WO2015111297A1 - Rotor for rotating electrical machine, rotating electrical machine using said rotor, and electric vehicle - Google Patents

Rotor for rotating electrical machine, rotating electrical machine using said rotor, and electric vehicle Download PDF

Info

Publication number
WO2015111297A1
WO2015111297A1 PCT/JP2014/081134 JP2014081134W WO2015111297A1 WO 2015111297 A1 WO2015111297 A1 WO 2015111297A1 JP 2014081134 W JP2014081134 W JP 2014081134W WO 2015111297 A1 WO2015111297 A1 WO 2015111297A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotating electrical
electrical machine
order
axis
Prior art date
Application number
PCT/JP2014/081134
Other languages
French (fr)
Japanese (ja)
Inventor
佳奈子 根本
秀俊 江夏
泰行 齋藤
松延 豊
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015111297A1 publication Critical patent/WO2015111297A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotor of a rotating electrical machine, a rotating electrical machine using the rotor, and an electric vehicle equipped with the rotating electrical machine.
  • Rotating electric machines are installed in home appliances and various OA devices, and in recent years, they are installed in electric vehicles such as hybrid vehicles (HEV) and electric vehicles (EV).
  • electric vehicles such as hybrid vehicles (HEV) and electric vehicles (EV).
  • a rotating electric machine for electric vehicles such as HEV and EV is required to have a large output.
  • These rotating electric machines for electric vehicles have a wide operating rotational speed range, the excitation frequency of the electromagnetic excitation force varies in a wide range, and the natural frequency and the excitation frequency of the rotating electrical machine structure at a specific rotational speed Since they match, the generation of vibration and noise due to resonance is inevitable.
  • the direction of the electromagnetic excitation force that causes vibration and noise generated from the rotating electrical machine main body is three directions: radial direction, tangential direction, and axial direction.
  • the amplitude of the electromagnetic force harmonics and the electrical angle phase should be set appropriately in the axial direction. There is a method of suppressing vibrations by generating them.
  • Patent Document 1 discloses a synchronous motor in which a permanent magnet constituting a magnetic pole is arranged inside a rotor core formed by laminating a predetermined number of soft magnetic bodies punched into a predetermined shape by caulking in an outer peripheral core portion.
  • the rotor core is formed along the outer peripheral edge of the rotor core, and a permanent magnet insertion portion into which the permanent magnet is inserted, an inner core portion formed inside the permanent magnet insertion portion, and a permanent magnet
  • the outer peripheral core part formed on each magnetic pole outside the insertion part, the connecting part connecting the inner core part and the outer peripheral core part at one end of each magnetic pole, the outer peripheral thin part, and the An opening is provided at the end opposite to the one end where the connecting portion and the outer peripheral thin portion are provided, and communicates with the permanent magnet insertion portion.
  • the opening, the connecting portion, and the outer peripheral thin portion are arranged together between the same magnetic poles in adjacent magnetic poles.
  • the rotor core is divided into three parts in the axial direction, and the first rotor core, the second rotor core, and the third rotor core are formed in order from the top, and they are stacked while being shifted by one magnetic pole.
  • the axial lengths of the first and third rotor cores are the same, and are approximately half the axial length of the second rotor core.
  • Patent Document 1 the conventional method of providing an opening communicating with the permanent magnet insertion portion in the rotor core as a countermeasure against electromagnetic vibration noise is a stress caused by centrifugal force at a specific location of the stator core at high speed rotation.
  • the applicable rotating electrical machines are limited to those that rotate at low speed.
  • the opening, the connecting portion, and the thin outer peripheral portion are arranged together between the same magnetic poles in adjacent magnetic poles, and the rotor core is divided into three in the axial direction, rotated and shifted by one magnetic pole, and stacked.
  • the ratio of the thicknesses of the first, second, and third stator cores is set to approximately 1: 2: 1, there is a problem that the electromagnetic vibration noise reduction effect is not sufficient for a rotating electrical machine having a long thickness. there were.
  • an object of the present invention is to provide a rotor of a rotating electric machine that can cope with high-speed rotation and can obtain an electromagnetic vibration noise reduction effect even when the stacking length is long, and a rotating electric machine and an electric vehicle using the rotor.
  • the present application includes a plurality of means for solving the above-described problems.
  • the surface of the rotor piece or the inside thereof is independent from the magnet insertion hole.
  • the magnetic gap is d-axis asymmetric / q-axis symmetric, d-axis symmetric / q-axis asymmetric, or d-axis asymmetric so as to have a periodicity of 2 / N.
  • a rotor of a rotating electrical machine that can cope with high-speed rotation and can obtain an electromagnetic vibration noise reduction effect even when the stacking length is long, and a rotating electrical machine and an electric vehicle using the rotor.
  • (A) is a figure which shows one Example of the rotor of the rotary electric machine which becomes this invention
  • Embodiment 1 (b) is a figure which shows one Example of the permanent magnet which comprises the rotor of the rotary electric machine which becomes this invention.
  • FIG. 8 show the excitation force pattern (the relationship between the axial position and the amplitude of the radial electromagnetic force harmonics whose spatial order is pole pair order) in the cross section parallel to the axial direction in the rotor configuration of FIG. It is a figure.
  • FIG. 6 shows the relationship between the excitation force pattern of the cross section parallel to the axial direction (Embodiments 1, 2 and 1, 2 steps, prior art according to the present invention), the axial mode order m and the evaluation value u defined by Equation 6.
  • FIG. 6 shows the relationship between the excitation force pattern of the cross section parallel to the axial direction (Embodiments 1, 2 and 1, 2 steps, prior art according to the present invention), the axial mode order m and the evaluation value u defined by Equation 6.
  • FIG. 1 is a diagram showing a cross section perpendicular to the axial direction of a concentrated winding rotary electric machine having a stator core with 24 slots and a rotor with 16 poles, and (b) is the vicinity of the permanent magnets 301a and 301b in FIG. 12 (a).
  • FIG. It is the figure which showed the calculation result of the radial direction space 0th order and space 8th order electromagnetic force harmonics of the rotary electric machine of FIG.
  • FIG. 7B is a diagram showing the calculation results of the levels.
  • FIG. 13B is an analysis model of a rotating electrical machine including the first embodiment and a conventional one-stage rotor. The electromagnetic force in the radial space 8th order and the 80th order in FIG. It is the figure which showed the calculation result of the acoustic power level at the time of inputting a harmonic.
  • FIG. 15 (A) is a diagram showing a cross section perpendicular to the axial direction of a distributed-winding rotating electrical machine having a stator core with 48 slots and a rotor with 8 poles, and (b) is the vicinity of permanent magnets 301a and 301b in FIG. 15 (a).
  • FIG. It is the figure which showed the calculation result of the radial direction space 0th order and space 4th order electromagnetic force harmonics of the rotary electric machine of FIG. (A) shows the acoustics when the electromagnetic force harmonics of the radial space 4th order and rotation-44th order electromagnetic force in FIG. 16 are input to the analysis model of the rotating electrical machine having the first embodiment and the prior art rotor.
  • FIG. 16B is a diagram showing a calculation result of the power level.
  • FIG. 16B is an analysis model of the rotating electrical machine including the first embodiment and the first stage conventional rotor. It is the figure which showed the calculation result of the acoustic power level at the time of inputting a power harmonic.
  • (A) is a diagram showing a cross section perpendicular to the axial direction of a distributed-winding rotating electrical machine having a stator core with 36 slots and a rotor with 8 poles, and (b) is the vicinity of the permanent magnets 301a and 301b in FIG. 18 (a).
  • FIG. It is the figure which showed the calculation result of the radial direction space 0th order and space 4th order electromagnetic force harmonics of the rotary electric machine of FIG.
  • (A) shows the acoustic in the case where the electromagnetic force harmonics in the radial space 4th order and rotation ⁇ 32nd order in FIG. 19 are input to the analysis model of the rotating electrical machine having the first embodiment and the prior art rotor.
  • the figure which showed the calculation result of the power level (b) is the electromagnetic model of radial space 4th order of FIG. It is the figure which showed the calculation result of the acoustic power level at the time of inputting a power harmonic.
  • FIG. 1 shows a first embodiment of a rotor of a rotating electrical machine according to the present invention.
  • the rotor core 11 is composed of two units 101-1 and 101-2 having the same axial length.
  • the unit 101-1 is mainly composed of three rotor core pieces 11a, 11b (11b-1, 11b-2) and 11c.
  • the ratio of the axial lengths of the three rotor core pieces is 1: 2: 1.
  • the rotor core piece 11b may be composed of two rotor core pieces 11b-1 and 11b-2 having the same axial length.
  • the unit 101-2 is formed by laminating the unit 101-1 by shifting one pole in the circumferential direction.
  • the circumferential position of the permanent magnet 301 (301a, 301b) is constant regardless of the axial position as shown in FIG.
  • FIG. 2 (a) shows the rotor core pieces 11a and 11c
  • FIG. 2 (b) shows a cross section perpendicular to the axial direction of the rotor core pieces 11b.
  • the d-axis magnetized
  • the auxiliary salient pole portion the portion of the rotor core at the center between the magnet poles
  • a groove constituting an asymmetric magnetic gap 201 is provided for both the axis passing through the center) and the q axis (axis through which the magnetic flux flows from pole to pole).
  • the magnetic gap 201 is shifted by one pole in the circumferential direction between the rotor core pieces 11a, 11c and the rotor core piece 11b. It has a configuration. 2A and 2B, the space order between the rotor core pieces 11a and 11c and the rotor core piece 11b is the number of pole pairs (N / 2) order (mechanical angle, 8-pole machine). In this case, the electrical angle phase difference of the fourth order electromagnetic force harmonic is ⁇ .
  • the magnetic gap 201 is provided independently of the magnet insertion hole 302 into which the permanent magnet 301 is inserted.
  • Electromagnetic harmonics are defined by Equation 1.
  • the electromagnetic force generated in the air gap determined by the two-dimensional electromagnetic field analysis includes harmonic components and is a function of time and space.
  • the electromagnetic force is decomposed into radial and tangential components and each is expanded into a Fourier series in time and space, the following equation is obtained.
  • 1, 2 and 3 represent eigenmodes.
  • FIG. 4 shows an example in which the cross section 1c perpendicular to the axial direction of the eigenmode of the stator core 1 is an annular mode (0th order, 4th order).
  • FIG. 5 shows an example (0, 1, 2, 3) of the axial mode of the cross section 1z parallel to the axial direction of the natural mode of the stator core 1.
  • the axial distribution of components whose spatial order is the pole pair number (N / 2) order (4th order in the case of an 8-pole machine) is shown in FIG.
  • the eigenmode shown is an excitation force pattern that is difficult to excite.
  • excitation force pattern having a cross section parallel to the axial direction of the radial electromagnetic force harmonic is defined as f (k, z). Since the m-th axial mode of the stator core 1 is not excited, the conditional expression that the excitation force pattern f (k, z) needs to satisfy is as follows.
  • the rotor structure derived from the above constraints is shown in FIG. 6, and the rotor core 11 has three rotor core pieces 11a, 11b (11b-1, 11b-2) and 11c (ratio of axial length is 1: 2: 1) as one pole. It is comprised from the unit 101 laminated by shifting.
  • This rotor configuration is called the prior art because the ratio of the axial lengths obtained by dividing the rotor core 11 is the same as the rotor configuration of the synchronous motor described in FIG.
  • the cross section 1z parallel to the axial direction of the secondary axial mode is decomposed into cross sections 1z-1 and 1z-2 parallel to the axial direction at a position half the axial length.
  • the cross section 1z-1 parallel to the axial direction is the primary axial mode
  • the cross section 1z-2 parallel to the axial direction is the reverse phase of the primary axial mode.
  • the cross section 1z parallel to the axial direction of the tertiary axial mode is a cross section 1z-1, 1z-2, 1z-3 parallel to the axial direction at a position 1/3 of the axial length. Is broken down into At this time, the cross section 1z-1 parallel to the axial direction is the primary axial mode, the cross section 1z-2 parallel to the axial direction is the opposite phase of the primary axial mode, and the cross section 1z-3 parallel to the axial direction is It becomes the primary axial direction mode.
  • the rotor structure derived from this is shown in FIG.
  • the rotor core 11 is composed of three units 101-1, 101-2, and 101-3 having the same axial length.
  • 101-2 is laminated at a position shifted by one pole in the circumferential direction, and 101-3 is laminated at the same position. This is called a second embodiment.
  • k 3 in Equation 3.
  • FIG. 9 shows the excitation force pattern f (k, z) of the cross section parallel to the axial direction of the radial electromagnetic force harmonic in the rotor configuration of FIGS. (Excitation force pattern of a cross section parallel to the axial direction).
  • FIG. 11 Noise reduction effect in rotating electrical machine according to the present invention
  • the fourth-stage unit excitation force in the radial direction space is input to the rotating electrical machine having the first and second embodiments according to the present invention, the first stage, the second stage, and the conventional rotor, and the first stage acoustic power level.
  • the calculation result when the maximum value is 0 dB is shown.
  • the acoustic power level of the prior art is -1.4 dB and -6.0 dB, whereas in Embodiments 1 and 2, it is -13.7 dB and -33.9 dB, and the noise reduction effect is great.
  • FIG. 11 Concentrated winding 16 pole 24 slot machine
  • the winding of the stator core 1 constituting the rotating electrical machine is omitted.
  • an auxiliary magnetic pole 201 between the permanent magnets 301a and 301b is provided with a magnetic gap 201 that is asymmetric with respect to both the d-axis and q-axis having a periodicity of 1/8 (2 / N). It is done.
  • the periodic boundary conditions are the same, the values of torque, torque ripple, and electromagnetic force harmonics do not change depending on the presence or absence of the magnetic gap 201 in the auxiliary salient pole.
  • FIG. 13 shows the calculation results of the electromagnetic force harmonics in the radial space 0th order and space 8th order of the rotating electrical machine in FIG.
  • the electromagnetic force harmonic amplitude is made dimensionless with reference to the spatial 0th order and rotational 48th order harmonic amplitudes.
  • FIG. 14 (a) and 14 (b) show the analysis model of the rotating electrical machine having the first embodiment and the first stage of the prior art rotor, and the radial space 8th order rotation 32nd order and 80th order electromagnetics shown in FIG.
  • the calculation result of the sound power level when a power harmonic is input is shown.
  • the dimension is made non-dimensional based on the maximum value of the acoustic power level when the zeroth-order and 48th-order electromagnetic harmonics are input.
  • the maximum value of the acoustic power level when the 8th-order rotational 32nd-order and 80th-order harmonics in the radial direction space are input is one step lower than that in the conventional technique.
  • torque ripple and electromagnetic force harmonics change depending on the presence or absence of the magnetic gap 201.
  • the increase / decrease in torque ripple depends on the shape of the magnetic gap 201.
  • FIG. 16 shows the calculation results of the electromagnetic force harmonics in the radial direction space 0th order and space 4th order of the rotating electrical machine in FIG.
  • the electromagnetic force harmonic amplitude is made dimensionless with reference to the spatial 0th order and rotation 48th order harmonic amplitudes.
  • 17 (a) and 17 (b) show the analysis model of the rotating electrical machine having the first embodiment and the first stage of the prior art rotor, and the radial space 4th order rotation-44th order, 52nd order of FIG.
  • the calculation result of the sound power level at the time of inputting electromagnetic force harmonics is shown.
  • the dimension is made non-dimensional based on the maximum value of the acoustic power level when the zeroth-order and 48th-order electromagnetic harmonics are input.
  • the maximum value of the acoustic power level when the radial space fourth-order rotation-44th-order and 52nd-order electromagnetic force harmonics are input is reduced by one step in the first embodiment compared to the conventional technique. .
  • a d-axis asymmetric and q-axis symmetric magnetic air gap 201b having a periodicity of 1/4 (2 / N) is provided at the auxiliary salient pole portion between the permanent magnets 301a and 301b. Further, d-axis symmetric and q-axis symmetric magnetic air gaps 201a and 201c having a periodicity of 1/8 (1 / N) are formed in the circumferential portion where the permanent magnets 301a and 301b exist on the surface of the rotor core 11. A notch is provided.
  • the magnetic gaps 201a, 201b, 201c as a whole have a periodicity of 1/4 (2 / N).
  • FIG. 19 shows the calculation results of the radial electromagnetic force harmonics of the space 0th order and space 4th order of the rotating electrical machine of FIG.
  • the electromagnetic force harmonic amplitude is made dimensionless with reference to the spatial 0th order and rotational 72nd order harmonic amplitudes.
  • FIG. 20 (a) and 20 (b) show an analysis model of the rotating electrical machine having the first embodiment and the first stage of the prior art rotor, and the radial space 4th order rotation-32nd order, 40th order in FIG.
  • the calculation result of the sound power level at the time of inputting electromagnetic force harmonics is shown.
  • the dimension is made non-dimensional based on the maximum value of the acoustic power level when the zeroth-order and 72nd-order electromagnetic force harmonics are input.
  • the maximum value of the acoustic power level when the fourth-order rotation-32nd order and 40th order harmonic harmonics in the radial space are input is reduced by one step in the first embodiment compared to the prior art. .
  • [Third and Fourth Embodiments] It is considered that the ratio of the axial length of the rotor core piece is determined under a constraint condition different from those in the first and second embodiments.
  • a constraint condition that the excitation force pattern f (k, z) is an odd function is introduced.
  • the rotor structure derived from the above constraints is shown in FIG. This is referred to as a third embodiment.
  • the rotor core 11 includes four rotor core pieces 11a, 11b (11b-1, 11b-2), 11c (11c-1, 11c-2), 11d (ratio of axial length is 1: 2: 2: 1) for one pole. It is comprised from the unit 401 which shifted and laminated
  • the rotor core piece 11b may be composed of two rotor core pieces 11b-1 and 11b-2 having the same axial length.
  • the rotor core piece 11c is the same as 11b.
  • FIG. 2A shows the rotor core pieces 11a and 11c
  • FIG. 2B shows a cross section perpendicular to the axial direction of the rotor core pieces 11b and 11d.
  • the rotor core pieces 11a, 11c and the rotor core pieces 11b, 11d are displaced by one magnetic gap 201 in the circumferential direction. It has a configuration.
  • the radial spatial order generated between the rotor core pieces 11a and 11c and the rotor core pieces 11b and 11d is pole pair (N / 2) order (mechanical angle).
  • N / 2 order mechanical angle
  • the electrical angle phase difference of the fourth order electromagnetic force harmonic is ⁇ .
  • FIG. 22 shows a fourth embodiment.
  • the rotor core 11 is composed of two units 401-1 and 401-2 having the same axial length in the axial direction.
  • the unit 401-1 is mainly composed of four rotor core pieces 11 a, 11 b (11 b-1, 11 b-2), 11 c (11 c-1, 11 c-2), and 11 d, and the axial length ratio is 1: 2: 2. : 1.
  • the unit 401-2 has the same configuration as the unit 401-1.
  • k 2 in Equations 3, 6, and 7.
  • the axial length of the unit 401 may be set to L / m, and the m units 401 may be stacked to form the rotor core 11.
  • k m in Equations 3, 6, and 7.
  • FIG. 23 is parallel to the axial direction of Embodiments 3 and 4 according to the present invention, one stage (no shift by one pole), and two stages (the rotor core is divided into two equal parts in the axial direction and shifted by one pole in the circumferential direction).
  • the fourth-order unit excitation force in the radial direction space is input to the rotating electrical machines having the third and fourth embodiments and the first and second rotors according to the present invention, and the maximum value of the first stage acoustic power level is obtained.
  • the calculation result in the case of 0 dB is shown.
  • the acoustic power level is -1.4 dB in two stages, whereas in Embodiments 3 and 4, they are -9.9 dB and -26.0 dB, and the noise reduction effect is great.
  • (Axial cross-sectional shape of the rotor core) 25 to 30 show another embodiment of the magnetic air gap 201 of the present invention. Except as described below, this embodiment is the same as Embodiments 1 to 4.
  • d-axis asymmetric and q-axis symmetric magnetic air gaps 201a and 201b having a periodicity of 2 / N are formed in the auxiliary salient pole portions between the permanent magnets 301a and 301b in the rotor core 11. A hole is provided.
  • holes constituting the d-axis asymmetric and q-axis asymmetric magnetic air gap 201 having a periodicity of 2 / N are formed in the auxiliary salient pole portion between the permanent magnets 301 a and 301 b in the rotor core 11. Is provided.
  • FIG. 27 shows the magnetic air gap 201 having d-axis asymmetric and q-axis asymmetric magnetic air gaps 201 a and 201 b having a periodicity of 2 / N on the auxiliary salient poles on both sides of the permanent magnet 301 a on the surface of the rotor core 11.
  • an auxiliary salient pole portion between the permanent magnets 301a and 301b in the rotor core 11 is provided with a hole that forms a d-axis asymmetric and q-axis symmetric magnetic gap 201c having a periodicity of 2 / N.
  • FIG. 28 shows a magnetic gap 201 having a notch constituting a d-axis symmetric and q-axis asymmetric magnetic gap 201a having a periodicity of 2 / N in the circumferential portion where the permanent magnet 301a on the surface of the rotor core 11 exists.
  • the auxiliary salient pole portion between the 11 surface permanent magnets 301a and 301b is provided with a groove constituting a d-axis asymmetric and q-axis symmetric magnetic gap 201b having a periodicity of 2 / N.
  • FIG. 29 shows a magnetic gap 201 having a notch constituting a d-axis-symmetrical q-axis asymmetric magnetic gap 201a having a periodicity of 2 / N in the circumferential portion where the permanent magnet 301a on the surface of the rotor core 11 exists.
  • the grooves constituting the d-axis asymmetric and q-axis symmetric magnetic air gap 201b having a periodicity of 2 / N in the auxiliary salient pole portion between the permanent magnets 301a and 301b on the 11 surface are the permanent magnets 301a and 301b in the rotor core 11.
  • Between the auxiliary salient poles there are provided holes that constitute a magnetic gap 201c that is d-axis asymmetric and q-axis symmetric with a periodicity of 2 / N.
  • notches constituting a d-axis symmetric and q-axis asymmetric magnetic air gap 201 having a periodicity of 2 / N are provided in the circumferential portion where the permanent magnet 301 a on the surface of the rotor core 11 exists. ing.
  • the magnetic air gap 201 is a groove or notch formed in the surface of the rotor core 11, a hole formed in the rotor core 11, or a combination thereof, the magnetic air gap 201 It suffices if the periodicity is 2 / N.
  • the present invention is not limited to the number of phases, the number of poles, and the number of slots of the rotating electrical machine of the above-described embodiment.
  • the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.
  • Stator core 1c Cross section perpendicular
  • Rotor 11 Rotor core 11a, 11b, 11b-1, 11b-2, 11c, 11c-1, 11c-2 , 11d ...

Abstract

Provided are a rotor for a rotating electrical machine, a rotating electrical machine in which the rotor is used, and an electric vehicle. The rotor is adaptable to high-speed rotation and is capable of providing the effect of reducing electromagnetic vibration noise even with large stack thicknesses. A rotor (10) of an embedded-magnet rotating electrical machine having N poles, wherein: magnetic gaps (201) provided independently from magnet insertion holes (302) are provided on the surface or in the interior of a rotor piece; the magnetic gaps are provided so as to be asymmetrical about the d-axis and symmetrical about the q axis, symmetrical about the d-axis and asymmetrical about the q axis, or asymmetrical about the d-axis and asymmetrical about the q axis so as to have a periodicity of 2/N; and a configuration is obtained by stacking k rotor piece units (101-1, 101-2) (where k is an integer equal to or greater than 2) stacked so that the axial lengths of the rotor pieces are at a ratio of 1:2:1, or stacking k rotor piece units (where k is an integer equal to or greater than 1) stacked so that the axial lengths of the rotor pieces are at a ratio of 1:2:2:1, so that the circumferential positions of the magnetic gaps of adjacent rotor pieces (11a, 11b) are displaced by one pole.

Description

回転電機のロータ、これを用いた回転電機および電動車両Rotating electric machine rotor, rotating electric machine and electric vehicle using the same
 本発明は、回転電機のロータ、これを用いた回転電機、および、回転電機が搭載された電動車両に関する。 The present invention relates to a rotor of a rotating electrical machine, a rotating electrical machine using the rotor, and an electric vehicle equipped with the rotating electrical machine.
 回転電機は家電製品、各種OA機器に搭載されており、また、近年ハイブリッド自動車(HEV)や電気自動車(EV)などの電動車両に搭載されている。 Rotating electric machines are installed in home appliances and various OA devices, and in recent years, they are installed in electric vehicles such as hybrid vehicles (HEV) and electric vehicles (EV).
 とりわけHEVやEVなどの電動車両用の回転電機は出力が大きいものが要求される。これらの電動車両用の回転電機は、使用回転数範囲が広く、電磁加振力の加振周波数が広い範囲で変化し、特定の回転数で回転電機の構造の固有振動数と加振周波数が一致するため、共振による振動・騒音の発生が不可避である。 Particularly, a rotating electric machine for electric vehicles such as HEV and EV is required to have a large output. These rotating electric machines for electric vehicles have a wide operating rotational speed range, the excitation frequency of the electromagnetic excitation force varies in a wide range, and the natural frequency and the excitation frequency of the rotating electrical machine structure at a specific rotational speed Since they match, the generation of vibration and noise due to resonance is inevitable.
 一方、車室内の快適環境の追求により振動・騒音低減の要求が高まっており、回転電機本体からの振動・騒音を低減する技術も多数開発されている。 On the other hand, the demand for vibration and noise reduction has been increasing due to the pursuit of a comfortable environment in the passenger compartment, and many technologies for reducing vibration and noise from the rotating electrical machine body have been developed.
 回転電機本体から発生する振動・騒音の原因となる電磁加振力の向きは径方向、接線方向、軸方向の3方向である。特に可聴帯域の騒音を低減するには、これら電磁加振力の高調波(電磁力高調波)振幅を低減する方法のほか、電磁力高調波の振幅、電気角位相を軸方向で適切なパターンで発生させることにより、振動を抑制する方法がある。 The direction of the electromagnetic excitation force that causes vibration and noise generated from the rotating electrical machine main body is three directions: radial direction, tangential direction, and axial direction. In particular, in order to reduce noise in the audible band, in addition to the method of reducing the amplitude of these electromagnetic excitation forces (electromagnetic force harmonics), the amplitude of the electromagnetic force harmonics and the electrical angle phase should be set appropriately in the axial direction. There is a method of suppressing vibrations by generating them.
 このような方法として、例えば特許文献1がある。特許文献1では、所定の形状に打ち抜かれた軟磁性体を所定枚数、外周鉄心部においてカシメにより積層して形成される回転子鉄心の内部に磁極を構成する永久磁石が配置される同期電動機の回転子において、回転子鉄心は、回転子鉄心の外周縁に沿って形成され、永久磁石が挿入される永久磁石挿入部と、永久磁石挿入部の内側に形成される内側鉄心部と、永久磁石挿入部の外側の各磁極に形成される外周鉄心部と、内側鉄心部と前記外周鉄心部とを、各磁極のいずれか一方の端部において連結する連結部並びに外周薄肉部と、各磁極の連結部並びに外周薄肉部が設けられる一方の端部と反対側の端部に設けられ、永久磁石挿入部に連通する開口部を備える。開口部並びに連結部及び外周薄肉部が、隣り合う磁極でそれぞれ同じ磁極間にまとめて配置される。回転子鉄心を軸方向で3分割し、上から順に第1の回転子鉄心、第2の回転子鉄心、第3の回転子鉄心とし、一磁極分回転させてずらして積層する。第1、第3の回転子鉄心の軸方向の長さは同じで、第2の回転子鉄心の軸方向の長さの略半分としている。 There is, for example, Patent Document 1 as such a method. Patent Document 1 discloses a synchronous motor in which a permanent magnet constituting a magnetic pole is arranged inside a rotor core formed by laminating a predetermined number of soft magnetic bodies punched into a predetermined shape by caulking in an outer peripheral core portion. In the rotor, the rotor core is formed along the outer peripheral edge of the rotor core, and a permanent magnet insertion portion into which the permanent magnet is inserted, an inner core portion formed inside the permanent magnet insertion portion, and a permanent magnet The outer peripheral core part formed on each magnetic pole outside the insertion part, the connecting part connecting the inner core part and the outer peripheral core part at one end of each magnetic pole, the outer peripheral thin part, and the An opening is provided at the end opposite to the one end where the connecting portion and the outer peripheral thin portion are provided, and communicates with the permanent magnet insertion portion. The opening, the connecting portion, and the outer peripheral thin portion are arranged together between the same magnetic poles in adjacent magnetic poles. The rotor core is divided into three parts in the axial direction, and the first rotor core, the second rotor core, and the third rotor core are formed in order from the top, and they are stacked while being shifted by one magnetic pole. The axial lengths of the first and third rotor cores are the same, and are approximately half the axial length of the second rotor core.
特開2012-50274号公報JP 2012-50274 A
 特許文献1に開示されるような、電磁振動音対策で回転子鉄心に永久磁石挿入部に連通する開口部を設ける従来の方法は、高速回転では固定子鉄心の特定の場所に遠心力による応力が集中し損傷するおそれがあり、適用可能な回転電機が低速回転のものに限られるという課題があった。 As disclosed in Patent Document 1, the conventional method of providing an opening communicating with the permanent magnet insertion portion in the rotor core as a countermeasure against electromagnetic vibration noise is a stress caused by centrifugal force at a specific location of the stator core at high speed rotation. However, there is a problem that the applicable rotating electrical machines are limited to those that rotate at low speed.
 また、開口部並びに連結部及び外周薄肉部が、隣り合う磁極でそれぞれ同じ磁極間にまとめて配置され、回転子鉄心を軸方向で3分割し、一磁極分回転させてずらして積層し、第1、第2、第3の固定子鉄心の積厚の比を略1:2:1としたのでは、積厚が長い回転電機に対しては電磁振動音低減効果が十分ではないという課題があった。 In addition, the opening, the connecting portion, and the thin outer peripheral portion are arranged together between the same magnetic poles in adjacent magnetic poles, and the rotor core is divided into three in the axial direction, rotated and shifted by one magnetic pole, and stacked. When the ratio of the thicknesses of the first, second, and third stator cores is set to approximately 1: 2: 1, there is a problem that the electromagnetic vibration noise reduction effect is not sufficient for a rotating electrical machine having a long thickness. there were.
 そこで本発明は、高速回転に対応でき、積厚が長い場合でも電磁振動音低減効果を得られる回転電機のロータ、これを用いた回転電機および電動車両を提供することを目的とする。 Therefore, an object of the present invention is to provide a rotor of a rotating electric machine that can cope with high-speed rotation and can obtain an electromagnetic vibration noise reduction effect even when the stacking length is long, and a rotating electric machine and an electric vehicle using the rotor.
 上記課題を解決するために、例えば請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、極数Nの磁石埋込型の回転電機のロータにおいて、ロータピースの表面又は内部に、磁石挿入孔から独立して設けられた磁気的空隙が設けられ、前記磁気的空隙は、2/Nの周期性を持つように、d軸非対称・q軸対称、d軸対称・q軸非対称、又は、d軸非対称・q軸非対称に設けられ、隣接する前記ロータピースの前記磁気的空隙の周方向位置が1極ずれるように、かつ、前記ロータピースの軸長が1:2:1となるように積層されたロータピースのユニットがk個(kは2以上の整数)、又は、前記ロータピースの軸長が1:2:2:1となるように積層されたロータピースのユニットがk個(kは1以上の整数)積層されて構成されたことを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, in a rotor of a magnet-embedded rotary electric machine having N poles, the surface of the rotor piece or the inside thereof is independent from the magnet insertion hole. The magnetic gap is d-axis asymmetric / q-axis symmetric, d-axis symmetric / q-axis asymmetric, or d-axis asymmetric so as to have a periodicity of 2 / N. • q-axis asymmetric, laminated so that the circumferential position of the magnetic gap of the adjacent rotor pieces is shifted by one pole and the axial length of the rotor pieces is 1: 2: 1 The number of rotor piece units is k (k is an integer of 2 or more), or the number of rotor piece units stacked so that the axial length of the rotor piece is 1: 2: 2: 1 (k is 1). (Integer above) characterized by being layered
 本発明によれば、高速回転に対応でき、積厚が長い場合でも電磁振動音低減効果を得られる回転電機のロータ、これを用いた回転電機および電動車両を提供することができる。 According to the present invention, it is possible to provide a rotor of a rotating electrical machine that can cope with high-speed rotation and can obtain an electromagnetic vibration noise reduction effect even when the stacking length is long, and a rotating electrical machine and an electric vehicle using the rotor.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
(a)は本発明になる回転電機のロータの一実施例、実施形態1を示す図、(b)は本発明になる回転電機のロータを構成する永久磁石の一実施例を示す図である。(A) is a figure which shows one Example of the rotor of the rotary electric machine which becomes this invention, Embodiment 1, (b) is a figure which shows one Example of the permanent magnet which comprises the rotor of the rotary electric machine which becomes this invention. . 図1(a)、図21のロータの軸方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the axial direction of the rotor of Fig.1 (a) and FIG. ステータの固有モード例を示す図である。It is a figure which shows the eigenmode example of a stator. ステータの固有モードの軸方向に垂直な断面の円環モードの例(0次、4次)を示した図である。It is the figure which showed the example (0th order, 4th order) of the annular mode of a cross section perpendicular | vertical to the axial direction of the natural mode of a stator. ステータの固有モードの軸方向に平行な断面の軸方向モードの例(0次、1次、2次、3次)を示した図である。It is the figure which showed the example (0th order, 1st order, 2nd order, 3rd order) of the axial direction mode of a cross section parallel to the axial direction of the natural mode of a stator. ロータコアピースの軸長が1:2:1の1ユニットで構成される、従来技術によるロータを示す図である。It is a figure which shows the rotor by a prior art comprised by 1 unit whose axial length of a rotor core piece is 1: 2: 1. ステータの固有モードの軸方向に平行な断面を、軸方向1次モードを用いて軸方向に分割した図である。It is the figure which divided | segmented the cross section parallel to the axial direction of the natural mode of a stator into the axial direction using the axial direction primary mode. 本発明になる回転電機のロータのもうひとつ別の実施例、実施形態2を示す図である。It is a figure which shows another Example, Embodiment 2 of the rotor of the rotary electric machine which becomes this invention. 図6、図1、図8のロータ構成における、軸方向に平行な断面の加振力パターン(空間次数が極対数次である径方向電磁力高調波の軸方向位置と振幅の関係)を示した図である。FIG. 6, FIG. 1 and FIG. 8 show the excitation force pattern (the relationship between the axial position and the amplitude of the radial electromagnetic force harmonics whose spatial order is pole pair order) in the cross section parallel to the axial direction in the rotor configuration of FIG. It is a figure. 軸方向に平行な断面の加振力パターン(本発明による実施形態1、2と1段、2段、従来技術)、軸方向モード次数mと数6で定義される評価値uの関係を示す図である。FIG. 6 shows the relationship between the excitation force pattern of the cross section parallel to the axial direction ( Embodiments 1, 2 and 1, 2 steps, prior art according to the present invention), the axial mode order m and the evaluation value u defined by Equation 6. FIG. 本発明による実施形態1、2と、1段、2段、従来技術のロータを備えた回転電機に、径方向空間4次の単位加振力を入力した場合の計算結果を示した図である。It is the figure which showed the calculation result at the time of inputting the unit excitation force of radial direction quartic space to the rotary electric machine provided with Embodiment 1, 2 by this invention, the 1st stage, the 2nd stage, and the rotor of a prior art. . (a)はスロット数24のステータコアと極数16のロータを備えた集中巻の回転電機の軸方向に垂直な断面を示す図、(b)は図12(a)の永久磁石301a、301b付近を拡大した図である。(A) is a diagram showing a cross section perpendicular to the axial direction of a concentrated winding rotary electric machine having a stator core with 24 slots and a rotor with 16 poles, and (b) is the vicinity of the permanent magnets 301a and 301b in FIG. 12 (a). FIG. 図12の回転電機の径方向空間0次、空間8次の電磁力高調波の計算結果を示した図である。It is the figure which showed the calculation result of the radial direction space 0th order and space 8th order electromagnetic force harmonics of the rotary electric machine of FIG. (a)は実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図13の径方向空間8次、回転32次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示した図、(b)は実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図13の径方向空間8次、回転80次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示した図である。(A) is the acoustic power in the case where the radial space 8th order and the 32nd order electromagnetic force harmonics in FIG. 13 are input to the analysis model of the rotating electrical machine having the first embodiment and the prior art rotor of the first embodiment. FIG. 7B is a diagram showing the calculation results of the levels. FIG. 13B is an analysis model of a rotating electrical machine including the first embodiment and a conventional one-stage rotor. The electromagnetic force in the radial space 8th order and the 80th order in FIG. It is the figure which showed the calculation result of the acoustic power level at the time of inputting a harmonic. (a)はスロット数48のステータコアと極数8のロータを備えた分布巻の回転電機の軸方向に垂直な断面を示す図、(b)は図15(a)の永久磁石301a、301b付近を拡大した図である。(A) is a diagram showing a cross section perpendicular to the axial direction of a distributed-winding rotating electrical machine having a stator core with 48 slots and a rotor with 8 poles, and (b) is the vicinity of permanent magnets 301a and 301b in FIG. 15 (a). FIG. 図15の回転電機の径方向空間0次、空間4次の電磁力高調波の計算結果を示した図である。It is the figure which showed the calculation result of the radial direction space 0th order and space 4th order electromagnetic force harmonics of the rotary electric machine of FIG. (a)は実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図16の径方向空間4次、回転-44次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示した図、(b)は実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図16の径方向空間4次、回転52次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示した図である。(A) shows the acoustics when the electromagnetic force harmonics of the radial space 4th order and rotation-44th order electromagnetic force in FIG. 16 are input to the analysis model of the rotating electrical machine having the first embodiment and the prior art rotor. FIG. 6B is a diagram showing a calculation result of the power level. FIG. 16B is an analysis model of the rotating electrical machine including the first embodiment and the first stage conventional rotor. It is the figure which showed the calculation result of the acoustic power level at the time of inputting a power harmonic. (a)はスロット数36のステータコアと極数8のロータを備えた分布巻の回転電機の軸方向に垂直な断面を示す図、(b)は図18(a)の永久磁石301a、301b付近を拡大した図である。(A) is a diagram showing a cross section perpendicular to the axial direction of a distributed-winding rotating electrical machine having a stator core with 36 slots and a rotor with 8 poles, and (b) is the vicinity of the permanent magnets 301a and 301b in FIG. 18 (a). FIG. 図18の回転電機の径方向空間0次、空間4次の電磁力高調波の計算結果を示した図である。It is the figure which showed the calculation result of the radial direction space 0th order and space 4th order electromagnetic force harmonics of the rotary electric machine of FIG. (a)は実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図19の径方向空間4次、回転-32次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示した図、(b)は実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図19の径方向空間4次、回転40次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示した図である。(A) shows the acoustic in the case where the electromagnetic force harmonics in the radial space 4th order and rotation −32nd order in FIG. 19 are input to the analysis model of the rotating electrical machine having the first embodiment and the prior art rotor. The figure which showed the calculation result of the power level, (b) is the electromagnetic model of radial space 4th order of FIG. It is the figure which showed the calculation result of the acoustic power level at the time of inputting a power harmonic. 本発明になる回転電機のロータのもうひとつ別の実施例、実施形態3を示す図である。It is a figure which shows another Example, Embodiment 3 of the rotor of the rotary electric machine which becomes this invention. 本発明になる回転電機のロータのもうひとつ別の実施例、実施形態4を示す図である。It is a figure which shows another Example, Embodiment 4 of the rotor of the rotary electric machine which becomes this invention. 軸方向に平行な断面の加振力パターン(本発明の実施形態3、4と、1段、2段)、軸方向モード次数mと数6で定義される評価値uの関係を示す図である。It is a figure which shows the relationship of the evaluation value u defined by the excitation mode pattern ( Embodiment 3, 4 of this invention, 1 step | paragraph, 2 steps | paragraphs), axial mode order m, and Formula 6 of the cross section parallel to an axial direction. is there. 本発明による実施形態3、4と、1段、2段のロータを備えた回転電機に、径方向空間4次の単位加振力を入力した場合の計算結果を示した図である。It is the figure which showed the calculation result at the time of inputting the unit excitation force of radial space 4th order to the rotary electric machine provided with Embodiment 3, 4 by this invention, and the 1st stage and 2 stage | paragraph rotor. 本発明の他の実施例をなすステータコアとロータコアの軸方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the axial direction of the stator core which makes the other Example of this invention, and a rotor core. 本発明の他の実施例をなすステータコアとロータコアの軸方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the axial direction of the stator core which makes the other Example of this invention, and a rotor core. 本発明の他の実施例をなすステータコアとロータコアの軸方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the axial direction of the stator core which makes the other Example of this invention, and a rotor core. 本発明の他の実施例をなすステータコアとロータコアの軸方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the axial direction of the stator core which makes the other Example of this invention, and a rotor core. 本発明の他の実施例をなすステータコアとロータコアの軸方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the axial direction of the stator core which makes the other Example of this invention, and a rotor core. 本発明の他の実施例をなすステータコアとロータコアの軸方向に垂直な断面を示す図である。It is a figure which shows the cross section perpendicular | vertical to the axial direction of the stator core which makes the other Example of this invention, and a rotor core.
 以下、図面を用いて本発明の実施形態を説明する。
[第1、第2の実施形態] 
 図1は本発明による回転電機のロータの第1の実施形態を示す。図1(a)に示す回転電機のロータ10は、本発明を三相の永久磁石回転電機に適用した場合の例であり、磁石埋込型の8極機(極数N=8、極対数N/2=4)の構成となっている。ロータコア11は同じ軸長の2つのユニット101-1、101-2より構成されている。ユニット101-1は大きくは3つのロータコアピース11a、11b(11b-1、11b-2)、11cより構成される。この3つのロータコアピースの軸長の比は1:2:1である。ロータコアピース11bを軸長が同じ2つのロータコアピース11b-1、11b-2で構成してもよい。ユニット101-2はユニット101-1を周方向に1極分ずらして積層したものである。なお、永久磁石301(301a、301b)の周方向位置は、図1(b)に示すように軸方向位置によらず一定である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[First and second embodiments]
FIG. 1 shows a first embodiment of a rotor of a rotating electrical machine according to the present invention. A rotor 10 of a rotating electrical machine shown in FIG. 1 (a) is an example when the present invention is applied to a three-phase permanent magnet rotating electrical machine, and an embedded magnet type 8-pole machine (number of poles N = 8, number of pole pairs). N / 2 = 4). The rotor core 11 is composed of two units 101-1 and 101-2 having the same axial length. The unit 101-1 is mainly composed of three rotor core pieces 11a, 11b (11b-1, 11b-2) and 11c. The ratio of the axial lengths of the three rotor core pieces is 1: 2: 1. The rotor core piece 11b may be composed of two rotor core pieces 11b-1 and 11b-2 having the same axial length. The unit 101-2 is formed by laminating the unit 101-1 by shifting one pole in the circumferential direction. The circumferential position of the permanent magnet 301 (301a, 301b) is constant regardless of the axial position as shown in FIG.
 図2(a)にロータコアピース11a、11c、図2(b)にロータコアピース11bの軸方向に垂直な断面を示す。ロータコア11の表面には永久磁石301a、301b間の補助突極部(磁石の極間中心にあるロータコアの部分)に1/4(=2/N)の周期性を持つd軸(磁束が磁石中心を通る軸)、q軸(磁束が極間から極間へ流れる軸)のいずれに対しても非対称な磁気的空隙201を構成する溝を設けている。永久磁石301(301a、301b)の極性(N極、S極)との位置関係を考えると、ロータコアピース11a、11cと、ロータコアピース11bとでは周方向に磁気的空隙201が1極分ずれた構成となっている。図2(a)、図2(b)の構成とすることにより、ロータコアピース11a、11cとロータコアピース11bとの間で、空間次数が極対数(N/2)次(機械角、8極機の場合4次)の電磁力高調波の電気角位相差はπとなる。 FIG. 2 (a) shows the rotor core pieces 11a and 11c, and FIG. 2 (b) shows a cross section perpendicular to the axial direction of the rotor core pieces 11b. On the surface of the rotor core 11, the d-axis (magnetic flux is magnetized) having a periodicity of 1/4 (= 2 / N) at the auxiliary salient pole portion (the portion of the rotor core at the center between the magnet poles) between the permanent magnets 301a and 301b. A groove constituting an asymmetric magnetic gap 201 is provided for both the axis passing through the center) and the q axis (axis through which the magnetic flux flows from pole to pole). Considering the positional relationship with the polarity (N pole, S pole) of the permanent magnet 301 (301a, 301b), the magnetic gap 201 is shifted by one pole in the circumferential direction between the rotor core pieces 11a, 11c and the rotor core piece 11b. It has a configuration. 2A and 2B, the space order between the rotor core pieces 11a and 11c and the rotor core piece 11b is the number of pole pairs (N / 2) order (mechanical angle, 8-pole machine). In this case, the electrical angle phase difference of the fourth order electromagnetic force harmonic is π.
 なお、磁気的空隙201は、永久磁石301が挿入される磁石挿入孔302とは独立に設けられる。 The magnetic gap 201 is provided independently of the magnet insertion hole 302 into which the permanent magnet 301 is inserted.
 電磁力高調波は、数1により定義される。2次元電磁場解析で求めたエアギャップに発生する電磁力には高調波成分が含まれ、時間と空間の関数となっている。電磁力を径方向と接線方向の成分に分解し、それぞれを時間と空間でフーリエ級数に展開すると次式が得られる。 Electromagnetic harmonics are defined by Equation 1. The electromagnetic force generated in the air gap determined by the two-dimensional electromagnetic field analysis includes harmonic components and is a function of time and space. When the electromagnetic force is decomposed into radial and tangential components and each is expanded into a Fourier series in time and space, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、σ…径方向または接線方向の単位面積当たりの電磁力 
     n…空間次数(機械角) 
     l…回転次数 
     Anl…空間n次、回転l次高調波成分の振幅 
     θ…機械角 
     ω…基本角周波数 
     t…時間 
     φnl…空間n次、回転l次高調波成分の電気角位相
 ロータコアピース11a、11b、11cの軸長の比は以下の考え方で決定した。
Where σ: Electromagnetic force per unit area in the radial or tangential direction
n: Spatial order (mechanical angle)
l ... Rotation order
Anl: Amplitude of spatial nth-order and rotational 1st-order harmonic components
θ ... mechanical angle
ω: Basic angular frequency
t ... time
φnl: electrical angle phase of spatial nth-order and rotational l-order harmonic components The ratio of the axial lengths of the rotor core pieces 11a, 11b, 11c was determined based on the following concept.
 図3(a)~(d)に、ステータコア1の固有モードが、軸方向に垂直な断面1cで円環4次(=N/2次)、軸方向に平行な断面1zで軸方向モード0、1、2、3次の組み合わせとなる固有モードを示す。 FIGS. 3A to 3D show that the eigenmode of the stator core 1 is an annular mode (= N / 2 order) in a cross section 1c perpendicular to the axial direction and an axial mode 0 in a cross section 1z parallel to the axial direction. , 1, 2 and 3 represent eigenmodes.
 図4にステータコア1の固有モードの軸方向に垂直な断面1cが円環モードの例(0次、4次)を示す。また、図5にステータコア1の固有モードの軸方向に平行な断面1zの軸方向モードの例(0、1、2、3次)を示す。 FIG. 4 shows an example in which the cross section 1c perpendicular to the axial direction of the eigenmode of the stator core 1 is an annular mode (0th order, 4th order). FIG. 5 shows an example (0, 1, 2, 3) of the axial mode of the cross section 1z parallel to the axial direction of the natural mode of the stator core 1.
 本発明ではエアギャップで発生する電磁力の径方向高調波成分のうち、空間次数が極対数(N/2)次(8極機の場合4次)の成分の軸方向分布を、図3に示す固有モードを励起しにくい加振力パターンとする。 In the present invention, among the radial harmonic components of the electromagnetic force generated in the air gap, the axial distribution of components whose spatial order is the pole pair number (N / 2) order (4th order in the case of an 8-pole machine) is shown in FIG. The eigenmode shown is an excitation force pattern that is difficult to excite.
 軸方向をz軸、ステータコア1の境界条件を両端フリーにしたとき、m次(m=0、1、2、3、…)の軸方向モードの径方向変位d(m,z)が数2を用いて近似的に表されると仮定し、この軸方向モードの発生を抑制可能な軸方向に平行な断面の加振力パターンを考える。なお、簡単に検討するために、構造系はステータコア1のみ、ステータコア1の軸長はロータ11コアの軸長と同じL(-L/2≦z≦L/2)とする。 When the axial direction is the z-axis and the boundary condition of the stator core 1 is free at both ends, the radial displacement d (m, z) in the m-th order (m = 0, 1, 2, 3,. And an excitation force pattern having a cross section parallel to the axial direction that can suppress the generation of the axial mode is considered. For the sake of simplicity, it is assumed that the structural system is only the stator core 1 and the axial length of the stator core 1 is L (−L / 2 ≦ z ≦ L / 2), which is the same as the axial length of the rotor 11 core.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、Dmax…径方向振幅
 径方向電磁力高調波の軸方向に平行な断面の加振力パターン(以下、加振力パターンと省略)をf(k,z)とする。ステータコア1のm次の軸方向モードを励起しないため、加振力パターンf(k,z)が満足する必要がある条件式は次式となる。
Here, Dmax... Radial amplitude An excitation force pattern (hereinafter abbreviated as excitation force pattern) having a cross section parallel to the axial direction of the radial electromagnetic force harmonic is defined as f (k, z). Since the m-th axial mode of the stator core 1 is not excited, the conditional expression that the excitation force pattern f (k, z) needs to satisfy is as follows.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、k=1、2、3、…
 したがって、図5に示す0次の軸方向モードを励起しないための条件は次式となる。
Where k = 1, 2, 3,...
Therefore, the condition for not exciting the zeroth-order axial mode shown in FIG.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 1次の軸方向モードは奇関数である。そこで、1次の軸方向モードを励起しないための条件として、k=1のときの加振力パターンf(1,z)は偶関数であるという制約条件を導入すると、次式が成り立つ。 The primary axial mode is an odd function. Accordingly, as a condition for not exciting the first-order axial mode, the following equation is established by introducing a constraint that the excitation force pattern f (1, z) when k = 1 is an even function.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 その他、ロータコア11の分割数最小、ロータコアピース間の軸長の比が簡単な整数比という制約条件を導入する。 In addition, the constraint condition that the division number of the rotor core 11 is minimum and the ratio of the axial length between the rotor core pieces is an integer ratio is introduced.
 上記制約条件より導出されるロータ構造は図6で、ロータコア11は3つのロータコアピース11a、11b(11b-1、11b-2)、11c(軸長の比は1:2:1)を1極分ずらして積層したユニット101より構成される。このロータ構成は、ロータコア11を分割した軸長の比が特許文献1の図21に記載の同期電動機の回転子構成と同じなので従来技術と呼ぶ。 The rotor structure derived from the above constraints is shown in FIG. 6, and the rotor core 11 has three rotor core pieces 11a, 11b (11b-1, 11b-2) and 11c (ratio of axial length is 1: 2: 1) as one pole. It is comprised from the unit 101 laminated by shifting. This rotor configuration is called the prior art because the ratio of the axial lengths obtained by dividing the rotor core 11 is the same as the rotor configuration of the synchronous motor described in FIG.
 次に、2次の軸方向モードを励起しないための条件を考える。図7(b)に示すように2次の軸方向モードの軸方向に平行な断面1zは軸長の1/2の位置で軸方向に平行な断面1z-1、1z-2に分解される。このとき、軸方向に平行な断面1z-1が1次の軸方向モード、軸方向に平行な断面1z-2が1次の軸方向モードの逆位相となる。これより導出されるロータ構造は図1となる。このとき、数3中でk=2とする。 Next, consider the conditions for not exciting the secondary axial mode. As shown in FIG. 7B, the cross section 1z parallel to the axial direction of the secondary axial mode is decomposed into cross sections 1z-1 and 1z-2 parallel to the axial direction at a position half the axial length. . At this time, the cross section 1z-1 parallel to the axial direction is the primary axial mode, and the cross section 1z-2 parallel to the axial direction is the reverse phase of the primary axial mode. The rotor structure derived from this is shown in FIG. At this time, k = 2 in Equation 3.
 3次の軸方向モードを励起しないための条件を考える。図7(c)に示すように3次の軸方向モードの軸方向に平行な断面1zは軸長の1/3の位置で軸方向に平行な断面1z-1、1z-2、1z-3に分解される。このとき、軸方向に平行な断面1z-1が1次の軸方向モード、軸方向に平行な断面1z-2が1次の軸方向モードの逆位相、軸方向に平行な断面1z-3が1次の軸方向モードとなる。これより導出されるロータ構造は図8となり、ロータコア11は同じ軸長の3つのユニット101-1、101-2、101-3より構成されている。ユニット101-1に対し、周方向に101-2は1極分ずれた位置、101-3は同じ位置に積層される。これを、第2の実施形態と呼ぶ。このとき、数3中でk=3とする。 Consider the conditions for not exciting the third-order axial mode. As shown in FIG. 7C, the cross section 1z parallel to the axial direction of the tertiary axial mode is a cross section 1z-1, 1z-2, 1z-3 parallel to the axial direction at a position 1/3 of the axial length. Is broken down into At this time, the cross section 1z-1 parallel to the axial direction is the primary axial mode, the cross section 1z-2 parallel to the axial direction is the opposite phase of the primary axial mode, and the cross section 1z-3 parallel to the axial direction is It becomes the primary axial direction mode. The rotor structure derived from this is shown in FIG. 8, and the rotor core 11 is composed of three units 101-1, 101-2, and 101-3 having the same axial length. With respect to the unit 101-1, 101-2 is laminated at a position shifted by one pole in the circumferential direction, and 101-3 is laminated at the same position. This is called a second embodiment. At this time, k = 3 in Equation 3.
 以上より、m次(m≧1)の軸方向モードを励起しないためには、ユニット101の軸長をL/mとし、m個のユニット101を互いに周方向に1極分ずらして積層し、ロータコア11を形成すればよいことが分かる。このとき、数3中でk=mである。 From the above, in order not to excite the m-th order (m ≧ 1) axial mode, the unit 101 is set to have an axial length of L / m, and the m units 101 are stacked so as to be shifted by one pole in the circumferential direction. It can be seen that the rotor core 11 may be formed. At this time, k = m in Equation 3.
 図9に図6、図1、図8のロータ構成における空間次数が極対数次の径方向電磁力高調波の軸方向に平行な断面の加振力パターンf(k,z)(図中、軸方向に平行な断面の加振力パターン)を示す。 FIG. 9 shows the excitation force pattern f (k, z) of the cross section parallel to the axial direction of the radial electromagnetic force harmonic in the rotor configuration of FIGS. (Excitation force pattern of a cross section parallel to the axial direction).
 振動・騒音低減のためには、多数のkとmの組み合わせについて数3を満足することが望ましい。また、v=0とならないkとmの組み合わせについては、次式で定義されるuが0に近い値となることが望ましい。 In order to reduce vibration and noise, it is desirable to satisfy Equation 3 for many combinations of k and m. For a combination of k and m that does not satisfy v = 0, it is desirable that u defined by the following equation be a value close to 0.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、Fmax…径方向電磁力高調波の振幅
 図10に本発明による実施形態1(k=2)、2(k=3)と、1段(ロータコア11を周方向に1極分ずらして積層しない)、2段(ロータコア11を軸方向で2等分割し、周方向に1極分ずらして積層)、従来技術(k=1)の軸方向に平行な断面の加振力パターンと軸方向モード次数mと数6で定義される評価値uの関係を示す。図10より従来技術、実施形態1、実施形態2ともm=0でu=0、k=mでu=0となっていることが分かる。
(本発明による回転電機での騒音低減効果) 
 図11に本発明による実施形態1、2と、1段、2段、従来技術のロータを備えた回転電機に、径方向空間4次の単位加振力を入力し、1段の音響パワーレベル最大値を0dBとした場合の計算結果を示す。図11より2段、従来技術の音響パワーレベルは-1.4dB、-6.0dBであるのに対し、実施形態1、2では-13.7dB、-33.9dBとなり騒音低減効果が大きい。
(集中巻16極24スロット機) 
 図12(a)に集中巻の回転電機に本発明の実施形態をなすスロット数24のステータコアと極数16(N=16)のロータの軸方向に垂直な断面を、図12(b)に図12(a)の永久磁石301a、301b付近を拡大した図を示す。図中、回転電機を構成するステータコア1の巻線は省略されている。ロータコア11の表面には永久磁石301a、301b間の補助突極部に1/8(2/N)の周期性を持つd軸、q軸のいずれに対しても非対称な磁気的空隙201が設けられる。集中巻の回転電機の場合、周期境界条件が同じならば、補助突極部の磁気的空隙201の有無によってトルク、トルクリプル、電磁力高調波の値は変わらない。
Here, Fmax is the amplitude of the radial electromagnetic force harmonics. FIG. 10 shows the first embodiment (k = 2), 2 (k = 3) according to the present invention, and one stage (the rotor core 11 is shifted by one pole in the circumferential direction). 2 layers (the rotor core 11 is divided into two equal parts in the axial direction and shifted by one pole in the circumferential direction), the excitation force pattern and the shaft of the cross section parallel to the axial direction of the prior art (k = 1) The relationship between the direction mode order m and the evaluation value u defined by Equation 6 is shown. From FIG. 10, it can be seen that in the prior art, the first embodiment, and the second embodiment, m = 0 and u = 0, and k = m and u = 0.
(Noise reduction effect in rotating electrical machine according to the present invention)
In FIG. 11, the fourth-stage unit excitation force in the radial direction space is input to the rotating electrical machine having the first and second embodiments according to the present invention, the first stage, the second stage, and the conventional rotor, and the first stage acoustic power level. The calculation result when the maximum value is 0 dB is shown. As shown in FIG. 11, the acoustic power level of the prior art is -1.4 dB and -6.0 dB, whereas in Embodiments 1 and 2, it is -13.7 dB and -33.9 dB, and the noise reduction effect is great.
(Concentrated winding 16 pole 24 slot machine)
FIG. 12A shows a cross section perpendicular to the axial direction of a stator core having 24 slots and a rotor having 16 poles (N = 16) forming an embodiment of the present invention in a concentrated winding rotating electric machine, and FIG. The figure which expanded the permanent magnet 301a, 301b vicinity of Fig.12 (a) is shown. In the drawing, the winding of the stator core 1 constituting the rotating electrical machine is omitted. On the surface of the rotor core 11, an auxiliary magnetic pole 201 between the permanent magnets 301a and 301b is provided with a magnetic gap 201 that is asymmetric with respect to both the d-axis and q-axis having a periodicity of 1/8 (2 / N). It is done. In the case of a concentrated winding rotating electrical machine, if the periodic boundary conditions are the same, the values of torque, torque ripple, and electromagnetic force harmonics do not change depending on the presence or absence of the magnetic gap 201 in the auxiliary salient pole.
 図13に、図12の回転電機の径方向空間0次、空間8次の電磁力高調波の計算結果を示す。図12では電磁力高調波振幅を、空間0次、回転48次高調波振幅を基準に無次元化している。 FIG. 13 shows the calculation results of the electromagnetic force harmonics in the radial space 0th order and space 8th order of the rotating electrical machine in FIG. In FIG. 12, the electromagnetic force harmonic amplitude is made dimensionless with reference to the spatial 0th order and rotational 48th order harmonic amplitudes.
 図14(a)、(b)に、実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図13の径方向空間8次の回転32次、80次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示す。図14では空間0次、回転48次の電磁力高調波を入力したときの音響パワーレベル最大値を基準に無次元化している。図14より径方向空間8次の回転32次、80次の電磁力高調波を入力した場合の音響パワーレベル最大値が実施形態1では、1段、従来技術より低減する結果となっている。
(分布巻8極48スロット機) 
 図15(a)にスロット数48のステータコアと極数8(N=8)のロータを備えた分布巻の回転電機の軸方向に垂直な断面を、図15(b)に図15(a)の永久磁石301a、301b付近を拡大した図を示す。図中、回転電機を構成するステータコア1の巻線は省略されている。ロータコア11の表面には永久磁石301aの両脇の補助突極部のロータコア11の表面に1/4(2/N)の周期性を持つd軸対称、q軸非対称な磁気的空隙201a、201bが設けられている。分布巻の場合、磁気的空隙201の有無でトルクリプル、電磁力高調波が変化する。トルクリプルの増減は磁気的空隙201の形状による。
14 (a) and 14 (b) show the analysis model of the rotating electrical machine having the first embodiment and the first stage of the prior art rotor, and the radial space 8th order rotation 32nd order and 80th order electromagnetics shown in FIG. The calculation result of the sound power level when a power harmonic is input is shown. In FIG. 14, the dimension is made non-dimensional based on the maximum value of the acoustic power level when the zeroth-order and 48th-order electromagnetic harmonics are input. As shown in FIG. 14, the maximum value of the acoustic power level when the 8th-order rotational 32nd-order and 80th-order harmonics in the radial direction space are input is one step lower than that in the conventional technique.
(Distributed winding 8-pole 48-slot machine)
FIG. 15 (a) shows a cross section perpendicular to the axial direction of a distributed winding rotating electrical machine having a stator core with 48 slots and a rotor with 8 poles (N = 8), and FIG. 15 (b) shows FIG. 15 (a). The figure which expanded the permanent magnet 301a, 301b vicinity of these is shown. In the drawing, the winding of the stator core 1 constituting the rotating electrical machine is omitted. On the surface of the rotor core 11, d-axis symmetric and q-axis asymmetric magnetic gaps 201a, 201b having a periodicity of 1/4 (2 / N) on the surface of the rotor core 11 at the auxiliary salient poles on both sides of the permanent magnet 301a. Is provided. In the case of distributed winding, torque ripple and electromagnetic force harmonics change depending on the presence or absence of the magnetic gap 201. The increase / decrease in torque ripple depends on the shape of the magnetic gap 201.
 図16に、図15の回転電機の径方向空間0次、空間4次の電磁力高調波の計算結果を示す。図15では電磁力高調波振幅を、空間0次、回転48次高調波振幅を基準に無次元化している。 FIG. 16 shows the calculation results of the electromagnetic force harmonics in the radial direction space 0th order and space 4th order of the rotating electrical machine in FIG. In FIG. 15, the electromagnetic force harmonic amplitude is made dimensionless with reference to the spatial 0th order and rotation 48th order harmonic amplitudes.
 図17(a)、(b)に、実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図16の径方向空間4次の回転-44次、52次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示す。図17では空間0次、回転48次の電磁力高調波を入力したときの音響パワーレベル最大値を基準に無次元化している。図17より径方向空間4次の回転-44次、52次の電磁力高調波を入力した場合の音響パワーレベル最大値が実施形態1では、1段、従来技術より低減する結果となっている。
(分布巻8極36スロット機) 
 図18(a)にスロット数36のステータコアと極数8(N=8)のロータを備えた分布巻の回転電機の軸方向に垂直な断面を、図18(b)に図18(a)の永久磁石301a、301b付近を拡大した図を示す。図中、回転電機を構成するステータコア1の巻線は省略されている。ロータコア11の表面には永久磁石301a、301b間の補助突極部に1/4(2/N)の周期性を持つd軸非対称、q軸対称な磁気的空隙201bが設けられている。また、ロータコア11の表面の永久磁石301a、301bが存在する円周部には1/8(1/N)の周期性を持つd軸対称、q軸対称な磁気的空隙201a、201cを構成する切欠が設けられている。磁気的空隙201a、201b、201c全体としては1/4(2/N)の周期性を持つことになる。
17 (a) and 17 (b) show the analysis model of the rotating electrical machine having the first embodiment and the first stage of the prior art rotor, and the radial space 4th order rotation-44th order, 52nd order of FIG. The calculation result of the sound power level at the time of inputting electromagnetic force harmonics is shown. In FIG. 17, the dimension is made non-dimensional based on the maximum value of the acoustic power level when the zeroth-order and 48th-order electromagnetic harmonics are input. As shown in FIG. 17, the maximum value of the acoustic power level when the radial space fourth-order rotation-44th-order and 52nd-order electromagnetic force harmonics are input is reduced by one step in the first embodiment compared to the conventional technique. .
(Distributed winding 8 pole 36 slot machine)
FIG. 18 (a) shows a cross section perpendicular to the axial direction of a distributed winding rotating electrical machine having a stator core with 36 slots and a rotor with 8 poles (N = 8), and FIG. 18 (b) shows FIG. 18 (a). The figure which expanded the permanent magnet 301a, 301b vicinity of these is shown. In the drawing, the winding of the stator core 1 constituting the rotating electrical machine is omitted. On the surface of the rotor core 11, a d-axis asymmetric and q-axis symmetric magnetic air gap 201b having a periodicity of 1/4 (2 / N) is provided at the auxiliary salient pole portion between the permanent magnets 301a and 301b. Further, d-axis symmetric and q-axis symmetric magnetic air gaps 201a and 201c having a periodicity of 1/8 (1 / N) are formed in the circumferential portion where the permanent magnets 301a and 301b exist on the surface of the rotor core 11. A notch is provided. The magnetic gaps 201a, 201b, 201c as a whole have a periodicity of 1/4 (2 / N).
 図19に、図18の回転電機の空間0次、空間4次の径方向電磁力高調波の計算結果を示す。図19では電磁力高調波振幅を、空間0次、回転72次高調波振幅を基準に無次元化している。 FIG. 19 shows the calculation results of the radial electromagnetic force harmonics of the space 0th order and space 4th order of the rotating electrical machine of FIG. In FIG. 19, the electromagnetic force harmonic amplitude is made dimensionless with reference to the spatial 0th order and rotational 72nd order harmonic amplitudes.
 図20(a)、(b)に、実施形態1と、1段、従来技術のロータを備えた回転電機の解析モデルに、図19の径方向空間4次の回転-32次、40次の電磁力高調波を入力した場合の音響パワーレベルの計算結果を示す。図20では空間0次、回転72次の電磁力高調波を入力したときの音響パワーレベル最大値を基準に無次元化している。図20より径方向空間4次の回転-32次、40次の電磁力高調波を入力した場合の音響パワーレベル最大値が実施形態1では、1段、従来技術より低減する結果となっている。
[第3、第4の実施形態] 
 ロータコアピースの軸長の比を第1、第2の実施形態とは別な制約条件で決定することを考える。
20 (a) and 20 (b) show an analysis model of the rotating electrical machine having the first embodiment and the first stage of the prior art rotor, and the radial space 4th order rotation-32nd order, 40th order in FIG. The calculation result of the sound power level at the time of inputting electromagnetic force harmonics is shown. In FIG. 20, the dimension is made non-dimensional based on the maximum value of the acoustic power level when the zeroth-order and 72nd-order electromagnetic force harmonics are input. From FIG. 20, the maximum value of the acoustic power level when the fourth-order rotation-32nd order and 40th order harmonic harmonics in the radial space are input is reduced by one step in the first embodiment compared to the prior art. .
[Third and Fourth Embodiments]
It is considered that the ratio of the axial length of the rotor core piece is determined under a constraint condition different from those in the first and second embodiments.
 第1、第2の実施形態では1次の軸方向モードを励起しないための条件として、k=1のときの加振力パターンf(1,z)は偶関数であるとした。第3、第4の実施形態では、加振力パターンf(k,z)は奇関数であるという制約条件を導入する。 In the first and second embodiments, as a condition for not exciting the primary axial mode, the excitation force pattern f (1, z) when k = 1 is an even function. In the third and fourth embodiments, a constraint condition that the excitation force pattern f (k, z) is an odd function is introduced.
 m次の軸方向モードを励起しないために追加される条件は、次式となる。 The condition added in order not to excite the m-th order axial mode is as follows.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 したがって、1次の軸方向モードを励起しないために追加される条件は、次式となる。 Therefore, the condition added in order not to excite the primary axial mode is as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 数8が成立する場合は、m=1に対して、v=0、u=0も成立する。 When Equation 8 holds, v = 0 and u = 0 also hold for m = 1.
 その他、分割数最小(軸長の半分L/2で分割数2)という制約条件を付け加える。 そ の 他 In addition, a constraint condition that the number of divisions is the minimum (half the axial length L / 2 and the number of divisions is 2) is added.
 上記制約条件より導出されるロータ構造は図21である。これを、第3の実施形態と呼ぶ。ロータコア11は4つのロータコアピース11a、11b(11b-1、11b-2)、11c(11c-1、11c-2)、11d(軸長の比は1:2:2:1)を1極分ずらして積層したユニット401より構成される。ロータコアピース11bを軸長が同じ2つのロータコアピース11b-1、11b-2で構成してもよい。ロータコアピース11cについても11bと同様である。 The rotor structure derived from the above constraints is shown in FIG. This is referred to as a third embodiment. The rotor core 11 includes four rotor core pieces 11a, 11b (11b-1, 11b-2), 11c (11c-1, 11c-2), 11d (ratio of axial length is 1: 2: 2: 1) for one pole. It is comprised from the unit 401 which shifted and laminated | stacked. The rotor core piece 11b may be composed of two rotor core pieces 11b-1 and 11b-2 having the same axial length. The rotor core piece 11c is the same as 11b.
 図2(a)にロータコアピース11a、11c、図2(b)にロータコアピース11b、11dの軸方向に垂直な断面を示す。ロータコア11の表面には1/4(=2/N)の周期性を持つ磁気的空隙201を構成する溝を設けている。永久磁石301(301a、301b)の極性(N極、S極)との位置関係を考えると、ロータコアピース11a、11cとロータコアピース11b、11dは周方向に磁気的空隙201が1極分ずれた構成となっている。図2(a)、図2(b)の構成とすることにより、ロータコアピース11a、11cとロータコアピース11b、11d間で発生する径方向の空間次数が極対数(N/2)次(機械角、8極機の場合4次)の電磁力高調波の電気角位相差はπとなる。 FIG. 2A shows the rotor core pieces 11a and 11c, and FIG. 2B shows a cross section perpendicular to the axial direction of the rotor core pieces 11b and 11d. The surface of the rotor core 11 is provided with a groove that forms a magnetic gap 201 having a periodicity of 1/4 (= 2 / N). Considering the positional relationship with the polarity (N pole, S pole) of the permanent magnet 301 (301a, 301b), the rotor core pieces 11a, 11c and the rotor core pieces 11b, 11d are displaced by one magnetic gap 201 in the circumferential direction. It has a configuration. 2A and 2B, the radial spatial order generated between the rotor core pieces 11a and 11c and the rotor core pieces 11b and 11d is pole pair (N / 2) order (mechanical angle). In the case of an 8-pole machine, the electrical angle phase difference of the fourth order electromagnetic force harmonic is π.
 なお、2次の軸方向モードは偶関数であるので、第3の実施形態はm=2に対してもv=0、u=0となる。 Note that since the secondary axial mode is an even function, in the third embodiment, v = 0 and u = 0 even for m = 2.
 図22に第4の実施形態を示す。ロータコア11は軸方向に同じ軸長の2つのユニット401-1、401-2より構成されている。ユニット401-1は大きくは4つのロータコアピース11a、11b(11b-1、11b-2)、11c(11c-1、11c-2)、11dより構成され、軸長の比は1:2:2:1である。ユニット401-2はユニット401-1と同じ構成である。このとき、数3、数6、数7中でk=2とする。
このとき、m=2に対してv=0、u=0、v´=0となる。
FIG. 22 shows a fourth embodiment. The rotor core 11 is composed of two units 401-1 and 401-2 having the same axial length in the axial direction. The unit 401-1 is mainly composed of four rotor core pieces 11 a, 11 b (11 b-1, 11 b-2), 11 c (11 c-1, 11 c-2), and 11 d, and the axial length ratio is 1: 2: 2. : 1. The unit 401-2 has the same configuration as the unit 401-1. At this time, k = 2 in Equations 3, 6, and 7.
At this time, v = 0, u = 0, and v ′ = 0 for m = 2.
 以上より、m次の軸方向モードを励起しないためには、ユニット401の軸長をL/mとし、m個のユニット401を積層し、ロータコア11を形成すればよい。このとき、数3、数6、数7中でk=mである。 From the above, in order not to excite the m-th order axial mode, the axial length of the unit 401 may be set to L / m, and the m units 401 may be stacked to form the rotor core 11. At this time, k = m in Equations 3, 6, and 7.
 図23に本発明による実施形態3、4と、1段(1極ずらしなし)、2段(ロータコアを軸方向で2等分割し、周方向に1極分ずらして積層)の軸方向に平行な断面の加振力パターンと軸方向モード次数mと数6で定義される評価値uの関係を示す。図23より従来技術、実施形態3、実施形態4ともm=0でu=0、k=mでu=0となっていることが分かる。 FIG. 23 is parallel to the axial direction of Embodiments 3 and 4 according to the present invention, one stage (no shift by one pole), and two stages (the rotor core is divided into two equal parts in the axial direction and shifted by one pole in the circumferential direction). The relationship between the excitation force pattern of a simple cross section, the axial mode order m and the evaluation value u defined by Equation 6 is shown. From FIG. 23, it can be seen that in the prior art, the third embodiment, and the fourth embodiment, m = 0 and u = 0, and k = m and u = 0.
 図24に本発明による実施形態3、4と、1段、2段のロータを備えた回転電機に、径方向空間4次の単位加振力を入力し、1段の音響パワーレベル最大値を0dBとした場合の計算結果を示す。図11より、音響パワーレベルは2段で-1.4dBであるのに対し、実施形態3、4では-9.9dB、-26.0dBとなり、騒音低減効果が大きい。
(ロータコアの軸方向断面形状) 
 図25~図30は、本発明の他の磁気的空隙201の実施例を示す。以下で説明すること以外は実施形態1~4に同じである。
In FIG. 24, the fourth-order unit excitation force in the radial direction space is input to the rotating electrical machines having the third and fourth embodiments and the first and second rotors according to the present invention, and the maximum value of the first stage acoustic power level is obtained. The calculation result in the case of 0 dB is shown. According to FIG. 11, the acoustic power level is -1.4 dB in two stages, whereas in Embodiments 3 and 4, they are -9.9 dB and -26.0 dB, and the noise reduction effect is great.
(Axial cross-sectional shape of the rotor core)
25 to 30 show another embodiment of the magnetic air gap 201 of the present invention. Except as described below, this embodiment is the same as Embodiments 1 to 4.
 図25は磁気的空隙201として、ロータコア11内の永久磁石301a、301b間の補助突極部に2/Nの周期性を持つd軸非対称、q軸対称な磁気的空隙201a、201bを構成する穴が設けられている。 In FIG. 25, as the magnetic air gap 201, d-axis asymmetric and q-axis symmetric magnetic air gaps 201a and 201b having a periodicity of 2 / N are formed in the auxiliary salient pole portions between the permanent magnets 301a and 301b in the rotor core 11. A hole is provided.
 図26は磁気的空隙201として、ロータコア11内の永久磁石301a、301b間の補助突極部に2/Nの周期性を持つd軸非対称、q軸非対称な磁気的空隙201を構成する穴が設けられている。 In FIG. 26, as the magnetic air gap 201, holes constituting the d-axis asymmetric and q-axis asymmetric magnetic air gap 201 having a periodicity of 2 / N are formed in the auxiliary salient pole portion between the permanent magnets 301 a and 301 b in the rotor core 11. Is provided.
 図27は磁気的空隙201として、ロータコア11表面に永久磁石301aの両脇の補助突極部に2/Nの周期性を持つd軸対称、q軸非対称な磁気的空隙201a、201bを構成する溝、ロータコア11内の永久磁石301a、301b間の補助突極部に2/Nの周期性を持つd軸非対称、q軸対称な磁気的空隙201cを構成する穴が設けられている。 FIG. 27 shows the magnetic air gap 201 having d-axis asymmetric and q-axis asymmetric magnetic air gaps 201 a and 201 b having a periodicity of 2 / N on the auxiliary salient poles on both sides of the permanent magnet 301 a on the surface of the rotor core 11. In the groove, an auxiliary salient pole portion between the permanent magnets 301a and 301b in the rotor core 11 is provided with a hole that forms a d-axis asymmetric and q-axis symmetric magnetic gap 201c having a periodicity of 2 / N.
 図28は磁気的空隙201として、ロータコア11表面の永久磁石301aが存在する円周部に2/Nの周期性を持つd軸対称、q軸非対称な磁気的空隙201aを構成する切欠が、ロータコア11表面の永久磁石301a、301b間の補助突極部に2/Nの周期性を持つd軸非対称、q軸対称な磁気的空隙201bを構成する溝が設けられている。 FIG. 28 shows a magnetic gap 201 having a notch constituting a d-axis symmetric and q-axis asymmetric magnetic gap 201a having a periodicity of 2 / N in the circumferential portion where the permanent magnet 301a on the surface of the rotor core 11 exists. The auxiliary salient pole portion between the 11 surface permanent magnets 301a and 301b is provided with a groove constituting a d-axis asymmetric and q-axis symmetric magnetic gap 201b having a periodicity of 2 / N.
 図29は磁気的空隙201として、ロータコア11表面の永久磁石301aが存在する円周部に2/Nの周期性を持つd軸対称、q軸非対称な磁気的空隙201aを構成する切欠が、ロータコア11表面の永久磁石301a、301b間の補助突極部に2/Nの周期性を持つd軸非対称、q軸対称な磁気的空隙201bを構成する溝が、ロータコア11内の永久磁石301a、301b間の補助突極部に2/Nの周期性を持つd軸非対称、q軸対称な磁気的空隙201cを構成する穴が設けられている。 FIG. 29 shows a magnetic gap 201 having a notch constituting a d-axis-symmetrical q-axis asymmetric magnetic gap 201a having a periodicity of 2 / N in the circumferential portion where the permanent magnet 301a on the surface of the rotor core 11 exists. The grooves constituting the d-axis asymmetric and q-axis symmetric magnetic air gap 201b having a periodicity of 2 / N in the auxiliary salient pole portion between the permanent magnets 301a and 301b on the 11 surface are the permanent magnets 301a and 301b in the rotor core 11. Between the auxiliary salient poles, there are provided holes that constitute a magnetic gap 201c that is d-axis asymmetric and q-axis symmetric with a periodicity of 2 / N.
 図30は磁気的空隙201として、ロータコア11表面の永久磁石301aが存在する円周部に2/Nの周期性を持つd軸対称、q軸非対称な磁気的空隙201を構成する切欠が設けられている。 In FIG. 30, as the magnetic air gap 201, notches constituting a d-axis symmetric and q-axis asymmetric magnetic air gap 201 having a periodicity of 2 / N are provided in the circumferential portion where the permanent magnet 301 a on the surface of the rotor core 11 exists. ing.
 図25~図30に示すように、磁気的空隙201が、ロータコア11の表面に形成した溝、切欠、またはロータコア11の内部に形成した穴、あるいはこれらの組み合わせであっても、磁気的空隙201の周期性が2/Nであればよい。 As shown in FIGS. 25 to 30, even if the magnetic air gap 201 is a groove or notch formed in the surface of the rotor core 11, a hole formed in the rotor core 11, or a combination thereof, the magnetic air gap 201 It suffices if the periodicity is 2 / N.
 以上より、本発明により、振動・騒音に影響する径方向の極対数次の空間次数(機械角)を持つ電磁力高調波に起因する振動・騒音を低減でき、その結果、回転電機の振動・騒音を低減できる。 As described above, according to the present invention, it is possible to reduce vibrations and noises caused by electromagnetic force harmonics having a spatial order (mechanical angle) in the radial pole pair order that affects vibrations and noises. Noise can be reduced.
 なお、本発明は上記した実施例の回転電機の相数、極数、スロット数に限定されるものではない。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。 Note that the present invention is not limited to the number of phases, the number of poles, and the number of slots of the rotating electrical machine of the above-described embodiment. In addition, the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.
  1…ステータコア
  1c…ステータコアの軸方向に垂直な断面
  1z…ステータコアの軸方向に平行な断面
  10…ロータ
  11…ロータコア
  11a、11b、11b-1、11b-2、11c、11c-1、11c-2、11d…ロータコアピース
  101、101-1、101-2、101-3、401、401-1、401-2…ユニット
  201、201a、201b、201c…磁気的空隙
  301、301a、301b…永久磁石
DESCRIPTION OF SYMBOLS 1 ... Stator core 1c ... Cross section perpendicular | vertical to the axial direction of a stator core 1z ... Cross section parallel to the axial direction of a stator core 10 ... Rotor 11 ... Rotor core 11a, 11b, 11b-1, 11b-2, 11c, 11c-1, 11c-2 , 11d ... Rotor core pieces 101, 101-1, 101-2, 101-3, 401, 401-1, 401-2 ... Units 201, 201a, 201b, 201c ... Magnetic air gaps 301, 301a, 301b ... Permanent magnets

Claims (7)

  1.  極数Nの磁石埋込型の回転電機のロータにおいて、
     ロータピースの表面又は内部に、磁石挿入孔から独立して設けられた磁気的空隙が設けられ、
     前記磁気的空隙は、2/Nの周期性を持つように、d軸非対称・q軸対称、d軸対称・q軸非対称、又は、d軸非対称・q軸非対称に設けられ、
     隣接する前記ロータピースの前記磁気的空隙の周方向位置が1極ずれるように、
     かつ、前記ロータピースの軸長が1:2:1となるように積層されたロータピースのユニットがk個(kは2以上の整数)、
     又は、前記ロータピースの軸長が1:2:2:1となるように積層されたロータピースのユニットがk個(kは1以上の整数)積層されて構成された回転電機のロータ。
    In a rotor of a magnet embedded rotary electric machine having N poles,
    On the surface or inside of the rotor piece, a magnetic air gap provided independently of the magnet insertion hole is provided,
    The magnetic air gap is provided to be d-axis asymmetric / q-axis symmetric, d-axis symmetric / q-axis asymmetric, or d-axis asymmetric / q-axis asymmetric so as to have a periodicity of 2 / N.
    The circumferential position of the magnetic air gap between adjacent rotor pieces is shifted by one pole,
    And k rotor piece units (k is an integer of 2 or more) laminated so that the axial length of the rotor piece is 1: 2: 1,
    Or the rotor of the rotary electric machine comprised by the unit of the rotor piece laminated | stacked so that the axial length of the said rotor piece might be set to 1: 2: 2: 1 (k is an integer greater than or equal to 1).
  2.  極数Nの磁石埋込型の回転電機のロータにおいて、
     ロータピースの表面又は内部に、磁石挿入孔から独立して設けられた磁気的空隙が設けられ、
     前記磁気的空隙は、2/Nの周期性を持つように、d軸非対称かつq軸非対称に設けられ、
     隣接する前記ロータピースの前記磁気的空隙の周方向位置が1極ずれるように積層されて構成された回転電機のロータ。
    In a rotor of a magnet embedded rotary electric machine having N poles,
    On the surface or inside of the rotor piece, a magnetic air gap provided independently of the magnet insertion hole is provided,
    The magnetic air gap is provided to be d-axis asymmetric and q-axis asymmetric so as to have a periodicity of 2 / N,
    A rotor of a rotating electrical machine configured to be stacked so that circumferential positions of the magnetic gaps of adjacent rotor pieces are shifted by one pole.
  3.  請求項2に記載の回転電機のロータにおいて、
     前記ロータコアピースの軸長は、1:2:1を1ユニットとし、前記ユニットがk個(kは2以上の整数)、
     又は、1:2:2:1を1ユニットとし、前記ユニットがk個(kは1以上の整数)積層されて構成された回転電機のロータ。
    In the rotor of the rotating electrical machine according to claim 2,
    The axial length of the rotor core piece is 1: 2: 1 as one unit, and k units (k is an integer of 2 or more),
    Alternatively, the rotor of a rotating electrical machine is configured such that 1: 2: 2: 1 is one unit, and k units (k is an integer of 1 or more) are stacked.
  4.  請求項1乃至3のいずれかに記載の回転電機のロータにおいて、
     前記磁気的空隙が、前記ロータコアの表面に形成した溝、切欠、又は前記ロータコアの内部に形成した穴である回転電機のロータ。
    In the rotor of the rotating electrical machine according to any one of claims 1 to 3,
    The rotor of a rotating electrical machine, wherein the magnetic gap is a groove, a notch, or a hole formed in the rotor core.
  5.  請求項4に記載の回転電機のロータにおいて、
     前記磁気的空隙が、前記ロータコアの表面に形成した溝、切欠、又は前記ロータコアの内部に形成した穴のいずれかの組み合わせである回転電機のロータ。
    The rotor of the rotating electrical machine according to claim 4,
    A rotor of a rotating electrical machine, wherein the magnetic air gap is a combination of any one of a groove, a notch formed in a surface of the rotor core, or a hole formed in the rotor core.
  6.  請求項1乃至5のいずれかに記載の回転電機のロータと、
     ステータとを有する回転電機であって、
     前記ステータが、スロット数が1極当り、又は1極対当りで整数となる回転電機。
    A rotor for a rotating electrical machine according to any one of claims 1 to 5,
    A rotating electric machine having a stator,
    A rotating electrical machine in which the stator has an integer number of slots per pole or per pole pair.
  7.  請求項6に記載の回転電機を備えた電動車両。 An electric vehicle comprising the rotating electrical machine according to claim 6.
PCT/JP2014/081134 2014-01-27 2014-11-26 Rotor for rotating electrical machine, rotating electrical machine using said rotor, and electric vehicle WO2015111297A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-012074 2014-01-27
JP2014012074A JP2015142386A (en) 2014-01-27 2014-01-27 Rotor for rotary electric machine, rotary electric machine employing the same, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2015111297A1 true WO2015111297A1 (en) 2015-07-30

Family

ID=53681119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081134 WO2015111297A1 (en) 2014-01-27 2014-11-26 Rotor for rotating electrical machine, rotating electrical machine using said rotor, and electric vehicle

Country Status (2)

Country Link
JP (1) JP2015142386A (en)
WO (1) WO2015111297A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612025A (en) * 2015-10-27 2017-05-03 Abb技术有限公司 Rotor and method for manufacturing same
WO2023274444A1 (en) * 2021-06-28 2023-01-05 Schaeffler Technologies AG & Co. KG Electrical machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018026952A (en) * 2016-08-10 2018-02-15 日立オートモティブシステムズエンジニアリング株式会社 Dynamo-electric machine
JP2022175328A (en) * 2021-05-13 2022-11-25 株式会社デンソー Rotor and rotary electric machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029095A (en) * 2006-07-20 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type dynamo-electric machine and compressor using the same
JP2009303447A (en) * 2008-06-17 2009-12-24 Honda Motor Co Ltd Permanent magnet motor
JP2011142735A (en) * 2010-01-07 2011-07-21 Hitachi Ltd Permanent magnet type rotary electric machine
JP2013150437A (en) * 2012-01-19 2013-08-01 Hitachi Automotive Systems Ltd Rotating electric machine, and vehicle equipped with rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029095A (en) * 2006-07-20 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type dynamo-electric machine and compressor using the same
JP2009303447A (en) * 2008-06-17 2009-12-24 Honda Motor Co Ltd Permanent magnet motor
JP2011142735A (en) * 2010-01-07 2011-07-21 Hitachi Ltd Permanent magnet type rotary electric machine
JP2013150437A (en) * 2012-01-19 2013-08-01 Hitachi Automotive Systems Ltd Rotating electric machine, and vehicle equipped with rotating electric machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106612025A (en) * 2015-10-27 2017-05-03 Abb技术有限公司 Rotor and method for manufacturing same
WO2023274444A1 (en) * 2021-06-28 2023-01-05 Schaeffler Technologies AG & Co. KG Electrical machine

Also Published As

Publication number Publication date
JP2015142386A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
US7233089B2 (en) Permanent magnet rotating electric machine
JP6422595B2 (en) Electric motor and air conditioner
JP4793249B2 (en) Permanent magnet embedded rotary electric machine, motor for car air conditioner and hermetic electric compressor
US7969058B2 (en) Permanent magnet motor with stator having asymmetric slots for reducing torque ripple
KR100751992B1 (en) Electric motor
US9059621B2 (en) Electric rotating machine
US7569962B2 (en) Multi-phase brushless motor with reduced number of stator poles
WO2020092647A1 (en) Torque ripple reduction in ac machines
US20210184523A1 (en) Rotor for an electrical machine, having asymmetrical poles
CN108696003B (en) Optimized stator teeth for electric motor/generator
JP6048191B2 (en) Multi-gap rotating electric machine
US20130106226A1 (en) Electric rotating machine
JP2008306849A (en) Rotating electrical machine
WO2015111297A1 (en) Rotor for rotating electrical machine, rotating electrical machine using said rotor, and electric vehicle
WO2018235145A1 (en) Rotating electric machine rotor
CN107078618B (en) Reluctance assisted external rotor PMSM
JP2016220382A (en) Rotor of rotary electric machine, and rotary electric machine using the same
JP4894273B2 (en) Rotating electric machine
JP2017055560A (en) Permanent magnet type rotary electric machine
JP2016192841A (en) Switched reluctance rotating machine
JP2015033245A (en) Rotor for permanent magnet motor
JP2019115205A (en) Rotor of dynamo-electric machine
KR101628150B1 (en) Rotor structure of wrsm motor
JP2020102940A (en) Rotary electric machine rotor and rotary electric machine
Akiki et al. Performance comparison of a doubly-salient motor with multi-V-shape ferrite magnets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880256

Country of ref document: EP

Kind code of ref document: A1