WO2015111517A1 - Power conversion apparatus, equipment, and equipment system - Google Patents

Power conversion apparatus, equipment, and equipment system Download PDF

Info

Publication number
WO2015111517A1
WO2015111517A1 PCT/JP2015/051088 JP2015051088W WO2015111517A1 WO 2015111517 A1 WO2015111517 A1 WO 2015111517A1 JP 2015051088 W JP2015051088 W JP 2015051088W WO 2015111517 A1 WO2015111517 A1 WO 2015111517A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
value
limit value
power
controller
Prior art date
Application number
PCT/JP2015/051088
Other languages
French (fr)
Japanese (ja)
Inventor
壮寛 小林
勇司 松本
治信 温品
洋平 久保田
圭一 石田
慧 小川
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2015558825A priority Critical patent/JP6357489B2/en
Priority to CN201580002540.6A priority patent/CN106233596A/en
Publication of WO2015111517A1 publication Critical patent/WO2015111517A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a power conversion device that converts the voltage of an AC power source into DC and converts the DC voltage into an AC voltage of a predetermined frequency, equipment equipped with the power conversion device, and equipment equipment system equipped with the power conversion device About.
  • Equipment with high power consumption is connected to power receiving equipment (cubicle).
  • a restriction value for restricting the outflow amount of the harmonic current to the commercial AC power source is set in the power receiving facility.
  • the size of the regulation value is proportional to the power capacity of the power receiving facility.
  • the harmonic current is generated in equipment so-called inverter-equipped equipment equipped with an inverter, and is not generated in an AC motor (induction motor) directly connected to a commercial AC power supply.
  • JP 2004-120878 A Japanese Patent Laid-Open No. 2004-263887
  • the purpose of this embodiment is a power conversion device that can reliably reduce the harmonic current regardless of its harmonic order without requiring expensive power receiving equipment and harmonic suppression devices and without reducing the efficiency of the equipment. And provide equipment and equipment systems.
  • the power conversion device is a converter that boosts and converts a voltage of an AC power supply, an inverter that converts an output voltage of the converter into an AC voltage, and an output voltage of the converter according to a limit value of a harmonic current. And a controller for controlling.
  • the facility equipment according to claim 6 includes a plurality of the power conversion devices according to claim 5, and includes a comprehensive controller that comprehensively controls each of the power conversion devices.
  • the integrated controller sets a limit value for the power converter within a limit value range for the facility device based on a “regulation value of harmonic current” set for a power receiving facility to which the facility device is connected. Then, the limit values for these power conversion devices are notified to the controllers of the power conversion devices.
  • the facility equipment system according to claim 8 is a facility equipment system including a plurality of the facility equipment according to claim 6, and includes a center controller for controlling each of the equipment devices.
  • This center controller is a limit value for each facility device within the range of the limit value for the facility device system based on the “regulation value of harmonic current” set in the power receiving facility to which the facility device is connected. And the limit values for these equipment devices are notified to the respective integrated controllers of the respective equipment devices.
  • the block diagram which shows the structure of 1st and 2nd embodiment.
  • the flowchart which shows the control of each embodiment.
  • the power conversion device according to the first embodiment is incorporated in a heat pump heat source device such as an air conditioner, which is a specific equipment device, and drives a compressor in the heat pump heat source device.
  • a heat pump heat source device such as an air conditioner, which is a specific equipment device, and drives a compressor in the heat pump heat source device.
  • a power receiving facility (cubicle) 10 is connected to phase lines R, S, and T of a commercial three-phase AC power source 1, and the power converter 100 of the present embodiment is connected to the power receiving facility 10.
  • the power conversion device 100 is incorporated in a specific equipment such as a heat pump heat source machine for air conditioning, and outputs drive power to a drive motor of a compressor in the heat pump heat source machine, and is connected to the power receiving equipment 10.
  • Converter 2 also referred to as a PWM converter
  • a smoothing capacitor 4 connected to the output terminal of the converter 2
  • an inverter 5 connected to the smoothing capacitor 4.
  • the phase winding Lu Of the above-mentioned compressor motor such as the brushless DC motor 6 is connected to the output terminal of the inverter 5.
  • Lv. Lw is connected.
  • the converter 2 includes reactors 21, 22 and 23, a bridge circuit of diodes 31 a to 36 a connected to the three-phase AC power supply 1 through the reactors 21, 22 and 23, and switching elements connected in parallel to the diodes 31 a to 36 a
  • IGBTs Insulated Gate Bipolar Transistors
  • a three-phase AC voltage supplied from the power receiving facility 10 is boosted and DC converted by ON / OFF switching of the IGBTs 31 to 36.
  • the converter 2 converts an AC voltage of 200V into a DC voltage of about 300V.
  • the output voltage Vc of the converter 2 is applied to the smoothing capacitor 4.
  • the converter 2 performs full-wave rectification of the three-phase AC voltage supplied from the power receiving facility 10 by the diodes 31a to 36a when the IGBTs 31 to 36 are turned off and on.
  • the bridge circuit of the diodes 31a to 36a includes a series circuit of diodes 31a and 32a, a series circuit of diodes 33a and 34a, and a series circuit of diodes 35a and 36a.
  • the interconnection point of the diodes 31a and 32a is connected to the R phase of the three-phase AC power source 1 through the power receiving facility 10
  • the interconnection point of the diodes 33a and 34a is the S phase of the three-phase AC power source 1 through the power receiving facility 10.
  • the interconnection point of the diodes 35 a and 36 a is connected to the T phase of the three-phase AC power source 1 through the power receiving facility 10.
  • the diodes 31a to 36a are regenerative diodes for the IGBTs 31 to 36.
  • the inverter 5 includes IGBTs 51 and 52 connected in series, and U-phase series circuits, IGBTs 53 and 54, in which the interconnection points of the IGBTs 51 and 52 are connected to the phase winding Lu of the brushless DC motor 6. Are connected in series to the phase winding Lv of the brushless DC motor 6, and the IGBTs 55 and 56 are connected in series. The interconnection point of the IGBTs 55 and 56 is connected to the phase winding Lw of the brushless DC motor 6. Including a series circuit for W phase to be connected, the voltage of the smoothing capacitor 4 is converted into a three-phase AC voltage of a predetermined frequency by switching of each IGBT, and output from an interconnection point of each IGBT.
  • the IGBTs 51 to 56 are connected to regenerative diodes (free wheel diodes) 51a to 56a in antiparallel. It is desirable to use fast recovery diodes for the regenerative diodes 51a to 56a in order to reduce loss.
  • the brushless DC motor 6 includes a stator having three phase windings Lu, Lv, and Lw connected in a star shape, and a rotor having a permanent magnet.
  • the rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field created by the permanent magnet.
  • Current sensors (current detection means) 71, 72, 73 for detecting input current are disposed in the energization path between the power receiving facility 10 and the converter 2.
  • Current sensors 81, 82, 83 for detecting an output current (phase winding current) are disposed in a current path between the output end of the inverter 5 and the brushless DC motor 6.
  • the detection results of these current sensors 71 to 83 are supplied to the controller 90.
  • the controller 90 drives the brushless DC motor 6 by performing sensorless vector control of the inverter 5 based on the detected current values of the current sensors 81, 82, and 83.
  • the voltage detector 60 is connected to both ends of the smoothing capacitor 4.
  • Voltage detector 60 detects an output voltage (input voltage to inverter 5) Vc of converter 2. This detection result is supplied to the controller 90.
  • the controller 90 includes a first control unit 91, a second control unit 92, a third control unit 93, a limit value setting unit (memory) 94, an input unit 95, and a communication unit 96 as main functions.
  • the first controller 91 performs pulse width modulation (PWM; carrier signal Eo and sine wave signals Er, Es) on a carrier signal (triangular wave signal) Eo having a predetermined frequency with sine wave signals Er, Es, Et. , Et are voltage-combined) to generate PWM signals Dr, Ds, Dt, and the generated PWM signals Dr, Ds, Dt drive the IGBTs 31 to 36 of the converter 2 on and off.
  • PWM pulse width modulation
  • Eo carrier signal
  • sine wave signals Er, Es, Et are generated based on the target value of the output voltage Vc and the detection results of the current sensors 71, 72, 73, and the like, and the R-phase voltage, S-phase voltage, and T-phase of the three-phase AC power supply 1 are generated. Synchronized with the period of voltage (current).
  • the second control unit 92 performs pulse width modulation of a carrier signal (triangular wave signal) Eio having a predetermined frequency with sine wave signals Eu, Ev, Ew (PWM; voltage comparison between the carrier signal Eio and the sine wave signals Eu, Ev, Ew).
  • PWM pulse width modulation
  • the sine wave signals Eu, Ev, Ew are generated based on the detection results of the current sensors 81, 82, 83, and are synchronized with the period of the voltage induced in the phase windings Lu, Lv, Lw of the brushless DC motor 6.
  • the third control unit 93 limits the limit value setting unit 94 so that the harmonic current In generated on the input side of the converter 2 (input side of the power conversion device 100) falls within a predetermined limit value Ins for the power conversion device.
  • the output voltage Vc of the converter 2 is controlled through the first control unit 91 according to the control data stored in.
  • the limit value Ins is set individually for each facility device connected to the power receiving facility 10 within the range of the “restriction value Ino of the harmonic current In” set for the power receiving facility 10.
  • the control data is determined by associating the minimum value (target value) Vcmin of the output voltage Vc of the converter 2 with which the harmonic current In generated on the input side of the converter 2 can be within the limit value Ins with the load of the inverter 5.
  • the limit value setting unit 94 stores the value by manual operation of the input unit 95 or data input from the communication unit 96.
  • the input unit 95 may be any device that can input data, such as a keyboard and a changeover switch.
  • the communication unit 96 receives control data transmitted from the external system controller 101 and inputs it to the limit value setting unit 94.
  • the third control unit 93 reads the minimum value Vcmin corresponding to the actual load of the inverter 5 from the limit value setting unit 94, and the output voltage Vc of the converter 2 is the read minimum value.
  • the voltage levels of the sine wave signals Er, Es, Et in the first control unit 91 are adjusted (adjustment of on / off duty of the PWM signals Dr, Ds, Dt) so as to be Vcmin. That is, the minimum value Vcmin is the target value of the output voltage Vc of the converter 2.
  • the actual load size of the inverter 5 is the power consumption of the brushless DC motor 6.
  • the power consumption of the brushless DC motor 6 may be calculated using the detection results of the voltage detection unit 60 and the detection results of the current sensors 81, 82, 83, or the detection results of the input-side current sensors 71, 72, 73. You may calculate using.
  • a basic operation of the converter 2 will be described.
  • a current flows from the three-phase AC power supply 1 through the reactor 21 and the positive diode 31a to the smoothing capacitor 4, and the current passing through the smoothing capacitor 4 is first It returns to the S phase of the three-phase AC power source 1 through the negative side diode 34a and the reactor 22, and then the T phase of the three-phase AC power source 1 passes through the negative side diode 36a and the reactor 23 as the phase of the R phase voltage advances.
  • a path back to is formed.
  • the IGBT 32 is repeatedly turned on and off in accordance with the PWM signal Dr generated by the controller 90.
  • the interconnection point of the diodes 31 a and 32 a is electrically connected to the negative output terminal of the converter 2, and is a short circuit via the reactor 21, IGBT 32, negative diode 34 a, and reactor 22 with respect to the three-phase AC power supply 1. Is formed. By forming this short circuit, energy (charge) is stored in the reactors 21 and 22. The energy stored in the reactors 21 and 22 is supplied to the smoothing capacitor 4 when the IGBT 32 is turned off. By this energy supply, the voltage is boosted.
  • phase where the S-phase voltage of the three-phase AC power source 1 is at a positive level, current flows from the three-phase AC power source 1 through the reactor 22 and the positive diode 33a to the smoothing capacitor 4, and the current passing through the smoothing capacitor 4 is first
  • the phase returns to the T phase of the three-phase AC power source 1 through the negative side diode 36a and the reactor 23.
  • the R phase of the three-phase AC power source 1 passes through the negative side diode 32a and the reactor 21. A path back to is formed.
  • the IGBT 34 is repeatedly turned on and off according to the PWM signal Ds generated by the controller 90.
  • the interconnection point of the diodes 33 a and 34 a is electrically connected to the negative output terminal of the converter 2, and is a short circuit via the reactor 22, IGBT 34, negative diode 36 a, and reactor 23 with respect to the three-phase AC power supply 1. Is formed. By forming this short circuit, energy (charge) is stored in the reactors 22 and 23. The energy stored in the reactors 22 and 23 is supplied to the smoothing capacitor 4 when the IGBT 34 is turned off. By this energy supply, the voltage is boosted.
  • a current flows from the three-phase AC power supply 1 through the reactor 23 and the positive diode 35a to the smoothing capacitor 4, and the current passing through the smoothing capacitor 4 is It returns to the R phase of the three-phase AC power source 1 through the negative side diode 32a and the reactor 21, and then the S phase of the three-phase AC power source 1 passes through the negative side diode 34a and the reactor 22 as the phase of the T phase voltage advances. A path back to is formed.
  • the IGBT 36 is repeatedly turned on and off in accordance with the PWM signal Dt generated by the controller 90.
  • the interconnection point of the diodes 35 a and 36 a is electrically connected to the negative output terminal of the converter 2, and is a short circuit via the reactor 23, IGBT 36, negative diode 32 a, and reactor 21 with respect to the three-phase AC power supply 1. Is formed. By forming this short circuit, energy (charge) is stored in the reactors 23 and 21. The energy stored in the reactors 23 and 21 is supplied to the smoothing capacitor 4 when the IGBT 36 is turned off. By this energy supply, the voltage is boosted.
  • the IGBTs 31, 33, and 35 connected in parallel with the positive diodes 31a, 33a, and 35a are repeatedly turned on and off.
  • movement accompanying ON / OFF of these IGBT31,33,35 it becomes an operation pattern fundamentally the same as a positive level period only by positive / negative being reversed. Therefore, the detailed description is abbreviate
  • a regulation value Ino for regulating the outflow amount of the harmonic current In from the power receiving facility 10 to the three-phase AC power source 1 is determined according to the total rated power consumption of each inverter-equipped device connected to the power receiving facility 10. It is done. From this regulation value Ino, a limit value Ins for limiting the harmonic current In generated from each inverter-equipped device connected to the power receiving facility 10 is determined.
  • the limit value Ins is an upper limit value of the harmonic current In that may be generated by one inverter-equipped device, and is determined by calculation from the regulation value Ino.
  • the inverter ratio is the ratio (%) of the total rated power consumption of one or a plurality of inverter-equipped devices connected to the power receiving facility 10 to the power capacity (also referred to as the power receiving capacity) of the power receiving facility 10.
  • the inverter ratio When the inverter ratio is 50%, the ratio of the total rated power consumption of the inverter-equipped device to the power capacity of the power receiving facility 10 is 50%, and the ratio of the total rated power consumption of the non-inverter-equipped device to the power capacity of the power receiving facility 10 is 50%. The maximum is 50%.
  • the inverter ratio is 75%, the ratio of the total rated power consumption of the inverter-equipped equipment to the power capacity of the power receiving equipment 10 is 75%, and the ratio of the total rated power consumption of the non-inverter-equipped equipment to the power capacity of the power receiving equipment 10 is Up to 25%.
  • the inverter ratio When the inverter ratio is 100%, all of the equipment connected to the power receiving facility 10 are inverter mounted devices, and the ratio of the total rated power consumption of the inverter mounted devices in the power capacity of the power receiving facility 10 is 100%.
  • the limit value Ins shown in FIG. 3 is smaller as the inverter ratio is larger and smaller as the harmonic order is higher. Actually, there is a correlation between the limit value Ins of each harmonic order, and if the limit value Ins at any harmonic order is determined, the limit value Ins at other harmonic orders can be obtained by calculation.
  • the fifth harmonic current In generated when the IGBTs 31 to 36 of the converter 2 are switched decreases as the output voltage Vc of the converter 2 increases in the boost region of the converter 2 at a predetermined value (for example, 290 V) or more.
  • the seventh harmonic current In also shows the same tendency.
  • the harmonic current In having a higher order than the fifth and seventh orders does not decrease uniformly with respect to the increase of the output voltage Vc of the converter 2, and slightly increases and decreases.
  • Such a high-order harmonic current In does not need to be considered in the boosting region of the converter 2 because the regulation value Ino itself is originally small.
  • the fifth, seventh, eleventh and thirteenth harmonic currents In are expressed as the output voltage Vc of the converter 2.
  • FIG. 5 shows the result obtained by simulation using as a parameter. “No boost” in FIG. 5 indicates the case where the IGBTs 31 to 36 of the converter 2 are not switched on / off, and the converter 2 is full-wave rectified only by the diodes 31a to 36a (non-switching operation).
  • the relationship between the output voltage Vc of the converter 2 and the efficiency (power conversion efficiency) of the power converter 100 is shown in FIG.
  • the output voltage Vc of the converter 2 is as low as possible within a range where the harmonic current In is within the limit value Ins. It turns out that it is suitable to control to a value.
  • the minimum value Vcmin which is as low as possible, of the output voltage Vc of the converter 2 in which the harmonic current In generated on the input side of the converter 2 can fall within the limit value Ins, determines the load of the inverter 5 as a parameter. Is stored in the limit value setting unit 94 of the controller 90. Note that the harmonic current can be reduced by switching the conventional PWM converter only by switching the PWM converter with a constant PWM signal for uniformly outputting a predetermined large voltage from the PWM converter.
  • the third control unit 93 of the controller 90 reads the minimum value Vcmin corresponding to the actual load size of the inverter 5 from the limit value setting unit 94 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin. Then, the IGBTs 31 to 36 of the converter 2 are turned on / off (PWM switching control).
  • the control data in the limit value setting unit 94 includes a plurality of minimum values Vcmin that differ depending on the load of the inverter 5, an inverter ratio (50%, 75%, 100%) and a fifth harmonic. This is associated with the limit value (4A, 3A, 2A) Ins of the wave current In.
  • the third control unit 93 reads “Vca1” as the minimum value Vcmin if the actual load of the inverter 5 is 25% of the rated load of the inverter 5, and the actual load of the inverter 5 If 50% of the rated load, “Vcb1” is read as the minimum value Vcmin, and if the actual load of the inverter 5 is 75% of the rated load of the inverter 5, “Vcc1” is read as the minimum value Vcmin.
  • Vcd1 is read as the minimum value Vcmin.
  • the relationship between the minimum values Vca1 to Vcd1 is Vca1 ⁇ Vcb1 ⁇ Vcc1 ⁇ Vcd1.
  • the third control unit 93 performs on / off control (PWM switching control) of the IGBTs 31 to 36 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin (any one of Vca1 to). To do.
  • the fifth harmonic current In generated from the power conversion device 100 can be contained within 4A that is the limit value Ins without reducing the efficiency of the power conversion device 100 as much as possible.
  • the third control unit 93 reads “Vca2” as the minimum value Vcmin if the actual load of the inverter 5 is 25% of the rated load of the inverter 5, and the actual load of the inverter 5 If the load is 50% of the rated load, “Vcb2” is read as the minimum value Vcmin. If the actual load of the inverter 5 is 75% of the rated load of the inverter 5, “Vcc2” is read as the minimum value Vcmin.
  • Vcd2 is read as the minimum value Vcmin.
  • the relationship between the minimum values Vca2 to Vcd2 is Vca2 ⁇ Vcb2 ⁇ Vcc2 ⁇ Vcd2.
  • the third control unit 93 performs on / off control (PWM switching control) of the IGBTs 31 to 36 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin (any one of Vca2 to Vcd2). )
  • the fifth harmonic current In generated from the power conversion device 100 can be suppressed within 3A which is the limit value Ins without reducing the efficiency of the power conversion device 100 as much as possible.
  • the limit value Ins for each inverter-equipped device is 2.0A for the 5th harmonic current. It becomes.
  • the third control unit 93 reads “Vca3” as the minimum value Vcmin, and the actual load of the inverter 5 If the load is 50% of the rated load, “Vcb3” is read as the minimum value Vcmin. If the actual load of the inverter 5 is 75% of the rated load of the inverter 5, “Vcc3” is read as the minimum value Vcmin.
  • Vcd3 is read as the minimum value Vcmin.
  • the relationship between the minimum values Vca2 to Vcd2 is Vca3 ⁇ Vcb3 ⁇ Vcc3 ⁇ Vcd3.
  • the third control unit 93 performs on / off control (PWM switching control) of the IGBTs 31 to 36 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin (any one of Vca3 to Vcd3). )
  • the fifth harmonic current In generated from the power conversion device 100 can be suppressed within 2A that is the limit value Ins without reducing the efficiency of the power conversion device 100 as much as possible.
  • These minimum values Vcmin are determined by a test performed at the time of manufacturing a heat pump heat source machine that is an inverter-mounted device in which the power conversion device 100 is mounted.
  • the limit value Ins on which these minimum values Vcmin are based is determined according to the power capacity of the power receiving facility 10, the inverter ratio, and the rated load of the inverter 5. Therefore, when the installation destination of the heat pump heat source machine is determined in advance, the control data according to the situation of the installation place is determined at the time of manufacturing the heat pump heat source machine.
  • This control data may be stored in the limit value setting unit 94 at the time of manufacturing the heat pump type heat source device, or created by an operator at the installation site at the time of installation of the heat pump type heat source device, and the limit value set from the input unit 95 The data may be input and stored in the unit 94 sequentially.
  • the “regulation value Ino of the harmonic current In” set in the power receiving facility 10 differs depending on the harmonic order.
  • the regulation value Ino at each harmonic order has a correlation, and if the regulation value Ino at any of the harmonic orders is determined, the regulation value Ino at other harmonic orders can be obtained by calculation. For this reason, if the limit value Ins in a specific harmonic order is set, the limit value Ins in other harmonic orders is uniquely determined by the same calculation formula as the calculation of the regulation value Ino.
  • the fifth harmonic current In is included in the limit value Ins for easy understanding.
  • the harmonic current In at all harmonic orders that are subject to the above regulation is set to a value that falls within the range of the respective limit values Ins.
  • the controller 90 detects the size of the refrigeration load of the heat pump heat source machine on which the power conversion device 100 is mounted (step S1), and outputs an AC voltage having a frequency F corresponding to the detection result from the inverter 5 (step S1). S2).
  • the brushless DC motor 6 is driven at a variable speed by the output of the inverter 5.
  • the refrigeration load of the heat pump heat source machine is an air conditioning load, a cooling load, a heating load, or the like.
  • control data for storing the harmonic current In in the limit value Ins is stored in the limit value setting unit 94 for the power converter 100.
  • the controller 90 detects the magnitude of the load of the inverter 5 from the value of the output voltage Vc detected by the voltage detector 60, the output current value of the inverter 5 detected by the current sensors 81, 82, 83, and the like (step S3). ). Then, the controller 90 reads the minimum value Vcmin corresponding to the detected load size from the limit value setting unit 94, and the IGBTs 31 to 31 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin. 36 is subjected to PWM switching control.
  • the harmonic current In generated from the power conversion device 100 can be reliably suppressed within the limit value Ins regardless of the harmonic order without reducing the efficiency of the power conversion device 100 as much as possible. Therefore, it is not necessary to change the power receiving facility 10 to a large-capacity and expensive one, and it is not necessary to install a high-priced harmonic suppression device between the power receiving facility 10 and the power converter 100.
  • the first control unit 91 of the controller 90 feeds back the voltage levels of the sine wave signals Er, Es, and Et for generating the PWM signal so that the output voltage Vc detected by the voltage detection unit 60 becomes the minimum value Vcmin. Control. More specifically, this food back control is performed when the output voltage Vc is equal to or greater than the minimum value Vcmin ⁇ ( ⁇ is a margin value and a small value), and the PWM signal generation sine wave signals Er, Es, Et When the output voltage Vc is lower than the minimum value Vcmin- ⁇ , the voltage level of the sine wave signals Er, Es, Et for generating the PWM signal is decreased. To increase the output voltage Vc. Thereby, the output voltage Vc is generally maintained at a value near the minimum value Vcmin. Note that vector control using the detected current values of the current sensors 71, 72, 73 is used to adjust the voltage levels of the sine wave signals Er, Es, Et.
  • Second embodiment A second embodiment of the present invention will be described.
  • the minimum value Vcmin of the output voltage Vc at which the harmonic current In can fall within the limit value Ins is used as a limit value setting unit 94 with the load (25%, 50%, 75%, 100%) of the inverter 5 as a parameter. Therefore, it is necessary to store a large number of minimum values Vcmin corresponding to the load of the inverter 5 in the limit value setting unit 94.
  • the load of the inverter 5 does not change stepwise. For this reason, in order to sequentially cope with the load size of the inverter 5, a larger number of minimum values Vcmin are prepared, or the minimum value Vcmin existing between the minimum values Vcmin determined to be skipped is linearly complemented. It is necessary to obtain by calculation such as. Further, in the first embodiment, the minimum value Vcmin of the output voltage Vc at which the harmonic current In can fall within the limit value Ins is determined by checking the test, but the external environment other than the load of the inverter 5 (temperature and humidity, etc.) It is difficult to perform the test under all conditions in consideration of the fact that affects the harmonic current value. For this reason, the minimum value Vcmin must be determined in a state where a certain margin is provided for the limit value Ins. This margin may unnecessarily reduce the efficiency of the power conversion device 100 depending on the actual driving situation.
  • the harmonic current In itself generated from the power converter 100 is detected, and the detected value In is fed back to the control of the output voltage Vc of the converter 2.
  • the efficiency of the power conversion device 100 can be increased while the harmonic current In generated from the power conversion device 100 is reliably kept within the limit value Ins.
  • the limit value setting unit 94 of the controller 90 stores in advance, as control data, the limit value Ins for the power converter for the harmonic current In of a specific order.
  • the data of the minimum value Vcmin is not stored in the limit value setting unit 94.
  • the controller 90 includes a harmonic calculation unit 97 indicated by a broken line in FIG.
  • the harmonic calculation unit 97 calculates the harmonic current In of the order that needs to be suppressed by performing a Fourier transform on the detection results of the current sensors 71, 72, and 73 for detecting the input current.
  • the third control unit 93 of the controller 90 compares the calculated value In of the harmonic calculation unit 97 with the limit value Ins in the limit value setting unit 94, and within the range where the calculated value In falls within the limit value Ins.
  • the output voltage Vc of the converter 2 is controlled so that the output voltage Vc becomes the lowest.
  • the third control unit 93 calculates the calculated value In of the harmonic calculation unit 97, the limit value Ins, and the set value “Ins ⁇ I1” determined for the limit value Ins. “Ins ⁇ I2” is compared.
  • the set value “Ins ⁇ I1” is a value lower than the limit value Ins by a predetermined value ⁇ I1.
  • the set value “Ins ⁇ I2” is a value lower than the limit value Ins by a predetermined value ⁇ I2 (> ⁇ I1).
  • the controller 90 increases the output voltage Vc of the converter 2 by a certain value. Despite this increase, when the calculated value In of the harmonic calculation unit 97 further increases and reaches the limit value Ins (point B in the figure), the controller 90 further increases the output voltage Vc of the converter 2 by a certain value. Raise. Here, the output voltage Vc is increased by increasing the on / off duty of the PWM signal for the converter 2. Conversely, the output voltage Vc is lowered by reducing the on / off duty of the PWM signal for the converter 2.
  • the controller 90 decreases the output voltage Vc of the converter 2 by a certain value.
  • the controller 90 further raises the output voltage Vc of the converter 2 by a certain value.
  • the controller 90 increases the output voltage Vc when the calculated value In reaches the set value “Ins ⁇ I2” from a low value. In a state where the set value is “Ins ⁇ I2” or more, the controller 90 increases the output voltage Vc when the calculated value In reaches the limit value Ins, and outputs when the calculated value In decreases to “Ins ⁇ I1”. The voltage Vc is lowered.
  • the power conversion apparatus 100 can be operated with high efficiency. It is not necessary to store a large amount of data in the limit value setting unit 94, and calculation such as linear interpolation for obtaining the minimum value Vcmin is also unnecessary.
  • the harmonic current In is calculated using the current sensors 71, 72, and 73, and the output voltage Vc of the converter 2 is feedback-controlled according to the calculated value In. Only. Moreover, since the current sensors 71, 72, 73 used when generating the switching PWM signal for the converter 2 are also used for the calculation of the harmonic current In, the circuit configuration of the power conversion device 100 can be simplified.
  • the power receiving installation 10 since it is the structure which feedback-controls the output voltage Vc of the converter 2 according to the calculated value In of the harmonic calculation part 97, the power receiving installation 10 is changed into an expensive thing with a large capacity. There is no need to install an expensive harmonic suppression device between the power receiving facility 10 and the power converter 100, and the harmonic current In can be reliably reduced regardless of its order. Moreover, since the output voltage Vc is not increased unnecessarily, the power conversion device 100 can be operated with high efficiency.
  • the plurality of heat pump heat source devices may be comprehensively controlled by the host system controller 101.
  • the controller 90 of each heat pump heat source apparatus sends the calculated value In of the harmonic calculation unit 97 to the system controller 101.
  • the system controller 101 receives the calculated value In sent from the controller 90 of each heat pump heat source machine, compares the total value of these calculated values In and the “regulated value Ino of the harmonic current In” in the power receiving facility 10, The limit value Ins for each heat pump heat source is set according to the comparison result. Then, the system controller 101 sends the set limit value Ins to the controller 90 of each heat pump heat source machine.
  • the controller 90 of each heat pump heat source apparatus receives the limit value Ins sent from the system controller 101 by the communication unit 96 and stores the received limit value Ins in the limit value setting unit 94. Thereby, even in a large-scale facility including a plurality of heat pump heat source devices to which power is supplied from the power receiving facility 10, the harmonic current In generated from the power conversion device 100 of each heat pump heat source device is limited to the limit value Ins. It is possible to operate each power conversion device 100 with high efficiency while being housed inside.
  • the system controller 101 includes not only the calculated value In of the harmonic current generated from the power conversion device 100 in which the converter 2 is switching (operating) but also the power conversion device in which the switching operation of the converter 2 is stopped.
  • the calculated value In of the harmonic current generated from 100 must also be collected and summed.
  • at least the controller 90 of the power conversion device 100 in which the inverter 5 is in operation sends the calculated value In of the harmonic calculation unit 97 to the system controller 101 even when the converter 2 is stopped (full-wave rectification). send.
  • Other configurations and operations are the same as those in the first embodiment. Therefore, the description is omitted.
  • a heat pump heat source machine which is one equipment connected to one refrigeration load (air conditioning load, cooling load, heating load, etc.), includes a plurality of units, for example, four compressors. As shown in FIG. 10, this heat pump type heat source machine includes four brushless DC motors 6 that respectively drive the four compressors, and four power converters that output driving power to the brushless DC motors 6. 100, and one integrated controller 150 that comprehensively controls each controller 90 of these power converters 100. The configuration of each power conversion device 100 is the same as that of the first embodiment.
  • the four compressors are connected in parallel as components of one refrigeration cycle for cooling or heating air or a medium (water or the like).
  • This one refrigeration cycle includes one use side heat exchanger or a plurality of use side heat exchangers connected in parallel to each other.
  • the total rated power consumption of each power conversion device 100 corresponds to four times the rated power consumption of one power conversion device 100 of the first embodiment. Therefore, the limit value Ins ′ for the controller (for the heat source device) with respect to the total value In ′ of the fifth harmonic current In generated from each power conversion device 100 when the inverter ratio is 50% is the power conversion shown in FIG.
  • the output frequency F of the inverter 5 in each power converter 100 is set to the same value. That is, each brushless DC motor 6 is driven at the same rotational speed.
  • the limit value Ins ′ for facility equipment with respect to the total value of the fifth harmonic current In generated from each power converter 100 when the inverter ratio is 50% is 16A. Note that, as described above, if the limit value Ins ′ for equipment for the total value of the fifth harmonic current In is determined, the limit value Ins ′ for equipment for the total value of the harmonic current In of other orders is determined. It is obtained by calculation.
  • the memory 151 in the integrated controller 150 stores the control conditions shown in FIG.
  • This control condition is that a single converter 2 performs a full-wave rectification without a switching operation, and a harmonic current In value (referred to as a non-boosting mode value) Iny flowing out of the converter 2 in a non-boosting mode and a converter 2
  • a harmonic current In value referred to as a non-boosting mode value
  • the switching operation boost operation
  • the output voltage Vc of the converter 2 reaches the maximum level
  • the value of the harmonic current In flowing out from the converter 2 referred to as the boost mode minimum value
  • Inx This corresponds to the load of the inverter 5.
  • the non-boosting mode value Iny is Iny1
  • the boosting mode minimum value Inx is Inx1 (Iny1> Inx1).
  • the load of one inverter 5 is 50% of the rated load of the inverter 5, the non-boosting mode value Iny is Iny2, and the boosting mode minimum value Inx is Inx2 (Iny2> Inx2).
  • the non-boost mode value Iny is Iny3
  • the boost mode minimum value Inx is Inx3 (Iny3> Inx3).
  • the non-boosting mode value Iny is Iny4 and the boosting mode minimum value Inx is Inx4 (Iny4> Inx4).
  • the integrated controller 150 detects the load of each inverter 5 via each controller 90, and from the four power converters 100 based on the non-boost mode value Iny and the boost mode minimum value Inx corresponding to each detected load. The number of switching operations of each converter 2 that can accommodate the total value of the generated harmonic current In within the limit value Ins ′ for equipment is determined.
  • the integrated controller 150 performs the same calculation for all the harmonic currents In that need to be suppressed. Based on this calculation, the total controller 150 determines the number of switching operations of each converter 2 so that the total value of the harmonic current values In of all orders that need to be controlled falls within the limit value Ins ′ for each facility device. decide.
  • the integrated controller 150 stops the switching operation of the two converters 2 and switches the remaining two converters 2 Make it work.
  • the efficiency of the two power conversion devices 100 including the two converters 2 is improved.
  • the output voltage Vc of the converter 2 may be increased.
  • the efficiency of the power conversion device 100 decreases as the output voltage Vc increases. To do. Therefore, if the output voltage Vc of the converter 2 that performs the switching operation is lowered by the margin of 3.4 A, the efficiency can be further improved.
  • the allowable value ⁇ In for the two converters 2 is selected.
  • the converter 2 is generated from the data, and the converter 2 is PWM-switched by the generated PWM signal.
  • the operation of the converter 2 at this time is the same as that of the first embodiment.
  • the output voltage Vc of the two converters 2 that perform the switching operation can be reduced, and the efficiency can be further improved.
  • An example of the processing algorithm of the third embodiment is as follows.
  • the subtraction result 4.0A is the allowable value ⁇ Tn of the harmonic current In that can flow out of the remaining converter 2 that performs the switching operation.
  • the integer “2” of the division result 2.66A is subtracted from the number “4” of all converters 2 and the subtraction result “2” (corresponding to the number N of converters 2 that perform switching operation) is subtracted from the minimum value Inx.
  • the converter that performs the switching operation Increase the number N of 2 by 1.
  • the controller 90 Upon receiving the notification of the limit value Insz, the controller 90 stores the limit value Insz in the limit value setting unit 94 and controls its own PWM switching based on the first embodiment or the second embodiment. An operation is performed in which the output voltage Vc is as low as possible in Insz.
  • FIG. 12 shows the relationship between the load of one inverter 5 and the efficiency of the power conversion device 100 including the inverter 5.
  • the broken line in FIG. 12 indicates the efficiency in the non-boosting mode in which the converter 2 performs only full-wave rectification without switching operation
  • the solid line in FIG. 12 indicates the efficiency in the boosting mode in which the converter 2 performs switching operation.
  • the efficiency of the power conversion device 100 is lower than in the non-boost mode in which the converter 2 performs only full-wave rectification without switching operation. Furthermore, the degree of reduction in efficiency of power conversion device 100 in the boost mode in which converter 2 is switched is large when the load on inverter 5 is small (power consumption is small) and small when the load on inverter 5 is large. It is in.
  • FIG. 13 shows the relationship between the harmonic current value In generated from the power converter 100 and the load of the inverter 5 in the power converter 100 in the non-boosting mode in which the converter 2 performs only full-wave rectification without switching operation. . That is, the higher the load of the inverter 5 (the higher the power consumption of the inverter 5 and the greater the input current to the converter 2), the higher the harmonic current In. This relationship has the same tendency at any harmonic order.
  • the limit value Ins ′ for facility equipment with respect to the total value In ′ of the harmonic current In generated from each power converter 100 is set to the “regulation value Ino of the harmonic current In” in the power receiving facility 10 and the inverter ratio in the power receiving facility 10. It depends on it.
  • the overall controller 150 calculates the number of converters 2 that can be prevented from switching operation, as in the third embodiment. In this calculation, the converter 2 corresponding to the inverter 5 having a small load is selected as the converter 2 that cannot be switched.
  • the integrated controller 150 can operate the four inverters 5 at 25% load, 50% load, 75% load, and 100% load, respectively, so that any two converters 2 are not switched. In this case, the two converters 2 corresponding to the 25% load and 50% load are not switched. Then, the general controller 150 switches the converter 2 corresponding to the 100% load having the largest load among the two converters 2 to be switched so that the generated value of the harmonic current In is minimized. Then, “the margin of the generated value of the harmonic current In” generated by the switching operation is assigned as the limit value Insz for the power converter on the converter 2 side corresponding to the 75% load and notified to each controller 90 (limit value setting) Stored in the unit 94). The limit value Insz is calculated by the following equation.
  • Insz Ins'-In1-In2-Inx Ins ′ is a limit value for facility equipment with respect to the total value In ′ of the harmonic current In generated from each power converter 100 as described above.
  • Iny1 is the value of the harmonic current In (non-boosting mode value) when the converter 2 corresponding to the inverter 5 with 25% load is in the non-boosting mode.
  • Iny2 is the value of the harmonic current In (non-boosting mode value) when the converter 2 corresponding to the 50% load inverter 5 is in the non-boosting mode.
  • Inx4 is the minimum value of the harmonic current In that flows out of the converter 2 when the converter 2 corresponding to the inverter 5 with 100% load is switched (boost operation) to bring the output voltage Vc to the maximum level. Boost mode minimum value).
  • the general controller 150 receives the load data from the controllers 90 of the four power conversion devices 100, and the switching operation and non-switching operation of the converter 2 based on the load data and the limit value Ins ′ for the equipment. And a limit value Inz for the power converter for the converter 2 to be switched is assigned and notified to each controller 90. Each controller 90 performs PWM switching control of each converter 2 according to the limit value Inz notified from the integrated controller 150.
  • the specific operation and control of each converter 2 are the same as those in the first embodiment or the second embodiment.
  • each power converter 100 it is necessary to install an expensive harmonic suppression device between the power receiving facility 10 and the heat pump heat source device (each power conversion device 100) without having to change the power receiving facility 10 to a large-capacity expensive one.
  • the high-efficiency operation of each power converter 100 can be executed while reliably reducing the harmonic current In generated from the heat pump heat source machine (each power converter 100) regardless of the order.
  • a facility equipment system 200 including a number of heat pump heat source devices 200 a, 200 b... 200 n and a center controller 201 is connected to the power receiving facility 10.
  • 200n is connected to, for example, a hot water storage tank of one or a plurality of refrigeration loads (air conditioning load, cooling load, heating load, etc.) via water pipes 202a, 202b.
  • the water in the hot water storage tank is guided to the heat pump type heat source devices 200a, 200b,... 200n by the water pipe 202b and heated, and the water heated by the heat pump type heat source devices 200a, 200b,. Supplied to hot water storage tank.
  • the heat pump heat source machine 200a includes the four power conversion devices 100 and one integrated controller 150 shown in the third embodiment.
  • the output frequency F of each power conversion device 100 in the heat pump heat source apparatus 200a is set to the same value as in the third embodiment.
  • the other heat pump heat source machines 200b to 200n have the same configuration as the heat pump heat source machine 200a.
  • the center controller 201 controls the general controllers 150 of the heat pump heat source devices 200a, 200b,. Further, the center controller 201 stores in advance in the internal memory the limit value Inms for the equipment device system with respect to the total value Inm of the harmonic current In generated from the heat pump heat source devices 200a, 200b.
  • the limit value Inms is determined according to the “regulation value Ino of the harmonic current In” set in the power receiving facility 10 and the inverter ratio in the power receiving facility 10.
  • the center controller 201 distributes the limit value Ins ′ for the facility device for each of the heat pump heat source devices 200a, 200b... 200n within the limit value Inms for the facility device system, and sets each limit value Ins ′ as a heat pump type. It notifies to the controller 90 of heat source machine 200a, 200b ... 200n, respectively. Specific control of the center controller 201 will be described.
  • the center controller 201 selects the number of heat pump heat source units including the converter 2 that can be prevented from switching operation, similar to the integrated controller 150 of the fourth embodiment.
  • the heat pump heat source device including the inverter 5 having a small load is assigned in order of increasing load as the heat pump heat source device including the converter 2 that cannot be switched.
  • the general controller 150 of the heat pump heat source apparatus that has received this assignment stops the switching operation of all the converters 2 in the heat pump heat source apparatus.
  • the center controller 201 instructs the general controller 150 of the heat pump heat source apparatus including the inverter 5 having a large load to perform an operation in which the harmonic current In generated from the heat pump heat source apparatus is minimized.
  • the general controller 150 instructs each controller 90 to control the output voltage Vc of all the converters 2 in the heat pump heat source machine to the highest level within the allowable range.
  • the center controller 201 compares the remaining harmonic current value In with respect to the heat pump heat source device including the inverter 5 having the smallest load among one or more heat pump heat source devices including the converter 2 to be switched. Is reported as the limit value Ins ′.
  • the general controller 150 of the heat pump heat source apparatus assigns a limit value Ins for the power converter to each power converter 100 in the same manner as in the third embodiment.
  • the controller 90 of the power conversion device 100 that has received this assignment stores the received limit value Ins in the limit value setting unit 94 so that the harmonic current In generated from the power conversion device 100 falls within the limit value Ins. PWM switching control of the converter 2 is performed.
  • the load of the inverter 5 is the brushless DC motor 6
  • the present invention is not limited to the brushless DC motor 6 and can be applied to various loads.
  • the case where the equipment is a heat pump heat source machine has been described as an example.
  • the equipment is not limited to a heat pump heat source machine. Applicable.
  • the power conversion device of the present invention can be used for a heat pump heat source machine or the like.
  • SYMBOLS 1 Three-phase alternating current power supply, 2 ... Converter, 4 ... Smoothing capacitor, 5 ... Inverter, 6 ... Brushless DC motor (load), 10 ... Power receiving equipment, 21, 22, 23 ... Reactor, 31a-36a ... Diode, 31- 36 ... IGBT (switching element), 51 to 56 ... IGBT (switching element), 60 ... Voltage detector, 71, 72, 73 ... Current sensor, 81, 82, 83 ... Current sensor, 90 ... Controller, 91 ... First Control unit, 92 ... second control unit, 93 ... third control unit, 94 ... limit value setting unit, 95 ... input unit, 96 ... communication unit, 97 ... harmonic calculation unit, 100 ... power conversion device, 101 ... system Controller 150 ... General controller 200 ... Equipment system 200a, 200b ... 200n ... Heat pump heat source machine 201 ... Center controller

Abstract

This power conversion apparatus is provided with: a converter, which increases and converts into a direct current an alternating current power supply voltage; and an inverter that converts the direct current output of the converter into an alternating current voltage at a predetermined frequency. The power conversion apparatus controls the output voltage of the converter corresponding to a limit value of a harmonic current.

Description

電力変換装置、設備機器、及び設備機器システムPower conversion device, equipment, and equipment system
 本発明は、交流電源の電圧を直流に変換しその直流電圧を所定周波数の交流電圧に変換する電力変換装置、この電力変換装置を備えた設備機器、及び上記電力変換装置を備えた設備機器システムに関する。 The present invention relates to a power conversion device that converts the voltage of an AC power source into DC and converts the DC voltage into an AC voltage of a predetermined frequency, equipment equipped with the power conversion device, and equipment equipment system equipped with the power conversion device About.
 電力消費の大きい設備機器(equipment)は、受電設備(キュービクル)に接続される。この受電設備には、商用交流電源側への高調波電流の流出量を規制するための規制値が設定される。この規制値の大きさは、受電設備の電力容量に比例する。なお、高調波電流は、インバータを搭載した設備機器いわゆるインバータ搭載機器で発生し、商用交流電源に直接接続される交流モータ(誘導電動機)では発生しない。 Equipment with high power consumption (equipment) is connected to power receiving equipment (cubicle). A restriction value for restricting the outflow amount of the harmonic current to the commercial AC power source is set in the power receiving facility. The size of the regulation value is proportional to the power capacity of the power receiving facility. The harmonic current is generated in equipment so-called inverter-equipped equipment equipped with an inverter, and is not generated in an AC motor (induction motor) directly connected to a commercial AC power supply.
 受電設備には、空気調和機、照明器具、エレベータ等の様々な設備機器が接続される。これら接続機器のうち、インバータ搭載機器の比率が高い場合には、高調波電流の発生量が上記規制値を超える可能性がある。 Various equipment such as air conditioners, lighting equipment, and elevators are connected to the power receiving equipment. Among these connected devices, when the ratio of inverter-equipped devices is high, the amount of harmonic current generated may exceed the regulation value.
 高調波電流の発生量が上記規制値を超えないようにするためには、受電設備を電力容量の大きいものに変更するか、あるいはインバータ搭載機器と受電設備との間の電源ラインに高調波抑制装置を配置する必要がある。インバータ搭載機器に直流変換器として昇圧型のPWMコンバータを組み込み、そのPWMコンバータのスイッチングによって高調波電流を低減させる方法もある。 To prevent the amount of harmonic current generated from exceeding the above regulation value, change the power receiving equipment to one with a large power capacity, or suppress harmonics in the power line between the inverter-equipped equipment and the power receiving equipment. It is necessary to arrange the device. There is also a method in which a step-up PWM converter is incorporated as a DC converter in an inverter-mounted device, and the harmonic current is reduced by switching the PWM converter.
特開2004-120878号公報JP 2004-120878 A 特開2004-263887号公報Japanese Patent Laid-Open No. 2004-263887
 しかしながら、電力容量の大きい受電設備は高額であり、高調波抑制装置も高額である。また、PWMコンバータのスイッチング素子は電力損失が大きいため、PWMコンバータのスイッチングによる高調波電流の低減は設備機器の効率低下を招くという問題がある。 However, power receiving equipment with large power capacity is expensive, and harmonic suppression devices are also expensive. Further, since the switching element of the PWM converter has a large power loss, there is a problem that the reduction of the harmonic current due to the switching of the PWM converter causes the efficiency of the equipment to be reduced.
 本実施形態の目的は、高額の受電設備や高調波抑制装置を要することなく、しかも設備機器の効率低下を招くことなく、高調波電流をその高調波次数にかかわらず確実に低減できる電力変換装置と設備機器及び設備機器システムを提供することである。 The purpose of this embodiment is a power conversion device that can reliably reduce the harmonic current regardless of its harmonic order without requiring expensive power receiving equipment and harmonic suppression devices and without reducing the efficiency of the equipment. And provide equipment and equipment systems.
 請求項1の電力変換装置は、交流電源の電圧を昇圧および直流変換するコンバータと、このコンバータの出力電圧を交流電圧に変換するインバータと、高調波電流の制限値に応じて前記コンバータの出力電圧を制御するコントローラと、を備える。 The power conversion device according to claim 1 is a converter that boosts and converts a voltage of an AC power supply, an inverter that converts an output voltage of the converter into an AC voltage, and an output voltage of the converter according to a limit value of a harmonic current. And a controller for controlling.
 請求項6の設備機器は、請求項5記載の電力変換装置を複数備えたものであって、前記各電力変換装置を総合的に制御する総合コントローラを備える。この総合コントローラは、前記各設備機器が接続される受電設備に設定されている“高調波電流の規制値”に基づく前記設備機器用の制限値の範囲内で前記電力変換装置用の制限値を定め、これら電力変換装置用の制限値を前記各電力変換装置の前記各コントローラに通知する。 The facility equipment according to claim 6 includes a plurality of the power conversion devices according to claim 5, and includes a comprehensive controller that comprehensively controls each of the power conversion devices. The integrated controller sets a limit value for the power converter within a limit value range for the facility device based on a “regulation value of harmonic current” set for a power receiving facility to which the facility device is connected. Then, the limit values for these power conversion devices are notified to the controllers of the power conversion devices.
 請求項8の設備機器システムは、請求項6記載の設備機器を複数備えた設備機器システムであって、前記各設備機器を制御するセンターコントローラを備える。このセンターコントローラは、前記各設備機器が接続される受電設備に設定されている“高調波電流の規制値”に基づく前記設備機器システム用の制限値の範囲内で前記各設備機器用の制限値を定め、これら設備機器用の制限値を前記各設備機器の前記各総合コントローラに通知する。 The facility equipment system according to claim 8 is a facility equipment system including a plurality of the facility equipment according to claim 6, and includes a center controller for controlling each of the equipment devices. This center controller is a limit value for each facility device within the range of the limit value for the facility device system based on the “regulation value of harmonic current” set in the power receiving facility to which the facility device is connected. And the limit values for these equipment devices are notified to the respective integrated controllers of the respective equipment devices.
第1および第2実施形態の構成を示すブロック図。The block diagram which shows the structure of 1st and 2nd embodiment. 各実施形態のコンバータ用のPWM信号生成を示す図。The figure which shows the PWM signal production | generation for converters of each embodiment. 各実施形態における高調波電流の制限値をインバータ比率および高調波次数をパラメータとして示す図。The figure which shows the limiting value of the harmonic current in each embodiment as a parameter with an inverter ratio and a harmonic order. 各実施形態におけるコンバータの出力電圧と5次高調波電流との関係を示す図。The figure which shows the relationship between the output voltage of the converter in each embodiment, and a 5th harmonic current. 各実施形態において発生する高調波電流の値をコンバータの出力電圧および高調波次数をパラメータとして示す図。The figure which shows the value of the harmonic current which generate | occur | produces in each embodiment as a parameter the output voltage and harmonic order of a converter. 各実施形態におけるコンバータの出力電圧と効率との関係を示す図。The figure which shows the relationship between the output voltage and efficiency of the converter in each embodiment. 第1実施形態の制限値設定部に記憶されている制御用データを示す図。The figure which shows the data for control memorize | stored in the limit value setting part of 1st Embodiment. 各実施形態の制御を示すフローチャート。The flowchart which shows the control of each embodiment. 第2実施形態における高調波電流の算出値に応じたコンバータの出力電圧の変化を示す図。The figure which shows the change of the output voltage of the converter according to the calculated value of the harmonic current in 2nd Embodiment. 第3実施形態の構成を示すブロック図。The block diagram which shows the structure of 3rd Embodiment. 第3実施形態の制御条件を示す図。The figure which shows the control conditions of 3rd Embodiment. 第4実施形態における負荷と効率との関係を示す図。The figure which shows the relationship between the load and efficiency in 4th Embodiment. 第4実施形態における負荷と高調波電流との関係を示す図。The figure which shows the relationship between the load and harmonic current in 4th Embodiment. 第5実施形態の要部の構成を示すブロック図。The block diagram which shows the structure of the principal part of 5th Embodiment.
[1]第1実施形態 
 本発明の第1実施形態について図面を参照して説明する。この第1実施形態の電力変換装置は、特定の設備機器である例えば空調機などのヒートポンプ式熱源機に組み込まれ、そのヒートポンプ式熱源機内の圧縮機を駆動する。
[1] First embodiment
A first embodiment of the present invention will be described with reference to the drawings. The power conversion device according to the first embodiment is incorporated in a heat pump heat source device such as an air conditioner, which is a specific equipment device, and drives a compressor in the heat pump heat source device.
 図1に示すように、商用の三相交流電源1の相ラインR,S,Tに受電設備(キュービクル)10が接続され、その受電設備10に本実施形態の電力変換装置100が接続される。電力変換装置100は、特定の設備機器である例えば空調用のヒートポンプ式熱源機に組み込まれ、そのヒートポンプ式熱源機内の圧縮機の駆動モータに対する駆動電力を出力するもので、受電設備10に接続されるコンバータ(PWMコンバータともいう)2、このコンバータ2の出力端に接続された平滑コンデンサ4、この平滑コンデンサ4に接続されたインバータ5を含む。このインバータ5の出力端に、上記圧縮機モータである例えばブラシレスDCモータ6の相巻線Lu.Lv.Lwが接続される。 As shown in FIG. 1, a power receiving facility (cubicle) 10 is connected to phase lines R, S, and T of a commercial three-phase AC power source 1, and the power converter 100 of the present embodiment is connected to the power receiving facility 10. . The power conversion device 100 is incorporated in a specific equipment such as a heat pump heat source machine for air conditioning, and outputs drive power to a drive motor of a compressor in the heat pump heat source machine, and is connected to the power receiving equipment 10. Converter 2 (also referred to as a PWM converter) 2, a smoothing capacitor 4 connected to the output terminal of the converter 2, and an inverter 5 connected to the smoothing capacitor 4. The phase winding Lu. Of the above-mentioned compressor motor such as the brushless DC motor 6 is connected to the output terminal of the inverter 5. Lv. Lw is connected.
 コンバータ2は、リアクタ21,22,23、これらリアクタ21,22,23を介して三相交流電源1に接続されるダイオード31a~36aのブリッジ回路、これらダイオード31a~36aに並列接続されたスイッチング素子たとえばIGBT(Insulated Gate Bipolar Transistor)31~36を有し、受電設備10から供給される三相交流電圧をIGBT31~36のオン,オフスイッチングにより昇圧および直流変換する。例えば、コンバータ2は、200Vの交流電圧を300V程度の直流電圧に変換する。このコンバータ2の出力電圧Vcが平滑コンデンサ4に印加される。 The converter 2 includes reactors 21, 22 and 23, a bridge circuit of diodes 31 a to 36 a connected to the three-phase AC power supply 1 through the reactors 21, 22 and 23, and switching elements connected in parallel to the diodes 31 a to 36 a For example, IGBTs (Insulated Gate Bipolar Transistors) 31 to 36 are provided, and a three-phase AC voltage supplied from the power receiving facility 10 is boosted and DC converted by ON / OFF switching of the IGBTs 31 to 36. For example, the converter 2 converts an AC voltage of 200V into a DC voltage of about 300V. The output voltage Vc of the converter 2 is applied to the smoothing capacitor 4.
 なお、コンバータ2は、IGBT31~36のオン,オフスイッチングの停止により、受電設備10から供給される三相交流電圧をダイオード31a~36aにより全波整流する。 Note that the converter 2 performs full-wave rectification of the three-phase AC voltage supplied from the power receiving facility 10 by the diodes 31a to 36a when the IGBTs 31 to 36 are turned off and on.
 ダイオード31a~36aのブリッジ回路は、ダイオード31a,32aの直列回路、ダイオード33a,34aの直列回路、ダイオード35a,36aの直列回路により構成される。ダイオード31a,32aの相互接続点が受電設備10を介して三相交流電源1のR相に接続され、ダイオード33a,34aの相互接続点が受電設備10を介して三相交流電源1のS相に接続され、ダイオード35a,36aの相互接続点が受電設備10を介して三相交流電源1のT相に接続される。ダイオード31a~36aは、IGBT31~36の回生用ダイオードである。 The bridge circuit of the diodes 31a to 36a includes a series circuit of diodes 31a and 32a, a series circuit of diodes 33a and 34a, and a series circuit of diodes 35a and 36a. The interconnection point of the diodes 31a and 32a is connected to the R phase of the three-phase AC power source 1 through the power receiving facility 10, and the interconnection point of the diodes 33a and 34a is the S phase of the three-phase AC power source 1 through the power receiving facility 10. The interconnection point of the diodes 35 a and 36 a is connected to the T phase of the three-phase AC power source 1 through the power receiving facility 10. The diodes 31a to 36a are regenerative diodes for the IGBTs 31 to 36.
 インバータ5は、IGBT51,52を直列接続しそのIGBT51,52の相互接続点がブラシレスDCモータ6の相巻線Luに接続されるU相用直列回路、IGBT53,54を直列接続しそのIGBT53,54の相互接続点がブラシレスDCモータ6の相巻線Lvに接続されるV相用直列回路、IGBT55,56を直列接続しそのIGBT55,56の相互接続点がブラシレスDCモータ6の相巻線Lwに接続されるW相用直列回路を含み、平滑コンデンサ4の電圧を各IGBTのスイッチングにより所定周波数の三相交流電圧に変換し各IGBTの相互接続点から出力する。なお、IGBT51~56には、逆並列に、回生用ダイオード(フリー・ホイール・ダイオード)51a~56aが接続されている。回生用ダイオード51a~56aには、損失低減のためにファースト・リカバリー・ダイオードを用いることが望ましい。 The inverter 5 includes IGBTs 51 and 52 connected in series, and U-phase series circuits, IGBTs 53 and 54, in which the interconnection points of the IGBTs 51 and 52 are connected to the phase winding Lu of the brushless DC motor 6. Are connected in series to the phase winding Lv of the brushless DC motor 6, and the IGBTs 55 and 56 are connected in series. The interconnection point of the IGBTs 55 and 56 is connected to the phase winding Lw of the brushless DC motor 6. Including a series circuit for W phase to be connected, the voltage of the smoothing capacitor 4 is converted into a three-phase AC voltage of a predetermined frequency by switching of each IGBT, and output from an interconnection point of each IGBT. The IGBTs 51 to 56 are connected to regenerative diodes (free wheel diodes) 51a to 56a in antiparallel. It is desirable to use fast recovery diodes for the regenerative diodes 51a to 56a in order to reduce loss.
 ブラシレスDCモータ6は、星形結線された3つの相巻線Lu,Lv,Lwを有する固定子、および永久磁石を有する回転子により構成される。相巻線Lu,Lv,Lwに電流が流れることにより生じる磁界と永久磁石が作る磁界との相互作用により、回転子が回転する。 The brushless DC motor 6 includes a stator having three phase windings Lu, Lv, and Lw connected in a star shape, and a rotor having a permanent magnet. The rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field created by the permanent magnet.
 受電設備10とコンバータ2との間の通電路に、入力電流検知用の電流センサ(電流検知手段)71,72,73が配設される。インバータ5の出力端とブラシレスDCモータ6との間の通電路に、出力電流(相巻線電流)検知用の電流センサ81,82,83が配設される。これら電流センサ71~83の検知結果がコントローラ90に供給される。コントローラ90は、電流センサ81,82,83の検知電流値に基づいてインバータ5をセンサレス・ベクトル制御することにより、ブラシレスDCモータ6を駆動する。また、平滑コンデンサ4の両端に、電圧検出部60が接続される。電圧検出部60は、コンバータ2の出力電圧(インバータ5への入力電圧)Vcを検出する。この検出結果がコントローラ90に供給される。 Current sensors (current detection means) 71, 72, 73 for detecting input current are disposed in the energization path between the power receiving facility 10 and the converter 2. Current sensors 81, 82, 83 for detecting an output current (phase winding current) are disposed in a current path between the output end of the inverter 5 and the brushless DC motor 6. The detection results of these current sensors 71 to 83 are supplied to the controller 90. The controller 90 drives the brushless DC motor 6 by performing sensorless vector control of the inverter 5 based on the detected current values of the current sensors 81, 82, and 83. Further, the voltage detector 60 is connected to both ends of the smoothing capacitor 4. Voltage detector 60 detects an output voltage (input voltage to inverter 5) Vc of converter 2. This detection result is supplied to the controller 90.
 コントローラ90は、主要な機能として、第1制御部91、第2制御部92、第3制御部93、制限値設定部(メモリ)94、入力部95、および通信部96を含む。 The controller 90 includes a first control unit 91, a second control unit 92, a third control unit 93, a limit value setting unit (memory) 94, an input unit 95, and a communication unit 96 as main functions.
 第1制御部91は、図2に示すように、所定周波数のキャリア信号(三角波信号)Eoを正弦波信号Er,Es,Etでパルス幅変調(PWM;キャリア信号Eoと正弦波信号Er,Es,Etとを電圧比較)することによりPWM信号Dr,Ds,Dtを生成し、生成したPWM信号Dr,Ds,Dtによりコンバータ2のIGBT31~36をオン,オフ駆動する。正弦波信号Er,Es,Etは、出力電圧Vcの目標値および電流センサ71,72,73の検知結果などに基づいて生成され、三相交流電源1のR相電圧,S相電圧,T相電圧(電流)の周期に同期する。 As shown in FIG. 2, the first controller 91 performs pulse width modulation (PWM; carrier signal Eo and sine wave signals Er, Es) on a carrier signal (triangular wave signal) Eo having a predetermined frequency with sine wave signals Er, Es, Et. , Et are voltage-combined) to generate PWM signals Dr, Ds, Dt, and the generated PWM signals Dr, Ds, Dt drive the IGBTs 31 to 36 of the converter 2 on and off. The sine wave signals Er, Es, Et are generated based on the target value of the output voltage Vc and the detection results of the current sensors 71, 72, 73, and the like, and the R-phase voltage, S-phase voltage, and T-phase of the three-phase AC power supply 1 are generated. Synchronized with the period of voltage (current).
 第2制御部92は、所定周波数のキャリア信号(三角波信号)Eioを正弦波信号Eu,Ev,Ewでパルス幅変調(PWM;キャリア信号Eioと正弦波信号Eu,Ev,Ewとを電圧比較)することによりPWM信号Du,Dv,Dwを生成し、生成したPWM信号Du,Dv,Dwによりインバータ5のIGBT51~56をオン,オフ駆動する。正弦波信号Eu,Ev,Ewは、電流センサ81,82,83の検知結果に基づいて生成され、ブラシレスDCモータ6の相巻線Lu,Lv,Lwに誘起する電圧の周期に同期する。 The second control unit 92 performs pulse width modulation of a carrier signal (triangular wave signal) Eio having a predetermined frequency with sine wave signals Eu, Ev, Ew (PWM; voltage comparison between the carrier signal Eio and the sine wave signals Eu, Ev, Ew). As a result, PWM signals Du, Dv, and Dw are generated, and the IGBTs 51 to 56 of the inverter 5 are turned on and off by the generated PWM signals Du, Dv, and Dw. The sine wave signals Eu, Ev, Ew are generated based on the detection results of the current sensors 81, 82, 83, and are synchronized with the period of the voltage induced in the phase windings Lu, Lv, Lw of the brushless DC motor 6.
 第3制御部93は、コンバータ2の入力側(電力変換装置100の入力側)に生じる高調波電流Inが予め定められた電力変換装置用の制限値Insに収まるように、制限値設定部94に記憶されている制御用データに応じて、かつ上記第1制御部91を介して、コンバータ2の出力電圧Vcを制御する。上記制限値Insは、受電設備10に対し設定される“高調波電流Inの規制値Ino”の範囲内で、受電設備10に接続される各設備機器の個々に設定される。上記制御用データは、コンバータ2の入力側に生じる高調波電流Inが制限値Ins内に収まり得るコンバータ2の出力電圧Vcのうち最小値(目標値)Vcminをインバータ5の負荷に対応付けて定めたもので、入力部95の手操作や通信部96からのデータ入力によって制限値設定部94に記憶される。入力部95は、キーボードや切替スイッチなど、データを入力できるものであればどのような機器でもよい。通信部96は、外部のシステム制御器101から送信される制御用データを受信し、それを制限値設定部94に入力する。 The third control unit 93 limits the limit value setting unit 94 so that the harmonic current In generated on the input side of the converter 2 (input side of the power conversion device 100) falls within a predetermined limit value Ins for the power conversion device. The output voltage Vc of the converter 2 is controlled through the first control unit 91 according to the control data stored in. The limit value Ins is set individually for each facility device connected to the power receiving facility 10 within the range of the “restriction value Ino of the harmonic current In” set for the power receiving facility 10. The control data is determined by associating the minimum value (target value) Vcmin of the output voltage Vc of the converter 2 with which the harmonic current In generated on the input side of the converter 2 can be within the limit value Ins with the load of the inverter 5. Therefore, the limit value setting unit 94 stores the value by manual operation of the input unit 95 or data input from the communication unit 96. The input unit 95 may be any device that can input data, such as a keyboard and a changeover switch. The communication unit 96 receives control data transmitted from the external system controller 101 and inputs it to the limit value setting unit 94.
 なお、第3制御部93は、具体的には、インバータ5の実際の負荷の大きさに対応する最小値Vcminを制限値設定部94から読出し、コンバータ2の出力電圧Vcが上記読出した最小値Vcminとなるように、第1制御部91における正弦波信号Er,Es,Etの電圧レベルを調整(PWM信号Dr,Ds,Dtのオン,オフデューティを調整)する。つまり、最小値Vcminが、コンバータ2の出力電圧Vcの目標値となる。 Specifically, the third control unit 93 reads the minimum value Vcmin corresponding to the actual load of the inverter 5 from the limit value setting unit 94, and the output voltage Vc of the converter 2 is the read minimum value. The voltage levels of the sine wave signals Er, Es, Et in the first control unit 91 are adjusted (adjustment of on / off duty of the PWM signals Dr, Ds, Dt) so as to be Vcmin. That is, the minimum value Vcmin is the target value of the output voltage Vc of the converter 2.
 ここで、インバータ5の実際の負荷の大きさは、ブラシレスDCモータ6の消費電力である。ブラシレスDCモータ6の消費電力は、電圧検出部60の検出結果および電流センサ81,82,83の検知結果を用いて算出してもよいし、入力側の電流センサ71,72,73の検知結果を用いて算出してもよい。 Here, the actual load size of the inverter 5 is the power consumption of the brushless DC motor 6. The power consumption of the brushless DC motor 6 may be calculated using the detection results of the voltage detection unit 60 and the detection results of the current sensors 81, 82, 83, or the detection results of the input-side current sensors 71, 72, 73. You may calculate using.
 コンバータ2の基本的な動作について説明する。 
 三相交流電源1のR相電圧が正レベルとなる位相では、三相交流電源1からリアクタ21および正側ダイオード31aを通って平滑コンデンサ4に電流が流れ、平滑コンデンサ4を経た電流が、先ず負側ダイオード34aおよびリアクタ22を通って三相交流電源1のS相に戻り、次にR相電圧の位相が進むにつれ、負側ダイオード36aおよびリアクタ23を通って三相交流電源1のT相に戻る経路が形成される。そして、この動作に加え、コントローラ90で生成されるPWM信号Drに応じてIGBT32がオン,オフを繰り返す。IGBT32のオン時、ダイオード31a,32aの相互接続点がコンバータ2の負側出力端と導通し、三相交流電源1に対してリアクタ21、IGBT32、負側ダイオード34a、リアクタ22を介した短絡路が形成される。この短絡路の形成により、リアクタ21,22にエネルギ(電荷)が蓄えられる。リアクタ21,22に蓄えられたエネルギは、IGBT32のオフ時に平滑コンデンサ4に供給される。このエネルギ供給により、昇圧がなされる。
A basic operation of the converter 2 will be described.
In the phase where the R-phase voltage of the three-phase AC power supply 1 is at a positive level, a current flows from the three-phase AC power supply 1 through the reactor 21 and the positive diode 31a to the smoothing capacitor 4, and the current passing through the smoothing capacitor 4 is first It returns to the S phase of the three-phase AC power source 1 through the negative side diode 34a and the reactor 22, and then the T phase of the three-phase AC power source 1 passes through the negative side diode 36a and the reactor 23 as the phase of the R phase voltage advances. A path back to is formed. In addition to this operation, the IGBT 32 is repeatedly turned on and off in accordance with the PWM signal Dr generated by the controller 90. When the IGBT 32 is turned on, the interconnection point of the diodes 31 a and 32 a is electrically connected to the negative output terminal of the converter 2, and is a short circuit via the reactor 21, IGBT 32, negative diode 34 a, and reactor 22 with respect to the three-phase AC power supply 1. Is formed. By forming this short circuit, energy (charge) is stored in the reactors 21 and 22. The energy stored in the reactors 21 and 22 is supplied to the smoothing capacitor 4 when the IGBT 32 is turned off. By this energy supply, the voltage is boosted.
 三相交流電源1のS相電圧が正レベルとなる位相では、三相交流電源1からリアクタ22および正側ダイオード33aを通って平滑コンデンサ4に電流が流れ、平滑コンデンサ4を経た電流が、先ず負側ダイオード36aおよびリアクタ23を通って三相交流電源1のT相に戻り、次にS相電圧の位相が進むにつれ、負側ダイオード32aおよびリアクタ21を通って三相交流電源1のR相に戻る経路が形成される。そして、この動作に加え、コントローラ90で生成されるPWM信号Dsに応じてIGBT34がオン,オフを繰り返す。IGBT34のオン時、ダイオード33a,34aの相互接続点がコンバータ2の負側出力端と導通し、三相交流電源1に対してリアクタ22、IGBT34、負側ダイオード36a、リアクタ23を介した短絡路が形成される。この短絡路の形成により、リアクタ22,23にエネルギ(電荷)が蓄えられる。リアクタ22,23に蓄えられたエネルギは、IGBT34のオフ時に平滑コンデンサ4に供給される。このエネルギ供給により、昇圧がなされる。 In the phase where the S-phase voltage of the three-phase AC power source 1 is at a positive level, current flows from the three-phase AC power source 1 through the reactor 22 and the positive diode 33a to the smoothing capacitor 4, and the current passing through the smoothing capacitor 4 is first The phase returns to the T phase of the three-phase AC power source 1 through the negative side diode 36a and the reactor 23. Next, as the phase of the S phase voltage advances, the R phase of the three-phase AC power source 1 passes through the negative side diode 32a and the reactor 21. A path back to is formed. In addition to this operation, the IGBT 34 is repeatedly turned on and off according to the PWM signal Ds generated by the controller 90. When the IGBT 34 is turned on, the interconnection point of the diodes 33 a and 34 a is electrically connected to the negative output terminal of the converter 2, and is a short circuit via the reactor 22, IGBT 34, negative diode 36 a, and reactor 23 with respect to the three-phase AC power supply 1. Is formed. By forming this short circuit, energy (charge) is stored in the reactors 22 and 23. The energy stored in the reactors 22 and 23 is supplied to the smoothing capacitor 4 when the IGBT 34 is turned off. By this energy supply, the voltage is boosted.
 三相交流電源1のT相電圧が正レベルとなる位相では、三相交流電源1からリアクタ23および正側ダイオード35aを通って平滑コンデンサ4に電流が流れ、平滑コンデンサ4を経た電流が、先ず負側ダイオード32aおよびリアクタ21を通って三相交流電源1のR相に戻り、次にT相電圧の位相が進むにつれ、負側ダイオード34aおよびリアクタ22を通って三相交流電源1のS相に戻る経路が形成される。そして、この動作に加え、コントローラ90で生成されるPWM信号Dtに応じてIGBT36がオン,オフを繰り返す。IGBT36のオン時、ダイオード35a,36aの相互接続点がコンバータ2の負側出力端と導通し、三相交流電源1に対してリアクタ23、IGBT36、負側ダイオード32a、リアクタ21を介した短絡路が形成される。この短絡路の形成により、リアクタ23,21にエネルギ(電荷)が蓄えられる。リアクタ23,21に蓄えられたエネルギは、IGBT36のオフ時に平滑コンデンサ4に供給される。このエネルギ供給により、昇圧がなされる。 In the phase where the T-phase voltage of the three-phase AC power supply 1 is at a positive level, a current flows from the three-phase AC power supply 1 through the reactor 23 and the positive diode 35a to the smoothing capacitor 4, and the current passing through the smoothing capacitor 4 is It returns to the R phase of the three-phase AC power source 1 through the negative side diode 32a and the reactor 21, and then the S phase of the three-phase AC power source 1 passes through the negative side diode 34a and the reactor 22 as the phase of the T phase voltage advances. A path back to is formed. In addition to this operation, the IGBT 36 is repeatedly turned on and off in accordance with the PWM signal Dt generated by the controller 90. When the IGBT 36 is on, the interconnection point of the diodes 35 a and 36 a is electrically connected to the negative output terminal of the converter 2, and is a short circuit via the reactor 23, IGBT 36, negative diode 32 a, and reactor 21 with respect to the three-phase AC power supply 1. Is formed. By forming this short circuit, energy (charge) is stored in the reactors 23 and 21. The energy stored in the reactors 23 and 21 is supplied to the smoothing capacitor 4 when the IGBT 36 is turned off. By this energy supply, the voltage is boosted.
 R相入力電圧,S相入力電圧,T相入力電圧のそれぞれが負レベルとなる位相では、正側ダイオード31a,33a,35aと並列接続のIGBT31,33,35がオン,オフを繰り返す。これらIGBT31,33,35のオン,オフに伴う動作については、正負が反対となるだけで、基本的には正レベル期間と同じ動作パターンとなる。よって、その詳細な説明は省略する。 In the phase in which each of the R-phase input voltage, the S-phase input voltage, and the T-phase input voltage is at a negative level, the IGBTs 31, 33, and 35 connected in parallel with the positive diodes 31a, 33a, and 35a are repeatedly turned on and off. About the operation | movement accompanying ON / OFF of these IGBT31,33,35, it becomes an operation pattern fundamentally the same as a positive level period only by positive / negative being reversed. Therefore, the detailed description is abbreviate | omitted.
 次に、インバータ5の動作に伴ってコンバータ2の入力側に生じる高調波電流In、およびその高調波電流Inを制限するための制限値Insについて説明する。 Next, the harmonic current In generated on the input side of the converter 2 with the operation of the inverter 5 and the limit value Ins for limiting the harmonic current In will be described.
 受電設備10から三相交流電源1側への高調波電流Inの流出量を規制するための規制値Inoが、受電設備10に接続された各インバータ搭載機器の総定格消費電力に応じて、定められる。この規制値Inoから、受電設備10に接続された各インバータ搭載機器から発生する高調波電流Inをそれぞれ制限するための制限値Insが決定される。制限値Insは、1つのインバータ搭載機器で発生してもよい高調波電流Inの上限の値であり、規制値Inoからの計算により決定される。 A regulation value Ino for regulating the outflow amount of the harmonic current In from the power receiving facility 10 to the three-phase AC power source 1 is determined according to the total rated power consumption of each inverter-equipped device connected to the power receiving facility 10. It is done. From this regulation value Ino, a limit value Ins for limiting the harmonic current In generated from each inverter-equipped device connected to the power receiving facility 10 is determined. The limit value Ins is an upper limit value of the harmonic current In that may be generated by one inverter-equipped device, and is determined by calculation from the regulation value Ino.
 制限値Insの例をインバータ比率(50%,75%,100%)および高調波次数(5次・7次・11次・13次)をパラメータとして図3に示している。一般に規制の対象となるのは次数が40次までの高調波電流Inであるが、次数が13次を超える高調波電流Inについては発生値自体が低くなるため図3には示していない。インバータ比率とは、受電設備10に接続される1つまたは複数のインバータ搭載機器の総定格消費電力が受電設備10の電力容量(受電容量ともいう)に占める割合(%)のことである。 An example of the limit value Ins is shown in Fig. 3 using the inverter ratio (50%, 75%, 100%) and the harmonic order (5th, 7th, 11th, 13th) as parameters. In general, the harmonic current In having an order up to the 40th order is subject to regulation, but the harmonic current In exceeding the 13th order is not shown in FIG. The inverter ratio is the ratio (%) of the total rated power consumption of one or a plurality of inverter-equipped devices connected to the power receiving facility 10 to the power capacity (also referred to as the power receiving capacity) of the power receiving facility 10.
 インバータ比率50%の場合、受電設備10の電力容量に占めるインバータ搭載機器の総定格消費電力の割合が50%で、受電設備10の電力容量に占める非インバータ搭載機器の総定格消費電力の割合が最大50%である。インバータ比率75%の場合、受電設備10の電力容量に占めるインバータ搭載機器の総定格消費電力の割合が75%で、受電設備10の電力容量に占める非インバータ搭載機器の総定格消費電力の割合が最大25%である。インバータ比率100%の場合、受電設備10に接続されている設備機器の全てがインバータ搭載機器で、受電設備10の電力容量に占めるインバータ搭載機器の総定格消費電力の割合が100%である。 When the inverter ratio is 50%, the ratio of the total rated power consumption of the inverter-equipped device to the power capacity of the power receiving facility 10 is 50%, and the ratio of the total rated power consumption of the non-inverter-equipped device to the power capacity of the power receiving facility 10 is 50%. The maximum is 50%. When the inverter ratio is 75%, the ratio of the total rated power consumption of the inverter-equipped equipment to the power capacity of the power receiving equipment 10 is 75%, and the ratio of the total rated power consumption of the non-inverter-equipped equipment to the power capacity of the power receiving equipment 10 is Up to 25%. When the inverter ratio is 100%, all of the equipment connected to the power receiving facility 10 are inverter mounted devices, and the ratio of the total rated power consumption of the inverter mounted devices in the power capacity of the power receiving facility 10 is 100%.
 図3に示す制限値Insは、インバータ比率が大きいほど小さく、かつ高調波次数が高いほど小さい。実際には、各高調波次数の制限値Insには相関関係があり、いずれかの高調波次数における制限値Insが決まれば、他の高調波次数における制限値Insは計算により求めることができる。 The limit value Ins shown in FIG. 3 is smaller as the inverter ratio is larger and smaller as the harmonic order is higher. Actually, there is a correlation between the limit value Ins of each harmonic order, and if the limit value Ins at any harmonic order is determined, the limit value Ins at other harmonic orders can be obtained by calculation.
 ここで、コンバータ2のIGBT31~36をスイッチングした場合に発生する5次高調波電流Inのシミュレーション結果を図4に示す。コンバータ2のIGBT31~36をスイッチングした場合に発生する5次高調波電流Inは、コンバータ2の所定値(例えば290V)以上の昇圧領域において、コンバータ2の出力電圧Vcが高いほど小さくなる。なお、シミュレーションおよび実機での実験結果によれば、7次高調波電流Inも同様の傾向を示す。 Here, a simulation result of the fifth harmonic current In generated when the IGBTs 31 to 36 of the converter 2 are switched is shown in FIG. The fifth harmonic current In generated when the IGBTs 31 to 36 of the converter 2 are switched decreases as the output voltage Vc of the converter 2 increases in the boost region of the converter 2 at a predetermined value (for example, 290 V) or more. In addition, according to the simulation and the experimental result with an actual machine, the seventh harmonic current In also shows the same tendency.
 5次や7次より高い次数の高調波電流Inは、コンバータ2の出力電圧Vcの上昇に対して、一律に減少することなく、若干の増減を繰り返す。このような高い次数の高調波電流Inについては、もともと規制値Inoそのものが小さいので、コンバータ2の昇圧領域においては考慮する必要がない。 
 コンバータ2への入力電圧が例えば200Vでインバータ5の定格負荷が例えば6.7kWの場合に発生する5次・7次・11次・13次の高調波電流Inの値を、コンバータ2の出力電圧Vcをパラメータとしてシミュレーションして求めた結果を図5に示す。図5中の“昇圧なし”は、コンバータ2のIGBT31~36をオン,オフスイッチングせず、コンバータ2をダイオード31a~36aのみにより全波整流させた場合(非スイッチング動作)を示している。
The harmonic current In having a higher order than the fifth and seventh orders does not decrease uniformly with respect to the increase of the output voltage Vc of the converter 2, and slightly increases and decreases. Such a high-order harmonic current In does not need to be considered in the boosting region of the converter 2 because the regulation value Ino itself is originally small.
For example, when the input voltage to the converter 2 is 200 V and the rated load of the inverter 5 is 6.7 kW, for example, the fifth, seventh, eleventh and thirteenth harmonic currents In are expressed as the output voltage Vc of the converter 2. FIG. 5 shows the result obtained by simulation using as a parameter. “No boost” in FIG. 5 indicates the case where the IGBTs 31 to 36 of the converter 2 are not switched on / off, and the converter 2 is full-wave rectified only by the diodes 31a to 36a (non-switching operation).
 また、コンバータ2の出力電圧Vcと電力変換装置100の効率(電力変換効率)との関係を図6に示す。出力電圧Vcが高いほど、効率が低下する。これは、コンバータ2におけるIGBT31~36のスイッチングオン時間が増加してIGBT31~36のオン抵抗による電力損失が増える等の影響による。 Further, the relationship between the output voltage Vc of the converter 2 and the efficiency (power conversion efficiency) of the power converter 100 is shown in FIG. The higher the output voltage Vc, the lower the efficiency. This is due to the influence that the switching on time of the IGBTs 31 to 36 in the converter 2 is increased and the power loss due to the on resistance of the IGBTs 31 to 36 is increased.
 以上のことから、高調波電流Inを制限値Ins内に抑えながら効率をできるだけ低下させないようにするには、高調波電流Inが制限値Ins内に収まる範囲でコンバータ2の出力電圧Vcをできるだけ低い値に制御することが好適であることが分かる。この制御の実現のため、コンバータ2の入力側に生じる高調波電流Inが制限値Insに収まり得るコンバータ2の出力電圧Vcのうち、できるだけ低い値である最小値Vcminが、インバータ5の負荷をパラメータとする制御用データとして、コントローラ90の制限値設定部94に記憶されている。なお、従来のPWMコンバータのスイッチングによる高調波電流の低減は、予め定められた大きな電圧をPWMコンバータから一律に出力するための一定のPWM信号によってPWMコンバータをスイッチングするだけである。 From the above, in order to suppress the efficiency as much as possible while suppressing the harmonic current In within the limit value Ins, the output voltage Vc of the converter 2 is as low as possible within a range where the harmonic current In is within the limit value Ins. It turns out that it is suitable to control to a value. In order to realize this control, the minimum value Vcmin, which is as low as possible, of the output voltage Vc of the converter 2 in which the harmonic current In generated on the input side of the converter 2 can fall within the limit value Ins, determines the load of the inverter 5 as a parameter. Is stored in the limit value setting unit 94 of the controller 90. Note that the harmonic current can be reduced by switching the conventional PWM converter only by switching the PWM converter with a constant PWM signal for uniformly outputting a predetermined large voltage from the PWM converter.
 コントローラ90の第3制御部93は、インバータ5の実際の負荷の大きさに対応する最小値Vcminを制限値設定部94から読出し、コンバータ2の出力電圧Vcが上記読出した最小値Vcminとなるように、コンバータ2のIGBT31~36をオン,オフ制御(PWMスイッチング制御)する。 The third control unit 93 of the controller 90 reads the minimum value Vcmin corresponding to the actual load size of the inverter 5 from the limit value setting unit 94 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin. Then, the IGBTs 31 to 36 of the converter 2 are turned on / off (PWM switching control).
 制限値設定部94内の制御用データは、例えば図7に示すように、インバータ5の負荷に応じて異なる複数の最小値Vcminをインバータ比率(50%,75%,100%)および5次高調波電流Inの制限値(4A,3A,2A)Insに対応付けたものである。 For example, as shown in FIG. 7, the control data in the limit value setting unit 94 includes a plurality of minimum values Vcmin that differ depending on the load of the inverter 5, an inverter ratio (50%, 75%, 100%) and a fifth harmonic. This is associated with the limit value (4A, 3A, 2A) Ins of the wave current In.
 例えばコンバータ2への入力電圧が200V、インバータ5の定格負荷が6.7kW、インバータ比率が50%の場合、各インバータ搭載機器の1台当りの制限値Insは5次高調波電流Inに対して4Aとなる。この場合、第3制御部93は、インバータ5の実際の負荷がそのインバータ5の定格負荷の25%であれば最小値Vcminとして“Vca1”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の50%であれば最小値Vcminとして“Vcb1”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の75%であれば最小値Vcminとして“Vcc1”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の100%であれば最小値Vcminとして“Vcd1”を読出す。なお、最小値Vca1~Vcd1の関係は、Vca1<Vcb1<Vcc1<Vcd1である。そして、第3制御部93は、コンバータ2の出力電圧Vcが上記読出した最小値Vcmin(Vca1~のいずれか)となるように、コンバータ2のIGBT31~36をオン,オフ制御(PWMスイッチング制御)する。これにより、電力変換装置100の効率をできるだけ低下させずに、電力変換装置100から生じる5次高調波電流Inを制限値Insである4A内に収めることができる。 For example, when the input voltage to the converter 2 is 200V, the rated load of the inverter 5 is 6.7 kW, and the inverter ratio is 50%, the limit value Ins for each inverter-equipped device is 4A for the fifth harmonic current In. It becomes. In this case, the third control unit 93 reads “Vca1” as the minimum value Vcmin if the actual load of the inverter 5 is 25% of the rated load of the inverter 5, and the actual load of the inverter 5 If 50% of the rated load, “Vcb1” is read as the minimum value Vcmin, and if the actual load of the inverter 5 is 75% of the rated load of the inverter 5, “Vcc1” is read as the minimum value Vcmin. If the actual load is 100% of the rated load of the inverter 5, “Vcd1” is read as the minimum value Vcmin. The relationship between the minimum values Vca1 to Vcd1 is Vca1 <Vcb1 <Vcc1 <Vcd1. Then, the third control unit 93 performs on / off control (PWM switching control) of the IGBTs 31 to 36 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin (any one of Vca1 to). To do. As a result, the fifth harmonic current In generated from the power conversion device 100 can be contained within 4A that is the limit value Ins without reducing the efficiency of the power conversion device 100 as much as possible.
 例えばコンバータ2への入力電圧が200V、インバータ5の定格負荷が6.7kW、インバータ比率が75%の場合、各インバータ搭載機器の1台当りの制限値Insは5次高調波電流に対して3Aとなる。この場合、第3制御部93は、インバータ5の実際の負荷がそのインバータ5の定格負荷の25%であれば最小値Vcminとして“Vca2”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の50%であれば最小値Vcminとして“Vcb2”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の75%であれば最小値Vcminとして“Vcc2”を読出し、インバータ5の実際の負荷が定格負荷の100%であれば最小値Vcminとして“Vcd2”を読出す。なお、最小値Vca2~Vcd2の関係は、Vca2<Vcb2<Vcc2<Vcd2である。そして、第3制御部93は、コンバータ2の出力電圧Vcが上記読出した最小値Vcmin(Vca2~Vcd2のいずれか)となるように、コンバータ2のIGBT31~36をオン,オフ制御(PWMスイッチング制御)する。これにより、電力変換装置100の効率をできるだけ低下させずに、電力変換装置100から生じる5次高調波電流Inを制限値Insである3A内に抑えることができる。 For example, when the input voltage to the converter 2 is 200V, the rated load of the inverter 5 is 6.7kW, and the inverter ratio is 75%, the limit value Ins for each inverter-equipped device is 3A for the 5th harmonic current. Become. In this case, the third control unit 93 reads “Vca2” as the minimum value Vcmin if the actual load of the inverter 5 is 25% of the rated load of the inverter 5, and the actual load of the inverter 5 If the load is 50% of the rated load, “Vcb2” is read as the minimum value Vcmin. If the actual load of the inverter 5 is 75% of the rated load of the inverter 5, “Vcc2” is read as the minimum value Vcmin. If the actual load is 100% of the rated load, “Vcd2” is read as the minimum value Vcmin. The relationship between the minimum values Vca2 to Vcd2 is Vca2 <Vcb2 <Vcc2 <Vcd2. Then, the third control unit 93 performs on / off control (PWM switching control) of the IGBTs 31 to 36 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin (any one of Vca2 to Vcd2). ) Thus, the fifth harmonic current In generated from the power conversion device 100 can be suppressed within 3A which is the limit value Ins without reducing the efficiency of the power conversion device 100 as much as possible.
 例えばコンバータ2への入力電圧が200V、インバータ5の定格負荷が6.7kW、インバータ比率が100%の場合、各インバータ搭載機器の1台当りの制限値Insは5次高調波電流に対して2.0Aとなる。この場合、第3制御部93は、インバータ5の実際の負荷がそのインバータ5の定格負荷の25%であれば最小値Vcminとして“Vca3”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の50%であれば最小値Vcminとして“Vcb3”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の75%であれば最小値Vcminとして“Vcc3”を読出し、インバータ5の実際の負荷がそのインバータ5の定格負荷の100%であれば最小値Vcminとして“Vcd3”を読出す。なお、最小値Vca2~Vcd2の関係は、Vca3<Vcb3<Vcc3<Vcd3である。そして、第3制御部93は、コンバータ2の出力電圧Vcが上記読出した最小値Vcmin(Vca3~Vcd3のいずれか)となるように、コンバータ2のIGBT31~36をオン,オフ制御(PWMスイッチング制御)する。これにより、電力変換装置100の効率をできるだけ低下させずに、電力変換装置100から生じる5次高調波電流Inを制限値Insである2A内に抑えることができる。 For example, if the input voltage to the converter 2 is 200V, the rated load of the inverter 5 is 6.7kW, and the inverter ratio is 100%, the limit value Ins for each inverter-equipped device is 2.0A for the 5th harmonic current. It becomes. In this case, if the actual load of the inverter 5 is 25% of the rated load of the inverter 5, the third control unit 93 reads “Vca3” as the minimum value Vcmin, and the actual load of the inverter 5 If the load is 50% of the rated load, “Vcb3” is read as the minimum value Vcmin. If the actual load of the inverter 5 is 75% of the rated load of the inverter 5, “Vcc3” is read as the minimum value Vcmin. If the actual load is 100% of the rated load of the inverter 5, “Vcd3” is read as the minimum value Vcmin. The relationship between the minimum values Vca2 to Vcd2 is Vca3 <Vcb3 <Vcc3 <Vcd3. Then, the third control unit 93 performs on / off control (PWM switching control) of the IGBTs 31 to 36 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin (any one of Vca3 to Vcd3). ) Thus, the fifth harmonic current In generated from the power conversion device 100 can be suppressed within 2A that is the limit value Ins without reducing the efficiency of the power conversion device 100 as much as possible.
 なお、図4に示した通り、出力電圧Vcが高いほど、高調波電流Inを低減できる。したがって、インバータ比率が高いほど(制限値Insが低いほど)、出力電圧Vcの最小値Vcminを高くしなければならない。この点を考慮し、Vca1<Vca2<Vca3、Vcb1<Vcb2<Vcb3、Vcc1<Vcc2<Vcc3、Vcd1<Vcd2<Vcd3の関係となっている。 As shown in FIG. 4, the higher the output voltage Vc, the more the harmonic current In can be reduced. Therefore, the higher the inverter ratio (the lower the limit value Ins), the higher the minimum value Vcmin of the output voltage Vc must be. Considering this point, the relations of Vca1 <Vca2 <Vca3, Vcb1 <Vcb2 <Vcb3, Vcc1 <Vcc2 <Vcc3, and Vcd1 <Vcd2 <Vcd3 are established.
 これら最小値Vcminは、電力変換装置100を搭載したインバータ搭載機器であるヒートポンプ式熱源機の製造時などに実施される試験によって定められる。これら最小値Vcminの基になる制限値Insは、受電設備10の電力容量、インバータ比率、インバータ5の定格負荷に応じて決定される。したがって、ヒートポンプ式熱源機の設置先が予め決まっている場合には、その設置場所の状況に合わせた制御用データがヒートポンプ式熱源機の製造時に決定される。この制御用データを、ヒートポンプ式熱源機の製造時に制限値設定部94に記憶させてもよいし、ヒートポンプ式熱源機の設置時にその設置現場において作業員が作成して入力部95から制限値設定部94に逐次に入力し記憶させてもよい。 These minimum values Vcmin are determined by a test performed at the time of manufacturing a heat pump heat source machine that is an inverter-mounted device in which the power conversion device 100 is mounted. The limit value Ins on which these minimum values Vcmin are based is determined according to the power capacity of the power receiving facility 10, the inverter ratio, and the rated load of the inverter 5. Therefore, when the installation destination of the heat pump heat source machine is determined in advance, the control data according to the situation of the installation place is determined at the time of manufacturing the heat pump heat source machine. This control data may be stored in the limit value setting unit 94 at the time of manufacturing the heat pump type heat source device, or created by an operator at the installation site at the time of installation of the heat pump type heat source device, and the limit value set from the input unit 95 The data may be input and stored in the unit 94 sequentially.
 なお、受電設備10に設定される“高調波電流Inの規制値Ino”は、高調波次数によって異なる。各高調波次数における規制値Inoには相関関係があり、いずれかの高調波次数における規制値Inoが決まれば、他の高調波次数における規制値Inoは計算により求めることができる。このため、特定の高調波次数における制限値Insを設定すれば、規制値Inoの算定と同じ計算式により他の高調波次数における制限値Insは一義的に定まる。 It should be noted that the “regulation value Ino of the harmonic current In” set in the power receiving facility 10 differs depending on the harmonic order. The regulation value Ino at each harmonic order has a correlation, and if the regulation value Ino at any of the harmonic orders is determined, the regulation value Ino at other harmonic orders can be obtained by calculation. For this reason, if the limit value Ins in a specific harmonic order is set, the limit value Ins in other harmonic orders is uniquely determined by the same calculation formula as the calculation of the regulation value Ino.
 以上の説明においては、分かり易いように5次高調波電流Inを制限値Ins内に収めることについて述べたが、実際には、図7の制御用データに含まれる最小値Vcminは、5次以上の規制がかかるすべての高調波次数における高調波電流Inがそれぞれの制限値Insの範囲内に収まる値に定められる。 In the above description, it has been described that the fifth harmonic current In is included in the limit value Ins for easy understanding. However, actually, the minimum value Vcmin included in the control data in FIG. The harmonic current In at all harmonic orders that are subject to the above regulation is set to a value that falls within the range of the respective limit values Ins.
 実際の制御を図8のフローチャートに従って説明する。 
 コントローラ90は、電力変換装置100が搭載されているヒートポンプ式熱源機の冷凍負荷の大きさを検出し(ステップS1)、その検出結果に対応する周波数Fの交流電圧をインバータ5から出力させる(ステップS2)。このインバータ5の出力により、ブラシレスDCモータ6が可変速駆動される。ヒートポンプ式熱源機の冷凍負荷は、空調負荷、冷却負荷、加温負荷などである。
Actual control will be described with reference to the flowchart of FIG.
The controller 90 detects the size of the refrigeration load of the heat pump heat source machine on which the power conversion device 100 is mounted (step S1), and outputs an AC voltage having a frequency F corresponding to the detection result from the inverter 5 (step S1). S2). The brushless DC motor 6 is driven at a variable speed by the output of the inverter 5. The refrigeration load of the heat pump heat source machine is an air conditioning load, a cooling load, a heating load, or the like.
 電力変換装置100に対し、上述のように、高調波電流Inを制限値Ins内に収めるための制御用データが制限値設定部94に記憶されている。コントローラ90は、電圧検出部60で検出される出力電圧Vcの値や電流センサ81,82,83で検知されるインバータ5の出力電流値などからインバータ5の負荷の大きさを検出する(ステップS3)。そして、コントローラ90は、上記検出した負荷の大きさに対応する最小値Vcminを制限値設定部94から読出し、コンバータ2の出力電圧Vcが上記読出した最小値Vcminとなるようにコンバータ2のIGBT31~36をPWMスイッチング制御する。これにより、電力変換装置100の効率をできるだけ低下させることなく、電力変換装置100から生じる高調波電流Inをその高調波次数にかかわらず制限値Ins内に確実に抑えることができる。よって、受電設備10を大容量の高額なものへと変更する必要がなく、受電設備10と電力変換装置100との間に高額の高調波抑制装置を設置する必要もない。 As described above, control data for storing the harmonic current In in the limit value Ins is stored in the limit value setting unit 94 for the power converter 100. The controller 90 detects the magnitude of the load of the inverter 5 from the value of the output voltage Vc detected by the voltage detector 60, the output current value of the inverter 5 detected by the current sensors 81, 82, 83, and the like (step S3). ). Then, the controller 90 reads the minimum value Vcmin corresponding to the detected load size from the limit value setting unit 94, and the IGBTs 31 to 31 of the converter 2 so that the output voltage Vc of the converter 2 becomes the read minimum value Vcmin. 36 is subjected to PWM switching control. Thus, the harmonic current In generated from the power conversion device 100 can be reliably suppressed within the limit value Ins regardless of the harmonic order without reducing the efficiency of the power conversion device 100 as much as possible. Therefore, it is not necessary to change the power receiving facility 10 to a large-capacity and expensive one, and it is not necessary to install a high-priced harmonic suppression device between the power receiving facility 10 and the power converter 100.
 しかも、高調波電流Inが制限値Ins内に収まる範囲でコンバータ2の出力電圧Vcができるだけ低い値となるので、コンバータ2による電力損失を最小限に抑えることができ、ひいては電力変換装置100の効率が向上する。 In addition, since the output voltage Vc of the converter 2 is as low as possible within a range where the harmonic current In falls within the limit value Ins, power loss due to the converter 2 can be minimized, and as a result, the efficiency of the power converter 100 is improved. Will improve.
 なお、コントローラ90の第1制御部91は、電圧検出部60で検出される出力電圧Vcが最小値Vcminとなるように、PWM信号生成用の正弦波信号Er,Es,Etの電圧レベルをフィードバック制御する。このフードバック制御は、具体的には、出力電圧Vcが最小値Vcmin-α(αは余裕値で小さい値である)以上の場合には、PWM信号生成用の正弦波信号Er,Es,Etの電圧レベルを上昇させることで出力電圧Vcを低下させ、出力電圧Vcが最小値Vcmin-α未満の場合には、PWM信号生成用の正弦波信号Er,Es,Etの電圧レベルを低下させることで出力電圧Vcを上昇させる。これにより、出力電圧Vcは、最小値Vcmin近くの値に概ね保たれる。なお、正弦波信号Er,Es,Etの電圧レベルの調整には、電流センサ71,72,73の検知電流値を用いたベクトル制御が用いられる。 The first control unit 91 of the controller 90 feeds back the voltage levels of the sine wave signals Er, Es, and Et for generating the PWM signal so that the output voltage Vc detected by the voltage detection unit 60 becomes the minimum value Vcmin. Control. More specifically, this food back control is performed when the output voltage Vc is equal to or greater than the minimum value Vcmin−α (α is a margin value and a small value), and the PWM signal generation sine wave signals Er, Es, Et When the output voltage Vc is lower than the minimum value Vcmin-α, the voltage level of the sine wave signals Er, Es, Et for generating the PWM signal is decreased. To increase the output voltage Vc. Thereby, the output voltage Vc is generally maintained at a value near the minimum value Vcmin. Note that vector control using the detected current values of the current sensors 71, 72, 73 is used to adjust the voltage levels of the sine wave signals Er, Es, Et.
[2]第2実施形態 
 本発明の第2実施形態について説明する。 
 第1実施形態では、高調波電流Inが制限値Insに収まり得る出力電圧Vcの最小値Vcminをインバータ5の負荷(25%,50%,75%,100%)をパラメータとして制限値設定部94に記憶する構成であるため、インバータ5の負荷の大きさに対応した多数の最小値Vcminを制限値設定部94に記憶する必要がある。
[2] Second embodiment
A second embodiment of the present invention will be described.
In the first embodiment, the minimum value Vcmin of the output voltage Vc at which the harmonic current In can fall within the limit value Ins is used as a limit value setting unit 94 with the load (25%, 50%, 75%, 100%) of the inverter 5 as a parameter. Therefore, it is necessary to store a large number of minimum values Vcmin corresponding to the load of the inverter 5 in the limit value setting unit 94.
 また、通常、インバータ5の負荷の大きさはステップ状に変化しない。このため、インバータ5の負荷の大きさに逐次に対応するためには、さらに多数の最小値Vcminを用意するか、あるいは飛び飛びに定めた各最小値Vcminの相互間に存する最小値Vcminを直線補完等の計算によって求める必要がある。さらに、第1実施形態では、高調波電流Inが制限値Insに収まり得る出力電圧Vcの最小値Vcminを試験によって確認しながら定めているが、インバータ5の負荷以外の外部環境(温湿度等)が高調波電流値に影響を及ぼすことを考慮しながらあらゆる条件で試験を行うことは困難である。このため、制限値Insに対してある程度の余裕を持たせた状態で最小値Vcminを定めなければならない。この余裕分は、実際の運転状況によっては、電力変換装置100の効率を無駄に低下させてしまう可能性がある。 In general, the load of the inverter 5 does not change stepwise. For this reason, in order to sequentially cope with the load size of the inverter 5, a larger number of minimum values Vcmin are prepared, or the minimum value Vcmin existing between the minimum values Vcmin determined to be skipped is linearly complemented. It is necessary to obtain by calculation such as. Further, in the first embodiment, the minimum value Vcmin of the output voltage Vc at which the harmonic current In can fall within the limit value Ins is determined by checking the test, but the external environment other than the load of the inverter 5 (temperature and humidity, etc.) It is difficult to perform the test under all conditions in consideration of the fact that affects the harmonic current value. For this reason, the minimum value Vcmin must be determined in a state where a certain margin is provided for the limit value Ins. This margin may unnecessarily reduce the efficiency of the power conversion device 100 depending on the actual driving situation.
 これらの点を考慮し、第2実施形態では、電力変換装置100から発生する高調波電流Inそのものを検出し、その検出値Inをコンバータ2の出力電圧Vcの制御にフィードバックする。これにより、電力変換装置100から発生する高調波電流Inを確実に制限値Ins内に収めながら、電力変換装置100の効率を高めることができる。 Considering these points, in the second embodiment, the harmonic current In itself generated from the power converter 100 is detected, and the detected value In is fed back to the control of the output voltage Vc of the converter 2. As a result, the efficiency of the power conversion device 100 can be increased while the harmonic current In generated from the power conversion device 100 is reliably kept within the limit value Ins.
 コントローラ90の制限値設定部94は、特定の次数の高調波電流Inに対する電力変換装置用の制限値Insそのものを制御用データとして予め記憶している。最小値Vcminのデータは、制限値設定部94に記憶しない。さらに、コントローラ90は、図1に破線で示す高調波算出部97を含む。高調波算出部97は、抑制する必要のある次数の高調波電流Inを、入力電流検知用の電流センサ71,72,73の検知結果をフーリエ変換することにより算出する。 The limit value setting unit 94 of the controller 90 stores in advance, as control data, the limit value Ins for the power converter for the harmonic current In of a specific order. The data of the minimum value Vcmin is not stored in the limit value setting unit 94. Furthermore, the controller 90 includes a harmonic calculation unit 97 indicated by a broken line in FIG. The harmonic calculation unit 97 calculates the harmonic current In of the order that needs to be suppressed by performing a Fourier transform on the detection results of the current sensors 71, 72, and 73 for detecting the input current.
 コントローラ90の第3制御部93は、高調波算出部97の算出値Inと制限値設定部94内の制限値Insとを比較し、算出値Inが制限値Ins内に収まる範囲でコンバータ2の出力電圧Vcが最も低くなるようにそのコンバータ2の出力電圧Vcを制御する。 The third control unit 93 of the controller 90 compares the calculated value In of the harmonic calculation unit 97 with the limit value Ins in the limit value setting unit 94, and within the range where the calculated value In falls within the limit value Ins. The output voltage Vc of the converter 2 is controlled so that the output voltage Vc becomes the lowest.
 具体的には、第3制御部93は、図9に示すように、高調波算出部97の算出値Inと、制限値Insおよびその制限値Insに対して定めた設定値“Ins-ΔI1”“Ins-ΔI2”とを、比較する。設定値“Ins-ΔI1”は、制限値Insより所定値ΔI1だけ低い値である。設定値“Ins-ΔI2”は、制限値Insより所定値ΔI2(>ΔI1)だけ低い値である。 Specifically, as shown in FIG. 9, the third control unit 93 calculates the calculated value In of the harmonic calculation unit 97, the limit value Ins, and the set value “Ins−ΔI1” determined for the limit value Ins. “Ins−ΔI2” is compared. The set value “Ins−ΔI1” is a value lower than the limit value Ins by a predetermined value ΔI1. The set value “Ins−ΔI2” is a value lower than the limit value Ins by a predetermined value ΔI2 (> ΔI1).
 高調波算出部97の算出値Inが上昇して設定値“Ins-ΔI2”に達した場合(図中A点)、コントローラ90は、コンバータ2の出力電圧Vcを一定値だけ上昇させる。この上昇にもかかわらず、高調波算出部97の算出値Inがさらに上昇して制限値Insに達した場合(図中B点)、コントローラ90は、コンバータ2の出力電圧Vcをさらに一定値だけ上昇させる。ここで、出力電圧Vcの上昇は、コンバータ2に対するPWM信号のオン,オフデューティを上げることで実行される。逆に出力電圧Vcの低下は、コンバータ2に対するPWM信号のオン,オフデューティを下げることで実行される。 When the calculated value In of the harmonic calculation unit 97 increases and reaches the set value “Ins−ΔI2” (point A in the figure), the controller 90 increases the output voltage Vc of the converter 2 by a certain value. Despite this increase, when the calculated value In of the harmonic calculation unit 97 further increases and reaches the limit value Ins (point B in the figure), the controller 90 further increases the output voltage Vc of the converter 2 by a certain value. Raise. Here, the output voltage Vc is increased by increasing the on / off duty of the PWM signal for the converter 2. Conversely, the output voltage Vc is lowered by reducing the on / off duty of the PWM signal for the converter 2.
 出力電圧Vcの上昇によって算出値Inが設定値“Ins-ΔI1”まで低下した場合(図中C点)、コントローラ90は、コンバータ2の出力電圧Vcを一定値だけ下降させる。この出力電圧Vcの下降により算出値Inが再び上昇して制限値Insに達した場合(図中D点)、コントローラ90は、コンバータ2の出力電圧Vcをさらに一定値だけ上昇させる。 When the calculated value In decreases to the set value “Ins−ΔI1” due to the increase in the output voltage Vc (point C in the figure), the controller 90 decreases the output voltage Vc of the converter 2 by a certain value. When the calculated value In rises again due to the fall of the output voltage Vc and reaches the limit value Ins (point D in the figure), the controller 90 further raises the output voltage Vc of the converter 2 by a certain value.
 要約すると、コントローラ90は、算出値Inが低い値から設定値“Ins-ΔI2”に達した場合に、出力電圧Vcを上昇させる。設定値“Ins-ΔI2”以上の状態において、コントローラ90は、算出値Inが制限値Insに達した場合に出力電圧Vcを上昇させ、算出値Inが“Ins-ΔI1”まで低下した場合に出力電圧Vcを下降させる。 In summary, the controller 90 increases the output voltage Vc when the calculated value In reaches the set value “Ins−ΔI2” from a low value. In a state where the set value is “Ins−ΔI2” or more, the controller 90 increases the output voltage Vc when the calculated value In reaches the limit value Ins, and outputs when the calculated value In decreases to “Ins−ΔI1”. The voltage Vc is lowered.
 この結果、第1実施形態と同様に、電力変換装置100の高効率な運転が可能となる。制限値設定部94に多数のデータを記憶する必要がなく、最小値Vcminを求めるための直線補完等の計算も不要となる。この第2実施形態においては、制限値Insが決まれば、あとは電流センサ71,72,73を用いて高調波電流Inを算出し、この算出値Inに従ってコンバータ2の出力電圧Vcをフィードバック制御するだけである。また、コンバータ2に対するスイッチング用のPWM信号を生成する際に用いる電流センサ71,72,73を高調波電流Inの算出に兼用しているため、電力変換装置100の回路構成が簡素化できる。 As a result, as in the first embodiment, the power conversion apparatus 100 can be operated with high efficiency. It is not necessary to store a large amount of data in the limit value setting unit 94, and calculation such as linear interpolation for obtaining the minimum value Vcmin is also unnecessary. In the second embodiment, when the limit value Ins is determined, the harmonic current In is calculated using the current sensors 71, 72, and 73, and the output voltage Vc of the converter 2 is feedback-controlled according to the calculated value In. Only. Moreover, since the current sensors 71, 72, 73 used when generating the switching PWM signal for the converter 2 are also used for the calculation of the harmonic current In, the circuit configuration of the power conversion device 100 can be simplified.
 また、この第2実施形態においては、高調波算出部97の算出値Inに応じてコンバータ2の出力電圧Vcをフィードバック制御する構成であるから、受電設備10を大容量の高額なものへ変更する必要がなく、受電設備10と電力変換装置100との間に高額の高調波抑制装置を設置する必要もなく、高調波電流Inをその次数にかかわらず確実に低減できる。しかも、出力電圧Vcを不必要に上昇させることがないため、電力変換装置100の高効率な運転が可能となる。 Moreover, in this 2nd Embodiment, since it is the structure which feedback-controls the output voltage Vc of the converter 2 according to the calculated value In of the harmonic calculation part 97, the power receiving installation 10 is changed into an expensive thing with a large capacity. There is no need to install an expensive harmonic suppression device between the power receiving facility 10 and the power converter 100, and the harmonic current In can be reliably reduced regardless of its order. Moreover, since the output voltage Vc is not increased unnecessarily, the power conversion device 100 can be operated with high efficiency.
 また、受電設備10から共に電力が供給される複数のヒートポンプ式熱源機を備えた大規模設備においては、これら複数のヒートポンプ式熱源機を上位のシステム制御器101によって統括的に制御してもよい。この場合、各ヒートポンプ式熱源機のコントローラ90は、高調波算出部97の算出値Inをシステム制御器101に送る。システム制御器101は、各ヒートポンプ式熱源機のコントローラ90から送られる算出値Inを受け、これら算出値Inの合計値と受電設備10における“高調波電流Inの規制値Ino”とを比較し、この比較結果に応じて各ヒートポンプ式熱源機に対する制限値Insを設定する。そして、システム制御器101は、設定した制限値Insを各ヒートポンプ式熱源機のコントローラ90にそれぞれ送る。各ヒートポンプ式熱源機のコントローラ90は、システム制御器101から送られる制限値Insを通信部96で受け、受けた制限値Insを制限値設定部94に記憶する。これにより、受電設備10から共に電力が供給される複数のヒートポンプ式熱源機を備えた大規模設備においても、各ヒートポンプ式熱源機の電力変換装置100から発生する高調波電流Inをそれぞれ制限値Ins内に収めながら、各電力変換装置100の高効率な運転が可能となる。 Further, in a large-scale facility provided with a plurality of heat pump heat source devices to which electric power is supplied from the power receiving facility 10, the plurality of heat pump heat source devices may be comprehensively controlled by the host system controller 101. . In this case, the controller 90 of each heat pump heat source apparatus sends the calculated value In of the harmonic calculation unit 97 to the system controller 101. The system controller 101 receives the calculated value In sent from the controller 90 of each heat pump heat source machine, compares the total value of these calculated values In and the “regulated value Ino of the harmonic current In” in the power receiving facility 10, The limit value Ins for each heat pump heat source is set according to the comparison result. Then, the system controller 101 sends the set limit value Ins to the controller 90 of each heat pump heat source machine. The controller 90 of each heat pump heat source apparatus receives the limit value Ins sent from the system controller 101 by the communication unit 96 and stores the received limit value Ins in the limit value setting unit 94. Thereby, even in a large-scale facility including a plurality of heat pump heat source devices to which power is supplied from the power receiving facility 10, the harmonic current In generated from the power conversion device 100 of each heat pump heat source device is limited to the limit value Ins. It is possible to operate each power conversion device 100 with high efficiency while being housed inside.
 ここで、システム制御器101は、コンバータ2がスイッチング動作中(運転中)の電力変換装置100から発生する高調波電流の算出値Inだけでなく、コンバータ2のスイッチング動作が停止中の電力変換装置100から発生する高調波電流の算出値Inも集めて合計する必要がある。このため、少なくともインバータ5が動作中の電力変換装置100のコントローラ90は、コンバータ2が停止(全波整流)している場合でも、高調波算出部97の算出値Inをシステム制御器101へと送る。 
 他の構成および動作は第1実施形態と同じである。よって、その説明は省略する。
Here, the system controller 101 includes not only the calculated value In of the harmonic current generated from the power conversion device 100 in which the converter 2 is switching (operating) but also the power conversion device in which the switching operation of the converter 2 is stopped. The calculated value In of the harmonic current generated from 100 must also be collected and summed. For this reason, at least the controller 90 of the power conversion device 100 in which the inverter 5 is in operation sends the calculated value In of the harmonic calculation unit 97 to the system controller 101 even when the converter 2 is stopped (full-wave rectification). send.
Other configurations and operations are the same as those in the first embodiment. Therefore, the description is omitted.
[3]第3実施形態 
 第3実施形態では、1つの冷凍負荷(空調負荷,冷却負荷,加温負荷等)に接続される1つの設備機器であるヒートポンプ式熱源機が、複数台たとえば4台の圧縮機を備える。このヒートポンプ式熱源機は、図10に示すように、上記4台の圧縮機をそれぞれ駆動する4台のブラシレスDCモータ6、これらブラシレスDCモータ6への駆動電力を出力する4台の電力変換装置100、これら電力変換装置100の各コントローラ90を総合的に制御する1つの総合コントローラ150を含む。各電力変換装置100の構成は、第1実施形態と同じである。
[3] Third embodiment
In the third embodiment, a heat pump heat source machine, which is one equipment connected to one refrigeration load (air conditioning load, cooling load, heating load, etc.), includes a plurality of units, for example, four compressors. As shown in FIG. 10, this heat pump type heat source machine includes four brushless DC motors 6 that respectively drive the four compressors, and four power converters that output driving power to the brushless DC motors 6. 100, and one integrated controller 150 that comprehensively controls each controller 90 of these power converters 100. The configuration of each power conversion device 100 is the same as that of the first embodiment.
 上記4台の圧縮機は、空気や媒体(水等)を冷却または加熱するための1つの冷凍サイクルの構成要素として、互いに並列接続される。この1つの冷凍サイクルは、1つの利用側熱交換器、あるいは互いに並列接続された複数の利用側熱交換器を含む。 The four compressors are connected in parallel as components of one refrigeration cycle for cooling or heating air or a medium (water or the like). This one refrigeration cycle includes one use side heat exchanger or a plurality of use side heat exchangers connected in parallel to each other.
 各電力変換装置100の総定格消費電力は、第1実施形態の1つの電力変換装置100の定格消費電力の4倍に相当する。よって、インバータ比率50%の場合に各電力変換装置100から発生する5次高調波電流Inの合計値In´に対する制御器用(熱源機用)の制限値Ins´は、図3に示した電力変換装置用の制限値Ins=4.0Aの4倍の16A(=4.0A×4)となる。 The total rated power consumption of each power conversion device 100 corresponds to four times the rated power consumption of one power conversion device 100 of the first embodiment. Therefore, the limit value Ins ′ for the controller (for the heat source device) with respect to the total value In ′ of the fifth harmonic current In generated from each power conversion device 100 when the inverter ratio is 50% is the power conversion shown in FIG. The limit value Ins for the apparatus is 16A (= 4.0A × 4), which is four times the 4.0A.
 1つの冷凍負荷を4台の圧縮機(ブラシレスDCモータ6)で駆動するので、各電力変換装置100におけるインバータ5の出力周波数Fは互いに同じ値に設定される。つまり、各ブラシレスDCモータ6は、互いに同じ回転数で駆動される。 Since one refrigeration load is driven by four compressors (brushless DC motors 6), the output frequency F of the inverter 5 in each power converter 100 is set to the same value. That is, each brushless DC motor 6 is driven at the same rotational speed.
 コンバータ2のスイッチング動作中は、スイッチングに伴う電力損失が生じるため、コンバータ2がスイッチング動作なしで全波整流のみ行う場合よりも、電力変換装置100の効率が低下する(図12参照)。したがって、各電力変換装置100から発生する高調波電流Inの合計値In´を上記制限値Ins´内に収めながら各電力変換装置100の高効率を得るためには、各コンバータ2のスイッチング動作台数をできるだけ少なくすればよい。 During the switching operation of the converter 2, power loss due to switching occurs, so that the efficiency of the power conversion device 100 is lower than when the converter 2 performs only full-wave rectification without the switching operation (see FIG. 12). Therefore, in order to obtain high efficiency of each power converter 100 while keeping the total value In ′ of the harmonic current In generated from each power converter 100 within the limit value Ins ′, the number of switching operations of each converter 2 Should be as small as possible.
 総合コントローラ150内のメモリ151には、上記設備機器用の制限値Ins´(=16A)が、ヒートポンプ式熱源機の製造時または設置時に入力されて記憶される。上記したように、例えば、インバータ比率50%の場合に各電力変換装置100から発生する5次高調波電流Inの合計値に対する設備機器用の制限値Ins´は16Aである。なお、前述した通り、5次高調波電流Inの合計値に対する設備機器用の制限値Ins´が定まれば、他の次数の高調波電流Inの合計値に対する設備機器用の制限値Ins´は計算により求まる。 The limit value Ins ′ (= 16 A) for the equipment is input and stored in the memory 151 in the integrated controller 150 when the heat pump heat source is manufactured or installed. As described above, for example, the limit value Ins ′ for facility equipment with respect to the total value of the fifth harmonic current In generated from each power converter 100 when the inverter ratio is 50% is 16A. Note that, as described above, if the limit value Ins ′ for equipment for the total value of the fifth harmonic current In is determined, the limit value Ins ′ for equipment for the total value of the harmonic current In of other orders is determined. It is obtained by calculation.
 さらに、総合コントローラ150内のメモリ151には、図11に示す制御条件が記憶される。この制御条件は、1台のコンバータ2がスイッチング動作なしで全波整流のみ行う非昇圧モード時にそのコンバータ2から流出する高調波電流Inの値(非昇圧モード値という)Inyと、そのコンバータ2をスイッチング動作(昇圧動作)させてそのコンバータ2の出力電圧Vcを最大レベルに至らせた場合にそのコンバータ2から流出する高調波電流Inの値(昇圧モード最小値という)Inxとを、1台のインバータ5の負荷に対応付けたものである。 Furthermore, the memory 151 in the integrated controller 150 stores the control conditions shown in FIG. This control condition is that a single converter 2 performs a full-wave rectification without a switching operation, and a harmonic current In value (referred to as a non-boosting mode value) Iny flowing out of the converter 2 in a non-boosting mode and a converter 2 When the switching operation (boost operation) is performed and the output voltage Vc of the converter 2 reaches the maximum level, the value of the harmonic current In flowing out from the converter 2 (referred to as the boost mode minimum value) Inx is This corresponds to the load of the inverter 5.
 すなわち、1台のインバータ5の負荷がそのインバータ5の定格負荷の25%である場合、非昇圧モード値InyはIny1であり、昇圧モード最小値InxはInx1である(Iny1>Inx1)。1台のインバータ5の負荷がそのインバータ5の定格負荷の50%である場合、非昇圧モード値InyはIny2であり、昇圧モード最小値InxはInx2である(Iny2>Inx2)。1台のインバータ5の負荷がそのインバータ5の定格負荷の75%である場合、非昇圧モード値InyはIny3であり、昇圧モード最小値InxはInx3である(Iny3>Inx3)。1台のインバータ5の負荷がそのインバータ5の定格負荷の100%である場合、非昇圧モード値InyはIny4であり、昇圧モード最小値InxはInx4である(Iny4>Inx4)。 That is, when the load of one inverter 5 is 25% of the rated load of the inverter 5, the non-boosting mode value Iny is Iny1, and the boosting mode minimum value Inx is Inx1 (Iny1> Inx1). When the load of one inverter 5 is 50% of the rated load of the inverter 5, the non-boosting mode value Iny is Iny2, and the boosting mode minimum value Inx is Inx2 (Iny2> Inx2). When the load of one inverter 5 is 75% of the rated load of the inverter 5, the non-boost mode value Iny is Iny3, and the boost mode minimum value Inx is Inx3 (Iny3> Inx3). When the load of one inverter 5 is 100% of the rated load of the inverter 5, the non-boosting mode value Iny is Iny4 and the boosting mode minimum value Inx is Inx4 (Iny4> Inx4).
 総合コントローラ150は、各インバータ5の負荷を各コントローラ90を介してそれぞれ検出し、検出した各負荷に対応する非昇圧モード値Inyおよび昇圧モード最小値Inxに基づき、4台の電力変換装置100から発生する高調波電流Inの合計値を設備機器用の制限値Ins´内に収めることが可能な各コンバータ2のスイッチング動作台数を決定する。 The integrated controller 150 detects the load of each inverter 5 via each controller 90, and from the four power converters 100 based on the non-boost mode value Iny and the boost mode minimum value Inx corresponding to each detected load. The number of switching operations of each converter 2 that can accommodate the total value of the generated harmonic current In within the limit value Ins ′ for equipment is determined.
 以下、5次高調波電流Inを抑制するための計算例について説明するが、実際には、総合コントローラ150は、抑制が必要な全ての次数の高調波電流Inに対して同様の計算を行う。この計算に基づき、総合コントローラ150は、抑制が必要な全ての次数の高調波電流値Inの合計値がそれぞれ設備機器用の制限値Ins´内に収まるように、各コンバータ2のスイッチング動作台数を決定する。 Hereinafter, although a calculation example for suppressing the fifth harmonic current In will be described, in practice, the integrated controller 150 performs the same calculation for all the harmonic currents In that need to be suppressed. Based on this calculation, the total controller 150 determines the number of switching operations of each converter 2 so that the total value of the harmonic current values In of all orders that need to be controlled falls within the limit value Ins ′ for each facility device. decide.
 例えば、25%負荷時の非昇圧モード値Iny1が6.0Aで最小値Inx1が0.3Aの場合、総合コントローラ150は、2台のコンバータ2のスイッチング動作を停止して残り2台のコンバータ2をスイッチング動作させる。これにより、各電力変換装置100から発生する高調波電流Inの合計値は、“6.0A+6.0A+0.3A+0.3A=12.6A”となり、設備機器用の制限値Ins´(=16A)内に収まる。しかも、この場合、2台のコンバータ2はスイッチング動作しないので、その2台のコンバータ2が存する2台の電力変換装置100の効率が向上する。 For example, when the non-boosting mode value Iny1 at 25% load is 6.0A and the minimum value Inx1 is 0.3A, the integrated controller 150 stops the switching operation of the two converters 2 and switches the remaining two converters 2 Make it work. As a result, the total value of the harmonic current In generated from each power conversion device 100 is “6.0 A + 6.0 A + 0.3 A + 0.3 A = 12.6 A”, which is within the limit value Ins ′ (= 16 A) for equipment. . In addition, in this case, since the two converters 2 do not perform the switching operation, the efficiency of the two power conversion devices 100 including the two converters 2 is improved.
 さらに、この場合、設備機器用の制限値Ins´(=16A)と、各電力変換装置100から発生する高調波電流Inの合計値12.6Aとの間に、3.4Aの余裕分が生じる。一方、高調波電流Inを低減するためにはコンバータ2の出力電圧Vcを高めればよいが、第1実施形態の図6に示した通り、出力電圧Vcが高くなるほど電力変換装置100の効率が低下する。そこで、スイッチング動作するコンバータ2の出力電圧Vcを上記3.4Aの余裕分だけ下げるようにすれば、さらなる効率向上を図ることができる。 Furthermore, in this case, a margin of 3.4 A is generated between the limit value Ins ′ (= 16 A) for equipment and the total value 12.6 A of the harmonic current In generated from each power converter 100. On the other hand, in order to reduce the harmonic current In, the output voltage Vc of the converter 2 may be increased. However, as shown in FIG. 6 of the first embodiment, the efficiency of the power conversion device 100 decreases as the output voltage Vc increases. To do. Therefore, if the output voltage Vc of the converter 2 that performs the switching operation is lowered by the margin of 3.4 A, the efficiency can be further improved.
 これを実現するべく、総合コントローラ150は、スイッチング動作する2台のコンバータ2から流出することが可能な高調波電流Inの値“=16A-(6.0A+6.0A)=4A”をそのスイッチング動作する2台のコンバータ2に対する許容値ΔInとして選定する。 In order to realize this, the general controller 150 performs the switching operation of the value “= 16 A− (6.0 A + 6.0 A) = 4 A” of the harmonic current In that can flow out of the two converters 2 that perform the switching operation. The allowable value ΔIn for the two converters 2 is selected.
 総合コントローラ150は、上記選定した許容値ΔIn(=4A)を、スイッチング動作する2台のコンバータ2で按分する。そして、総合コントローラ150は、按分した許容値ΔIn(=2A)を、スイッチング動作する2台のコンバータ2が含まれる各電力変換装置100のコントローラ90に対し、それぞれ電力変換装置用の制限値Inszとして割当てて通知する。同時に、総合コントローラ150は、スイッチング動作を止めてもよい2台のコンバータ2のスイッチング動作を停止する。 The total controller 150 distributes the selected allowable value ΔIn (= 4 A) by the two converters 2 that perform the switching operation. Then, the integrated controller 150 uses the apportioned allowable value ΔIn (= 2A) as the limit value Insz for the power converter for each controller 90 of each power converter 100 including the two converters 2 that perform switching operation. Assign and notify. At the same time, the general controller 150 stops the switching operation of the two converters 2 that may stop the switching operation.
 スイッチング動作する2台のコンバータ2をそれぞれ制御する各コントローラ90は、上記通知された制限値Insz(=2A)に対応する出力電圧Vcの最小値Vcminを得るためのPWM信号を図7の制御用データから生成し、生成したPWM信号によりコンバータ2をPWMスイッチングする。この際のコンバータ2の動作は第1実施形態と同じである。これにより、スイッチング動作する2台のコンバータ2から流出する高調波電流Inをそれぞれ電力変換装置用の制限値Insz(=2A)内に収めることができる。これにより、スイッチング動作する2台のコンバータ2の出力電圧Vcを低減することができ、さらなる効率向上が図れる。 Each controller 90 that controls each of the two converters 2 that perform switching operation uses the PWM signal for obtaining the minimum value Vcmin of the output voltage Vc corresponding to the notified limit value Insz (= 2A) for the control in FIG. The converter 2 is generated from the data, and the converter 2 is PWM-switched by the generated PWM signal. The operation of the converter 2 at this time is the same as that of the first embodiment. Thereby, the harmonic current In flowing out of the two converters 2 that perform the switching operation can be stored within the limit value Insz (= 2A) for the power converter. As a result, the output voltage Vc of the two converters 2 that perform the switching operation can be reduced, and the efficiency can be further improved.
 なお、スイッチング動作する2台のコンバータ2から流出する高調波電流Inをそれぞれ電力変換装置用の制限値Insz(=2A)内に収めるための各コントローラ90の制御は、第2実施形態で説明した構成及び制御を用いてもよい。 Note that the control of each controller 90 for keeping the harmonic current In flowing out of the two converters 2 that perform the switching operation within the limit value Insz (= 2A) for the power converter is described in the second embodiment. Configuration and control may be used.
 以上のように、第3実施形態においては、複数の電力変換装置100を含むヒートポンプ式熱源機において、各電力変換装置100から発生する高調波電流Inの合計値を設備機器用の制限値Ins´(=16A)内に収めながら、各電力変換装置100の高効率な運転が可能となる。 As described above, in the third embodiment, in the heat pump heat source apparatus including the plurality of power conversion devices 100, the total value of the harmonic current In generated from each power conversion device 100 is calculated as the limit value Ins ′ for equipment. While being within (= 16A), each power converter 100 can be operated with high efficiency.
 この第3実施形態の処理のアルゴリズムの一例は、次の通りである。 
 各電力変換装置100から発生する高調波電流Inの合計値に対する制限値Ins´(=16A)をスイッチング動作なしの1つのコンバータ2から流出する高調波電流Inの値6.0Aで除算し、その除算結果2.66Aの整数“2”をスイッチング動作なしの1つのコンバータ2から流出する高調波電流の値6.0Aに乗算し、その乗算結果12Aを制限値Ins´(=16A)から減算する。この減算結果4.0Aが、スイッチング動作する残りのコンバータ2から流出することが可能な高調波電流Inの許容値ΔTnである。そして、全てのコンバータ2の台数“4台”から上記除算結果2.66Aの整数“2”を減算し、その減算結果“2”(スイッチング動作するコンバータ2の台数Nに相当する)を最小値Inxに乗算し、この乗算結果“N×Inx”と許容値ΔTn(=4.0A)とを比較し、“N×Inx”≦ΔTnの条件が満足されれば、許容値ΔTn(=4.0A)をスイッチング動作するコンバータ2の台数Nで除算し、この除算結果をコンバータ1台当たりの制限値Inszとして割当てる。
An example of the processing algorithm of the third embodiment is as follows.
The limit value Ins ′ (= 16 A) for the total value of the harmonic current In generated from each power converter 100 is divided by the value 6.0 A of the harmonic current In flowing out from one converter 2 without switching operation, and the division The integer “2” of the result 2.66A is multiplied by the harmonic current value 6.0A flowing out from one converter 2 without the switching operation, and the multiplication result 12A is subtracted from the limit value Ins ′ (= 16A). The subtraction result 4.0A is the allowable value ΔTn of the harmonic current In that can flow out of the remaining converter 2 that performs the switching operation. Then, the integer “2” of the division result 2.66A is subtracted from the number “4” of all converters 2 and the subtraction result “2” (corresponding to the number N of converters 2 that perform switching operation) is subtracted from the minimum value Inx. And the multiplication result “N × Inx” and the allowable value ΔTn (= 4.0 A) are compared. If the condition “N × Inx” ≦ ΔTn is satisfied, the allowable value ΔTn (= 4.0 A) is calculated. Dividing by the number N of converters 2 that perform the switching operation, the division result is assigned as a limit value Insz per converter.
 一方、スイッチング動作するコンバータ2の台数Nが“2”で、乗算結果“N×Inx”と許容値ΔTn(=4.0A)との関係が“N×Inx”>ΔTnの場合、スイッチング動作するコンバータ2の台数Nを1台増加させる。こうして、“(N+1)×Inx”≦ΔTnの条件を満たす状態となるまでコンバータ2のスイッチング動作台数Nを増加させ、この条件が満足されたときのスイッチング動作台数Nで許容値ΔTn(=4.0A)を除算し、この除算結果をスイッチング動作させるべきコンバータ1台当たりの制限値Inszとしてコントローラ90に通知する。この制限値Inszの通知を受けたコントローラ90は、その制限値Inszを制限値設定部94に記憶し、第1実施形態または第2実施形態に基づき自らのPWMスイッチングを制御してそれぞれの制限値Insz内でできるだけ出力電圧Vcが低くなる運転を実行する。 On the other hand, when the number N of the converters 2 that perform the switching operation is “2” and the relationship between the multiplication result “N × Inx” and the allowable value ΔTn (= 4.0 A) is “N × Inx”> ΔTn, the converter that performs the switching operation Increase the number N of 2 by 1. In this way, the number N of switching operations of the converter 2 is increased until the condition of “(N + 1) × Inx” ≦ ΔTn is satisfied, and the allowable value ΔTn (= 4.0 A) with the number of switching operations N when this condition is satisfied. ) And notifies the controller 90 of the result of the division as a limit value Insz per converter to be switched. Upon receiving the notification of the limit value Insz, the controller 90 stores the limit value Insz in the limit value setting unit 94 and controls its own PWM switching based on the first embodiment or the second embodiment. An operation is performed in which the output voltage Vc is as low as possible in Insz.
 したがって、受電設備10を大容量の高額なものへ変更する必要なく、受電設備10と各電力変換装置100との間に高額の高調波抑制装置を設置する必要もなく、各電力変換装置100から発生する高調波電流Inをその次数にかかわらず確実に低減しながら、各電力変換装置100の高効率な運転が実行できる。 Therefore, it is not necessary to change the power receiving facility 10 to a large-capacity expensive one, and it is not necessary to install a high-order harmonic suppression device between the power receiving facility 10 and each power conversion device 100. Highly efficient operation of each power conversion device 100 can be performed while reliably reducing the generated harmonic current In regardless of the order.
[4]第4実施形態 
 第3実施形態では複数の電力変換装置100におけるインバータ5の出力周波数Fが互いに同じ値に設定されるヒートポンプ式熱源機の制御について説明したが、第4実施形態では複数の電力変換装置100におけるインバータ5の出力周波数Fが互いに異なる値に設定されるヒートポンプ式熱源機の制御について説明する。この制御以外の構成は、第3実施形態の図10と同じである。
[4] Fourth embodiment
In the third embodiment, the control of the heat pump heat source machine in which the output frequencies F of the inverters 5 in the plurality of power conversion devices 100 are set to the same value has been described, but in the fourth embodiment, the inverters in the plurality of power conversion devices 100 The control of the heat pump heat source machine in which the output frequency F of 5 is set to a different value will be described. The configuration other than this control is the same as FIG. 10 of the third embodiment.
 図12は、1つのインバータ5の負荷とそのインバータ5を含む電力変換装置100の効率との関係を示す。図12中の破線はコンバータ2をスイッチング動作なしで全波整流のみ行わせる非昇圧モード時の効率を示し、図12中の実線はコンバータ2をスイッチング動作させる昇圧モード時の効率を示す。 FIG. 12 shows the relationship between the load of one inverter 5 and the efficiency of the power conversion device 100 including the inverter 5. The broken line in FIG. 12 indicates the efficiency in the non-boosting mode in which the converter 2 performs only full-wave rectification without switching operation, and the solid line in FIG. 12 indicates the efficiency in the boosting mode in which the converter 2 performs switching operation.
 コンバータ2をスイッチング動作させる昇圧モード時は、コンバータ2をスイッチング動作なしで全波整流のみ行わせる非昇圧モード時よりも、電力変換装置100の効率が低下する。さらに、コンバータ2をスイッチング動作させる昇圧モード時の電力変換装置100の効率の低下度は、インバータ5の負荷が小さい(消費電力が小さい)場合に大きく、インバータ5の負荷が大きい場合には小さい傾向にある。 In the boost mode in which the converter 2 is switched, the efficiency of the power conversion device 100 is lower than in the non-boost mode in which the converter 2 performs only full-wave rectification without switching operation. Furthermore, the degree of reduction in efficiency of power conversion device 100 in the boost mode in which converter 2 is switched is large when the load on inverter 5 is small (power consumption is small) and small when the load on inverter 5 is large. It is in.
 一方、コンバータ2をスイッチング動作なしで全波整流のみ行わせる非昇圧モード時に電力変換装置100から発生する高調波電流値Inと同電力変換装置100におけるインバータ5の負荷との関係を図13に示す。すなわち、インバータ5の負荷が大きいほど(インバータ5の消費電力が大きくてコンバータ2への入力電流が大きい)、高調波電流Inが大きくなる。この関係は、いずれの高調波次数においても同じ傾向にある。 On the other hand, FIG. 13 shows the relationship between the harmonic current value In generated from the power converter 100 and the load of the inverter 5 in the power converter 100 in the non-boosting mode in which the converter 2 performs only full-wave rectification without switching operation. . That is, the higher the load of the inverter 5 (the higher the power consumption of the inverter 5 and the greater the input current to the converter 2), the higher the harmonic current In. This relationship has the same tendency at any harmonic order.
 以上のことから、各インバータ5が互いに独立して動作する場合には、負荷の大きい側のインバータ5に対応するコンバータ2をスイッチング動作させた方が、負荷の小さい側のインバータ5に対応するコンバータ2をスイッチング動作させるよりも、全体としての効率が上がることになる。 From the above, when the inverters 5 operate independently from each other, the converter corresponding to the inverter 5 on the smaller load side is switched by switching the converter 2 corresponding to the inverter 5 on the larger load side. As a result, the overall efficiency is higher than the switching operation of 2.
 各電力変換装置100から発生する高調波電流Inの合計値In´に対する設備機器用の制限値Ins´は、受電設備10における“高調波電流Inの規制値Ino”および受電設備10におけるインバータ比率に応じて決まる。総合コントローラ150は、第3実施形態と同じく、スイッチング動作させないことが可能なコンバータ2の台数を算出する。この算出に際し、スイッチング動作させないことが可能なコンバータ2として、負荷の小さいインバータ5に対応するコンバータ2を負荷の小さい順に選定する。 The limit value Ins ′ for facility equipment with respect to the total value In ′ of the harmonic current In generated from each power converter 100 is set to the “regulation value Ino of the harmonic current In” in the power receiving facility 10 and the inverter ratio in the power receiving facility 10. It depends on it. The overall controller 150 calculates the number of converters 2 that can be prevented from switching operation, as in the third embodiment. In this calculation, the converter 2 corresponding to the inverter 5 having a small load is selected as the converter 2 that cannot be switched.
 例えば、総合コントローラ150は、4台のインバータ5を25%負荷,50%負荷,75%負荷,100%負荷でそれぞれ運転して、いずれか2台のコンバータ2をスイッチング動作させないことが可能である場合、25%負荷および50%負荷に対応する2台のコンバータ2をスイッチング動作させない。そして、総合コントローラ150は、スイッチング動作させる2台のコンバータ2のうち、最も負荷の大きい100%負荷に対応するコンバータ2を高調波電流Inの発生値が最大限に小さくなるようにスイッチング動作させるとともに、そのスイッチング動作によって生じる“高調波電流Inの発生値の余裕分”を75%負荷に対応するコンバータ2側の電力変換装置用の制限値Inszとして割当てて各コントローラ90に通知する(制限値設定部94に記憶する)。制限値Inszは、下式により算出する。 
 Insz=Ins´-In1-In2-Inx
 Ins´は、上記のように、各電力変換装置100から発生する高調波電流Inの合計値In´に対する設備機器用の制限値である。Iny1は、25%負荷のインバータ5に対応するコンバータ2の非昇圧モード時の高調波電流Inの値(非昇圧モード値)である。Iny2は、50%負荷のインバータ5に対応するコンバータ2の非昇圧モード時の高調波電流Inの値(非昇圧モード値)である。Inx4は、100%負荷のインバータ5に対応するコンバータ2をスイッチング動作(昇圧動作)させてその出力電圧Vcを最大レベルに至らせた場合にそのコンバータ2から流出する高調波電流Inの最小値(昇圧モード最小値)である。これらIny1,Iny2,Inx4は、図11に示したものと同じである。
For example, the integrated controller 150 can operate the four inverters 5 at 25% load, 50% load, 75% load, and 100% load, respectively, so that any two converters 2 are not switched. In this case, the two converters 2 corresponding to the 25% load and 50% load are not switched. Then, the general controller 150 switches the converter 2 corresponding to the 100% load having the largest load among the two converters 2 to be switched so that the generated value of the harmonic current In is minimized. Then, “the margin of the generated value of the harmonic current In” generated by the switching operation is assigned as the limit value Insz for the power converter on the converter 2 side corresponding to the 75% load and notified to each controller 90 (limit value setting) Stored in the unit 94). The limit value Insz is calculated by the following equation.
Insz = Ins'-In1-In2-Inx
Ins ′ is a limit value for facility equipment with respect to the total value In ′ of the harmonic current In generated from each power converter 100 as described above. Iny1 is the value of the harmonic current In (non-boosting mode value) when the converter 2 corresponding to the inverter 5 with 25% load is in the non-boosting mode. Iny2 is the value of the harmonic current In (non-boosting mode value) when the converter 2 corresponding to the 50% load inverter 5 is in the non-boosting mode. Inx4 is the minimum value of the harmonic current In that flows out of the converter 2 when the converter 2 corresponding to the inverter 5 with 100% load is switched (boost operation) to bring the output voltage Vc to the maximum level. Boost mode minimum value). These Iny1, Iny2, and Inx4 are the same as those shown in FIG.
 総合コントローラ150は、4台の電力変換装置100のコントローラ90からそれぞれの負荷データを受信し、これら負荷データと上記設備機器用の制限値Ins´に基づいて、コンバータ2のスイッチング動作および非スイッチング動作を指示するとともに、スイッチング動作させるコンバータ2に対する電力変換装置用の制限値Inzを割当てて各コントローラ90に通知する。各コントローラ90は、総合コントローラ150から通知された制限値Inzに従って各コンバータ2をPWMスイッチング制御する。具体的な個々のコンバータ2の動作および制御は、第1実施形態または第2実施形態と同じである。 The general controller 150 receives the load data from the controllers 90 of the four power conversion devices 100, and the switching operation and non-switching operation of the converter 2 based on the load data and the limit value Ins ′ for the equipment. And a limit value Inz for the power converter for the converter 2 to be switched is assigned and notified to each controller 90. Each controller 90 performs PWM switching control of each converter 2 according to the limit value Inz notified from the integrated controller 150. The specific operation and control of each converter 2 are the same as those in the first embodiment or the second embodiment.
 以上の制御により、受電設備10を大容量の高額なものへ変更する必要なく、受電設備10とヒートポンプ式熱源機(各電力変換装置100)との間に高額の高調波抑制装置を設置する必要もなく、ヒートポンプ式熱源機(各電力変換装置100)から発生する高調波電流Inをその次数にかかわらず確実に低減しながら、各電力変換装置100の高効率な運転が実行できる。 By the above control, it is necessary to install an expensive harmonic suppression device between the power receiving facility 10 and the heat pump heat source device (each power conversion device 100) without having to change the power receiving facility 10 to a large-capacity expensive one. The high-efficiency operation of each power converter 100 can be executed while reliably reducing the harmonic current In generated from the heat pump heat source machine (each power converter 100) regardless of the order.
[5]第5実施形態 
 図14に示すように、多数のヒートポンプ式熱源機200a,200b…200nおよびセンターコントローラ201を含む設備機器システム200が受電設備10に接続される。ヒートポンプ式熱源機200a,200b…200nは、水配管202a,202bを介して、1つまたは複数の冷凍負荷(空調負荷,冷却負荷,加温負荷等)の例えば貯湯タンクに接続される。この貯湯タンク内の水が上記水配管202bによりヒートポンプ式熱源機200a,200b…200nに導かれて加熱され、これらヒートポンプ式熱源機200a,200b…200nで加熱された水が上記水配管202aによって上記貯湯タンクに供給される。
[5] Fifth embodiment
As shown in FIG. 14, a facility equipment system 200 including a number of heat pump heat source devices 200 a, 200 b... 200 n and a center controller 201 is connected to the power receiving facility 10. 200n is connected to, for example, a hot water storage tank of one or a plurality of refrigeration loads (air conditioning load, cooling load, heating load, etc.) via water pipes 202a, 202b. The water in the hot water storage tank is guided to the heat pump type heat source devices 200a, 200b,... 200n by the water pipe 202b and heated, and the water heated by the heat pump type heat source devices 200a, 200b,. Supplied to hot water storage tank.
 ヒートポンプ式熱源機200aは、第3実施形態で示した4つの電力変換装置100および1つの総合コントローラ150を含む。このヒートポンプ式熱源機200aにおける各電力変換装置100の出力周波数Fは、第3実施形態と同じく、互いに同じ値に設定される。他のヒートポンプ式熱源機200b…200nも、ヒートポンプ式熱源機200aと同じ構成である。 The heat pump heat source machine 200a includes the four power conversion devices 100 and one integrated controller 150 shown in the third embodiment. The output frequency F of each power conversion device 100 in the heat pump heat source apparatus 200a is set to the same value as in the third embodiment. The other heat pump heat source machines 200b to 200n have the same configuration as the heat pump heat source machine 200a.
 センターコントローラ201は、ヒートポンプ式熱源機200a,200b…200nの総合コントローラ150をそれぞれ制御する。また、センターコントローラ201は、ヒートポンプ式熱源機200a,200b…200nから発生する高調波電流Inの合計値Inmに対する設備機器システム用の制限値Inmsを内部メモリに予め記憶している。制限値Inmsは、受電設備10に設定されている“高調波電流Inの規制値Ino”および受電設備10におけるインバータ比率に応じて決まる。 The center controller 201 controls the general controllers 150 of the heat pump heat source devices 200a, 200b,. Further, the center controller 201 stores in advance in the internal memory the limit value Inms for the equipment device system with respect to the total value Inm of the harmonic current In generated from the heat pump heat source devices 200a, 200b. The limit value Inms is determined according to the “regulation value Ino of the harmonic current In” set in the power receiving facility 10 and the inverter ratio in the power receiving facility 10.
 センターコントローラ201は、ヒートポンプ式熱源機200a,200b…200nの個々に対する設備機器用の制限値Ins´を設備機器システム用の制限値Inms内で分配的に定め、その各制限値Ins´をヒートポンプ式熱源機200a,200b…200nのコントローラ90にそれぞれ通知する。このセンターコントローラ201の具体的な制御について説明する。 The center controller 201 distributes the limit value Ins ′ for the facility device for each of the heat pump heat source devices 200a, 200b... 200n within the limit value Inms for the facility device system, and sets each limit value Ins ′ as a heat pump type. It notifies to the controller 90 of heat source machine 200a, 200b ... 200n, respectively. Specific control of the center controller 201 will be described.
 まず、センターコントローラ201は、第4実施形態の総合コントローラ150と類似し、スイッチング動作させないことが可能なコンバータ2が含まれるヒートポンプ式熱源機の台数を選定する。この選定に際し、スイッチング動作させないことが可能なコンバータ2が含まれるヒートポンプ式熱源機として、負荷の小さいインバータ5が含まれるヒートポンプ式熱源機を負荷の小さい順に割当てる。この割当てを受けたヒートポンプ式熱源機の総合コントローラ150は、当該ヒートポンプ式熱源機内の全てのコンバータ2のスイッチング動作を停止する。 First, the center controller 201 selects the number of heat pump heat source units including the converter 2 that can be prevented from switching operation, similar to the integrated controller 150 of the fourth embodiment. In this selection, the heat pump heat source device including the inverter 5 having a small load is assigned in order of increasing load as the heat pump heat source device including the converter 2 that cannot be switched. The general controller 150 of the heat pump heat source apparatus that has received this assignment stops the switching operation of all the converters 2 in the heat pump heat source apparatus.
 続いて、センターコントローラ201は、負荷の大きいインバータ5が含まれるヒートポンプ式熱源機の総合コントローラ150に対し、そのヒートポンプ式熱源機から発生する高調波電流Inが最も小さくなる運転を指示する。この指示を受けた総合コントローラ150は、当該ヒートポンプ式熱源機内の全てのコンバータ2の出力電圧Vcが許容範囲内で最も高いレベルとなる制御を各コントローラ90に指示する。そして、センターコントローラ201は、スイッチング動作させるコンバータ2が含まれる1つまたは複数のヒートポンプ式熱源機のうち、最も負荷の小さいインバータ5が含まれるヒートポンプ式熱源機に対し、高調波電流値Inの残りの余裕分を制限値Ins´として通知する。この通知を受けたヒートポンプ式熱源機の総合コントローラ150は、第3実施形態と同じようにその内部の各電力変換装置100に対して電力変換装置用の制限値Insを割当てる。この割当てを受けた電力変換装置100のコントローラ90は、受けた制限値Insを制限値設定部94に記憶し、当該電力変換装置100から発生する高調波電流Inがその制限値Insに収まるようにコンバータ2をPWMスイッチング制御する。 Subsequently, the center controller 201 instructs the general controller 150 of the heat pump heat source apparatus including the inverter 5 having a large load to perform an operation in which the harmonic current In generated from the heat pump heat source apparatus is minimized. Receiving this instruction, the general controller 150 instructs each controller 90 to control the output voltage Vc of all the converters 2 in the heat pump heat source machine to the highest level within the allowable range. Then, the center controller 201 compares the remaining harmonic current value In with respect to the heat pump heat source device including the inverter 5 having the smallest load among one or more heat pump heat source devices including the converter 2 to be switched. Is reported as the limit value Ins ′. Upon receiving this notification, the general controller 150 of the heat pump heat source apparatus assigns a limit value Ins for the power converter to each power converter 100 in the same manner as in the third embodiment. The controller 90 of the power conversion device 100 that has received this assignment stores the received limit value Ins in the limit value setting unit 94 so that the harmonic current In generated from the power conversion device 100 falls within the limit value Ins. PWM switching control of the converter 2 is performed.
[6]変形例 
 なお、上述の各実施形態においては、高調波電流Inの制限値Insを受電設備10に設定されている“高調波電流Inの規制値Ino”の範囲で割当てる場合を例に説明したが、受電設備10とは無関係の規制値が各電力変換装置100の個々に設定され場合には、その規制値をそのまま制限値Insとして定めてもよい。
[6] Modification
In each of the above-described embodiments, the case where the limit value Ins of the harmonic current In is assigned within the range of the “restriction value Ino of the harmonic current In” set in the power receiving facility 10 has been described as an example. When the regulation value unrelated to the facility 10 is set individually for each power conversion device 100, the regulation value may be set as the limit value Ins as it is.
 上記各実施形態では、インバータ5の負荷がブラシレスDCモータ6である場合を例に説明したが、ブラシレスDCモータ6に限らず、種々の負荷への適用が可能である。また、設備機器がヒートポンプ式熱源機である場合を例に説明したが、ヒートポンプ式熱源機に限らず、コンバータおよびインバータを搭載した設備機器いわゆるインバータ搭載機器であれば、種々のインバータ搭載機器への適用が可能である。 In the above embodiments, the case where the load of the inverter 5 is the brushless DC motor 6 has been described as an example. However, the present invention is not limited to the brushless DC motor 6 and can be applied to various loads. In addition, the case where the equipment is a heat pump heat source machine has been described as an example. However, the equipment is not limited to a heat pump heat source machine. Applicable.
 上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The above-described embodiments and modifications are presented as examples, and are not intended to limit the scope of the invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.
 本発明の電力変換装置は、ヒートポンプ式熱源機等への利用が可能である。 The power conversion device of the present invention can be used for a heat pump heat source machine or the like.
 1…三相交流電源、2…コンバータ、4…平滑コンデンサ、5…インバータ、6…ブラシレスDCモータ(負荷)、10…受電設備、21,22,23…リアクタ、31a~36a…ダイオード、31~36…IGBT(スイッチング素子)、51~56…IGBT(スイッチング素子)、60…電圧検出部、71,72,73…電流センサ、81,82,83…電流センサ、90…コントローラ、91…第1制御部、92…第2制御部、93…第3制御部、94…制限値設定部、95…入力部、96…通信部、97…高調波算出部、100…電力変換装置、101…システム制御器、150…総合コントローラ、200…設備機器システム、200a,200b…200n……ヒートポンプ式熱源機、201…センターコントローラ DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power supply, 2 ... Converter, 4 ... Smoothing capacitor, 5 ... Inverter, 6 ... Brushless DC motor (load), 10 ... Power receiving equipment, 21, 22, 23 ... Reactor, 31a-36a ... Diode, 31- 36 ... IGBT (switching element), 51 to 56 ... IGBT (switching element), 60 ... Voltage detector, 71, 72, 73 ... Current sensor, 81, 82, 83 ... Current sensor, 90 ... Controller, 91 ... First Control unit, 92 ... second control unit, 93 ... third control unit, 94 ... limit value setting unit, 95 ... input unit, 96 ... communication unit, 97 ... harmonic calculation unit, 100 ... power conversion device, 101 ... system Controller 150 ... General controller 200 ... Equipment system 200a, 200b ... 200n ... Heat pump heat source machine 201 ... Center controller

Claims (11)

  1.  交流電源の電圧を昇圧および直流変換するコンバータと、
     前記コンバータの出力電圧を交流電圧に変換するインバータと、
     高調波電流の制限値に応じて前記コンバータの出力電圧を制御するコントローラと、
     を備えることを特徴とする電力変換装置。
    A converter that boosts and converts the voltage of the AC power supply; and
    An inverter that converts the output voltage of the converter into an AC voltage;
    A controller for controlling the output voltage of the converter according to a limit value of the harmonic current;
    A power conversion device comprising:
  2.  前記コンバータは、リアクタと、このリアクタを介して前記交流電源に接続されるダイオードと、このダイオードに並列接続されたスイッチング素子とを含み、前記交流電源の電圧を昇圧および直流変換し、
     前記コントローラは、前記コンバータの入力側に生じる前記高調波電流が前記制限値内に収まり得る前記コンバータの出力電圧の最小値を前記インバータの負荷に対応付けて予め記憶し、前記インバータの実際の負荷の大きさに対応する出力電圧の最小値を前記記憶内容から読出し、前記コンバータの出力電圧が前記読出した最小値となるように前記コンバータのスイッチングを制御する、
     ことを特徴とする請求項1記載の電力変換装置。
    The converter includes a reactor, a diode connected to the AC power supply through the reactor, and a switching element connected in parallel to the diode, and boosts and DC converts the voltage of the AC power supply,
    The controller stores in advance a minimum value of the output voltage of the converter that can be accommodated within the limit value so that the harmonic current generated on the input side of the converter is associated with the load of the inverter, and the actual load of the inverter Reading the minimum value of the output voltage corresponding to the magnitude of the storage content, and controlling the switching of the converter so that the output voltage of the converter becomes the read minimum value,
    The power conversion device according to claim 1.
  3.  前記コントローラは、前記コンバータへの入力電流から前記高調波電流の値を算出し、この算出値が前記制限値内に収まるように前記コンバータの出力電圧を制御する
     ことを特徴とする請求項1記載の電力変換装置。
    The controller calculates a value of the harmonic current from an input current to the converter, and controls the output voltage of the converter so that the calculated value falls within the limit value. Power converter.
  4.  前記コントローラは、
     前記制限値を入力するための入力部と、
     前記入力部で入力される前記制限値を記憶する記憶部と、
     を含む、
     ことを特徴とする請求項1ないし請求項3のいずれか記載の電力変換装置。
    The controller is
    An input unit for inputting the limit value;
    A storage unit for storing the limit value input by the input unit;
    including,
    The power conversion device according to any one of claims 1 to 3, wherein:
  5.  前記コントローラは、
     前記制限値のデータ通信による入力を受ける通信部と、
     前記通信部で受けた前記制限値を記憶する記憶部と、
     を含む、
     ことを特徴とする請求項1ないし請求項3のいずれか記載の電力変換装置。
    The controller is
    A communication unit that receives input by data communication of the limit value;
    A storage unit for storing the limit value received by the communication unit;
    including,
    The power conversion device according to any one of claims 1 to 3, wherein:
  6.  請求項5記載の電力変換装置を複数備えた設備機器であって、
     前記各電力変換装置を総合的に制御する総合コントローラを備え、
     前記総合コントローラは、前記各設備機器が接続される受電設備に設定されている“高調波電流の規制値”に基づく前記設備機器用の制限値の範囲内で前記電力変換装置用の制限値を定め、これら電力変換装置用の制限値を前記各電力変換装置の前記各コントローラに通知する
     ことを特徴とする設備機器。
    A facility device comprising a plurality of the power conversion devices according to claim 5,
    A total controller for comprehensively controlling each of the power converters;
    The integrated controller sets the limit value for the power converter within the range of the limit value for the facility device based on the “restriction value of harmonic current” set in the power receiving facility to which the facility device is connected. The facility equipment is characterized in that the limit values for these power conversion devices are notified to the controllers of the power conversion devices.
  7.  前記総合コントローラは、前記各電力変換装置における前記各コンバータのスイッチング動作台数を制御することを特徴とする請求項6記載の設備機器。 The facility device according to claim 6, wherein the integrated controller controls the number of switching operations of the converters in the power converters.
  8.  請求項6記載の設備機器を複数備えた設備機器システムであって、
     前記各設備機器を制御するセンターコントローラを備え、
     前記センターコントローラは、前記各設備機器が接続される受電設備に設定されている“高調波電流の規制値”に基づく前記設備機器システム用の制限値の範囲内で前記各設備機器用の制限値を定め、これら設備機器用の制限値を前記各設備機器の前記各総合コントローラに通知する
     ことを特徴とする設備機器システム。
    An equipment system comprising a plurality of equipment according to claim 6,
    Comprising a center controller for controlling each facility device;
    The center controller has a limit value for each facility device within a range of limit values for the facility device system based on a “restriction value of harmonic current” set in a power receiving facility to which the facility device is connected. And a limit value for these equipments is notified to each of the integrated controllers of the equipments.
  9.  前記設備機器は、前記インバータにより駆動される圧縮機を備えた熱源機であることを特徴とする請求項6または請求項7記載の設備機器または請求項8記載の設備機器システム。 The equipment according to claim 6 or claim 7, or the equipment equipment system according to claim 8, wherein the equipment is a heat source machine including a compressor driven by the inverter.
  10.  前記コントローラは、前記コンバータへの入力電流を検知する電流センサを備え、この電流センサの検知結果に基づき前記コンバータの出力電圧を制御するとともに前記高調波電流の値を算出する
     ことを特徴とする請求項3記載の電力変換装置。
    The controller includes a current sensor that detects an input current to the converter, controls the output voltage of the converter based on a detection result of the current sensor, and calculates a value of the harmonic current. Item 4. The power conversion device according to Item 3.
  11.  前記コントローラは、前記コンバータの昇圧動作が停止しているときも、前記電流センサの検知結果に基づき前記高調波電流の値を算出する
     ことを特徴とする請求項10記載の電力変換装置。
    The power converter according to claim 10, wherein the controller calculates the value of the harmonic current based on a detection result of the current sensor even when the boosting operation of the converter is stopped.
PCT/JP2015/051088 2014-01-24 2015-01-16 Power conversion apparatus, equipment, and equipment system WO2015111517A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015558825A JP6357489B2 (en) 2014-01-24 2015-01-16 Power conversion device, equipment, and equipment system
CN201580002540.6A CN106233596A (en) 2014-01-24 2015-01-16 Power-converting device, equipment machine and facility/equipment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014011722 2014-01-24
JP2014-011722 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111517A1 true WO2015111517A1 (en) 2015-07-30

Family

ID=53681321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051088 WO2015111517A1 (en) 2014-01-24 2015-01-16 Power conversion apparatus, equipment, and equipment system

Country Status (3)

Country Link
JP (3) JP6357489B2 (en)
CN (1) CN106233596A (en)
WO (1) WO2015111517A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3688387B1 (en) 2017-09-25 2023-11-15 Johnson Controls Tyco IP Holdings LLP Variable speed drive input current control
JP7267287B2 (en) * 2019-06-04 2023-05-01 東芝三菱電機産業システム株式会社 Power conversion device and power conversion control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124271A (en) * 1989-10-03 1991-05-27 Meidensha Corp Inverter device restraining harmonics
JP2002354844A (en) * 2001-05-25 2002-12-06 Meidensha Corp Inverter equipment provided with regenerative power storing and discharging function and higher harmonic suppressing function
JP2013110785A (en) * 2011-11-17 2013-06-06 Toshiba Carrier Corp Three-phase rectification device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275685A (en) * 1996-02-06 1997-10-21 Mitsubishi Electric Corp Power supply harmonic suppression device
JP2000130825A (en) * 1998-10-26 2000-05-12 Toshiba Kyaria Kk Outdoor machine drive control unit of air conditioner
JP3785875B2 (en) * 1999-10-04 2006-06-14 日立工機株式会社 centrifuge
JP3987778B2 (en) * 2002-09-25 2007-10-10 東芝キヤリア株式会社 Transformer and rectifier using the same
JP2004166359A (en) * 2002-11-12 2004-06-10 Mitsubishi Electric Corp Harmonic restraint circuit
JP4330349B2 (en) * 2003-02-10 2009-09-16 東芝キヤリア株式会社 Air conditioner
WO2004109191A1 (en) * 2003-06-03 2004-12-16 Toshiba Carrier Corporation Air-conditioner
JP2008211896A (en) * 2007-02-26 2008-09-11 Sanyo Electric Co Ltd Three-phase filter device
JP2009095217A (en) * 2007-09-21 2009-04-30 Sanyo Electric Co Ltd Power supply system
JP5158059B2 (en) * 2009-11-30 2013-03-06 三菱電機株式会社 Air conditioning system
JP5370266B2 (en) * 2010-05-27 2013-12-18 三菱電機株式会社 Power system
ES2759864T3 (en) * 2011-01-31 2020-05-12 Mitsubishi Electric Corp Means to prevent reverse circulation, power conversion apparatus, and freezing air conditioner
JP2012249495A (en) * 2011-05-31 2012-12-13 Kyocera Document Solutions Inc Power supply device
JP5802828B2 (en) * 2012-04-16 2015-11-04 東芝キヤリア株式会社 Rectifier and rectifier system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124271A (en) * 1989-10-03 1991-05-27 Meidensha Corp Inverter device restraining harmonics
JP2002354844A (en) * 2001-05-25 2002-12-06 Meidensha Corp Inverter equipment provided with regenerative power storing and discharging function and higher harmonic suppressing function
JP2013110785A (en) * 2011-11-17 2013-06-06 Toshiba Carrier Corp Three-phase rectification device

Also Published As

Publication number Publication date
CN106233596A (en) 2016-12-14
JP2017163839A (en) 2017-09-14
JP2018130025A (en) 2018-08-16
JP6501942B2 (en) 2019-04-17
JP6357489B2 (en) 2018-07-11
JPWO2015111517A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
CN109196769B (en) Driving circuit
WO2010023978A1 (en) Converter circuit, and motor drive controller equipped with converter circuit, air conditioner, refrigerator, and induction cooking heater
WO2010013344A1 (en) Ac-dc converter, ac-dc converter control method, motor driving device, compressor driving device, air conditioner, and heat pump-type hot-water supply device
KR20090052154A (en) Motor controller of air conditioner
JP5769764B2 (en) AC / DC converter, motor drive, compressor drive, air conditioner, heat pump water heater
JP6211187B2 (en) DC power supply device and refrigeration cycle application equipment including the same
KR101973925B1 (en) Motor driving device
JP5213932B2 (en) Motor drive device and refrigeration cycle device equipped with the same
JP6501942B2 (en) Power converter, equipment, and equipment system
US20160308461A1 (en) Power conversion device
KR102253205B1 (en) Variable speed drive with secondary winding
JP6559352B2 (en) Power conversion device, motor drive control device, blower, compressor and air conditioner
KR102014257B1 (en) Power converting apparatus and air conditioner having the same
Singh et al. Power quality improvement in load commutated inverter-fed synchronous motor drives
JP6146316B2 (en) Air conditioner
KR20140096627A (en) Power converting apparatus and air conditioner having the same
JP6462821B2 (en) Motor drive device
JP6301270B2 (en) Motor drive device
JP2013135516A (en) Electric power conversion system and air conditioner
KR101234829B1 (en) Device for power factor correction in three phase power supply
KR100925276B1 (en) Motor controller and method for controlling the same
KR102343260B1 (en) Power converter and air conditioner including the same
JP2018038191A (en) Rectification circuit device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15741033

Country of ref document: EP

Kind code of ref document: A1