WO2015111319A1 - Islanding operation detection device and power conditioner system - Google Patents

Islanding operation detection device and power conditioner system Download PDF

Info

Publication number
WO2015111319A1
WO2015111319A1 PCT/JP2014/082753 JP2014082753W WO2015111319A1 WO 2015111319 A1 WO2015111319 A1 WO 2015111319A1 JP 2014082753 W JP2014082753 W JP 2014082753W WO 2015111319 A1 WO2015111319 A1 WO 2015111319A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
value
voltage
unit
Prior art date
Application number
PCT/JP2014/082753
Other languages
French (fr)
Japanese (ja)
Inventor
修一 三角
馬渕 雅夫
康介 森田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2015111319A1 publication Critical patent/WO2015111319A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to an isolated operation detection device and a power conditioner system.
  • Patent Document 1 discloses that an isolated operation detection device that detects an isolated operation of a power conditioner linked to a system power supply has a phase difference between an AC voltage of the system power supply and an AC signal output from a PLL (Phase Locked Loop). Is disclosed to correct the reactive current command value.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-61356
  • the isolated operation detection device When the isolated operation detection device is modularized separately from the control device that controls the power conditioner based on the AC signal output from the PLL, the isolated operation detection device is output from the AC voltage of the system power supply and the PLL. It is difficult to obtain the phase difference from the AC signal.
  • An isolated operation detection device is an isolated operation detection device that is used by being connected to a power conditioner connected to a distributed DC power supply and a system power supply, and outputs to the system in the power conditioner.
  • a power value acquisition unit that acquires a value of power that is planned to be performed
  • a frequency change amount acquisition unit that acquires a change in frequency of the system voltage of the system power supply
  • a power conditioner for a change in frequency of the system voltage
  • a transfer function acquisition unit that acquires a transfer function representing a response characteristic of the phase change of the reference AC signal, and a difference between the phase change of the system voltage and the phase of the reference AC signal from the obtained frequency change amount and transfer function.
  • a phase difference estimator that sequentially estimates the phase difference, and a power condition for the power that is planned to be output to the system in the power conditioner due to the estimated phase difference.
  • the planned value calculation unit causes the power conditioner to output electric power that is rotated in a direction approaching the phase of the grid, the phase of the power that is planned to be output to the grid in the power conditioner.
  • An error in output power may be reduced by calculating a planned value for a new output voltage.
  • the power value acquisition unit acquires the active power value output by the power conditioner, and the plan value calculation unit is acquired by the phase difference and power value acquisition unit estimated by the phase difference estimation unit.
  • a planned value related to a new reactive power value may be calculated based on the active power value.
  • a power conditioner includes an active power value output unit that outputs an active power value to an isolated operation detection device, and a reactive power value input unit that inputs a reactive power value from the isolated operation detection device.
  • a power conditioner provided, and the isolated operation detection device.
  • FIG. 1 is a system configuration diagram showing an example of the overall configuration of a power conditioner system according to the present embodiment.
  • the power conditioner system includes a solar cell array 200 and a power conditioner 10.
  • a plurality of solar cell strings in which a plurality of solar cell modules are connected in series are connected in parallel.
  • the solar cell array 200 is an example of a distributed power source.
  • a gas engine, a gas turbine, a micro gas turbine, a fuel cell, a wind power generator, an electric vehicle, a power storage system, or the like may be used.
  • the power conditioner 10 interconnects the solar cell array 200 that is a distributed DC power supply and the system power supply 300 based on the reference AC signal.
  • the power conditioner 10 boosts the DC voltage output from the solar cell array 200, converts the boosted DC voltage into an AC voltage, and outputs the AC voltage to the system power supply 300 side.
  • the power conditioner 10 includes a capacitor C1, a booster circuit 20, a capacitor C2, an inverter 40, a coil L, a capacitor C3, a relay 50, a control device 100, and an isolated operation detection device 400.
  • the isolated operation detection device 400 may be provided outside the power conditioner 10 without being incorporated in the power conditioner 10.
  • the booster circuit 20 may be a so-called chopper type switching regulator.
  • the booster circuit 20 boosts the voltage from the solar cell array 200.
  • the booster circuit 20 may be constituted by an insulating booster circuit having a transformer winding such as a half-bridge booster circuit or a full-bridge booster circuit.
  • the capacitor C2 smoothes the DC voltage output from the booster circuit 20.
  • the inverter 40 includes a switch. When the switch is turned on / off, the inverter 40 converts the DC voltage output from the booster circuit 20 into an AC voltage and outputs the AC voltage to the system power supply 300 side.
  • the inverter 40 may be constituted by, for example, a single-phase full-bridge PWM inverter that includes four semiconductor switches that are bridge-connected. Of the four semiconductor switches, one pair of semiconductor switches is connected in series. Of the four semiconductor switches, the other pair of semiconductor switches are connected in series and connected in parallel with the one pair of semiconductor switches.
  • a coil L and a capacitor C3 are provided between the inverter 40 and the system power supply 300.
  • the coil L and the capacitor C3 remove noise from the AC voltage output from the inverter 40.
  • a relay 50 is provided between the capacitor C3 and the system power supply 300. Relay 50 switches whether to electrically disconnect between inverter 40 and system power supply 300. When the relay 50 is turned on, the power conditioner 10 and the system power supply 300 are electrically connected. When the relay 50 is turned off, the power conditioner 10 and the system power supply 300 are electrically disconnected.
  • the power conditioner 10 further includes voltage sensors 12, 16, and 17 and current sensors 14, 18, and 19.
  • the voltage sensor 12 detects a voltage V1 corresponding to a potential difference between both ends of the solar cell array 200.
  • the voltage sensor 16 detects a voltage V2 corresponding to a potential difference between both ends on the output side of the booster circuit 20.
  • the voltage sensor 17 detects a voltage value V3 corresponding to the potential difference between both ends on the output side of the inverter 40.
  • the current sensor 14 detects the current value I1 of the current output from the solar cell array 200 and flowing to the input side of the booster circuit 20.
  • the current sensor 18 detects the current value I2 of the current output from the booster circuit 20.
  • the current sensor 19 detects the current value I3 of the current output from the inverter 40.
  • Control device 100 includes voltage booster circuit 20 and an inverter based on the voltage and current detected by voltage sensors 12, 16 and 17 and current sensors 14, 18 and 19 so that the maximum power can be obtained from solar cell array 200.
  • the switching operation of 40 is controlled, the DC voltage output from the solar cell array 200 is boosted, the boosted DC voltage is converted into an AC voltage, and output to the system power supply 300 side.
  • the relay 50 when the system power supply 300 is stopped, the relay 50 must be turned off to electrically disconnect the power conditioner 10 and the system power supply 300 from each other. Further, the power conditioner 10 must control the voltage so that the voltage output to the system power supply 300 does not exceed the upper limit voltage.
  • the islanding detection device 400 causes the control device 100 to adjust the phase difference between the phase of the current output from the inverter 40 and the phase of the voltage, and the amplitude of the current output from the inverter 40, thereby adjusting the power condition.
  • the reactive power is output to the na 10.
  • the isolated operation detection device 400 detects the frequency fluctuation of the voltage of the system power supply 300 accompanying the supply of reactive power, thereby detecting that the system power supply 300 is stopped, that is, the power conditioner 10 is operating independently. To do.
  • the isolated operation detection device 400 has a phase difference between the phase of the current output from the inverter 40 and the phase of the voltage when the voltage output from the power conditioner 10 exceeds the upper limit voltage, and By causing the control device 100 to adjust the amplitude of the current output from the inverter 40, the reactive power supplied to the system power supply 300 side in the power conditioner 10 is increased. By increasing the reactive power, the voltage of the system power supply 300 decreases. Accordingly, the control device 100 can control the voltage output from the power conditioner 10 to be smaller than the upper limit voltage.
  • the upper limit voltage may be a value based on an upper limit value defined by the grid connection regulations.
  • control device 100 and the isolated operation detection device 400 are configured as individual modules, and the control device 100 and the isolated operation detection device 400 are connected via a transmission cable 60.
  • the control device 100 and the isolated operation detection device 400 are each configured by a substrate and a microcomputer provided on the substrate.
  • the substrate of the control device 100 and the substrate of the isolated operation detection device 400 have connectors, and the respective connectors are connected via the transmission cable 60.
  • the control device 100 and the isolated operation detection device 400 have a wireless communication function, and the control device 100 and the isolated operation detection device 400 may exchange signals with each other by wireless communication.
  • the control device 100 includes a PLL (Phase Locked Loop) 102, an active power value output unit 104, and a reactive power value input unit 106.
  • the PLL 102 outputs a reference AC signal synchronized with the AC voltage of the system power supply 300.
  • the control device 100 controls the power output from the power conditioner 10 based on the reference AC signal output from the PLL 102.
  • the active power value output unit 104 derives the active power value P output from the power conditioner 10 and outputs it to the isolated operation detection device 400 via the transmission cable 60.
  • the active power value output unit 104 may derive the active power value P output from the power conditioner 10 from the voltage value V3 detected by the voltage sensor 17 and the current value I3 detected by the current sensor 19. .
  • the reactive power value input unit 106 inputs a planned value related to output power including the reactive power value to be output from the power conditioner 10 from the isolated operation detection device 400 via the transmission cable 60.
  • the control device 100 may not be able to output reactive power to be output from the power conditioner 10.
  • the isolated operation detection device 400 may not be able to immediately detect the isolated operation of the power conditioner 10.
  • FIG. 2 is a diagram for explaining the influence of the phase difference generated between the AC voltage of the system power supply 300 and the reference AC signal on the reactive power value.
  • the first X axis (X1) and the first Y axis (Y1) represent the first XY coordinates for indicating the relationship between the active power and the reactive power in the system power supply 300, and the second X axis (X2) and the second Y axis (Y2).
  • the isolated operation detection device 400 derives the reactive power value Q1 and the active power value P1 on the assumption that no phase difference is generated between the AC voltage of the system power supply 300 and the reference AC signal.
  • the isolated operation detection device 400 derives the reactive power value Q1 and the active power value P1, assuming that the first XY coordinate and the second XY coordinate coincide.
  • the power actually output from the power conditioner 10 is the reactive power value Q1 and the active power value P1.
  • the isolated operation detection device 400 can immediately and accurately receive the reference AC signal from the PLL 102 unless it has a special function such as high-speed communication. Cannot be received.
  • the reference AC signal received from the PLL 102 is delayed, the isolated operation detection device 400 cannot immediately and accurately grasp the phase difference between the AC voltage of the system power supply 300 and the reference AC signal.
  • the isolated operation detection device 400 estimates the phase difference between the AC voltage of the system power supply 300 and the reference AC signal without receiving the reference AC signal output from the PLL 102 from the control device 100. .
  • FIG. 3 is a diagram illustrating an example of a functional block of the isolated operation detection device 400.
  • the isolated operation detection apparatus 400 includes a frequency measurement unit 402, a moving average value derivation unit 404, a frequency deviation derivation unit 406, an output voltage value acquisition unit 410, a frequency change amount acquisition unit 430, a plan value calculation unit 500, and a phase difference estimation unit 440.
  • the planned value calculation unit 500 calculates a planned value related to the output power that the power conditioner 10 should output.
  • the planned value calculation unit 500 includes a first reactive power value deriving unit 502, a second reactive power value deriving unit 504, a reactive power value adding unit 506, and a reactive power value correcting unit 510.
  • the frequency measuring unit 402 acquires the voltage of the system power supply 300 via the voltage sensor 17 and measures the system frequency indicating the frequency of the system power supply 300 from the acquired voltage.
  • the frequency measuring unit 402 measures, for example, a time difference between the intermediate value between the falling and rising edges of the voltage signal detected from the voltage sensor 17 and the next falling and rising intermediate value as one cycle.
  • the measurement period may be 1/3 or less of the system period, for example, 5 milliseconds.
  • the moving average value deriving unit 404 sequentially derives the moving average value of the system frequency for a predetermined moving average time based on the system frequency measured by the frequency measuring unit 402.
  • the moving average time may be longer than one period of the system frequency, for example, 20 ms, and may be equal to or shorter than the time allowed until the isolated operation state is detected after the isolated operation state is detected.
  • the moving average time may be, for example, shorter than 100 milliseconds, and the moving average time may be, for example, 40 milliseconds.
  • the frequency deviation deriving unit 406 calculates a difference between the latest moving average value derived by the moving average value deriving unit 404 and a past moving average value before a predetermined time, for example, 200 ms before the latest moving average value. Is derived as a frequency deviation.
  • the frequency deviation deriving unit 406 may derive the frequency deviation at the same period as the system frequency measurement period, for example, every 5 milliseconds.
  • the first reactive power value deriving unit 502 derives the reactive power value q1 based on the frequency deviation of the system power supply 300.
  • the first reactive power value deriving unit 502 may derive the reactive power value q1 so that the reactive power value q1 increases in proportion to the frequency deviation of the system power supply 300.
  • the first reactive power value deriving unit 502 may derive the reactive power value q1 corresponding to the frequency deviation by referring to the reactive power value q1 ⁇ frequency deviation characteristic as shown in FIG.
  • the output voltage value acquisition unit 410 acquires a voltage value V3 corresponding to the voltage of the system power supply 300 detected by the voltage sensor 17.
  • the second reactive power value deriving unit 504 determines whether or not the acquired voltage value V3 is greater than or equal to a predetermined upper limit voltage value Vth. When the voltage value V3 is equal to or higher than the upper limit voltage value Vth, the second reactive power value deriving unit 504 increases the reactive power to be supplied to the system power supply 300 side and suppresses an increase in the output voltage of the power conditioner 10. Therefore, the reactive power value q2 is derived.
  • the reactive power value adding unit 506 adds the reactive power value q1 derived by the first reactive power value deriving unit 502 and the reactive power value q2 derived by the second reactive power value deriving unit 504, thereby invalidating the reactive power value q1.
  • a power value Q is derived.
  • the reactive power value Q output from the reactive power value addition unit 506 takes into account the phase difference between the AC voltage of the system power supply 300 and the reference AC signal output from the PLL 102 used in the control device 100. Absent. Accordingly, the reactive power value correcting unit 510 corrects the reactive power value Q output from the reactive power value adding unit 506 in consideration of the phase difference, and derives the corrected reactive power value Q ′.
  • the reactive power value correcting unit 510 is represented by the following formula ( Based on 1), the reactive power value Q ′ obtained by rotationally correcting the phase difference ⁇ may be derived.
  • Q ′ Q ⁇ cos ⁇ P ⁇ sin ⁇ (1)
  • the active power value acquisition unit 446 acquires the value of power planned to be output to the system in the power conditioner 10.
  • the active power value acquisition unit 446 may acquire the active power value P from the control device 100.
  • the frequency change amount acquisition unit 430 acquires the frequency change amount ⁇ f per unit time of the AC voltage output from the system power supply 300.
  • the frequency change amount acquisition unit 430 may acquire the frequency change amount ⁇ f by deriving the frequency change amount ⁇ f per unit time based on the frequency measured by the frequency measurement unit 402.
  • the frequency change amount acquisition unit 430 may acquire the frequency change amount ⁇ f from the control device 100.
  • the isolated operation detection device 400 estimates the phase difference ⁇ from the frequency change amount ⁇ f by using the correspondence relationship without receiving the phase difference ⁇ from the control device 100.
  • the phase difference estimation unit 440 determines the phase difference between the reference AC signal and the AC voltage of the system power supply 300, and the system power supply 300.
  • the phase difference ⁇ corresponding to the frequency change amount ⁇ f acquired by the frequency change amount acquisition unit 430 is estimated based on a predetermined correspondence relationship with the frequency change amount ⁇ f of the AC voltage.
  • the transfer function holding unit 442 holds the correspondence for each elapsed time after the frequency change amount ⁇ f changes to the reference change amount or more.
  • the transfer function holding unit 442 uses the transfer function indicating the relationship between the frequency change amount ⁇ f of the AC voltage of the system power supply 300 and the phase difference ⁇ between the reference AC signal and the AC voltage as a correspondence relationship, and the frequency change amount ⁇ f is You may hold
  • the transfer function represents the response characteristic of the phase change of the reference AC signal of the power conditioner 10 to the change in the frequency of the system voltage.
  • the transfer function holding unit 442 may hold a table in which the frequency change amount ⁇ f of the AC voltage of the system power supply 300 is associated with the phase difference ⁇ between the reference AC signal and the AC voltage as a transfer function.
  • the transfer function acquisition unit 441 acquires the transfer function held in the transfer function holding unit 442.
  • the phase difference estimation unit 440 uses the frequency change amount ⁇ f acquired by the frequency change amount acquisition unit 430 and the transfer function acquired by the transfer function acquisition unit 441 to the phase of the system voltage of the system power supply 300 and the phase of the reference AC signal. Are sequentially estimated.
  • the plan value calculation unit 500 calculates a plan value relating to a new output power for reducing an error in the output power of the power conditioner 10 based on the phase difference estimated by the phase difference estimation unit 440.
  • the planned value calculation unit 500 causes the power conditioner 10 to output the power that is rotated in the direction in which the phase of the power planned to be output to the system power supply 300 in the power conditioner 10 approaches the phase of the system power supply 300.
  • An error in output power may be reduced by calculating a planned value for a new output voltage.
  • the plan value calculation unit 500 may calculate a plan value related to a new reactive power value based on the phase difference estimated by the phase difference estimation unit 440 and the active power value P acquired by the active power value acquisition unit 446. .
  • the reactive power value correction unit 510 rotationally corrects the reactive power value Q output from the reactive power value addition unit 506 based on the phase difference ⁇ estimated by the phase difference estimation unit 440 and outputs the corrected power value Q to the power conditioner 10.
  • the reactive power value Q ′ to be derived is derived.
  • the output unit 450 outputs the plan value related to the output power calculated by the plan value calculation unit 500 to the power conditioner 10.
  • the output unit 450 outputs to the power conditioner 10 a planned value for causing the power conditioner 10 to output power corresponding to the reactive power value Q ′ derived by the reactive power value correcting unit 510.
  • the output unit 450 outputs an instruction signal indicating the current value of the current to be output by the power conditioner 10 whose phase or amplitude is determined based on the reactive power value Q ′ to the control device 100, so that the reactive power value Q ′. May be output from the power conditioner 10.
  • the output unit 450 causes the power conditioner 10 to output power corresponding to the reactive power value Q ′ by outputting to the control device 100 an instruction signal indicating the reactive power value Q ′ to be output by the power conditioner 10. Good.
  • the islanding operation detection unit 460 determines that the system power supply 300 is stopped and the power conditioner 10 is operating independently, and causes the control device 100 to A stop signal is transmitted to stop the controller 10. In response to the stop signal, the control device 100 may open the relay 50 and electrically disconnect between the inverter 40 and the system power supply 300.
  • the power conditioner 10 to be measured is connected not to the system power supply 300 but to a simulated system power supply capable of arbitrarily changing the output voltage. Further, a measuring device capable of controlling the power conditioner 10 and the simulated system power supply is connected to the power conditioner 10 and the simulated system power supply. The measuring device stops the output of reactive power from the power conditioner 10 (S100). Next, the frequency of the alternating voltage of the simulated system power supply is changed by ⁇ f to be measured (S102), and the phase difference ⁇ between the current and voltage output from the power conditioner 10 is acquired (S104). The measuring device detects the current and voltage output from the power conditioner 10 via the current sensor and the voltage sensor, and derives the interval between the detected zero cross point of the current and the zero cross point of the voltage. You may acquire phase difference (phi) of an electric current and a voltage.
  • the phase difference ⁇ between the acquired current and voltage is a phase difference that occurs even though the measuring apparatus instructs the power conditioner 10 to stop the output of reactive power.
  • This phase difference ⁇ corresponds to the phase difference ⁇ between the reference AC signal output from the PLL generated by changing the frequency by ⁇ f and the AC voltage output from the simulated system power supply. Therefore, the measuring apparatus stores the phase difference ⁇ in the memory as the phase difference ⁇ in association with the elapsed time after changing the frequency of the alternating voltage of the simulated system power supply by ⁇ f, and ⁇ f.
  • the measuring apparatus When the acquired phase difference is greater than or equal to the reference phase difference (S106), the measuring apparatus returns to step S104 and acquires the phase difference ⁇ between the current and voltage output from the power conditioner 10 again.
  • the measurement apparatus determines whether there is another ⁇ f to be measured (S108). If there is another ⁇ f to be measured, the assumed apparatus repeats the processing from step S102 to step S106 for the other ⁇ f.
  • the measuring device derives, for each elapsed time, a transfer function indicating the correspondence between ⁇ f and the phase difference ⁇ for each ⁇ f to be measured.
  • Each derived transfer function is registered in the transfer function holding unit 442 of the isolated operation detection device 400.
  • FIG. 6 is a diagram for explaining the frequency, transfer function, and phase difference of the AC voltage.
  • the frequency change of the AC voltage starts at time T0, the frequency of the AC voltage changes by ⁇ f1 from time T0 to time T1, and the frequency of the AC voltage changes by ⁇ f2 from time T1 to time T2.
  • a transfer function ph1 is derived for ⁇ f1.
  • a transfer function ph2 is derived for ⁇ f2
  • a transfer function ph3 is derived for ⁇ f3
  • a transfer function ph4 is derived for ⁇ f4.
  • the transfer functions ph1 to ph4 derived for each elapsed time include a time component. Therefore, the phase difference used for the correction of the reactive power value Q is the total sum of the phase differences derived according to the transfer function for each elapsed time.
  • the phase difference ⁇ gradually increases until a change in the frequency of the AC voltage ends after the change in the frequency of the AC voltage, and gradually after the change in the frequency of the AC voltage ends. Reduce to converge.
  • the reactive power value correction unit 510 starts correcting the reactive power value Q based on the phase difference ⁇ after the change in the frequency of the AC voltage, and after the change in the frequency of the AC voltage is completed, until the phase difference ⁇ converges. Then, the reactive power value Q is corrected based on the phase difference ⁇ .
  • FIG. 7 is a flowchart showing an example of a procedure for correcting the reactive power value with a change in the frequency of the system power supply 300.
  • the frequency change amount acquisition unit 430 acquires the frequency of the AC voltage of the system power supply 300 measured by the frequency measurement unit 402 for each unit time, and compares the previous frequency with the current frequency for each unit time. A frequency change amount is acquired (S200). When the frequency change amount acquired by the frequency change amount acquisition unit 430 is larger than the reference change amount (S202), the phase difference estimation unit 440 determines that a change has occurred in the frequency of the AC voltage of the system power supply 300.
  • the reference change amount may be a value of 0 or more.
  • the phase difference estimation unit 440 obtains a transfer function corresponding to the elapsed time from the detection of the frequency change from the transfer function holding unit 442 (S204).
  • the phase difference estimation unit 440 estimates a phase difference corresponding to the acquired frequency change amount based on the acquired transfer function (S206). Furthermore, if there is another phase difference estimated up to the present time after detecting the change in the frequency, the phase difference estimation unit 440 adds the respective phase differences estimated up to the present time (S208).
  • the reactive power value correction unit 510 receives provision of the added phase difference from the phase difference estimation unit 440. Further, the reactive power value correction unit 510 receives provision of the active power value P output from the power conditioner 10 from the active power value acquisition unit 446. Then, the reactive power value correcting unit 510 corrects the reactive power value Q provided from the reactive power value adding unit 506 according to the equation (1) using the phase difference and the active power value P, and the reactive power value Q ′ is corrected. Derived (S210).
  • the output unit 450 instructs the control device 100 to output the power corresponding to the derived reactive power value Q ′ from the power conditioner 10.
  • the output unit 450 causes the power conditioner 10 to output power corresponding to the reactive power value Q ′ by outputting to the control device 100 an instruction signal indicating the reactive power value Q ′ to be output by the power conditioner 10. Good.
  • the frequency change amount acquisition unit 430 again acquires the frequency change amount of the frequency of the AC voltage of the system power supply 300 (S214). If the phase difference after addition is larger than the reference phase difference (S216), the isolated operation is detected. The apparatus 400 repeats the processing from step S204 to step S214. On the other hand, if the phase difference after addition is equal to or smaller than the reference phase difference, the process of correcting the reactive power value is terminated.
  • the phase difference between the AC voltage of the system power supply 300 and the reference AC signal is estimated based on the frequency change amount of the AC voltage of the system power supply 300. To do. Therefore, the isolated operation detection device 400 can grasp the phase difference between the AC voltage of the system power supply 300 and the reference AC signal without receiving the reference AC signal output from the control device 100 by the PLL 102. Even when the isolated operation detection device 400 is modularized so as to be separate from the control device 100, the phase difference between the AC voltage of the system power supply 300 and the reference AC signal can be grasped. Therefore, the isolated operation detection device 400 can derive the reactive power value to be output from the power conditioner 10 in consideration of the phase difference. Even if the phase difference occurs, the isolated operation detection device 400 can output the desired reactive power from the power conditioner 10, so that the isolated operation of the power conditioner 10 can be detected immediately.
  • Each unit included in the isolated operation detection device 400 installs a program recorded on a computer-readable recording medium that performs various processes related to the isolated operation detection of the power conditioner 10, and installs the program on the computer. You may comprise by making it perform. That is, even if the isolated operation detecting device 400 is configured by causing the computer to execute programs that perform various processes related to the isolated operation detection of the power conditioner 10, the computer functions as each unit included in the isolated operation detecting device 400. Good.
  • FIG. 8 shows an example of the hardware configuration of the isolated operation detection apparatus 400 according to the present embodiment.
  • the isolated operation detection apparatus 400 according to the present embodiment includes a CPU peripheral unit having a CPU 904 and a RAM 906 connected to each other by a host controller 902, a ROM 910 connected to the host controller 902 by an input / output controller 908, and a communication interface 912. Prepare.
  • the host controller 902 connects the RAM 906 and the CPU 904 that accesses the RAM 906 at a high transfer rate.
  • the CPU 904 operates based on programs stored in the ROM 910 and the RAM 906 to control each unit.
  • the input / output controller 908 connects the host controller 902, the communication interface 912 that is a relatively high-speed input / output device, and the ROM 910.
  • the communication interface 912 communicates with the control device 100 via the communication interface 912 and the transmission cable 60.
  • the ROM 910 stores programs and data used by the CPU 904 in the isolated operation detection device 400.
  • the ROM 910 stores a boot program that the isolated operation detection device 400 executes at startup, a program that depends on the hardware of the isolated operation detection device 400, and the like.
  • the program provided to the ROM 910 via the RAM 906 is stored in a computer-readable recording medium such as a CD-ROM or USB memory and provided by the user.
  • the program is read from the recording medium, installed in the ROM 910 in the isolated operation detection device 400 via the RAM 906, and executed by the CPU 904.
  • the program installed and executed in the isolated operation detection device 400 works on the CPU 904 or the like to make the isolated operation detection device 400 the frequency measurement unit 402, the moving average value derivation unit 404, the frequency deviation described with reference to FIGS. Deriving unit 406, output voltage value acquiring unit 410, frequency change amount acquiring unit 430, plan value calculating unit 500, phase difference estimating unit 440, transfer function acquiring unit 441, transfer function holding unit 442, active power value acquiring unit 446, output Unit 450 and single operation detection unit 460.
  • Booster circuit DESCRIPTION OF SYMBOLS 10 Power conditioner 20 Booster circuit 40 Inverter 50 Relay 60 Transmission cable 100 Control apparatus 102 PLL 104 Active power value output unit 106 Reactive power value input unit 200 Solar cell array 300 System power supply 400 Independent operation detection device 402 Frequency measurement unit 404 Moving average value derivation unit 406 Frequency deviation derivation unit 410 Output voltage value acquisition unit 430 Frequency change amount acquisition Unit 440 phase difference estimation unit 441 transfer function acquisition unit 442 transfer function holding unit 446 active power value acquisition unit 450 output unit 460 isolated operation detection unit 500 plan value calculation unit 502 first reactive power value derivation unit 504 second reactive power value derivation Unit 506 reactive power value addition unit 510 reactive power value correction unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 It is difficult for a modularized islanding operation detection device to acquire the phase difference between the AC voltage of a system power supply and an AC signal outputted from a PLL. An islanding operation detection device, provided with: a frequency change amount acquisition unit for acquiring the amount of change in the frequency of the system voltage of a system power supply; a transfer function acquisition unit for acquiring a transfer function representing the response characteristics of a phase change in a reference AC signal of a power conditioner in response to a change in the frequency of the system voltage; a phase difference estimation unit for sequentially estimating the phase difference, which is the difference between the phase of the system voltage and the phase of the reference AC signal, from the acquired amount of change in frequency and the transfer function; a planned value calculation unit for calculating a planned value relating to new output power for reducing the error in the output power of the power conditioner based on the estimated phase difference; and an output unit for outputting the calculated planned value relating to the output power to the power conditioner.

Description

単独運転検出装置、およびパワーコンディショナシステムIndependent operation detection device and power conditioner system
 本発明は、単独運転検出装置、およびパワーコンディショナシステムに関する。 The present invention relates to an isolated operation detection device and a power conditioner system.
 特許文献1には、系統電源と連系するパワーコンディショナの単独運転を検出する単独運転検出装置が、系統電源の交流電圧と、PLL(Phase Locked Loop)から出力される交流信号との位相差に基づいて、無効電流指令値を補正することが開示されている。
 特許文献1 特開2008-61356号公報
Patent Document 1 discloses that an isolated operation detection device that detects an isolated operation of a power conditioner linked to a system power supply has a phase difference between an AC voltage of the system power supply and an AC signal output from a PLL (Phase Locked Loop). Is disclosed to correct the reactive current command value.
Patent Document 1 Japanese Patent Application Laid-Open No. 2008-61356
 PLLから出力される交流信号に基づいてパワーコンディショナを制御する制御装置と別体として、単独運転検出装置をモジュール化した場合、単独運転検出装置は、系統電源の交流電圧とPLLから出力される交流信号との位相差を取得することが難しい。 When the isolated operation detection device is modularized separately from the control device that controls the power conditioner based on the AC signal output from the PLL, the isolated operation detection device is output from the AC voltage of the system power supply and the PLL. It is difficult to obtain the phase difference from the AC signal.
 本発明の一態様に係る単独運転検出装置は、分散型直流電源と系統電源とに接続されたパワーコンディショナに接続して使用される単独運転検出装置であって、パワーコンディショナにおいて系統へ出力されることが計画された電力の値を取得する電力値取得部と、系統電源の系統電圧の周波数の変化量を取得する周波数変化量取得部と、系統電圧の周波数の変化に対するパワーコンディショナの基準交流信号の位相変化の応答特性を表す伝達関数を取得する伝達関数取得部と、取得された周波数の変化量と伝達関数とから系統電圧の位相と基準交流信号の位相との差である位相差を逐次推定する位相差推定部と、推定された位相差に起因する、パワーコンディショナにおいて系統へ出力することが計画された電力に対するパワーコンディショナの出力電圧の誤差を低減させるための新たな出力電力に関する計画値を算出する計画値算出部と、算出された出力電力に関する計画値をパワーコンディショナに出力する出力部とを備える。 An isolated operation detection device according to an aspect of the present invention is an isolated operation detection device that is used by being connected to a power conditioner connected to a distributed DC power supply and a system power supply, and outputs to the system in the power conditioner. A power value acquisition unit that acquires a value of power that is planned to be performed, a frequency change amount acquisition unit that acquires a change in frequency of the system voltage of the system power supply, and a power conditioner for a change in frequency of the system voltage A transfer function acquisition unit that acquires a transfer function representing a response characteristic of the phase change of the reference AC signal, and a difference between the phase change of the system voltage and the phase of the reference AC signal from the obtained frequency change amount and transfer function. A phase difference estimator that sequentially estimates the phase difference, and a power condition for the power that is planned to be output to the system in the power conditioner due to the estimated phase difference. Comprising a planning value calculation unit for calculating a planned values for a new output power to reduce the error in ® Na output voltage, and an output unit for outputting the planned values for the calculated output power to the power conditioner.
 上記単独運転検出装置において、計画値算出部は、パワーコンディショナにおいて系統へ出力されることが計画された電力の位相を系統の位相に近づく方向へ回転した電力をパワーコンディショナに出力させるための新たな出力電圧に関する計画値を算出することで出力電力の誤差を低減させてよい。 In the above isolated operation detection device, the planned value calculation unit causes the power conditioner to output electric power that is rotated in a direction approaching the phase of the grid, the phase of the power that is planned to be output to the grid in the power conditioner. An error in output power may be reduced by calculating a planned value for a new output voltage.
 上記単独運転検出装置において、電力値取得部はパワーコンディショナが出力する有効電力値を取得し、計画値算出部は、位相差推定部により推定された位相差および電力値取得部により取得された有効電力値に基づいて、新たな無効電力値に関する計画値を算出してよい。 In the isolated operation detection device, the power value acquisition unit acquires the active power value output by the power conditioner, and the plan value calculation unit is acquired by the phase difference and power value acquisition unit estimated by the phase difference estimation unit. A planned value related to a new reactive power value may be calculated based on the active power value.
 本発明の一態様に係るパワーコンディショナは、有効電力値を単独運転検出装置に対して出力する有効電力値出力部と、無効電力値を単独運転検出装置から入力する無効電力値入力部とを備えるパワーコンディショナと、上記単独運転検出装置と、を備える。 A power conditioner according to an aspect of the present invention includes an active power value output unit that outputs an active power value to an isolated operation detection device, and a reactive power value input unit that inputs a reactive power value from the isolated operation detection device. A power conditioner provided, and the isolated operation detection device.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態に係るパワーコンディショナシステムの全体構成の一例を示すシステム構成図を示す図である。It is a figure which shows the system block diagram which shows an example of the whole structure of the power conditioner system which concerns on this embodiment. 系統電源の交流電圧と基準交流信号との間に生じる位相差が無効電力値に与える影響について説明するための図である。It is a figure for demonstrating the influence which the phase difference produced between the alternating voltage of a system power supply and a reference | standard alternating signal has on a reactive power value. 単独運転検出装置の機能ブロックの一例を示す図である。It is a figure which shows an example of the functional block of an isolated operation detection apparatus. 無効電力値q1-周波数偏差特性の一例を示す図である。It is a figure which shows an example of the reactive power value q1-frequency deviation characteristic. 経過時間毎の伝達関数を導出する手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure which derives | leads-out the transfer function for every elapsed time. 交流電圧の周波数、伝達関数、および位相差について説明するための図である。It is a figure for demonstrating the frequency of an alternating voltage, a transfer function, and a phase difference. 系統電源の周波数の変化に伴い無効電力値を補正する手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure which correct | amends a reactive power value with the change of the frequency of a system power supply. 本実施形態に係る単独運転検出装置のハードウェア構成の一例を示す。An example of the hardware constitutions of the independent operation detection apparatus which concerns on this embodiment is shown.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態に係るパワーコンディショナシステムの全体構成の一例を示すシステム構成図を示す。パワーコンディショナシステムは、太陽電池アレイ200と、パワーコンディショナ10とを備える。太陽電池アレイ200は、複数の太陽電池モジュールが直列に接続された複数の太陽電池ストリングが並列に接続されている。太陽電池アレイ200は、分散型電源の一例である。分散型電源として、ガスエンジン、ガスタービン、マイクロガスタービン、燃料電池、風力発電装置、電気自動車、または蓄電システムなどが用いられてよい。 FIG. 1 is a system configuration diagram showing an example of the overall configuration of a power conditioner system according to the present embodiment. The power conditioner system includes a solar cell array 200 and a power conditioner 10. In the solar cell array 200, a plurality of solar cell strings in which a plurality of solar cell modules are connected in series are connected in parallel. The solar cell array 200 is an example of a distributed power source. As the distributed power source, a gas engine, a gas turbine, a micro gas turbine, a fuel cell, a wind power generator, an electric vehicle, a power storage system, or the like may be used.
 パワーコンディショナ10は、基準交流信号に基づいて分散型直流電源である太陽電池アレイ200と系統電源300とを連系させる。パワーコンディショナ10は、太陽電池アレイ200から出力される直流電圧を昇圧し、昇圧された直流電圧を交流電圧に変換して、系統電源300側に出力する。パワーコンディショナ10は、コンデンサC1、昇圧回路20、コンデンサC2、インバータ40、コイルL、コンデンサC3、リレー50、制御装置100、および単独運転検出装置400を備える。なお、単独運転検出装置400は、パワーコンディショナ10に内蔵されずに、パワーコンディショナ10の外部に設けられてもよい。 The power conditioner 10 interconnects the solar cell array 200 that is a distributed DC power supply and the system power supply 300 based on the reference AC signal. The power conditioner 10 boosts the DC voltage output from the solar cell array 200, converts the boosted DC voltage into an AC voltage, and outputs the AC voltage to the system power supply 300 side. The power conditioner 10 includes a capacitor C1, a booster circuit 20, a capacitor C2, an inverter 40, a coil L, a capacitor C3, a relay 50, a control device 100, and an isolated operation detection device 400. The isolated operation detection device 400 may be provided outside the power conditioner 10 without being incorporated in the power conditioner 10.
 コンデンサC1の一端および他端は、太陽電池アレイ200の正極端子および負極端子に電気的に接続され、太陽電池アレイ200から出力される直流電圧を平滑化する。昇圧回路20は、いわゆるチョッパ方式スイッチングレギュレータでよい。昇圧回路20は、太陽電池アレイ200からの電圧を昇圧する。昇圧回路20は、例えば、ハーフブリッジ型昇圧回路、フルブリッジ型昇圧回路などのトランス巻線を有する絶縁型昇圧回路により構成してもよい。 One end and the other end of the capacitor C1 are electrically connected to the positive electrode terminal and the negative electrode terminal of the solar cell array 200 to smooth the DC voltage output from the solar cell array 200. The booster circuit 20 may be a so-called chopper type switching regulator. The booster circuit 20 boosts the voltage from the solar cell array 200. The booster circuit 20 may be constituted by an insulating booster circuit having a transformer winding such as a half-bridge booster circuit or a full-bridge booster circuit.
 コンデンサC2は、昇圧回路20から出力される直流電圧を平滑化する。インバータ40は、スイッチを含み、スイッチがオンオフすることで昇圧回路20から出力された直流電圧を交流電圧に変換し、系統電源300側に出力する。インバータ40は、例えば、ブリッジ接続された4つの半導体スイッチを含む単相フルブリッジPWMインバータにより構成してもよい。4つの半導体スイッチのうち、一方の一対の半導体スイッチは直列に接続される。4つの半導体スイッチのうち、他方の一対の半導体スイッチは、直列に接続され、かつ一方の一対の半導体スイッチと並列に接続される。 The capacitor C2 smoothes the DC voltage output from the booster circuit 20. The inverter 40 includes a switch. When the switch is turned on / off, the inverter 40 converts the DC voltage output from the booster circuit 20 into an AC voltage and outputs the AC voltage to the system power supply 300 side. The inverter 40 may be constituted by, for example, a single-phase full-bridge PWM inverter that includes four semiconductor switches that are bridge-connected. Of the four semiconductor switches, one pair of semiconductor switches is connected in series. Of the four semiconductor switches, the other pair of semiconductor switches are connected in series and connected in parallel with the one pair of semiconductor switches.
 インバータ40と系統電源300との間には、コイルLおよびコンデンサC3が設けられる。コイルLおよびコンデンサC3は、インバータ40から出力された交流電圧からノイズを除去する。また、コンデンサC3と系統電源300との間には、リレー50が設けられる。リレー50は、インバータ40と系統電源300との間を電気的に遮断するか否かを切り替える。リレー50がオンすることで、パワーコンディショナ10と系統電源300とが電気的に接続され、オフすることでパワーコンディショナ10と系統電源300とが電気的に遮断される。 Between the inverter 40 and the system power supply 300, a coil L and a capacitor C3 are provided. The coil L and the capacitor C3 remove noise from the AC voltage output from the inverter 40. A relay 50 is provided between the capacitor C3 and the system power supply 300. Relay 50 switches whether to electrically disconnect between inverter 40 and system power supply 300. When the relay 50 is turned on, the power conditioner 10 and the system power supply 300 are electrically connected. When the relay 50 is turned off, the power conditioner 10 and the system power supply 300 are electrically disconnected.
 パワーコンディショナ10は、電圧センサ12、16、および17、並びに電流センサ14、18、および19をさらに備える。電圧センサ12は、太陽電池アレイ200の両端の電位差に対応する電圧V1を検知する。電圧センサ16は、昇圧回路20の出力側の両端の電位差に対応する電圧V2を検知する。電圧センサ17は、インバータ40の出力側の両端の電位差に対応する電圧値V3を検知する。 The power conditioner 10 further includes voltage sensors 12, 16, and 17 and current sensors 14, 18, and 19. The voltage sensor 12 detects a voltage V1 corresponding to a potential difference between both ends of the solar cell array 200. The voltage sensor 16 detects a voltage V2 corresponding to a potential difference between both ends on the output side of the booster circuit 20. The voltage sensor 17 detects a voltage value V3 corresponding to the potential difference between both ends on the output side of the inverter 40.
 電流センサ14は、太陽電池アレイ200から出力され、昇圧回路20の入力側に流れる電流の電流値I1を検知する。電流センサ18は、昇圧回路20から出力される電流の電流値I2を検知する。電流センサ19は、インバータ40から出力される電流の電流値I3を検知する。 The current sensor 14 detects the current value I1 of the current output from the solar cell array 200 and flowing to the input side of the booster circuit 20. The current sensor 18 detects the current value I2 of the current output from the booster circuit 20. The current sensor 19 detects the current value I3 of the current output from the inverter 40.
 制御装置100は、太陽電池アレイ200から最大電力が得られるように、電圧センサ12、16および17、並びに電流センサ14、18および19により検知される電圧および電流に基づいて昇圧回路20、およびインバータ40のスイッチング動作を制御して、太陽電池アレイ200から出力される直流電圧を昇圧し、昇圧された直流電圧を交流電圧に変換して、系統電源300側に出力する。 Control device 100 includes voltage booster circuit 20 and an inverter based on the voltage and current detected by voltage sensors 12, 16 and 17 and current sensors 14, 18 and 19 so that the maximum power can be obtained from solar cell array 200. The switching operation of 40 is controlled, the DC voltage output from the solar cell array 200 is boosted, the boosted DC voltage is converted into an AC voltage, and output to the system power supply 300 side.
 以上のように構成されたパワーコンディショナ10は、系統電源300が停止した場合には、リレー50をオフして、パワーコンディショナ10と系統電源300とを電気的に遮断しなければならない。また、パワーコンディショナ10は、系統電源300側に出力する電圧が上限電圧以上にならないように、電圧を制御しなければならない。 In the power conditioner 10 configured as described above, when the system power supply 300 is stopped, the relay 50 must be turned off to electrically disconnect the power conditioner 10 and the system power supply 300 from each other. Further, the power conditioner 10 must control the voltage so that the voltage output to the system power supply 300 does not exceed the upper limit voltage.
 単独運転検出装置400は、インバータ40から出力される電流の位相と、電圧の位相との間の位相差、およびインバータ40から出力される電流の振幅を制御装置100に調整させることで、パワーコンディショナ10に無効電力を出力させる。単独運転検出装置400は、無効電力の供給に伴う系統電源300の電圧の周波数変動を検知することで、系統電源300が停止している、つまりパワーコンディショナ10が単独運転していることを検知する。 The islanding detection device 400 causes the control device 100 to adjust the phase difference between the phase of the current output from the inverter 40 and the phase of the voltage, and the amplitude of the current output from the inverter 40, thereby adjusting the power condition. The reactive power is output to the na 10. The isolated operation detection device 400 detects the frequency fluctuation of the voltage of the system power supply 300 accompanying the supply of reactive power, thereby detecting that the system power supply 300 is stopped, that is, the power conditioner 10 is operating independently. To do.
 また、単独運転検出装置400は、パワーコンディショナ10から出力される電圧が上限電圧以上になった場合に、インバータ40から出力される電流の位相と、電圧の位相との間の位相差、およびインバータ40から出力される電流の振幅を制御装置100に調整させることで、パワーコンディショナ10に系統電源300側に供給している無効電力を増加させる。無効電力を増加させることで、系統電源300の電圧が低下する。これに伴い、制御装置100は、パワーコンディショナ10から出力される電圧が上限電圧より小さくなるように制御できる。なお、上限電圧は、系統連系規定によって定められる上限値に基づく値でもよい。 In addition, the isolated operation detection device 400 has a phase difference between the phase of the current output from the inverter 40 and the phase of the voltage when the voltage output from the power conditioner 10 exceeds the upper limit voltage, and By causing the control device 100 to adjust the amplitude of the current output from the inverter 40, the reactive power supplied to the system power supply 300 side in the power conditioner 10 is increased. By increasing the reactive power, the voltage of the system power supply 300 decreases. Accordingly, the control device 100 can control the voltage output from the power conditioner 10 to be smaller than the upper limit voltage. The upper limit voltage may be a value based on an upper limit value defined by the grid connection regulations.
 本実施形態において、制御装置100と単独運転検出装置400とは、それぞれ個別のモジュールとして構成されており、制御装置100と単独運転検出装置400とは伝送ケーブル60を介して接続されている。制御装置100および単独運転検出装置400は、それぞれ基板と基板上に設けられたマイクロコンピュータなどにより構成される。制御装置100の基板と、単独運転検出装置400の基板とは、コネクタを有し、それぞれのコネクタが伝送ケーブル60を介して接続されている。なお、制御装置100および単独運転検出装置400は無線通信機能を有し、制御装置100と単独運転検出装置400とは、互いに無線通信により信号をやり取りしてもよい。 In this embodiment, the control device 100 and the isolated operation detection device 400 are configured as individual modules, and the control device 100 and the isolated operation detection device 400 are connected via a transmission cable 60. The control device 100 and the isolated operation detection device 400 are each configured by a substrate and a microcomputer provided on the substrate. The substrate of the control device 100 and the substrate of the isolated operation detection device 400 have connectors, and the respective connectors are connected via the transmission cable 60. Note that the control device 100 and the isolated operation detection device 400 have a wireless communication function, and the control device 100 and the isolated operation detection device 400 may exchange signals with each other by wireless communication.
 制御装置100は、PLL(Phase Locked Loop)102、有効電力値出力部104、および無効電力値入力部106を備える。PLL102は、系統電源300の交流電圧に同期させた基準交流信号を出力する。制御装置100は、PLL102が出力する基準交流信号に基づいてパワーコンディショナ10から出力させる電力を制御している。有効電力値出力部104は、パワーコンディショナ10から出力される有効電力値Pを導出して、伝送ケーブル60を介して単独運転検出装置400に出力する。有効電力値出力部104は、電圧センサ17により検知される電圧値V3と、電流センサ19により検知される電流値I3とから、パワーコンディショナ10から出力される有効電力値Pを導出してよい。無効電力値入力部106は、単独運転検出装置400から、パワーコンディショナ10から出力すべき無効電力値を含む出力電力に関する計画値を伝送ケーブル60を介して入力する。 The control device 100 includes a PLL (Phase Locked Loop) 102, an active power value output unit 104, and a reactive power value input unit 106. The PLL 102 outputs a reference AC signal synchronized with the AC voltage of the system power supply 300. The control device 100 controls the power output from the power conditioner 10 based on the reference AC signal output from the PLL 102. The active power value output unit 104 derives the active power value P output from the power conditioner 10 and outputs it to the isolated operation detection device 400 via the transmission cable 60. The active power value output unit 104 may derive the active power value P output from the power conditioner 10 from the voltage value V3 detected by the voltage sensor 17 and the current value I3 detected by the current sensor 19. . The reactive power value input unit 106 inputs a planned value related to output power including the reactive power value to be output from the power conditioner 10 from the isolated operation detection device 400 via the transmission cable 60.
 系統電源300の交流電圧が急激に変化した場合、PLL102が、系統電源300の交流電圧の急激な変化を追従できず、系統電源300の交流電圧と基準交流信号との間に大きな位相差が生じることがある。このような位相差が生じた場合、制御装置100は、出力させるべき無効電力をパワーコンディショナ10から出力させられない場合がある。出力させるべき無効電力をパワーコンディショナ10から出力させられない場合、単独運転検出装置400は、パワーコンディショナ10の単独運転を即座に検知できない場合がある。 When the AC voltage of the system power supply 300 changes abruptly, the PLL 102 cannot follow the rapid change of the AC voltage of the system power supply 300, and a large phase difference occurs between the AC voltage of the system power supply 300 and the reference AC signal. Sometimes. When such a phase difference occurs, the control device 100 may not be able to output reactive power to be output from the power conditioner 10. When the reactive power to be output cannot be output from the power conditioner 10, the isolated operation detection device 400 may not be able to immediately detect the isolated operation of the power conditioner 10.
 図2は、系統電源300の交流電圧と基準交流信号との間に生じる位相差が無効電力値に与える影響について説明するための図である。第1X軸(X1)および第1Y軸(Y1)は、系統電源300における有効電力と無効電力との関係を示すための第1XY座標を表し、第2X軸(X2)および第2Y軸(Y2)は、制御装置100において認識されている有効電力と無効電力との関係を示すための第2XY座標を表す。例えば、系統電源300の交流電圧と基準交流信号との間に位相差が生じていないことを前提として、単独運転検出装置400が、無効電力値Q1と有効電力値P1とを導出する。言い換えれば、第1XY座標と第2XY座標とが一致するものとして、単独運転検出装置400が、無効電力値Q1と有効電力値P1とを導出する。ここで、系統電源300の交流電圧と基準交流信号との間に位相差θが生じていた場合、実際にパワーコンディショナ10から出力される電力は、無効電力値Q1と有効電力値P1とを含む皮相電力値W1に対して位相差θだけずれた、無効電力値Q2(Q2=Q1×cosθ)および有効電力値P2(P2=P1×sinθ)を含む皮相電力値W2に対応する電力になる。したがって、皮相電力値W2に対して位相差θを相殺するための回転補正をしなければ、パワーコンディショナ10から出力すべき無効電力を出力できず、単独運転検出装置400は、パワーコンディショナ10の単独運転を即座に検出できない場合がある。 FIG. 2 is a diagram for explaining the influence of the phase difference generated between the AC voltage of the system power supply 300 and the reference AC signal on the reactive power value. The first X axis (X1) and the first Y axis (Y1) represent the first XY coordinates for indicating the relationship between the active power and the reactive power in the system power supply 300, and the second X axis (X2) and the second Y axis (Y2). Represents a second XY coordinate for indicating a relationship between active power and reactive power recognized by the control device 100. For example, the isolated operation detection device 400 derives the reactive power value Q1 and the active power value P1 on the assumption that no phase difference is generated between the AC voltage of the system power supply 300 and the reference AC signal. In other words, the isolated operation detection device 400 derives the reactive power value Q1 and the active power value P1, assuming that the first XY coordinate and the second XY coordinate coincide. Here, when there is a phase difference θ between the AC voltage of the system power supply 300 and the reference AC signal, the power actually output from the power conditioner 10 is the reactive power value Q1 and the active power value P1. The power corresponding to the apparent power value W2 including the reactive power value Q2 (Q2 = Q1 × cos θ) and the active power value P2 (P2 = P1 × sin θ) shifted by the phase difference θ from the apparent power value W1 included. . Accordingly, the reactive power to be output from the power conditioner 10 cannot be output unless the rotation correction for canceling the phase difference θ with respect to the apparent power value W2 is performed. May not be detected immediately.
 一方、制御装置100と単独運転検出装置400とを別体としてモジュール化した場合、単独運転検出装置400は、高速通信などの特別な機能を備えなければ、PLL102から即座にかつ正確に基準交流信号を受信できない。PLL102から受信する基準交流信号に遅延が生じていると、単独運転検出装置400は、系統電源300の交流電圧と基準交流信号との間の位相差を即座に精度よく把握することができない。 On the other hand, when the control device 100 and the isolated operation detection device 400 are modularized separately, the isolated operation detection device 400 can immediately and accurately receive the reference AC signal from the PLL 102 unless it has a special function such as high-speed communication. Cannot be received. When the reference AC signal received from the PLL 102 is delayed, the isolated operation detection device 400 cannot immediately and accurately grasp the phase difference between the AC voltage of the system power supply 300 and the reference AC signal.
 そこで、本実施形態では、単独運転検出装置400は、制御装置100からPLL102が出力する基準交流信号を受信せずに、系統電源300の交流電圧と基準交流信号との間の位相差を推定する。 Therefore, in this embodiment, the isolated operation detection device 400 estimates the phase difference between the AC voltage of the system power supply 300 and the reference AC signal without receiving the reference AC signal output from the PLL 102 from the control device 100. .
 図3は、単独運転検出装置400の機能ブロックの一例を示す図である。単独運転検出装置400は、周波数計測部402、移動平均値導出部404、周波数偏差導出部406、出力電圧値取得部410、周波数変化量取得部430、計画値算出部500、位相差推定部440、伝達関数取得部441、伝達関数保持部442、有効電力値取得部446、出力部450、および単独運転検出部460を備える。 FIG. 3 is a diagram illustrating an example of a functional block of the isolated operation detection device 400. The isolated operation detection apparatus 400 includes a frequency measurement unit 402, a moving average value derivation unit 404, a frequency deviation derivation unit 406, an output voltage value acquisition unit 410, a frequency change amount acquisition unit 430, a plan value calculation unit 500, and a phase difference estimation unit 440. , A transfer function acquisition unit 441, a transfer function holding unit 442, an active power value acquisition unit 446, an output unit 450, and an isolated operation detection unit 460.
 計画値算出部500は、パワーコンディショナ10が出力すべき出力電力に関する計画値を算出する。計画値算出部500は、第1無効電力値導出部502、第2無効電力値導出部504、無効電力値加算部506、および無効電力値補正部510を含む。 The planned value calculation unit 500 calculates a planned value related to the output power that the power conditioner 10 should output. The planned value calculation unit 500 includes a first reactive power value deriving unit 502, a second reactive power value deriving unit 504, a reactive power value adding unit 506, and a reactive power value correcting unit 510.
 周波数計測部402は、電圧センサ17を介して系統電源300の電圧を取得し、取得した電圧から系統電源300の周波数を示す系統周波数を計測する。周波数計測部402は、例えば、電圧センサ17から検出される電圧信号の立ち下がりと立ち上がりの中間値と、次の立ち下がりと立ち上がりの中間値との時間差を一周期として計測する。系統電源300の系統周波数が50Hz(1系統周期が20m秒)である場合、計測周期は、系統周期の1/3以下、例えば、5m秒でもよい。 The frequency measuring unit 402 acquires the voltage of the system power supply 300 via the voltage sensor 17 and measures the system frequency indicating the frequency of the system power supply 300 from the acquired voltage. The frequency measuring unit 402 measures, for example, a time difference between the intermediate value between the falling and rising edges of the voltage signal detected from the voltage sensor 17 and the next falling and rising intermediate value as one cycle. When the system frequency of the system power supply 300 is 50 Hz (one system period is 20 milliseconds), the measurement period may be 1/3 or less of the system period, for example, 5 milliseconds.
 移動平均値導出部404は、周波数計測部402により計測された系統周波数に基づいて、予め定められた移動平均時間分の系統周波数の移動平均値を順次導出する。移動平均時間は、系統周波数の一周期、例えば20m秒よりも長く、かつ単独運転状態になってから単独運転状態が検出されるまでに許容されている時間以下でもよい。移動平均時間は、例えば100m秒よりも短い時間でもよく、移動平均時間は、例えば40m秒でもよい。 The moving average value deriving unit 404 sequentially derives the moving average value of the system frequency for a predetermined moving average time based on the system frequency measured by the frequency measuring unit 402. The moving average time may be longer than one period of the system frequency, for example, 20 ms, and may be equal to or shorter than the time allowed until the isolated operation state is detected after the isolated operation state is detected. The moving average time may be, for example, shorter than 100 milliseconds, and the moving average time may be, for example, 40 milliseconds.
 周波数偏差導出部406は、移動平均値導出部404により導出された最新の移動平均値と、最新の移動平均値から予め定められた時間前、例えば200m秒前の過去の移動平均値との差分を周波数偏差として導出する。周波数偏差導出部406は、系統周波数の計測周期と同一の周期毎、例えば5m秒毎に周波数偏差を導出してもよい。 The frequency deviation deriving unit 406 calculates a difference between the latest moving average value derived by the moving average value deriving unit 404 and a past moving average value before a predetermined time, for example, 200 ms before the latest moving average value. Is derived as a frequency deviation. The frequency deviation deriving unit 406 may derive the frequency deviation at the same period as the system frequency measurement period, for example, every 5 milliseconds.
 第1無効電力値導出部502は、系統電源300の周波数偏差に基づき無効電力値q1を導出する。第1無効電力値導出部502は、系統電源300の周波数偏差に比例して無効電力値q1が多くなるように、無効電力値q1を導出してよい。第1無効電力値導出部502は、例えば、図4に示すような無効電力値q1-周波数偏差特性を参照して、周波数偏差に対応する無効電力値q1を導出してもよい。 The first reactive power value deriving unit 502 derives the reactive power value q1 based on the frequency deviation of the system power supply 300. The first reactive power value deriving unit 502 may derive the reactive power value q1 so that the reactive power value q1 increases in proportion to the frequency deviation of the system power supply 300. For example, the first reactive power value deriving unit 502 may derive the reactive power value q1 corresponding to the frequency deviation by referring to the reactive power value q1−frequency deviation characteristic as shown in FIG.
 出力電圧値取得部410は、電圧センサ17により検出される系統電源300の電圧に対応する電圧値V3を取得する。第2無効電力値導出部504は、取得された電圧値V3が、予め定められた上限電圧値Vth以上か否かを判定する。第2無効電力値導出部504は、電圧値V3が上限電圧値Vth以上の場合には、系統電源300側に供給すべき無効電力を増加させてパワーコンディショナ10の出力電圧の上昇を抑制すべく、無効電力値q2を導出する。 The output voltage value acquisition unit 410 acquires a voltage value V3 corresponding to the voltage of the system power supply 300 detected by the voltage sensor 17. The second reactive power value deriving unit 504 determines whether or not the acquired voltage value V3 is greater than or equal to a predetermined upper limit voltage value Vth. When the voltage value V3 is equal to or higher than the upper limit voltage value Vth, the second reactive power value deriving unit 504 increases the reactive power to be supplied to the system power supply 300 side and suppresses an increase in the output voltage of the power conditioner 10. Therefore, the reactive power value q2 is derived.
 無効電力値加算部506は、第1無効電力値導出部502により導出された無効電力値q1と、第2無効電力値導出部504により導出された無効電力値q2とを加算することで、無効電力値Qを導出する。 The reactive power value adding unit 506 adds the reactive power value q1 derived by the first reactive power value deriving unit 502 and the reactive power value q2 derived by the second reactive power value deriving unit 504, thereby invalidating the reactive power value q1. A power value Q is derived.
 ここで、無効電力値加算部506から出力される無効電力値Qは、系統電源300の交流電圧と制御装置100で用いられるPLL102から出力される基準交流信号との間の位相差が考慮されていない。そこで、無効電力値補正部510が、位相差を考慮して、無効電力値加算部506から出力される無効電力値Qを補正し、補正後の無効電力値Q'を導出する。 Here, the reactive power value Q output from the reactive power value addition unit 506 takes into account the phase difference between the AC voltage of the system power supply 300 and the reference AC signal output from the PLL 102 used in the control device 100. Absent. Accordingly, the reactive power value correcting unit 510 corrects the reactive power value Q output from the reactive power value adding unit 506 in consideration of the phase difference, and derives the corrected reactive power value Q ′.
 系統電源300の交流電圧と基準交流信号との間の位相差をθ、パワーコンディショナ10から出力される有効電力の有効電力値をPとした場合、無効電力値補正部510は、次式(1)に基づいて、位相差θを回転補正した無効電力値Q'を導出してよい。
 Q'=Q×cosθ-P×sinθ ・・・(1)
When the phase difference between the AC voltage of the system power supply 300 and the reference AC signal is θ, and the active power value of the active power output from the power conditioner 10 is P, the reactive power value correcting unit 510 is represented by the following formula ( Based on 1), the reactive power value Q ′ obtained by rotationally correcting the phase difference θ may be derived.
Q ′ = Q × cos θ−P × sin θ (1)
 有効電力値取得部446は、パワーコンディショナ10において系統へ出力されることが計画された電力の値を取得する。有効電力値取得部446は、制御装置100から有効電力値Pを取得してよい。 The active power value acquisition unit 446 acquires the value of power planned to be output to the system in the power conditioner 10. The active power value acquisition unit 446 may acquire the active power value P from the control device 100.
 周波数変化量取得部430は、系統電源300から出力される交流電圧の単位時間あたりの周波数変化量Δfを取得する。周波数変化量取得部430は、周波数計測部402により計測された周波数により、単位時間毎に周波数変化量Δfを導出することで、周波数変化量Δfを取得してよい。周波数変化量取得部430は、制御装置100から周波数変化量Δfを取得してもよい。 The frequency change amount acquisition unit 430 acquires the frequency change amount Δf per unit time of the AC voltage output from the system power supply 300. The frequency change amount acquisition unit 430 may acquire the frequency change amount Δf by deriving the frequency change amount Δf per unit time based on the frequency measured by the frequency measurement unit 402. The frequency change amount acquisition unit 430 may acquire the frequency change amount Δf from the control device 100.
 ここで、周波数変化量Δfと、基準交流信号と系統電源300の交流電圧との位相差θとの間には、比例関係がある。そこで、基準交流信号と系統電源300の交流電圧との位相差と、系統電源300の交流電圧の周波数変化量Δfとの間の対応関係を実験またはシミュレーションなどにより予め特定しておく。これにより、単独運転検出装置400は、制御装置100から位相差θを受信することなく、その対応関係を用いることで、周波数変化量Δfから位相差θを推定する。 Here, there is a proportional relationship between the frequency change amount Δf and the phase difference θ between the reference AC signal and the AC voltage of the system power supply 300. Therefore, a correspondence relationship between the phase difference between the reference AC signal and the AC voltage of the system power supply 300 and the frequency change amount Δf of the AC voltage of the system power supply 300 is specified in advance by experiment or simulation. Thereby, the isolated operation detection device 400 estimates the phase difference θ from the frequency change amount Δf by using the correspondence relationship without receiving the phase difference θ from the control device 100.
 位相差推定部440は、周波数変化量取得部430により取得された周波数変化量Δfが基準変化量以上である場合、基準交流信号と系統電源300の交流電圧との位相差と、系統電源300の交流電圧の周波数変化量Δfとの間の予め定められた対応関係に基づいて、周波数変化量取得部430により取得された周波数変化量Δfに対応する位相差θを推定する。 When the frequency change amount Δf acquired by the frequency change amount acquisition unit 430 is equal to or larger than the reference change amount, the phase difference estimation unit 440 determines the phase difference between the reference AC signal and the AC voltage of the system power supply 300, and the system power supply 300. The phase difference θ corresponding to the frequency change amount Δf acquired by the frequency change amount acquisition unit 430 is estimated based on a predetermined correspondence relationship with the frequency change amount Δf of the AC voltage.
 伝達関数保持部442は、周波数変化量Δfが基準変化量以上に変化してからの経過時間毎に対応関係を保持する。伝達関数保持部442は、系統電源300の交流電圧の周波数変化量Δfと、基準交流信号と交流電圧との位相差θとの間の関係を示す伝達関数を対応関係として、周波数変化量Δfが基準変化量以上に変化してからの経過時間毎に保持してもよい。伝達関数は、系統電圧の周波数の変化に対するパワーコンディショナ10の基準交流信号の位相変化の応答特性を表す。伝達関数保持部442は、周波数変化量Δfが基準変化量以上に変化してからの経過時間Tn(n≧1、nは、正の整数)毎に、伝達関数(θn=F(Δf))を保持してもよい。伝達関数保持部442は、系統電源300の交流電圧の周波数変化量Δfと、基準交流信号と交流電圧との位相差θとを対応付けたテーブルを伝達関数として保持してもよい。伝達関数取得部441は、伝達関数保持部442に保持されている伝達関数を取得する。位相差推定部440は、周波数変化量取得部430により取得された周波数変化量Δfと、伝達関数取得部441により取得された伝達関数とから系統電源300の系統電圧の位相と基準交流信号の位相との差である位相差を逐次推定する。 The transfer function holding unit 442 holds the correspondence for each elapsed time after the frequency change amount Δf changes to the reference change amount or more. The transfer function holding unit 442 uses the transfer function indicating the relationship between the frequency change amount Δf of the AC voltage of the system power supply 300 and the phase difference θ between the reference AC signal and the AC voltage as a correspondence relationship, and the frequency change amount Δf is You may hold | maintain for every elapsed time after changing beyond a reference | standard change amount. The transfer function represents the response characteristic of the phase change of the reference AC signal of the power conditioner 10 to the change in the frequency of the system voltage. The transfer function holding unit 442 transfers the transfer function (θn = F (Δf)) at every elapsed time Tn (n ≧ 1, n is a positive integer) after the frequency change amount Δf changes to the reference change amount or more. May be held. The transfer function holding unit 442 may hold a table in which the frequency change amount Δf of the AC voltage of the system power supply 300 is associated with the phase difference θ between the reference AC signal and the AC voltage as a transfer function. The transfer function acquisition unit 441 acquires the transfer function held in the transfer function holding unit 442. The phase difference estimation unit 440 uses the frequency change amount Δf acquired by the frequency change amount acquisition unit 430 and the transfer function acquired by the transfer function acquisition unit 441 to the phase of the system voltage of the system power supply 300 and the phase of the reference AC signal. Are sequentially estimated.
 計画値算出部500は、位相差推定部440により推定された位相差に基づくパワーコンディショナ10の出力電力の誤差を低減させるための新たな出力電力に関する計画値を算出する。計画値算出部500は、パワーコンディショナ10において系統電源300へ出力されることが計画された電力の位相を系統電源300の位相に近づく方向へ回転した電力をパワーコンディショナ10に出力させるための新たな出力電圧に関する計画値を算出することで出力電力の誤差を低減させてよい。計画値算出部500は、位相差推定部440により推定された位相差および有効電力値取得部446により取得された有効電力値Pに基づいて、新たな無効電力値に関する計画値を算出してよい。無効電力値補正部510は、位相差推定部440により推定された位相差θに基づいて、無効電力値加算部506から出力された無効電力値Qを回転補正して、パワーコンディショナ10に出力させる無効電力値Q'を導出する。 The plan value calculation unit 500 calculates a plan value relating to a new output power for reducing an error in the output power of the power conditioner 10 based on the phase difference estimated by the phase difference estimation unit 440. The planned value calculation unit 500 causes the power conditioner 10 to output the power that is rotated in the direction in which the phase of the power planned to be output to the system power supply 300 in the power conditioner 10 approaches the phase of the system power supply 300. An error in output power may be reduced by calculating a planned value for a new output voltage. The plan value calculation unit 500 may calculate a plan value related to a new reactive power value based on the phase difference estimated by the phase difference estimation unit 440 and the active power value P acquired by the active power value acquisition unit 446. . The reactive power value correction unit 510 rotationally corrects the reactive power value Q output from the reactive power value addition unit 506 based on the phase difference θ estimated by the phase difference estimation unit 440 and outputs the corrected power value Q to the power conditioner 10. The reactive power value Q ′ to be derived is derived.
 出力部450は、計画値算出部500により算出された出力電力に関する計画値をパワーコンディショナ10に出力する。出力部450は、無効電力値補正部510により導出された無効電力値Q'に対応する電力をパワーコンディショナ10から出力させるための計画値をパワーコンディショナ10に出力する。出力部450は、無効電力値Q'に基づく位相または振幅が定められたパワーコンディショナ10が出力すべき電流の電流値を示す指示信号を制御装置100に出力することで、無効電力値Q'に対応する電力をパワーコンディショナ10から出力させてよい。出力部450は、パワーコンディショナ10が出力すべき無効電力値Q'を示す指示信号を制御装置100に出力することで、無効電力値Q'に対応する電力をパワーコンディショナ10から出力させてよい。 The output unit 450 outputs the plan value related to the output power calculated by the plan value calculation unit 500 to the power conditioner 10. The output unit 450 outputs to the power conditioner 10 a planned value for causing the power conditioner 10 to output power corresponding to the reactive power value Q ′ derived by the reactive power value correcting unit 510. The output unit 450 outputs an instruction signal indicating the current value of the current to be output by the power conditioner 10 whose phase or amplitude is determined based on the reactive power value Q ′ to the control device 100, so that the reactive power value Q ′. May be output from the power conditioner 10. The output unit 450 causes the power conditioner 10 to output power corresponding to the reactive power value Q ′ by outputting to the control device 100 an instruction signal indicating the reactive power value Q ′ to be output by the power conditioner 10. Good.
 単独運転検出部460は、系統電源300の電圧または周波数の変動を検知した場合、系統電源300が停止し、パワーコンディショナ10が単独運転していると判断して、制御装置100に、パワーコンディショナ10を停止するよう停止信号を送信する。制御装置100は、停止信号を受けて、リレー50を開放して、インバータ40と系統電源300との間を電気的に遮断してよい。 When detecting a change in the voltage or frequency of the system power supply 300, the islanding operation detection unit 460 determines that the system power supply 300 is stopped and the power conditioner 10 is operating independently, and causes the control device 100 to A stop signal is transmitted to stop the controller 10. In response to the stop signal, the control device 100 may open the relay 50 and electrically disconnect between the inverter 40 and the system power supply 300.
 図5は、経過時間毎の伝達関数(θn=F(Δf))を導出する手順の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of a procedure for deriving a transfer function (θn = F (Δf)) for each elapsed time.
 まず、測定対象のパワーコンディショナ10を系統電源300ではなく、出力電圧を任意に変化させることが可能な模擬系統電源に接続する。また、パワーコンディショナ10と模擬系統電源とを制御可能な測定装置をパワーコンディショナ10と模擬系統電源とに接続する。測定装置は、パワーコンディショナ10からの無効電力の出力を停止させる(S100)。次いで、模擬系統電源の交流電圧の周波数を測定対象のΔfだけ変化させ(S102)、パワーコンディショナ10から出力される電流と電圧との位相差φを取得する(S104)。測定装置は、電流センサおよび電圧センサを介して、パワーコンディショナ10から出力される電流および電圧を検知して、検知された電流のゼロクロス点と電圧のゼロクロス点との間隔を導出することで、電流と電圧との位相差φを取得してもよい。 First, the power conditioner 10 to be measured is connected not to the system power supply 300 but to a simulated system power supply capable of arbitrarily changing the output voltage. Further, a measuring device capable of controlling the power conditioner 10 and the simulated system power supply is connected to the power conditioner 10 and the simulated system power supply. The measuring device stops the output of reactive power from the power conditioner 10 (S100). Next, the frequency of the alternating voltage of the simulated system power supply is changed by Δf to be measured (S102), and the phase difference φ between the current and voltage output from the power conditioner 10 is acquired (S104). The measuring device detects the current and voltage output from the power conditioner 10 via the current sensor and the voltage sensor, and derives the interval between the detected zero cross point of the current and the zero cross point of the voltage. You may acquire phase difference (phi) of an electric current and a voltage.
 取得された電流と電圧との位相差φは、測定装置がパワーコンディショナ10に対して無効電力の出力の停止を指示しているのにもかかわらず、生じている位相差である。この位相差φは、周波数をΔfだけ変化させたことに伴い生じたPLLから出力される基準交流信号と、模擬系統電源から出力される交流電圧との位相差θに相当する。そこで、測定装置は、模擬系統電源の交流電圧の周波数をΔfだけ変化させてからの経過時間、およびΔfに関連付けて位相差φを位相差θとしてメモリに記憶しておく。 The phase difference φ between the acquired current and voltage is a phase difference that occurs even though the measuring apparatus instructs the power conditioner 10 to stop the output of reactive power. This phase difference φ corresponds to the phase difference θ between the reference AC signal output from the PLL generated by changing the frequency by Δf and the AC voltage output from the simulated system power supply. Therefore, the measuring apparatus stores the phase difference φ in the memory as the phase difference θ in association with the elapsed time after changing the frequency of the alternating voltage of the simulated system power supply by Δf, and Δf.
 測定装置は、取得した位相差が、基準位相差以上である場合(S106)、ステップS104に戻り、改めてパワーコンディショナ10から出力される電流と電圧との位相差φを取得する。位相差が基準位相差より小さくなった場合、測定装置は、測定対象の他のΔfがあるか否かを判定する(S108)。測定対象の他のΔfがあれば、想定装置は、他のΔfについてステップS102~ステップS106の処理を繰り返す。 When the acquired phase difference is greater than or equal to the reference phase difference (S106), the measuring apparatus returns to step S104 and acquires the phase difference φ between the current and voltage output from the power conditioner 10 again. When the phase difference becomes smaller than the reference phase difference, the measurement apparatus determines whether there is another Δf to be measured (S108). If there is another Δf to be measured, the assumed apparatus repeats the processing from step S102 to step S106 for the other Δf.
 測定装置は、測定対象のΔfについて経過時間毎の位相差を取得した場合、それぞれのΔfについて、経過時間毎の伝達関数(θ=F(Δf))を導出する(S110)。 When the phase difference for each elapsed time is acquired for Δf to be measured, the measuring device derives a transfer function (θ = F (Δf)) for each elapsed time for each Δf (S110).
 以上の通り、測定装置は、測定対象のΔf毎に、Δfと位相差θとの間の対応関係を示す伝達関数を経過時間毎に導出する。導出されたそれぞれの伝達関数は、単独運転検出装置400の伝達関数保持部442に登録される。 As described above, the measuring device derives, for each elapsed time, a transfer function indicating the correspondence between Δf and the phase difference θ for each Δf to be measured. Each derived transfer function is registered in the transfer function holding unit 442 of the isolated operation detection device 400.
 図6は、交流電圧の周波数、伝達関数、および位相差について説明するための図である。交流電圧の周波数変化が、時点T0で開始され、時点T0から時点T1までの間に交流電圧の周波数がΔf1だけ変化し、時点T1から時点T2までの間に交流電圧の周波数がΔf2だけ変化し、時点T2から時点T3までの間に交流電圧の周波数がΔf3だけ変化し、時点T3から時点T4までの間に交流電圧の周波数がΔf4だけ変化したとする。そして、Δf1について伝達関数ph1が導出される。同様に、Δf2について伝達関数ph2が導出され、Δf3について伝達関数ph3が導出され、Δf4について伝達関数ph4が導出される。このように、それぞれの経過時間について導出される伝達関数ph1~ph4は時間の成分を含む。よって、無効電力値Qの補正に用いられる位相差は、それぞれの経過時間毎の伝達関数に従って導出された各位相差の総和である。 FIG. 6 is a diagram for explaining the frequency, transfer function, and phase difference of the AC voltage. The frequency change of the AC voltage starts at time T0, the frequency of the AC voltage changes by Δf1 from time T0 to time T1, and the frequency of the AC voltage changes by Δf2 from time T1 to time T2. Assume that the frequency of the AC voltage changes by Δf3 from time T2 to time T3, and the frequency of the AC voltage changes by Δf4 from time T3 to time T4. Then, a transfer function ph1 is derived for Δf1. Similarly, a transfer function ph2 is derived for Δf2, a transfer function ph3 is derived for Δf3, and a transfer function ph4 is derived for Δf4. Thus, the transfer functions ph1 to ph4 derived for each elapsed time include a time component. Therefore, the phase difference used for the correction of the reactive power value Q is the total sum of the phase differences derived according to the transfer function for each elapsed time.
 総位相差PHは、それぞれの経過時間毎の伝達関数ph1~ph4に従って導出された各位相差の総和(PH=ph1+ph2+ph3+ph4)の変化を示す。総位相差PHで示す通り、位相差θは、交流電圧の周波数に変化が生じてから交流電圧の周波数の変化が終了するまで徐々に増加し、交流電圧の周波数の変化が終了してから徐々に減少して、収束する。無効電力値補正部510は、交流電圧の周波数に変化が生じてから位相差θに基づく無効電力値Qの補正を開始し、交流電圧の周波数の変化が終了後、位相差θが収束するまで、位相差θに基づく無効電力値Qの補正を行う。 The total phase difference PH indicates a change in the total sum of the phase differences (PH = ph1 + ph2 + ph3 + ph4) derived according to the transfer functions ph1 to ph4 for each elapsed time. As indicated by the total phase difference PH, the phase difference θ gradually increases until a change in the frequency of the AC voltage ends after the change in the frequency of the AC voltage, and gradually after the change in the frequency of the AC voltage ends. Reduce to converge. The reactive power value correction unit 510 starts correcting the reactive power value Q based on the phase difference θ after the change in the frequency of the AC voltage, and after the change in the frequency of the AC voltage is completed, until the phase difference θ converges. Then, the reactive power value Q is corrected based on the phase difference θ.
 図7は、系統電源300の周波数の変化に伴い無効電力値を補正する手順の一例を示すフローチャートである。 FIG. 7 is a flowchart showing an example of a procedure for correcting the reactive power value with a change in the frequency of the system power supply 300.
 周波数変化量取得部430は、周波数計測部402により計測された系統電源300の交流電圧の周波数を単位時間毎に取得して、単位時間毎に前回の周波数と今回の周波数と比較することで、周波数変化量を取得する(S200)。周波数変化量取得部430により取得された周波数変化量が基準変化量より大きい場合(S202)、位相差推定部440は、系統電源300の交流電圧の周波数に変化が生じたと判断する。なお、基準変化量は、0以上の値でよい。位相差推定部440は、周波数の変化を検知してからの経過時間に対応する伝達関数を伝達関数保持部442から取得する(S204)。 The frequency change amount acquisition unit 430 acquires the frequency of the AC voltage of the system power supply 300 measured by the frequency measurement unit 402 for each unit time, and compares the previous frequency with the current frequency for each unit time. A frequency change amount is acquired (S200). When the frequency change amount acquired by the frequency change amount acquisition unit 430 is larger than the reference change amount (S202), the phase difference estimation unit 440 determines that a change has occurred in the frequency of the AC voltage of the system power supply 300. The reference change amount may be a value of 0 or more. The phase difference estimation unit 440 obtains a transfer function corresponding to the elapsed time from the detection of the frequency change from the transfer function holding unit 442 (S204).
 次いで、位相差推定部440は、取得された伝達関数に基づいて、取得された周波数変化量に対応する位相差を推定する(S206)。さらに、位相差推定部440は、周波数の変化を検知してから、現時点までに推定された他の位相差があれば、現時点までに推定された各位相差を加算する(S208)。無効電力値補正部510は、位相差推定部440から加算後の位相差の提供を受ける。さらに、無効電力値補正部510は、有効電力値取得部446からパワーコンディショナ10が出力している有効電力値Pの提供を受ける。そして、無効電力値補正部510は、無効電力値加算部506から提供される無効電力値Qを、位相差および有効電力値Pを用いて式(1)に従って補正し、無効電力値Q'を導出する(S210)。 Next, the phase difference estimation unit 440 estimates a phase difference corresponding to the acquired frequency change amount based on the acquired transfer function (S206). Furthermore, if there is another phase difference estimated up to the present time after detecting the change in the frequency, the phase difference estimation unit 440 adds the respective phase differences estimated up to the present time (S208). The reactive power value correction unit 510 receives provision of the added phase difference from the phase difference estimation unit 440. Further, the reactive power value correction unit 510 receives provision of the active power value P output from the power conditioner 10 from the active power value acquisition unit 446. Then, the reactive power value correcting unit 510 corrects the reactive power value Q provided from the reactive power value adding unit 506 according to the equation (1) using the phase difference and the active power value P, and the reactive power value Q ′ is corrected. Derived (S210).
 出力部450は、導出された無効電力値Q'に対応する電力をパワーコンディショナ10から出力させるように、制御装置100に指示する。出力部450は、パワーコンディショナ10が出力すべき無効電力値Q'を示す指示信号を制御装置100に出力することで、無効電力値Q'に対応する電力をパワーコンディショナ10から出力させてよい。 The output unit 450 instructs the control device 100 to output the power corresponding to the derived reactive power value Q ′ from the power conditioner 10. The output unit 450 causes the power conditioner 10 to output power corresponding to the reactive power value Q ′ by outputting to the control device 100 an instruction signal indicating the reactive power value Q ′ to be output by the power conditioner 10. Good.
 次いで、周波数変化量取得部430は、改めて、系統電源300の交流電圧の周波数の周波数変化量を取得し(S214)、加算後の位相差が基準位相差より大きければ(S216)、単独運転検出装置400は、ステップS204~ステップS214までの処理を繰り返す。一方、加算後の位相差が基準位相差以下であれば、無効電力値の補正の処理を終了する。 Next, the frequency change amount acquisition unit 430 again acquires the frequency change amount of the frequency of the AC voltage of the system power supply 300 (S214). If the phase difference after addition is larger than the reference phase difference (S216), the isolated operation is detected. The apparatus 400 repeats the processing from step S204 to step S214. On the other hand, if the phase difference after addition is equal to or smaller than the reference phase difference, the process of correcting the reactive power value is terminated.
 以上の通り、本実施形態に係る単独運転検出装置400によれば、系統電源300の交流電圧の周波数変化量に基づいて、系統電源300の交流電圧と基準交流信号との間の位相差を推定する。よって、単独運転検出装置400は、制御装置100からPLL102が出力する基準交流信号を受信せずに、系統電源300の交流電圧と基準交流信号との間の位相差を把握できる。単独運転検出装置400を制御装置100とは別体となるようにモジュール化した場合でも、系統電源300の交流電圧と基準交流信号との間の位相差を把握できる。よって、単独運転検出装置400は、位相差を考慮してパワーコンディショナ10から出力させるべき無効電力値を導出できる。位相差が生じても、単独運転検出装置400は、所望の無効電力をパワーコンディショナ10から出力させることができるので、パワーコンディショナ10の単独運転を即座に検知することができる。 As described above, according to the isolated operation detection device 400 according to the present embodiment, the phase difference between the AC voltage of the system power supply 300 and the reference AC signal is estimated based on the frequency change amount of the AC voltage of the system power supply 300. To do. Therefore, the isolated operation detection device 400 can grasp the phase difference between the AC voltage of the system power supply 300 and the reference AC signal without receiving the reference AC signal output from the control device 100 by the PLL 102. Even when the isolated operation detection device 400 is modularized so as to be separate from the control device 100, the phase difference between the AC voltage of the system power supply 300 and the reference AC signal can be grasped. Therefore, the isolated operation detection device 400 can derive the reactive power value to be output from the power conditioner 10 in consideration of the phase difference. Even if the phase difference occurs, the isolated operation detection device 400 can output the desired reactive power from the power conditioner 10, so that the isolated operation of the power conditioner 10 can be detected immediately.
 なお、本実施形態に係る単独運転検出装置400が備える各部は、パワーコンディショナ10の単独運転検出に関する各種処理を行う、コンピュータ読み取り可能な記録媒体に記録されたプログラムをインストールし、このプログラムをコンピュータに実行させることで、構成してもよい。つまり、コンピュータにパワーコンディショナ10の単独運転検出に関する各種処理を行うプログラムを実行させることにより、単独運転検出装置400が備える各部としてコンピュータを機能させることで、単独運転検出装置400を構成してもよい。 Each unit included in the isolated operation detection device 400 according to the present embodiment installs a program recorded on a computer-readable recording medium that performs various processes related to the isolated operation detection of the power conditioner 10, and installs the program on the computer. You may comprise by making it perform. That is, even if the isolated operation detecting device 400 is configured by causing the computer to execute programs that perform various processes related to the isolated operation detection of the power conditioner 10, the computer functions as each unit included in the isolated operation detecting device 400. Good.
 図8は、本実施形態に係る単独運転検出装置400のハードウェア構成の一例を示す。本実施形態に係る単独運転検出装置400は、ホストコントローラ902により相互に接続されるCPU904、RAM906を有するCPU周辺部と、入出力コントローラ908によりホストコントローラ902に接続されるROM910、および通信インターフェイス912を備える。 FIG. 8 shows an example of the hardware configuration of the isolated operation detection apparatus 400 according to the present embodiment. The isolated operation detection apparatus 400 according to the present embodiment includes a CPU peripheral unit having a CPU 904 and a RAM 906 connected to each other by a host controller 902, a ROM 910 connected to the host controller 902 by an input / output controller 908, and a communication interface 912. Prepare.
 ホストコントローラ902は、RAM906と、高い転送レートでRAM906をアクセスするCPU904とを接続する。CPU904は、ROM910およびRAM906に格納されたプログラムに基づいて動作して、各部を制御する。入出力コントローラ908は、ホストコントローラ902と、比較的高速な入出力装置である通信インターフェイス912と、ROM910とを接続する。 The host controller 902 connects the RAM 906 and the CPU 904 that accesses the RAM 906 at a high transfer rate. The CPU 904 operates based on programs stored in the ROM 910 and the RAM 906 to control each unit. The input / output controller 908 connects the host controller 902, the communication interface 912 that is a relatively high-speed input / output device, and the ROM 910.
 通信インターフェイス912は、通信インターフェイス912および伝送ケーブル60を介して制御装置100と通信する。ROM910は、単独運転検出装置400内のCPU904が使用するプログラムおよびデータを格納する。また、ROM910は、単独運転検出装置400が起動時に実行するブート・プログラム、単独運転検出装置400のハードウェアに依存するプログラム等を格納する。 The communication interface 912 communicates with the control device 100 via the communication interface 912 and the transmission cable 60. The ROM 910 stores programs and data used by the CPU 904 in the isolated operation detection device 400. In addition, the ROM 910 stores a boot program that the isolated operation detection device 400 executes at startup, a program that depends on the hardware of the isolated operation detection device 400, and the like.
 RAM906を介してROM910に提供されるプログラムは、CD-ROM、またはUSBメモリ等のコンピュータが読み取り可能な記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM906を介して単独運転検出装置400内のROM910にインストールされ、CPU904において実行される。 The program provided to the ROM 910 via the RAM 906 is stored in a computer-readable recording medium such as a CD-ROM or USB memory and provided by the user. The program is read from the recording medium, installed in the ROM 910 in the isolated operation detection device 400 via the RAM 906, and executed by the CPU 904.
 単独運転検出装置400にインストールされて実行されるプログラムは、CPU904等に働きかけて、単独運転検出装置400を、図1から図7にかけて説明した周波数計測部402、移動平均値導出部404、周波数偏差導出部406、出力電圧値取得部410、周波数変化量取得部430、計画値算出部500、位相差推定部440、伝達関数取得部441、伝達関数保持部442、有効電力値取得部446、出力部450、および単独運転検出部460として機能させる。 The program installed and executed in the isolated operation detection device 400 works on the CPU 904 or the like to make the isolated operation detection device 400 the frequency measurement unit 402, the moving average value derivation unit 404, the frequency deviation described with reference to FIGS. Deriving unit 406, output voltage value acquiring unit 410, frequency change amount acquiring unit 430, plan value calculating unit 500, phase difference estimating unit 440, transfer function acquiring unit 441, transfer function holding unit 442, active power value acquiring unit 446, output Unit 450 and single operation detection unit 460.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
10 パワーコンディショナ
20 昇圧回路
40 インバータ
50 リレー
60 伝送ケーブル
100 制御装置
102 PLL
104 有効電力値出力部
106 無効電力値入力部
200 太陽電池アレイ
300 系統電源
400 単独運転検出装置
402 周波数計測部
404 移動平均値導出部
406 周波数偏差導出部
410 出力電圧値取得部
430 周波数変化量取得部
440 位相差推定部
441 伝達関数取得部
442 伝達関数保持部
446 有効電力値取得部
450 出力部
460 単独運転検出部
500 計画値算出部
502 第1無効電力値導出部
504 第2無効電力値導出部
506 無効電力値加算部
510 無効電力値補正部
DESCRIPTION OF SYMBOLS 10 Power conditioner 20 Booster circuit 40 Inverter 50 Relay 60 Transmission cable 100 Control apparatus 102 PLL
104 Active power value output unit 106 Reactive power value input unit 200 Solar cell array 300 System power supply 400 Independent operation detection device 402 Frequency measurement unit 404 Moving average value derivation unit 406 Frequency deviation derivation unit 410 Output voltage value acquisition unit 430 Frequency change amount acquisition Unit 440 phase difference estimation unit 441 transfer function acquisition unit 442 transfer function holding unit 446 active power value acquisition unit 450 output unit 460 isolated operation detection unit 500 plan value calculation unit 502 first reactive power value derivation unit 504 second reactive power value derivation Unit 506 reactive power value addition unit 510 reactive power value correction unit

Claims (5)

  1.  分散型直流電源と系統電源とに接続されたパワーコンディショナに接続して使用される単独運転検出装置であって、
     前記パワーコンディショナにおいて系統へ出力されることが計画された電力の値を取得する電力値取得部と、
     前記系統電源の系統電圧の周波数の変化量を取得する周波数変化量取得部と、
     前記系統電圧の周波数の変化に対する前記パワーコンディショナの基準交流信号の位相変化の応答特性を表す伝達関数を取得する伝達関数取得部と、
     取得された前記周波数の変化量と前記伝達関数とから前記系統電圧の位相と前記基準交流信号の位相との差である位相差を逐次推定する位相差推定部と、
     推定された前記位相差に起因する、前記パワーコンディショナにおいて前記系統へ出力することが計画された電力に対する前記パワーコンディショナの出力電圧の誤差を低減させるための新たな出力電力に関する計画値を算出する計画値算出部と、
     算出された前記出力電力に関する計画値を前記パワーコンディショナに出力する出力部と
     を備える単独運転検出装置。
    An isolated operation detection device used by being connected to a power conditioner connected to a distributed DC power supply and a system power supply,
    A power value acquisition unit for acquiring a value of power planned to be output to the grid in the power conditioner;
    A frequency change amount acquisition unit for acquiring a change amount of a frequency of the system voltage of the system power supply;
    A transfer function acquisition unit that acquires a transfer function representing a response characteristic of a phase change of a reference AC signal of the power conditioner with respect to a change in frequency of the system voltage;
    A phase difference estimator that sequentially estimates a phase difference that is a difference between the phase of the grid voltage and the phase of the reference AC signal from the obtained change in frequency and the transfer function;
    Calculate a planned value for new output power to reduce an error in the output voltage of the power conditioner with respect to the power planned to be output to the grid in the power conditioner due to the estimated phase difference A planned value calculation unit to
    An isolated operation detection device comprising: an output unit that outputs the calculated planned value related to the output power to the power conditioner.
  2.  前記計画値算出部は、前記パワーコンディショナにおいて系統へ出力されることが計画された電力の位相を前記系統の位相に近づく方向へ回転した電力を前記パワーコンディショナに出力させるための新たな出力電圧に関する計画値を算出することで出力電力の誤差を低減させる請求項1に記載の単独運転検出装置。 The planned value calculation unit is a new output for causing the power conditioner to output electric power obtained by rotating the phase of the electric power that is planned to be output to the grid in the power conditioner in a direction approaching the phase of the grid. The isolated operation detection device according to claim 1, wherein an error in output power is reduced by calculating a planned value related to voltage.
  3.  前記電力値取得部は前記パワーコンディショナが出力する有効電力値を取得し、
     前記計画値算出部は、前記位相差推定部により推定された前記位相差および前記電力値取得部により取得された前記有効電力値に基づいて、新たな無効電力値に関する計画値を算出する請求項1または2に記載の単独運転検出装置。
    The power value acquisition unit acquires an active power value output by the power conditioner,
    The plan value calculation unit calculates a plan value related to a new reactive power value based on the phase difference estimated by the phase difference estimation unit and the active power value acquired by the power value acquisition unit. The isolated operation detection device according to 1 or 2.
  4.  前記有効電力値を前記単独運転検出装置に対して出力する有効電力値出力部と、
     前記無効電力値を前記単独運転検出装置から入力する無効電力値入力部と、
     を備えるパワーコンディショナと、
     前記請求項3に記載の単独運転検出装置と
     を備えるパワーコンディショナシステム。
    An active power value output unit that outputs the active power value to the isolated operation detection device;
    A reactive power value input unit that inputs the reactive power value from the isolated operation detection device;
    A power conditioner comprising:
    A power conditioner system comprising the isolated operation detection device according to claim 3.
  5.  コンピュータを請求項1から請求項3のいずれか1つに記載の単独運転検出装置として機能させるためのプログラム。 A program for causing a computer to function as the isolated operation detection device according to any one of claims 1 to 3.
PCT/JP2014/082753 2014-01-23 2014-12-10 Islanding operation detection device and power conditioner system WO2015111319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014010217A JP6164100B2 (en) 2014-01-23 2014-01-23 Independent operation system and power conditioner system
JP2014-010217 2014-01-23

Publications (1)

Publication Number Publication Date
WO2015111319A1 true WO2015111319A1 (en) 2015-07-30

Family

ID=53681139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082753 WO2015111319A1 (en) 2014-01-23 2014-12-10 Islanding operation detection device and power conditioner system

Country Status (2)

Country Link
JP (1) JP6164100B2 (en)
WO (1) WO2015111319A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350347B2 (en) * 2015-03-12 2018-07-04 オムロン株式会社 Isolated operation detection device, power conversion system, and isolated operation detection method
CN110456214A (en) * 2019-07-22 2019-11-15 华羿微电子股份有限公司 A kind of alone island detection system and its method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277833A (en) * 1985-09-30 1987-04-10 株式会社東芝 Controlling method for self-excited converter
JP2008061356A (en) * 2006-08-30 2008-03-13 Omron Corp Islanding operation detedctor and detection method, power conditioner incorporating islanding operation detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277833A (en) * 1985-09-30 1987-04-10 株式会社東芝 Controlling method for self-excited converter
JP2008061356A (en) * 2006-08-30 2008-03-13 Omron Corp Islanding operation detedctor and detection method, power conditioner incorporating islanding operation detector

Also Published As

Publication number Publication date
JP2015139308A (en) 2015-07-30
JP6164100B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
TWI415359B (en) A droop control system for grid-connected synchronization
US10468886B2 (en) Electrical systems and related frequency regulation methods
EP3347960B1 (en) Method and apparatus for impedance matching in virtual impedance droop controlled power conditioning units
JP6384336B2 (en) Isolated operation detection device, control device, power conditioner, power supply system, and isolated operation detection method
Youssef et al. Sensors fault diagnosis and fault tolerant control for grid connected PV system
US11515706B2 (en) Battery energy storage system and microgrid controller
US20150188454A1 (en) Inverter device, control circuit for inverter device, and method for controlling inverter device
CN110350551B (en) Direct current amplitude-frequency control method and system for voltage source type grid-connected conversion device
CN107769247B (en) RLC load simulation system for anti-islanding detection and control method thereof
WO2016051500A1 (en) Power conversion device, power generation system, and current control method
JP6431585B2 (en) Phase synchronization method of phase synchronization circuit used in grid connection system
JP6164100B2 (en) Independent operation system and power conditioner system
JP5637234B2 (en) Isolated operation detection device, power conditioner, distributed power supply system, program, and isolated operation detection method
Pugliese et al. Positive-negative sequence srf-pll model for accurate stability analysis in grid-tied converters
KR20130088444A (en) Apparatus and method for a fault diagnosis of direct current terminal voltage sensor of grid connected power transformer and fault-tolerant control
JP6350347B2 (en) Isolated operation detection device, power conversion system, and isolated operation detection method
JP2010226871A (en) Power supply system
CN109690929B (en) Control method and control device of power factor correction circuit and vehicle
EP2980978A1 (en) Electric power conversion device
JP2015180123A (en) Controller, power converter, power supply system, program, and control method
JP5637236B2 (en) Isolated operation detection device, power conditioner, distributed power supply system, program, and isolated operation detection method
WO2014050759A1 (en) Single-phase voltage type ac-dc converter
CN110556861A (en) Switching control method applied to island mode and grid-connected mode of micro power grid system
JP5637235B2 (en) Isolated operation detection device, power conditioner, distributed power supply system, program, and isolated operation detection method
JP2014187742A (en) Inverter device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880253

Country of ref document: EP

Kind code of ref document: A1