WO2015111557A1 - Antenna - Google Patents

Antenna Download PDF

Info

Publication number
WO2015111557A1
WO2015111557A1 PCT/JP2015/051283 JP2015051283W WO2015111557A1 WO 2015111557 A1 WO2015111557 A1 WO 2015111557A1 JP 2015051283 W JP2015051283 W JP 2015051283W WO 2015111557 A1 WO2015111557 A1 WO 2015111557A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna
directivity
dipole
vertical
Prior art date
Application number
PCT/JP2015/051283
Other languages
French (fr)
Japanese (ja)
Inventor
英伸 平松
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to CN201580005192.8A priority Critical patent/CN106415928B/en
Publication of WO2015111557A1 publication Critical patent/WO2015111557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/145Reflecting surfaces; Equivalent structures comprising a plurality of reflecting particles, e.g. radar chaff
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to an antenna.
  • An antenna that is installed on a ceiling or a wall and used indoors is required to have a thin planar structure from the viewpoint of installation and landscape.
  • EBG Electromagnetic Band Gap
  • Patent Document 1 discloses a radio communication system configured to secondarily radiate a radio wave primarily emitted from a transmission-side device to a desired area by reflection using a reflector that controls the phase of a reflected wave.
  • the reflection plate has a reflection characteristic set so as to reflect the radio wave primarily radiated from the transmission side device as a plane wave having an equal phase directed in a direction different from a reflection angle in the case of specular reflection.
  • An object of the present invention is to provide a low-profile antenna that can transmit and receive radio waves in a direction inclined from a direction perpendicular to a reflector.
  • an antenna to which the present invention is applied is arranged at a first predetermined distance in a direction perpendicular to a plane made of a conductive material and a conductor made of a conductive material.
  • a plurality of patches having a region where the ratio of the surface area facing the conductor per predetermined area varies in a predetermined direction, and a plurality of conductor patches in a direction perpendicular to the plane including the conductor.
  • a radiating element provided at a predetermined second distance for transmitting and receiving radio waves.
  • a radio wave having a polarization intersecting with the polarization of the radio wave transmitted and received by the radiating element is transmitted and received at a predetermined third distance from the plurality of conductor patches in a direction orthogonal to the plane including the conductor.
  • Another radiating element may be further provided. Thereby, it can be set as the antenna of polarization sharing.
  • the change in the ratio of the surface area facing the conductor in the aforementioned region of the plurality of patches may be a change in the surface area of the patch included in this region.
  • the interval between the plurality of patches may be different between a predetermined direction and a direction orthogonal to the predetermined direction. Thereby, the directivity of both polarized waves can be controlled separately.
  • the change in the ratio of the surface area facing the conductor in the aforementioned region of the plurality of patches may be a change in the distance between the patches included in the aforementioned region.
  • the center of either or both of the radiating element and the other radiating element may be arranged so as to be deviated from the center of the aforementioned region in a predetermined direction.
  • the direction of radio waves that can be transmitted and received can be increased from the direction perpendicular to the reflector.
  • the plurality of conductor patches are provided so as to exclude a portion facing either or both of the radiating element and the other radiating element. This facilitates power feeding to the radiating element or other radiating elements.
  • a low-profile antenna that can transmit and receive radio waves in a direction inclined from a direction perpendicular to the reflector.
  • FIG. 1 It is a perspective view which shows an example of the whole structure of the antenna with which 1st Embodiment is applied. It is the top view and sectional drawing of the antenna with which 1st Embodiment is applied.
  • (A) is a plan view of the antenna
  • (b) is a cross-sectional view taken along line IIb-IIb in (a) of the antenna
  • (c) is a cross-sectional view taken along line IIc-IIc in (a) of the antenna.
  • (A) is a structure of the conductor patch in a reflecting plate
  • (b) is a figure which shows the structure of a dipole element. It is a perspective view which shows an example of the whole structure of the antenna with which 2nd Embodiment is applied. It is the top view and sectional drawing of an antenna with which 2nd Embodiment is applied.
  • (A) is a plan view of the antenna
  • (b) is a cross-sectional view taken along line Vb-Vb in (a) of the antenna
  • (c) is a cross-sectional view taken along line Vc-Vc in (a) of the antenna. It is a figure which shows the structure of the conductor patch and dipole element in the reflecting plate of the antenna with which 2nd Embodiment is applied.
  • (A) is a structure of the conductor patch in a reflecting plate
  • (b) is a figure which shows the structure of a dipole element. It is a figure which shows the directivity in the vertical direction (in a vertical surface) of the antenna 1 with which 2nd Embodiment is applied, and its frequency (f) dependence.
  • (A) is a figure explaining the space
  • (b) is a figure explaining the incident wave and reflected wave with respect to a reflecting plate
  • (c) is the reflection phase difference with respect to the frequency f, and the space
  • (A) is a case where the center of the dipole element is shifted from the center of the reflecting plate to the positive side in the vertical direction
  • (b) is a case where the center of the dipole element is placed at the center of the reflecting plate
  • (c) is The case where the center of the dipole element is shifted from the center of the reflector to the negative side in the vertical direction is shown. It is a figure which shows the relationship between the position R of the dipole element center with respect to the reflector center, and tilt angle (theta). It is a top view of the antenna with which 4th Embodiment is applied. It is a figure which shows the directivity in the orthogonal
  • FIG. 1 is a perspective view showing an example of the overall configuration of an antenna 1 to which the first embodiment is applied.
  • the antenna 1 is arranged in parallel with a conductor 11 made of a conductive material and a predetermined distance (distance L3 in FIG. 2 described later) in a direction orthogonal to the plane including the conductor 11.
  • a predetermined distance in a direction orthogonal to the plane including the conductor 11 from the plurality of conductor patches 12 and the reflector 10 including the plurality of conductor patches 12 made of the conductive material formed FIG. 1
  • the reflector 10 includes an conductor 11 and a plurality of conductor patches 12 to form an EBG structure.
  • the dipole element 20 is provided with a halftone dot.
  • the conductor 11 of the reflecting plate 10 is a rectangle, and along the sides of the rectangle, the direction from the lower side to the upper side in FIG. 1 is the vertical direction, and the direction from the left side to the right side is the horizontal direction.
  • the plurality of conductor patches 12 are configured such that the surface area (surface area) of the conductor patch 12 changes in the vertical direction, as will be described later with reference to FIG. That is, the plurality of conductor patches 12 are set so that the surface area becomes smaller from the upper part to the lower part in the vertical direction.
  • each of the plurality of conductor patches 12 may be referred to as a conductor patch 12, and the plurality of conductor patches 12 may be collectively referred to as a conductor patch 12.
  • the dipole element 20 includes a pair of element portions 20a and 20b in the vertical direction.
  • the dipole element 20 transmits and receives vertically polarized waves.
  • the direction of polarization coincides with the direction in which the surface area decreases in the plurality of conductor patches 12.
  • the dipole element 20 has a feeding point at the center of the element portions 20a and 20b (see FIG. 3) and transmits and receives radio waves.
  • the description of the method of feeding power to the dipole element 20 is omitted.
  • the angle ⁇ extends from the direction of the vertical line (perpendicular direction) perpendicular to the reflector 10 to the side with the larger surface area of the conductor patch 12.
  • the main beam is emitted in a direction (radiation direction) inclined (angle ⁇ ). The same applies to the case of receiving radio waves due to the reversibility of the antenna.
  • the conductor 11 should just be comprised with the electrically-conductive material, for example, metal plates, such as Al and Cu, are applicable.
  • the conductor 11 may be a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy.
  • the conductor patch 12 should just be comprised with the electrically-conductive material, for example, metal plates, such as Al and Cu, are applicable.
  • the conductor patch 12 may also be constituted by a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy.
  • the dipole element 20 also needs to have element parts 20a and 20b made of a conductive material. For example, a metal plate such as Al or Cu can be applied.
  • the element parts 20a and 20b may also be constituted by a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy.
  • FIG. 2 is a plan view and a cross-sectional view of the antenna 1 to which the first embodiment is applied.
  • 2 (a) is a plan view of the antenna 1
  • FIG. 2 (b) is a cross-sectional view of the antenna 1 taken along line IIb-IIb in FIG. 2 (a)
  • FIG. 2 (c) is a diagram of FIG.
  • FIG. 11 is a sectional view taken along line IIc-IIc in FIG.
  • the antenna 1 includes a reflector 10 including a conductor 11 and a plurality of conductor patches 12 and a dipole element 20.
  • the conductor 11 is a square having a side length L1.
  • the dipole element 20 is provided at a position of a distance L2 as an example of a second distance from the conductor patch 12 of the reflecting plate 10.
  • the plurality of conductor patches 12 are provided at a distance L 3 as an example of a first distance from the conductor 11.
  • the plurality of conductor patches 12 of the reflector 10 are configured to have a small surface area in the direction from the upper part to the lower part in the vertical direction.
  • the distance L4 is from the lower end in the vertical direction of the reflecting plate 10 to the center of the dipole element 20, and the distance L5 is from the upper end in the vertical direction of the reflecting plate 10 to the center of the dipole element 20.
  • the conductor 11 and the conductor patch 12 in the reflecting plate 10 are not connected.
  • the conductor 11 and the conductor patch 12 may be connected by a conductive material to form a so-called mushroom structure.
  • FIG. 3 is a diagram illustrating a configuration of the plurality of conductor patches 12 and the dipole element 20 in the reflector 10 of the antenna 1 to which the first embodiment is applied.
  • FIG. 3A is a diagram showing the configuration of the plurality of conductor patches 12 of the reflecting plate 10
  • FIG. 3B is a diagram showing the configuration of the dipole element 20.
  • the plurality of conductor patches 12 of the reflector 10 are square conductor patches 12a, 12b, 12c, 12d, and 12e whose side lengths change from the upper part to the lower part in the vertical direction. , 12f, 12g, 12h, 12i.
  • a plurality of conductor patches 12 having the same side length in the horizontal direction are arranged so as to be symmetric with respect to the center in the horizontal direction.
  • Conductor patch 12a has one side length L7
  • conductor patch 12b has one side length L9
  • conductor patch 12c has one side length L10
  • conductor patch 12d has one side length L11
  • conductor patch 12e has one side length L12
  • conductor patch 12f has one side length L13
  • conductor patch 12g is one side length L14
  • the conductor patch 12h is one side length L15
  • the conductor patch 12i is one side length L16.
  • the conductor patch 12 is arrange
  • the dipole element 20 has element portions 20a and 20b arranged in the vertical direction.
  • the horizontal direction of the element parts 20a and 20b is a width L17, and the whole of the element parts 20a and 20b arranged in the vertical direction is a length L19.
  • the radio wave transmitted and received by the antenna 1 is assumed to have a center wavelength ⁇ 0 (center frequency f 0 ) in free space.
  • the side length L1 of the conductor 11 of the reflector 10 is 1.3 ⁇ 0
  • the distance L2 between the conductor patch 12 and the dipole element 20 in the reflector 10 is 0.02 ⁇ 0
  • the conductor 11 and conductor patch 12 in the reflector 10 L3 is 0.04 ⁇ 0
  • the distance L4 from the vertical lower end of the reflector 10 to the center of the dipole element 20 is 0.5 ⁇ 0
  • the distance L5 from the upper end to the center of the dipole element 20 is 0.8 ⁇ 0. It is.
  • Dipole elements 20, the center in the vertical direction of the reflector 10, are arranged offset to 0.15Ramuda 0 lower. This is because the tilt angle ⁇ can be increased by disposing the center of the dipole element 20 from the center of the conductor 11 to the side where the surface area of the conductor patch 12 is small. That is, the distance between the end of the conductor patch 12 (the upper end of the conductor patch 12a in FIG. 3A) and the center of the dipole element 20 also affects the tilt angle ⁇ .
  • Side length L7 is 0.24Ramuda 0 conductor patches 12a
  • one side length L9 is 0.21Ramuda 0 conductor patches 12b
  • one side length L10 of the conductor patch 12c is 0.18 ⁇
  • one side length L11 of the conductor patch 12d is 0.15 ⁇ 0
  • the side length L12 of the conductor patch 12e is 0.13 ⁇ 0
  • the side length L13 of the conductor patch 12f is 0.1 ⁇ 0
  • the side length L14 of the conductor patch 12g is 0.07 ⁇ 0
  • the side length L15 of the conductor patch 12h is 0 .04 ⁇ 0
  • the side length L16 of the conductor patch 12i is 0.02 ⁇ 0 .
  • the horizontal interval L6 of the conductor patch 12 is 0.02 ⁇ 0
  • the width L17 of the element portions 20a and 20b of the dipole element 20 is 0.12 ⁇ 0
  • the total length L19 of the element portions 20a and 20b is 0.38 ⁇ 0 .
  • the height (distance L2 +) from the conductor 11 to the dipole element 20 in the reflector 10 is used by using the reflector 10 that is an EBG structure.
  • distance L3 becomes the 0.06 0.
  • the height of generally from conductor 11 to the dipole elements 20 is about 0.25 [lambda 0. That is, the antenna 1 to which the first embodiment is applied can be lowered in posture as compared with the case where the reflector 10 that is an EBG structure is not used.
  • the radiation direction of the main beam can be tilted (tilt angle ⁇ ) in the direction in which the area of the conductor patch 12 is large with respect to the normal direction of the reflector 10.
  • tilt angle ⁇ tilt angle
  • the conductor 11 and the conductor patch 12 are arranged depending on the surface shape of the conductor patch 12 constituting the reflecting plate 10 and the distance between the conductor patches 12.
  • the inductance and the capacitance between the conductor patches 12 are different. Therefore, the inductance or / and the capacitance is distributed by changing the surface area of the conductor patch 12 from the upper part to the lower part of the reflector 10 in the vertical direction.
  • the antenna 1 transmits radio waves
  • the direction of the main beam of the radio waves emitted from the dipole element 20 can be tilted (tilted).
  • the directivity of the antenna 1 in the vertical direction can also be controlled. The same applies to the case of receiving radio waves due to the reversibility of the antenna.
  • the antenna 1 shown in FIGS. 1 and 2 is configured such that a plurality of conductor patches 12 provided in parallel at a predetermined distance from the conductor 11, for example, all of the conductor patches 12 are changed in the vertical direction. .
  • This can be considered that the ratio of the surface area occupied by the conductor patch 12 per predetermined area so as to include the conductor patch 12 having the largest surface area changes in the vertical direction (predetermined direction).
  • the change in the surface area of the conductor patch 12 or the ratio of the surface area occupied by the conductor patch 12 may be set in accordance with the distance in the vertical direction, and the tilt angle and directivity can be controlled by the ratio of these changes.
  • the area of the conductor patch 12 is continuously changed for each piece in the vertical direction, but may be changed for each piece, and may be changed for each different number. It may be changed.
  • a predetermined distance from the conductor 11, for example, a plurality of conductor patches 12 provided in parallel are all configured to change the surface area in the vertical direction.
  • an area including a plurality of conductor patches 12 whose surface area varies in the vertical direction may be defined as an area, and the conductor patch 12 whose surface area does not vary may be provided outside the area.
  • the dipole element 20 should just be provided in the area
  • the dipole element 20 in the antenna 1 includes a pair of element portions 20a and 20b, and transmits and receives vertically polarized waves.
  • the dipole element 20 in the antenna 1 includes a pair of element portions 20a and 20b, and transmits and receives vertically polarized waves.
  • the antenna 1 in the second embodiment, in the antenna 1, four dipole elements 21, 22, 23, and 24 are used as another example of the radiating element, and in addition to the vertical polarization, a horizontal polarization orthogonal to the vertical polarization is used. Waves can be sent and received.
  • FIG. 4 is a perspective view showing an example of the overall configuration of the antenna 1 to which the second embodiment is applied.
  • the configuration of the reflector 10 is the same as that of the first embodiment.
  • the configuration of the dipole elements 21, 22, 23, 24 will be described later.
  • FIG. 5 is a plan view and a cross-sectional view of the antenna 1 to which the second embodiment is applied.
  • 5A is a plan view of the antenna 1
  • FIG. 5B is a cross-sectional view of the antenna 1 taken along the line Vb-Vb in FIG. 5A
  • FIG. FIG. 5 is a cross-sectional view taken along line Vc-Vc in FIG. Since it is the same as that of the first embodiment shown in FIG. 2 except that four dipole elements 21, 22, 23, and 24 are used, the same reference numerals are given and description thereof is omitted.
  • the distance L4 is the distance from the lower end of the reflecting plate 10 in the vertical direction to the center of the dipole element 21 or the dipole element 23.
  • the distance L5 is the upper end of the reflecting plate 10 in the vertical direction of the dipole element 21 or the center of the dipole element 23.
  • the distance is up to.
  • the dipole elements 21, 22, 23, and 24 and the conductor patch 12 in the reflector 10 are provided at a distance L2.
  • the distance to the conductor patch 12 in the reflecting plate 10 may be different between the dipole elements 21 and 23 that are vertical polarization elements and the dipole elements 22 and 24 that are horizontal polarization elements.
  • the distance between the dipole elements 21 and 23 and the conductor patch 12 in the reflector 10 is an example of the second distance
  • the distance between the dipole elements 22 and 24 and the conductor patch 12 in the reflector 10 is the third distance. It is an example.
  • the second distance and the third distance may be the same.
  • FIG. 6 is a diagram illustrating the configuration of the conductor patch 12 and the dipole elements 21, 22, 23, and 24 in the reflector 10 of the antenna 1 to which the second embodiment is applied.
  • 6A is a diagram showing the configuration of the conductor patch 12 in the reflector 10
  • FIG. 6B is a diagram showing the configuration of the dipole elements 21, 22, 23, and 24.
  • FIG. The configuration of the conductor patch 12 of the reflector 10 shown in FIG. 6A is the same as that of the first embodiment shown in FIG. Therefore, the same reference numerals are given and description thereof is omitted.
  • the four dipole elements 21, 22, 23, and 24 will be described.
  • the element portions 21a and 21b of the dipole element 21 and the element portions 23a and 23b of the dipole element 23 are arranged in the vertical direction
  • the element portions 22a and 22b of the dipole element 22 and the element portions 24a and 24b of the dipole element 24 are arranged in the horizontal direction. Is arranged. That is, the dipole elements 21 and 23 transmit and receive vertical polarization, and the dipole elements 22 and 24 transmit and receive horizontal polarization. Therefore, the antenna 1 is shared with polarization.
  • the dipole element 21 and the dipole element 23 are referred to as a vertical polarization element, and the dipole element 22 and the dipole element 24 are referred to as a horizontal polarization element. Note that either one of the dipole elements 21 and 23 and / or one of the dipole elements 22 and 24 may be omitted.
  • the element portions 21a and 21b of the dipole element 21, the element portions 22a and 22b of the dipole element 22, the element portions 23a and 23b of the dipole element 23, and the element portions 24a and 24b of the dipole element 24 each have a width L17.
  • the entire dipole elements 21, 22, 23, and 24 have a length L19.
  • the total length L19 is the end of each element part (element part 21a, 21b, element part 22a, 22b, element part 23a, 23b, element part 24a, 24b) of dipole element 21, 22, 23, 24. It is the length from to the end.
  • the distance between the centers of the dipole element 21 and the dipole element 23 that both transmit and receive vertically polarized waves is a distance L18.
  • the distance between the centers of the dipole element 22 and the dipole element 24 that both transmit and receive horizontal polarization is also the distance L18.
  • the element portions of the dipole elements 21, 22, 23, and 24 are cut obliquely at portions that are close to each other in an L shape, such as the element portion 21a and the element portion 22b.
  • the distance between the centers of the dipole element 21 and the dipole element 23 and the distance between the centers of the dipole element 22 and the dipole element 24 are the same. The distances may be set to different distances depending on (width).
  • Each of the dipole elements 21, 22, 23, 24 is also made of a conductive material in each element part (element parts 21a, 21b, element parts 22a, 22b, element parts 23a, 23b, element parts 24a, 24b).
  • a metal plate such as Al or Cu can be applied.
  • the element portions 21a and 21b, the element portions 22a and 22b, the element portions 23a and 23b, and the element portions 24a and 24b may be metal bars such as Al and Cu, for example.
  • the element portions 21a and 21b, the element portions 22a and 22b, the element portions 23a and 23b, and the element portions 24a and 24b are made of metal layers such as Al and Cu provided on a substrate made of a dielectric material such as glass epoxy. It may be constituted by.
  • Examples of numerical values such as the side length L1 in the antenna 1 shown in FIGS. 5 and 6 are the same as those in the first embodiment.
  • the distance L18 between the centers of the dipole elements 22 and the dipole elements 24 for transmitting and receiving between the centers and both horizontal polarization and dipole elements 21 and the dipole elements 23 which together receive the vertical polarization is 0.42 ⁇ 0.
  • FIG. 7 is a diagram illustrating the directivity in the vertical direction (in the vertical plane) and the frequency (f) dependency of the antenna 1 to which the second embodiment is applied.
  • all dipole elements 21, 22, 23, and 24 are fed in the same phase.
  • vertical polarization elements dipole elements 21 and 23 in FIGS. 4 and 5
  • horizontal polarization elements Dipole elements 22 and 24 in FIGS. 4 and 5
  • the area of the conductor patch 12 is reduced from the upper part to the lower part in the vertical direction.
  • the radiation direction of the beam can be tilted (tilted) from the normal direction of the reflecting plate 10.
  • the reason why the tilt angle ⁇ varies depending on the frequency f is that the inductance between the conductor 11 and the conductor patch 12 and the capacitance between the conductor patches 12 have frequency dependence.
  • the second embodiment In the second embodiment, four dipole elements 21, 22, 23, and 24 are used, and polarization sharing is used so that both vertical polarization and horizontal polarization can be transmitted and received.
  • FIG. 8 is a diagram showing the relationship between the reflection phase difference of the reflected wave with respect to the incident wave and the distance d between the conductor patches 12 in the reflector 10 formed of the EBG structure.
  • 8A is a diagram for explaining the distance d between the conductor patches 12
  • FIG. 8B is a diagram for explaining an incident wave and a reflected wave with respect to the reflector 10
  • FIG. 8C is a reflection phase difference with respect to the frequency f. It is a figure which shows the relationship between the space
  • the relationship between the reflection phase difference with respect to the frequency f and the distance d between the conductor patches 12 shown in FIG. 8C was obtained as follows. First, it is assumed that the conductor patch 12 is placed infinitely at a predetermined distance from the conductor 11 having an infinite area, for example, in parallel with an interval d (see FIG. 8A). Then, a plane wave was used as an incident wave with respect to the reflecting plate 10, and the reflection phase difference of the reflected wave with respect to the incident wave was calculated (see FIG. 8B). In FIG. 8C, the frequency f at which the reflection phase difference is 0 ° when the interval d is the smallest is shown as the center frequency f 0 .
  • the reflection phase difference is often used in the range of ⁇ 90 to 90 °.
  • FIG. 9 is a perspective view showing an example of the overall configuration of the antenna 1 to which the third embodiment is applied.
  • the horizontal interval L6 of the conductor patch 12 in the reflector 10 of the antenna 1 to which the second embodiment shown in FIG. A wide interval L6 ′ is set.
  • the vertical interval L8 between the conductor patches 12 is the same as that of the antenna 1 to which the second embodiment shown in FIG. 6A is applied.
  • FIG. 10 is a plan view of the antenna 1 to which the third embodiment is applied.
  • the side length L1 of the conductor 11 in the reflector 10 is the same as that of the second embodiment shown in FIG.
  • the conductor patches 12 in the reflector 10 are arranged at an interval L6 ′ whose horizontal direction is wider than the interval L6 to which the second embodiment shown in FIG. 5A is applied.
  • the conductor patch 12 is disposed so as to spread in the horizontal direction. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
  • FIG. 11 is a diagram showing the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the third embodiment is applied and its frequency (f) dependency.
  • the tilt angle ⁇ of these vertical polarization elements is close to the tilt angle ⁇ of the vertical polarization element of the antenna 1 to which the second embodiment shown in FIGS. 7A, 7B, and 7C is applied. .
  • the area of the conductor patch 12 is reduced from the upper part to the lower part in the vertical direction, and the horizontal direction of the conductor patch 12 is set to the interval L6 ′.
  • the interval is larger than the interval L6 to which the second embodiment is applied.
  • the horizontal direction of the conductor patch 12 in the reflecting plate 10 is set to an interval L6 ′ wider than the interval L6 from the interval L6 to which the second embodiment is applied. Same as L8.
  • the directivity of the horizontal polarization element is changed while maintaining the directivity of the vertical polarization element in the same manner as the antenna 1 of the second embodiment. That is, by setting the horizontal interval L6 and the vertical interval L8 separately, the directivity of the horizontal polarization element and the vertical polarization element can be controlled separately.
  • FIG. 12 is a diagram illustrating that the center of the dipole element is shifted from the center of the reflector in the vertical direction.
  • FIG. 12A shows a case where the center of the dipole element is shifted from the center of the reflector to the positive side in the vertical direction, that is, the side where the surface area of the conductor patch 12 is large.
  • FIG. 12C shows a case where the center of the dipole element is shifted from the center of the reflector to the negative side in the vertical direction, that is, the side where the surface area of the conductor patch 12 is small.
  • the position of the dipole element center (center of the dipole element 20) with respect to the reflector center (center of the reflector 10) is a position R
  • the position R is 0.4 ⁇ 0 in FIG. 12A and FIG. ) Is 0
  • FIG. 12C is -0.4 ⁇ 0.
  • FIG. 13 is a diagram showing the relationship between the position R of the dipole element center relative to the center of the reflector and the tilt angle ⁇ .
  • the tilt angle ⁇ of the vertical polarization element and the horizontal polarization element changes with the position R.
  • the tilt angle ⁇ is positive, that is, the main beam is inclined to the positive side in the vertical direction (the side where the surface area of the conductor patch 12 is large).
  • the tilt angle ⁇ is negative, that is, the main beam is tilted to the negative side in the vertical direction (side where the surface area of the conductor patch 12 is small).
  • FIG. 13 is a diagram showing the relationship between the position R of the dipole element center relative to the center of the reflector and the tilt angle ⁇ .
  • the tilt angle ⁇ of the vertical polarization element and the horizontal polarization element changes with the position R.
  • the tilt angle ⁇ is positive, that is, the main beam is inclined to the positive side in the vertical direction (the side where the surface area of the conductor patch 12 is large).
  • the dipole element is shifted from the side where the position R is negative, that is, the side where the surface area of the conductor patch 12 is small.
  • the conductor patch 12 is not provided in a portion where the dipole elements 21, 22, 23, and 24 are opposed to each other among the plurality of conductor patches 12 of the reflector 10. This makes it easy to provide a power feeding circuit that feeds power to the dipole elements 21, 22, 23, and 24.
  • FIG. 14 is a plan view of the antenna 1 to which the fourth embodiment is applied.
  • the antenna 1 in the plurality of conductor patches 12 of the antenna 1 to which the third embodiment shown in FIG. 10 is applied, of the plurality of conductor patches 12c arranged in the horizontal direction, One provided in the center of the direction is not provided.
  • the plurality of conductor patches 12d arranged in the horizontal direction three provided at the center in the horizontal direction are not provided.
  • the plurality of conductor patches 12e arranged in the horizontal direction three provided at the center in the horizontal direction are not provided.
  • Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
  • FIG. 15 is a diagram illustrating the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the fourth embodiment is applied.
  • the radiation direction of the main beam of the vertical polarization element and the horizontal polarization element is tilted from the normal direction of the reflection plate 10 without providing the conductor patch 12 in the portion where the dipole elements 21, 22, 23, 24 are provided. (Tilt).
  • the plurality of conductor patches 12 of the reflector 10 have a square surface shape.
  • the surface shape of the plurality of conductor patches 12 of the reflector 10 is rectangular.
  • FIG. 16 is a plan view of the antenna 1 to which the fifth embodiment is applied. As shown in FIG. 16, in the antenna 1, the surface shape of the conductor patch 12 of the antenna 1 to which the third embodiment shown in FIG. 10 is applied is changed from a square to a rectangle. Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
  • FIG. 17 is a diagram showing the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the fifth embodiment is applied.
  • the conductor patch 12 is a rectangle whose horizontal direction is longer than the vertical direction, but may be a rectangle whose horizontal direction is shorter than the vertical direction.
  • the surface shape of the plurality of conductor patches 12 of the reflector 10 is circular.
  • FIG. 18 is a plan view of the antenna 1 to which the sixth embodiment is applied.
  • the surface shape of the conductor patch 12 of the antenna 1 to which the third embodiment shown in FIG. 10 is applied is changed from a square to a circle.
  • Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
  • FIG. 19 is a diagram showing the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the sixth embodiment is applied.
  • the radiation direction of the main beam of the vertical polarization element and the horizontal polarization element can be tilted (tilted) from the normal direction of the reflector 10.
  • the surface shape of the conductor patch 12 may be an ellipse.
  • the surface shape of the plurality of conductor patches 12 of the reflecting plate 10 is a square having the same surface area, and the vertical interval is changed.
  • FIG. 20 is a plan view of the antenna 1 to which the seventh embodiment is applied.
  • the surface shape of the conductor patch 12 is a square having the same surface area. Then, the conductor patch 12 is arranged with intervals L81, L82, L83, L84, L85, L86 from the lower part to the upper part in the vertical direction and gradually narrowed (L81>L82>L83>L84>L85> L86). ). Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
  • FIG. 21 is a diagram illustrating the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the seventh embodiment is applied.
  • the radiation directions of the main beams of the vertical polarization element and the horizontal polarization element are inclined from the normal direction of the reflector 10. (Tilt).
  • the dipole element 20 is used in the antenna 1, and the dipole elements 21, 22, 23, and 24 are used in the antenna 1 in the second to seventh embodiments.
  • the antenna 1 uses a patch element which is still another example of a radiating element, and is combined with the reflector 10 to form a patch antenna.
  • FIG. 22 is a perspective view showing an example of the overall configuration of the antenna 1 to which the eighth embodiment is applied.
  • the patch element 25 includes a patch portion 25a and a power feeding portion 25b. Power is supplied from the back side of the reflector 10 to the power supply unit 25b.
  • Other configurations are the same as those of the antenna 1 to which the first exemplary embodiment is applied, and thus the same reference numerals are given and description thereof is omitted.
  • the surface area of the conductor patch 12 in the reflector 10 is changed in the vertical direction.
  • the surface area of the conductor patch 12 in the reflecting plate 10 changes not only in the vertical direction but also in the horizontal direction.
  • FIG. 23 is a perspective view showing an example of the overall configuration of the antenna 1 to which the ninth embodiment is applied.
  • a direction along one side of the reflecting plate 10 is the x direction (vertical direction), and a direction orthogonal to one side (rightward direction on the paper surface).
  • the direction perpendicular to the reflecting plate 10 is taken as the z direction.
  • a direction between the x direction and the y direction is defined as a ⁇ 45 ° direction.
  • the conductor patch 12 is arranged so that the surface area becomes smaller as it goes in the x direction, and the surface area becomes smaller as it goes in the y direction.
  • a conductor patch 12 is disposed. That is, the conductor patch 12 having a small surface area is arranged in two directions, the x direction and the y direction.
  • Other configurations such as the dipole elements 21, 22, 23, and 24 are the same as those in the second embodiment, and thus the same reference numerals are given and description thereof is omitted.
  • FIG. 24 is a plan view of the antenna 1 to which the ninth embodiment is applied.
  • the conductor patch 12 in the reflecting plate 10 is provided with a conductor patch 12 having a small surface area along the x direction and the y direction.
  • the spacing between the conductor patches 12 is also increased along the x direction and the y direction. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
  • FIG. 25 is a diagram illustrating the directivity of the vertical polarization element of the antenna 1 to which the ninth embodiment is applied.
  • 25 (a) shows the directivity of the vertical polarization element in the xz plane
  • FIG. 25 (b) shows the directivity of the vertical polarization element in the yz plane
  • FIG. 25 (c) shows ⁇ This is the directivity of the vertical polarization element in the 45 ° -z plane.
  • the tilt angle ⁇ of the vertical polarization element of the antenna 1 is 10.3 ° in the ⁇ x direction, that is, the direction in which the surface area of the conductor patch 12 increases. Further, as shown in FIG.
  • the tilt angle ⁇ of the vertical polarization element of the antenna 1 is 5.8 ° in the ⁇ y direction, that is, the direction in which the surface area of the conductor patch 12 increases. As shown in (c), the tilt angle ⁇ of the vertical polarization element of the antenna 1 is 10.3 ° in the ⁇ 45 ° direction.
  • the surface area of the conductor patch 12 that is, the ratio of the surface area occupied by the conductor patch 12 per predetermined area so as to include the conductor patch 12 having the largest surface area is changed in a plurality of directions in advance.
  • the tilt angle ⁇ and directivity of the main beam can be set in a predetermined direction.
  • patch element 25 described in the eighth embodiment may be used in place of the dipole elements 21, 22, 23, and 24.
  • the distance between the conductor 11 and the conductor patch 12 depends on the surface shape of the conductor patch 12 constituting the reflector 10 and the distance between the conductor patches 12.
  • the inductance and the capacitance between the conductor patches 12 change. Therefore, the reflector 10 has a distribution of inductance and / or capacitance, so that the reflector 10 for the main beam of radio waves transmitted and received by the radiating elements (dipole elements 20, 21, 22, 23, 24, patch element 25) is transmitted. It is possible to control the tilt angle ⁇ and the directivity with respect to the normal direction. Note that the tilt angle ⁇ and directivity can be set by the surface shape, area, interval, etc. of the conductor patch 12.
  • the surface shape of the conductor patch 12 is square, and in the fifth embodiment, the conductor patch 12 is used.
  • the surface shape of was made rectangular.
  • the surface shape of the conductor patch 12 is circular.
  • the surface shape of the conductor patch 12 may be a polygon or a shape surrounded by a curve. Furthermore, the shape enclosed by the straight line and the curve may be sufficient.
  • the radio waves can be transmitted and received in the vertical polarization and the horizontal polarization.
  • the radiating element dipole elements 20, 21, 22, 23, 24
  • the radiating element may be rotated by 45 ° around the center thereof.
  • a parasitic element around the radiation element (dipole elements 20, 21, 22, 23, 24, patch element 25) in the antenna 1 and / or far from the conductor 11 is provided. May be provided.

Abstract

An antenna (1) is a low-profile antenna capable of transmitting and receiving radio waves in a direction inclined from a direction perpendicular to a reflecting plate, and is provided with: a reflecting plate (10) comprising a conductor (11) formed from a conductive material, and a plurality of conductor patches (12) formed from a conductive material and arranged at a predetermined distance from the conductor (11) in a direction orthogonal to a plane including the conductor (11); and a dipole element (20) provided at another predetermined distance from the plurality of conductor patches (12) in the direction orthogonal to the plane including the conductor (11). The plurality of conductor patches (12) respectively have regions the ratios of the surface areas of which facing the conductor (11) to a predetermined area vary in a predetermined direction.

Description

アンテナantenna
 本発明は、アンテナに関する。 The present invention relates to an antenna.
 天井や壁などに設置されて屋内で使用されるアンテナとしては、設置や景観上の観点から、平面構造で薄型であることが求められる。
 メタマテリアル技術を用いたEBG(Electromagnetic Band Gap)構造体を反射板として用いることにより、アンテナを低姿勢化することが可能である。
An antenna that is installed on a ceiling or a wall and used indoors is required to have a thin planar structure from the viewpoint of installation and landscape.
By using an EBG (Electromagnetic Band Gap) structure using a metamaterial technique as a reflector, the antenna can be lowered.
 特許文献1には、反射波の位相を制御する反射板を用いて、送信側装置から一次放射された電波を、反射によって所望エリアに対して二次放射するように構成されている無線通信システムであって、前記反射板は、前記送信側装置から一次放射された電波を、鏡面反射の場合の反射角度と異なる方向に向かう等位相の平面波として反射させるように反射特性が設定されている無線通信システムが記載されている。 Patent Document 1 discloses a radio communication system configured to secondarily radiate a radio wave primarily emitted from a transmission-side device to a desired area by reflection using a reflector that controls the phase of a reflected wave. The reflection plate has a reflection characteristic set so as to reflect the radio wave primarily radiated from the transmission side device as a plane wave having an equal phase directed in a direction different from a reflection angle in the case of specular reflection. A communication system is described.
特開2010-62689号公報JP 2010-62689 A
 ところで、平面構造のアンテナを室内で使用する場合、アンテナが設置される位置とアンテナからの電波を送受信する位置との関係から、平面構造の平面に垂直な方向から傾いた(チルトした)方向に電波が送受信されることが求められる。
 本発明の目的は、反射板の垂直な方向から傾いた方向に電波を送受信できる低姿勢なアンテナを提供することにある。
By the way, when a planar antenna is used indoors, it is inclined (tilted) from a direction perpendicular to the plane of the planar structure because of the relationship between the position where the antenna is installed and the position where radio waves are transmitted and received from the antenna. It is required that radio waves are transmitted and received.
An object of the present invention is to provide a low-profile antenna that can transmit and receive radio waves in a direction inclined from a direction perpendicular to a reflector.
 かかる目的のもと、本発明が適用されるアンテナは、導電材料で構成された導体と、導電材料で構成され、導体を含む面に直交する方向に、予め定められた第1の距離に配置され、予め定められた面積当りにおける導体に対向する表面積の割合が、予め定められた方向において変化する領域を有する複数のパッチと、導体を含む面に直交する方向に、複数の導体パッチから予め定められた第2の距離に設けられ、電波を送受信する放射素子とを備えている。
 このようなアンテナにおいて、導体を含む面に直交する方向に、複数の導体パッチから予め定められた第3の距離に、放射素子の送受信する電波の偏波と交差する偏波の電波を送受信する他の放射素子がさらに設けられていることを特徴とすることができる。
 これにより、偏波共用のアンテナとすることができる。
For this purpose, an antenna to which the present invention is applied is arranged at a first predetermined distance in a direction perpendicular to a plane made of a conductive material and a conductor made of a conductive material. A plurality of patches having a region where the ratio of the surface area facing the conductor per predetermined area varies in a predetermined direction, and a plurality of conductor patches in a direction perpendicular to the plane including the conductor. And a radiating element provided at a predetermined second distance for transmitting and receiving radio waves.
In such an antenna, a radio wave having a polarization intersecting with the polarization of the radio wave transmitted and received by the radiating element is transmitted and received at a predetermined third distance from the plurality of conductor patches in a direction orthogonal to the plane including the conductor. Another radiating element may be further provided.
Thereby, it can be set as the antenna of polarization sharing.
 また、複数のパッチの前述の領域における導体に対向する表面積の割合の変化は、この領域に含まれるパッチの表面積の変化であることを特徴とすることができる。
 そして、複数のパッチの間隔が、予め定められた方向と予め定められた方向と直交する方向とで異なることを特徴とすることができる。
 これにより、両偏波の指向性を別々に制御することができる。
Further, the change in the ratio of the surface area facing the conductor in the aforementioned region of the plurality of patches may be a change in the surface area of the patch included in this region.
In addition, the interval between the plurality of patches may be different between a predetermined direction and a direction orthogonal to the predetermined direction.
Thereby, the directivity of both polarized waves can be controlled separately.
 一方、複数のパッチの前述の領域における導体に対向する表面積の割合の変化は、前述の領域に含まれるパッチの間の距離の変化であることを特徴とすることができる。 On the other hand, the change in the ratio of the surface area facing the conductor in the aforementioned region of the plurality of patches may be a change in the distance between the patches included in the aforementioned region.
 さらに、放射素子又は他の放射素子のいずれか一方又は両方の中心が、予め定められた方向において、前述の領域の中心からずれて配置されていることを特徴とすることができる。
 これにより、送受信できる電波の方向を反射板の垂直な方向から大きくできる。
Furthermore, the center of either or both of the radiating element and the other radiating element may be arranged so as to be deviated from the center of the aforementioned region in a predetermined direction.
As a result, the direction of radio waves that can be transmitted and received can be increased from the direction perpendicular to the reflector.
 そして、複数の導体パッチは、放射素子又は他の放射素子のいずれか一方又は両方が面する部分を除くように設けられている。
 これにより、放射素子又は他の放射素子への給電が容易になる。
The plurality of conductor patches are provided so as to exclude a portion facing either or both of the radiating element and the other radiating element.
This facilitates power feeding to the radiating element or other radiating elements.
 本発明によれば、反射板の垂直な方向から傾いた方向に電波を送受信できる低姿勢なアンテナを提供できる。 According to the present invention, it is possible to provide a low-profile antenna that can transmit and receive radio waves in a direction inclined from a direction perpendicular to the reflector.
第1の実施の形態が適用されるアンテナの全体構成の一例を示す斜視図である。It is a perspective view which shows an example of the whole structure of the antenna with which 1st Embodiment is applied. 第1の実施の形態が適用されるアンテナの平面図及び断面図である。(a)はアンテナの平面図、(b)はアンテナの(a)におけるIIb-IIb線での断面図、(c)はアンテナの(a)におけるIIc-IIc線での断面図である。It is the top view and sectional drawing of the antenna with which 1st Embodiment is applied. (A) is a plan view of the antenna, (b) is a cross-sectional view taken along line IIb-IIb in (a) of the antenna, and (c) is a cross-sectional view taken along line IIc-IIc in (a) of the antenna. 第1の実施の形態が適用されるアンテナの反射板における導体パッチ及びダイポール素子の構成を示す図である。(a)は反射板における導体パッチの構成、(b)はダイポール素子の構成を示す図である。It is a figure which shows the structure of the conductor patch and dipole element in the reflecting plate of the antenna with which 1st Embodiment is applied. (A) is a structure of the conductor patch in a reflecting plate, (b) is a figure which shows the structure of a dipole element. 第2の実施の形態が適用されるアンテナの全体構成の一例を示す斜視図である。It is a perspective view which shows an example of the whole structure of the antenna with which 2nd Embodiment is applied. 第2の実施の形態が適用されるアンテナの平面図及び断面図である。(a)はアンテナの平面図、(b)はアンテナの(a)におけるVb-Vb線での断面図、(c)はアンテナの(a)におけるVc-Vc線での断面図である。It is the top view and sectional drawing of an antenna with which 2nd Embodiment is applied. (A) is a plan view of the antenna, (b) is a cross-sectional view taken along line Vb-Vb in (a) of the antenna, and (c) is a cross-sectional view taken along line Vc-Vc in (a) of the antenna. 第2の実施の形態が適用されるアンテナの反射板における導体パッチ及びダイポール素子の構成を示す図である。(a)は反射板における導体パッチの構成、(b)はダイポール素子の構成を示す図である。It is a figure which shows the structure of the conductor patch and dipole element in the reflecting plate of the antenna with which 2nd Embodiment is applied. (A) is a structure of the conductor patch in a reflecting plate, (b) is a figure which shows the structure of a dipole element. 第2の実施の形態が適用されるアンテナ1の垂直方向(垂直面内)における指向性及びその周波数(f)依存性を示す図である。(a)はf=0.94fにおける垂直偏波素子の指向性、(b)はf=fにおける垂直偏波素子の指向性、(c)はf=1.06fにおける垂直偏波素子の指向性、(d)はf=0.94fにおける水平偏波素子の指向性、(e)はf=fにおける水平偏波素子の指向性、(f)はf=1.06fにおける水平偏波素子の指向性である。It is a figure which shows the directivity in the vertical direction (in a vertical surface) of the antenna 1 with which 2nd Embodiment is applied, and its frequency (f) dependence. (A) Directivity of vertical polarization element at f = 0.94f 0 , (b) Directivity of vertical polarization element at f = f 0 , (c) Vertical polarization at f = 1.06f 0 (D) is the directivity of the horizontal polarization element at f = 0.94f 0 , (e) is the directivity of the horizontal polarization element at f = f 0 , and (f) is f = 1.06f. The directivity of the horizontal polarization element at zero . EBG構造体で構成された反射板における入射波に対する反射波の反射位相差と導体パッチの間隔dとの関係を示す図である。(a)は導体パッチの間隔dを説明する図、(b)は反射板に対する入射波と反射波とを説明する図、(c)は周波数fに対する反射位相差と導体パッチの間隔dとの関係を示す図である。It is a figure which shows the relationship between the reflection phase difference of the reflected wave with respect to the incident wave in the reflecting plate comprised with the EBG structure, and the space | interval d of a conductor patch. (A) is a figure explaining the space | interval d of a conductor patch, (b) is a figure explaining the incident wave and reflected wave with respect to a reflecting plate, (c) is the reflection phase difference with respect to the frequency f, and the space | interval d of a conductor patch. It is a figure which shows a relationship. 第3の実施の形態が適用されるアンテナの全体構成の一例を示す斜視図である。It is a perspective view which shows an example of the whole structure of the antenna with which 3rd Embodiment is applied. 第3の実施の形態が適用されるアンテナの平面図である。It is a top view of the antenna with which 3rd Embodiment is applied. 第3の実施の形態が適用されるアンテナの垂直方向(垂直面内)における指向性及びその周波数(f)依存性を示す図である。(a)はf=0.94fにおける垂直偏波素子の指向性、(b)はf=fにおける垂直偏波素子の指向性、(c)はf=1.06fにおける垂直偏波素子の指向性、(d)はf=0.94fにおける水平偏波素子の指向性、(e)はf=fにおける水平偏波素子の指向性、(f)はf=1.06fにおける水平偏波素子の指向性である。It is a figure which shows the directivity in the orthogonal | vertical direction (in a vertical surface) of the antenna with which 3rd Embodiment is applied, and its frequency (f) dependence. (A) Directivity of vertical polarization element at f = 0.94f 0 , (b) Directivity of vertical polarization element at f = f 0 , (c) Vertical polarization at f = 1.06f 0 (D) is the directivity of the horizontal polarization element at f = 0.94f 0 , (e) is the directivity of the horizontal polarization element at f = f 0 , and (f) is f = 1.06f. The directivity of the horizontal polarization element at zero . 反射板の中心からダイポール素子の中心を垂直方向にずらして配置することを説明する図である。(a)は、反射板の中心からダイポール素子の中心を垂直方向の正側にずらして配置した場合、(b)は、反射板の中心にダイポール素子の中心を配置した場合、(c)は、反射板の中心からダイポール素子の中心を垂直方向の負側にずらして配置した場合を示す。It is a figure explaining shifting and arranging the center of a dipole element from the center of a reflector in the perpendicular direction. (A) is a case where the center of the dipole element is shifted from the center of the reflecting plate to the positive side in the vertical direction, (b) is a case where the center of the dipole element is placed at the center of the reflecting plate, (c) is The case where the center of the dipole element is shifted from the center of the reflector to the negative side in the vertical direction is shown. 反射板中心に対するダイポール素子中心の位置Rとチルト角θとの関係を示す図である。It is a figure which shows the relationship between the position R of the dipole element center with respect to the reflector center, and tilt angle (theta). 第4の実施の形態が適用されるアンテナの平面図である。It is a top view of the antenna with which 4th Embodiment is applied. 第4の実施の形態が適用されるアンテナの垂直方向(垂直面内)における指向性を示す図である。(a)はf=fにおける垂直偏波素子の指向性、(b)はf=fにおける水平偏波素子の指向性である。It is a figure which shows the directivity in the orthogonal | vertical direction (in a vertical surface) of the antenna with which 4th Embodiment is applied. (A) is the directivity of the vertical polarization element at f = f 0 , and (b) is the directivity of the horizontal polarization element at f = f 0 . 第5の実施の形態が適用されるアンテナの平面図である。It is a top view of the antenna with which 5th Embodiment is applied. 第5の実施の形態が適用されるアンテナの垂直方向(垂直面内)における指向性を示す図である。(a)はf=fにおける垂直偏波素子の指向性、(b)はf=fにおける水平偏波素子の指向性である。It is a figure which shows the directivity in the vertical direction (in a vertical surface) of the antenna with which 5th Embodiment is applied. (A) is the directivity of the vertical polarization element at f = f 0 , and (b) is the directivity of the horizontal polarization element at f = f 0 . 第6の実施の形態が適用されるアンテナの平面図である。It is a top view of the antenna with which 6th Embodiment is applied. 第6の実施の形態が適用されるアンテナの垂直方向(垂直面内)における指向性を示す図である。(a)はf=fにおける垂直偏波素子の指向性、(b)はf=fにおける水平偏波素子の指向性である。It is a figure which shows the directivity in the orthogonal | vertical direction (in a vertical surface) of the antenna with which 6th Embodiment is applied. (A) is the directivity of the vertical polarization element at f = f 0 , and (b) is the directivity of the horizontal polarization element at f = f 0 . 第7の実施の形態が適用されるアンテナの平面図である。It is a top view of the antenna with which 7th Embodiment is applied. 第7の実施の形態が適用されるアンテナの垂直方向(垂直面内)における指向性を示す図である。(a)はf=fにおける垂直偏波素子の指向性、(b)はf=fにおける水平偏波素子の指向性である。It is a figure which shows the directivity in the orthogonal | vertical direction (in a vertical surface) of the antenna with which 7th Embodiment is applied. (A) the directivity of vertical polarization element in f = f 0, (b) is a directivity of horizontal polarization element in f = f 0. 第8の実施の形態が適用されるアンテナの全体構成の一例を示す斜視図である。It is a perspective view which shows an example of the whole structure of the antenna with which 8th Embodiment is applied. 第9の実施の形態が適用されるアンテナの全体構成の一例を示す斜視図である。It is a perspective view which shows an example of the whole structure of the antenna with which 9th Embodiment is applied. 第9の実施の形態が適用されるアンテナの平面図である。It is a top view of the antenna with which 9th Embodiment is applied. 第9の実施の形態が適用されるアンテナの垂直偏波素子の指向性を示す図である。(a)は、x-z平面での垂直偏波素子の指向性、(b)は、y-z平面での垂直偏波素子の指向性、(c)は、φ45°-z平面での垂直偏波素子の指向性である。It is a figure which shows the directivity of the vertical polarization element of the antenna with which 9th Embodiment is applied. (A) is the directivity of the vertical polarization element in the xz plane, (b) is the directivity of the vertical polarization element in the yz plane, and (c) is the φ 45 ° -z plane. The directivity of the vertical polarization element.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[第1の実施の形態]
 図1は、第1の実施の形態が適用されるアンテナ1の全体構成の一例を示す斜視図である。
 図1に示すように、アンテナ1は、導電材料で構成された導体11と導体11を含む面に対して直交する方向に予め定められた距離(後述する図2における距離L3)に平行に並べられた導電材料で構成された複数の導体パッチ12とを含む反射板10と、複数の導体パッチ12から、導体11を含む面に対して直交する方向の予め定められた距離(後述する図2における距離L2)に設けられた放射素子の一例としてのダイポール素子20とを備えている。
 反射板10は、導体11と複数の導体パッチ12とで、EBG構造体を構成している。
 図1では、反射板10における導体パッチ12とダイポール素子20とを区別するため、ダイポール素子20に網点を施している。他の図においても同様である。
 なお、反射板10の導体11は四角形であるとし、この四角形の辺に沿って、図1の下側から上側に向かう方向を垂直方向、左側から右側に向かう方向を水平方向とする。
 そして、複数の導体パッチ12は、後述する図3で説明するように、導体パッチ12の表面の面積(表面積)が、垂直方向において変化するように構成されている。すなわち、複数の導体パッチ12は、表面積が垂直方向の上部から下部に向かうにつれて小さくなるように設定されている。
 ここでは、複数の導体パッチ12のそれぞれを導体パッチ12と表記することがあり、複数の導体パッチ12をまとめて導体パッチ12と表記することがある。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
[First Embodiment]
FIG. 1 is a perspective view showing an example of the overall configuration of an antenna 1 to which the first embodiment is applied.
As shown in FIG. 1, the antenna 1 is arranged in parallel with a conductor 11 made of a conductive material and a predetermined distance (distance L3 in FIG. 2 described later) in a direction orthogonal to the plane including the conductor 11. A predetermined distance in a direction orthogonal to the plane including the conductor 11 from the plurality of conductor patches 12 and the reflector 10 including the plurality of conductor patches 12 made of the conductive material formed (FIG. 2 to be described later) And a dipole element 20 as an example of a radiating element provided at a distance L2).
The reflector 10 includes an conductor 11 and a plurality of conductor patches 12 to form an EBG structure.
In FIG. 1, in order to distinguish the conductor patch 12 and the dipole element 20 in the reflector 10, the dipole element 20 is provided with a halftone dot. The same applies to the other drawings.
It is assumed that the conductor 11 of the reflecting plate 10 is a rectangle, and along the sides of the rectangle, the direction from the lower side to the upper side in FIG. 1 is the vertical direction, and the direction from the left side to the right side is the horizontal direction.
The plurality of conductor patches 12 are configured such that the surface area (surface area) of the conductor patch 12 changes in the vertical direction, as will be described later with reference to FIG. That is, the plurality of conductor patches 12 are set so that the surface area becomes smaller from the upper part to the lower part in the vertical direction.
Here, each of the plurality of conductor patches 12 may be referred to as a conductor patch 12, and the plurality of conductor patches 12 may be collectively referred to as a conductor patch 12.
 ダイポール素子20は、垂直方向に1組の素子部20aと素子部20bとを備えている。ダイポール素子20は、垂直偏波を送受信する。そして、偏波(垂直偏波)の方向は、複数の導体パッチ12において表面積が小さくなっていく方向に一致する。
 なお、ダイポール素子20は、素子部20a、20b(図3参照)の中央部分に給電点を有し電波を送受信する。ここでは、ダイポール素子20への給電の方法については、説明を省略する。
The dipole element 20 includes a pair of element portions 20a and 20b in the vertical direction. The dipole element 20 transmits and receives vertically polarized waves. The direction of polarization (vertical polarization) coincides with the direction in which the surface area decreases in the plurality of conductor patches 12.
The dipole element 20 has a feeding point at the center of the element portions 20a and 20b (see FIG. 3) and transmits and receives radio waves. Here, the description of the method of feeding power to the dipole element 20 is omitted.
 アンテナ1が電波を送信する場合、ダイポール素子20に給電されると、反射板10に対して垂直に立てた垂線の方向(垂線方向)から、導体パッチ12の表面積の大きい側に角度θ(チルト角θ)傾いた方向(放射方向)にメインビームを放射する。
 アンテナの可逆性により、電波を受信する場合においても同様である。
When the antenna 1 transmits radio waves, when the dipole element 20 is supplied with power, the angle θ (tilt) extends from the direction of the vertical line (perpendicular direction) perpendicular to the reflector 10 to the side with the larger surface area of the conductor patch 12. The main beam is emitted in a direction (radiation direction) inclined (angle θ).
The same applies to the case of receiving radio waves due to the reversibility of the antenna.
 導体11は導電材料で構成されていればよく、例えばAl、Cuなどの金属板が適用できる。さらに、導体11は、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層であってもよい。
 同様に、導体パッチ12も導電材料で構成されていればよく、例えばAl、Cuなどの金属板が適用できる。さらに、導体パッチ12も、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層によって構成されたものであってもよい。
 そして、ダイポール素子20も、素子部20a、20bが導電材料で構成されていればよく、例えばAl、Cuなどの金属板が適用できる。また、板状に限らず、Al、Cuなどの金属棒であってもよい。さらに、素子部20a、20bも、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層によって構成されたものであってもよい。
The conductor 11 should just be comprised with the electrically-conductive material, for example, metal plates, such as Al and Cu, are applicable. Furthermore, the conductor 11 may be a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy.
Similarly, the conductor patch 12 should just be comprised with the electrically-conductive material, for example, metal plates, such as Al and Cu, are applicable. Furthermore, the conductor patch 12 may also be constituted by a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy.
The dipole element 20 also needs to have element parts 20a and 20b made of a conductive material. For example, a metal plate such as Al or Cu can be applied. Moreover, not only plate shape but metal rods, such as Al and Cu, may be sufficient. Furthermore, the element parts 20a and 20b may also be constituted by a metal layer such as Al or Cu provided on a substrate made of a dielectric material such as glass epoxy.
 図2は、第1の実施の形態が適用されるアンテナ1の平面図及び断面図である。図2(a)はアンテナ1の平面図、図2(b)はアンテナ1の図2(a)におけるIIb-IIb線での断面図、図2(c)はアンテナ1の図2(a)におけるIIc-IIc線での断面図である。
 図2(a)に示すように、アンテナ1は、導体11及び複数の導体パッチ12を含む反射板10とダイポール素子20とを備えている。そして、例えば、導体11は、一辺長L1の正方形である。
 図2(b)に示すように、ダイポール素子20は反射板10の導体パッチ12から第2の距離の一例としての距離L2の位置に設けられている。そして、反射板10において、複数の導体パッチ12は導体11から第1の距離の一例としての距離L3の位置に設けられている。
 図2(a)、(c)に示すように、反射板10の複数の導体パッチ12は、垂直方向の上部から下部に向かう方向において、表面積が小さくなるように構成されている。
 そして、反射板10の垂直方向の下端からダイポール素子20の中心までが距離L4、反射板10の垂直方向の上端からダイポール素子20の中心までが距離L5である。
 ここでは、反射板10における導体11と導体パッチ12とは接続されていない。しかし、導体11と導体パッチ12とを、導電材料で接続して、所謂マッシュルーム構造としてもよい。
FIG. 2 is a plan view and a cross-sectional view of the antenna 1 to which the first embodiment is applied. 2 (a) is a plan view of the antenna 1, FIG. 2 (b) is a cross-sectional view of the antenna 1 taken along line IIb-IIb in FIG. 2 (a), and FIG. 2 (c) is a diagram of FIG. FIG. 11 is a sectional view taken along line IIc-IIc in FIG.
As shown in FIG. 2A, the antenna 1 includes a reflector 10 including a conductor 11 and a plurality of conductor patches 12 and a dipole element 20. For example, the conductor 11 is a square having a side length L1.
As shown in FIG. 2B, the dipole element 20 is provided at a position of a distance L2 as an example of a second distance from the conductor patch 12 of the reflecting plate 10. In the reflecting plate 10, the plurality of conductor patches 12 are provided at a distance L 3 as an example of a first distance from the conductor 11.
As shown in FIGS. 2A and 2C, the plurality of conductor patches 12 of the reflector 10 are configured to have a small surface area in the direction from the upper part to the lower part in the vertical direction.
The distance L4 is from the lower end in the vertical direction of the reflecting plate 10 to the center of the dipole element 20, and the distance L5 is from the upper end in the vertical direction of the reflecting plate 10 to the center of the dipole element 20.
Here, the conductor 11 and the conductor patch 12 in the reflecting plate 10 are not connected. However, the conductor 11 and the conductor patch 12 may be connected by a conductive material to form a so-called mushroom structure.
 図3は、第1の実施の形態が適用されるアンテナ1の反射板10における複数の導体パッチ12及びダイポール素子20の構成を示す図である。図3(a)は反射板10の複数の導体パッチ12の構成、図3(b)はダイポール素子20の構成を示す図である。
 図3(a)に示すように、反射板10の複数の導体パッチ12は、垂直方向の上部から下部に向って一辺長が変化していく正方形の導体パッチ12a、12b、12c、12d、12e、12f、12g、12h、12iを備えている。
 なお、導体パッチ12は、水平方向には一辺長が同じものが、水平方向の中心に対して対称になるように複数配置されている。
 導体パッチ12aは一辺長L7、導体パッチ12bは一辺長L9、導体パッチ12cは一辺長L10、導体パッチ12dは一辺長L11、導体パッチ12eは一辺長L12、導体パッチ12fは一辺長L13、導体パッチ12gは一辺長L14、導体パッチ12hは一辺長L15、導体パッチ12iは一辺長L16である。
 そして、導体パッチ12は、水平方向には間隔L6で配置され、垂直方向には間隔L8で配置されている。
FIG. 3 is a diagram illustrating a configuration of the plurality of conductor patches 12 and the dipole element 20 in the reflector 10 of the antenna 1 to which the first embodiment is applied. FIG. 3A is a diagram showing the configuration of the plurality of conductor patches 12 of the reflecting plate 10, and FIG. 3B is a diagram showing the configuration of the dipole element 20.
As shown in FIG. 3A, the plurality of conductor patches 12 of the reflector 10 are square conductor patches 12a, 12b, 12c, 12d, and 12e whose side lengths change from the upper part to the lower part in the vertical direction. , 12f, 12g, 12h, 12i.
A plurality of conductor patches 12 having the same side length in the horizontal direction are arranged so as to be symmetric with respect to the center in the horizontal direction.
Conductor patch 12a has one side length L7, conductor patch 12b has one side length L9, conductor patch 12c has one side length L10, conductor patch 12d has one side length L11, conductor patch 12e has one side length L12, conductor patch 12f has one side length L13, conductor patch 12g is one side length L14, the conductor patch 12h is one side length L15, and the conductor patch 12i is one side length L16.
And the conductor patch 12 is arrange | positioned with the space | interval L6 in the horizontal direction, and is arrange | positioned with the space | interval L8 in the vertical direction.
 図3(b)に示すように、ダイポール素子20は、素子部20a、20bが垂直方向に配置されている。素子部20a、20bの水平方向は幅L17、垂直方向に配置された素子部20a、20bの全体は長さL19である。 As shown in FIG. 3B, the dipole element 20 has element portions 20a and 20b arranged in the vertical direction. The horizontal direction of the element parts 20a and 20b is a width L17, and the whole of the element parts 20a and 20b arranged in the vertical direction is a length L19.
 ここで、図2、図3に示したアンテナ1における一辺長L1などの数値の一例を説明する。アンテナ1が送受信する電波は、自由空間において中心波長λ(中心周波数f)であるとする。
 この場合、反射板10の導体11の一辺長L1は1.3λ、反射板10における導体パッチ12とダイポール素子20との距離L2は0.02λ、反射板10における導体11と導体パッチ12との距離L3は0.04λ、反射板10の垂直方向の下端からダイポール素子20の中心までの距離L4は0.5λ、上端からダイポール素子20の中心までの距離L5は0.8λである。
Here, an example of numerical values such as the side length L1 in the antenna 1 shown in FIGS. 2 and 3 will be described. The radio wave transmitted and received by the antenna 1 is assumed to have a center wavelength λ 0 (center frequency f 0 ) in free space.
In this case, the side length L1 of the conductor 11 of the reflector 10 is 1.3λ 0 , the distance L2 between the conductor patch 12 and the dipole element 20 in the reflector 10 is 0.02λ 0 , and the conductor 11 and conductor patch 12 in the reflector 10 L3 is 0.04λ 0 , the distance L4 from the vertical lower end of the reflector 10 to the center of the dipole element 20 is 0.5λ 0 , and the distance L5 from the upper end to the center of the dipole element 20 is 0.8λ 0. It is.
 ダイポール素子20は、反射板10の垂直方向における中心より、0.15λ下側にずらして配置されている。ダイポール素子20の中心を導体11の中心から導体パッチ12の表面積が小さい側にずらして配置した方がチルト角θを大きくできるためである。
 すなわち、導体パッチ12の端(図3(a)において導体パッチ12aの上端)とダイポール素子20の中心との距離もチルト角θに影響する。
Dipole elements 20, the center in the vertical direction of the reflector 10, are arranged offset to 0.15Ramuda 0 lower. This is because the tilt angle θ can be increased by disposing the center of the dipole element 20 from the center of the conductor 11 to the side where the surface area of the conductor patch 12 is small.
That is, the distance between the end of the conductor patch 12 (the upper end of the conductor patch 12a in FIG. 3A) and the center of the dipole element 20 also affects the tilt angle θ.
 導体パッチ12aの一辺長L7は0.24λ、導体パッチ12bの一辺長L9は0.21λ、導体パッチ12cの一辺長L10は0.18λ、導体パッチ12dの一辺長L11は0.15λ、導体パッチ12eの一辺長L12は0.13λ、導体パッチ12fの一辺長L13は0.1λ、導体パッチ12gの一辺長L14は0.07λ、導体パッチ12hの一辺長L15は0.04λ、導体パッチ12iの一辺長L16は0.02λである。
 そして、導体パッチ12の水平方向の間隔L6は0.02λ、垂直方向の間隔L8は0.02λである。すなわち、第1の実施の形態では、反射板10における導体パッチ12は、垂直方向及び水平方向において、同じ間隔(間隔L6=間隔L8)で配置されている。
Side length L7 is 0.24Ramuda 0 conductor patches 12a, one side length L9 is 0.21Ramuda 0 conductor patches 12b, one side length L10 of the conductor patch 12c is 0.18λ 0, one side length L11 of the conductor patch 12d is 0.15λ 0 , the side length L12 of the conductor patch 12e is 0.13λ 0 , the side length L13 of the conductor patch 12f is 0.1λ 0 , the side length L14 of the conductor patch 12g is 0.07λ 0 , and the side length L15 of the conductor patch 12h is 0 .04λ 0 , and the side length L16 of the conductor patch 12i is 0.02λ 0 .
The horizontal interval L6 of the conductor patch 12 is 0.02λ 0 , and the vertical interval L8 is 0.02λ 0 . That is, in the first embodiment, the conductor patches 12 in the reflector 10 are arranged at the same interval (interval L6 = interval L8) in the vertical direction and the horizontal direction.
 さらに、ダイポール素子20の素子部20a、20bの幅L17は0.12λ、素子部20a、20bの全体の長さL19は0.38λである。 Further, the width L17 of the element portions 20a and 20b of the dipole element 20 is 0.12λ 0 , and the total length L19 of the element portions 20a and 20b is 0.38λ 0 .
 以上説明したように、第1の実施の形態が適用されるアンテナ1では、EBG構造体である反射板10を用いることで、反射板10における導体11からダイポール素子20までの高さ(距離L2+距離L3)が、0.06λとなる。
 これに対して、導体11のみを反射板10とする場合では、一般的に導体11からダイポール素子20までの高さは、約0.25λとなる。
 すなわち、第1の実施の形態が適用されるアンテナ1は、EBG構造体である反射板10を用いない場合に比べて、低姿勢化できる。
As described above, in the antenna 1 to which the first embodiment is applied, the height (distance L2 +) from the conductor 11 to the dipole element 20 in the reflector 10 is used by using the reflector 10 that is an EBG structure. distance L3) becomes the 0.06 0.
In contrast, in the case of only the conductor 11 and the reflection plate 10, the height of generally from conductor 11 to the dipole elements 20 is about 0.25 [lambda 0.
That is, the antenna 1 to which the first embodiment is applied can be lowered in posture as compared with the case where the reflector 10 that is an EBG structure is not used.
 さらに、アンテナ1が電波を送信する場合において、メインビームの放射方向を反射板10の垂線方向に対して、導体パッチ12の面積が大きい方向に傾ける(チルト角θ)ことができる。
 これは、EBG構造体により構成される反射板10を用いたアンテナ1では、反射板10を構成する導体パッチ12の表面形状及び導体パッチ12相互間の間隔によって、導体11と導体パッチ12間のインダクタンス、導体パッチ12相互間のキャパシタンスが異なる。よって、反射板10における垂直方向の上部から下部に向かって導体パッチ12の表面積を変えてゆくことで、インダクタンス又は/及びキャパシタンスに分布が生じる。
 これにより、アンテナ1が電波を送信する場合において、ダイポール素子20が放射する電波のメインビームの方向を傾かせる(チルトさせる)ことができる。また、アンテナ1の垂直方向の指向性も制御することができる。
 アンテナの可逆性により、電波を受信する場合においても同様である。
Furthermore, when the antenna 1 transmits radio waves, the radiation direction of the main beam can be tilted (tilt angle θ) in the direction in which the area of the conductor patch 12 is large with respect to the normal direction of the reflector 10.
This is because, in the antenna 1 using the reflecting plate 10 constituted by the EBG structure, the conductor 11 and the conductor patch 12 are arranged depending on the surface shape of the conductor patch 12 constituting the reflecting plate 10 and the distance between the conductor patches 12. The inductance and the capacitance between the conductor patches 12 are different. Therefore, the inductance or / and the capacitance is distributed by changing the surface area of the conductor patch 12 from the upper part to the lower part of the reflector 10 in the vertical direction.
Thereby, when the antenna 1 transmits radio waves, the direction of the main beam of the radio waves emitted from the dipole element 20 can be tilted (tilted). In addition, the directivity of the antenna 1 in the vertical direction can also be controlled.
The same applies to the case of receiving radio waves due to the reversibility of the antenna.
 なお、図1、図2に示すアンテナ1では、導体11から予め定められた距離、例えば平行に設けられた複数の導体パッチ12が全て垂直方向において表面積が変化していくように構成されている。
 このことは、最も大きな表面積の導体パッチ12を含むように予め設定された面積当りに導体パッチ12が占める表面積の割合が垂直方向(予め定められた方向)において変化していくと考えることができる。
 そして、導体パッチ12の表面積又は導体パッチ12が占める表面積の割合の変化は垂直方向の距離に応じて設定されればよく、これらの変化の割合によってチルト角及び指向性が制御できる。
 また、図3に示すように、導体パッチ12の面積は、垂直方向において1個毎に連続して変化させているが、複数個毎に変化させるようにしてもよく、数の異なる個数毎に変化させてもよい。
The antenna 1 shown in FIGS. 1 and 2 is configured such that a plurality of conductor patches 12 provided in parallel at a predetermined distance from the conductor 11, for example, all of the conductor patches 12 are changed in the vertical direction. .
This can be considered that the ratio of the surface area occupied by the conductor patch 12 per predetermined area so as to include the conductor patch 12 having the largest surface area changes in the vertical direction (predetermined direction). .
The change in the surface area of the conductor patch 12 or the ratio of the surface area occupied by the conductor patch 12 may be set in accordance with the distance in the vertical direction, and the tilt angle and directivity can be controlled by the ratio of these changes.
Further, as shown in FIG. 3, the area of the conductor patch 12 is continuously changed for each piece in the vertical direction, but may be changed for each piece, and may be changed for each different number. It may be changed.
 また、図1、図2に示すアンテナ1では、導体11から予め定められた距離、例えば平行に設けられた複数の導体パッチ12が全て垂直方向において表面積が変化するように構成されている。しかし、この垂直方向において表面積が変化する複数の導体パッチ12が含まれる範囲を領域とし、この領域の外側に、表面積が変化しない導体パッチ12が設けられていてもよい。そして、ダイポール素子20が、この垂直方向において表面積が変化する複数の導体パッチ12が含まれる領域に設けられていればよい。 Further, in the antenna 1 shown in FIG. 1 and FIG. 2, a predetermined distance from the conductor 11, for example, a plurality of conductor patches 12 provided in parallel are all configured to change the surface area in the vertical direction. However, an area including a plurality of conductor patches 12 whose surface area varies in the vertical direction may be defined as an area, and the conductor patch 12 whose surface area does not vary may be provided outside the area. And the dipole element 20 should just be provided in the area | region including the several conductor patch 12 from which a surface area changes in this perpendicular direction.
[第2の実施の形態]
 第1の実施の形態では、アンテナ1におけるダイポール素子20は、1組の素子部20a、素子部20bを備え、垂直偏波を送受信した。
 第2の実施の形態では、アンテナ1において、放射素子の他の一例として4個のダイポール素子21、22、23、24を用いるとともに、垂直偏波に加えて、垂直偏波に直交する水平偏波を送受信できるようにしている。
[Second Embodiment]
In the first embodiment, the dipole element 20 in the antenna 1 includes a pair of element portions 20a and 20b, and transmits and receives vertically polarized waves.
In the second embodiment, in the antenna 1, four dipole elements 21, 22, 23, and 24 are used as another example of the radiating element, and in addition to the vertical polarization, a horizontal polarization orthogonal to the vertical polarization is used. Waves can be sent and received.
 図4は、第2の実施の形態が適用されるアンテナ1の全体構成の一例を示す斜視図である。
 反射板10の構成は、第1の実施の形態と同様である。ダイポール素子21、22、23、24の構成については、後述する。
FIG. 4 is a perspective view showing an example of the overall configuration of the antenna 1 to which the second embodiment is applied.
The configuration of the reflector 10 is the same as that of the first embodiment. The configuration of the dipole elements 21, 22, 23, 24 will be described later.
 図5は、第2の実施の形態が適用されるアンテナ1の平面図及び断面図である。図5(a)はアンテナ1の平面図、図5(b)はアンテナ1の図5(a)におけるVb-Vb線での断面図、図5(c)はアンテナ1の図5(a)におけるVc-Vc線での断面図である。
 4個のダイポール素子21、22、23、24を用いている以外は、図2に示した第1の実施の形態と同様であるので、同じ符号を付して説明を省略する。
 そして、距離L4は、反射板10の垂直方向の下端からダイポール素子21又はダイポール素子23の中心までの距離、距離L5は、反射板10の垂直方向の上端からダイポール素子21又はダイポール素子23の中心までが距離である。
 ここでは、ダイポール素子21、22、23、24と反射板10における導体パッチ12とは、距離L2で設けられているとした。なお、垂直偏波素子であるダイポール素子21、23と、水平偏波素子であるダイポール素子22、24とで、反射板10における導体パッチ12までの距離を異ならせてもよい。このとき、ダイポール素子21、23と反射板10における導体パッチ12までの距離が第2の距離の一例であり、ダイポール素子22、24と反射板10における導体パッチ12までの距離が第3の距離の一例である。第2の距離と第3の距離が同じであってもよい。
FIG. 5 is a plan view and a cross-sectional view of the antenna 1 to which the second embodiment is applied. 5A is a plan view of the antenna 1, FIG. 5B is a cross-sectional view of the antenna 1 taken along the line Vb-Vb in FIG. 5A, and FIG. FIG. 5 is a cross-sectional view taken along line Vc-Vc in FIG.
Since it is the same as that of the first embodiment shown in FIG. 2 except that four dipole elements 21, 22, 23, and 24 are used, the same reference numerals are given and description thereof is omitted.
The distance L4 is the distance from the lower end of the reflecting plate 10 in the vertical direction to the center of the dipole element 21 or the dipole element 23. The distance L5 is the upper end of the reflecting plate 10 in the vertical direction of the dipole element 21 or the center of the dipole element 23. The distance is up to.
Here, it is assumed that the dipole elements 21, 22, 23, and 24 and the conductor patch 12 in the reflector 10 are provided at a distance L2. In addition, the distance to the conductor patch 12 in the reflecting plate 10 may be different between the dipole elements 21 and 23 that are vertical polarization elements and the dipole elements 22 and 24 that are horizontal polarization elements. At this time, the distance between the dipole elements 21 and 23 and the conductor patch 12 in the reflector 10 is an example of the second distance, and the distance between the dipole elements 22 and 24 and the conductor patch 12 in the reflector 10 is the third distance. It is an example. The second distance and the third distance may be the same.
 図6は、第2の実施の形態が適用されるアンテナ1の反射板10における導体パッチ12及びダイポール素子21、22、23、24の構成を示す図である。図6(a)は反射板10における導体パッチ12の構成、図6(b)はダイポール素子21、22、23、24の構成を示す図である。
 図6(a)に示す反射板10の導体パッチ12の構成は、図3(a)に示した第1の実施の形態と同様である。よって、同じ符号を付して説明を省略する。
FIG. 6 is a diagram illustrating the configuration of the conductor patch 12 and the dipole elements 21, 22, 23, and 24 in the reflector 10 of the antenna 1 to which the second embodiment is applied. 6A is a diagram showing the configuration of the conductor patch 12 in the reflector 10, and FIG. 6B is a diagram showing the configuration of the dipole elements 21, 22, 23, and 24. FIG.
The configuration of the conductor patch 12 of the reflector 10 shown in FIG. 6A is the same as that of the first embodiment shown in FIG. Therefore, the same reference numerals are given and description thereof is omitted.
 図6(b)において、4つのダイポール素子21、22、23、24について説明する。
 ダイポール素子21の素子部21a、21bとダイポール素子23の素子部23a、23bは、垂直方向に配列され、ダイポール素子22の素子部22a、22bとダイポール素子24の素子部24a、24bは、水平方向に配列されている。
 すなわち、ダイポール素子21、23は垂直偏波を送受信し、ダイポール素子22、24は水平偏波を送受信する。よって、アンテナ1は、偏波共用である。ここでは、ダイポール素子21及びダイポール素子23を垂直偏波素子と、ダイポール素子22及びダイポール素子24を水平偏波素子と表記する。
 なお、ダイポール素子21、23のいずれか一方及び/又はダイポール素子22、24のいずれか一方を省いてもよい。
In FIG. 6B, the four dipole elements 21, 22, 23, and 24 will be described.
The element portions 21a and 21b of the dipole element 21 and the element portions 23a and 23b of the dipole element 23 are arranged in the vertical direction, and the element portions 22a and 22b of the dipole element 22 and the element portions 24a and 24b of the dipole element 24 are arranged in the horizontal direction. Is arranged.
That is, the dipole elements 21 and 23 transmit and receive vertical polarization, and the dipole elements 22 and 24 transmit and receive horizontal polarization. Therefore, the antenna 1 is shared with polarization. Here, the dipole element 21 and the dipole element 23 are referred to as a vertical polarization element, and the dipole element 22 and the dipole element 24 are referred to as a horizontal polarization element.
Note that either one of the dipole elements 21 and 23 and / or one of the dipole elements 22 and 24 may be omitted.
 ダイポール素子21の素子部21a、21b、ダイポール素子22の素子部22a、22b、ダイポール素子23の素子部23a、23b、ダイポール素子24の素子部24a、24bはそれぞれ幅L17である。
 また、ダイポール素子21、22、23、24の全体は長さL19である。なお、全体の長さL19は、ダイポール素子21、22、23、24のそれぞれの素子部(素子部21a、21b、素子部22a、22b、素子部23a、23b、素子部24a、24b)の端から端までの長さである。
 さらに、ともに垂直偏波を送受信するダイポール素子21とダイポール素子23との中心間は距離L18である。同様に、ともに水平偏波を送受信するダイポール素子22とダイポール素子24との中心間も距離L18である。
 なお、ダイポール素子21、22、23、24の素子部は、例えば素子部21aと素子部22bのように互いがL字状に近接する部分において、斜めに切り取られている。
 また、第2の実施の形態では、ダイポール素子21とダイポール素子23との中心間の距離と、ダイポール素子22とダイポール素子24との中心間の距離を同じとしたが、求められる指向性(ビーム幅)に応じてそれぞれ別々の距離に設定してもよい。
The element portions 21a and 21b of the dipole element 21, the element portions 22a and 22b of the dipole element 22, the element portions 23a and 23b of the dipole element 23, and the element portions 24a and 24b of the dipole element 24 each have a width L17.
The entire dipole elements 21, 22, 23, and 24 have a length L19. The total length L19 is the end of each element part ( element part 21a, 21b, element part 22a, 22b, element part 23a, 23b, element part 24a, 24b) of dipole element 21, 22, 23, 24. It is the length from to the end.
Furthermore, the distance between the centers of the dipole element 21 and the dipole element 23 that both transmit and receive vertically polarized waves is a distance L18. Similarly, the distance between the centers of the dipole element 22 and the dipole element 24 that both transmit and receive horizontal polarization is also the distance L18.
Note that the element portions of the dipole elements 21, 22, 23, and 24 are cut obliquely at portions that are close to each other in an L shape, such as the element portion 21a and the element portion 22b.
In the second embodiment, the distance between the centers of the dipole element 21 and the dipole element 23 and the distance between the centers of the dipole element 22 and the dipole element 24 are the same. The distances may be set to different distances depending on (width).
 そして、ダイポール素子21、22、23、24も、それぞれの素子部(素子部21a、21b、素子部22a、22b、素子部23a、23b、素子部24a、24b)が導電材料で構成されていればよく、例えばAl、Cuなどの金属板が適用できる。また、素子部21a、21b、素子部22a、22b、素子部23a、23b、素子部24a、24bは、例えばAl、Cuなどの金属棒であってもよい。さらに、素子部21a、21b、素子部22a、22b、素子部23a、23b、素子部24a、24bは、ガラスエポキシなどの誘電材料で構成された基板上に設けられたAl、Cuなどの金属層により構成されたものであってもよい。 Each of the dipole elements 21, 22, 23, 24 is also made of a conductive material in each element part ( element parts 21a, 21b, element parts 22a, 22b, element parts 23a, 23b, element parts 24a, 24b). For example, a metal plate such as Al or Cu can be applied. The element portions 21a and 21b, the element portions 22a and 22b, the element portions 23a and 23b, and the element portions 24a and 24b may be metal bars such as Al and Cu, for example. Furthermore, the element portions 21a and 21b, the element portions 22a and 22b, the element portions 23a and 23b, and the element portions 24a and 24b are made of metal layers such as Al and Cu provided on a substrate made of a dielectric material such as glass epoxy. It may be constituted by.
 図5、図6に示したアンテナ1における一辺長L1などの数値の一例は、第1の実施の形態と同様である。なお、ともに垂直偏波を送受信するダイポール素子21とダイポール素子23との中心間及びともに水平偏波を送受信するダイポール素子22とダイポール素子24との中心間の距離L18は0.42λである。 Examples of numerical values such as the side length L1 in the antenna 1 shown in FIGS. 5 and 6 are the same as those in the first embodiment. The distance L18 between the centers of the dipole elements 22 and the dipole elements 24 for transmitting and receiving between the centers and both horizontal polarization and dipole elements 21 and the dipole elements 23 which together receive the vertical polarization is 0.42λ 0.
 図7は、第2の実施の形態が適用されるアンテナ1の垂直方向(垂直面内)における指向性及びその周波数(f)依存性を示す図である。図7(a)はf=0.94fにおける垂直偏波素子の指向性、図7(b)はf=fにおける垂直偏波素子の指向性、図7(c)はf=1.06fにおける垂直偏波素子の指向性、図7(d)はf=0.94fにおける水平偏波素子の指向性、図7(e)はf=fにおける水平偏波素子の指向性、図7(f)はf=1.06fにおける水平偏波素子の指向性を示す図である。
 なお、本指向性は、全てのダイポール素子21、22、23、24を同相で給電したものであるが、垂直偏波素子(図4、5においてはダイポール素子21、23)、水平偏波素子(図4、5においてはダイポール素子22、24)それぞれに対して位相を異ならせて給電し、チルト角θ等の電波の放射方向(ビーム方向)を適宜調整してもよい。
 これらの指向性は、シミュレーションによって求めた。
FIG. 7 is a diagram illustrating the directivity in the vertical direction (in the vertical plane) and the frequency (f) dependency of the antenna 1 to which the second embodiment is applied. 7A shows the directivity of the vertical polarization element at f = 0.94f 0 , FIG. 7B shows the directivity of the vertical polarization element at f = f 0 , and FIG. 7C shows f = 1. The directivity of the vertical polarization element at 06f 0 , FIG. 7 (d) shows the directivity of the horizontal polarization element at f = 0.94f 0 , and FIG. 7 (e) shows the directivity of the horizontal polarization element at f = f 0 . FIG 7 (f) are diagrams showing the directivity of horizontal polarization element in f = 1.06f 0.
In this directivity, all dipole elements 21, 22, 23, and 24 are fed in the same phase. However, vertical polarization elements ( dipole elements 21 and 23 in FIGS. 4 and 5), horizontal polarization elements ( Dipole elements 22 and 24 in FIGS. 4 and 5) may be fed with different phases to adjust the radiation direction (beam direction) of radio waves such as tilt angle θ.
These directivities were obtained by simulation.
 垂直偏波素子のチルト角θは、f=0.94f(図7(a))において6.5°、f=f(図7(b))において10.5°、f=1.06f(図7(c))において16.8°である。
 さらに、水平偏波素子のチルト角θは、f=0.94f(図7(d))において15.3°、f=f(図7(e))において23°、f=1.06f(図7(f))において21.3°である。
The tilt angle θ of the vertical polarization element is 6.5 ° at f = 0.94f 0 (FIG. 7A), 10.5 ° at f = f 0 (FIG. 7B), f = 1. The angle is 16.8 ° in 06f 0 (FIG. 7C).
Further, the tilt angle θ of the horizontal polarization element is 15.3 ° at f = 0.94f 0 (FIG. 7D), 23 ° at f = f 0 (FIG. 7E), f = 1. It is 21.3 ° in 06f 0 (FIG. 7 (f)).
 このように、第2の実施の形態が適用されるアンテナ1では、導体パッチ12の面積を垂直方向の上部から下部に向けて小さくしているので、垂直偏波素子及び水平偏波素子のメインビームの放射方向を反射板10の垂線方向から傾ける(チルトさせる)ことができる。
 なお、周波数fによってチルト角θが異なるのは、導体11と導体パッチ12間のインダクタンス、導体パッチ12相互間のキャパシタンスが周波数依存性を有するためである。
As described above, in the antenna 1 to which the second embodiment is applied, the area of the conductor patch 12 is reduced from the upper part to the lower part in the vertical direction. The radiation direction of the beam can be tilted (tilted) from the normal direction of the reflecting plate 10.
The reason why the tilt angle θ varies depending on the frequency f is that the inductance between the conductor 11 and the conductor patch 12 and the capacitance between the conductor patches 12 have frequency dependence.
[第3の実施の形態]
 第2の実施の形態では、4個のダイポール素子21、22、23、24を用いるとともに、垂直偏波と水平偏波とを共に送受信できる偏波共用とした。
 しかし、第2の実施の形態が適用されるアンテナ1では、図7(a)、(b)、(c)に示す垂直偏波素子の指向性と図7(d)、(e)、(f)に示す水平偏波素子の指向性とを比べると、同じ周波数fに対して、水平偏波素子が垂直偏波素子に比べてチルト角θが大きい(深い)。そして、図7(e)において破線で囲ったα部分と図7(f)において破線で囲ったβ部分のように、水平偏波素子の指向性は、垂直偏波素子の指向性に比べ、乱れが大きい。
 例えば、図7(d)のf=0.94fにおける水平偏波素子の指向性が、図7(f)に対応するf=1.06fにおいて得られれば、チルト角θが15.3°と浅くなって、図7(c)に示す垂直偏波素子のチルト角θの16.8°に近くなる。そして、指向性の乱れも少なくなる。
 そこで、第3の実施の形態では、水平偏波素子と垂直偏波素子とにおけるチルト角θの差及び水平偏波素子の指向性の乱れを抑制している。
[Third Embodiment]
In the second embodiment, four dipole elements 21, 22, 23, and 24 are used, and polarization sharing is used so that both vertical polarization and horizontal polarization can be transmitted and received.
However, in the antenna 1 to which the second embodiment is applied, the directivity of the vertical polarization element shown in FIGS. 7A, 7 </ b> B, and 7 </ b> C and FIGS. Comparing the directivity of the horizontal polarization element shown in f), the tilt angle θ of the horizontal polarization element is larger (deeper) than the vertical polarization element for the same frequency f. And the directivity of a horizontal polarization element is compared with the directivity of a vertical polarization element like (alpha) part enclosed with the broken line in FIG.7 (e), and (beta) part enclosed with the broken line in FIG.7 (f). Disturbance is great.
For example, if the directivity of the horizontal polarization element at f = 0.94f 0 in FIG. 7D is obtained at f = 1.06f 0 corresponding to FIG. 7F, the tilt angle θ is 15.3. As shallow as °, the tilt angle θ of the vertical polarization element shown in FIG. 7C approaches 16.8 °. And the disturbance of directivity is also reduced.
Therefore, in the third embodiment, the difference in tilt angle θ between the horizontal polarization element and the vertical polarization element and disturbance in the directivity of the horizontal polarization element are suppressed.
 図8は、EBG構造体で構成された反射板10における入射波に対する反射波の反射位相差と導体パッチ12の間隔dとの関係を示す図である。図8(a)は導体パッチ12の間隔dを説明する図、図8(b)は反射板10に対する入射波と反射波とを説明する図、図8(c)は周波数fに対する反射位相差と導体パッチ12の間隔dとの関係を示す図である。 FIG. 8 is a diagram showing the relationship between the reflection phase difference of the reflected wave with respect to the incident wave and the distance d between the conductor patches 12 in the reflector 10 formed of the EBG structure. 8A is a diagram for explaining the distance d between the conductor patches 12, FIG. 8B is a diagram for explaining an incident wave and a reflected wave with respect to the reflector 10, and FIG. 8C is a reflection phase difference with respect to the frequency f. It is a figure which shows the relationship between the space | interval d of the conductor patch 12, and FIG.
 図8(c)に示す、周波数fに対する反射位相差と導体パッチ12の間隔dとの関係は、次のようにして求めた。まず、無限大の面積の導体11から予め定められた距離、例えば平行に、導体パッチ12を間隔dで無限に配置したと仮定する(図8(a)参照)。そして、反射板10に対して平面波を入射波とし、入射波に対する反射波の反射位相差を計算した(図8(b)参照)。
 図8(c)では、間隔dが最も小さい場合において、反射位相差が0°となる周波数fを中心周波数fとして示している。
 そして、間隔dが最も小さい場合においては、反射位相差は、f=0.5fにおける150°から、f=1.8fの-150°まで変化する。
 なお、EBG構造体で構成された反射板10では、反射位相差が-90から90°の範囲で使用されることが多い。
The relationship between the reflection phase difference with respect to the frequency f and the distance d between the conductor patches 12 shown in FIG. 8C was obtained as follows. First, it is assumed that the conductor patch 12 is placed infinitely at a predetermined distance from the conductor 11 having an infinite area, for example, in parallel with an interval d (see FIG. 8A). Then, a plane wave was used as an incident wave with respect to the reflecting plate 10, and the reflection phase difference of the reflected wave with respect to the incident wave was calculated (see FIG. 8B).
In FIG. 8C, the frequency f at which the reflection phase difference is 0 ° when the interval d is the smallest is shown as the center frequency f 0 .
Then, when the distance d is the smallest, the reflected phase difference changes from 150 ° in f = 0.5f 0, until -150 ° of f = 1.8f 0.
Note that, in the reflector 10 composed of the EBG structure, the reflection phase difference is often used in the range of −90 to 90 °.
 そして、図8(c)に示すように、導体パッチ12の間隔dが大きく(広く)なるにつれ、反射位相差が0°となる周波数fが高くなる。すなわち、反射位相差を表すグラフが、周波数fの高い側にシフトする。
 このことから、反射板10における導体パッチ12の間隔dを大きく(広く)して、周波数fを高い側にシフトさせれば、図7(d)に示したf=0.94fでの水平偏波素子の指向性を、f=1.06fにおいて得ることができるようになると考えられる。
Then, as shown in FIG. 8C, the frequency f at which the reflection phase difference becomes 0 ° increases as the distance d between the conductor patches 12 increases (widens). That is, the graph representing the reflection phase difference shifts to the higher frequency f side.
Therefore, if the interval d between the conductor patches 12 in the reflector 10 is increased (widened) and the frequency f is shifted to the higher side, the horizontal level at f = 0.94f 0 shown in FIG. the directivity of the polarization element, is considered to be able to be obtained in f = 1.06f 0.
 図9は、第3の実施の形態が適用されるアンテナ1の全体構成の一例を示す斜視図である。
 図9に示すように、アンテナ1において、図6(a)に示した第2の実施の形態が適用されるアンテナ1の反射板10における導体パッチ12の水平方向の間隔L6を、間隔L6より広い間隔L6′としている。なお、導体パッチ12の垂直方向の間隔L8は、図6(a)に示した第2の実施の形態が適用されるアンテナ1と同じである。
FIG. 9 is a perspective view showing an example of the overall configuration of the antenna 1 to which the third embodiment is applied.
As shown in FIG. 9, in the antenna 1, the horizontal interval L6 of the conductor patch 12 in the reflector 10 of the antenna 1 to which the second embodiment shown in FIG. A wide interval L6 ′ is set. The vertical interval L8 between the conductor patches 12 is the same as that of the antenna 1 to which the second embodiment shown in FIG. 6A is applied.
 図10は、第3の実施の形態が適用されるアンテナ1の平面図である。
 なお、反射板10における導体11の一辺長L1は、図5(a)に示した第2の実施の形態と同じである。
 図10に示すように、反射板10における導体パッチ12は、水平方向が図5(a)に示した第2の実施の形態が適用される間隔L6より広い間隔L6′で配置されているので、図5(a)に示した第2の実施の形態の場合に比べて、導体パッチ12が水平方向に広がって配置されている。
 他の構成は、第2の実施の形態と同様であるので、同じ符号を付して説明を省略する。
FIG. 10 is a plan view of the antenna 1 to which the third embodiment is applied.
Note that the side length L1 of the conductor 11 in the reflector 10 is the same as that of the second embodiment shown in FIG.
As shown in FIG. 10, the conductor patches 12 in the reflector 10 are arranged at an interval L6 ′ whose horizontal direction is wider than the interval L6 to which the second embodiment shown in FIG. 5A is applied. Compared with the case of the second embodiment shown in FIG. 5A, the conductor patch 12 is disposed so as to spread in the horizontal direction.
Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
 図11は、第3の実施の形態が適用されるアンテナ1の垂直方向(垂直面内)における指向性及びその周波数(f)依存性を示す図である。図11(a)はf=0.94fにおける垂直偏波素子の指向性、図11(b)はf=fにおける垂直偏波素子の指向性、図11(c)はf=1.06fにおける垂直偏波素子の指向性、図11(d)はf=0.94fにおける水平偏波素子の指向性、図11(e)はf=fにおける水平偏波素子の指向性、図11(f)はf=1.06fにおける水平偏波素子の指向性を示す図である。
 これらの指向性は、間隔L6′=2×間隔L6=0.04λとして、シミュレーションにより求めた。
FIG. 11 is a diagram showing the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the third embodiment is applied and its frequency (f) dependency. 11A shows the directivity of the vertical polarization element at f = 0.94f 0 , FIG. 11B shows the directivity of the vertical polarization element at f = f 0 , and FIG. 11C shows f = 1. Directivity of the vertical polarization element at 06f 0 , FIG. 11D shows the directivity of the horizontal polarization element at f = 0.94f 0 , and FIG. 11E shows the directivity of the horizontal polarization element at f = f 0 . FIG 11 (f) are diagrams showing the directivity of horizontal polarization element in f = 1.06f 0.
These directivity, as the interval L6 '= 2 × distance L6 = 0.04 0, obtained by simulation.
 垂直偏波素子のチルト角θは、f=0.94f(図11(a))において6.3°、f=f(図11(b))において10°、f=1.06f(図11(c))において15.5°である。これら垂直偏波素子のチルト角θは、図7(a)、(b)、(c)に示した第2の実施の形態が適用されるアンテナ1の垂直偏波素子のチルト角θに近い。
 一方、水平偏波素子のチルト角θは、f=0.94f(図11(d))において7.5°、f=f(図11(e))において10.3°、f=1.06f(図11(f))において13.8°である。これら水平偏波素子のチルト角θは、図7(d)、(e)、(f)に示した第2の実施の形態が適用されるアンテナ1の水平偏波素子のチルト角θより小さく(浅く)、且つ指向性の乱れも少なくなっている。
The tilt angle θ of the vertical polarization elements, f = 0.94f 0 6.3 ° (FIG. 11 (a)), f = f 0 10 ° (FIG. 11 (b)), f = 1.06f 0 In FIG. 11C, it is 15.5 °. The tilt angle θ of these vertical polarization elements is close to the tilt angle θ of the vertical polarization element of the antenna 1 to which the second embodiment shown in FIGS. 7A, 7B, and 7C is applied. .
On the other hand, the tilt angle θ of the horizontal polarization element is 7.5 ° at f = 0.94f 0 (FIG. 11 (d)), 10.3 ° at f = f 0 (FIG. 11 (e)), f = It is 13.8 degrees in 1.06f 0 (FIG. 11 (f)). The tilt angle θ of these horizontal polarization elements is smaller than the tilt angle θ of the horizontal polarization element of the antenna 1 to which the second embodiment shown in FIGS. 7D, 7E, and 7F is applied. (Shallow) and less disturbed directivity.
 以上説明したように、第3の実施の形態が適用されるアンテナ1では、導体パッチ12の面積を垂直方向の上部から下部に向けて小さくするとともに、導体パッチ12の水平方向を間隔L6′と、第2の実施の形態が適用される間隔L6より広くした。これにより、垂直偏波素子及び水平偏波素子のメインビームの放射方向を反射板10の垂線方向から傾ける(チルトさせる)ことができるとともに、同じ周波数fにおける垂直偏波素子と水平偏波素子とでのチルト角θの差を抑制している。また、水平偏波素子の指向性の乱れも抑制できている。 As described above, in the antenna 1 to which the third embodiment is applied, the area of the conductor patch 12 is reduced from the upper part to the lower part in the vertical direction, and the horizontal direction of the conductor patch 12 is set to the interval L6 ′. The interval is larger than the interval L6 to which the second embodiment is applied. Thereby, the radiation direction of the main beam of the vertical polarization element and the horizontal polarization element can be tilted (tilted) from the normal direction of the reflecting plate 10, and the vertical polarization element and the horizontal polarization element at the same frequency f The difference in the tilt angle θ is suppressed. In addition, the disturbance of directivity of the horizontal polarization element can be suppressed.
 第3の実施の形態では、反射板10における導体パッチ12の水平方向は、第2の実施の形態が適用される間隔L6から、間隔L6より広い間隔L6′としたが、垂直方向は、間隔L8と同じにしている。これにより、垂直偏波素子の指向性を、第2の実施の形態のアンテナ1と同様に維持しつつ、水平偏波素子の指向性を変化させている。
 すなわち、水平方向の間隔L6と垂直方向の間隔L8とをそれぞれ別々に設定することで、水平偏波素子及び垂直偏波素子の指向性を別々に制御することができる。
In the third embodiment, the horizontal direction of the conductor patch 12 in the reflecting plate 10 is set to an interval L6 ′ wider than the interval L6 from the interval L6 to which the second embodiment is applied. Same as L8. Thus, the directivity of the horizontal polarization element is changed while maintaining the directivity of the vertical polarization element in the same manner as the antenna 1 of the second embodiment.
That is, by setting the horizontal interval L6 and the vertical interval L8 separately, the directivity of the horizontal polarization element and the vertical polarization element can be controlled separately.
 次に、ダイポール素子21、23の中心を反射板10の中心(反射板中心)から、垂直方向にずらして配置することについて説明する。なお、ダイポール素子22、24の位置も、ダイポール素子21、23とともにずらして配置している。よって、ダイポール素子21、22、23、24をまとめてダイポール素子と表記し、ダイポール素子21、23の中心をダイポール素子中心と表記する。
 図12は、反射板中心からダイポール素子中心を垂直方向にずらして配置することを説明する図である。図12(a)は、反射板中心からダイポール素子中心を垂直方向の正側、すなわち導体パッチ12の表面積が大きい側にずらして配置した場合、図12(b)は、反射板中心にダイポール素子中心を配置した場合、図12(c)は、反射板中心からダイポール素子中心を垂直方向の負側、すなわち導体パッチ12の表面積が小さい側にずらして配置した場合を示す。
 そして、反射板中心(反射板10の中心)に対するダイポール素子中心(ダイポール素子20の中心)の位置を位置Rとすると、位置Rは、図12(a)では0.4λ、図12(b)では0、図12(c)では-0.4λである。
Next, it will be described that the centers of the dipole elements 21 and 23 are shifted from the center of the reflection plate 10 (reflection plate center) in the vertical direction. The positions of the dipole elements 22 and 24 are also shifted with the dipole elements 21 and 23. Accordingly, the dipole elements 21, 22, 23, and 24 are collectively referred to as a dipole element, and the center of the dipole elements 21 and 23 is referred to as a dipole element center.
FIG. 12 is a diagram illustrating that the center of the dipole element is shifted from the center of the reflector in the vertical direction. 12A shows a case where the center of the dipole element is shifted from the center of the reflector to the positive side in the vertical direction, that is, the side where the surface area of the conductor patch 12 is large. FIG. When the center is arranged, FIG. 12C shows a case where the center of the dipole element is shifted from the center of the reflector to the negative side in the vertical direction, that is, the side where the surface area of the conductor patch 12 is small.
When the position of the dipole element center (center of the dipole element 20) with respect to the reflector center (center of the reflector 10) is a position R, the position R is 0.4λ 0 in FIG. 12A and FIG. ) Is 0 , and in FIG. 12C is -0.4λ0.
 図13は、反射板中心に対するダイポール素子中心の位置Rとチルト角θとの関係を示す図である。
 垂直偏波素子及び水平偏波素子のチルト角θは、位置Rとともに変化する。位置Rが負であると、チルト角θが正、すなわちメインビームが垂直方向の正側(導体パッチ12の表面積が大きい側)に傾く。一方、位置Rが正であると、チルト角θが負、すなわちメインビームが垂直方向の負側(導体パッチ12の表面積が小さい側)に傾く。
 しかし、図13に示すように、位置Rが負である場合には、垂直偏波素子のチルト角θと水平偏波素子のチルト角θとの差が、位置Rが正である場合に比べて小さい。よって、ダイポール素子は、位置Rが負である側、すなわち導体パッチ12の表面積が小さい側にずらして配置することが好ましい。
FIG. 13 is a diagram showing the relationship between the position R of the dipole element center relative to the center of the reflector and the tilt angle θ.
The tilt angle θ of the vertical polarization element and the horizontal polarization element changes with the position R. When the position R is negative, the tilt angle θ is positive, that is, the main beam is inclined to the positive side in the vertical direction (the side where the surface area of the conductor patch 12 is large). On the other hand, when the position R is positive, the tilt angle θ is negative, that is, the main beam is tilted to the negative side in the vertical direction (side where the surface area of the conductor patch 12 is small).
However, as shown in FIG. 13, when the position R is negative, the difference between the tilt angle θ of the vertical polarization element and the tilt angle θ of the horizontal polarization element is larger than that when the position R is positive. Small. Therefore, it is preferable that the dipole element is shifted from the side where the position R is negative, that is, the side where the surface area of the conductor patch 12 is small.
[第4の実施の形態]
 第4の実施の形態では、アンテナ1において、反射板10の複数の導体パッチ12の内、ダイポール素子21、22、23、24が対向する部分に導体パッチ12を設けていない。これにより、ダイポール素子21、22、23、24に給電する給電回路を設けやすくしている。
[Fourth Embodiment]
In the fourth embodiment, in the antenna 1, the conductor patch 12 is not provided in a portion where the dipole elements 21, 22, 23, and 24 are opposed to each other among the plurality of conductor patches 12 of the reflector 10. This makes it easy to provide a power feeding circuit that feeds power to the dipole elements 21, 22, 23, and 24.
 図14は、第4の実施の形態が適用されるアンテナ1の平面図である。
 図14に示すように、アンテナ1では、図10に示す第3の実施の形態が適用されるアンテナ1の複数の導体パッチ12において、水平方向に配置された複数の導体パッチ12cの内、水平方向の中央に設けられた1つが設けられていない。同様に、水平方向に配置された複数の導体パッチ12dの内、水平方向の中央に設けられた3つが設けられていない。さらに、水平方向に配置された複数の導体パッチ12eの内、水平方向の中央に設けられた3つが設けられていない。
 他の構成は、第3の実施の形態が適用されるアンテナ1と同様であるので、同じ符号を付して説明を省略する。
FIG. 14 is a plan view of the antenna 1 to which the fourth embodiment is applied.
As shown in FIG. 14, in the antenna 1, in the plurality of conductor patches 12 of the antenna 1 to which the third embodiment shown in FIG. 10 is applied, of the plurality of conductor patches 12c arranged in the horizontal direction, One provided in the center of the direction is not provided. Similarly, of the plurality of conductor patches 12d arranged in the horizontal direction, three provided at the center in the horizontal direction are not provided. Further, among the plurality of conductor patches 12e arranged in the horizontal direction, three provided at the center in the horizontal direction are not provided.
Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
 図15は、第4の実施の形態が適用されるアンテナ1の垂直方向(垂直面内)における指向性を示す図である。図15(a)はf=fにおける垂直偏波素子の指向性、図15(b)はf=fにおける水平偏波素子の指向性である。
 図15(a)に示すように、垂直偏波素子のチルト角θはf=fにおいて9.3°、図15(b)に示すように、水平偏波素子のチルト角θはf=fにおいて12.8°である。
 このように、ダイポール素子21、22、23、24が設けられる部分に導体パッチ12を設けなくとも、垂直偏波素子及び水平偏波素子のメインビームの放射方向を反射板10の垂線方向から傾ける(チルトさせる)ことができる。
FIG. 15 is a diagram illustrating the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the fourth embodiment is applied. FIG. 15A shows the directivity of the vertical polarization element at f = f 0 , and FIG. 15B shows the directivity of the horizontal polarization element at f = f 0 .
As shown in FIG. 15A, the tilt angle θ of the vertical polarization element is 9.3 ° at f = f 0 , and as shown in FIG. 15B, the tilt angle θ of the horizontal polarization element is f = It is 12.8 ° at f 0 .
As described above, the radiation direction of the main beam of the vertical polarization element and the horizontal polarization element is tilted from the normal direction of the reflection plate 10 without providing the conductor patch 12 in the portion where the dipole elements 21, 22, 23, 24 are provided. (Tilt).
[第5の実施の形態]
 第1の実施の形態から第4の実施の形態では、アンテナ1において、反射板10の複数の導体パッチ12は表面形状を正方形とした。第5の実施の形態では、アンテナ1において、反射板10の複数の導体パッチ12の表面形状を長方形としている。
[Fifth Embodiment]
In the first to fourth embodiments, in the antenna 1, the plurality of conductor patches 12 of the reflector 10 have a square surface shape. In the fifth embodiment, in the antenna 1, the surface shape of the plurality of conductor patches 12 of the reflector 10 is rectangular.
 図16は、第5の実施の形態が適用されるアンテナ1の平面図である。
 図16に示すように、アンテナ1では、図10に示す第3の実施の形態が適用されるアンテナ1の導体パッチ12の表面形状を正方形から長方形にした。
 他の構成は、第3の実施の形態が適用されるアンテナ1と同様であるので、同じ符号を付して説明を省略する。
FIG. 16 is a plan view of the antenna 1 to which the fifth embodiment is applied.
As shown in FIG. 16, in the antenna 1, the surface shape of the conductor patch 12 of the antenna 1 to which the third embodiment shown in FIG. 10 is applied is changed from a square to a rectangle.
Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
 図17は、第5の実施の形態が適用されるアンテナ1の垂直方向(垂直面内)における指向性を示す図である。図17(a)はf=fにおける垂直偏波素子の指向性、図17(b)はf=fにおける水平偏波素子の指向性である。
 図17(a)に示すように、垂直偏波素子のチルト角θはf=fにおいて11.5°である。しかし、図17(b)に示すように、水平偏波素子では、f=fにおける指向性が乱れている。第3の実施の形態で説明したように、水平方向の間隔L6′をさらに広くするなどにより、水平偏波素子の指向性の乱れを抑制するとともに、チルト角θを垂直偏波素子と同様な値に設定することができる。
 このように、導体パッチ12の表面形状を長方形としても、垂直偏波素子及び水平偏波素子のメインビームの放射方向を反射板10の垂線方向から傾ける(チルトさせる)ことができる。
 なお、図16に示すアンテナ1では、導体パッチ12を水平方向が垂直方向より長い長方形としたが、水平方向が垂直方向より短い長方形としてもよい。
FIG. 17 is a diagram showing the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the fifth embodiment is applied. FIG. 17A shows the directivity of the vertical polarization element at f = f 0 , and FIG. 17B shows the directivity of the horizontal polarization element at f = f 0 .
As shown in FIG. 17A, the tilt angle θ of the vertical polarization element is 11.5 ° at f = f 0 . However, as shown in FIG. 17B, the directivity at f = f 0 is disturbed in the horizontal polarization element. As described in the third embodiment, by further increasing the horizontal distance L6 ′, the disturbance of directivity of the horizontal polarization element is suppressed, and the tilt angle θ is the same as that of the vertical polarization element. Can be set to a value.
Thus, even if the surface shape of the conductor patch 12 is rectangular, the radiation direction of the main beam of the vertical polarization element and the horizontal polarization element can be tilted (tilted) from the normal direction of the reflector 10.
In the antenna 1 shown in FIG. 16, the conductor patch 12 is a rectangle whose horizontal direction is longer than the vertical direction, but may be a rectangle whose horizontal direction is shorter than the vertical direction.
[第6の実施の形態]
 第5の実施の形態では、アンテナ1において、反射板10の複数の導体パッチ12の表面形状を円形としている。
[Sixth Embodiment]
In the fifth embodiment, in the antenna 1, the surface shape of the plurality of conductor patches 12 of the reflector 10 is circular.
 図18は、第6の実施の形態が適用されるアンテナ1の平面図である。
 第6の実施の形態が適用されるアンテナ1では、図10に示す第3の実施の形態が適用されるアンテナ1の導体パッチ12の表面形状を正方形から円形にしている。
 他の構成は、第3の実施の形態が適用されるアンテナ1と同様であるので、同じ符号を付して説明を省略する。
FIG. 18 is a plan view of the antenna 1 to which the sixth embodiment is applied.
In the antenna 1 to which the sixth embodiment is applied, the surface shape of the conductor patch 12 of the antenna 1 to which the third embodiment shown in FIG. 10 is applied is changed from a square to a circle.
Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
 図19は、第6の実施の形態が適用されるアンテナ1の垂直方向(垂直面内)における指向性を示す図である。図19(a)はf=fにおける垂直偏波素子の指向性、図19(b)はf=fにおける水平偏波素子の指向性である。
 図19(a)に示すように、垂直偏波素子のチルト角θはf=fにおいて6°、図19(b)に示すように、水平偏波素子のチルト角θはf=fにおいて8°である。
 このように、導体パッチ12の表面形状を円形としても、垂直偏波素子及び水平偏波素子のメインビームの放射方向を反射板10の垂線方向から傾ける(チルトさせる)ことができる。
 なお、導体パッチ12の表面形状を楕円形にしてもよい。
FIG. 19 is a diagram showing the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the sixth embodiment is applied. FIG. 19A shows the directivity of the vertical polarization element at f = f 0 , and FIG. 19B shows the directivity of the horizontal polarization element at f = f 0 .
As shown in FIG. 19A, the tilt angle θ of the vertical polarization element is 6 ° at f = f 0 , and as shown in FIG. 19B, the tilt angle θ of the horizontal polarization element is f = f 0. At 8 °.
Thus, even if the surface shape of the conductor patch 12 is circular, the radiation direction of the main beam of the vertical polarization element and the horizontal polarization element can be tilted (tilted) from the normal direction of the reflector 10.
The surface shape of the conductor patch 12 may be an ellipse.
[第7の実施の形態]
 第7の実施の形態では、アンテナ1において、反射板10の複数の導体パッチ12の表面形状を同じ表面積の正方形とし、垂直方向の間隔を変えた。
[Seventh Embodiment]
In the seventh embodiment, in the antenna 1, the surface shape of the plurality of conductor patches 12 of the reflecting plate 10 is a square having the same surface area, and the vertical interval is changed.
 図20は、第7の実施の形態が適用されるアンテナ1の平面図である。
 第7の実施の形態が適用されるアンテナ1では、導体パッチ12の表面形状を同じ表面積の正方形にした。そして、導体パッチ12を垂直方向の下部から上部に向って、間隔L81、L82、L83、L84、L85、L86とし、徐々に狭めて配置している(L81>L82>L83>L84>L85>L86)。
 他の構成は、第3の実施の形態が適用されるアンテナ1と同様であるので、同じ符号を付して説明を省略する。
FIG. 20 is a plan view of the antenna 1 to which the seventh embodiment is applied.
In the antenna 1 to which the seventh embodiment is applied, the surface shape of the conductor patch 12 is a square having the same surface area. Then, the conductor patch 12 is arranged with intervals L81, L82, L83, L84, L85, L86 from the lower part to the upper part in the vertical direction and gradually narrowed (L81>L82>L83>L84>L85> L86). ).
Other configurations are the same as those of the antenna 1 to which the third embodiment is applied.
 図21は、第7の実施の形態が適用されるアンテナ1の垂直方向(垂直面内)における指向性を示す図である。図21(a)はf=fにおける垂直偏波素子の指向性、図21(b)はf=fにおける水平偏波素子の指向性である。
 図21(a)に示すように、垂直偏波素子のチルト角θはf=fにおいて5.3°、図21(b)に示すように、水平偏波素子のチルト角θはf=fにおいて14.3°である。
 このように、導体パッチ12を表面積が同じ形状とし、垂直方向の間隔を変えて配置しても、垂直偏波素子及び水平偏波素子のメインビームの放射方向を反射板10の垂線方向から傾ける(チルトさせる)ことができる。
FIG. 21 is a diagram illustrating the directivity in the vertical direction (in the vertical plane) of the antenna 1 to which the seventh embodiment is applied. FIG. 21A shows the directivity of the vertical polarization element at f = f 0 , and FIG. 21B shows the directivity of the horizontal polarization element at f = f 0 .
As shown in FIG. 21A, the tilt angle θ of the vertical polarization element is 5.3 ° at f = f 0 , and as shown in FIG. 21B, the tilt angle θ of the horizontal polarization element is f = It is 14.3 ° at f 0 .
As described above, even if the conductor patches 12 have the same surface area and are arranged with different vertical intervals, the radiation directions of the main beams of the vertical polarization element and the horizontal polarization element are inclined from the normal direction of the reflector 10. (Tilt).
[第8の実施の形態]
 第1の実施の形態では、アンテナ1において、ダイポール素子20を、第2の実施の形態から第7の実施の形態では、アンテナ1において、ダイポール素子21、22、23、24を用いた。第8の実施の形態では、アンテナ1において、放射素子のさらに他の一例であるパッチ素子を用い、反射板10と組み合わせてパッチアンテナとしている。
[Eighth Embodiment]
In the first embodiment, the dipole element 20 is used in the antenna 1, and the dipole elements 21, 22, 23, and 24 are used in the antenna 1 in the second to seventh embodiments. In the eighth embodiment, the antenna 1 uses a patch element which is still another example of a radiating element, and is combined with the reflector 10 to form a patch antenna.
 図22は、第8の実施の形態が適用されるアンテナ1の全体構成の一例を示す斜視図である。
 第8の実施の形態が適用されるアンテナ1では、図1に示す第1の実施の形態が適用されるアンテナ1のダイポール素子20をパッチ素子25にしている。そして、パッチ素子25はパッチ部25aと給電部25bとを備えている。反射板10の裏面側から給電部25bに給電される。
 他の構成は、第1の実施の形態が適用されるアンテナ1と同様であるので、同じ符号を付して説明を省略する。
FIG. 22 is a perspective view showing an example of the overall configuration of the antenna 1 to which the eighth embodiment is applied.
In the antenna 1 to which the eighth embodiment is applied, the dipole element 20 of the antenna 1 to which the first embodiment shown in FIG. The patch element 25 includes a patch portion 25a and a power feeding portion 25b. Power is supplied from the back side of the reflector 10 to the power supply unit 25b.
Other configurations are the same as those of the antenna 1 to which the first exemplary embodiment is applied, and thus the same reference numerals are given and description thereof is omitted.
[第9の実施の形態]
 第1の実施の形態から第8の実施の形態では、反射板10における導体パッチ12は、垂直方向において表面積が変化していた。
 第9の実施の形態においては、反射板10における導体パッチ12は、垂直方向に加え、水平方向においても表面積が変化している。
[Ninth Embodiment]
In the first to eighth embodiments, the surface area of the conductor patch 12 in the reflector 10 is changed in the vertical direction.
In the ninth embodiment, the surface area of the conductor patch 12 in the reflecting plate 10 changes not only in the vertical direction but also in the horizontal direction.
 図23は、第9の実施の形態が適用されるアンテナ1の全体構成の一例を示す斜視図である。ここでは、図23に示すように反射板10の一方の辺に沿う方向(紙面において下に向かう方向)をx方向(垂直方向)、一辺の辺と直交する方向(紙面において右に向かう方向)をy方向(水平方向)とする。そして、反射板10に垂直な方向をz方向とする。そして、x方向とy方向との間の方向をφ45°方向とする。
 そして、図23に示すように、アンテナ1の反射板10では、x方向に向かうにつれて、表面積が小さくなるように導体パッチ12が配置されるとともに、y方向に向かうにつれて、表面積が小さくなるように導体パッチ12が配置されている。すなわち、x方向とy方向との2方向において、表面積が小さくなる導体パッチ12が配置されている。
 ダイポール素子21、22、23、24などの他の構成は、第2の実施の形態と同様であるので、同じ符号を付して説明を省略する。
FIG. 23 is a perspective view showing an example of the overall configuration of the antenna 1 to which the ninth embodiment is applied. Here, as shown in FIG. 23, a direction along one side of the reflecting plate 10 (downward direction on the paper surface) is the x direction (vertical direction), and a direction orthogonal to one side (rightward direction on the paper surface). Is the y direction (horizontal direction). The direction perpendicular to the reflecting plate 10 is taken as the z direction. A direction between the x direction and the y direction is defined as a φ45 ° direction.
Then, as shown in FIG. 23, in the reflector 10 of the antenna 1, the conductor patch 12 is arranged so that the surface area becomes smaller as it goes in the x direction, and the surface area becomes smaller as it goes in the y direction. A conductor patch 12 is disposed. That is, the conductor patch 12 having a small surface area is arranged in two directions, the x direction and the y direction.
Other configurations such as the dipole elements 21, 22, 23, and 24 are the same as those in the second embodiment, and thus the same reference numerals are given and description thereof is omitted.
 図24は、第9の実施の形態が適用されるアンテナ1の平面図である。
 図24に示すように、反射板10における導体パッチ12は、x方向及びy方向に沿って、表面積が小さくなる導体パッチ12が配置されている。そして、導体パッチ12間の間隔も、x方向及びy方向に沿って、大きくなっている。
 他の構成は、第2の実施の形態と同様であるので、同じ符号を付して説明を省略する。
FIG. 24 is a plan view of the antenna 1 to which the ninth embodiment is applied.
As shown in FIG. 24, the conductor patch 12 in the reflecting plate 10 is provided with a conductor patch 12 having a small surface area along the x direction and the y direction. The spacing between the conductor patches 12 is also increased along the x direction and the y direction.
Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
 図25は、第9の実施の形態が適用されるアンテナ1の垂直偏波素子の指向性を示す図である。図25(a)は、x-z平面での垂直偏波素子の指向性、図25(b)は、y-z平面での垂直偏波素子の指向性、図25(c)は、φ45°-z平面での垂直偏波素子の指向性である。
 図25(a)に示すように、アンテナ1の垂直偏波素子のチルト角θは、-x方向、すなわち導体パッチ12の表面積が大きくなる方向に10.3°である。また、図25(b)に示すように、アンテナ1の垂直偏波素子のチルト角θは、-y方向、すなわち導体パッチ12の表面積が大きくなる方向に5.8°である
 そして、図25(c)に示すように、アンテナ1の垂直偏波素子のチルト角θは、-φ45°方向に10.3°である。
FIG. 25 is a diagram illustrating the directivity of the vertical polarization element of the antenna 1 to which the ninth embodiment is applied. 25 (a) shows the directivity of the vertical polarization element in the xz plane, FIG. 25 (b) shows the directivity of the vertical polarization element in the yz plane, and FIG. 25 (c) shows φ This is the directivity of the vertical polarization element in the 45 ° -z plane.
As shown in FIG. 25A, the tilt angle θ of the vertical polarization element of the antenna 1 is 10.3 ° in the −x direction, that is, the direction in which the surface area of the conductor patch 12 increases. Further, as shown in FIG. 25B, the tilt angle θ of the vertical polarization element of the antenna 1 is 5.8 ° in the −y direction, that is, the direction in which the surface area of the conductor patch 12 increases. As shown in (c), the tilt angle θ of the vertical polarization element of the antenna 1 is 10.3 ° in the −φ 45 ° direction.
 以上説明したように、導体パッチ12の表面積、すなわち最も大きな表面積の導体パッチ12を含むように予め設定された面積当りに導体パッチ12が占める表面積の割合を複数の方向において変化させることにより、予め定められた方向にメインビームのチルト角θや指向性を設定することができる。 As described above, the surface area of the conductor patch 12, that is, the ratio of the surface area occupied by the conductor patch 12 per predetermined area so as to include the conductor patch 12 having the largest surface area is changed in a plurality of directions in advance. The tilt angle θ and directivity of the main beam can be set in a predetermined direction.
 なお、ダイポール素子21、22、23、24の代わりに、第8の実施の形態で説明したパッチ素子25を用いてもよい。 Note that the patch element 25 described in the eighth embodiment may be used in place of the dipole elements 21, 22, 23, and 24.
 以上説明したように、EBG構造体による反射板10を用いたアンテナ1では、反射板10を構成する導体パッチ12の表面形状及び導体パッチ12相互間の間隔によって、導体11と導体パッチ12間のインダクタンス、導体パッチ12相互間のキャパシタンスが変化する。よって、反射板10において、インダクタンス又は/及びキャパシタンスに分布を持たせることで、放射素子(ダイポール素子20、21、22、23、24、パッチ素子25)が送受信する電波のメインビームの反射板10の垂線方向に対するチルト角θ及び指向性を制御することができる。なお、チルト角θ及び指向性は、導体パッチ12の表面形状、面積、間隔などにより設定できる。 As described above, in the antenna 1 using the reflector 10 made of the EBG structure, the distance between the conductor 11 and the conductor patch 12 depends on the surface shape of the conductor patch 12 constituting the reflector 10 and the distance between the conductor patches 12. The inductance and the capacitance between the conductor patches 12 change. Therefore, the reflector 10 has a distribution of inductance and / or capacitance, so that the reflector 10 for the main beam of radio waves transmitted and received by the radiating elements ( dipole elements 20, 21, 22, 23, 24, patch element 25) is transmitted. It is possible to control the tilt angle θ and the directivity with respect to the normal direction. Note that the tilt angle θ and directivity can be set by the surface shape, area, interval, etc. of the conductor patch 12.
 第1の実施の形態から第4の実施の形態及び第7の実施の形態から第9の実施の形態では、導体パッチ12の表面形状を正方形とし、第5の実施の形態では、導体パッチ12の表面形状を長方形とした。さらに、第6の実施の形態では、導体パッチ12の表面形状を円形とした。導体パッチ12の表面形状は、多角形としてもよく、曲線で囲まれた形状であってもよい。さらに、直線と曲線とで囲まれた形状であってもよい。 In the first to fourth embodiments and the seventh to ninth embodiments, the surface shape of the conductor patch 12 is square, and in the fifth embodiment, the conductor patch 12 is used. The surface shape of was made rectangular. Furthermore, in the sixth embodiment, the surface shape of the conductor patch 12 is circular. The surface shape of the conductor patch 12 may be a polygon or a shape surrounded by a curve. Furthermore, the shape enclosed by the straight line and the curve may be sufficient.
 また、第2の実施の形態から第7の実施の形態及び第9の実施の形態において、電波は垂直偏波及び水平偏波が送受信できるとした。例えば、電波が±45°の偏波であるときは、放射素子(ダイポール素子20、21、22、23、24)をその中心の周りで45°回転させればよい。 In addition, in the second to seventh embodiments and the ninth embodiment, the radio waves can be transmitted and received in the vertical polarization and the horizontal polarization. For example, when the radio wave has a polarization of ± 45 °, the radiating element ( dipole elements 20, 21, 22, 23, 24) may be rotated by 45 ° around the center thereof.
 さらに、送受信できる電波の帯域を広げるなどのために、アンテナ1における放射素子(ダイポール素子20、21、22、23、24、パッチ素子25)の周囲又は/及び導体11から遠い側に無給電素子を設けてもよい。 Further, in order to widen the band of radio waves that can be transmitted and received, a parasitic element around the radiation element ( dipole elements 20, 21, 22, 23, 24, patch element 25) in the antenna 1 and / or far from the conductor 11 is provided. May be provided.
1…アンテナ、10…反射板、11…導体、12、12a、12b、12c、12d、12e、12f、12g、12h、12i…導体パッチ、20、21、22、23、24…ダイポール素子、25…パッチ素子、θ…チルト角、λ…中心波長、f…中心周波数 DESCRIPTION OF SYMBOLS 1 ... Antenna, 10 ... Reflecting plate, 11 ... Conductor, 12, 12a, 12b, 12c, 12d, 12e, 12f, 12g, 12h, 12i ... Conductor patch, 20, 21, 22, 23, 24 ... Dipole element, 25 ... Patch element, θ ... Tilt angle, λ 0 ... Center wavelength, f 0 ... Center frequency

Claims (7)

  1.  導電材料で構成された導体と、
     導電材料で構成され、前記導体を含む面に直交する方向に、予め定められた第1の距離に配置され、予め定められた面積当りにおける当該導体に対向する表面積の割合が、予め定められた方向において変化する領域を有する複数の導体パッチと、
     前記導体を含む面に直交する方向に、前記複数の導体パッチから予め定められた第2の距離に設けられ、電波を送受信する放射素子と
    を備えるアンテナ。
    A conductor made of a conductive material;
    A ratio of a surface area that is made of a conductive material and is disposed at a predetermined first distance in a direction orthogonal to the plane including the conductor and that faces the conductor per predetermined area is determined in advance. A plurality of conductor patches having regions that vary in direction;
    An antenna comprising: a radiating element that is provided at a predetermined second distance from the plurality of conductor patches in a direction orthogonal to a plane including the conductor, and that transmits and receives radio waves.
  2.  前記導体を含む面に直交する方向に、前記複数の導体パッチから予め定められた第3の距離に、前記放射素子の送受信する電波の偏波と交差する偏波の電波を送受信する他の放射素子がさらに設けられていることを特徴とする請求項1に記載のアンテナ。 Other radiation that transmits / receives polarized radio waves that intersect the polarization of radio waves transmitted / received by the radiating element at a predetermined third distance from the plurality of conductor patches in a direction orthogonal to the plane including the conductors The antenna according to claim 1, further comprising an element.
  3.  前記複数の導体パッチの前記領域における前記導体に対向する表面積の割合の変化は、当該領域に含まれる導体パッチの表面積の変化であることを特徴とする請求項1又は2に記載のアンテナ。 3. The antenna according to claim 1, wherein the change in the ratio of the surface area facing the conductor in the region of the plurality of conductor patches is a change in the surface area of the conductor patch included in the region.
  4.  前記複数の導体パッチの間隔が、前記予め定められた方向と当該予め定められた方向と直交する方向とで異なることを特徴とする請求項3に記載のアンテナ。 The antenna according to claim 3, wherein an interval between the plurality of conductor patches is different between the predetermined direction and a direction orthogonal to the predetermined direction.
  5.  前記複数の導体パッチの前記領域における前記導体に対向する表面積の割合の変化は、当該領域に含まれる導体パッチの間の距離の変化であることを特徴とする請求項1又は2に記載のアンテナ。 3. The antenna according to claim 1, wherein the change in the ratio of the surface area facing the conductor in the region of the plurality of conductor patches is a change in the distance between the conductor patches included in the region. .
  6.  前記放射素子又は前記他の放射素子のいずれか一方又は両方の中心が、前記予め定められた方向において、前記複数の導体パッチの前記領域の中心からずれて配置されていることを特徴とする請求項2に記載のアンテナ。 The center of one or both of the radiating element and the other radiating element is arranged so as to be shifted from the center of the region of the plurality of conductor patches in the predetermined direction. Item 3. The antenna according to Item 2.
  7.  前記複数の導体パッチは、前記放射素子又は前記他の放射素子のいずれか一方又は両方が面する部分を除くように設けられていることを特徴とする請求項2に記載のアンテナ。 The antenna according to claim 2, wherein the plurality of conductor patches are provided so as to exclude a portion facing either or both of the radiating element and the other radiating element.
PCT/JP2015/051283 2014-01-21 2015-01-19 Antenna WO2015111557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580005192.8A CN106415928B (en) 2014-01-21 2015-01-19 Antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-008863 2014-01-21
JP2014008863A JP6282469B2 (en) 2014-01-21 2014-01-21 antenna

Publications (1)

Publication Number Publication Date
WO2015111557A1 true WO2015111557A1 (en) 2015-07-30

Family

ID=53681361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051283 WO2015111557A1 (en) 2014-01-21 2015-01-19 Antenna

Country Status (3)

Country Link
JP (1) JP6282469B2 (en)
CN (1) CN106415928B (en)
WO (1) WO2015111557A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112460A (en) * 2015-12-15 2017-06-22 株式会社Soken Antenna device
WO2017104754A1 (en) * 2015-12-15 2017-06-22 株式会社日本自動車部品総合研究所 Antenna device
JP2018042143A (en) * 2016-09-08 2018-03-15 株式会社Soken Antenna device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6499116B2 (en) * 2016-04-06 2019-04-10 株式会社Soken Antenna device
JP6970051B2 (en) * 2018-04-05 2021-11-24 株式会社Soken Reflection reduction device
KR102107023B1 (en) * 2018-11-02 2020-05-07 삼성전기주식회사 Antenna apparatus and antenna module
KR102114632B1 (en) * 2019-03-26 2020-05-25 홍익대학교 산학협력단 Apparatus of beam steering and multibeam high gain antenna using rearrangement of source
JP7325303B2 (en) 2019-11-08 2023-08-14 加賀Fei株式会社 wireless module
WO2023181120A1 (en) * 2022-03-22 2023-09-28 日本電気株式会社 Radio wave control system, control device, radio wave control method, and non-transitory computer-readable medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034331A (en) * 2010-02-26 2012-02-16 Ntt Docomo Inc Apparatus with mushroom structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008050441A1 (en) * 2006-10-26 2010-02-25 パナソニック株式会社 Antenna device
JP5352645B2 (en) * 2011-08-29 2013-11-27 株式会社エヌ・ティ・ティ・ドコモ Multi-beam reflect array
CN103367881A (en) * 2013-07-16 2013-10-23 北京邮电大学 High-gain G-shaped dual-frequency monopole antenna with loaded dual-frequency AMC reflection plate
CN104362435B (en) * 2014-11-07 2017-06-23 西北工业大学 A kind of plane high-gain microstrip reflection array antenna

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012034331A (en) * 2010-02-26 2012-02-16 Ntt Docomo Inc Apparatus with mushroom structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANGHUA WAN ET AL.: "Efficient computation of generalized scattering matrix for analyzing multilayered periodic structures", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 43, no. 11, 1995, pages 1233 - 1242, XP000538003 *
JOSE A. ENCINAR: "Design of two-layer printed reflectarrays using patches of variable size", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 49, no. 10, 2001, pages 1403 - 1410, XP001102992 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017112460A (en) * 2015-12-15 2017-06-22 株式会社Soken Antenna device
WO2017104754A1 (en) * 2015-12-15 2017-06-22 株式会社日本自動車部品総合研究所 Antenna device
US11575196B2 (en) 2015-12-15 2023-02-07 Denso Corporation Antenna device
JP2018042143A (en) * 2016-09-08 2018-03-15 株式会社Soken Antenna device

Also Published As

Publication number Publication date
JP2015139063A (en) 2015-07-30
JP6282469B2 (en) 2018-02-21
CN106415928B (en) 2019-06-11
CN106415928A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6282469B2 (en) antenna
CN109742556B (en) Broadband circularly polarized millimeter wave multi-feed-source multi-beam lens antenna
US7889127B2 (en) Wide angle impedance matching using metamaterials in a phased array antenna system
US11831084B2 (en) Dual-polarized antenna, antenna array, and communications device
US8319698B2 (en) Reflector array and antenna comprising such a reflector array
CN103187616B (en) Circular polarized antenna
CN106848552B (en) Circularly polarized antenna array structure based on spatial phase compensation and phase compensation method
WO2015029946A1 (en) Antenna and sector antenna
JP2010233215A (en) Mobile communication base station antenna
WO2014054444A1 (en) Reflect array
JP2010233214A (en) Mobile communication base station antenna
JP4724862B2 (en) Array antenna
WO2021000731A1 (en) Antenna assembly and electronic device
KR101803208B1 (en) Beamfoaming anttena using single radiator multi port
JP2011010081A (en) Antenna device
US20200303837A1 (en) Pre-phased antenna arrays, systems and methods
JP7265462B2 (en) Radio wave transmission plate and radio wave transmission system
CN117060079A (en) Programmable double circular polarization super-surface reflection array
WO2015159871A1 (en) Antenna and sector antenna
CN112688088B (en) Dual-polarized dual-mode vortex reflective array antenna
JP5993319B2 (en) Reflect array and element
EP2463958B1 (en) Compact system of multi-beam antennas
US20220077589A1 (en) Leaky Wave Antenna
JP2010057091A (en) Array antenna
Zuniga et al. Effect of a central antenna element on the directivity, half-power beamwidth and side-lobe level of circular antenna arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740015

Country of ref document: EP

Kind code of ref document: A1