqueous solution of aluminum sulfate and an aqueous sodium aluminate solution were mixed and a precipitate was collected. After adding 3% by weight of silica sol (trade name: Snowtex) to the precipitate, the pH was adjusted to 13.
The mixture was stirred all day and night in an ammonia aqueous solution adjusted to . After the precipitate was filtered and washed with water, it was calcined in an electric furnace at 600°C for 5 hours. Analysis of the obtained alumina revealed that the SiO2 content was approximately 2% by weight. The generated alumina is 3m long
It was molded into a tablet of m x 3 mm.

【0029】(比較触媒1の調製)シリカゾルを添加し
ない以外は、触媒1の調整方法と同様に行って比較触媒
1を調製した。
(Preparation of Comparative Catalyst 1) Comparative Catalyst 1 was prepared in the same manner as the preparation method of Catalyst 1 except that silica sol was not added.

【0030】(比較触媒2の調製)市販の試薬の硫酸ア
ルミニウム水溶液とアルミン酸ソーダ水溶液を混合し沈
澱を採取した。この沈澱にシリカゾル(商品名:スノー
テックス)を沈澱に対して10重量%添加した後、pH
を13に調節したアンモニア水溶液で一昼夜撹拌した。 沈澱をろ別して水洗した後、電気炉で600℃、5時間
焼成した。得られたアルミナを分析した結果、SiO2
 の含有量は約7重量%であった。生成したアルミナは
3mm×3mmに打錠成型した。
(Preparation of Comparative Catalyst 2) A commercially available aqueous solution of aluminum sulfate and an aqueous sodium aluminate solution were mixed and a precipitate was collected. After adding 10% by weight of silica sol (trade name: Snowtex) to the precipitate, the pH
The mixture was stirred all day and night with an ammonia aqueous solution adjusted to a concentration of 13. After the precipitate was filtered and washed with water, it was calcined in an electric furnace at 600°C for 5 hours. As a result of analyzing the obtained alumina, SiO2
The content was about 7% by weight. The produced alumina was molded into a 3 mm x 3 mm tablet.

【0031】(触媒2の調製)市販のγ−アルミナ触媒
(商品名、住友化学:KHO−24)を粉砕して市販の
シリカゲル(関東化学製品)を3重量%添加し、適当量
の水を加えながら充分に乳鉢ですり混ぜた。これを3m
m×3mmに打錠成型した。
(Preparation of Catalyst 2) A commercially available γ-alumina catalyst (trade name, Sumitomo Chemical: KHO-24) was pulverized, 3% by weight of commercially available silica gel (Kanto Kagaku Products) was added, and an appropriate amount of water was added. While adding the mixture, thoroughly mix it in a mortar. This is 3m
It was molded into a tablet of m x 3 mm.

【0032】(実施例1)外部に電気炉を有する内径2
5.4mm、長さ50cmのSUS316製の縦型管状
反応管に触媒1を40cc充填し、電気炉の温度を32
0℃に設定した。イソプロパノールをLHSV1hr−
1で反応器塔頂部からフィードし、反応管内の圧力が1
8kg/cm2G になるようにして反応を行なった。 反応器下部より排出される気液混合物を液相部と気相部
に分離した。実験開始後、5時間経過したところ反応成
績はイソプロパノール転化率90%、プロピレン選択率
92%であった。副生成物はジイソプロピルエーテルで
あった。
(Example 1) Inner diameter 2 with electric furnace outside
A vertical tubular reaction tube made of SUS316 with a diameter of 5.4 mm and a length of 50 cm was filled with 40 cc of catalyst 1, and the temperature of the electric furnace was set to 32
The temperature was set at 0°C. Isopropanol to LHSV1hr-
1, feed from the top of the reactor column, and the pressure inside the reaction tube is 1
The reaction was carried out at 8 kg/cm2G. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isopropanol conversion rate of 90% and a propylene selectivity of 92%. The by-product was diisopropyl ether.

【0033】次に、触媒1について上述の耐スチーム性
試験を行なった。X線で測定した結果α体への転移は認
められなかった。この耐スチーム性試験後の触媒1を、
上述の実験で用いたと同様の反応器に40cc充填した
。実施例1の反応条件と同様にして反応を行なった。 反応器下部より排出される気液混合物を液相部と気相部
に分離した。実験開始後、5時間経過したところで反応
成績はイソプロパノール転化率87%、プロピレン選択
率90%であった。副生成物はジイソプロピルエーテル
であった。
Next, the above-mentioned steam resistance test was conducted on Catalyst 1. As a result of X-ray measurement, no metastasis to the α-form was observed. After this steam resistance test, the catalyst 1 was
A reactor similar to that used in the experiment described above was charged with 40 cc. The reaction was carried out under the same reaction conditions as in Example 1. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isopropanol conversion rate of 87% and a propylene selectivity of 90%. The by-product was diisopropyl ether.

【0034】(実施例2)外部にオイル加熱槽を有する
内径38.1mm、長さ4300mmのSUS316製
の縦型管状反応管に、触媒1を4550cc充填し、加
熱槽の温度を315℃に設定した。イソプロパノールを
LHSV1hr−1で反応器塔頂部からフィードし、反
応管内の圧力が18kg/cm2G になるようにして
反応を行なった。反応器下部より排出される気液混合物
を液相部と気相部に分離した。実験開始後、10時間経
過したところ反応成績はイソプロパノール転化率89%
、プロピレン選択率95%であった。副生成物はジイソ
プロピルエーテルであった。さらに、実験開始後300
0時間では、反応成績はイソプロパノール転化率85%
、プロピレン選択率92%であった。反応終了後、抜き
だした触媒をX線で調べた結果、γ体のままであり、長
時間の反応後でも触媒のα体への転移がなく、活性の低
下もないことがわかった。
(Example 2) A vertical tubular reaction tube made of SUS316 with an inner diameter of 38.1 mm and a length of 4300 mm and having an oil heating tank outside was filled with 4550 cc of catalyst 1, and the temperature of the heating tank was set at 315°C. did. Isopropanol was fed from the top of the reactor column at a LHSV of 1 hr-1, and the reaction was carried out so that the pressure inside the reaction tube was 18 kg/cm2G. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. After 10 hours from the start of the experiment, the reaction result was 89% isopropanol conversion.
, the propylene selectivity was 95%. The by-product was diisopropyl ether. Furthermore, after the start of the experiment, 300
At 0 hours, the reaction result was 85% isopropanol conversion.
, the propylene selectivity was 92%. After the reaction was completed, the extracted catalyst was examined with X-rays, and it was found that it remained in the γ form, and there was no transition to the α form of the catalyst even after a long reaction period, and there was no decrease in activity.

【0035】(比較例1)比較触媒1を40cc充填し
、反応条件を実施例1と同様にして反応を行なった。 反応器下部より排出される気液混合物を液相部と気相部
に分離した。実験開始後、5時間経過したところで反応
成績はイソプロパノール転化率73%、プロピレン選択
率88%であった。副生成物はジイソプロピルエーテル
であった。
(Comparative Example 1) 40 cc of Comparative Catalyst 1 was charged and a reaction was carried out under the same reaction conditions as in Example 1. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isopropanol conversion rate of 73% and a propylene selectivity of 88%. The by-product was diisopropyl ether.

【0036】次に、比較触媒1について上述の耐スチー
ム性試験を行なったところ、X線で測定したα体への転
移は約30%であった。この耐スチーム性試験後の比較
触媒1を実施例1で用いたと同様の反応器で同様の反応
条件にして反応を行なった。反応器下部より排出される
気液混合物を液相部と気相部に分離した。実験開始後、
5時間経過したところでの反応成績はイソプロパノール
転化率48%、プロピレン選択率75%であった。副生
成物はジイソプロピルエーテルであった。耐水性試験に
よって触媒がα体に転移し、触媒活性が低下しているこ
とがわかった。
Next, when the above-mentioned steam resistance test was conducted on Comparative Catalyst 1, the conversion to the α-form measured by X-rays was about 30%. After this steam resistance test, Comparative Catalyst 1 was subjected to a reaction in the same reactor as used in Example 1 under the same reaction conditions. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. After starting the experiment,
After 5 hours, the reaction results were an isopropanol conversion rate of 48% and a propylene selectivity of 75%. The by-product was diisopropyl ether. A water resistance test revealed that the catalyst had been transferred to the alpha form, resulting in a decrease in catalytic activity.

【0037】(比較例2)比較触媒2を40cc充填し
、反応条件を実施例1と同様にして反応を行なった。 反応器下部より排出される気液混合物を液相部と気相部
に分離した。実験開始後、5時間経過したところで反応
成績はイソプロパノール転化率92%、プロピレン選択
率65%であった。副生成物は重質物であった。100
0時間後、イソプロパノール転化率は43%に低下した
。取り出した触媒は、α体への転移はみられなかったが
表面にカーボンが多量に付着していた。
(Comparative Example 2) 40 cc of Comparative Catalyst 2 was charged and a reaction was carried out under the same reaction conditions as in Example 1. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isopropanol conversion rate of 92% and a propylene selectivity of 65%. The by-products were heavy substances. 100
After 0 hours, the isopropanol conversion rate decreased to 43%. The removed catalyst showed no transition to the α-form, but a large amount of carbon was attached to the surface.

【0038】(比較例3)外部にオイル加熱槽を有する
内径38.1mm、長さ4300mmのSUS316製
の縦型管状反応管に、比較触媒1を4550cc充填し
、加熱槽の温度を315℃に設定した。イソプロパノー
ルをLHSV1hr−1で反応器塔頂部からフィードし
、反応管内の圧力が18kg/cm2G になるように
反応を行なった。反応器下部より排出される気液混合物
を液相部と気相部に分離した。実験開始後、10時間経
過したところで反応成績はイソプロパノール転化率84
%、プロピレン選択率90%であった。副生成物はジイ
ソプロピルエーテルであった。さらに、実験開始後30
00時間では、反応成績はイソプロパノール転化率54
%、プロピレン選択率84%であった。反応終了後、抜
きだした触媒をX線で調べた結果、α体への転移が約2
0%起きていた。
(Comparative Example 3) A vertical tubular reaction tube made of SUS316 with an inner diameter of 38.1 mm and a length of 4300 mm and having an oil heating tank outside was filled with 4550 cc of Comparative Catalyst 1, and the temperature of the heating tank was set to 315°C. Set. Isopropanol was fed from the top of the reactor column at a LHSV of 1 hr-1, and the reaction was carried out so that the pressure inside the reaction tube was 18 kg/cm2G. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. After 10 hours from the start of the experiment, the reaction result was an isopropanol conversion rate of 84.
%, and the propylene selectivity was 90%. The by-product was diisopropyl ether. Furthermore, 30 minutes after the start of the experiment
At 00 hours, the reaction result was an isopropanol conversion of 54
%, and the propylene selectivity was 84%. After the reaction was completed, the extracted catalyst was examined with X-rays, and it was found that the transition to the α-form was approximately 2
I was awake 0%.

【0039】(実施例3)触媒2を実施例1で用いた反
応器に40cc充填し、電気炉の温度を400℃に設定
した。エタノールをLHSV0.5hr−1で反応器塔
頂部からフィードし、反応管内の圧力が18kg/cm
2G になるように反応を行なった。反応器下部より排
出される気液混合物を液相部と気相部に分離した。実験
開始後、5時間経過したところで、反応成績はエタノー
ル転化率82%、エチレン選択率95%であった。副生
成物はジエチルエーテルであった。
(Example 3) 40 cc of Catalyst 2 was charged into the reactor used in Example 1, and the temperature of the electric furnace was set at 400°C. Ethanol was fed from the top of the reactor column at LHSV 0.5 hr-1, and the pressure inside the reaction tube was 18 kg/cm.
The reaction was carried out to give 2G. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were 82% ethanol conversion and 95% ethylene selectivity. The by-product was diethyl ether.

【0040】次に、触媒2について上述の耐スチーム性
試験を行なった。X線で測定した結果α体への転移は認
められなかった。この耐スチーム性試験後の触媒2を上
述の実験で用いたと同様の反応器に40cc充填した。 反応条件を同様にして反応を行なった。反応器下部より
排出される気液混合物を液相部と気相部に分離した。実
験開始後、5時間経過したところで反応成績はエタノー
ル転化率79%、エチレン選択率91%であった。副生
成物はジエチルエーテルであった。
Next, the above-mentioned steam resistance test was conducted on Catalyst 2. As a result of X-ray measurement, no metastasis to the α-form was observed. After this steam resistance test, 40 cc of the catalyst 2 was filled into a reactor similar to that used in the above experiment. The reaction was carried out under the same reaction conditions. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were 79% ethanol conversion and 91% ethylene selectivity. The by-product was diethyl ether.

【0041】(比較例4)実施例1で用いた反応器に比
較触媒1を40cc充填した。反応条件を実施例2と同
様にして反応を行なった。反応器下部より排出される気
液混合物を液相部と気相部に分離した。実験開始後、5
時間経過したところで反応成績はエタノール転化率82
%、エチレン選択率94%であった。副生成物はジエチ
ルエーテルであった。
(Comparative Example 4) The reactor used in Example 1 was filled with 40 cc of Comparative Catalyst 1. The reaction was carried out under the same reaction conditions as in Example 2. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. After starting the experiment, 5
After time, the reaction result was ethanol conversion rate of 82.
%, and the ethylene selectivity was 94%. The by-product was diethyl ether.

【0042】次に比較触媒1について上述の耐スチーム
性試験を行なった。X線で測定した結果α体への転移は
約40%であった。この耐スチーム性試験後の比較触媒
1を、上述の実験で用いたと同様の反応器に40cc充
填した。反応条件を上記と同様にして反応を行なった。 反応器下部より排出される気液混合物を液相部と気相部
に分離した。実験開始後、5時間経過したところで反応
成績はエタノール転化率50%、エチレン選択率79%
であった。副生成物はジエチルエーテルであった。
Next, Comparative Catalyst 1 was subjected to the steam resistance test described above. As a result of X-ray measurement, the transition to the α-form was approximately 40%. After this steam resistance test, 40 cc of Comparative Catalyst 1 was filled into a reactor similar to that used in the above experiment. The reaction was carried out under the same reaction conditions as above. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were 50% ethanol conversion and 79% ethylene selectivity.
Met. The by-product was diethyl ether.

【0043】(実施例4)触媒1を実施例1で用いた反
応器に40cc充填し、電気炉の温度を300℃に設定
した。イソブタノールをLHSV  2hr−1で反応
器塔頂からフィードし、反応管の圧力が8kg/cm2
G になるように反応を行なった。反応器下部より排出
される気液混合物を液相部と気相部に分離した。実験開
始後、5時間経過したところで、反応成績はイソブタノ
ール転化率86%、イソブテン選択率92%であった。 副生成物は、ジイソブチルエーテルであった。
(Example 4) 40 cc of Catalyst 1 was charged into the reactor used in Example 1, and the temperature of the electric furnace was set at 300°C. Isobutanol was fed from the top of the reactor at LHSV 2hr-1, and the pressure in the reaction tube was 8kg/cm2.
The reaction was carried out so that G. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isobutanol conversion rate of 86% and an isobutene selectivity of 92%. The by-product was diisobutyl ether.

【0044】次に触媒1について上述の耐スチーム性試
験を行なった。X線で測定した結果α体への転位は認め
られなかった。この耐スチーム性試験後の触媒1を上述
の実験で用いたと同様の反応器に40cc充填した。反
応条件を同様にして実験を行なった。反応器下部より排
出される気液混合物を液相部と気相部に分離した。実験
開始後、5時間経過したところで、反応成績はイソブタ
ノール転化率83%、イソブテン選択率90%であった
。副生成物は、ジイソブチルエーテルであった。
Next, the above-mentioned steam resistance test was conducted on Catalyst 1. As a result of X-ray measurement, no rearrangement to α-form was observed. After this steam resistance test, 40 cc of Catalyst 1 was filled into a reactor similar to that used in the above experiment. Experiments were conducted using the same reaction conditions. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isobutanol conversion rate of 83% and an isobutene selectivity of 90%. The by-product was diisobutyl ether.

【0045】(比較例5)比較触媒1を実施例1で用い
た反応器に40cc充填し、電気炉の温度を300℃に
設定した。イソブタノールをLHSV  2hr−1で
反応器塔頂からフィードし、反応管の圧力が8kg/c
m2G になるように反応を行なった。反応器下部より
排出される気液混合物を液相部と気相部に分離した。実
験開始後、5時間経過したところで、反応成績はイソブ
タノール転化率74%、イソブテン選択率87%であっ
た。副生成物は、ジイソブチルエーテルであった。
(Comparative Example 5) 40 cc of Comparative Catalyst 1 was charged into the reactor used in Example 1, and the temperature of the electric furnace was set at 300°C. Isobutanol is fed from the top of the reactor at LHSV 2hr-1, and the pressure in the reaction tube is 8kg/c.
The reaction was carried out to give m2G. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isobutanol conversion rate of 74% and an isobutene selectivity of 87%. The by-product was diisobutyl ether.

【0046】次に比較触媒1について上述の耐スチーム
性試験を行なった。X線で測定した結果α体への転移は
約30%であった。この耐スチーム性試験後の比較触媒
1を上述の実験で用いたと同様の反応器に40cc充填
した。反応条件を同様にして実験を行なった。反応器下
部より排出される気液混合物を液相部と気相部に分離し
た。実験開始後、5時間経過したところで反応成績はイ
ソブタノール転化率52%、イソブテン選択率77%で
あった。副生成物はジイソブチルエーテルであった。
Next, Comparative Catalyst 1 was subjected to the steam resistance test described above. As a result of X-ray measurement, the transition to α-form was approximately 30%. After this steam resistance test, 40 cc of Comparative Catalyst 1 was filled into a reactor similar to that used in the above experiment. Experiments were conducted using the same reaction conditions. The gas-liquid mixture discharged from the bottom of the reactor was separated into a liquid phase and a gas phase. Five hours after the start of the experiment, the reaction results were an isobutanol conversion rate of 52% and an isobutene selectivity of 77%. The by-product was diisobutyl ether.

【0047】[0047]

【発明の効果】本発明の方法によれば低級アルコールか
ら従来より長期間に渡り、高収率、高選択率でオレフィ
ンを製造することができる。得られる高純度のオレフィ
ンは各種の有機合成原料、ポリマー原料として有用であ
る。また、本発明の方法によれば、γ−アルミナを低級
アルコールの脱水触媒として、加圧条件下、300〜3
50℃の反応温度で長時間劣化させることなく使用する
ことができ工業的に非常に有用である。
Effects of the Invention According to the method of the present invention, olefins can be produced from lower alcohols over a longer period of time than ever before, with high yield and high selectivity. The resulting high-purity olefin is useful as a raw material for various organic synthesis and polymer materials. In addition, according to the method of the present invention, γ-alumina is used as a dehydration catalyst for lower alcohols, and under pressurized conditions, 30 to 3
It can be used for a long time without deterioration at a reaction temperature of 50°C, and is very useful industrially.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭素数が2〜4までの低級アルコール
を脱水してオレフィン類を製造するに当たり、SiO2
 を0.5〜5重量%含有するγ−アルミナ触媒を用い
ることを特徴とするオレフィン類の製造方法。
Claim 1: In producing olefins by dehydrating lower alcohols having 2 to 4 carbon atoms, SiO2
A method for producing olefins, characterized by using a γ-alumina catalyst containing 0.5 to 5% by weight of olefins.
【請求項2】  脱水反応に用いるγ−アルミナ触媒に
、SiO2 を0.5〜5重量%含有させてγ−アルミ
ナのα体への転移を抑制する方法。
2. A method for suppressing the transition of γ-alumina to the α form by containing 0.5 to 5% by weight of SiO2 in the γ-alumina catalyst used in the dehydration reaction.
JP3013516A 1991-02-04 1991-02-04 Gamma-alumina catalyst for dehydration reaction and method for producing olefins using this catalyst Expired - Lifetime JP2976396B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP3013516A JP2976396B2 (en) 1991-02-04 1991-02-04 Gamma-alumina catalyst for dehydration reaction and method for producing olefins using this catalyst
EP92300837A EP0498573B1 (en) 1991-02-04 1992-01-31 Process for producing propylene
DE69212854T DE69212854T2 (en) 1991-02-04 1992-01-31 Process for the production of propylene
KR1019920001434A KR100219691B1 (en) 1991-02-04 1992-01-31 Process for producing lower olefins
SG1996002780A SG59937A1 (en) 1991-02-04 1992-01-31 Process for producing lower olefins
AT92300837T ATE141579T1 (en) 1991-02-04 1992-01-31 METHOD FOR PRODUCING PROPYLENE
CN92100723A CN1034214C (en) 1991-02-04 1992-02-01 Process for producing lower olefins
CA002060527A CA2060527A1 (en) 1991-02-04 1992-02-03 Process for producing lower olefins
US08/161,061 US5475183A (en) 1991-02-04 1993-12-03 Process for producing lower olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013516A JP2976396B2 (en) 1991-02-04 1991-02-04 Gamma-alumina catalyst for dehydration reaction and method for producing olefins using this catalyst

Publications (2)

Publication Number Publication Date
JPH04247043A true JPH04247043A (en) 1992-09-03
JP2976396B2 JP2976396B2 (en) 1999-11-10

Family

ID=11835319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013516A Expired - Lifetime JP2976396B2 (en) 1991-02-04 1991-02-04 Gamma-alumina catalyst for dehydration reaction and method for producing olefins using this catalyst

Country Status (1)

Country Link
JP (1) JP2976396B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504305A (en) * 2006-09-22 2010-02-12 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Process for producing olefins
JP2011528705A (en) * 2008-07-22 2011-11-24 アルケマ フランス Production of vinyl propionate from renewable materials, the resulting vinyl propionate and its use
JP5221773B2 (en) * 2009-10-30 2013-06-26 花王株式会社 Process for producing olefins
WO2015170686A1 (en) * 2014-05-07 2015-11-12 三菱レイヨン株式会社 Method for producing isobutylene from isobutanol
WO2016171178A1 (en) * 2015-04-22 2016-10-27 三菱レイヨン株式会社 Catalyst for isobutylene production and method for producing isobutylene
KR20160148677A (en) 2014-07-02 2016-12-26 미쯔비시 레이온 가부시끼가이샤 Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
KR20190039276A (en) 2016-09-06 2019-04-10 미쯔비시 케미컬 주식회사 Separation and purification method of isobutylene and production method of isobutylene

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504305A (en) * 2006-09-22 2010-02-12 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Process for producing olefins
JP2011528705A (en) * 2008-07-22 2011-11-24 アルケマ フランス Production of vinyl propionate from renewable materials, the resulting vinyl propionate and its use
JP5221773B2 (en) * 2009-10-30 2013-06-26 花王株式会社 Process for producing olefins
WO2015170686A1 (en) * 2014-05-07 2015-11-12 三菱レイヨン株式会社 Method for producing isobutylene from isobutanol
KR20160130279A (en) 2014-05-07 2016-11-10 미쯔비시 레이온 가부시끼가이샤 Method for producing isobutylene from isobutanol
US10464860B2 (en) 2014-05-07 2019-11-05 Mitsubishi Chemical Corporation Method for producing isobutylene from isobutanol
JPWO2015170686A1 (en) * 2014-05-07 2017-04-20 三菱レイヨン株式会社 Process for producing isobutylene from isobutanol
US9840453B2 (en) 2014-07-02 2017-12-12 Mitsubishi Chemical Corporation Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
KR20160148677A (en) 2014-07-02 2016-12-26 미쯔비시 레이온 가부시끼가이샤 Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
JPWO2016002649A1 (en) * 2014-07-02 2017-04-27 三菱レイヨン株式会社 Method for producing isobutylene, method for producing methacrylic acid, and method for producing methyl methacrylate
WO2016171178A1 (en) * 2015-04-22 2016-10-27 三菱レイヨン株式会社 Catalyst for isobutylene production and method for producing isobutylene
KR20170100639A (en) 2015-04-22 2017-09-04 미쯔비시 케미컬 주식회사 Catalyst for isobutylene production and method for producing isobutylene
JP6103149B1 (en) * 2015-04-22 2017-03-29 三菱レイヨン株式会社 Catalyst for producing isobutylene and method for producing isobutylene
US10550046B2 (en) 2015-04-22 2020-02-04 Mitsubishi Chemical Corporation Catalyst for isobutylene production and method for producing isobutylene
KR20190039276A (en) 2016-09-06 2019-04-10 미쯔비시 케미컬 주식회사 Separation and purification method of isobutylene and production method of isobutylene
US10550052B2 (en) 2016-09-06 2020-02-04 Mitsubishi Chemical Corporation Method for separating and purifying isobutylene and method for producing isobutylene

Also Published As

Publication number Publication date
JP2976396B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
US5475183A (en) Process for producing lower olefins
US8680356B2 (en) Catalyst and process for preparing isoolefins
US9254479B2 (en) Process and catalyst for cracking of ethers and alcohols
US10328420B2 (en) Dehydration-hydrolysis processes and catalysts therefor
JP2007291076A (en) Method for producing propylene
EA009401B1 (en) Removal of oxygenate from an olefin stream
US4777322A (en) Obtaining but-2-enes from C4 -hydrocarbon mixtures which contain but-1-ene and may or may not contain but-2-enes
EP0090569A1 (en) A process for the low polymerization of isobutene
JP2911244B2 (en) Method for producing lower olefins
JP2976396B2 (en) Gamma-alumina catalyst for dehydration reaction and method for producing olefins using this catalyst
FR2534574A1 (en) PROCESS FOR THE PREPARATION OF ALCOHOLS BY MOISTURIZING OLEFINS
US5149896A (en) Process for oligomerizing light olefins
JP2746694B2 (en) Propylene production method
JPH04226926A (en) Method for preparation of alkylbenzene using catalyst based on dealuminized zeolite y
JP2832047B2 (en) Propylene production method
RU2412148C1 (en) Single-step method of producing isoprene
JP2551647B2 (en) Propylene production method
JPH03123738A (en) Production of propylene
JPH0244455B2 (en)
JPS61167634A (en) Production of 2-ethylhexenal
CN105712829B (en) The method that MTBE and TBA compounds prepare isobutene
JPH0789893A (en) Production of acyl group-substituted aromatic compound
JPH05255188A (en) Production of unsaturated carboxylic acid ester
JPH07173095A (en) Production of acyl-substituted aromatic compound in vapor phase
JP2001040367A (en) Isomerization method for hydrocarbon, solid acid catalyst used therein, and isomerization apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 12