WO2018235145A1 - Rotating electric machine rotor - Google Patents

Rotating electric machine rotor Download PDF

Info

Publication number
WO2018235145A1
WO2018235145A1 PCT/JP2017/022580 JP2017022580W WO2018235145A1 WO 2018235145 A1 WO2018235145 A1 WO 2018235145A1 JP 2017022580 W JP2017022580 W JP 2017022580W WO 2018235145 A1 WO2018235145 A1 WO 2018235145A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
groove
axis
straight line
axis side
Prior art date
Application number
PCT/JP2017/022580
Other languages
French (fr)
Japanese (ja)
Inventor
浩平 室田
健 池見
徹 仲田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/022580 priority Critical patent/WO2018235145A1/en
Priority to JP2019524732A priority patent/JP6821022B2/en
Priority to CN201780092221.8A priority patent/CN111052546B/en
Publication of WO2018235145A1 publication Critical patent/WO2018235145A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotor of a rotating electrical machine.
  • an embedded permanent magnet type motor (interior permanent magnet motor (hereinafter referred to as an IPM motor as appropriate)) in which permanent magnets are embedded in a rotor core is known.
  • IPM motor internal permanent magnet motor
  • the IPM motor has a problem that the iron loss caused by the magnetic flux of the permanent magnet reduces the efficiency in the high rotation range. In addition, in order to suppress vibration and noise of the motor, it is also required to reduce torque ripple.
  • the induced voltage is a combination of the main component contributing to the torque and the harmonic component not contributing to the torque, but if the induced voltage is simply lowered so as not to exceed the withstand voltage of the inverter system, the main component becomes smaller and the torque is reduced. It may decrease. Therefore, in order to prevent a decrease in torque, it is necessary to reduce the peak value of the induced voltage by reducing only the harmonic component.
  • JP5516739B uses a total of three permanent magnets: a pair of V-shaped permanent magnets that open in the outer circumferential direction and a permanent magnet that is disposed in the V-shaped open portion.
  • a rotor structure in which one magnetic pole is formed and a groove is formed on the outer periphery. According to the rotor structure proposed herein, by forming the groove, it is possible to provide a motor with reduced cogging torque and induced voltage while reducing iron loss.
  • JP5516739B only defines the center position on the outer periphery of the rotor, depending on the circumferential width of the permanent magnet disposed on the outermost periphery, sufficient iron loss reduction effect can be obtained.
  • the present inventors have found that there is a problem in that the motor efficiency can not be improved.
  • the iron loss reduction effect can be sufficiently obtained by defining the circumferential width of the groove formed on the outer periphery of the rotor while considering the positional relationship with the permanent magnet disposed on the outermost periphery. Aims to provide a rotor that can be
  • the rotor of the rotating electrical machine is configured of a pair of first permanent magnets disposed in a V-shape that opens in the outer circumferential direction, and a second permanent magnet disposed in an open portion of the V-shape.
  • Rotor of a rotating electrical machine in which a plurality of magnetic poles are arranged in the circumferential direction, and in the magnet insertion hole into which the first permanent magnet is inserted, the q axis side electrically orthogonal to the d axis of the magnetic poles
  • a first air gap provided continuously with the magnet insertion hole at the end of the magnet, and a second air gap provided continuously with the magnet insertion hole at both ends of the magnet insertion hole into which the second permanent magnet is inserted
  • a straight line drawn to the outer periphery through the rotation center of the rotor and the d-axis end of the first air gap is taken as a straight line A, and drawn to the outer periphery through the rotation center and the q-axis side end of the second air gap
  • the straight line is a straight line B
  • the q-axis side end of the groove is located on the straight line A
  • the d-axis side end of the groove is located on the q-axis side of the straight line B.
  • FIG. 1 is a figure for demonstrating the rotor structure of one Embodiment.
  • FIG. 2 is a diagram showing an analysis result in which the iron loss reduction rate at the position of the groove start point is analyzed.
  • FIG. 3 is a diagram showing an analysis result obtained by analyzing a change in stress of the bridge portion according to the position of the start point of the groove.
  • FIG. 4 is a diagram for explaining an analysis result obtained by analyzing the magnetic flux density in the stator according to the outer peripheral shape of the rotor.
  • FIG. 5 is a diagram showing an analysis result obtained by analyzing the ratio of motor loss in the conventional example and one embodiment.
  • FIG. 6 is a diagram for explaining the starting point of the groove defined from the viewpoint of improving the torque performance.
  • FIG. 1 is a figure for demonstrating the rotor structure of one Embodiment.
  • FIG. 2 is a diagram showing an analysis result in which the iron loss reduction rate at the position of the groove start point is analyzed.
  • FIG. 3 is a diagram showing an
  • FIG. 7 is a diagram showing an analysis result in which a change in the first-order component of the induced voltage according to the position of the start point of the groove is analyzed.
  • FIG. 8 is a diagram for explaining the position of the start point of the groove which contributes to the reduction of the cogging torque.
  • FIG. 9 is a diagram showing an analysis result obtained by analyzing a change in cogging torque depending on the position of the groove start point.
  • FIG. 10 is a diagram showing an analysis result in which changes in the cogging torque and the first-order component of the induced voltage according to the position of the groove start point are analyzed.
  • FIG. 11 is a diagram for explaining the depth d of the groove.
  • FIG. 12 is a diagram showing an analysis result in which the iron loss reduction rate by the depth d of the groove is analyzed.
  • FIG. 13 is a view for explaining the groove of the first modification.
  • FIG. 14 is a view for explaining the groove of the second modification.
  • FIG. 15 is a view for explaining the groove of the third modification.
  • FIG. 16 is a view for explaining the groove of the fourth modification.
  • FIG. 17 is a diagram for explaining another modification.
  • FIG. 18 is a diagram showing an analysis result in which the ratio of loss in the conventional example to the reference example is analyzed.
  • FIG. 1 is a view for explaining a rotor of an embodiment to which the present invention is applied. Shown in the figure is a configuration view of a rotor (rotor) 6 included in a rotating electric machine constituting an electric motor or a generator, as viewed from a cross section perpendicular to the axial direction, which is a part of the entire configuration (one pole Minutes).
  • the rotating electric machine according to the present embodiment is a so-called IPM (Interior Permanent Magnet) type rotating electric machine in which permanent magnets are embedded in the rotor 6, and a total of three permanent magnets, a pair of permanent magnets 2 and permanent magnets 3. And a rotor having a plurality of magnetic poles formed by permanent magnet groups 30.
  • IPM Interior Permanent Magnet
  • an 8-pole structure rotor is taken as an example here, the number of poles is not limited to this.
  • various analysis data to be described below are constituted by the rotor 6 having an eight-pole structure and a stator (not shown) in which the number of slots is 48 and the stator winding is wound by distributed winding. It is assumed that the present invention is applied and analyzed to the above-described rotating electrical machine.
  • the rotor core (rotor core) 1 is formed in a cylindrical shape by a so-called laminated electromagnetic steel sheet structure formed by axially laminating a plurality of electromagnetic steel sheets having a thickness of several hundreds of ⁇ m punched into an annular shape. Further, in the rotor core 1, a magnet insertion hole 40 (hereinafter, also simply referred to as magnet hole 40) for embedding the permanent magnet 2 and a magnet insertion hole 50 (hereinafter simply referred to as the magnet hole 50) for embedding the permanent magnet 3. Air gaps 4 (first air gaps) at both circumferential end portions of the magnet hole 40, and air gaps 5 (second air gaps) at respective circumferential end portions of the magnet holes 50, respectively. It is formed continuously.
  • Magnet holes 40 and 50 are holes formed by laminating in the axial direction electromagnetic steel sheet veneers in which spaces for respectively embedding two permanent magnets 2 and one permanent magnet 3 are formed. is there.
  • the magnet hole 40 is a center portion in the circumferential direction, and a portion located closest to the rotation center is located on the d axis, and both end portions in the circumferential direction are away from the d axis and approach the q axis while approaching the rotor outer periphery. V-shaped.
  • the magnet hole 50 is formed linearly along the circumferential direction of the rotor core 1 in the open portion of the V-shaped magnet hole 40.
  • the permanent magnet group 30 is embedded in the magnet hole 40 and the magnet hole 50, and one permanent magnet 2 is embedded in one magnet hole 40, and one permanent magnet 3 is embedded in one magnet hole 50. It is done.
  • the pair of permanent magnets 2 also has a V-shaped arrangement that is linearly symmetrical with respect to the d-axis and opens in the outer peripheral direction.
  • the pair of permanent magnets 2 disposed in the magnet holes 40 and the permanent magnets 3 circumferentially disposed in the V-shaped open portion form a substantially triangular shape.
  • one magnetic pole constituted by such a substantially triangular permanent magnet group 30 is formed at a constant mechanical angle. Since the rotor 6 of the present embodiment has an eight-pole structure, permanent magnet groups 30 arranged in a substantially triangular shape are formed at a mechanical angle of 45 degrees.
  • FIG. 1 shows that one pole.
  • the permanent magnet group 30 is fixed in a state of being inserted into the corresponding position of each of the magnet holes 40 and 50 of the rotor core 1. Further, in the one magnetic pole formed by the permanent magnet group 30, the magnetic poles formed by the permanent magnet group 30 are equally spaced from each other along the circumferential direction of the rotor 6, and the polarities of adjacent magnetic poles are different from each other. Will be placed.
  • the direction of the magnetic flux generated by the permanent magnet group 30 is the d-axis (magnetic pole center), and the direction electrically perpendicular to the d-axis is the q-axis.
  • the two permanent magnets 2 are formed smaller than the magnet holes 40, and when the pair of permanent magnets 2 are embedded in the magnet holes 40, the q-axis side of the magnet holes 40 and the outer periphery of the rotor, in other words, permanent A space 4 as a space portion continuous with the magnet hole 40 is formed in a portion more on the outer peripheral side than the magnet 2.
  • the permanent magnet 3 is formed such that the width in the longitudinal direction (circumferential direction) is smaller than that of the magnet hole 50, and the circumferential end portions of the magnet hole 50, in other words, the portion on the q axis side of the permanent magnet 3
  • the air gap 5 is formed as a space portion continuous with the magnet hole 50. These space portions have lower permeability than the electromagnetic steel sheet, that is, greater magnetic resistance. Therefore, the air gaps 4 and 5 act as magnetic barriers (flux barriers) to which the magnetic flux (flux) does not easily pass in the magnetic circuit in which the permanent magnet groups 30 constitute the rotor 6.
  • a groove 10 is formed on the outer periphery of the rotor core 1 of the present embodiment toward the rotation center side of the rotor core 1 and along the axial direction of the rotor core 1.
  • the groove 10 is formed on the outer periphery of the rotor core 1 in a region from the end of the air gap 4 on the d axis side to the end of the air gap 5 on the q axis side.
  • a tangent drawn from the rotation center of rotor core 1 to the outer periphery of rotor core 1 through the tip of air gap 4 on the d axis side is taken as tangent A, and q axis of air gap 5 from rotation center of rotor core 1.
  • the groove 10 has an end (starting point) on the d axis side and an end (end point) on the q axis side in the circumferential width. Are formed to fit in the region between the tangent A and the tangent B. Details of the definition of the start point and the end point of the groove 10 will be described later.
  • the bridge portion 7 is a region of the rotor core 1 between the air gap 5 and the outer periphery, and is the thinnest portion in the surface direction of the rotor core 1.
  • JP5516739B (conventional example), a rotor structure is proposed in which one magnetic pole is configured by arranging a total of three permanent magnets in a substantially triangular shape, and a groove is formed on the outer periphery of a rotor core.
  • the groove can achieve an iron loss reducing effect by setting the groove center position. More specifically, the groove has a groove center position between the outermost permanent magnet and the q axis among a plurality of nick points cut at electrical angle intervals of one period of a torque ripple harmonic component. It is formed in the range of 1 ⁇ 4 cycle in the d-axis direction and 1 ⁇ 8 cycle in the q-axis direction with reference to the dividing point in the area of. According to such a rotor structure, it is possible to provide a motor with reduced cogging torque and induced voltage while reducing iron loss.
  • the inventors of the present invention have an iron loss reducing effect at the groove center position based on the above-mentioned feature, depending on the circumferential width of the outermost permanent magnet among the three permanent magnets forming the substantially triangular shape. It has been found that there are problems that can not be obtained sufficiently and the motor efficiency can not be improved.
  • FIG. 18 is a diagram showing an analysis result obtained by analyzing the ratio [%] of the loss in the conventional example based on the reference example having the same rotor structure as the conventional example except that no groove is formed. .
  • FIG. 18 (a) is a diagram showing the rate of loss in the low load low speed region of the motor.
  • FIG. 18B is a diagram showing the ratio of loss in the high load high speed region of the motor.
  • the loss of the conventional example is equivalent to that of the reference example having no groove particularly in a low load low speed region which is constantly utilized in a vehicle drive motor, and the motor efficiency is improved even if the groove is formed. It shows that you can not let it go.
  • the inventors of the present invention expanded the shape of the groove in the circumferential direction, and considered the positional relationship between the start point and the end point of the groove on the rotor outer periphery with the permanent magnet constituting the magnetic pole. It has been found that this can be solved by the above definition. Details will be described below.
  • the definition of the shape of the groove 10 of the present embodiment will be described. Note that the electrical angle defined in the following description is defined in the region between the d-axis and the adjacent q-axis.
  • the start point and the end point of the groove 10 lie in the range from tangent A to tangent B.
  • the position of the start point of the groove 10 is defined by ⁇ 1 which is the electrical angle from the start point to the d axis
  • the position of the end point is defined by ⁇ 2 which is the electrical angle from the end point to the d axis Do.
  • the end point of the groove 10 of the present embodiment is formed at a position substantially coincident with the tangent A. That is, the end point of the groove 10 is formed at a position where ⁇ 2 substantially coincides with the electrical angle from the tangent A to the d-axis.
  • the position of the start point will be described with reference to FIG.
  • FIG. 2 is a diagram showing an analysis result in which the iron loss reduction rate at the position of the start point of the groove 10 is analyzed when the reference example (without the groove) described above is used as a reference (100%).
  • the position of the start point of the groove 10 is defined by ⁇ 1 which is an electrical angle from the start point to the d axis (see FIG. 1).
  • the dotted line drawn near ⁇ 1 ⁇ 32 ° indicates ⁇ 0, which is the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis.
  • ⁇ 0 is defined as an electrical angle from the straight line D to the d-axis when a straight line drawn from the center of rotation to the outer periphery of the rotor 6 through the outermost circumference of the permanent magnet 3 is straight line D (FIG. 1) reference).
  • ⁇ 1 ⁇ 44 ° coincides with the electrical angle from the tangent B (see FIG. 1) drawn from the center of rotation to the outer periphery of the rotor 6 through the q-axis end of the air gap 5 to the d-axis.
  • the bridge portion 7 becomes smaller as ⁇ 1 becomes smaller, that is, as the start point is closer to the d axis side than the bridge portion 7. It can be seen that the stress of is increased. Accordingly, the start point of the groove 10 is set to be formed on the q axis side with respect to the bridge portion 7.
  • the bridge portion 7 is the thinnest portion in the surface direction of the rotor 6, and is the portion most stressed when holding the permanent magnet 3 so as not to fly out by the centrifugal force when the rotor 6 is driven. Therefore, the bridge portion 7 needs to be designed so that the stress does not exceed the material fatigue strength. Taking this into consideration, based on the analysis result shown in FIG. 3, the strength of the bridge portion 7 is secured by setting the lower limit of the start point of the groove 10 closer to the q axis than the q axis end of the air gap 5. At the same time, iron loss can be reduced.
  • the iron loss in the present specification includes stator iron loss and rotor iron loss.
  • FIG. 4 is a diagram for explaining an analysis result in which a change in magnetic flux density in the stator due to the outer peripheral shape of the rotor 6 is analyzed.
  • the figure shows the waveform of the magnetic flux density in the stator corresponding to the outer peripheral shape of the rotor 6.
  • the solid line indicates this embodiment, the one-dot and dash line indicates the conventional example, the two-dot and dash line indicates the reference example, and the dotted line indicates the ideal waveform (sine wave).
  • the dotted line L1 indicates the d axis, L2 indicates the start point of the groove 10 in the present embodiment, L3 indicates the start point of the groove in the conventional example, and L4 indicates the end points of the groove 10 of the present embodiment and the conventional example. There is.
  • the magnetic flux waveform of the rotor having one magnetic pole configured by arranging three permanent magnets in a substantially triangular shape is the magnet magnetic flux from the pair of permanent magnets 2 arranged in a V shape and the permanent magnet 3 Because it is a composition of the magnet flux from ⁇ , it contains many harmonic components.
  • the groove is provided on the outer periphery of such a rotor, the magnetic resistance of the groove portion is increased, so that the magnetic flux of the magnet interlinking from the groove portion to the stator side is reduced. That is, by controlling the magnet magnetic flux (rotor magnetic flux) from the rotor 6 by setting the circumferential width of the groove, it is possible to make the magnetic flux waveform approximate to a sine wave which is an ideal waveform shape. By bringing the rotor flux closer to a sine wave, the harmonic component of the flux density in the stator is consequently reduced.
  • the circumferential width of the groove 10 of this embodiment is formed much wider than that of the conventional example, so that the magnetic flux waveform approaches an ideal sine wave as compared with the conventional example.
  • the magnetic flux waveform of the present embodiment is closer to at least an ideal sine wave than the conventional example.
  • FIG. 5 is a diagram showing an analysis result obtained by analyzing the ratio [%] of motor loss in the conventional example and the present embodiment when the reference example (without the groove) is used as a reference (100%).
  • FIG. 5A is a diagram showing the rate of loss in the low load low speed region of the motor.
  • FIG. 5 (b) is a diagram showing the rate of loss in the high load high speed region of the motor. From the figure, it can be seen that the rotor 6 of the present embodiment can reduce the motor loss compared to the reference example and the conventional example.
  • the core loss mainly includes hysteresis loss and eddy current loss.
  • the magnetic flux waveform is brought close to a sine wave to suppress harmonic components of the magnetic flux density in the stator at high rotation Iron loss can be significantly reduced.
  • the core loss can be reduced by bringing the rotor magnetic flux closer to a sine wave by the groove 10, and as a result, as shown in FIG.
  • the motor loss can be reduced and the motor efficiency can be improved even in the low load low speed region which is a steady region.
  • FIG. 6 is a diagram for explaining the starting point of the groove 10 defined from the viewpoint of improving the torque performance.
  • the position of the starting point is defined by the electrical angle ⁇ 1 from the d-axis.
  • the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis is defined by ⁇ 0.
  • the electrical angle from the straight line C to the d axis is defined as ⁇ i.
  • the starting point of the groove 10 is formed to satisfy the following formula (1).
  • FIG. 7 is a diagram showing an analysis result in which a change in the first-order component of the induced voltage according to the position of the start point of the groove 10 is analyzed.
  • the horizontal axis indicates the ratio [%] of the primary component of the induced voltage when ⁇ 1 [°] is used as a reference (100%) in the reference example (without the groove).
  • the dotted line drawn at ⁇ 1 ⁇ ⁇ 32 ° indicates ⁇ 0 which is the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis
  • the dotted line drawn at ⁇ 1 78 78 ° indicates the permanent magnet 2
  • the electric angle ⁇ i from the outermost peripheral portion of to the d-axis is shown.
  • a dotted line drawn to ⁇ 14747 ° in the figure indicates an electrical angle that satisfies the above equation (1) in this embodiment.
  • the primary component of the induced voltage shown in the drawing is the fundamental wave of the induced voltage excluding
  • the torque of the IPM motor is a torque obtained by combining the magnet torque and the reluctance torque.
  • the magnet torque increases in proportion to the magnitude of the primary component of the induced voltage generated by the magnet flux flowing from the rotor 6 to the stator.
  • the upper limit of ⁇ 1 may be set to an electrical angle that satisfies the desired torque performance. For example, based on the analysis result of FIG. 7, the upper limit may be set to about ⁇ 1 ⁇ 68 ° as a range in which the torque performance is improved compared to the reference example. However, if the iron loss reduction effect described above with reference to FIG. 2 is taken into consideration, ⁇ 1 ⁇ 65 ° or so may be good, so it may be set appropriately according to the purpose.
  • the cogging torque is positive or negative torque generated due to the relative positional relationship between the stator and the rotor when the rotor rotates even when no current is supplied, and is a torque that causes motor vibration and noise.
  • FIG. 8 is a diagram for explaining the position of the start point of the groove 10 contributing to the reduction of the cogging torque.
  • the harmonic components of the torque ripple corresponding to the outer peripheral shape of the rotor 6 shown in the lower part of the figure are shown in the upper part of the figure, corresponding to the electrical angle [°], with the d axis as the start point.
  • the position of the start point of the groove 10 capable of effectively reducing the cogging torque is, for example, the position of the start point of the groove 10 set within a range where the cogging torque can be made lower than in the reference example in which the groove is not formed. It is defined as Here, as described in the upper part of FIG. 8, a plurality of notched points obtained by cutting from the d axis to the q axis at electrical angle intervals of one period of the harmonic component of torque ripple is taken as point E on the outer periphery of the rotor 6.
  • the start point of the groove 10 according to the present embodiment is formed in a region from a position shifted by 1 ⁇ 5 cycle on the d axis side with respect to the point E to a position shifted by 1 ⁇ 3 cycle to the q axis side See the double arrows in the figure).
  • the cogging torque reduction effect when the groove 10 is formed in this manner will be described with reference to FIG.
  • FIG. 9 is a diagram showing an analysis result in which a change in cogging torque according to the position of the start point of the groove 10 is analyzed.
  • the ratio [%] of the cogging torque according to ⁇ 1 defining the position of the start point of the groove 10 when the reference example (without the groove) is used as a reference (100%) is shown above the figure.
  • the harmonic component of the torque ripple which serves as an index when defining the position of the start point of the groove 10 is shown according to ⁇ 1 [°].
  • FIG. 10 is a diagram showing an analysis result in which changes in the cogging torque and the first-order component of the induced voltage according to the position of the start point of the groove 10 are analyzed.
  • FIG. 10 is a diagram in which the change of the primary component of the induced voltage according to the start point position of the groove 10 described in FIG. 7 is superimposed and displayed in FIG. 9 described above.
  • a line drawn near ⁇ 1 ⁇ 47 ° is an electrical angle that satisfies ( ⁇ i ⁇ 0) / 3 + ⁇ 0 shown in the above equation (1).
  • the position of the start point of the groove 10 described with reference to FIG. By generalizing the equation, it can be easily used for design. That is, assuming that the order of harmonic components of torque ripple is n and the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis is ⁇ 0, the minimum satisfying m ⁇ (2 ⁇ / n)> ⁇ 0 When the integer of n is m, the start point of the groove 10 is formed in the range from the position satisfying the following expression (2) to the position satisfying the following expression (3).
  • FIG. 11 is a diagram for explaining the depth d of the groove 10.
  • the depth d of the groove 10 is from the deepest point to the virtual outer periphery on the line F drawn from the rotational center of the rotor 6 to the virtual outer periphery of the rotor 6 through the deepest point on the rotational central side of the groove Defined as the distance of
  • the rotor 6 is accommodated on the inner peripheral side of the stator 20 via a space (gap 21) of a predetermined distance.
  • the length g of the gap 21 is defined as the shortest distance connecting the inner periphery of the stator 20 and the outer periphery of the rotor 6.
  • the depth d of the groove 10 is formed to satisfy d ⁇ 4 ⁇ g.
  • FIG. 12 is a graph showing an analysis result of an iron loss reduction rate by the depth d of the groove 10 when the reference example (no groove) is used as a reference (iron loss reduction rate: 100%, cogging torque: 1) It is.
  • the depth d of the groove 10 indicated by the horizontal axis is represented by a multiple of the length a of the gap 21.
  • the depth d of the groove 10 is d> 4 ⁇ g as described above, it is possible to provide a motor with a low cogging torque while reducing iron loss.
  • the depth d of the groove 10 is d> 4 ⁇ g, the core loss gradually increases, which is not preferable. This is because as the depth of the groove 10 is increased, the magnetic flux waveform of the present embodiment shown in FIG. 4 is separated from the ideal sine wave system.
  • the rotor (rotor 6) of the rotating electrical machine is disposed in the V-shaped open portion and the pair of first permanent magnets (permanent magnet 2) disposed in the V-shape opening in the outer peripheral direction. It is a rotor 6 of a rotating electrical machine in which a plurality of magnetic poles constituted by the second permanent magnets (permanent magnets 3) are arranged in the circumferential direction, and the magnetic insertion holes 40 into which the permanent magnets 2 are inserted Of the first air gap (air gap 4) provided continuously with the magnet insertion hole 40 at the end on the q axis side, which is electrically orthogonal to the d axis formed by the magnet, and the magnet insertion hole 50 in which the permanent magnet 3 is inserted
  • a second air gap (air gap 5) provided continuously with the magnet insertion hole 50 at both end portions, and a groove 10 formed along the axial direction of the rotor 6 on the outer periphery of the rotor 6 are provided.
  • a straight line drawn to the outer periphery through the rotation center of the rotor 6 and the d-axis side end of the air gap 4 is taken as a straight line A
  • a straight line drawn to the outer periphery through the rotation center and the q-axis side end of the air gap 5 Is a straight line B
  • the q-axis side end (end point) of the groove is located on the straight line A
  • the d-axis side end (starting point) of the groove is located on the q-axis side of the straight line B.
  • the magnetic flux waveform from the rotor 6 approaches a sine wave which is an ideal waveform shape, and harmonic components of the magnetic flux density in the stator are reduced, so that iron loss can be reduced and motor efficiency can be improved. it can.
  • the starting point of the groove 10 is set to be located on the q axis side of the straight line B, and the radial width of the bridge portion 7 is not narrowed, so the stress of the bridge portion 7 is not deteriorated.
  • the electrical angle from the d-axis end of the groove 10 to the d-axis is ⁇ 1
  • the rotation center is drawn from the rotation center to the outer periphery through the outermost periphery of the permanent magnet 2
  • the straight line is a straight line C
  • the electrical angle from the straight line C to the d axis is ⁇ i
  • the straight line drawn from the rotation center to the outer circumference through the outermost periphery of the permanent magnet 2 is a straight line
  • the electrical angle from D to d axis is ⁇ 0
  • the d-axis side end of the groove 10 is formed at a position satisfying ( ⁇ i ⁇ 0) / 3 + ⁇ 0 ⁇ 1.
  • the magnet flux contributing to the torque can be induced to the d-axis side more, and the primary component of the induced voltage can be increased, so that a larger torque can be obtained with a small current, and the motor loss can be reduced. it can.
  • the d-axis side end of the groove is formed in a region from a position shifted by 1 ⁇ 5 cycle on the d-axis side with respect to the point E to a position shifted by 1 ⁇ 3 cycle on the q-axis side.
  • the d-axis side end portion is formed in a region from a position satisfying m ⁇ (2 ⁇ / n) ⁇ (2 ⁇ / n) / 5 to a position satisfying m ⁇ (2 ⁇ / n) ⁇ (2 ⁇ / n) / 3 Be done.
  • the stator 20 further includes the stator 20 in which the rotor 6 is accommodated on the inner peripheral side, and the gap between the inner periphery of the stator 20 and the outer periphery of the rotor 6 Assuming that a distance of 21 is g, a line drawn from the rotation center of the rotor 6 through the deepest point on the rotation center side of the groove 10 to the virtual outer periphery of the rotor 6 is the distance from the deepest point to the virtual outer periphery When d is d, the groove 10 is formed to satisfy d ⁇ 4 ⁇ g. Thereby, a motor with low cogging torque can be provided while reducing iron loss.
  • FIG. 13 is a view for explaining the shape of the groove 10 according to the first modification. As illustrated, the shape of the groove 10 does not necessarily have to be formed in a triangular shape, and may be a rectangular shape as illustrated.
  • FIG. 14 is a view for explaining the shape of the groove 10 according to the second modification. As illustrated, the shape of the groove 10 may be formed in a circular arc shape convex toward the rotation center side.
  • FIG. 15 is a view for explaining the shape of the groove 10 according to the third modification. As illustrated, the shape of the groove 10 may be formed in a trapezoidal shape convex toward the rotation center side.
  • FIG. 16 is a view for explaining the shape of the groove 10 according to the fourth modification.
  • the groove 10 may be formed to include one or more deeper grooves 11 in a part thereof.
  • the depth d of the groove defined above is the depth of the deepest groove (groove 11) in the groove 10.
  • the air gaps 4 and 5 are described as being space portions, but they need not necessarily be spaces, and may be filled with a nonmagnetic material such as a resin material.
  • the shapes of the gaps 4 and 5 included in the above-described rotor 6 are not limited to the shapes described in FIG. 1 and the like, and may be appropriately changed.
  • the air gap 4 disclosed in FIG. 1 or the like is a strip formed substantially parallel to the q axis at the q axis end of the permanent magnet 2, but has a curved portion as shown in FIG. It may be. Even in this case, as illustrated, a line drawn to the outer periphery through the rotation center of the rotor and the d-axis side end of the air gap 4 is defined as a straight line A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The rotating electric machine rotor according to one embodiment of the present invention has a plurality of magnetic poles arranged in a circumferential direction, said magnetic poles each being constituted by a pair of first permanent magnets arranged in a V-shape opening in the outer circumferential direction and a second permanent magnet arranged in a section where the V-shape opens. The rotating electric machine rotor is provided with: a first air gap provided, at an end portion of a magnet insertion hole into which the first permanent magnets are inserted, continuously from said magnet insertion hole, said end portion being located on the side of the q-axis electrically orthogonal to the d-axis constituted by one magnetic pole; a second air gap provided, at both end portions of a magnet insertion hole into which the second permanent magnet is inserted, continuously from said magnet insertion hole; and a groove formed on the outer circumference of the rotor along the axis direction of the rotor. When a line drawn through the rotation center of the rotor and the end portion of the first air gap on the d-axis side up to the outer circumference is defined as a line A and a line drawn through the rotation center and the end portion of the second air gap on the q-axis side up to the outer circumference is defined as a line B, the end portion of the groove on the q-axis side is located on the line A and the end portion of the groove on the d-axis side is located on the q-axis side from the line B.

Description

回転電機の回転子Rotor of electric rotating machine
 本発明は、回転電機の回転子に関する。 The present invention relates to a rotor of a rotating electrical machine.
 電気自動車やハイブリッド車両等といった電動車両の駆動用電動機として、ロータコアに永久磁石が埋め込まれた埋め込み磁石型永久磁石式電動機(Interior Permanent Magnet モータ(以下、適宜IPMモータと称する))が知られている。 As a driving motor of an electric vehicle such as an electric car or a hybrid vehicle, an embedded permanent magnet type motor (interior permanent magnet motor (hereinafter referred to as an IPM motor as appropriate)) in which permanent magnets are embedded in a rotor core is known. .
 IPMモータには、永久磁石の磁束によって生じる鉄損によって高回転域での効率が低下するという問題がある。また、電動機の振動や騒音を抑えるために、トルクリプルを低下させることも求められる。 The IPM motor has a problem that the iron loss caused by the magnetic flux of the permanent magnet reduces the efficiency in the high rotation range. In addition, in order to suppress vibration and noise of the motor, it is also required to reduce torque ripple.
 さらに、インバータ部品の耐久性確保の観点からは、誘起電圧のピーク値がインバータシステムの耐電圧を超えないようにする必要もある。誘起電圧はトルクに寄与する主成分と、トルクに寄与しない高調波成分との合成でなるところ、単に誘起電圧をインバータシステムの耐電圧を超えないように低くすると、主成分が小さくなってトルクが低下するおそれがある。そこで、トルクの低下を防止するためには、高調波成分のみを低減することで誘起電圧のピーク値を低下させる必要がある。 Furthermore, from the viewpoint of securing the durability of the inverter component, it is also necessary to make the peak value of the induced voltage not exceed the withstand voltage of the inverter system. The induced voltage is a combination of the main component contributing to the torque and the harmonic component not contributing to the torque, but if the induced voltage is simply lowered so as not to exceed the withstand voltage of the inverter system, the main component becomes smaller and the torque is reduced. It may decrease. Therefore, in order to prevent a decrease in torque, it is necessary to reduce the peak value of the induced voltage by reducing only the harmonic component.
 これらの要求を満たすために、JP5516739Bでは、外周方向に開くV字型に配置された一対の永久磁石、及び、V字型の開いた部分に配置された永久磁石の計3枚の永久磁石により一磁極が構成され、且つ、外周に溝が形成された回転子構造が提案されている。ここで提案された回転子構造によれば、該溝が形成されることにより、鉄損を低減しつつ、コギングトルクと誘起電圧とを低下させたモータを提供することができる。 In order to meet these requirements, JP5516739B uses a total of three permanent magnets: a pair of V-shaped permanent magnets that open in the outer circumferential direction and a permanent magnet that is disposed in the V-shaped open portion. There has been proposed a rotor structure in which one magnetic pole is formed and a groove is formed on the outer periphery. According to the rotor structure proposed herein, by forming the groove, it is possible to provide a motor with reduced cogging torque and induced voltage while reducing iron loss.
 しかしながら、JP5516739Bに開示された溝は、回転子の外周における中心位置が規定されているにすぎないため、最外周に配置された永久磁石の周方向幅によっては鉄損低減効果を十分に得ることができず、モータ効率を向上させることができない課題があることが本発明者らによって見出された。 However, since the groove disclosed in JP5516739B only defines the center position on the outer periphery of the rotor, depending on the circumferential width of the permanent magnet disposed on the outermost periphery, sufficient iron loss reduction effect can be obtained. The present inventors have found that there is a problem in that the motor efficiency can not be improved.
 そこで、本発明では、最外周に配置された永久磁石との位置関係を考慮しながら、回転子の外周に形成される溝の周方向幅を規定することにより、鉄損低減効果を十分に得ることができる回転子を提供することを目的とする。 Therefore, in the present invention, the iron loss reduction effect can be sufficiently obtained by defining the circumferential width of the groove formed on the outer periphery of the rotor while considering the positional relationship with the permanent magnet disposed on the outermost periphery. Aims to provide a rotor that can be
 本発明の一態様における回転電機の回転子は、外周方向に開くV字型に配置された一対の第1永久磁石と、V字型の開いた部分に配置された第2永久磁石とで構成される一磁極が周方向に複数配置された回転電機の回転子であって、第1永久磁石が挿入される磁石挿入孔において、一磁極が構成するd軸と電気的に直交するq軸側の端部に当該磁石挿入孔と連続して設けられた第1空隙と、第2永久磁石が挿入される磁石挿入孔の両端部に当該磁石挿入孔と連続して設けられた第2空隙と、回転子の外周に、回転子の軸方向に沿って形成された溝とを備える。そして、回転子の回転中心と第1空隙のd軸側端部とを通って外周まで引いた直線を直線Aとし、回転中心と第2空隙のq軸側端部とを通って外周まで引いた直線を直線Bとした場合に、溝のq軸側端部は直線A上に位置し、溝のd軸側端部は直線Bよりもq軸側に位置する。 The rotor of the rotating electrical machine according to one aspect of the present invention is configured of a pair of first permanent magnets disposed in a V-shape that opens in the outer circumferential direction, and a second permanent magnet disposed in an open portion of the V-shape. Rotor of a rotating electrical machine in which a plurality of magnetic poles are arranged in the circumferential direction, and in the magnet insertion hole into which the first permanent magnet is inserted, the q axis side electrically orthogonal to the d axis of the magnetic poles A first air gap provided continuously with the magnet insertion hole at the end of the magnet, and a second air gap provided continuously with the magnet insertion hole at both ends of the magnet insertion hole into which the second permanent magnet is inserted And a groove formed along an axial direction of the rotor on an outer periphery of the rotor. Then, a straight line drawn to the outer periphery through the rotation center of the rotor and the d-axis end of the first air gap is taken as a straight line A, and drawn to the outer periphery through the rotation center and the q-axis side end of the second air gap When the straight line is a straight line B, the q-axis side end of the groove is located on the straight line A, and the d-axis side end of the groove is located on the q-axis side of the straight line B.
 本発明の実施形態については、添付された図面とともに以下に詳細に説明する。 Embodiments of the present invention will be described in detail below in conjunction with the attached drawings.
図1は、一実施形態の回転子構造を説明するための図である。FIG. 1 is a figure for demonstrating the rotor structure of one Embodiment. 図2は、溝の開始点の位置による鉄損低減率を解析した解析結果を示す図である。FIG. 2 is a diagram showing an analysis result in which the iron loss reduction rate at the position of the groove start point is analyzed. 図3は、溝の開始点の位置によるブリッジ部の応力の変化を解析した解析結果を示す図である。FIG. 3 is a diagram showing an analysis result obtained by analyzing a change in stress of the bridge portion according to the position of the start point of the groove. 図4は、ロータの外周形状によるステータにおける磁束密度を解析した解析結果を説明するための図である。FIG. 4 is a diagram for explaining an analysis result obtained by analyzing the magnetic flux density in the stator according to the outer peripheral shape of the rotor. 図5は、従来例と一実施形態のモータ損失の割合を解析した解析結果を示す図である。FIG. 5 is a diagram showing an analysis result obtained by analyzing the ratio of motor loss in the conventional example and one embodiment. 図6は、トルク性能を向上させる観点から規定される溝の開始点を説明するための図である。FIG. 6 is a diagram for explaining the starting point of the groove defined from the viewpoint of improving the torque performance. 図7は、溝の開始点の位置による誘起電圧の1次成分の変化を解析した解析結果を示す図である。FIG. 7 is a diagram showing an analysis result in which a change in the first-order component of the induced voltage according to the position of the start point of the groove is analyzed. 図8は、コギングトルク低減に寄与する溝の開始点の位置を説明するための図である。FIG. 8 is a diagram for explaining the position of the start point of the groove which contributes to the reduction of the cogging torque. 図9は、溝の開始点の位置によるコギングトルクの変化を解析した解析結果を示す図である。FIG. 9 is a diagram showing an analysis result obtained by analyzing a change in cogging torque depending on the position of the groove start point. 図10は、溝の開始点の位置によるコギングトルク及び誘起電圧の1次成分の変化を解析した解析結果を示す図である。FIG. 10 is a diagram showing an analysis result in which changes in the cogging torque and the first-order component of the induced voltage according to the position of the groove start point are analyzed. 図11は、溝の深さdを説明するための図である。FIG. 11 is a diagram for explaining the depth d of the groove. 図12は、溝の深さdによる鉄損低減率を解析した解析結果を示す図である。FIG. 12 is a diagram showing an analysis result in which the iron loss reduction rate by the depth d of the groove is analyzed. 図13は、変形例1の溝を説明するための図である。FIG. 13 is a view for explaining the groove of the first modification. 図14は、変形例2の溝を説明するための図である。FIG. 14 is a view for explaining the groove of the second modification. 図15は、変形例3の溝を説明するための図である。FIG. 15 is a view for explaining the groove of the third modification. 図16は、変形例4の溝を説明するための図である。FIG. 16 is a view for explaining the groove of the fourth modification. 図17は、その他の変形例を説明するための図である。FIG. 17 is a diagram for explaining another modification. 図18は、参考例に対する従来例の損失の割合を解析した解析結果を示す図である。FIG. 18 is a diagram showing an analysis result in which the ratio of loss in the conventional example to the reference example is analyzed.
 -実施形態-
 図1は、本発明が適用される一実施形態の回転子を説明するための図である。同図に表されるのは、電動機或いは発電機を構成する回転電機が備える回転子(ロータ)6を軸方向に垂直な断面から見た構成図であって、構成全体の一部(一極分)である。本実施形態の回転電機は、ロータ6の内部に永久磁石が埋設されたいわゆるIPM(Interior Permanent Magnet)型の回転電機であり、一対の永久磁石2と、永久磁石3の計3枚の永久磁石からなる永久磁石グループ30により構成された一磁極を複数有する回転子を備える。
-Embodiment-
FIG. 1 is a view for explaining a rotor of an embodiment to which the present invention is applied. Shown in the figure is a configuration view of a rotor (rotor) 6 included in a rotating electric machine constituting an electric motor or a generator, as viewed from a cross section perpendicular to the axial direction, which is a part of the entire configuration (one pole Minutes). The rotating electric machine according to the present embodiment is a so-called IPM (Interior Permanent Magnet) type rotating electric machine in which permanent magnets are embedded in the rotor 6, and a total of three permanent magnets, a pair of permanent magnets 2 and permanent magnets 3. And a rotor having a plurality of magnetic poles formed by permanent magnet groups 30.
 なお、ここでは8極構造のロータを例に挙げるが、極数についてはこれに限定されるものではない。ただし、以下に説明する種々の解析データは、8極構造のロータ6と、スロット数が48であって、且つ、固定子巻線が分布巻きによって巻き回されたステータ(不図示)とで構成された回転電機に本発明を適用して解析されたことを前提とする。 Although an 8-pole structure rotor is taken as an example here, the number of poles is not limited to this. However, various analysis data to be described below are constituted by the rotor 6 having an eight-pole structure and a stator (not shown) in which the number of slots is 48 and the stator winding is wound by distributed winding. It is assumed that the present invention is applied and analyzed to the above-described rotating electrical machine.
 回転子コア(ロータコア)1は、厚さ数百μmの電磁鋼板を円環状に打ち抜き加工したものを軸方向に積層して形成された、いわゆる積層電磁鋼板構造によって円筒形に構成されている。また、ロータコア1には、永久磁石2を埋設するための磁石挿入孔40(以下、単に磁石孔40ともいう)と、永久磁石3を埋設するための磁石挿入孔50(以下単に磁石孔50ともいう)が形成されるとともに、磁石孔40の周方向両端部には空隙4(第1空隙)が、磁石孔50の周方向両端部には空隙5(第2空隙)がそれぞれの磁石孔と連続して形成されている。 The rotor core (rotor core) 1 is formed in a cylindrical shape by a so-called laminated electromagnetic steel sheet structure formed by axially laminating a plurality of electromagnetic steel sheets having a thickness of several hundreds of μm punched into an annular shape. Further, in the rotor core 1, a magnet insertion hole 40 (hereinafter, also simply referred to as magnet hole 40) for embedding the permanent magnet 2 and a magnet insertion hole 50 (hereinafter simply referred to as the magnet hole 50) for embedding the permanent magnet 3. Air gaps 4 (first air gaps) at both circumferential end portions of the magnet hole 40, and air gaps 5 (second air gaps) at respective circumferential end portions of the magnet holes 50, respectively. It is formed continuously.
 磁石孔40、50は、二つの永久磁石2と、一つの永久磁石3とをそれぞれ埋設するための空間が形成された電磁鋼板単板が軸方向に積層されることで形成される孔部である。 Magnet holes 40 and 50 are holes formed by laminating in the axial direction electromagnetic steel sheet veneers in which spaces for respectively embedding two permanent magnets 2 and one permanent magnet 3 are formed. is there.
 磁石孔40は、周方向における中央部分であって最も回転中心側に位置する部分がd軸上に位置し、周方向両端部分はd軸から離れてq軸に近づくとともにロータ外周に近づく、いわゆるV字型に形成される。 The magnet hole 40 is a center portion in the circumferential direction, and a portion located closest to the rotation center is located on the d axis, and both end portions in the circumferential direction are away from the d axis and approach the q axis while approaching the rotor outer periphery. V-shaped.
 磁石孔50は、V字型の磁石孔40の開いた部分に、ロータコア1の周方向に沿って直線的に形成される。 The magnet hole 50 is formed linearly along the circumferential direction of the rotor core 1 in the open portion of the V-shaped magnet hole 40.
 永久磁石グループ30は、磁石孔40及び磁石孔50に埋め込まれており、一つの磁石孔40には1対の永久磁石2が、一つの磁石孔50には、一つの永久磁石3がそれぞれ埋め込まれている。 The permanent magnet group 30 is embedded in the magnet hole 40 and the magnet hole 50, and one permanent magnet 2 is embedded in one magnet hole 40, and one permanent magnet 3 is embedded in one magnet hole 50. It is done.
 図示するとおり、磁石孔40はd軸に対して線対称な形状なので、一対の永久磁石2もd軸に対して線対称な、外周方向に開くV字型の配置となる。そして、磁石孔40に配置された1対の永久磁石2と、V字型の開いた部分に周方向に配置された永久磁石3とで略三角形状を形成する。ロータ6には、このような略三角形に配置された永久磁石グループ30により構成される一磁極が一定の機械角毎に形成される。本実施形態のロータ6は8極構造である為、略三角形状に配置された永久磁石グループ30が、機械角45度毎に形成される。図1が示すのはその一極分である。 As illustrated, since the magnet holes 40 are linearly symmetrical with respect to the d-axis, the pair of permanent magnets 2 also has a V-shaped arrangement that is linearly symmetrical with respect to the d-axis and opens in the outer peripheral direction. The pair of permanent magnets 2 disposed in the magnet holes 40 and the permanent magnets 3 circumferentially disposed in the V-shaped open portion form a substantially triangular shape. In the rotor 6, one magnetic pole constituted by such a substantially triangular permanent magnet group 30 is formed at a constant mechanical angle. Since the rotor 6 of the present embodiment has an eight-pole structure, permanent magnet groups 30 arranged in a substantially triangular shape are formed at a mechanical angle of 45 degrees. FIG. 1 shows that one pole.
 永久磁石グループ30は、ロータコア1の磁石孔40、50のそれぞれの対応する箇所に挿入された状態で固定される。また、永久磁石グループ30が構成する一磁極は、ロータ6の周方向に沿って、永久磁石グループ30が構成する磁極が互いに等間隔で、且つ、隣接する磁極の極性が互いに異極性となるように配置される。この永久磁石グループ30がつくる磁束の方向がd軸(磁極中心)であり、d軸に対して電気的磁気的に直交する方向がq軸である。 The permanent magnet group 30 is fixed in a state of being inserted into the corresponding position of each of the magnet holes 40 and 50 of the rotor core 1. Further, in the one magnetic pole formed by the permanent magnet group 30, the magnetic poles formed by the permanent magnet group 30 are equally spaced from each other along the circumferential direction of the rotor 6, and the polarities of adjacent magnetic poles are different from each other. Will be placed. The direction of the magnetic flux generated by the permanent magnet group 30 is the d-axis (magnetic pole center), and the direction electrically perpendicular to the d-axis is the q-axis.
 二枚の永久磁石2は、磁石孔40よりも小さく形成されており、磁石孔40に一対の永久磁石2が埋め込まれた場合、磁石孔40におけるq軸側かつロータ外周側、換言すると、永久磁石2よりもより外周側の部分には、磁石孔40と連続する空間部分としての空隙4が形成される。 The two permanent magnets 2 are formed smaller than the magnet holes 40, and when the pair of permanent magnets 2 are embedded in the magnet holes 40, the q-axis side of the magnet holes 40 and the outer periphery of the rotor, in other words, permanent A space 4 as a space portion continuous with the magnet hole 40 is formed in a portion more on the outer peripheral side than the magnet 2.
 同様に、永久磁石3は、長手方向(周方向)の幅が磁石孔50よりも小さく形成されており、磁石孔50の周方向両端部分、換言すると、永久磁石3よりもq軸側の部分には、磁石孔50と連続する空間部分としての空隙5が形成される。これら空間部分は、電磁鋼板よりも透磁率が低く、すなわち磁気抵抗が大きい。したがって、空隙4、5は、永久磁石グループ30がロータ6に構成する磁気回路において、磁束(フラックス)が通りにくい磁気的障壁(フラックスバリア)として作用する。 Similarly, the permanent magnet 3 is formed such that the width in the longitudinal direction (circumferential direction) is smaller than that of the magnet hole 50, and the circumferential end portions of the magnet hole 50, in other words, the portion on the q axis side of the permanent magnet 3 The air gap 5 is formed as a space portion continuous with the magnet hole 50. These space portions have lower permeability than the electromagnetic steel sheet, that is, greater magnetic resistance. Therefore, the air gaps 4 and 5 act as magnetic barriers (flux barriers) to which the magnetic flux (flux) does not easily pass in the magnetic circuit in which the permanent magnet groups 30 constitute the rotor 6.
 そして、本実施形態のロータコア1の外周には、ロータコア1の回転中心側に向かって、かつ、ロータコア1の軸方向に沿って溝10が形成される。また、溝10は、ロータコア1の外周において、空隙4のd軸側の端部から空隙5のq軸側の端部までの領域に形成される。 Then, a groove 10 is formed on the outer periphery of the rotor core 1 of the present embodiment toward the rotation center side of the rotor core 1 and along the axial direction of the rotor core 1. The groove 10 is formed on the outer periphery of the rotor core 1 in a region from the end of the air gap 4 on the d axis side to the end of the air gap 5 on the q axis side.
 図1を参照すれば、ロータコア1の回転中心から空隙4のd軸側の先端を通ってロータコア1の外周まで引いた接線を接線Aとし、ロータコア1の回転中心から空隙5のq軸側の先端を通ってロータコア1の外周まで引いた接線を接線Bとした場合に、溝10は、周方向幅におけるd軸側の端部(開始点)とq軸側の端部(終了点)とが、接線Aと接線Bとの間の領域に納まるように形成される。溝10に係る開始点、終了点の規定の詳細については後述する。 Referring to FIG. 1, a tangent drawn from the rotation center of rotor core 1 to the outer periphery of rotor core 1 through the tip of air gap 4 on the d axis side is taken as tangent A, and q axis of air gap 5 from rotation center of rotor core 1. Assuming that a tangent drawn to the outer periphery of the rotor core 1 through the tip is a tangent B, the groove 10 has an end (starting point) on the d axis side and an end (end point) on the q axis side in the circumferential width. Are formed to fit in the region between the tangent A and the tangent B. Details of the definition of the start point and the end point of the groove 10 will be described later.
 ブリッジ部7は、ロータコア1における空隙5と外周との間の領域であって、ロータコア1の面方向における最薄部分である。 The bridge portion 7 is a region of the rotor core 1 between the air gap 5 and the outer periphery, and is the thinnest portion in the surface direction of the rotor core 1.
 ここで、溝10の詳細を説明する前に、従来の回転子構造と、その構造による特性および問題点について説明する。 Here, before describing the details of the groove 10, the conventional rotor structure, and the characteristics and problems caused by the structure will be described.
 JP5516739B(従来例)では、計3枚の永久磁石を略三角形状に配置することにより一磁極を構成し、且つ、ロータコアの外周に溝が形成された回転子構造が提案されている。該溝は、その溝中心位置を設定することで、鉄損低減効果を奏することができることが上記文献に開示されている。より具体的には、該溝は、その溝中心位置が、トルクリプルの高調波成分1周期分の電気角度間隔で刻んだ複数の刻み点のうち、最外周側の永久磁石とq軸との間の領域にある刻み点を基準としてd軸方向に1/4周期、q軸方向に1/8周期の範囲内に形成される。このような回転子構造によれば、鉄損を低減しつつ、コギングトルクと誘起電圧とを低下させたモータを提供することができる。 In JP5516739B (conventional example), a rotor structure is proposed in which one magnetic pole is configured by arranging a total of three permanent magnets in a substantially triangular shape, and a groove is formed on the outer periphery of a rotor core. It is disclosed in the above document that the groove can achieve an iron loss reducing effect by setting the groove center position. More specifically, the groove has a groove center position between the outermost permanent magnet and the q axis among a plurality of nick points cut at electrical angle intervals of one period of a torque ripple harmonic component. It is formed in the range of 1⁄4 cycle in the d-axis direction and 1⁄8 cycle in the q-axis direction with reference to the dividing point in the area of. According to such a rotor structure, it is possible to provide a motor with reduced cogging torque and induced voltage while reducing iron loss.
 しかしながら、本願発明の発明者らは、略三角形状を形成する3枚の永久磁石のうちの最外周側の永久磁石の周方向幅によっては、上記特徴に基づく溝中心位置では鉄損低減効果を十分に得られることができず、モータ効率を向上させることができない課題があることを見出した。 However, the inventors of the present invention have an iron loss reducing effect at the groove center position based on the above-mentioned feature, depending on the circumferential width of the outermost permanent magnet among the three permanent magnets forming the substantially triangular shape. It has been found that there are problems that can not be obtained sufficiently and the motor efficiency can not be improved.
 図18は、溝が形成されていない点以外は従来例と同様の回転子構造を有する参考例を基準とした場合の従来例の損失の割合[%]を解析した解析結果を示す図である。図18(a)は、モータの低負荷低速領域における損失の割合を示す図である。図18(b)は、モータの高負荷高速領域における損失の割合を示す図である。同図は、従来例の損失が、特に、車両駆動用モータおいて定常的に利用される低負荷低速領域においては溝がない参考例と同等であり、溝を形成してもモータ効率を向上させることができていないことを示している。 FIG. 18 is a diagram showing an analysis result obtained by analyzing the ratio [%] of the loss in the conventional example based on the reference example having the same rotor structure as the conventional example except that no groove is formed. . FIG. 18 (a) is a diagram showing the rate of loss in the low load low speed region of the motor. FIG. 18B is a diagram showing the ratio of loss in the high load high speed region of the motor. In the figure, the loss of the conventional example is equivalent to that of the reference example having no groove particularly in a low load low speed region which is constantly utilized in a vehicle drive motor, and the motor efficiency is improved even if the groove is formed. It shows that you can not let it go.
 本願発明者らは、このような課題を、溝の形状を周方向に拡張させるとともに、ロータ外周における該溝の開始点と終了点とを、磁極を構成する永久磁石との位置関係を考慮した上で規定することにより解決できることを見出した。以下、詳細を説明する。 The inventors of the present invention expanded the shape of the groove in the circumferential direction, and considered the positional relationship between the start point and the end point of the groove on the rotor outer periphery with the permanent magnet constituting the magnetic pole. It has been found that this can be solved by the above definition. Details will be described below.
 図1に戻って本実施形態の溝10の形状の規定について説明する。なお、以下の説明において規定される電気角度は、d軸と隣接する一方のq軸との間の領域内において規定されるものとする。 Returning to FIG. 1, the definition of the shape of the groove 10 of the present embodiment will be described. Note that the electrical angle defined in the following description is defined in the region between the d-axis and the adjacent q-axis.
 溝10の開始点、及び、終了点が接線Aから接線Bまでの範囲内に位置することは上で述べた。以下の説明では、溝10の開始点の位置を、開始点からd軸までの電気角度であるθ1により規定し、終了点の位置を、終了点からd軸までの電気角度であるθ2により規定する。 It has been mentioned above that the start point and the end point of the groove 10 lie in the range from tangent A to tangent B. In the following description, the position of the start point of the groove 10 is defined by θ1 which is the electrical angle from the start point to the d axis, and the position of the end point is defined by θ2 which is the electrical angle from the end point to the d axis Do.
 本実施形態の溝10の終了点は、接線Aと略一致する位置に形成される。すなわち、溝10の終了点は、θ2が接線Aからd軸までの電気角度と略一致する位置に形成される。開始点の位置は図2を用いて説明する。 The end point of the groove 10 of the present embodiment is formed at a position substantially coincident with the tangent A. That is, the end point of the groove 10 is formed at a position where θ2 substantially coincides with the electrical angle from the tangent A to the d-axis. The position of the start point will be described with reference to FIG.
 図2は、上述した参考例(溝なし)を基準(100%)とした場合において、溝10の開始点の位置による鉄損低減率を解析した解析結果を示す図である。溝10の開始点の位置は、開始点からd軸までの電気角度であるθ1により規定される(図1参照)。縦軸は鉄損低減率[%]を示し、横軸はθ1[°]を示している。なお、θ1=0°はd軸と一致する。θ1≒32°の近傍にひかれた点線は、永久磁石3のq軸側の最外周部分からd軸までの電気角度であるθ0を示している。なお、θ0は、回転中心から永久磁石3の最外周部を通ってロータ6の外周まで引いた直線を直線Dとした場合に、直線Dからd軸までの電気角と定義される(図1参照)。 FIG. 2 is a diagram showing an analysis result in which the iron loss reduction rate at the position of the start point of the groove 10 is analyzed when the reference example (without the groove) described above is used as a reference (100%). The position of the start point of the groove 10 is defined by θ1 which is an electrical angle from the start point to the d axis (see FIG. 1). The vertical axis indicates the iron loss reduction rate [%], and the horizontal axis indicates θ1 [°]. Note that θ1 = 0 ° coincides with the d axis. The dotted line drawn near θ1θ32 ° indicates θ0, which is the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis. Note that θ0 is defined as an electrical angle from the straight line D to the d-axis when a straight line drawn from the center of rotation to the outer periphery of the rotor 6 through the outermost circumference of the permanent magnet 3 is straight line D (FIG. 1) reference).
 図2から、永久磁石3の周方向幅によらず、永久磁石3のq軸側の端部よりもよりq軸側の領域に開始点を形成しても、θ1<約65°の領域においては鉄損が低減されることが分かる。さらに、同図は、θ1がより小さいほど、すなわち、開始点がよりd軸側に近づくほど、鉄損がより低減されることを示している。従って、θ1≒65°を上限として、溝10の開始点をd軸側に近づけるほど、モータ損失が低下し、モータの効率を向上させることができることが分かる。次に、開始点の下限について図3を用いて説明する。 From FIG. 2, regardless of the circumferential width of the permanent magnet 3, even if the start point is formed in the area on the q axis side of the end of the permanent magnet 3 on the q axis side, in the area of θ1 <about 65 ° It can be seen that iron loss is reduced. Furthermore, the figure shows that the core loss is more reduced as θ1 is smaller, that is, as the start point is closer to the d-axis side. Therefore, it can be seen that the motor loss decreases and the efficiency of the motor can be improved as the start point of the groove 10 approaches the d-axis side, with θ1 ≒ 65 ° as the upper limit. Next, the lower limit of the start point will be described with reference to FIG.
 図3は、上述した参考例を基準(基準値=1)とした場合において、溝10の開始点の位置によるブリッジ部7の応力の変化を解析した解析結果を示す図である。θ1≒44°は、回転中心から空隙5のq軸側端部を通ってロータ6の外周まで引かれた接線B(図1参照)からd軸までの電気角度と一致する。同図から、溝10の開始点がθ1<約44°の位置に形成された場合は、θ1がより小さいほど、すなわち、開始点がブリッジ部7のよりd軸側に向かうほど、ブリッジ部7の応力が大きくなっていることが分かる。従って、溝10の開始点は、ブリッジ部7よりもq軸側に形成されるように設定される。 FIG. 3 is a diagram showing an analysis result in which a change in stress of the bridge portion 7 according to the position of the start point of the groove 10 is analyzed when the above-described reference example is used as a reference (reference value = 1). θ1 ≒ 44 ° coincides with the electrical angle from the tangent B (see FIG. 1) drawn from the center of rotation to the outer periphery of the rotor 6 through the q-axis end of the air gap 5 to the d-axis. From the same figure, when the start point of the groove 10 is formed at a position of θ1 <about 44 °, the bridge portion 7 becomes smaller as θ1 becomes smaller, that is, as the start point is closer to the d axis side than the bridge portion 7. It can be seen that the stress of is increased. Accordingly, the start point of the groove 10 is set to be formed on the q axis side with respect to the bridge portion 7.
 ブリッジ部7は、ロータ6の面方向における最薄部であり、ロータ6の駆動時に永久磁石3が遠心力により外周に飛びださないよう保持する際に最も応力がかかる部分である。従って、ブリッジ部7は、応力がその材料疲労強度を超えないように設計される必要がある。これを考慮して、図3で示す解析結果に基づき、溝10の開始点の下限を空隙5のq軸側端部よりもq軸側に設定することで、ブリッジ部7の強度を確保しつつ、鉄損を低減させることができる。 The bridge portion 7 is the thinnest portion in the surface direction of the rotor 6, and is the portion most stressed when holding the permanent magnet 3 so as not to fly out by the centrifugal force when the rotor 6 is driven. Therefore, the bridge portion 7 needs to be designed so that the stress does not exceed the material fatigue strength. Taking this into consideration, based on the analysis result shown in FIG. 3, the strength of the bridge portion 7 is secured by setting the lower limit of the start point of the groove 10 closer to the q axis than the q axis end of the air gap 5. At the same time, iron loss can be reduced.
 次に、上述のように形成された溝10により鉄損が低減される理由について図4を用いて説明する。なお、本明細書における鉄損は、ステータ鉄損とロータ鉄損とを含むものとする。 Next, the reason why the iron loss is reduced by the groove 10 formed as described above will be described with reference to FIG. The iron loss in the present specification includes stator iron loss and rotor iron loss.
 図4は、ロータ6の外周形状によるステータにおける磁束密度の変化を解析した解析結果を説明するための図である。同図は、ロータ6の外周形状に対応したステータにおける磁束密度の波形を示す。実線が本実施形態、一点鎖線が従来例、二点鎖線が参考例、点線が理想波形(正弦波)を示している。また、点線L1はd軸、L2は本実施形態における溝10の開始点、L3は従来例における溝の開始点、L4は、本実施形態の溝10及び従来例の溝の終了点を示している。 FIG. 4 is a diagram for explaining an analysis result in which a change in magnetic flux density in the stator due to the outer peripheral shape of the rotor 6 is analyzed. The figure shows the waveform of the magnetic flux density in the stator corresponding to the outer peripheral shape of the rotor 6. The solid line indicates this embodiment, the one-dot and dash line indicates the conventional example, the two-dot and dash line indicates the reference example, and the dotted line indicates the ideal waveform (sine wave). The dotted line L1 indicates the d axis, L2 indicates the start point of the groove 10 in the present embodiment, L3 indicates the start point of the groove in the conventional example, and L4 indicates the end points of the groove 10 of the present embodiment and the conventional example. There is.
 前提として、3枚の永久磁石を略三角形状に配置することにより構成された一磁極を有するロータの磁束波形は、V字型に配置された一対の永久磁石2からの磁石磁束と永久磁石3からの磁石磁束の合成であるため、高調波成分を多く含んでいる。そのようなロータの外周に溝を設けると、溝部分の磁気抵抗が大きくなるので、溝部分からステータ側へ鎖交する磁石磁束が低下する。すなわち、溝の周方向幅を設定することでロータ6からの磁石磁束(ロータ磁束)を制御することにより、磁束波形を理想的な波形形状である正弦波に近づけることが可能である。ロータ磁束を正弦波に近づけることで、結果的にステータにおける磁束密度の高調波成分が低減される。 As a premise, the magnetic flux waveform of the rotor having one magnetic pole configured by arranging three permanent magnets in a substantially triangular shape is the magnet magnetic flux from the pair of permanent magnets 2 arranged in a V shape and the permanent magnet 3 Because it is a composition of the magnet flux from 、, it contains many harmonic components. When the groove is provided on the outer periphery of such a rotor, the magnetic resistance of the groove portion is increased, so that the magnetic flux of the magnet interlinking from the groove portion to the stator side is reduced. That is, by controlling the magnet magnetic flux (rotor magnetic flux) from the rotor 6 by setting the circumferential width of the groove, it is possible to make the magnetic flux waveform approximate to a sine wave which is an ideal waveform shape. By bringing the rotor flux closer to a sine wave, the harmonic component of the flux density in the stator is consequently reduced.
 図4で示すように、本実施形態の溝10の周方向幅が従来例の溝に比べて大幅に広く形成されることで、磁束波形が従来例に比べてより理想的な正弦波に近づいていることが分かる。また、溝10の開始点の位置を従来例の開始点位置であるL3よりもd軸側に設定することにより、本実施形態の磁束波形を少なくとも従来例よりも理想的な正弦波に近づけることができる。 As shown in FIG. 4, the circumferential width of the groove 10 of this embodiment is formed much wider than that of the conventional example, so that the magnetic flux waveform approaches an ideal sine wave as compared with the conventional example. Know that Further, by setting the position of the start point of the groove 10 closer to the d-axis than L3 which is the start point position of the conventional example, the magnetic flux waveform of the present embodiment is closer to at least an ideal sine wave than the conventional example. Can.
 図5は、参考例(溝なし)を基準(100%)とした場合の、従来例と本実施形態のモータ損失の割合[%]を解析した解析結果を示す図である。図5(a)は、モータの低負荷低速領域における損失の割合を示す図である。図5(b)は、モータの高負荷高速領域における損失の割合を示す図である。同図から、本実施形態のロータ6は、参考例及び従来例に対して、モータ損失を低減できていることが分かる。ここで、鉄損は、主にヒステリシス損と渦電流損とから構成される。ヒステリシス損は磁束波形の周波数に比例し、渦電流損は該周波数の2乗に比例するため、磁束波形を正弦波に近づけ、ステータにおける磁束密度の高調波成分を抑制する事で高回転時の鉄損を大幅に低減することができる。 FIG. 5 is a diagram showing an analysis result obtained by analyzing the ratio [%] of motor loss in the conventional example and the present embodiment when the reference example (without the groove) is used as a reference (100%). FIG. 5A is a diagram showing the rate of loss in the low load low speed region of the motor. FIG. 5 (b) is a diagram showing the rate of loss in the high load high speed region of the motor. From the figure, it can be seen that the rotor 6 of the present embodiment can reduce the motor loss compared to the reference example and the conventional example. Here, the core loss mainly includes hysteresis loss and eddy current loss. Since the hysteresis loss is proportional to the frequency of the magnetic flux waveform and the eddy current loss is proportional to the square of the frequency, the magnetic flux waveform is brought close to a sine wave to suppress harmonic components of the magnetic flux density in the stator at high rotation Iron loss can be significantly reduced.
 すなわち、本実施形態のロータ6は、溝10によりそのロータ磁束を正弦波に近づけることにより鉄損を低減できており、結果として、高付加高速領域だけでなく、図5(a)が示すように、定常領域である低負荷低速領域においてもモータ損失を低減させ、モータ効率を向上させることができる。 That is, in the rotor 6 of the present embodiment, the core loss can be reduced by bringing the rotor magnetic flux closer to a sine wave by the groove 10, and as a result, as shown in FIG. In addition, the motor loss can be reduced and the motor efficiency can be improved even in the low load low speed region which is a steady region.
 次に、ロータ6のトルク性能の向上に寄与する溝10の開始点の位置について説明する。ロータ6のトルク性能を向上させれば、より少ない電流で大きなトルクが出せるようになるので、結果としてモータ損失を低減することができる。 Next, the position of the start point of the groove 10 contributing to the improvement of the torque performance of the rotor 6 will be described. If the torque performance of the rotor 6 is improved, a large torque can be produced with less current, and as a result, the motor loss can be reduced.
 図6は、トルク性能を向上させる観点から規定される溝10の開始点を説明するための図である。上述のとおり、開始点の位置はd軸からの電気角度θ1で規定される。また、永久磁石3のq軸側の最外周部分からd軸までの電気角度はθ0で規定される。そして、回転中心から永久磁石3のq軸側の最外周部を通ってロータ6の外周まで引いた直線を直線Cとした場合に、直線Cからd軸までの電気角をθiと定義する。 FIG. 6 is a diagram for explaining the starting point of the groove 10 defined from the viewpoint of improving the torque performance. As mentioned above, the position of the starting point is defined by the electrical angle θ1 from the d-axis. Further, the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis is defined by θ0. Then, when a straight line drawn from the center of rotation to the outer periphery of the rotor 6 through the outermost periphery of the permanent magnet 3 on the q axis side is defined as a straight line C, the electrical angle from the straight line C to the d axis is defined as θi.
 以上を前提とすれば、溝10の開始点は以下式(1)を満たすように形成される。 Assuming the above, the starting point of the groove 10 is formed to satisfy the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 溝10の開始点が式(1)を満たすように形成する理由を図7を用いて説明する。 The reason why the starting point of the groove 10 is formed so as to satisfy the equation (1) will be described with reference to FIG.
 図7は、溝10の開始点の位置による誘起電圧の1次成分の変化を解析した解析結果を示す図である。横軸はθ1[°]を、参考例(溝なし)を基準(100%)とした場合の誘起電圧の1次成分の割合[%]を示している。また、θ1≒32°にひかれた点線は、永久磁石3のq軸側の最外周部分からd軸までの電気角度であるθ0を示し、θ1≒78°に引かれた点線は、永久磁石2の最外周部分からd軸までの電気角度であるθiを示している。そして、図中のθ1≒47°に引かれた点線は、本実施形態において上記式(1)を満たす電気角度を示している。なお、図示される誘起電圧の一次成分とは、高調波成分を除いた誘起電圧の基本波のことである。 FIG. 7 is a diagram showing an analysis result in which a change in the first-order component of the induced voltage according to the position of the start point of the groove 10 is analyzed. The horizontal axis indicates the ratio [%] of the primary component of the induced voltage when θ1 [°] is used as a reference (100%) in the reference example (without the groove). Further, the dotted line drawn at θ 1 示 し 32 ° indicates θ 0 which is the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis, and the dotted line drawn at θ 1 78 78 ° indicates the permanent magnet 2 The electric angle θi from the outermost peripheral portion of to the d-axis is shown. And, a dotted line drawn to θ14747 ° in the figure indicates an electrical angle that satisfies the above equation (1) in this embodiment. The primary component of the induced voltage shown in the drawing is the fundamental wave of the induced voltage excluding the harmonic component.
 ここで、IPMモータのトルクは、マグネットトルクとリラクタンストルクとが合成されたトルクである。マグネットトルクは、ロータ6からステータに流れる磁石磁束により発生する誘起電圧の1次成分の大きさに比例して大きくなる。 Here, the torque of the IPM motor is a torque obtained by combining the magnet torque and the reluctance torque. The magnet torque increases in proportion to the magnitude of the primary component of the induced voltage generated by the magnet flux flowing from the rotor 6 to the stator.
 図7が示すとおり、θ1が上記式(1)を満たす位置に溝10の開始点を形成した場合には、溝が形成されていない参考例よりもトルク性能を向上させることができている。これは、溝10の開始点を上記(1)式を満たす位置に形成する事により、トルクに寄与する磁石磁束をよりd軸側に誘導し、誘起電圧の一次成分を大きくすることができているからである。このように、θ1を上記式(1)を満たすように設定することにより、少ない電流でより大きなトルクが出せるようになるので、モータ損失を低減することができる。 As shown in FIG. 7, when the start point of the groove 10 is formed at a position where θ1 satisfies the above equation (1), the torque performance can be improved as compared with the reference example in which the groove is not formed. This is because, by forming the start point of the groove 10 at a position satisfying the above equation (1), the magnet magnetic flux contributing to the torque can be induced to the d axis side more, and the primary component of the induced voltage can be increased. It is because As described above, by setting θ1 so as to satisfy the equation (1), a larger torque can be output with a small current, so that the motor loss can be reduced.
 なお、θ1の上限は、所望のトルク性能を満足する電気角度を設定すればよい。例えば図7の解析結果に基づけば、参考例よりもトルク性能を向上させる範囲として、その上限をθ1≒68°程度に設定すればよい。ただし、図2を用いて上述した鉄損低減効果を考慮すればθ1≒65°程度が良い場合もあるので、目的に合わせて適宜設定すればよい。 The upper limit of θ1 may be set to an electrical angle that satisfies the desired torque performance. For example, based on the analysis result of FIG. 7, the upper limit may be set to about θ1 ≒ 68 ° as a range in which the torque performance is improved compared to the reference example. However, if the iron loss reduction effect described above with reference to FIG. 2 is taken into consideration, θ1 ≒ 65 ° or so may be good, so it may be set appropriately according to the purpose.
 次に、コギングトルクを有効に低減できる溝10の開始点の位置について説明する。コギングトルクは、無通電時であってもロータの回転時にステータとロータとの相対位置関係によって発生する正負のトルクであり、モータの振動や騒音の原因となるトルクである。 Next, the position of the start point of the groove 10 capable of effectively reducing the cogging torque will be described. The cogging torque is positive or negative torque generated due to the relative positional relationship between the stator and the rotor when the rotor rotates even when no current is supplied, and is a torque that causes motor vibration and noise.
 図8は、コギングトルク低減に寄与する溝10の開始点の位置を説明するための図である。図の上方には、図の下方に示すロータ6の外周形状に対応したトルクリプルの高調波成分がd軸を開始点として電気角度[°]に対応して示されている。 FIG. 8 is a diagram for explaining the position of the start point of the groove 10 contributing to the reduction of the cogging torque. The harmonic components of the torque ripple corresponding to the outer peripheral shape of the rotor 6 shown in the lower part of the figure are shown in the upper part of the figure, corresponding to the electrical angle [°], with the d axis as the start point.
 コギングトルクを有効に低減できる溝10の開始点の位置とは、例えば、溝が形成されていない参考例よりもコギングトルクを低くすることができる範囲内に設定された溝10の開始点の位置と定義される。ここで、図8上方に記載するように、ロータ6の外周において、d軸からq軸までをトルクリプルの高調波成分1周期分の電気角度間隔で刻んだ複数の刻み点を点Eとする。この場合、本実施形態の溝10の開始点は、点Eを基準としてd軸側に1/5周期ずれた位置からq軸側に1/3周期ずれた位置までの領域に形成される(図中の両矢印参照)。溝10をこのように形成した場合のコギングトルク低減効果について、図9を用いて説明する。 The position of the start point of the groove 10 capable of effectively reducing the cogging torque is, for example, the position of the start point of the groove 10 set within a range where the cogging torque can be made lower than in the reference example in which the groove is not formed. It is defined as Here, as described in the upper part of FIG. 8, a plurality of notched points obtained by cutting from the d axis to the q axis at electrical angle intervals of one period of the harmonic component of torque ripple is taken as point E on the outer periphery of the rotor 6. In this case, the start point of the groove 10 according to the present embodiment is formed in a region from a position shifted by 1⁄5 cycle on the d axis side with respect to the point E to a position shifted by 1⁄3 cycle to the q axis side See the double arrows in the figure). The cogging torque reduction effect when the groove 10 is formed in this manner will be described with reference to FIG.
 図9は、溝10の開始点の位置によるコギングトルクの変化を解析した解析結果を示す図である。図の上方には、参考例(溝なし)を基準(100%)とした場合の、溝10の開始点の位置を規定するθ1に応じたコギングトルクの割合[%]が示されている。一方、図の下方には、溝10の開始点の位置を規定する際の指標となるトルクリプルの高調波成分がθ1[°]に応じて示されている。 FIG. 9 is a diagram showing an analysis result in which a change in cogging torque according to the position of the start point of the groove 10 is analyzed. The ratio [%] of the cogging torque according to θ1 defining the position of the start point of the groove 10 when the reference example (without the groove) is used as a reference (100%) is shown above the figure. On the other hand, in the lower part of the figure, the harmonic component of the torque ripple, which serves as an index when defining the position of the start point of the groove 10, is shown according to θ1 [°].
 図示する通り、溝10の開始点が点Eを基準としてd軸側に1/5周期ずれた位置からq軸側に1/3周期ずれた位置までの領域に形成された場合には、溝が形成されていない参考例に比べてコギングトルクを有効に低減できていることが分かる。これにより、参考例よりも振動や騒音が抑制されたモータを提供することが可能となる。 As shown in the drawing, when the start point of the groove 10 is formed in a region from a position shifted by 1⁄5 cycle on the d axis side with respect to the point E to a position shifted by 1⁄3 cycle to the q axis side, It can be seen that the cogging torque can be effectively reduced as compared with the reference example in which is not formed. This makes it possible to provide a motor in which vibration and noise are suppressed more than in the reference example.
 さらに、上記式(1)を考慮し、コギングトルクの低下とトルク向上とを両立させる場合の溝10の開始点の位置について図10を参照して説明する。 Further, the position of the start point of the groove 10 in the case where the reduction of the cogging torque and the improvement of the torque are compatible will be described with reference to FIG.
 図10は、溝10の開始点の位置によるコギングトルク及び誘起電圧の1次成分の変化を解析した解析結果を示す図である。図10は、上述の図9に、図7で説明した溝10の開始点位置に応じた誘起電圧1次成分の変化を重ねて表示した図である。図示する、θ1≒47°近傍に引いた線は、上記式(1)で示した(θi-θ0)/3+θ0を満たす電気角度である。 FIG. 10 is a diagram showing an analysis result in which changes in the cogging torque and the first-order component of the induced voltage according to the position of the start point of the groove 10 are analyzed. FIG. 10 is a diagram in which the change of the primary component of the induced voltage according to the start point position of the groove 10 described in FIG. 7 is superimposed and displayed in FIG. 9 described above. A line drawn near θ1 ≒ 47 ° is an electrical angle that satisfies (θi−θ0) / 3 + θ0 shown in the above equation (1).
 図示する通り、溝10の開始点が点Eを基準としてd軸側に1/5周期ずれた位置からq軸側に1/3周期ずれた位置までの領域に形成された場合には、溝が形成されていない参考例に比べてコギングトルクを有効に低減できていることが分かる。そして、コギングトルクの低下とトルク向上とを両立させる場合には、上記式(1)で示した(θi-θ0)/3+θ0<θ1を考慮し、θ1≒60°の近傍にある点Eを基準として、d軸側に1/5周期ずれた位置からq軸側に1/3周期ずれた位置までの領域に溝10の開始点を形成するのがより好ましいことが分かる。溝10の開始点の位置をこのように規定することにより、コギングトルクの低下とトルク向上とを両立させ、モータ損失が小さく、高効率で、かつ振動が低減されたモータを提供することが可能となる。 As shown in the drawing, when the start point of the groove 10 is formed in a region from a position shifted by 1⁄5 cycle on the d axis side with respect to the point E to a position shifted by 1⁄3 cycle to the q axis side, It can be seen that the cogging torque can be effectively reduced as compared with the reference example in which is not formed. Then, in order to achieve both cogging torque reduction and torque improvement, in consideration of (θi−θ0) / 3 + θ0 <θ1 represented by the above equation (1), reference is made to a point E near θ1θ60 ° It can be seen that it is more preferable to form the start point of the groove 10 in a region from a position shifted by 1⁄5 cycle on the d axis side to a position shifted by 1⁄3 cycle on the q axis side. By defining the position of the start point of the groove 10 in this manner, it is possible to achieve both a reduction in cogging torque and an improvement in torque, and to provide a motor with small motor loss, high efficiency, and reduced vibration. It becomes.
 次に、図10を用いて説明した溝10の開始点の位置を式で表す。式によって一般化することにより、容易に設計に用いることが可能となる。すなわち、トルクリプルの高調波成分の次数をnとし、永久磁石3のq軸側の最外周部分からd軸までの電気角度をθ0とした場合において、m×(2π/n)>θ0を満たす最小の整数をmとした場合に、溝10の開始点は、以下式(2)を満たす位置から、以下式(3)を満たす位置までの範囲内に形成される。 Next, the position of the start point of the groove 10 described with reference to FIG. By generalizing the equation, it can be easily used for design. That is, assuming that the order of harmonic components of torque ripple is n and the electrical angle from the outermost periphery of the permanent magnet 3 on the q axis side to the d axis is θ0, the minimum satisfying m × (2π / n)> θ0 When the integer of n is m, the start point of the groove 10 is formed in the range from the position satisfying the following expression (2) to the position satisfying the following expression (3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 溝10の開始点の位置をこのような式に基づいて規定した場合であっても、図10を用いて上述した通り、コギングトルクの低下とトルク向上とを両立させ、モータ損失が小さく、高効率で、かつ振動が低減されたモータを提供することが可能となる。 Even when the position of the start point of the groove 10 is defined based on such an equation, as described above with reference to FIG. 10, the reduction of cogging torque and the improvement of torque are compatible, and the motor loss is small and high. It is possible to provide a motor that is efficient and reduced in vibration.
 次に、溝10の深さを規定する。 Next, the depth of the groove 10 is defined.
 図11は、溝10の深さdを説明するための図である。溝10の深さdは、ロータ6の回転中心から溝の回転中心側に最も深い点を通ってロータ6の仮想外周まで引かれた線Fにおいて、回転中心側に最も深い点から仮想外周までの距離と定義される。 FIG. 11 is a diagram for explaining the depth d of the groove 10. The depth d of the groove 10 is from the deepest point to the virtual outer periphery on the line F drawn from the rotational center of the rotor 6 to the virtual outer periphery of the rotor 6 through the deepest point on the rotational central side of the groove Defined as the distance of
 また、ロータ6は、ステータ20の内周側に所定距離の空間(ギャップ21)を介して収容される。このギャップ21の長さgは、ステータ20の内周とロータ6の外周との間を結ぶ最短距離と定義される。この場合、溝10の深さdは、d≦4×gを満たすように形成される。 The rotor 6 is accommodated on the inner peripheral side of the stator 20 via a space (gap 21) of a predetermined distance. The length g of the gap 21 is defined as the shortest distance connecting the inner periphery of the stator 20 and the outer periphery of the rotor 6. In this case, the depth d of the groove 10 is formed to satisfy d ≦ 4 × g.
 図12は、参考例(溝なし)を基準(鉄損低減率:100%、コギングトルク:1)とした場合の、溝10の深さdによる鉄損低減率を解析した解析結果を示す図である。横軸で示す溝10の深さdは、ギャップ21の長さaの倍数で表されている。図示するように、溝10の深さdを例えば上記のとおり、d≦4×gに設定することで、鉄損を低減しつつ、コギングトルクが低いモータを提供することができる。なお、溝10の深さdを、d>4×gとすると、鉄損が徐々に大きくなるので好ましくない。これは、溝10の深さを深くすればするほど、図4で示した本実施形態の磁束波形が理想的な正弦波系から離れてしまうからである。 FIG. 12 is a graph showing an analysis result of an iron loss reduction rate by the depth d of the groove 10 when the reference example (no groove) is used as a reference (iron loss reduction rate: 100%, cogging torque: 1) It is. The depth d of the groove 10 indicated by the horizontal axis is represented by a multiple of the length a of the gap 21. As illustrated, by setting the depth d of the groove 10 to, for example, d ≦ 4 × g as described above, it is possible to provide a motor with a low cogging torque while reducing iron loss. If the depth d of the groove 10 is d> 4 × g, the core loss gradually increases, which is not preferable. This is because as the depth of the groove 10 is increased, the magnetic flux waveform of the present embodiment shown in FIG. 4 is separated from the ideal sine wave system.
 以上、本実施形態の回転電機の回転子(ロータ6)は、外周方向に開くV字型に配置された一対の第1永久磁石(永久磁石2)と、V字型の開いた部分に配置された第2永久磁石(永久磁石3)とで構成される一磁極が周方向に複数配置された回転電機のロータ6であって、永久磁石2が挿入される磁石挿入孔40において、一磁極が構成するd軸と電気的に直交するq軸側の端部に磁石挿入孔40と連続して設けられた第1空隙(空隙4)と、永久磁石3が挿入される磁石挿入孔50の両端部に磁石挿入孔50と連続して設けられた第2空隙(空隙5)と、ロータ6の外周に、ロータ6の軸方向に沿って形成された溝10とを備える。そして、ロータ6の回転中心と空隙4のd軸側端部とを通って外周まで引いた直線を直線Aとし、回転中心と空隙5のq軸側端部とを通って外周まで引いた直線を直線Bとした場合に、溝のq軸側端部(終了点)は直線A上に位置し、溝のd軸側端部(開始点)は直線Bよりもq軸側に位置する。 As described above, the rotor (rotor 6) of the rotating electrical machine according to the present embodiment is disposed in the V-shaped open portion and the pair of first permanent magnets (permanent magnet 2) disposed in the V-shape opening in the outer peripheral direction. It is a rotor 6 of a rotating electrical machine in which a plurality of magnetic poles constituted by the second permanent magnets (permanent magnets 3) are arranged in the circumferential direction, and the magnetic insertion holes 40 into which the permanent magnets 2 are inserted Of the first air gap (air gap 4) provided continuously with the magnet insertion hole 40 at the end on the q axis side, which is electrically orthogonal to the d axis formed by the magnet, and the magnet insertion hole 50 in which the permanent magnet 3 is inserted A second air gap (air gap 5) provided continuously with the magnet insertion hole 50 at both end portions, and a groove 10 formed along the axial direction of the rotor 6 on the outer periphery of the rotor 6 are provided. Then, a straight line drawn to the outer periphery through the rotation center of the rotor 6 and the d-axis side end of the air gap 4 is taken as a straight line A, and a straight line drawn to the outer periphery through the rotation center and the q-axis side end of the air gap 5 Is a straight line B, the q-axis side end (end point) of the groove is located on the straight line A, and the d-axis side end (starting point) of the groove is located on the q-axis side of the straight line B.
 これにより、ロータ6からの磁束波形を理想的な波形形状である正弦波に近づき、ステータにおける磁束密度の高調波成分が低減されるので、鉄損を低減させて、モータ効率を向上させることができる。また、溝10の開始点が直線Bよりもq軸側に位置する様に設定され、ブリッジ部7の径方向幅を狭めないので、ブリッジ部7の応力を悪化させることも無い。 As a result, the magnetic flux waveform from the rotor 6 approaches a sine wave which is an ideal waveform shape, and harmonic components of the magnetic flux density in the stator are reduced, so that iron loss can be reduced and motor efficiency can be improved. it can. Further, the starting point of the groove 10 is set to be located on the q axis side of the straight line B, and the radial width of the bridge portion 7 is not narrowed, so the stress of the bridge portion 7 is not deteriorated.
 また、一実施形態の回転電機のロータ6によれば、溝10のd軸側端部からd軸までの電気角をθ1とし、回転中心から永久磁石2の最外周部を通って外周まで引いた直線を直線Cとした場合に、直線Cからd軸までの電気角をθiとし、回転中心から永久磁石2の最外周部を通って外周まで引いた直線を直線Dとした場合に、直線Dからd軸までの電気角をθ0とした場合に、溝10のd軸側端部は、(θi-θ0)/3+θ0<θ1を満たす位置に形成される。これにより、トルクに寄与する磁石磁束をよりd軸側に誘導し、誘起電圧の一次成分を大きくすることができるので、少ない電流でより大きなトルクが出せるようになり、モータ損失を低減することができる。 Further, according to the rotor 6 of the rotating electrical machine of one embodiment, the electrical angle from the d-axis end of the groove 10 to the d-axis is θ1, and the rotation center is drawn from the rotation center to the outer periphery through the outermost periphery of the permanent magnet 2 When the straight line is a straight line C, the electrical angle from the straight line C to the d axis is θi, and the straight line drawn from the rotation center to the outer circumference through the outermost periphery of the permanent magnet 2 is a straight line When the electrical angle from D to d axis is θ0, the d-axis side end of the groove 10 is formed at a position satisfying (θi−θ0) / 3 + θ0 <θ1. As a result, the magnet flux contributing to the torque can be induced to the d-axis side more, and the primary component of the induced voltage can be increased, so that a larger torque can be obtained with a small current, and the motor loss can be reduced. it can.
 また、一実施形態の回転電機のロータ6によれば、ロータ6の外周においてd軸からq軸までをトルクリプルの高調波成分1周期分の電気角度間隔で刻んだ複数の刻み点を点Eとした場合に、溝のd軸側端部は、点Eを基準としてd軸側に1/5周期ずれた位置からq軸側に1/3周期ずれた位置までの領域に形成される。これにより、溝が形成されていない参考例に比べてコギングトルクを低減することができるので、振動や騒音が抑制されたモータを提供することができる。 Further, according to the rotor 6 of the rotating electrical machine of one embodiment, a plurality of notching points along the outer periphery of the rotor 6 cut at d-axis to q-axis at electrical angle intervals corresponding to one period of torque ripple harmonic component In this case, the d-axis side end of the groove is formed in a region from a position shifted by 1⁄5 cycle on the d-axis side with respect to the point E to a position shifted by 1⁄3 cycle on the q-axis side. As a result, the cogging torque can be reduced as compared with the reference example in which the groove is not formed, so that a motor with suppressed vibration and noise can be provided.
 また、一実施形態の回転電機のロータ6によれば、トルクリプルの高調波成分の次数をnとし、m×(2π/n)>θ0を満たす最小の整数をmとした場合に、溝10のd軸側端部は、m×(2π/n)-(2π/n)/5を満たす位置から、m×(2π/n)-(2π/n)/3を満たす位置までの領域に形成される。溝10の開始点の位置をこのように規定することにより、コギングトルクの低下とトルク向上とを両立させ、モータ損失が小さく、高効率で、かつ振動が低減されたモータを提供することが可能となる。また、このような効果を有する溝10の開始点の位置を式によって一般化することにより、容易に設計に用いることを可能にすることができる。 Further, according to the rotor 6 of the rotating electrical machine of one embodiment, when the order of the harmonic component of the torque ripple is n and the minimum integer satisfying m × (2π / n)> θ 0 is m, The d-axis side end portion is formed in a region from a position satisfying m × (2π / n) − (2π / n) / 5 to a position satisfying m × (2π / n) − (2π / n) / 3 Be done. By defining the position of the start point of the groove 10 in this manner, it is possible to achieve both a reduction in cogging torque and an improvement in torque, and to provide a motor with small motor loss, high efficiency, and reduced vibration. It becomes. In addition, by generalizing the position of the start point of the groove 10 having such an effect by an equation, it can be easily used for design.
 さらに、一実施形態の回転電機のロータ6によれば、内周側にロータ6が収容される固定子(ステータ)20をさらに備え、ステータ20の内周とロータ6の外周との間のギャップ21の距離をgとし、ロータ6の回転中心から溝10の回転中心側に最も深い点を通ってロータ6の仮想外周まで引かれた線において回転中心側に最も深い点から仮想外周までの距離をdとした場合に、溝10は、d≦4×gを満たすように形成される。これにより、鉄損を低減しつつ、コギングトルクが低いモータを提供することができる。 Furthermore, according to the rotor 6 of the rotating electrical machine of one embodiment, the stator 20 further includes the stator 20 in which the rotor 6 is accommodated on the inner peripheral side, and the gap between the inner periphery of the stator 20 and the outer periphery of the rotor 6 Assuming that a distance of 21 is g, a line drawn from the rotation center of the rotor 6 through the deepest point on the rotation center side of the groove 10 to the virtual outer periphery of the rotor 6 is the distance from the deepest point to the virtual outer periphery When d is d, the groove 10 is formed to satisfy d ≦ 4 × g. Thereby, a motor with low cogging torque can be provided while reducing iron loss.
 以下では、これまで説明した一実施形態のロータ6に係る特徴を備えた他の変形例、すなわち、ロータコア1の外周において、上述した規定に基づいて形成された溝10を備える他の変形例について説明する。以下で説明するような回転子構造であっても、上記特徴を備えた溝10を備える限り、一実施形態において説明したのと同様の技術的効果を得ることができる。 In the following, another modification provided with the feature according to the rotor 6 of the embodiment described above, that is, another modification including the groove 10 formed on the outer periphery of the rotor core 1 based on the above-described definition explain. Even with the rotor structure as described below, as long as the groove 10 having the above-described features is provided, the same technical effects as those described in the embodiment can be obtained.
 (変形例1)
 図13は、変形例1に係る溝10の形状を説明するための図である。図示するように、溝10の形状は必ずしも三角形状に形成される必要はなく、図示するような長方形状であってもよい。
(Modification 1)
FIG. 13 is a view for explaining the shape of the groove 10 according to the first modification. As illustrated, the shape of the groove 10 does not necessarily have to be formed in a triangular shape, and may be a rectangular shape as illustrated.
 (変形例2)
 図14は、変形例2に係る溝10の形状を説明するための図である。図示するように、溝10の形状は回転中心側に向かって凸な円弧形状に形成されてもよい。
(Modification 2)
FIG. 14 is a view for explaining the shape of the groove 10 according to the second modification. As illustrated, the shape of the groove 10 may be formed in a circular arc shape convex toward the rotation center side.
 (変形例3)
 図15は、変形例3に係る溝10の形状を説明するための図である。図示するように、溝10の形状は回転中心側に向かって凸な台形形状に形成されてもよい。
(Modification 3)
FIG. 15 is a view for explaining the shape of the groove 10 according to the third modification. As illustrated, the shape of the groove 10 may be formed in a trapezoidal shape convex toward the rotation center side.
 (変形例4)
 図16は、変形例4に係る溝10の形状を説明するための図である。図示するように、溝10は、その一部にさらに深い溝11を一つ以上含むように形成されてもよい。この場合、上で定義した溝の深さdは、溝10において最も深い溝(溝11)の深さとする。
(Modification 4)
FIG. 16 is a view for explaining the shape of the groove 10 according to the fourth modification. As shown, the groove 10 may be formed to include one or more deeper grooves 11 in a part thereof. In this case, the depth d of the groove defined above is the depth of the deepest groove (groove 11) in the groove 10.
 以上、本発明の実施形態、及びその変形例について説明したが、上記実施形態及び変形例は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。例えば、上述の説明においては、空隙4、5は空間部分であると説明したが、必ずしも空間である必要な無く、例えば樹脂材料のような非磁性材料で充填されていてもよい。 As mentioned above, although embodiment of this invention and its modification were described, the said embodiment and modification only showed a part of application example of this invention, and the technical scope of this invention It is not the meaning limited to a specific structure. For example, in the above description, the air gaps 4 and 5 are described as being space portions, but they need not necessarily be spaces, and may be filled with a nonmagnetic material such as a resin material.
 また、上述のロータ6が備える空隙4、5の形状は図1等に記載した形状に限定されず適宜変更されて良い。例えば、図1等に開示された空隙4は永久磁石2のq軸側の端部において、q軸と略平行に形成された帯状であるが、図17で示すような湾曲部を有する形状であってもよい。なお、この場合であっても、図示するとおり、回転子の回転中心と空隙4のd軸側端部とを通って外周まで引かれた線が直線Aと定義される。 Further, the shapes of the gaps 4 and 5 included in the above-described rotor 6 are not limited to the shapes described in FIG. 1 and the like, and may be appropriately changed. For example, the air gap 4 disclosed in FIG. 1 or the like is a strip formed substantially parallel to the q axis at the q axis end of the permanent magnet 2, but has a curved portion as shown in FIG. It may be. Even in this case, as illustrated, a line drawn to the outer periphery through the rotation center of the rotor and the d-axis side end of the air gap 4 is defined as a straight line A.

Claims (5)

  1.  外周方向に開くV字型に配置された一対の第1永久磁石と、前記V字型の開いた部分に配置された第2永久磁石とで構成される一磁極が周方向に複数配置された回転電機の回転子であって、
     前記第1永久磁石が挿入される磁石挿入孔において、前記一磁極が構成するd軸と電気的に直交するq軸側の端部に当該磁石挿入孔と連続して設けられた第1空隙と、
     前記第2永久磁石が挿入される磁石挿入孔の両端部に当該磁石挿入孔と連続して設けられた第2空隙と、
     前記回転子の外周に、前記回転子の軸方向に沿って形成された溝と、を備え、
     前記回転子の回転中心と前記第1空隙のd軸側端部とを通って前記外周まで引いた直線を直線Aとし、前記回転中心と前記第2空隙のq軸側端部とを通って前記外周まで引いた直線を直線Bとした場合に、前記溝のq軸側端部は前記直線A上に位置し、前記溝のd軸側端部は前記直線Bよりもq軸側に位置する、
    回転電機の回転子。
    A plurality of magnetic poles are circumferentially disposed, each magnetic pole being configured by a pair of first permanent magnets disposed in a V-shape opening in the outer circumferential direction and a second permanent magnet disposed in the open portion of the V-shape A rotor of a rotating electrical machine,
    In the magnet insertion hole into which the first permanent magnet is inserted, a first air gap provided continuously with the magnet insertion hole at an end portion on the q axis side orthogonal to the d axis formed by the one magnetic pole ,
    A second air gap provided continuously with the magnet insertion hole at both ends of the magnet insertion hole into which the second permanent magnet is inserted;
    And a groove formed along an axial direction of the rotor on an outer periphery of the rotor.
    A straight line drawn through the rotation center of the rotor and the d-axis end of the first gap to the outer periphery is defined as a straight line A, and the rotation center and the q-axis end of the second gap When the straight line drawn to the outer periphery is straight line B, the q-axis side end of the groove is positioned on the straight line A, and the d-axis side end of the groove is positioned on the q axis side of the straight line B Do,
    Rotor of rotating electric machine.
  2.  請求項1に記載の回転電機の回転子において、
     前記溝のd軸側端部から前記d軸までの電気角をθ1とし、
     前記回転中心から前記第1永久磁石の最外周部を通って前記外周まで引いた直線を直線Cとした場合に、前記直線Cから前記d軸までの電気角をθiとし、
     前記回転中心から前記第2永久磁石の最外周部を通って前記外周まで引いた直線を直線Dとした場合に、前記直線Dから前記d軸までの電気角をθ0とした場合に、
     前記溝のd軸側端部は、(θi-θ0)/3+θ0<θ1を満たす位置に形成される、
    回転電機の回転子。
    In a rotor of a rotating electrical machine according to claim 1,
    Let the electrical angle from the d-axis end of the groove to the d-axis be θ 1,
    Assuming that a straight line drawn from the center of rotation to the outer periphery through the outermost periphery of the first permanent magnet is a straight line C, an electrical angle from the straight line C to the d axis is θi
    When a straight line drawn from the center of rotation to the outer periphery through the outermost periphery of the second permanent magnet is a straight line D, an electrical angle from the straight line D to the d-axis is θ0.
    The d-axis side end of the groove is formed at a position satisfying (θi−θ0) / 3 + θ0 <θ1.
    Rotor of rotating electric machine.
  3.  請求項1又は2に記載の回転電機の回転子において、
     前記回転子の外周において前記d軸から前記q軸までをトルクリプルの高調波成分1周期分の電気角度間隔で刻んだ複数の刻み点を点Eとした場合に、
     前記溝のd軸側端部は、前記点Eを基準として前記d軸側に1/5周期ずれた位置から前記q軸側に1/3周期ずれた位置までの領域に形成される、
    回転電機の回転子。
    The rotor of the rotating electrical machine according to claim 1 or 2
    In the case where a plurality of notching points obtained by cutting from the d axis to the q axis on the outer periphery of the rotor at electrical angle intervals corresponding to one period of the torque ripple harmonic component is taken as point E:
    The d-axis side end of the groove is formed in a region from a position shifted by 1⁄5 cycle to the d-axis side with reference to the point E, to a position shifted by 1⁄3 cycle to the q-axis side.
    Rotor of rotating electric machine.
  4.  請求項2に記載の回転電機の回転子において、
     前記トルクリプルの高調波成分の次数をnとし、
     m×(2π/n)>θ0を満たす最小の整数をmとした場合に、
     前記溝のd軸側端部は、m×(2π/n)-(2π/n)/5を満たす位置から、m×(2π/n)-(2π/n)/3を満たす位置までの領域に形成される、
    回転電機の回転子。
    In the rotor of the rotating electrical machine according to claim 2,
    Let n be the order of the torque ripple harmonic component,
    When m is a minimum integer that satisfies m × (2π / n)> θ 0, then
    The d-axis side end of the groove is from a position satisfying m × (2π / n) − (2π / n) / 5 to a position satisfying m × (2π / n) − (2π / n) / 3 Formed in the area,
    Rotor of rotating electric machine.
  5.  請求項1から4のいずれか一項に記載の回転電機の回転子において、
     内周側に前記回転子が収容される固定子をさらに備え、
     前記固定子の内周と前記回転子の外周との間のギャップ距離をgとし、
     前記回転子の回転中心から前記溝の前記回転中心側に最も深い点を通って前記ロータコアの仮想外周まで引かれた線において、前記回転中心側に最も深い点から前記仮想外周までの距離をdとした場合に、
     前記溝は、d≦4×gを満たすように形成される、
    回転電機の回転子。
    The rotor of the rotating electrical machine according to any one of claims 1 to 4
    It further comprises a stator in which the rotor is accommodated on the inner circumferential side,
    Let the gap distance between the inner circumference of the stator and the outer circumference of the rotor be g,
    In a line drawn from the rotation center of the rotor through the deepest point on the rotation center side of the groove to the virtual outer periphery of the rotor core, the distance from the deepest point on the rotation center side to the virtual outer periphery is d If you
    The groove is formed to satisfy d ≦ 4 × g.
    Rotor of rotating electric machine.
PCT/JP2017/022580 2017-06-19 2017-06-19 Rotating electric machine rotor WO2018235145A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/022580 WO2018235145A1 (en) 2017-06-19 2017-06-19 Rotating electric machine rotor
JP2019524732A JP6821022B2 (en) 2017-06-19 2017-06-19 Rotor of rotating electric machine
CN201780092221.8A CN111052546B (en) 2017-06-19 2017-06-19 Rotor of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022580 WO2018235145A1 (en) 2017-06-19 2017-06-19 Rotating electric machine rotor

Publications (1)

Publication Number Publication Date
WO2018235145A1 true WO2018235145A1 (en) 2018-12-27

Family

ID=64736875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022580 WO2018235145A1 (en) 2017-06-19 2017-06-19 Rotating electric machine rotor

Country Status (3)

Country Link
JP (1) JP6821022B2 (en)
CN (1) CN111052546B (en)
WO (1) WO2018235145A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084788A1 (en) * 2019-10-31 2021-05-06 株式会社富士通ゼネラル Rotor and electric motor
JP2021106474A (en) * 2019-12-26 2021-07-26 日産自動車株式会社 Rotator of rotary electric machine and rotary electric machine
WO2022172479A1 (en) * 2021-02-15 2022-08-18 日本電産株式会社 Rotating electrical machine
DE102021130152A1 (en) 2021-11-18 2023-05-25 Audi Aktiengesellschaft Rotor for an axial flux permanent magnet synchronous machine and axial flux permanent magnet synchronous machine
JP7481936B2 (en) 2020-07-27 2024-05-13 日立Astemo株式会社 Permanent magnet motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484465B2 (en) * 2020-06-12 2024-05-16 ニデック株式会社 Rotating Electric Machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110142A (en) * 2008-10-31 2010-05-13 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine and compressor using the same
WO2012014834A1 (en) * 2010-07-28 2012-02-02 日産自動車株式会社 Rotating electric machine rotor
US20130147302A1 (en) * 2011-12-09 2013-06-13 GM Global Technology Operations LLC Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
JP2014138511A (en) * 2013-01-17 2014-07-28 Nissan Motor Co Ltd Magnet body for field pole and method for manufacturing the same
WO2016185829A1 (en) * 2015-05-19 2016-11-24 三菱電機株式会社 Rotor, rotating electrical machine, and method for producing rotor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097387A (en) * 2005-08-31 2007-04-12 Toshiba Corp Rotary electric machine
JP4898201B2 (en) * 2005-12-01 2012-03-14 アイチエレック株式会社 Permanent magnet rotating machine
JP5516739B2 (en) * 2010-07-27 2014-06-11 日産自動車株式会社 Rotor for electric motor
JP5643127B2 (en) * 2011-02-03 2014-12-17 トヨタ自動車株式会社 Rotating machine rotor
JP2012228101A (en) * 2011-04-21 2012-11-15 Hitachi Appliances Inc Rotor of rotary electric machine
CN102780292B (en) * 2012-03-05 2013-06-19 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet assistant synchronous reluctance motor rotor, motor with same and installation method
DE102013219222B4 (en) * 2012-09-28 2020-08-06 Suzuki Motor Corporation Electric lathe with permanent magnets inside
JP6002617B2 (en) * 2013-04-05 2016-10-05 株式会社日立産機システム Permanent magnet synchronous machine
CN203301267U (en) * 2013-05-08 2013-11-20 杭州德沃仕电动科技有限公司 Motor
CN203574462U (en) * 2013-10-31 2014-04-30 美的集团股份有限公司 Rotor, motor including rotor, and compressor
CN204013087U (en) * 2014-06-23 2014-12-10 比亚迪股份有限公司 Motor and there is its electric automobile
CN104600939A (en) * 2015-02-04 2015-05-06 广东美芝制冷设备有限公司 Permanent-magnet synchronous motor and compressor with same
CN105281459A (en) * 2015-07-23 2016-01-27 珠海格力电器股份有限公司 Motor rotor structure, permanent magnet motor and compressor
JP2017070040A (en) * 2015-09-29 2017-04-06 アイシン精機株式会社 Three-phase rotary electric machine
JP6894663B2 (en) * 2015-10-29 2021-06-30 株式会社富士通ゼネラル Rotor and permanent magnet motor
CN205407440U (en) * 2016-02-25 2016-07-27 珠海格力节能环保制冷技术研究中心有限公司 Rotor core and have its PMSM
CN105553143B (en) * 2016-02-25 2019-06-07 珠海格力节能环保制冷技术研究中心有限公司 Rotor core and permanent magnet synchronous motor with it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110142A (en) * 2008-10-31 2010-05-13 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine and compressor using the same
WO2012014834A1 (en) * 2010-07-28 2012-02-02 日産自動車株式会社 Rotating electric machine rotor
US20130147302A1 (en) * 2011-12-09 2013-06-13 GM Global Technology Operations LLC Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
JP2014138511A (en) * 2013-01-17 2014-07-28 Nissan Motor Co Ltd Magnet body for field pole and method for manufacturing the same
WO2016185829A1 (en) * 2015-05-19 2016-11-24 三菱電機株式会社 Rotor, rotating electrical machine, and method for producing rotor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084788A1 (en) * 2019-10-31 2021-05-06 株式会社富士通ゼネラル Rotor and electric motor
JP2021072733A (en) * 2019-10-31 2021-05-06 株式会社富士通ゼネラル Rotor and electric motor
CN114556749A (en) * 2019-10-31 2022-05-27 富士通将军股份有限公司 Rotor and motor
JP2021106474A (en) * 2019-12-26 2021-07-26 日産自動車株式会社 Rotator of rotary electric machine and rotary electric machine
JP7366367B2 (en) 2019-12-26 2023-10-23 日産自動車株式会社 Rotor of rotating electrical machine and rotating electrical machine
JP7481936B2 (en) 2020-07-27 2024-05-13 日立Astemo株式会社 Permanent magnet motor
WO2022172479A1 (en) * 2021-02-15 2022-08-18 日本電産株式会社 Rotating electrical machine
DE102021130152A1 (en) 2021-11-18 2023-05-25 Audi Aktiengesellschaft Rotor for an axial flux permanent magnet synchronous machine and axial flux permanent magnet synchronous machine

Also Published As

Publication number Publication date
CN111052546A (en) 2020-04-21
JP6821022B2 (en) 2021-01-27
JPWO2018235145A1 (en) 2020-04-16
CN111052546B (en) 2022-06-24

Similar Documents

Publication Publication Date Title
JP6821022B2 (en) Rotor of rotating electric machine
JP6422595B2 (en) Electric motor and air conditioner
EP2600498B1 (en) Rotor for electric motor
JP4680442B2 (en) Motor rotor
JP5762569B2 (en) Rotor of embedded permanent magnet motor and compressor, blower and refrigeration air conditioner using the same
JP5677584B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
EP2712058B1 (en) Permanent-magnet type rotating electrical machine
JPWO2004064225A1 (en) Permanent magnet type motor
JPWO2014038062A1 (en) Permanent magnet embedded motor
WO2019215853A1 (en) Rotor structure of rotating electric machine
JP2017050965A (en) Rotor structure for rotary electric machine
KR101473086B1 (en) Rotary electric machine
CN210111718U (en) Motor rotor with asymmetric magnetic bridges and motor comprising same
JP6507956B2 (en) Permanent magnet type rotating electric machine
JPWO2020194390A1 (en) Rotating machine
JP5959616B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP4080273B2 (en) Permanent magnet embedded motor
JP7314789B2 (en) Embedded magnet rotor and rotating electric machine
KR101628150B1 (en) Rotor structure of wrsm motor
JP7455994B2 (en) rotating electric machine
JP6382085B2 (en) Rotating electric machine rotor and rotating electric machine using the same
CN216564692U (en) Motor rotor and motor
WO2024029449A1 (en) Embedded magnet-type rotor and rotary electric machine
JP2011083114A (en) Motor
JP2021106474A (en) Rotator of rotary electric machine and rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019524732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914941

Country of ref document: EP

Kind code of ref document: A1