JP2008061356A - Islanding operation detedctor and detection method, power conditioner incorporating islanding operation detector - Google Patents

Islanding operation detedctor and detection method, power conditioner incorporating islanding operation detector Download PDF

Info

Publication number
JP2008061356A
JP2008061356A JP2006234235A JP2006234235A JP2008061356A JP 2008061356 A JP2008061356 A JP 2008061356A JP 2006234235 A JP2006234235 A JP 2006234235A JP 2006234235 A JP2006234235 A JP 2006234235A JP 2008061356 A JP2008061356 A JP 2008061356A
Authority
JP
Japan
Prior art keywords
command value
current command
frequency
reactive
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006234235A
Other languages
Japanese (ja)
Other versions
JP4775181B2 (en
Inventor
Yasuhiro Tsubota
康弘 坪田
Kazuyoshi Imamura
和由 今村
Shinichi Hosomi
伸一 細見
Masao Mabuchi
雅夫 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2006234235A priority Critical patent/JP4775181B2/en
Publication of JP2008061356A publication Critical patent/JP2008061356A/en
Application granted granted Critical
Publication of JP4775181B2 publication Critical patent/JP4775181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an islanding operation detector for detecting islanding operation immediately by injecting reactive power similar to that under steady state from a correction effective current command value and a correction reactive current command value where the phase difference between the system voltage and the PLL block is taken into account while leaving the slow frequency follow-up performance as it is, thereby detecting the frequency changing suddenly upon occurrence of islanding operation. <P>SOLUTION: If the frequency of system voltage of a power line changes suddenly when islanding operation is started, a correction current command value determination means 8 determines a correction effective current command value (P2) and a correction reactive current command value (Q2), based on the phase difference (θ) between the frequency (f1) of system voltage and the frequency (f2) detected by a PLL (Phase Locked Loop), and the effective current command value (P1) and the reactive current command value (Q1) under steady state before islanding operation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は分散型電源が系統電源に連系して運転されている状態から、系統電源がダウンして分散型電源が単独で運転する単独運転を検出して防止する単独運転検出装置およびその単独運転検出方法に係り、特に単独運転時に急峻に変化する系統周波数に、指令値通りの無効電力を系統電源に注入し、単独運転を検出する単独運転検出装置およびその単独運転検出方法に関する。   The present invention relates to an isolated operation detection device that detects and prevents an isolated operation in which a distributed power supply is operated independently from a state in which the distributed power supply is connected to the system power supply, and the independent operation The present invention relates to an operation detection method, and more particularly, to an isolated operation detection apparatus and an isolated operation detection method for detecting isolated operation by injecting reactive power according to a command value to a system power supply at a system frequency that changes sharply during isolated operation.

近年、系統電源に複数の分散型電源が接続され、連系運転されており、系統電源に事故が発生したような場合、単一の分散型電源が連系されているケースと異なった現象が発生する。   In recent years, when multiple distributed power supplies are connected to the grid power supply and connected to the system, and an accident occurs in the grid power supply, the phenomenon differs from the case where a single distributed power supply is connected. appear.

また、単独運転時の周波数変化を検出し、その周波数変化に比例した無効電力を注入することにより、周波数変化を増幅させる(周波数が上昇する場合、進みの無効電力を注入、周波数が下がる場合には、遅れの無効電力を注入)。これにより、周波数変化を大きくして、周波数変化がある閾値を超えた場合、単独運転と判定する方式が採用されている。   Also, the frequency change is detected by detecting the frequency change during single operation and injecting reactive power proportional to the frequency change to amplify the frequency change (if the frequency rises, inject reactive power in advance, if the frequency falls Injected reactive power with delay). As a result, a method is adopted in which the frequency change is increased, and when the frequency change exceeds a certain threshold, it is determined that the islanding operation is performed.

なお、分散型電源とは、ガスタービン、ガスエンジン、太陽光、風力、小規模水力、マイクロガスタービンや燃料電池等を利用したパワーコンディショナーが一部実用化され、あるいは今後、実用化される傾向にある。   In addition, distributed power sources are gas turbines, gas engines, solar power, wind power, small-scale hydropower, power conditioners that use micro gas turbines and fuel cells, etc. It is in.

また、分散型電源の単独運転とは、連系運転されている系統電源に故障が発生し、分散型電源から負荷に電力を供給する状態であり、単独運転が継続すると、系統電源の保安に携わる人や設備に与える影響が大きくなる。   In addition, isolated operation of distributed power supply is a state in which a fault occurs in the grid power supply that is operating in an interconnected state, and power is supplied from the distributed power supply to the load. The impact on the people and equipment involved will increase.

特に、分散型電源が多数連系運転されている場合、柱上変圧器単位を超えての単独運転が想定され、従来よりも高速に単独運転を検出する必要がある。   In particular, when a large number of distributed power sources are operated in an interconnected manner, an isolated operation exceeding the pole transformer unit is assumed, and it is necessary to detect the isolated operation at a higher speed than in the past.

従来の分散型電源用の系統連系パワーコンディショナーは、系統電源の周期(周波数)との同期を取って、力率1の出力電流制御を実施しており、系統周期との同期手段としては、PLL(Phase Locked Loop)が用いられている。なお、PLLは、ハードウェアで実現する場合もあれば、ソフトウェアで実現する場合もある。   A conventional grid-connected power conditioner for a distributed power source performs output current control with a power factor of 1 in synchronization with the cycle (frequency) of the grid power source. As a means for synchronizing with the grid cycle, A PLL (Phase Locked Loop) is used. Note that the PLL may be realized by hardware or software.

分散型電源の連系台数が少ない場合は、各家庭単位での単独運転の想定のみでよく、このため、単独運転(能動方式)の検出時間の規定は、0.5〜1.0秒と比較的遅い基準となっている。周波数変化を増幅させる無効電力の注入も緩やかに増加させるため、系統周波数は急変しない。このため、パワーコンディショナーのPLLループに早い応答性が求められることがなかった。しかし、近年の太陽光発電システムを始めとする分散型電源の普及に伴い、柱上変圧器単位を超えた単独運転が想定され、電力系統の高低混触事故を想定した単独運転検出の高速化が必要となっている。   When the number of interconnected distributed power sources is small, it is only necessary to assume the single operation in each household unit. For this reason, the detection time for the single operation (active method) is defined as 0.5 to 1.0 seconds. It is a relatively slow standard. Since the reactive power injection that amplifies the frequency change is also gradually increased, the system frequency does not change suddenly. For this reason, a quick response was not required for the PLL loop of the power conditioner. However, with the widespread use of distributed power sources such as photovoltaic power generation systems in recent years, isolated operation exceeding the unit of pole transformer is assumed, and speeding up of independent operation detection in the case of power system high and low accidents is expected. It is necessary.

図8に従来の単独運転検出装置が適用される分散型電源システムのブロック構成図を示す。図8において、分散型電源システム50aは、太陽電池などの分散型電源2と、分散型電源2をパワーラインPLを介して系統電源ACに接続し、系統電源ACに連系して運転するパワーコンディショナー3aと、パワーラインPLに接続され、系統電源ACの停止時に、分散型電源2の単独運転を検出して、連系リレーRL1を遮断し、分散型電源2の単独運転を停止する単独運転検出装置4cとから構成されている。   FIG. 8 shows a block configuration diagram of a distributed power supply system to which a conventional isolated operation detection device is applied. In FIG. 8, a distributed power supply system 50a includes a distributed power supply 2 such as a solar battery, and a power operated by connecting the distributed power supply 2 to the system power supply AC via the power line PL and operating in conjunction with the system power supply AC. Independent operation that is connected to the conditioner 3a and the power line PL, detects the isolated operation of the distributed power supply 2 when the system power supply AC is stopped, shuts off the interconnection relay RL1, and stops the isolated operation of the distributed power supply 2 It is comprised from the detection apparatus 4c.

単独運転検出装置4cは、分散型電源2をパワーラインPLから遮断する連系リレーRL1、系統電圧VLの周波数を計測する周波数計測手段5、位相比較器6a、ループフィルタ6bおよび可変周波数発信器6cから構成し、周波数計測手段5が計測した周波数と同じ周波数に調節して出力するPLLブロック6、PLLブロック6から供給される周波数に基づいてSin波形を生成するSin波形生成手段7a、Cos波形を生成するCos波形生成手段7b、有効電流指令値(P1)10aならびに無効電流指令値(Q1)10bを記憶する電流指令値記憶手段、有効電流指令値(P1)10aおよびSin波形を乗算する乗算器12a、無効電流指令値(Q1)10bおよびCos波形を乗算する乗算器12b、乗算器12aと乗算器12bの乗算結果を加算する加算器13、加算器13からの出力に基づいてPI制御を実行するPI制御部14、PI制御した信号でPWMを実行し、PWMパターンを発生するPWMパターン発生器15、PWMパターン発生器15からのPWMパターン制御信号で無効電力を発生するインバータ16、インバータ16が発生した無効電力をパワーラインPLに注入または遮断する連系リレーRL2を備える。   The isolated operation detection device 4c includes an interconnection relay RL1 that cuts off the distributed power supply 2 from the power line PL, a frequency measurement means 5 that measures the frequency of the system voltage VL, a phase comparator 6a, a loop filter 6b, and a variable frequency transmitter 6c. The PLL block 6 that is adjusted to the same frequency as the frequency measured by the frequency measuring means 5 and output, the Sin waveform generating means 7a that generates the Sin waveform based on the frequency supplied from the PLL block 6, and the Cos waveform Cos waveform generating means 7b for generating, current command value storage means for storing the effective current command value (P1) 10a and reactive current command value (Q1) 10b, a multiplier for multiplying the effective current command value (P1) 10a and the Sin waveform 12a, the multiplier 12b for multiplying the reactive current command value (Q1) 10b and the Cos waveform, and the multiplication results of the multiplier 12a and the multiplier 12b are added. From the PI controller 14 that executes PI control based on the outputs from the calculator 13 and the adder 13, the PWM pattern generator 15 that generates the PWM pattern by executing the PWM with the PI-controlled signal, and the PWM pattern generator 15 Inverter 16 that generates reactive power with the PWM pattern control signal, and a relay RL2 that injects or cuts off reactive power generated by inverter 16 to power line PL.

分散型電源システム50aにおいて、系統電源ACが事故などによってダウンした場合、分散型電源2からパワーコンディショナー3aを介して供給される交流電力のパワーラインPL上における、系統電圧VLの周波数が変化(周波数の減少または増加)する。   In the distributed power supply system 50a, when the system power supply AC goes down due to an accident or the like, the frequency of the system voltage VL changes on the power line PL of the AC power supplied from the distributed power supply 2 through the power conditioner 3a (frequency Decrease or increase).

単独運転検出装置4cは、系統電圧VLの周波数の変化を周波数計測手段5で検出し、PLLブロック6の応答性で決定される時間で、変化した周波数を検出し、Sin波形生成手段7aで検出した周波数のSin波形を発生し、Cos波形生成手段7bで検出した周波数のCos波形を発生する。   The isolated operation detecting device 4c detects a change in the frequency of the system voltage VL with the frequency measuring means 5, detects the changed frequency with the time determined by the responsiveness of the PLL block 6, and detects with the Sin waveform generating means 7a. A Sin waveform having the frequency thus obtained is generated, and a Cos waveform having the frequency detected by the Cos waveform generating means 7b is generated.

続いて、Sin波形と有効電流指令値P1を乗算し、Cos波形と無効電流指令値Q1を乗算して、乗算結果を加算し、加算した演算結果に基づいてPI(比例・積分)制御を実施した後、PI制御信号にPWM(パルス幅変調)制御を施し、PWMパターンを発生する。   Subsequently, the Sin waveform is multiplied by the active current command value P1, the Cos waveform is multiplied by the reactive current command value Q1, the multiplication results are added, and PI (proportional / integral) control is performed based on the added calculation result. After that, PWM (pulse width modulation) control is performed on the PI control signal to generate a PWM pattern.

このPWMパターン信号でインバータ16を駆動して、無効電力を発生し、パワーラインPLに無効電力を注入する。   The inverter 16 is driven by the PWM pattern signal to generate reactive power, and the reactive power is injected into the power line PL.

通常は無効電力の注入は緩やかなため、無効電力注入に伴う周波数変化も緩やかであり、系統周波数とPLLが導出する周波数の位相差は小さく、ほぼ指令値通りの無効電力が注入される。この系統周波数変化がある閾値を超えた場合、単独運転と判断する。   Normally, the reactive power injection is gentle, so the frequency change accompanying the reactive power injection is also gentle, the phase difference between the system frequency and the frequency derived by the PLL is small, and the reactive power is injected almost according to the command value. When this system frequency change exceeds a certain threshold, it is determined that the system is operating independently.

図10は従来の単独運転検出装置が内蔵されたパワーコンディショナーが適用される分散型電源システムのブロック構成図を示す。図10において、分散型電源システム50bは、太陽電池などの分散型電源2と、分散型電源2をパワーラインPLを介して系統電源ACに接続し、系統電源ACに連系して運転する、単独運転検出機能を有するインバータ部4dを内蔵するパワーコンディショナー3cとから構成されている。   FIG. 10 is a block diagram of a distributed power supply system to which a power conditioner incorporating a conventional islanding detection device is applied. In FIG. 10, a distributed power supply system 50b is connected to a distributed power supply 2 such as a solar cell and a distributed power supply 2 via a power line PL and operated in conjunction with the system power supply AC. It is comprised from the power conditioner 3c which incorporates the inverter part 4d which has an independent operation detection function.

パワーコンディショナー3cは、分散型電源2から供給される直流電圧を昇圧する、昇圧回路1 7を備える。   The power conditioner 3 c includes a booster circuit 17 that boosts the DC voltage supplied from the distributed power source 2.

パワーコンディショナー3cに内蔵された単独運転検出機能を有するインバータ部4dは、図8の単独運転検出装置4cと同様な構成を有する。なお、単独運転検出装置4dは、インバータ16とパワーラインPLがパワーラインPLに直列に接続される点が、単独運転検出装置4cと異なる以外、同じ構成となっている。   The inverter unit 4d having a single operation detection function built in the power conditioner 3c has the same configuration as the single operation detection device 4c of FIG. The isolated operation detection device 4d has the same configuration except that the inverter 16 and the power line PL are connected in series to the power line PL, except that the isolated operation detection device 4c is different.

なお、単独運転検出機能を有するインバータ部4dの単独運転検出機能に関する部分は、図8に示す単独運転検出装置4Cと同じため説明を省略する。   In addition, since the part regarding the isolated operation detection function of the inverter part 4d which has an isolated operation detection function is the same as the isolated operation detection apparatus 4C shown in FIG. 8, description is abbreviate | omitted.

また、周波数計測手段5、PLLブロック6、Sin波形生成手段7a、Cos波形生成手段7b、電流指令値記憶手段、乗算器12a、乗算器12b、加算器13、PI制御部14、PWMパターン発生器15は、マイクロプロセッサを基本にしてソフトウェアで構成、またはハードウェアで構成されている。   Further, the frequency measurement means 5, the PLL block 6, the Sin waveform generation means 7a, the Cos waveform generation means 7b, the current command value storage means, the multiplier 12a, the multiplier 12b, the adder 13, the PI control unit 14, and the PWM pattern generator Reference numeral 15 denotes a microprocessor based software or hardware.

また、従来技術には、ゲート装置内に位相比較器と、ループフィルタと、電圧制御発信器と、計数器を備えたPLL回路を用いた系統連系用インバータのゲート制御装置において、負荷急変等の外乱に対してパルス欠損や不要パルスの発生を防止するものが「特許文献1」に開示されている。   In addition, in the prior art, in a gate control device for a grid interconnection inverter using a PLL circuit including a phase comparator, a loop filter, a voltage control oscillator, and a counter in the gate device, a sudden load change, etc. Japanese Patent Application Laid-Open No. H10-260260 discloses a technique for preventing the occurrence of pulse loss and unnecessary pulses against the disturbance of the above.

これにより、負荷急変等の外乱が発生し、位相操作信号PH1が大きく変動しても、ループフィルタの応答に依存してゲート信号位相が滑らかに変化するため、系統連系用インバータを安定且つ高信頼の運転状態に維持することができるものである。
特開平6−78462号公報(目的、発明の効果および図3を参照)
As a result, even if a disturbance such as a sudden load change occurs and the phase operation signal PH1 fluctuates greatly, the gate signal phase changes smoothly depending on the response of the loop filter. It can be maintained in a reliable operating state.
Japanese Patent Laid-Open No. 6-78462 (refer to the object, effects of the invention and FIG. 3)

従来の分散型電源システム50a、50bは、少量しか連系されていない場合は、前記の通り、単独運転検出に許容される時間は0.5−1.0秒と比較的長いため、 PLLブロック6の応答時間が問題となることはなかった。しかし、多数の分散型システムが連系される場合は、単独運転が発生してから、単独運転検出までに要する時間の大幅な短縮が要求さ
れる。
In the conventional distributed power supply system 50a, 50b, when only a small amount is connected, as described above, the time allowed for the isolated operation detection is relatively long as 0.5 to 1.0 seconds. The response time of 6 was not a problem. However, when a large number of distributed systems are linked, it is required to significantly reduce the time required for detecting an isolated operation after the isolated operation occurs.

図9に従来の単独運転検出装置が注入する無効電力の一特性図を示す。図9において、単独運転発生後の周波数変化が緩やかな場合は、有効電力指令値(実軸P)と無効電力指令値(虚軸Q)での指令値通りの電力が系統に注入される。なお、本特性は、図8に示す分散型電源システム50aに対応するものである。   FIG. 9 shows a characteristic diagram of reactive power injected by a conventional isolated operation detection device. In FIG. 9, when the frequency change after the occurrence of the independent operation is gradual, the power according to the command value at the active power command value (real axis P) and the reactive power command value (imaginary axis Q) is injected into the system. This characteristic corresponds to the distributed power supply system 50a shown in FIG.

定常状態から単独運転が発生し、系統周波数の緩やかな変化を受けて、それを増幅させ急峻に周波数を変化させるために、急速に無効電力を注入する。これにより、系統周波数が急変し、PLLブロック6の応答性が急変した周波数に追従できなく、位相差θの位相ズレが発生し、進み無効電力が減少して、周波数の変化が緩慢になり、単独運転検出時間が伸びて単独運転検出時間が遅くなる課題がある。   Independent operation occurs from a steady state, and in response to a gradual change in system frequency, reactive power is rapidly injected to amplify it and change the frequency sharply. As a result, the system frequency suddenly changes, the response of the PLL block 6 cannot follow the rapidly changed frequency, a phase shift of the phase difference θ occurs, the leading reactive power decreases, and the frequency change becomes slow, There is a problem that the isolated operation detection time is extended and the isolated operation detection time is delayed.

また、また位相ズレがない場合は、機器の電力消費のため有効電力を吸込んでいたが、位相ズレの発生により、有効電力を吐き出すようになり、インバータ16の直流電圧(DDV)が低下して、電流制御ができなくなり、無効電力を注入できなくなる課題がある。   In addition, when there is no phase shift, the active power is sucked in due to the power consumption of the device. However, due to the occurrence of the phase shift, the effective power is discharged and the DC voltage (DDV) of the inverter 16 decreases. There is a problem that current control cannot be performed and reactive power cannot be injected.

図1 1にパワーコンディショナーの場合の、注入する無効電力の-特性を示す。パ
ワーラインコンディショナーの場合は、分散型電源での直流電力を交流電力に変換する
ため、有効電力の吐き出しは大きくなる。図1 1において、単独運転発生後の周波数変
化が緩やかな場合は、有効電力指令値(実軸P)と無効電力指令値(虚軸Q)での指令値
通りの電力が系統に注入される。
Fig. 11 shows the characteristics of reactive power to be injected in the case of a power conditioner. In the case of a power line conditioner, since the DC power at the distributed power source is converted into AC power, the effective power discharge becomes large. In Fig. 11, when the frequency change after the occurrence of independent operation is gradual, the power according to the command value of the active power command value (real axis P) and the reactive power command value (imaginary axis Q) is injected into the system. .

定常状態から単独運転が発生して、系統周波数の緩やかな変化を受けて、それを増幅させ急峻に周波数を変化させるために、急速に無効電力を注入する。これにより、系統周波数が急変し、 PLLブロック6の応答性が急変した周波数に追従できなく、位相θの位相ズレが発生し、進み無効電力が減少し、周波数の変化が緩慢になり、単独運転の検出時間が遅くなる課題がある。   Independent operation occurs from a steady state, and in response to a gradual change in system frequency, reactive power is rapidly injected to amplify it and change the frequency sharply. As a result, the system frequency suddenly changes, the response of the PLL block 6 cannot follow the suddenly changed frequency, the phase shift of phase θ occurs, the reactive power decreases, the frequency change becomes slow, and the single operation There is a problem that the detection time is slow.

図9ならびに図11の特性では、PLLブロック6が位相ズレ(位相差θ)に直ちに追従できないため、単独運転検出時間を短縮できない根本的な課題がある。   In the characteristics shown in FIGS. 9 and 11, the PLL block 6 cannot immediately follow the phase shift (phase difference θ), so that there is a fundamental problem that the isolated operation detection time cannot be shortened.

この発明はこのような課題を解決するためになされたもので、その目的はPLLブロックの周波数追従性が遅いままで、系統電圧とPLLブロックとの位相差を考慮した補正有効電流指令値および補正無効電流指令値から位相ズレがある場合でも、指令値通りの無効電力を注入して、系統周波数を急峻に変化させることにより、高速に単独運転を検出する単独運転検出装置および単独運転検出装置を内蔵したパワーコンディショナーを提供することにある。   The present invention has been made to solve such a problem. The object of the present invention is to correct the effective active command value and the correction in consideration of the phase difference between the system voltage and the PLL block while the frequency followability of the PLL block remains slow. Even when there is a phase shift from the reactive current command value, an independent operation detection device and an independent operation detection device that detect isolated operation at high speed by injecting reactive power according to the command value and abruptly changing the system frequency. The purpose is to provide a built-in power conditioner.

前記課題を解決するためこの発明に係る単独運転検出装置は、系統電源に分散型電源が連系して運転され、系統電源に無効電力を注入し、系統電源のダウンにより生じる分散型電源の単独運転を検出する単独運転検出装置であって、単独運転時に、パワーラインの系統電圧の周波数が急変する時、系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)と、有効電流指令値(P1)ならびに無効電流指令値(Q1)と、に基づいて補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)を決定する補正電流指令値決定手段を備えたことを特徴とする。   In order to solve the above problems, an isolated operation detection apparatus according to the present invention is operated by a distributed power supply connected to a system power supply, injects reactive power into the system power supply, and is generated by a system power supply down. An isolated operation detection device for detecting operation, when the frequency of the system voltage of the power line changes suddenly during the isolated operation, the frequency (f1) of the system voltage and the frequency (f2) detected by the PLL (Phase Locked Loop) Correction current for determining the corrected active current command value (P2) and the corrected reactive current command value (Q2) based on the phase difference (θ) of the current, the active current command value (P1) and the reactive current command value (Q1) A command value determining means is provided.

この発明に係る単独運転検出装置は、単独運転時に、パワーラインの系統電圧の周波数が急変する時、系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)と、有効電流指令値(P1)ならびに無効電流指令値(Q1)と、に基づいて補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)を決定する補正電流指令値決定手段を備えたので、補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を迅速に注入し、注入した無効電力により急変した周波数を検出することができる。   In the isolated operation detection device according to the present invention, the frequency of the system voltage (f1) and the frequency (f2) detected by the PLL (Phase Locked Loop) when the frequency of the system voltage of the power line changes suddenly during the isolated operation. A corrected current command value for determining a corrected active current command value (P2) and a corrected reactive current command value (Q2) based on the phase difference (θ), the active current command value (P1), and the reactive current command value (Q1). Since the determining means is provided, based on the corrected active current command value (P2) and the corrected reactive current command value (Q2), the reactive power is quickly injected according to the command value determined from the change in frequency. A suddenly changed frequency can be detected.

また、この発明に係る補正電流指令値決定手段は、系統電圧の周波数(f1)と前記PLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)を演算する位相差演算手段と、前記有効電流指令値(P1)および前記無効電流指令値(Q1)を設定して格納する電流指令値記憶手段と、前記位相差演算手段が算出した位相差θ、前記電流指令値記憶手段に格納された前記有効電流指令値(P1)および前記無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を演算する補正電流指令値演算手段とを有するようにしてもよい。   The correction current command value determining means according to the present invention is a phase difference calculating means for calculating a phase difference (θ) between the frequency (f1) of the system voltage and the frequency (f2) detected by the PLL (Phase Locked Loop). Current command value storage means for setting and storing the effective current command value (P1) and the reactive current command value (Q1), the phase difference θ calculated by the phase difference calculation means, and the current command value storage means Correction current command value calculation means for calculating a corrected effective current command value (P2) and a corrected reactive current command value (Q2) based on the active current command value (P1) and the reactive current command value (Q1) stored in You may make it have.

この発明に係る補正電流指令値決定手段は、系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)を演算する位相差演算手段と、有効電流指令値(P1)および無効電流指令値(Q1)を設定して格納する電流指令値記憶手段と、位相差演算手段が算出した位相差θ、電流指令値記憶手段に格納された有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を演算する補正電流指令値演算手段とを有するようにしたので、PLL(Phase Locked Loop)の周波数追従性が遅くても、位相差(θ)、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を注入することができる。   The correction current command value determining means according to the present invention includes a phase difference calculating means for calculating a phase difference (θ) between the frequency (f1) of the system voltage and the frequency (f2) detected by the PLL (Phase Locked Loop), and effective Current command value storage means for setting and storing the current command value (P1) and reactive current command value (Q1), the phase difference θ calculated by the phase difference calculation means, and the active current command stored in the current command value storage means Since it has correction current command value calculation means for calculating the corrected effective current command value (P2) and the corrected reactive current command value (Q2) based on the value (P1) and the reactive current command value (Q1), the PLL (Phase Locked Loop) Even if the frequency followability is slow, the command value determined from the change in frequency is based on the phase difference (θ), the corrected effective current command value (P2), and the corrected reactive current command value (Q2). Inject reactive power be able to.

さらに、この発明は、前記記載の単独運転検出装置を内蔵してパワーコンディショナーを構成するようにしてもよい。   Furthermore, this invention may comprise a power conditioner by incorporating the isolated operation detection device described above.

この発明に係るパワーコンディショナーは、前記単独運転検出装置を内蔵することにより、単独運転検出装置とパワーコンディショナーを1つに集約することができる。   The power conditioner according to the present invention can integrate the isolated operation detection device and the power conditioner into one by incorporating the isolated operation detection device.

また、この発明に係る単独運転検出装置の単独運転検出方法は、系統電源に分散型電源が連系して運転され、系統電源に無効電力を注入し、系統電源のダウンにより生じる分散型電源の単独運転を検出する単独運転検出装置の単独運転検出方法であって、系統電圧の周波数(f1)を計測するステップS1と、PLLが検出した周波数(f2)を出力するステップS2と、計測した系統電圧の周波数(f1)とPLLが検出した周波数(f2)に基づいて位相差(θ)を演算するステップS3と、位相差(θ)、有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を決定するステップS4と、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、無効電力を注入するステップS5と、周波数(f1)を検出して、単独運転を判定するステップS6とを備えるようにしてもよい。   In addition, the islanding operation detection method of the islanding operation detection apparatus according to the present invention is the operation of the distributed power source that is operated when the distributed power source is connected to the system power source, the reactive power is injected into the system power source, and the system power source is down An isolated operation detection method for an isolated operation detection device for detecting an isolated operation, in which step S1 for measuring the frequency (f1) of the system voltage, step S2 for outputting the frequency (f2) detected by the PLL, and the measured system Step S3 for calculating the phase difference (θ) based on the frequency (f1) of the voltage and the frequency (f2) detected by the PLL, and the phase difference (θ), active current command value (P1), and reactive current command value (Q1) ) Based on the corrected effective current command value (P2) and the corrected reactive current command value (Q2), step S4 for determining the corrected active current command value (P2) and the corrected reactive current command value (Q2). In addition, step S5 for injecting reactive power and step S6 for detecting the frequency (f1) and determining the isolated operation may be provided.

この発明に係る単独運転検出装置の単独運転検出方法は、系統電源に分散型電源が連系して運転され、系統電源に無効電力を注入し、系統電源のダウンにより生じる分散型電源の単独運転を検出する単独運転検出装置の単独運転検出方法であって、系統電圧の周波数(f1)を計測するステップS1と、PLLが検出した周波数(f2)を出力するステップS2と、計測した系統電圧の周波数(f1)とPLLが検出した周波数(f2)に基づいて位相差(θ)を演算するステップS3と、位相差(θ)、有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を決定するステップS4と、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、無効電力を注入するステップS5と、周波数(f1)を検出して、単独運転を判定するステップS6とを備えるようにしたので、補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を迅速に注入し、注入された無効電力によって急変した周波数を検出することができる。   The islanding operation detection method of the islanding operation detection apparatus according to the present invention is a system in which a distributed power source is connected to a system power source, and reactive power is injected into the system power source. A step S1 for measuring the frequency (f1) of the system voltage, a step S2 for outputting the frequency (f2) detected by the PLL, and the measured system voltage Step S3 for calculating the phase difference (θ) based on the frequency (f1) and the frequency (f2) detected by the PLL, and the phase difference (θ), active current command value (P1), and reactive current command value (Q1) Based on step S4 for determining the corrected effective current command value (P2) and the corrected reactive current command value (Q2) based on the corrected effective current command value (P2) and the corrected reactive current command value (Q2), Since step S5 for injecting reactive power and step S6 for detecting the frequency (f1) and determining the isolated operation are provided, the corrected effective current command value (P2) and the corrected reactive current command value (Q2) Based on the above, it is possible to quickly inject reactive power according to a command value determined from a change in frequency, and to detect a frequency that has suddenly changed due to the injected reactive power.

この発明に係る単独運転検出装置は、単独運転時に、パワーラインの系統電圧の周波数が急変する時、系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)と、有効電流指令値(P1)ならびに無効電流指令値(Q1)と、に基づいて補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)を決定する補正電流指令値決定手段を備えたので、補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を迅速に注入し、注入した無効電力により急変した周波数を検出することができ、単独運転を迅速に安定して検出することができる。   In the isolated operation detection device according to the present invention, the frequency of the system voltage (f1) and the frequency (f2) detected by the PLL (Phase Locked Loop) when the frequency of the system voltage of the power line changes suddenly during the isolated operation. A corrected current command value for determining a corrected active current command value (P2) and a corrected reactive current command value (Q2) based on the phase difference (θ), the active current command value (P1), and the reactive current command value (Q1). Since the determining means is provided, based on the corrected active current command value (P2) and the corrected reactive current command value (Q2), the reactive power is quickly injected according to the command value determined from the change in frequency. A suddenly changed frequency can be detected, and an isolated operation can be detected quickly and stably.

また、この発明に係る補正電流指令値決定手段は、系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)を演算する位相差演算手段と、有効電流指令値(P1)および無効電流指令値(Q1)を設定して格納する電流指令値記憶手段と、位相差演算手段が算出した位相差θ、電流指令値記憶手段に格納された有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を演算する補正電流指令値演算手段とを有するようにしたので、PLL(Phase Locked Loop)の周波数追従性が遅くても、位相差(θ)、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、周波数変化から決まる指令値通りの無効電力を注入することができ、単独運転を短時間に検出することができ、単独運転を短時間に検出することができる。   The correction current command value determining means according to the present invention includes phase difference calculating means for calculating a phase difference (θ) between the frequency (f1) of the system voltage and the frequency (f2) detected by the PLL (Phase Locked Loop). Current command value storage means for setting and storing the effective current command value (P1) and reactive current command value (Q1), the phase difference θ calculated by the phase difference calculation means, and the effective command value stored in the current command value storage means Since it has correction current command value calculating means for calculating the corrected effective current command value (P2) and the corrected reactive current command value (Q2) based on the current command value (P1) and the reactive current command value (Q1). Even if the frequency followability of the PLL (Phase Locked Loop) is slow, the command value determined from the frequency change based on the phase difference (θ), the corrected effective current command value (P2), and the corrected invalid current command value (Q2) Injection of reactive power The single operation can be detected in a short time, and the single operation can be detected in a short time.

さらに、この発明に係るパワーコンディショナーは、前記記載の単独運転検出装置を内蔵することにより、単独運転検出装置とパワーコンディショナーを1つに集約することができ、コンパクトに構成することができる。   Furthermore, the power conditioner according to the present invention incorporates the above-described isolated operation detection device, whereby the isolated operation detection device and the power conditioner can be integrated into one, and can be configured in a compact manner.

また、この発明に係る単独運転検出装置の単独運転検出方法は、系統電圧の周波数(f1)を計測するステップS1と、PLLが検出した周波数(f2)を出力するステップS2と、計測した系統電圧の周波数(f1)とPLLが検出した周波数(f2)に基づいて位相差(θ)を演算するステップS3と、位相差(θ)、有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を決定するステップS4と、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、無効電力を注入するステップS5と、周波数(f1)を検出して、単独運転を判定するステップS6とを備えるようにしたので、補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を迅速に注入し、注入された無効電力によって急変した周波数を検出することができ、単独運転を迅速に安定して検出することができる。   Moreover, the islanding operation detection method of the islanding operation detection device according to the present invention includes step S1 for measuring the frequency (f1) of the system voltage, step S2 for outputting the frequency (f2) detected by the PLL, and the measured system voltage. Step S3 for calculating the phase difference (θ) based on the frequency (f1) of the current and the frequency (f2) detected by the PLL, and the phase difference (θ), active current command value (P1) and reactive current command value (Q1) Step S4 for determining the corrected active current command value (P2) and the corrected reactive current command value (Q2) based on the above, and the reactive power based on the corrected active current command value (P2) and the corrected reactive current command value (Q2). Since the step S5 for injecting and the step (S6) for detecting the frequency (f1) and determining the single operation are provided, the corrected effective current command value (P2) and the corrected invalid current finger Based on the command value (Q2), reactive power can be quickly injected according to the command value determined from the change in frequency, and the frequency that has suddenly changed due to the injected reactive power can be detected. Can be detected.

以下、この発明の実施の形態を添付図面に基づいて説明する。なお、本発明は、系統電源に連系して運転している分散型電源が、系統電源のダウン(故障)時に発生する単独運転を、注入された無効電力によって急変した周波数を迅速に、且つ確実に検出して単独運転を検出するものである。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the present invention, the distributed power source that is operating in conjunction with the system power source can quickly operate the isolated operation that occurs when the system power source is down (failure), and the frequency that is suddenly changed by the injected reactive power, and It detects reliably and detects single operation.

図1はこの発明に係る分散型電源システムの一実施の形態全体構成図である。図1において、分散型電源システムは、系統電源ACと複数(k台)の分散型電源2が連系して運用されている。   FIG. 1 is an overall configuration diagram of an embodiment of a distributed power supply system according to the present invention. In FIG. 1, the distributed power supply system is operated by connecting a system power supply AC and a plurality (k units) of distributed power supplies 2.

1台(1軒)の分散型電源は、それぞれ分散型電源2、パワーコンディショナー3および単独運転検出装置4から構成されており、系統電源ACに連系運転する。なお、系統電源ACは、低圧系または高圧系でもよい。また、単独運転検出装置4は、パワーコンディショナー3に内蔵してもよい。   One (one) distributed power source is composed of a distributed power source 2, a power conditioner 3, and an independent operation detection device 4, and is connected to the system power source AC. The system power supply AC may be a low-voltage system or a high-voltage system. Further, the isolated operation detection device 4 may be built in the power conditioner 3.

系統電源ACにk台の分散型電源2が連系して運転中に、系統電源ACがダウンした場合、k台の分散型電源2から系統側に電力を供給する、いわゆる単独運転が発生するが、単独運転発生の現象として、パワーコンディショナー3と系統側を接続するパワーライン上の系統電圧の周波数(例えば、50Hz)が変化(50Hzから増加または減少)することになる。   When the system power source AC goes down while the k distributed power sources 2 are connected to the system power source AC, a so-called single operation occurs in which power is supplied from the k distributed power sources 2 to the system side. However, as a phenomenon of the occurrence of isolated operation, the frequency (for example, 50 Hz) of the system voltage on the power line connecting the power conditioner 3 and the system side changes (increases or decreases from 50 Hz).

単独運転検出装置4は、パワーライン上の系統電圧の周波数(例えば、50Hz)の変化を検出して、単独運転を判定するが、単独運転時の系統電圧の周波数(例えば、50Hz)の変化だけでは、変化が緩やかで検出が難しいため、周波数変化を増幅する無効電力をパワーラインに注入し、無効電力の注入により急峻に変化した周波数を検出して、単独運転の有無を判定し、分散型電源2を系統側から遮断する。   The isolated operation detection device 4 detects a change in the frequency (for example, 50 Hz) of the system voltage on the power line and determines the isolated operation, but only changes in the frequency (for example, 50 Hz) of the system voltage during the isolated operation. Since the change is gradual and difficult to detect, reactive power that amplifies the frequency change is injected into the power line, the frequency that changes sharply due to the injection of reactive power is detected, and the presence or absence of isolated operation is determined. Shut off power supply 2 from the system side.

そして、単独運転検出装置4は、単独運転時の系統周波数急変にともなう、位相ズレを補正することにより、周波数変化から決まる指令値通りの無効電力を注入することが、速やかに単独運転を検出するポイントになる。   And the isolated operation detection device 4 quickly detects the isolated operation by injecting the reactive power according to the command value determined from the frequency change by correcting the phase shift accompanying the system frequency sudden change during the isolated operation. Become a point.

図2はこの発明に係る単独運転検出装置が適用される分散型電源システムの一実施の形態ブロック構成図である。なお、図2において、図8に示す分散型電源システム50aと同じ部分は、同一符号で示す。分散型電源システム1aは、太陽電池などの分散型電源2と、分散型電源2をパワーラインPLを介して系統電源ACに接続し、系統電源ACに連系して運転するパワーコンディショナー3aと、パワーラインPLに接続され、系統電源ACの停止時に、分散型電源2の単独運転を検出して、連系リレーRL1を遮断し、分散型電源2の単独運転を停止する単独運転検出装置4aとから構成されている。   FIG. 2 is a block diagram of an embodiment of a distributed power supply system to which the isolated operation detection device according to the present invention is applied. In FIG. 2, the same parts as those in the distributed power supply system 50a shown in FIG. The distributed power system 1a includes a distributed power source 2 such as a solar cell, a power conditioner 3a that connects the distributed power source 2 to the system power source AC via the power line PL, and operates in conjunction with the system power source AC. An independent operation detection device 4a connected to the power line PL, detecting the isolated operation of the distributed power supply 2 when the system power supply AC is stopped, shutting off the interconnection relay RL1, and stopping the isolated operation of the distributed power supply 2. It is composed of

単独運転検出装置4aは、分散型電源2をパワーラインPLから遮断する連系リレーRL1、系統電圧VLの周波数を計測する周波数計測手段5、位相比較器6a、ループフィルタ6bおよび可変周波数発信器6cから構成し、周波数計測手段5が計測した周波数と同じ周波数に調節して出力するPLLブロック6、PLLブロック6から供給される周波数に基づいてSin波形を生成するSin波形生成手段7a、Cos波形を生成するCos波形生成手段7bを備える。   The isolated operation detection device 4a includes an interconnection relay RL1 that cuts off the distributed power source 2 from the power line PL, a frequency measurement means 5 that measures the frequency of the system voltage VL, a phase comparator 6a, a loop filter 6b, and a variable frequency transmitter 6c. The PLL block 6 that is adjusted to the same frequency as the frequency measured by the frequency measuring means 5 and output, the Sin waveform generating means 7a that generates the Sin waveform based on the frequency supplied from the PLL block 6, and the Cos waveform Cos waveform generating means 7b for generating is provided.

また、単独運転検出装置4aは、単独運転時に、パワーラインPLの系統電圧VLの周波数が急変する時、系統電圧VLの周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)と、有効電流指令値(P1)ならびに無効電流指令値(Q1)と、に基づいて補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)を決定する補正電流指令値決定手段8を備える。   In addition, the isolated operation detection device 4a has the frequency (f1) of the system voltage VL and the frequency (f2) detected by the PLL (Phase Locked Loop) when the frequency of the system voltage VL of the power line PL changes suddenly during the isolated operation. Correction current for determining the corrected active current command value (P2) and the corrected reactive current command value (Q2) based on the phase difference (θ) of the current, the active current command value (P1) and the reactive current command value (Q1) Command value determining means 8 is provided.

補正電流指令値決定手段8は、系統電圧VLの周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)を演算する位相差演算手段(位相差演算)9と、有効電流指令値(P1)10aおよび無効電流指令値(Q1)10bを設定して格納する電流指令値記憶手段10と、位相差演算手段9が算出した位相差θ、電流指令値記憶手段10に格納された有効電流指令値(P1)10aおよび無効電流指令値(Q1)10bに基づいて補正有効電流指令値(P2)11aおよび補正無効電流指令値(Q2)11bを演算する補正電流指令値演算手段11とを備える。   The correction current command value determination means 8 is a phase difference calculation means (phase difference calculation) for calculating the phase difference (θ) between the frequency (f1) of the system voltage VL and the frequency (f2) detected by the PLL (Phase Locked Loop). 9, current command value storage means 10 for setting and storing active current command value (P1) 10a and reactive current command value (Q1) 10b, phase difference θ calculated by phase difference calculation means 9, and current command value storage Correction current for calculating the corrected effective current command value (P2) 11a and the corrected reactive current command value (Q2) 11b based on the active current command value (P1) 10a and the reactive current command value (Q1) 10b stored in the means 10 Command value calculation means 11.

図3はこの発明に係る系統(電圧)周波数とPLL周波数の一実施の形態変化イメージ図である。図3において、系統電圧VLの周波数(実線表示)が急変した場合、 PLL周波数(破
線表示)は、 PLLの周波数追従性が遅いことから緩やかに変化する。
FIG. 3 is a diagram showing an embodiment change image of the system (voltage) frequency and the PLL frequency according to the present invention. In FIG. 3, when the frequency of the system voltage VL (shown by a solid line) changes suddenly, the PLL frequency (shown by a broken line) changes gradually because the frequency followability of the PLL is slow.

位相差演算手段9は、系統(電圧)周波数とPLL周波数の周波数差を位相差θに変換して出力するため、位相差θ(=0)になると、補正有効電流指令値(P2)11aおよび補正無効電流指令値(Q2)11bは、それぞれ有効電流指令値(P1)10aおよび無効電流指令値(Q1)10bに等しく(P2=P1、Q2=Q1)なる。   The phase difference calculation means 9 converts the frequency difference between the system (voltage) frequency and the PLL frequency into a phase difference θ and outputs the phase difference θ. Therefore, when the phase difference θ (= 0), the corrected effective current command value (P2) 11a and The corrected reactive current command value (Q2) 11b is equal to the active current command value (P1) 10a and the reactive current command value (Q1) 10b (P2 = P1, Q2 = Q1).

したがって、補正有効電流指令値(P2)11aおよび補正無効電流指令値(Q2)11bは、PLLの位相遅れ(ズレ)を、PLLの応答性に拘わりなく、等価的に位相差θ(=0)と同じ状態に、速やかに改善するものである。   Therefore, the corrected effective current command value (P2) 11a and the corrected reactive current command value (Q2) 11b are equivalent to the phase difference θ (= 0), regardless of the PLL phase lag. Immediately improve to the same state.

さらに、単独運転検出装置4aは、補正有効電流指令値(P2)11aとSin波形を乗算する乗算器12a、補正無効電流指令値(Q2)11bとCos波形を乗算する乗算器12b、乗算器12aと乗算器12bのそれぞれの乗算結果を加算する加算器13、加算器13からの出力に基づいてPI制御を実行するPI制御部14、PI制御した信号でPWMを実行し、PWMパターンを発生するPWMパターン発生器15、PWMパターン発生器15からのPWMパターン制御信号で無効電力を発生するインバータ16、インバータ16が発生した無効電力PMをパワーラインPLに注入または遮断する連系リレーRL2を備える。   Further, the isolated operation detection device 4a includes a multiplier 12a that multiplies the corrected active current command value (P2) 11a and the Sin waveform, a multiplier 12b that multiplies the corrected reactive current command value (Q2) 11b and the Cos waveform, and a multiplier 12a. And an adder 13 for adding the multiplication results of the multiplier 12b, a PI control unit 14 for executing PI control based on the output from the adder 13, and executing PWM with the PI-controlled signal to generate a PWM pattern The PWM pattern generator 15, the inverter 16 that generates reactive power in response to the PWM pattern control signal from the PWM pattern generator 15, and the interconnection relay RL 2 that injects or blocks the reactive power PM generated by the inverter 16 into the power line PL.

分散型電源システム1aにおいて、系統電源ACが事故などによってダウンした場合、分散型電源2からパワーコンディショナー3aを介して供給される交流電力のパワーラインPL上における、系統電圧VLの周波数が急変(周波数の減少または増加)する。   In the distributed power supply system 1a, when the system power supply AC goes down due to an accident or the like, the frequency of the system voltage VL on the power line PL of AC power supplied from the distributed power supply 2 through the power conditioner 3a changes suddenly (frequency Decrease or increase).

単独運転検出装置4aは、系統電圧VLの周波数の急変を周波数計測手段5で検出し、PLLブロック6が緩やかに変化する周波数(例えば、f2)を位相差演算手段9に供給するとともに、周波数計測手段5で検出した急変した周波数(例えば、周波数f1)を位相差演算手段9に供給する。   The isolated operation detection device 4a detects a sudden change in the frequency of the system voltage VL by the frequency measuring means 5, supplies a frequency (for example, f2) at which the PLL block 6 changes slowly to the phase difference calculating means 9, and measures the frequency. The suddenly changed frequency (for example, frequency f1) detected by the means 5 is supplied to the phase difference calculating means 9.

周波数計測手段5が検出した周波数(例えば、周波数f1)とPLLブロック6が検出した周波数(例えば、周波数f2)は、位相差演算手段9で周波数偏差(f1−f2)が演算され、位相差θに変換して出力される。   The frequency difference (f1-f2) is calculated by the phase difference calculating means 9 between the frequency detected by the frequency measuring means 5 (for example, the frequency f1) and the frequency detected by the PLL block 6 (for example, the frequency f2), and the phase difference θ Is converted to output.

次に、有効電流指令値(P1)10a、無効電流指令値(Q1)10bおよび位相差θに基づいて補正有効電流指令値(P2)11a、補正無効電流指令値(Q2)11bが演算される。   Next, the corrected effective current command value (P2) 11a and the corrected reactive current command value (Q2) 11b are calculated based on the active current command value (P1) 10a, the reactive current command value (Q1) 10b, and the phase difference θ. .

続いて、Sin波形と補正有効電流指令値P2を乗算し、Cos波形と補正無効電流指令値Q2を乗算して、乗算結果を加算し、加算した演算結果に基づいてPI(比例・積分)制御を実施した後、PI制御信号にPWM(パルス幅変調)制御を施し、PWMパターンを発生する。   Subsequently, the Sin waveform and the corrected active current command value P2 are multiplied, the Cos waveform and the corrected reactive current command value Q2 are multiplied, the multiplication results are added, and PI (proportional / integral) control is performed based on the added calculation result. After performing the above, PWM (pulse width modulation) control is performed on the PI control signal to generate a PWM pattern.

このPWMパターン信号でインバータ16を駆動して、無効電力PMを発生し、パワーラインPLに定常状態と同じ無効電力PM(急変した周波数)を注入する。   The inverter 16 is driven by the PWM pattern signal to generate reactive power PM, and the reactive power PM (abruptly changed frequency) that is the same as that in the steady state is injected into the power line PL.

パワーラインP Lに注入された無効電力PMは、周波数の変化から決まる指令値と一致するため、周波数は急峻に変化し、分散型電源2の単独運転の高速検出が可能にな
る。
Since the reactive power PM injected into the power line PL matches the command value determined from the change in frequency, the frequency changes abruptly, and high-speed detection of the isolated operation of the distributed power source 2 becomes possible.

なお、単独運転検出装置4aを構成する周波数計測手段5、PLLブロック6、Sin波形生成手段7a、Cos波形生成手段7b、補正電流指令値決定手段8、乗算器12a、乗算器12b、加算器13、PI制御部14およびPWMパターン発生器15は、マイクロプロセッサを基本としたソフトウェアで構成してもよいし、ハードウェアで構成してもよい。   In addition, the frequency measuring means 5, the PLL block 6, the Sin waveform generating means 7a, the Cos waveform generating means 7b, the correction current command value determining means 8, the multiplier 12a, the multiplier 12b, and the adder 13 constituting the isolated operation detecting device 4a. The PI control unit 14 and the PWM pattern generator 15 may be configured by software based on a microprocessor or may be configured by hardware.

図4はこの発明に係る単独運転検出装置が注入する無効電力の一特性図を示す。図4において、単独運転が発生してパワーラインPL上の系統電圧VLの周波数が急変(周波数の増加または減少)すると、系統周波数とPLL周波数は位相ズレを発生する。なお、図4では、有効電力指令値P1、無効電力指令値Q1、有効電力指令値P2および無効電力指令値Q2の電力対応で表すが、図2に示す有効電流指令値P1、無効電流指令値Q1、補正有効電流指令値P2および補正無効電流指令値Q2に対応する。   FIG. 4 is a characteristic diagram of reactive power injected by the isolated operation detection device according to the present invention. In FIG. 4, when an isolated operation occurs and the frequency of the system voltage VL on the power line PL changes suddenly (increase or decrease in frequency), the system frequency and the PLL frequency cause a phase shift. In FIG. 4, the active power command value P1, the reactive power command value Q1, the active power command value P2, and the reactive power command value Q2 are represented by the corresponding power, but the active current command value P1 and the reactive current command value shown in FIG. This corresponds to Q1, corrected effective current command value P2, and corrected reactive current command value Q2.

図4の上図に示すように、有効電流指令値P1および無効電力指令値Q1による制御では、系統周波数とPLL周波数は位相ズレが発生しており、周波数の変化から決まる指令値通りの無効電力を注入することができない。位相差θ、補正有効電力指令値P2および補正無効電力指令値Q2を用いて、無効電力の位相ズレを補正(ベクトル補正)し、周波数の変化から決まる指令値通りの無効電力を注入できるようにする。   As shown in the upper diagram of FIG. 4, in the control based on the active current command value P1 and the reactive power command value Q1, there is a phase shift between the system frequency and the PLL frequency, and the reactive power according to the command value determined from the change in frequency. Can not be injected. Using the phase difference θ, the corrected active power command value P2 and the corrected reactive power command value Q2, the reactive power phase shift is corrected (vector correction) so that reactive power can be injected according to the command value determined from the change in frequency. To do.

有効電力指令値P1および無効電力指令値Q1は、図4の下図から位相ズレの補正に要する補正有効電力指令値P2、補正無効電力指令値Q2および位相差θを用いて数式(1)および数式(2)で表される。   The active power command value P1 and the reactive power command value Q1 are calculated using the corrected active power command value P2, the corrected reactive power command value Q2, and the phase difference θ required for correcting the phase shift from the lower diagram of FIG. It is represented by (2).

P1=P2cosθ−Q2sinθ……数式(1)
Q1=Q2cosθ+P2sinθ……数式(2)
数式(1)および数式(2)からP2およびQ2を演算すると、数式(3)および数式(4)で表される。
P1 = P2cosθ−Q2sinθ ...... Formula (1)
Q1 = Q2cosθ + P2sinθ ...... Formula (2)
When P2 and Q2 are calculated from Equation (1) and Equation (2), they are expressed by Equation (3) and Equation (4).

P2=P1cosθ+Q1sinθ……数式(3)
Q2=Q1cosθ−P1sinθ……数式(4)
図4から明らかなように、図4の上図の無効電力の位相ズレ(位相差θ)を数式(3)および数式(4)で表した補正有効電力指令値P2および補正無効電力指令値Q2のベクトルの方向を上図と変更することなく、大きさだけを変更して、補正有効電力指令値P2および補正無効電力指令値Q2の合成ベクトルである出力電力を位相のズレを元に戻して、系統周波数とPLL周波数は位相ズレの影響を打ち
消すことができる。
P2 = P1 cos θ + Q1 sin θ ...... Formula (3)
Q2 = Q1 cos θ−P1 sin θ ...... Formula (4)
As is clear from FIG. 4, the corrected reactive power command value P2 and the corrected reactive power command value Q2 in which the phase shift (phase difference θ) of the reactive power in the upper diagram of FIG. 4 is expressed by Equation (3) and Equation (4). Without changing the vector direction from the above figure, only the magnitude is changed, and the output power, which is the combined vector of the corrected active power command value P2 and the corrected reactive power command value Q2, is restored to the original phase shift. The system frequency and PLL frequency can cancel the effect of phase shift.

また、補正有効電力指令値P2および補正無効電力指令値Q2の位相差θが零(0)のなると、図4の下図から、または数式(3)および数式(4)から、補正有効電力指令値P2および補正無効電力指令値Q2は、有効電力指令値P1および無効電力指令値Q1と
なることが明らかである。なお、本特性は、図2に示す分散型電源システム1aに対応するものである。
When the phase difference θ between the corrected active power command value P2 and the corrected reactive power command value Q2 becomes zero (0), the corrected active power command value is calculated from the lower diagram of FIG. 4 or from the equations (3) and (4). It is clear that P2 and corrected reactive power command value Q2 become active power command value P1 and reactive power command value Q1. This characteristic corresponds to the distributed power supply system 1a shown in FIG.

図5はこの発明に係る単独運転検出装置が内蔵されたパワーコンディショナーが適用される分散型電源システムのブロック構成図である。図5において、分散型電源システム1bは、太陽電池などの分散型電源2と、分散型電源2をパワーラインPLを介して系統電源ACに接続し、系統電源ACに連系して運転する、単独運転検出機能を有するインバータ部4dを内蔵するパワーコンディショナー3bとから構成されている。   FIG. 5 is a block diagram of a distributed power supply system to which a power conditioner incorporating the isolated operation detection device according to the present invention is applied. In FIG. 5, a distributed power supply system 1b is connected to a distributed power supply 2 such as a solar battery and a distributed power supply 2 via a power line PL, and is operated in conjunction with the distributed power supply AC. It is comprised from the power conditioner 3b which incorporates the inverter part 4d which has an independent operation detection function.

パワーコンディショナー3bは、分散型電源2から供給される直流電圧を昇圧する、昇圧回路17を備える。   The power conditioner 3 b includes a booster circuit 17 that boosts the DC voltage supplied from the distributed power source 2.

パワーコンディショナー3bに内蔵された単独運転検出機能を有するインバータ部4dは、図8の単独運転検出装置4cと同様な構成を有する。なお、単独運転検出装置4dは、インバータ16とパワーラインPLがパワーラインPLに直列に接続される点が、単独運転検出装置4aと異なる以外、同じ構成となっている。   The inverter unit 4d having a single operation detection function built in the power conditioner 3b has a configuration similar to that of the single operation detection device 4c of FIG. The isolated operation detection device 4d has the same configuration except that the inverter 16 and the power line PL are connected in series to the power line PL, except that the isolated operation detection device 4a is different.

なお、単独運転検出機能を有するインバータ部4dの単独運転検出機能に関する部分は、図2に示す単独運転検出装置4aと同じため説明を省略する。   In addition, since the part regarding the isolated operation detection function of the inverter part 4d which has an isolated operation detection function is the same as the isolated operation detection apparatus 4a shown in FIG. 2, description is abbreviate | omitted.

パワーコンディショナー3bは、単独運転検出機能を有するインバータ部4dを内蔵することにより、単独運転検出装置とパワーコンディショナーを1つに集約することができる。   The power conditioner 3b can integrate the single operation detection device and the power conditioner into one by incorporating the inverter unit 4d having the single operation detection function.

このように、この発明に係るパワーコンディショナー3bは、単独運転検出機能を有するインバータ部4dを内蔵することにより、単独運転検出装置とパワーコンディショナーを1つに集約することができ、コンパクトに構成することができる。   As described above, the power conditioner 3b according to the present invention has a built-in inverter unit 4d having an isolated operation detection function, so that the isolated operation detection device and the power conditioner can be integrated into one, and the power conditioner 3b is configured in a compact manner. Can do.

図6はこの発明に係るパワーコンディショナーが注入する無効電力の特性図である。図6において、単独運転が発生してパワーラインPL上の系統電圧VLの周波数が急変(周波数の増加または減少)すると、系統周波数とPLL周波数に位相ズレが発生し、これに起因して注入無効電力が、周波数の変化から決まる指令値よりも小さくなる。なお、図6では、有効電力指令値P1、無効電力指令値Q1、有効電力指令値P2および無効電力指令値Q2の電力対応で表すが、図2に示す有効電流指令値P1、無効電流指令値Q1、補正有効電流指令値P2および補正無効電流指令値Q2と同じである。   FIG. 6 is a characteristic diagram of reactive power injected by the power conditioner according to the present invention. In FIG. 6, when an isolated operation occurs and the frequency of the system voltage VL on the power line PL changes suddenly (increase or decrease in frequency), a phase shift occurs between the system frequency and the PLL frequency. The electric power becomes smaller than the command value determined from the change in frequency. In FIG. 6, the active power command value P1, the reactive power command value Q1, the active power command value P2, and the reactive power command value Q2 are represented by corresponding power, but the active current command value P1 and the reactive current command value shown in FIG. This is the same as Q1, corrected effective current command value P2, and corrected reactive current command value Q2.

図6の上図に示すように、有効電流指令値P1および無効電力指令値Q1による制御では、系統周波数とPLL周波数に位相ズレが発生し、これに起因して注入無効電力が、周波数の変化から決まる指令値よりも小さくなる。下図に示す位相差θ、補正有効電力指令値P2および補正無効電力指令値Q2を用いて、位相ズレを補正して、周波数の変化から決まる指令値通りの無効電力を注入する。   As shown in the upper diagram of FIG. 6, in the control based on the active current command value P1 and the reactive power command value Q1, a phase shift occurs between the system frequency and the PLL frequency. It becomes smaller than the command value determined from Using the phase difference θ, the corrected active power command value P2, and the corrected reactive power command value Q2 shown in the figure below, the phase shift is corrected and reactive power according to the command value determined from the change in frequency is injected.

補正有効電力指令値P2および補正無効電力指令値Q2は、有効電力指令値P1、無効電力指令値Q1および位相差θを用いて数式(3)および数式(4)で表される。   The corrected active power command value P2 and the corrected reactive power command value Q2 are expressed by Equations (3) and (4) using the active power command value P1, the reactive power command value Q1, and the phase difference θ.

図6から明らかなように、図6の上図の位相ズレ(位相差θ)を数式(3)および数式(4)で表した補正有効電力指令値P2および補正無効電力指令値Q2のベクトルの方向を上図と変更することなく、大きさだけを変更して、補正有効電力指令値P2および補正無効電力指令値Q2の合成ベクトルである出力電力を位相のズレを元に戻して、系統周波数とPLL周波数は位相ズレの影響を打ち消すことができる。なお、本特性は、図5に示す分散型電源システム1bに対応するものである。   As apparent from FIG. 6, the phase shift (phase difference θ) in the upper diagram of FIG. 6 is expressed by the vectors of the corrected active power command value P2 and the corrected reactive power command value Q2 expressed by the equations (3) and (4). Without changing the direction from the above figure, only the magnitude is changed, and the output power, which is a combined vector of the corrected active power command value P2 and the corrected reactive power command value Q2, is restored to the original phase shift, and the system frequency And the PLL frequency can negate the effect of phase shift. This characteristic corresponds to the distributed power supply system 1b shown in FIG.

このように、この発明に係る補正電流指令値決定手段8は、系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)を演算する位相差演算手段9と、有効電流指令値(P1)および無効電流指令値(Q1)を設定して格納する電流指令値記憶手段と、位相差演算手段9が算出した位相差θ、電流指令値記憶手段に格納された有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を演算する補正電流指令値演算手段とを有するようにしたので、PLL(Phase Locked Loop)の周波数追従性が遅くても、位相差(θ)、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を注入することができ、単独運転を短時間に検出することができる。   As described above, the correction current command value determining means 8 according to the present invention calculates the phase difference (θ) between the frequency (f1) of the system voltage and the frequency (f2) detected by the PLL (Phase Locked Loop). Calculation means 9, current command value storage means for setting and storing active current command value (P1) and reactive current command value (Q1), phase difference θ calculated by phase difference calculation means 9, and current command value storage means Correction current command value calculating means for calculating the corrected effective current command value (P2) and the corrected reactive current command value (Q2) based on the active current command value (P1) and the reactive current command value (Q1) stored in Therefore, even if the frequency followability of the PLL (Phase Locked Loop) is slow, the frequency of the frequency is determined based on the phase difference (θ), the corrected effective current command value (P2), and the corrected reactive current command value (Q2). According to the command value determined from the change Reactive power can be injected, and an isolated operation can be detected in a short time.

以上説明したように、この発明に係る単独運転検出装置4aは、単独運転時に、パワーラインの系統電圧の周波数が急変する時、系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)と、有効電流指令値(P1)ならびに無効電流指令値(Q1)と、に基づいて補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)を決定する補正電流指令値決定手段8を備えたので、補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を迅速に注入し、注入した無効電力により急変した周波数を検出することができ、単独運転を迅速に安定して検出することができる。   As described above, the isolated operation detection device 4a according to the present invention detects the frequency (f1) of the system voltage and the PLL (Phase Locked Loop) when the frequency of the system voltage of the power line suddenly changes during the isolated operation. Based on the phase difference (θ) from the frequency (f2), the active current command value (P1), and the reactive current command value (Q1), the corrected active current command value (P2) and the corrected reactive current command value (Q2) Since the correction current command value determining means 8 for determining the current value is provided, the reactive power according to the command value determined from the change in the frequency can be quickly obtained based on the correction active current command value (P2) and the correction reactive current command value (Q2). It is possible to detect the frequency that has been injected and suddenly changed due to the injected reactive power, and to detect a single operation quickly and stably.

次に、この発明に係る単独運転検出装置の単独運転検出方法について説明する。図7はこの発明に係る単独運転検出装置の単独運転検出方法の一実施の形態要部動作フロー図である。なお、動作フローは、図2を参照に説明する。   Next, the isolated operation detection method of the isolated operation detection device according to the present invention will be described. FIG. 7 is an operation flowchart of the main part of one embodiment of the isolated operation detecting method of the isolated operation detecting apparatus according to the present invention. The operation flow will be described with reference to FIG.

この発明に係る単独運転検出装置の単独運転検出方法は、系統電源に分散型電源が連系して運転され、系統電源に無効電力を注入し、系統電源のダウンにより生じる分散型電源の単独運転を検出する単独運転検出装置の単独運転検出方法であって、ステップS1では、系統電圧の周波数(f1)を計測する。なお、ステップS1の動作は周波数計測手段5が実行する。   The islanding operation detection method of the islanding operation detection apparatus according to the present invention is a system in which a distributed power source is connected to a system power source, and reactive power is injected into the system power source. In step S1, the system voltage frequency (f1) is measured in step S1. The operation of step S1 is executed by the frequency measuring means 5.

ステップS2では、PLLが検出した周波数(f2)を出力する。なお、ステップS2の動作は、PLLブロック6が実行する。   In step S2, the frequency (f2) detected by the PLL is output. The operation of step S2 is executed by the PLL block 6.

ステップS3では、計測した系統電圧の周波数(f1)とPLLが検出した周波数(f2)に基づいて位相差(θ)を演算する。なお、ステップS3の動作は、位相差演算手段9が実行する。   In step S3, the phase difference (θ) is calculated based on the measured frequency (f1) of the system voltage and the frequency (f2) detected by the PLL. The operation of step S3 is executed by the phase difference calculation means 9.

ステップS4では、位相差(θ)、有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を決定する。なお、ステップS4の動作は、補正電流指令値決定手段8が実行する。   In step S4, a corrected effective current command value (P2) and a corrected reactive current command value (Q2) are determined based on the phase difference (θ), the active current command value (P1), and the reactive current command value (Q1). The operation of step S4 is executed by the correction current command value determining means 8.

ステップS5では、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、周波数の変化から決まる指令値通りの無効電力を注入する。なお、ステップS5の動作は、インバータ16が実行する。   In step S5, reactive power according to the command value determined from the change in frequency is injected based on the corrected active current command value (P2) and the corrected reactive current command value (Q2). The operation of step S5 is executed by the inverter 16.

ステップS6では、注入された無効電力によって急変した周波数(f1)を検出して、単独運転を判定する。なお、ステップS6の動作は、周波数計測手段5および図示しない制御手段が実行する。   In step S6, the frequency (f1) suddenly changed by the injected reactive power is detected, and the isolated operation is determined. The operation of step S6 is executed by the frequency measuring means 5 and a control means (not shown).

このように、この発明に係る単独運転検出装置の単独運転検出方法は、系統電圧の周波数(f1)を計測するステップS1と、PLLが検出した周波数(f2)を出力するステップS2と、計測した系統電圧の周波数(f1)とPLLが検出した周波数(f2)に基づいて位相差(θ)を演算するステップS3と、位相差(θ)、有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を決定するステップS4と、補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、周波数変化から決まる指令値通りの無効電力を注入するステップS5と、注入された無効電力によって急変した周波数(f1)を検出して、単独運転を判定するステップS6とを備えるようにしたので、補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)に基づいて、周波数変化から決まる指令値通りの無効電力を迅速に注入し、注入した無効電力によって急変した周波数を検出することができ、単独運転を迅速に安定して検出することができる。   Thus, the islanding operation detection method of the islanding operation detection device according to the present invention measures step S1 for measuring the frequency (f1) of the system voltage and step S2 for outputting the frequency (f2) detected by the PLL. Step S3 for calculating the phase difference (θ) based on the frequency (f1) of the system voltage and the frequency (f2) detected by the PLL, and the phase difference (θ), active current command value (P1) and reactive current command value ( Step S4 for determining the corrected active current command value (P2) and the corrected reactive current command value (Q2) based on Q1), and the corrected active current command value (P2) and the corrected reactive current command value (Q2) based on Step S5 for injecting reactive power according to the command value determined from the frequency change, and Step S6 for detecting the frequency (f1) suddenly changed by the injected reactive power and determining the single operation Therefore, based on the corrected active current command value (P2) and the corrected reactive current command value (Q2), reactive power is quickly injected according to the command value determined from the frequency change, and suddenly changes depending on the injected reactive power. The detected frequency can be detected, and the isolated operation can be detected quickly and stably.

本発明に係る単独運転検出装置は、PLLブロックの周波数追従性が遅いままで、系統電圧とPLLブロックとの位相差を考慮した補正有効電流指令値および補正無効電流指令値から周波数の変化から決まる指令値通りの無効電力を注入して、注入された無効電力によって急変した周波数を検出して直ちに単独運転を検出するもので、単独運転検出を急変する周波数から実行するあらゆる単独運転検出装置に適用することができる。   The isolated operation detection device according to the present invention is determined from a change in frequency from a corrected active current command value and a corrected reactive current command value in consideration of the phase difference between the system voltage and the PLL block while the frequency followability of the PLL block remains slow. Injects reactive power according to the command value, detects the frequency that suddenly changes due to the injected reactive power, and immediately detects isolated operation. Applicable to all isolated operation detection devices that execute isolated operation detection from the sudden change frequency. can do.

この発明に係る分散型電源システムの一実施の形態全体構成図Overall configuration diagram of an embodiment of a distributed power supply system according to the present invention この発明に係る単独運転検出装置が適用される分散型電源システムの一実施の形態ブロック構成図Block diagram of an embodiment of a distributed power supply system to which an isolated operation detection device according to the present invention is applied この発明に係る系統(電圧)周波数とPLL周波数の一実施の形態変化イメージ図Image of change of embodiment of system (voltage) frequency and PLL frequency according to the present invention この発明に係る単独運転検出装置が注入する無効電力の一特性図One characteristic diagram of the reactive power which the isolated operation detection device concerning this invention injects この発明に係る単独運転検出装置が内蔵されたパワーコンディショナーが適用される分散型電源システムのブロック構成図Block configuration diagram of a distributed power supply system to which a power conditioner incorporating a stand-alone operation detection device according to the present invention is applied この発明に係るパワーコンディショナーが注入する無効電力の特性図Characteristic diagram of reactive power injected by power conditioner according to the present invention この発明に係る単独運転検出装置の単独運転検出方法の一実施の形態要部動作フロー図Main part operation flow diagram of one embodiment of an isolated operation detection method of an isolated operation detection device according to the present invention 従来の単独運転検出装置が適用される分散型電源システムのブロック構成図Block diagram of a distributed power supply system to which a conventional isolated operation detection device is applied 従来の単独運転検出装置が注入する無効電力の一特性図A characteristic diagram of reactive power injected by a conventional islanding detection device 従来の単独運転検出装置が内蔵されたパワーコンディショナーが適用される分散型電源システムのブロック構成図Block configuration diagram of a distributed power supply system to which a power conditioner incorporating a conventional isolated operation detection device is applied 従来の単独運転検出装置が注入する無効電力の別特性図Another characteristic diagram of reactive power injected by conventional isolated operation detector

符号の説明Explanation of symbols

1a,1b 分散型電源システム
2 分散型電源
3,3a,3b パワーコンディショナー
4,4a,4b 単独運転検出装置
5 周波数計測手段
6 PLLブロック
6a 位相比較器
6b ループフィルタ
6c 可変周波数発信器
7a Sin波形生成手段
7b Cos波形生成手段
8 補正電流指令値決定手段
9 位相差演算手段
10 電流指令値記憶手段
10a 有効電流指令値(P1)
10b 無効電流指令値(Q1)
11 補正電流指令値演算手段
11a 補正有効電流指令値(P2)
11b 補正無効電流指令値(Q2)
12a,12b 乗算器
13 加算器
14 PI制御部
15 PWMパターン発生器
16 インバータ
17 昇圧回路
RL1,RL2,RL 連系リレー
PL パワーライン
AC 系統電源
VL 系統電圧
PM 無効電力

DESCRIPTION OF SYMBOLS 1a, 1b Distributed type power supply system 2 Distributed type power supply 3, 3a, 3b Power conditioner 4, 4a, 4b Independent operation detection device 5 Frequency measuring means 6 PLL block 6a Phase comparator 6b Loop filter 6c Variable frequency transmitter 7a Sin waveform generation Means 7b Cos waveform generation means 8 Correction current command value determination means 9 Phase difference calculation means 10 Current command value storage means 10a Effective current command value (P1)
10b Reactive current command value (Q1)
11 Correction current command value calculation means 11a Correction effective current command value (P2)
11b Corrected reactive current command value (Q2)
12a, 12b Multiplier 13 Adder 14 PI controller 15 PWM pattern generator 16 Inverter 17 Booster circuit RL1, RL2, RL Linkage relay PL Power line AC System power supply VL System voltage PM Reactive power

Claims (4)

系統電源に分散型電源が連系して運転され、前記系統電源に無効電力を注入し、前記系統電源のダウンにより生じる前記分散型電源の単独運転を検出する単独運転検出装置であって、
前記単独運転の開始の際に、前記パワーラインの系統電圧の周波数が急変する時、前記系統電圧の周波数(f1)とPLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)と、有効電流指令値(P1)ならびに無効電流指令値(Q1)と、に基づいて補正有効電流指令値(P2)ならびに補正無効電流指令値(Q2)を決定する補正電流指令値決定手段を備えたことを特徴とする単独運転検出装置。
An isolated operation detection device that operates by connecting a distributed power source to a system power source, injects reactive power into the system power source, and detects an isolated operation of the distributed power source caused by the down of the system power source,
When the frequency of the system voltage of the power line changes suddenly at the start of the independent operation, the phase difference (θ between the frequency (f1) of the system voltage and the frequency (f2) detected by the PLL (Phase Locked Loop) ), An effective current command value (P1) and a reactive current command value (Q1), and a corrected current command value determining means for determining a corrected active current command value (P2) and a corrected reactive current command value (Q2). An isolated operation detection device comprising:
前記補正電流指令値決定手段は、前記系統電圧の周波数(f1)と前記PLL(Phase Locked Loop)が検出した周波数(f2)との位相差(θ)を演算する位相差演算手段と、前記有効電流指令値(P1)および前記無効電流指令値(Q1)を設定して格納する電流指令値記憶手段と、前記位相差演算手段が算出した位相差θ、前記電流指令値記憶手段に格納された前記有効電流指令値(P1)および前記無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を演算する補正電流指令値演算手段と、を備えたことを特徴とする請求項1記載の単独運転検出装置。   The correction current command value determining means includes a phase difference calculating means for calculating a phase difference (θ) between a frequency (f1) of the system voltage and a frequency (f2) detected by the PLL (Phase Locked Loop); Current command value storage means for setting and storing the current command value (P1) and the reactive current command value (Q1), the phase difference θ calculated by the phase difference calculation means, and the current command value storage means Correction current command value calculating means for calculating a corrected effective current command value (P2) and a corrected reactive current command value (Q2) based on the effective current command value (P1) and the reactive current command value (Q1). The isolated operation detection device according to claim 1, wherein 請求項1又は請求項2に記載の単独運転検出装置を内蔵したことを特徴とするパワーコンディショナー。   A power conditioner comprising the isolated operation detection device according to claim 1 or 2. 系統電源に分散型電源が連系して運転され、前記系統電源に無効電力を注入し、前記系統電源のダウンにより生じる前記分散型電源の単独運転を検出する単独運転検出装置の単独運転検出方法であって、
系統電圧の周波数(f1)を計測するステップS1と、
PLLが検出した周波数(f2)を出力するステップS2と、
計測した系統電圧の周波数(f1)とPLLが検出した周波数(f2)に基づいて位相差(θ)を演算するステップS3と、
位相差(θ)、有効電流指令値(P1)および無効電流指令値(Q1)に基づいて補正有効電流指令値(P2)および補正無効電流指令値(Q2)を決定するステップS4と、
補正有効電流指令値(P2)および補正無効電流指令値(Q2)に基づいて、無効電力を注入するステップS5と、
周波数(f1)を検出して、単独運転を判定するステップS6と、
を備えたことを特徴とする単独運転検出装置の単独運転検出方法。
An isolated operation detection method of an isolated operation detection device that operates by connecting a distributed power supply to a system power supply, injects reactive power into the system power supply, and detects an isolated operation of the distributed power supply caused by the system power supply down. Because
Step S1 for measuring the frequency (f1) of the system voltage;
Step S2 for outputting the frequency (f2) detected by the PLL;
Calculating a phase difference (θ) based on the measured frequency (f1) of the system voltage and the frequency (f2) detected by the PLL;
Step S4 for determining a corrected active current command value (P2) and a corrected reactive current command value (Q2) based on the phase difference (θ), the active current command value (P1), and the reactive current command value (Q1);
Step S5 for injecting reactive power based on the corrected active current command value (P2) and the corrected reactive current command value (Q2);
Step S6 for detecting the frequency (f1) and determining an isolated operation;
An islanding operation detection method for an islanding operation detection device, comprising:
JP2006234235A 2006-08-30 2006-08-30 Isolated operation detection device, isolated operation detection method thereof, and power conditioner incorporating the isolated operation detection device Active JP4775181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234235A JP4775181B2 (en) 2006-08-30 2006-08-30 Isolated operation detection device, isolated operation detection method thereof, and power conditioner incorporating the isolated operation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234235A JP4775181B2 (en) 2006-08-30 2006-08-30 Isolated operation detection device, isolated operation detection method thereof, and power conditioner incorporating the isolated operation detection device

Publications (2)

Publication Number Publication Date
JP2008061356A true JP2008061356A (en) 2008-03-13
JP4775181B2 JP4775181B2 (en) 2011-09-21

Family

ID=39243493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234235A Active JP4775181B2 (en) 2006-08-30 2006-08-30 Isolated operation detection device, isolated operation detection method thereof, and power conditioner incorporating the isolated operation detection device

Country Status (1)

Country Link
JP (1) JP4775181B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247162A (en) * 2008-03-31 2009-10-22 Origin Electric Co Ltd Single-phase voltage ac/dc converter
JP2011015493A (en) * 2009-06-30 2011-01-20 Fuji Electric Holdings Co Ltd Distributed power supply device
KR101038560B1 (en) 2010-12-24 2011-06-02 한양전공주식회사 Solar inverter, and method for controlling solar inverter
JP2011205742A (en) * 2010-03-24 2011-10-13 Central Res Inst Of Electric Power Ind Islanding operation avoiding device, method and program
EP2387132A2 (en) 2010-05-13 2011-11-16 Hitachi, Ltd. Rotor of rotating electrical machine
CN102590713A (en) * 2012-03-29 2012-07-18 浙江特雷斯电子科技有限公司 Detection method of islanding effects with reactive current disturbance based on amplitude changes and device thereof
WO2014032249A1 (en) * 2012-08-30 2014-03-06 General Electric Company System and method for detecting islanding of electrical machines and protecting same
KR101494791B1 (en) 2013-09-11 2015-02-23 엘에스산전 주식회사 Method for detecting islanding of grid-connected inverter
WO2015111319A1 (en) * 2014-01-23 2015-07-30 オムロン株式会社 Islanding operation detection device and power conditioner system
KR101554630B1 (en) 2015-05-14 2015-09-21 카코뉴에너지 주식회사 Anti-islanding detection apparatus for parallel distributed generation
JP2016171662A (en) * 2015-03-12 2016-09-23 オムロン株式会社 Isolated operation detector, power conversion system, and isolated operation detection method
WO2016174747A1 (en) 2015-04-28 2016-11-03 株式会社東芝 Power conversion device
JP2017192296A (en) * 2016-04-11 2017-10-19 サングロー パワー サプライ カンパニー リミテッド Cascaded photovoltaic grid-connected inverter, and control method and control device for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967576A (en) * 2019-10-30 2020-04-07 国网浙江省电力有限公司电力科学研究院 Anti-islanding operation detection method under distributed power supply grid-connected mode
CN114556766A (en) 2019-12-20 2022-05-27 东芝三菱电机产业系统株式会社 Power conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479728A (en) * 1990-07-20 1992-03-13 Fuji Electric Co Ltd Control circuit of inverter for single and linking operations
JPH0851724A (en) * 1994-08-10 1996-02-20 Fuji Electric Co Ltd Method for detecting single operation of system interconnection inverter
JPH0888980A (en) * 1994-09-14 1996-04-02 Nissin Electric Co Ltd Single operation detector for decentralized power supply
JPH0923660A (en) * 1995-07-10 1997-01-21 Fuji Electric Co Ltd Detection of individual operation of dispersedly configured power supply
JPH0954122A (en) * 1995-08-11 1997-02-25 Sanyo Denki Co Ltd Service-interruption detection apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479728A (en) * 1990-07-20 1992-03-13 Fuji Electric Co Ltd Control circuit of inverter for single and linking operations
JPH0851724A (en) * 1994-08-10 1996-02-20 Fuji Electric Co Ltd Method for detecting single operation of system interconnection inverter
JPH0888980A (en) * 1994-09-14 1996-04-02 Nissin Electric Co Ltd Single operation detector for decentralized power supply
JPH0923660A (en) * 1995-07-10 1997-01-21 Fuji Electric Co Ltd Detection of individual operation of dispersedly configured power supply
JPH0954122A (en) * 1995-08-11 1997-02-25 Sanyo Denki Co Ltd Service-interruption detection apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247162A (en) * 2008-03-31 2009-10-22 Origin Electric Co Ltd Single-phase voltage ac/dc converter
JP2011015493A (en) * 2009-06-30 2011-01-20 Fuji Electric Holdings Co Ltd Distributed power supply device
US8203813B2 (en) 2009-06-30 2012-06-19 Fuji Electric Co., Ltd. Distributed power supply system
JP2011205742A (en) * 2010-03-24 2011-10-13 Central Res Inst Of Electric Power Ind Islanding operation avoiding device, method and program
EP2387132A2 (en) 2010-05-13 2011-11-16 Hitachi, Ltd. Rotor of rotating electrical machine
US8421318B2 (en) 2010-05-13 2013-04-16 Hitachi Mitsubishi Hydro Corporation Rotor of rotating electrical machine
KR101038560B1 (en) 2010-12-24 2011-06-02 한양전공주식회사 Solar inverter, and method for controlling solar inverter
CN102590713A (en) * 2012-03-29 2012-07-18 浙江特雷斯电子科技有限公司 Detection method of islanding effects with reactive current disturbance based on amplitude changes and device thereof
WO2014032249A1 (en) * 2012-08-30 2014-03-06 General Electric Company System and method for detecting islanding of electrical machines and protecting same
KR101494791B1 (en) 2013-09-11 2015-02-23 엘에스산전 주식회사 Method for detecting islanding of grid-connected inverter
WO2015111319A1 (en) * 2014-01-23 2015-07-30 オムロン株式会社 Islanding operation detection device and power conditioner system
JP2015139308A (en) * 2014-01-23 2015-07-30 オムロン株式会社 Isolated operation device and power conditioner system
JP2016171662A (en) * 2015-03-12 2016-09-23 オムロン株式会社 Isolated operation detector, power conversion system, and isolated operation detection method
WO2016174747A1 (en) 2015-04-28 2016-11-03 株式会社東芝 Power conversion device
JPWO2016174747A1 (en) * 2015-04-28 2018-02-08 株式会社東芝 Power converter
KR101554630B1 (en) 2015-05-14 2015-09-21 카코뉴에너지 주식회사 Anti-islanding detection apparatus for parallel distributed generation
JP2017192296A (en) * 2016-04-11 2017-10-19 サングロー パワー サプライ カンパニー リミテッド Cascaded photovoltaic grid-connected inverter, and control method and control device for the same
US10680550B2 (en) 2016-04-11 2020-06-09 Sungrow Power Supply Co., Ltd. Cascaded photovoltaic grid-connected inverter, control method and control device for the same

Also Published As

Publication number Publication date
JP4775181B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4775181B2 (en) Isolated operation detection device, isolated operation detection method thereof, and power conditioner incorporating the isolated operation detection device
JP5645622B2 (en) Isolated operation detection device and isolated operation detection method
EP2822163A1 (en) Power supply system
US9331486B2 (en) Method and apparatus for detecting islanding conditions of a distributed grid
JP6374213B2 (en) Power converter
JP2008043184A (en) Power supply unit, and method for synchronously operating power conversion device
RU2599983C2 (en) Method for controlling a power supply unit and a controller for a power supply unit
JP2011067078A (en) Method and device for controlling power supply system
JP5418079B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP4661856B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP5398233B2 (en) Independent operation detection device for inverter and isolated operation detection method
JPWO2012114467A1 (en) Power converter
JP2011015493A (en) Distributed power supply device
JP2016185006A (en) Changeover device of hydraulic power generating system
JP6159271B2 (en) Power converter and control method of power converter
JP2009044910A (en) Method for detecting isolated operation, contrl device, device for detecting isolated operation, and distributed power supply system
JP2012026836A (en) Frequency detection method for distributed power source and system interconnection protection apparatus
KR100966146B1 (en) Distributed Generation System Interconnected with Utility Grid and Islanding Detection Method thereof
JP6289270B2 (en) Power supply system and power conditioner
JP2006217775A (en) System interconnection inverter of distributed power supply
JP4872826B2 (en) Isolated operation detection method, control device, isolated operation detection device, and distributed power supply system
JP6345078B2 (en) Control device for isolated operation detection, isolated operation detection device, and isolated operation detection method
KR20090100704A (en) Inverter for solar power generating system
JP6598208B2 (en) Distributed power converter control system
JP4049080B2 (en) Isolated operation detection method and power supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Ref document number: 4775181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250