WO2015111155A1 - 新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法 - Google Patents

新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法 Download PDF

Info

Publication number
WO2015111155A1
WO2015111155A1 PCT/JP2014/051276 JP2014051276W WO2015111155A1 WO 2015111155 A1 WO2015111155 A1 WO 2015111155A1 JP 2014051276 W JP2014051276 W JP 2014051276W WO 2015111155 A1 WO2015111155 A1 WO 2015111155A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
protein
seq
steroid
gene
Prior art date
Application number
PCT/JP2014/051276
Other languages
English (en)
French (fr)
Inventor
順 小川
隆利 木村
尚文 依田
恭士 山本
阪本 剛
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to PCT/JP2014/051276 priority Critical patent/WO2015111155A1/ja
Publication of WO2015111155A1 publication Critical patent/WO2015111155A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/06Hydroxylating
    • C12P33/08Hydroxylating at 11 position
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0077Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with a reduced iron-sulfur protein as one donor (1.14.15)
    • C12N9/0079Steroid 11 beta monooxygenase (P-450 protein)(1.14.15.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/15Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced iron-sulfur protein as one donor, and incorporation of one atom of oxygen (1.14.15)
    • C12Y114/15004Steroid 11-beta-monooxygenase (1.14.15.4)

Definitions

  • the present invention relates to a novel steroid 11 ⁇ hydroxylase and a method for producing 11 ⁇ hydroxysteroid such as hydrocortisone using the same.
  • Examples of a method for producing hydrocortisone, prednisolone or a substituted derivative thereof useful as a medicament include 17 ⁇ , 21-dihydroxypregne-4-ene-3,20-dione (hereinafter referred to as “compound S”) and substituted derivatives thereof.
  • Patent Document 1 A method in which a microorganism such as mold is allowed to act and hydroxylate the 11 ⁇ position (Patent Document 1), yeast or the like as a host, a sterol 7-position reductase gene, a sterol side chain cleaving enzyme gene, a steroid 3-position oxidase / Efficient use of useful substances from inexpensive carbon sources in the culture of recombinant organisms expressing isomerase genes, steroid 17 ⁇ hydroxylase genes, steroid 21 hydroxylase genes, and / or steroid 11 ⁇ hydroxylase genes A well-fermented method (Patent Document 2) is known.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a novel steroid 11 ⁇ hydroxylase capable of efficiently performing 11 ⁇ hydroxylation and a method for producing 11 ⁇ hydroxysteroids such as hydrocortisone using the same.
  • the present inventors have intensively studied to solve the above problems. That is, the chromosomal DNA sequence of Curvularia lunata (C. lunata) MCI-1688 strain, a microorganism having steroid 11 ⁇ hydroxylation activity, was uniquely decoded, and steroids derived from other microorganisms were identified. A sequence having homology to the steroid 11 ⁇ hydroxylase gene, which is different from 11 ⁇ hydroxylase, was analyzed, and candidate sequences were narrowed down. Subsequently, a novel 11 ⁇ hydroxylase gene sequence was successfully obtained, for example, by obtaining a sequence in which the amount of transcription increased under culture conditions in which 11 ⁇ hydroxylation activity was induced. And the activity of the protein which the said gene codes was confirmed, it discovered that this enzyme catalyzed the synthesis reaction of 11 (beta) hydroxy steroids, such as hydrocortisone, and came to complete this invention.
  • 11 (beta) hydroxy steroids such as hydrocortisone
  • the present invention is as follows.
  • the following protein (a1), (b1) or (c1).
  • A1 A protein comprising the amino acid sequence of SEQ ID NO: 43.
  • B1 A protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 43, and having steroid 11 ⁇ hydroxylation activity.
  • C1 a protein comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence of SEQ ID NO: 43 and having steroid 11 ⁇ hydroxylation activity.
  • DNA encoding the protein according to [1].
  • a recombinant vector comprising the DNA according to [2] or [3] and an expression control region in which a protein encoded by the DNA can be expressed in a host organism or host cell.
  • An 11 ⁇ -hydroxysteroid compound is produced by contacting an 11-deoxysteroid compound with the protein according to [1], or the transformant according to [5] or a processed product thereof, A method for producing an 11 ⁇ -hydroxysteroid compound, which is recovered.
  • a novel gene sequence of 11 ⁇ -hydroxylase can be provided, and a gene recombinant having 11 ⁇ -hydroxylase activity using a microorganism or the like as a host can also be provided.
  • a cultured microorganism of a genetically modified microorganism having the gene with compound S or the like, a reaction product in which the 11 ⁇ -position is hydroxylated can be efficiently produced.
  • the protein of the present invention is the following protein (a1), (b1) or (c1).
  • A1 A protein comprising the amino acid sequence of SEQ ID NO: 43.
  • B1 A protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of SEQ ID NO: 43, and having steroid 11 ⁇ hydroxylation activity.
  • severe specifically means 20 or less, preferably 10 or less, more preferably 5 or less, and particularly preferably 3 or less.
  • (C1) A protein having an amino acid sequence having a sequence identity (identity) of 90% or more, preferably 95% or more, and having steroid 11 ⁇ hydroxylation activity with the amino acid sequence of SEQ ID NO: 43.
  • the protein (a1) of the present invention is preferably a protein consisting of the amino acid sequence of SEQ ID NO: 43.
  • the search for sequence identity in the protein of (c1) of the present invention can be performed using, for example, FASTA program, BLAST program, etc. for DNA Databank of JAPAN (DDBJ).
  • the above-mentioned protein of the present invention is a protein having steroid 11 ⁇ hydroxylation activity, and by reacting the protein of the present invention with compound S or the like, it is possible to efficiently produce a reaction product in which the 11 ⁇ position is hydroxylated.
  • the accumulation of by-products can be greatly reduced compared to a similar reaction using a conventional fungal cell, and the reaction yield can be significantly improved as compared with a conventional enzyme.
  • the steroid 11 ⁇ hydroxylation activity can be confirmed, for example, by the ability to convert compound S into hydrocortisone, as described in Examples below.
  • the proteins of the present invention are all classified into endoplasmic reticulum type P450, and in order for this type of P450 to express a function as a hydroxylase, NADPH: cytochrome P450 reduced as an electron donating protein to the enzyme.
  • NADPH cytochrome P450 reduced as an electron donating protein to the enzyme.
  • the presence of an enzyme is also necessary. Therefore, normally, when the P450 gene is expressed by genetic recombination in yeast or the like, it simultaneously encodes NADPH: cytochrome P450 reductase capable of transferring electrons to the P450 such as NADPH: cytochrome P450 reductase derived from the same microorganism. Genetic recombination of the gene is also considered necessary.
  • the protein of the present invention can be obtained by expressing the DNA of the present invention described later in a suitable host and purifying it from the cells. It can also be obtained by purification from microorganisms such as C. lunata.
  • the DNA of the present invention is a DNA encoding the above protein, and specifically, is the following DNA (a2), (b2), (c2) or (d2).
  • the term “several” means specifically 60 or less, preferably 30 or less, more preferably 15 or less, and particularly preferably 9 or less.
  • (C2) DNA encoding a protein comprising a nucleotide sequence having a sequence identity (identity) of 90% or more, preferably 95% or more with the nucleotide sequence of SEQ ID NO: 42, and having steroid 11 ⁇ hydroxylation activity.
  • (D2) A DNA that hybridizes with a DNA complementary to the DNA consisting of the nucleotide sequence of SEQ ID NO: 42 under a stringent condition and encodes a protein having steroid 11 ⁇ hydroxylation activity.
  • the DNA of (a2) of the present invention is preferably a DNA consisting of the base sequence of SEQ ID NO: 42. If the DNA of (b2) of this invention is those skilled in the art, the site-directed mutagenesis method (Nucleic Acid Res. 10, pp. 6487 (1982), Methods in Enzymol. pp. 448 (1983), Molecular Cloning 2nd Edt., Cold Spring Harbor Laboratory Press (1989) PCR A Practical Approach IRL Press pp. 200 (1991)), etc. Can be obtained.
  • the search for sequence identity in the DNA of (c2) of the present invention can be performed using, for example, FASTA program, BLAST program, etc. for DNA Databank of JAPAN (DDBJ).
  • the DNA of (d2) of the present invention is prepared from a microorganism having steroid 11 ⁇ hydroxylation activity using a DNA having a base sequence complementary to the DNA consisting of the base sequence of SEQ ID NO: 42 or a part thereof as a probe.
  • the obtained DNA can also be obtained by performing hybridization under stringent conditions by a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like to obtain a hybridized DNA.
  • the “part” of the DNA encoding the polypeptide of the present invention is a DNA having a sufficient length to be used as a probe, specifically 15 bp or more, preferably 50 bp or more, more preferably 100 bp or more. belongs to.
  • base sequence that hybridizes under stringent conditions means using DNA as a probe, under stringent conditions, such as colony hybridization, plaque hybridization, or Southern blot hybridization.
  • the stringent conditions include, for example, conditions of washing under conditions of 0.1 ⁇ SSC, 0.1% SDS, 65 ° C.
  • the DNA of the present invention can be isolated by, for example, a PCR method or a hybridization method using a cDNA library of a microorganism such as C. lunata as a template.
  • a PCR method or a hybridization method using a cDNA library of a microorganism such as C. lunata as a template.
  • the base sequence of the DNA of the present invention since the base sequence of the DNA of the present invention has been clarified by the present inventors, it can also be obtained by chemical synthesis based on SEQ ID NO: 42.
  • ⁇ Recombinant vector of the present invention DNA encoding the protein of the present invention (sometimes referred to as “DNA of the present invention”.
  • DNA of the present invention includes the above (a2), (b2), (c2), and (d2).
  • a recombinant vector is prepared by introducing the DNA of the present invention into the expression vector. It is possible to confer steroid 11 ⁇ hydroxylation activity to the host by transforming the host.
  • the recombinant vector includes a set comprising the DNA of the present invention and an expression control region (for example, a promoter) that allows the protein encoded by the DNA of the present invention (the protein of the present invention) to be expressed in the host. It means a replacement vector.
  • the “DNA of the present invention” may be endogenous to the host.
  • the recombinant vector of the present invention is usually a vector in which the 5 ′ terminal side of the DNA of the present invention is connected downstream of a promoter suitable for the host. A terminator sequence may be added to the 3 ′ end of the DNA of the present invention.
  • the expression vector used for preparing the recombinant vector of the present invention is not particularly limited as long as it can replicate and proliferate in the host cell, and examples thereof include a plasmid vector, a shuttle vector, and a phage vector.
  • expression vector and promoter can be appropriately selected according to the host described later. Specific examples of preferable expression vectors, promoters, terminators and the like in each host are given below, but the present invention is not limited to these examples.
  • plasmid vectors include pBR322, pUC18, pHSG298, pUC118, pSTV28, pTWV228, pHY300PLK (Takara Bio), and pKK223-3.
  • phage vectors include ( ⁇ FixII vector (manufactured by Stratagene, etc.)).
  • promoter include promoters derived from lac ( ⁇ -galactosidase), trp (tryptophan operon), tac, trc (fusion of lac, trp), ⁇ phage pL, pR, and the like.
  • the terminator include trpA-derived, phage-derived, and rrnB ribosomal RNA-derived terminators.
  • examples of the vector include a pUB110 plasmid and a pC194 plasmid.
  • promoters and terminators of enzyme genes such as alkaline protease, neutral protease, ⁇ -amylase and the like can be used.
  • vectors When the host is a Pseudomonas bacterium, vectors include general host vector systems established in Pseudomonas bacteria, plasmids involved in the degradation of toluene compounds, and wide host range vectors (RSF1010 based on the TOL plasmid). And pKT240 (Gene, 26, 273-82 (1983)). Examples of the promoter and terminator include a tac promoter used in Escherichia bacteria and a 5S ribosomal RNA terminator derived from Escherichia bacteria.
  • vectors such as pAJ43 (Gene 39,281 (1985)), pCS11 (JP 57-183799 A), pCB101 (Mol. (Gen. Genet. 196, 175 (1984), etc.
  • shuttle vectors for Escherichia coli-coryneform bacteria include, for example, pCRY30 (Japanese Patent Laid-Open No. 3-210184), pCRY21 (Japanese Patent Laid-Open No.
  • examples of the vector include YRp, YEp, YCp, YIp plasmids, pESC vectors (STRATAGENE), and pAUR vectors (Takara Bio). Further, vectors that can be used in yeast are described in detail in Adv. Biochem. Eng. 43, 75-102 (1990), Yeast 8, 423-488 (1992), and the like.
  • a PGK1 gene encoding phosphoglycerate kinase, an ADH1 gene encoding alcohol dehydrogenase, or a GAP1 gene encoding general amino acid permease can be used, as well as GAL1 / GAL10 (Johnston, M et al., (1984) Mol. Cell. Biol. 4 (8), 1440-1448) can also be used.
  • Promoters such as glyceraldehyde-3-phosphate dehydrogenase, acid phosphatase, enolase and metallothionein can also be used.
  • examples of the vector include YRp-based, YEp-based, YCp-based, YIp-based plasmids, pAUR224 vector (Takara Bio), etc.
  • ADH1 gene encoding alcohol dehydrogenase constitutive expression promoter such as viral SV40 promoter, inv1 gene promoter encoding invertase (suppressed in the presence of glucose) and hsp16 gene encoding heat shock protein can be used.
  • An inducible promoter such as a promoter can also be used.
  • the nmt1 promoter (repressed in the presence of thiamine) or the ctr4 promoter (repressed in the presence of copper) can also be used.
  • a chromosome insertion type vector is used, and examples thereof include a pPICZ vector and a pGAPZ vector (both are Life Technologies Japan).
  • a constant expression promoter such as a GAP gene encoding glyceraldehyde-3-phosphate dehydrogenase can be used, and an inducible promoter such as an AOX1 gene encoding alcohol oxidase can also be used. .
  • plasmid vectors that can replicate autonomously in cells such as ARp1 having an AMA1 sequence are also used.
  • the Examples of the latter include pPTRII vector and pAUR316 (both Takara Bio).
  • a constitutive expression promoter such as an enoA gene encoding enolase or a tef1 gene encoding a peptide chain elongation factor can be used.
  • amyB encoding ⁇ -amylase Inducible promoters such as genes can also be used.
  • a chromosome insertion type vector when the host is a plant cell or plant, it is common to use a chromosome insertion type vector, but a viral vector such as tobacco mosaic virus is also used. Furthermore, when transient expression is intended, there is no need to replicate in the plant cell or plant body, so it is sufficient that DNA can be introduced into the plant cell or plant body, and replication is not possible in the plant cell or plant body. Also, a plasmid vector that can replicate in Agrobacterium used for introduction is also used. As the promoter, a cauliflower mosaic virus 35S promoter, a constant expression promoter such as Ubi gene encoding ubiquitin, and the like can be used.
  • the recombinant vector of the present invention may be any vector as long as it can express the protein of the present invention in the host, and the method for introducing the gene into the host is not particularly limited.
  • the present invention further provides a transformant obtained by introducing the DNA of the present invention or the recombinant vector of the present invention into a host.
  • a transformant of the present invention or a processed product thereof is used in the production method of the present invention described later, it is possible to produce an 11 ⁇ hydroxysteroid compound using the 11 ⁇ deoxysteroid compound as a raw material for the reaction. become.
  • Examples of the host into which the DNA of the present invention or the recombinant vector of the present invention is introduced include the following organisms or cells.
  • Escherichia genus bacteria such as Escherichia coli; Bacillus genus such as Bacillus subtilis, Bacillus brevis, Bacillus stearothermophilus Bacteria; Serratia genus bacteria such as Serratia cen marcescens; Pseudomonas aeruginosa, Pseudomonas genus bacteria such as Pseudomonas aeruginosa; ), Coryneform bacteria such as Brevibacterium flavum, Brevibacterium lactofermentum; Rhodococcus erythropolis Rhodococcus bacteria such as Lactobacillus casei Lactobacillus bacteria, Streptomyces bacteria such as Streptomyces lividans Thermus thermophilus Thermus bacteria such as thermophilus; Streptococcus bacteria such as Streptococcus lactis; Actinomycetes bacteria
  • Aspergillus fungi such as Aspergillus nigar, Aspergillus oryzae; Mortierella ramanniana, Mortierella bainieri, Mortierella alpina (M) Mortierella molds such as Fusarium fujikuroi Fusarium molds; Curvularia lunata Curvularia molds such as Curvularia lunata.
  • yeast is preferred, and Saccharomyces yeast is particularly preferred because metabolic engineering techniques are easy to use.
  • Saccharomyces yeasts it is desirable to have an auxotrophic genotype such as his3, leu2, trp1, and ura3.
  • auxotrophic genotype such as his3, leu2, trp1, and ura3.
  • Saccharomyces cerevisiae YPH499 strain (MATa ura3 lys2 ade2 trp1 his3 leu2) (ATCC204679: available from American Type Culture Collection or STRATAGENE), Saccharomyces cerevisiae FY1679-6c strain (available from MAT ⁇ ura3 leu2 trp1 his3) (available from Euroscarf) Saccharomyces cerevisiae X2181-1B strain (MATalpha his2 gal1 trp1 ade1 MAL SUC) (ATCC204822: available from American Type Culture Collection), Saccharomyces cerevisiae INVSc1 strain (MATa / MAT ⁇ his3 ⁇ 1 / his3 ⁇ 1 leu2 / leu2 trp1-289 / trp1-289 ura3-52 / ura3-52) (available from Life Technologies Japan) can be used.
  • Saccharomyces cerevisiae KA311A strain (MATa his3 leu2 trp1 ura3) (Mol. Cell Biol. 13, 307-3083 (1993)) can also be used.
  • the deposit number is FERM P-19053.
  • Saccharomyces cerevisiae FY1679-28c strain JP2004-528827 A1
  • FY1679-18b strain JP2004-528827 A1
  • YPH500 strain ATCC204680
  • the transformant of the present invention (preferably yeast) contains other enzymes described below in addition to the introduction of the DNA of the present invention, that is, the gene encoding 11 ⁇ hydroxylase which is the protein of the present invention.
  • a sterol side chain cleaving enzyme gene is preferably introduced. If necessary, at least one selected from the group consisting of a sterol 7-position reductase gene, a steroid 3-position oxidase / isomerase gene, a steroid 17 ⁇ -position hydroxylase gene, and a steroid 21-position hydroxylase gene It may be introduced.
  • the genes of these other enzymes are inserted into the expression vector exemplified in the section ⁇ Recombinant vector of the present invention> What is necessary is just to transform a host by the method mentioned later. Examples of genes of other enzymes that can be introduced together with the gene encoding the protein of the present invention are shown below.
  • the sterol 7-reductase gene is derived from Arabidopsis thaliana described in Journal of Biological Chemistry 1996, 271, 10866-10873, or Applied and Environmental Microbiology 2007, 73, 1736-1741 genus Mortierella Molds are used.
  • Examples of the sterol side chain cleaving enzyme gene include DNA encoding a protein having an activity of cleaving the bond between positions 20 and 22 of the sterol side chain.
  • a protein having an activity of cleaving the bond between positions 20 and 22 of the sterol side chain For example, an enzyme protein described in WO2010 / 079594 International Publication Pamphlet ( CYP204A1 and CYPSS204A), and DNA encoding CYP11A1 protein derived from animals such as cows, goats, horses, mice, rats, chickens, zebrafish, and humans.
  • the sterol 3-position oxidase / isomerase gene is preferably bovine, mouse, rat, human, or plant-derived 3 ⁇ -hydroxysteroid dehydrogenase (3 ⁇ HSD) or Streptomyces bacteria-derived cholesterol oxidase.
  • Examples of the steroid 17 ⁇ -position hydroxylase protein, steroid 21-position hydroxylase protein, and steroid 3-position oxidase / isomerase gene include those described in Molecular and Cellular Endocrinology 1990, 73, and 73-80.
  • the steroid 17 ⁇ hydroxylase gene is preferably, for example, bovine, mouse, rat, or human-derived cytochrome P450c17.
  • the steroid 21 hydroxylase gene is preferably bovine, mouse, rat, or human-derived cytochrome P450c21.
  • a gene such as a protein constituting an electron transport system necessary for the activity of the other enzymes described above, if necessary.
  • a ferredoxin protein having activity of transferring electrons to the enzyme protein, and the ferredoxin Genes encoding each of the ferredoxin reductase proteins that have electron transfer activity to the protein are introduced into the host microorganism at the same time, or these proteins are artificially fused to maintain the enzyme activity. It is preferable to create and introduce a protein.
  • the ferredoxin protein having electron transfer activity and the ferredoxin reductase protein having electron transfer activity to the ferredoxin protein may be one kind of protein having both activities.
  • the P450 reductase domain of the P450-BM3 gene of Bacillus megaterium can be linked to an enzyme protein (P450 2C11) to use an artificially produced fusion protein (Helvig, C. and Capdevila, J. H., Biochemistry, (2000) 39, 5196-5205).
  • Ferredoxin reductase is selected from among the following, for example. Spinach-derived ferredoxin reductase, Peptidoredoxin reductase from Pseudomonas putida, adrenodoxin reductase from animals, Ferredoxin reductase from Novosphingobium subterraneum, Ferredoxin reductase from Novosphingobium aromaticivorans, Flavodoxin reductase or ferredoxin reductase from Escherichia coli, Acinetobacter sp. Ferredoxin reductase derived from ADP1 strain, An adrenodoxin reductase-like protein (arh1p) from Saccharomyces cerevisiae, Or other ferredoxin reductase.
  • Ferredoxin is selected, for example, from: Ferredoxin from spinach, Putidaredoxin from Pseudomonas putida, Animal-derived adrenodoxin, Ferredoxin from Novosphingobium subterraneum, Ferredoxin from Novosphingobium aromaticivorans, Flavodoxin and ferredoxin from Escherichia coli, Acinetobacter sp. Ferredoxin derived from ADP1 strain, Ferredoxin-like protein (yah1p) from Saccharomyces cerevisiae, Or other ferredoxin-type protein.
  • examples of steroid 18-hydroxylase include human-derived cytochrome P45011B2
  • examples of 3-oxosteroid- ⁇ 1-dehydrogenase include 3-oxosteroids derived from Pimelobacter simplex and Rhodococcus erythropolis. Steroid- ⁇ 1-dehydrogenase and the like can be used.
  • a derivatized 11 ⁇ -hydroxysteroid compound can also be produced by introducing a gene encoding an enzyme that acts on the 11 ⁇ -hydroxysteroid compound generated by the 11 ⁇ -hydroxylation reaction. it can. Therefore, in addition to the above-mentioned genes, genes such as steroid 18-hydroxylase and steroid 1-oxidase may be introduced.
  • the above-described transformant of the present invention can be cultured in a normal nutrient medium containing a carbon source, a nitrogen source, an inorganic salt, various vitamins, etc.
  • a carbon source include glucose, sucrose, and fructose.
  • Sugars such as maltose, alcohols such as ethanol and methanol, organic acids such as citric acid, malic acid, succinic acid, maleic acid and fumaric acid, and molasses are used.
  • the nitrogen source for example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea or the like is used alone or in combination.
  • inorganic salts examples include potassium monohydrogen phosphate, potassium dihydrogen phosphate, and magnesium sulfate.
  • nutrients such as various vitamins such as peptone, meat extract, yeast extract, corn steep liquor, casamino acid, and biotin can be added to the medium.
  • Cultivation can be carried out according to the type of host used, but is usually performed under aerobic conditions such as aeration and agitation and shaking.
  • the culture temperature is not particularly limited as long as the host can grow, and the pH during the culture is not particularly limited as long as the host can grow.
  • the pH adjustment during the culture can be performed by adding an acid or an alkali.
  • the host is a plant cell, it is preferable to irradiate light depending on the type.
  • cultivating a plant obtained by transformation it can be transplanted to soil or cultivated, or hydroponically cultivated using an aqueous solution containing a nitrogen source, inorganic salts, various vitamins and the like.
  • various nitrates, ammonium salts and the like can be used, and as inorganic salts, for example, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate and the like are used.
  • inorganic salts for example, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate and the like are used.
  • the temperature is not particularly limited as long as the plant grows, and the pH of the aqueous solution in soil or hydroponics is not particularly limited as long as the plant grows.
  • the pH of the aqueous solution in hydroponics can be adjusted by adding acid or alkali.
  • the transformant of the present invention thus cultured or cultivated can be used for the method for producing an 11 ⁇ hydroxysteroid compound described later.
  • the transformant of the present invention can be cultured in parallel with the production of the 11 ⁇ hydroxysteroid compound.
  • the protein of the present invention (11 ⁇ hydroxylase), or the above-described transformant of the present invention or a processed product thereof is contacted with an 11-deoxy steroid compound to produce an 11 ⁇ hydroxy steroid compound, and the 11 ⁇ hydroxy steroid compound is recovered. By doing so, an 11 ⁇ hydroxysteroid compound can be produced.
  • 11-deoxysteroid compounds 17 ⁇ , 21-dihydroxypregne-4-ene-3,20-dione (compound S), 11-deoxycorticosterone, progesterone, 17 ⁇ -hydroxyprogesterone, and their Derivatives and the like.
  • Derivatives include 17 ⁇ , 21-dihydroxypregne-4-ene-3,20-dione 21-acetate or 17 ⁇ , 21-dihydroxypregna-1,4-diene-3,20-dione. .
  • the compound S or its derivative (s) is preferable.
  • the 11 ⁇ hydroxy steroid compound include hydrocortisone, corticosterone, 11 ⁇ -hydroxyprogesterone, 21-deoxycortisol, and derivatives thereof.
  • Derivatives include hydrocortisone 21-acetate, prednisolone, and the like. Among these, hydrocortisone or a derivative thereof is preferable.
  • microorganism cells As a processed product of the transformant, microbial cells and plant cells (hereinafter referred to as “microorganism cells”) or plants which are transformants are crushed by means of ultrasonic waves, crushing, crushing or the like.
  • the microbial cells or the like that are transformants can be immobilized, and the transformants can be immobilized on an appropriate carrier such as acrylamide monomer, alginic acid, or carrageenan according to a commonly used method known per se. It can be performed by a method of immobilizing microbial cells or the like which are transformants. For example, when microbial cells or the like are immobilized on a carrier, it is recovered from the culture or is used as a suitable buffer, for example, a phosphate buffer (pH 6 to 10) of about 0.02 to 0.2M. The microbial cells washed with can be used. Only the protein of the present invention may be immobilized.
  • an appropriate carrier such as acrylamide monomer, alginic acid, or carrageenan according to a commonly used method known per se. It can be performed by a method of immobilizing microbial cells or the like which are transformants.
  • a suitable buffer for example, a phosphate buffer (pH 6 to 10) of about
  • genes encoding other enzymes are also introduced into the same transformant (preferably yeast), so that inexpensive raw materials such as glucose and ethanol can be used.
  • the gene encoding 11 ⁇ -hydroxylase of the present invention Introduced at least genes encoding sterol side chain cleaving enzyme, ferredoxin, ferredoxin reductase, sterol 7-reductase, steroid 3-oxidase / isomerase, steroid 17 ⁇ -hydroxylase, and steroid 21-hydroxylase It is preferable to produce using the prepared host.
  • At least sterol side chain cleaving enzyme ferredoxin, ferredoxin reductase, sterol 7-position reductase, steroid 3-position oxidase / isomerism It is preferable to produce using a host into which a gene encoding a oxidase and a steroid 21-hydroxylase gene has been introduced.
  • At least sterol side chain cleaving enzyme, ferredoxin, ferredoxin reductase, sterol 7-position reductase, and steroid 3-position oxidase it is preferable to produce using a host into which a gene encoding an isomerase has been introduced.
  • At least sterol side chain cleaving enzyme ferredoxin, ferredoxin reductase, sterol 7-position reductase, steroid 3-position oxidase / It is preferable to produce using a host into which an isomerase and a gene encoding a steroid 17 ⁇ -position hydroxylase have been introduced.
  • the target 11 ⁇ -hydroxysteroid compound Is not particularly limited, but it is preferable to satisfy the following conditions.
  • the host of the transformant of the present invention to be used is a microorganism or a cell, it can be contacted in a medium in the same manner as in the above-described culture method.
  • the concentration of the substrate 11-deoxysteroid compound is preferably 0.01% to 10%, more preferably 0.1% to 2%.
  • the reaction temperature is preferably 15 to 40 ° C, more preferably 25 to 35 ° C.
  • the reaction pH is preferably pH 4 to pH 10, more preferably pH 5 to pH 9. Since 11 ⁇ hydroxylation requires oxygen, aerobic conditions are preferred.
  • the 11 ⁇ hydroxylation reaction requires the supply of reducing power, the conditions under which the organism is in the growing state are preferred.
  • the host is a microorganism or a plant cell, 11 ⁇ in parallel with the culture (ie, growth). It is also preferred to allow the hydroxylation reaction to proceed.
  • the reducing power is specifically electrons and energy.
  • Reducing NADH or NADPH in the presence of glucose dehydrogenase or glucose 6-phosphate dehydrogenase and glucose in order to supply compounds such as NADH and NADPH, and reducing electrons and energy as steroids By supplying the 11 ⁇ hydroxylation reaction, or by supplying electric power in the presence of an electron mediator to directly supply electrons or energy, which is a reducing power, to the steroid 11 ⁇ hydroxylation reaction, It is also preferred to proceed the reaction.
  • the method for recovering the 11 ⁇ -hydroxysteroid compound such as hydrocortisone accumulated in the medium or in the plant is not particularly limited, and methods for separation or purification known to those skilled in the art can be used. For example, it can be performed by solvent extraction, crystallization, resin adsorption, column chromatography and the like.
  • the recovered material is not limited to those obtained by isolating and purifying the 11 ⁇ hydroxysteroid compound accumulated in the medium or in the plant body. The contained medium and the plant itself are also included.
  • various derivatives can be produced by known methods from the recovered 11 ⁇ -hydroxysteroid compound such as hydrocortisone.
  • Example 1 Culture conditions for inducing steroid 11 ⁇ -position hydroxylation activity in Culbularia lunata MCI1688 strain
  • Culbularia lunata MCI1688 was applied on PDA agar medium (potato dextrose agar medium (Difco)) and cultured at 28 ° C. for 9 days.
  • Curbularia Lunata MCI1688 strain grown on the medium was added to 2 mL of GPCSL-II liquid medium (10% (w / v) glucose, 2% (w / v) polypeptone (Nippon Pharmaceutical), 0.5% (w / v)
  • GPCSL-II liquid medium 10% (w / v) glucose, 2% (w / v) polypeptone (Nippon Pharmaceutical), 0.5% (w / v)
  • Two corn steep liquors (Sigma Aldrich) were inoculated and reciprocally shaken at 300 ° C. (300 rpm).
  • the seed culture was used as a seed culture solution, and the entire amount was inoculated into 50 mL of GPCSL-II medium charged in a 300 mL Erlenmeyer flask, and main culture was started by swirling at 28 ° C. and 150 rpm.
  • 20 mg of 20-hydroxymethyl-1,4-pregnadien-3-one (ACROS) powder was added to only one culture medium as an inducer of 11 ⁇ hydroxylation activity (induction agent addition section), None was added to the other (induction agent-free group), and the continuous shaking culture at 28 ° C. and 150 rpm was continued.
  • ACROS 20-hydroxymethyl-1,4-pregnadien-3-one
  • Example 2 Selection of 11 ⁇ hydroxylase gene sequence candidates in the chromosomal DNA sequence of Culbularia lunata MCI1688 strain Among the various amino acid sequences deduced from the chromosomal DNA sequence of Culbularia lunata MCI1688 strain that was independently decoded by the inventors, International Publication No. 2002 An amino acid sequence having high homology with the amino acid sequence of steroid 11 ⁇ hydroxylase derived from Aspergillus ocraceus ATCC 18500 strain described as SEQ ID NO: 2 in the pamphlet of No. / 046386 and a nucleic acid sequence encoding the amino acid sequence are programmed TBLASTN 2.2. 19 was used to search. The conditions used for this homology evaluation were the default values attached to the program.
  • P450A1 to A5 a total of five types of deduced amino acid sequences having an Expect value lower than 1.0e-10 were listed as candidates, and further refinement was performed on these sequences. Since these deduced amino acid sequences have partial amino acid sequences characteristic of cytochrome P450 proteins, P450A1 (SEQ ID NO: 1), P450A2 (SEQ ID NO: 2, 3), P450A3 (SEQ ID NO: 4), P450A4 ( SEQ ID NO: 5) and P450A5 (SEQ ID NO: 6).
  • the two amino acid sequences of P450A2-1 (SEQ ID NO: 2) and P450A2-2 (SEQ ID NO: 3) are considered to be different partial sequences of the same protein.
  • the reason is that the nucleic acid sequences encoding them are very close to each other on the chromosome, the reading direction in transcription is the same, and homologous to different parts of the steroid 11 ⁇ hydroxylase amino acid sequence used for the sequence search. It is because it shows sex.
  • Example 3 Estimated gene region in chromosomal DNA sequence From the chromosomal DNA sequence of Culbularia lunata MCI1688 strain, the DNA sequences containing the gene regions encoding the above five deduced amino acid sequences are shown in SEQ ID NOs: 7 to 11, respectively.
  • BLASTX 2, 2, and 27 programs were used to search for proteins with high homology under the default conditions against public protein databases.
  • the known amino acid sequences extracted by this search are considered to be the known amino acid sequences having the highest homology with each of the five putative cytochrome P450 proteins found from the chromosomal DNA sequence of Curbularia lunata MCI1688.
  • the position of the translation start codon and the stop codon on the chromosomal DNA sequence was estimated with reference to the comparison with the obtained sequence in consideration of the possibility of the presence of introns.
  • the start codon is not clear, and a stop codon is found in the region considered to be an exon, and it was difficult to predict completely.
  • the following P450A1 to A5 Five types of DNA sequences were used as 11 ⁇ hydroxylase DNA sequence candidates (SEQ ID NOs: 12 to 16).
  • Example 4 Curbularia Lunata Further narrowing down the 11 ⁇ hydroxylase DNA sequence candidate in the chromosomal DNA sequence of MCI1688 strain
  • Curbularia Lunata MCI1688 was applied on PDA agar medium, cultured at 28 ° C. for 9 days, and then grown on the same agar medium.
  • the shaking culture of each flask in the inducer-added and non-inductor-added sections was stopped, cooled on ice for 15 minutes, and then centrifuged (2,000 ⁇ g, 4 ° C., 10 minutes) Thus, the bacterial cell fraction was collected. This fraction was suspended in 20 mL of 0.9% (w / v) NaCl aqueous solution, and the bacterial cell fraction was collected again by centrifugation and stored frozen at ⁇ 80 ° C.
  • the inducer addition group the culture of one flask was stopped at 1.4 hours and 2.7 hours after the addition of the inducer, respectively, and the cell fraction was stored frozen at ⁇ 80 ° C. by the same treatment. Further, 4 hours after the addition of the inducer, the culture was also stopped in the same manner for each of the remaining flasks with and without the inducer, and the cells were stored frozen at ⁇ 80 ° C.
  • RNA was extracted from the treated product from which the metal corn had been removed using the ISOGEN kit (Nippon Gene) according to the attached manual instructions.
  • the obtained RNA fraction was treated with 100 ⁇ L of DEPC-treated water (diethyl pyrocarbonate treated). Dissolved in water).
  • RNA aqueous solution 2 ⁇ L RNA aqueous solution 2 ⁇ L
  • reverse transcription reaction was performed using PrimeScript® High® Fidelity® RT-PCR® Kit (Takara Bio Inc.) to prepare 20 ⁇ L each of 6 types of cDNA aqueous solutions.
  • the conditions for the reverse transcription reaction were in accordance with the manual instructions attached to PrimeScript High Fidelity RT-PCR Kit (Takara Bio Inc.), and Oligo dT primer included in the kit was used as a primer.
  • P450A1 P450A1-F1 ATGGATACCCAGACTGTCGAGCTG (SEQ ID NO: 17)
  • P450A1-R1 CTACACTACTACTCTCTTGAAAGC
  • P450A2 P450A2-F1 ATGATTATTGAGCTCTTCTCATC (SEQ ID NO: 19)
  • P450A2-R1 CTACACCAGTATACTCGGTTCTCC
  • P450A3 P450A3-F1 ATGGCCGGAGACGAAGTGAG
  • P450A3-R1 TCACCCATCACTAGACGTCCAC
  • P450A4 P450A4-F1 ATGGGGATCCCTTATGTCTTGC
  • P450A5 P450A5-F1 ATGGGCAACTTTTTTGACA
  • PCR reaction solution was analyzed by electrophoresis using an agarose gel. As a result, DNA amplification was confirmed at a mobility of about 1.5 kbp in the PCR reaction solution to which a primer pair of P450A1 and P450A3 was added. On the other hand, DNA amplification could not be confirmed by electrophoresis of PCR reaction solution using P450A2, P450A4 and P450A5 primer pairs. From the results obtained above, candidate sequences were further narrowed down to P450A1 and P450A3.
  • Example 5 Confirmation of induction effect by transcription level analysis of P450A1 and P450A3 Further, 190 ⁇ L of DEPC-treated water was added to 10 ⁇ L of each of the cDNA solutions prepared above and diluted 20 times, and 2 ⁇ L was used as a template sample for real-time PCR.
  • P450A1, P450A3, actin, glyceraldehyde-3-phosphate dehydrogenase, and 40S ribosomal RNA gene-specific primers (hereinafter referred to as P450A1-F4 and P450A1-R4, P450A3-F4 and P450A3, respectively) -R4, actin-F2 and actin-R2, GAPDH-F1 and GAPDH-R1, and 40S-F2 and 40S-R2), 1 ⁇ L of Light Cycler Fast Start DNA Master SYBR Green I (Roche Diagnostics) 20 nmoles magnesium chloride aqueous solution and DEPC treated water are added to make a liquid volume of 10 ⁇ L, and using Real Cycler (Roche Diagnostics) The analysis of the expression level by PCR was performed.
  • P450A1-F4 and P450A1-R4, P450A3-F4 and P450A3, respectively ribosomal RNA gene-specific primers
  • P450A1 P450A1-F4 GTTTTGCGATTCACTGGACCTAC (SEQ ID NO: 27)
  • P450A1-R4 GAAGGGTAGAATGCGTTGTCTTG
  • P450A3 P450A3-F4 CTATACCAGAAGGCATCCATTTCC
  • P450A3-R4 GCCTCATACTCTTCTCTCGGTCTC (SEQ ID NO: 30)
  • GAPDH-F1 ATGCACGCGATTGACACGTCCTC
  • GAPDH-R1 CTAAGCGTTGCCATCAATCTTG (SEQ ID NO: 34)
  • the PCR program was as follows depending on the gene of interest, and the transcription amount was determined as a Ct value by the second derivative maximum method.
  • 95 ° C ⁇ 10 seconds ⁇ 54 ° C ⁇ 10 seconds ⁇ 72 ° C ⁇ 6 seconds (glyceraldehyde-3-phosphate dehydrogenase) 95 ° C ⁇ 10 seconds ⁇ 57 ° C ⁇ 10 seconds ⁇ 72 ° C ⁇ 4 seconds (40S ribosomal RNA)
  • Table 3 shows the results of the transcription level analysis of the target gene in each cDNA sample.
  • the Ct value by the second derivative maximum method is described, it is evaluated that the transfer level is higher as the value is lower.
  • the transcription levels of actin, glyceraldehyde-3-phosphate dehydrogenase, and 40S ribosomal RNA gene are slightly higher in the non-inducing agent group sample than in the inducing agent group sample, but the P450A1 and P450A3 genes The transcription level was equal to that immediately after the addition of the inducer or was high for P450A1. From these results, it was suggested that P450A1 and P450A3 were induced to be transcribed by addition of an inducer, but that the induction effect was higher in P450A1 than in P450A3.
  • Example 6 Acquisition of narrowed sequence candidate genes DNA obtained by treating pUC118 plasmid (Takara Bio Inc.) with restriction enzyme HincII (Takara Bio Inc.) was further subjected to dephosphorylation with BAPC75 (Takara Bio Inc.). The aqueous solution containing the DNA thus obtained and the PCR reaction solution of P450A1 were mixed, and DNA Ligation Kit ⁇ Mighty Mix> (Takara Bio Inc.) was added to carry out a ligation reaction.
  • an aqueous solution containing DNA obtained by further dephosphorylating the DNA obtained by treating pMW119 plasmid (manufactured by Nippon Gene) with restriction enzyme SmaI (Takara Bio) with BAPC75 and a PCR reaction solution of P450A3 are mixed.
  • DNA Ligation Kit ⁇ Mighty Mix> was added to perform a ligation reaction.
  • E.I. After transforming E. coli DH5 ⁇ (Takara Bio), the transformation solution was treated with LB agar medium (1% Bactotryptone (Difco), 0.5% Bacto containing 50 ⁇ g / mL ampicillin sodium salt (Sigma Aldrich)).
  • the temperature change program in the reaction is 95 ° C., 1 minute, followed by 30 cycles of reaction consisting of 95 ° C., 30 seconds ⁇ 50 ° C., 30 seconds ⁇ 72 ° C., 1.5 minutes, and 72 ° C., 2 minutes It was supposed to end with.
  • This colony PCR it was confirmed that about 1.5 kbp of DNA was amplified for each of the transformant colonies. Therefore, each colony was considered to have a vector pUC118-P450A1 or pMW119-P450A3.
  • each of these colonies was inoculated into 2 mL of LB liquid medium (1% Bactotryptone (Difco), 0.5% Bacto yeast extract (Difco), 1% sodium chloride), and 37 ° C., 300 rpm (reciprocal shaking).
  • the cells were cultured overnight, and the grown cells were collected by centrifugation, and plasmid DNA was extracted using QIAprep Spin Miniprep Kit (manufactured by Qiagen).
  • PCR reaction (96 ° C, 30 seconds followed by 96 ° C, 20 seconds ⁇ 50 ° C, 20 seconds ⁇ 60 ° C) by GenomeLab terminator cycle sequencing with quick start kit (manufactured by Beckman Coulter) And a DNA sequence was analyzed by a DNA sequencer CEQ8000.
  • the primers used for the DNA sequence analysis of pUC118-P450A1 are M13-F1, M13-R1, and P450A1-F3.
  • the primers used for the DNA sequence analysis of pMW119-P450A3 are M13-F1, M13- R1, P450A3-F3, and P450A3-R4.
  • P450A1-F3 AAGACGTATATGCCGCCATGTGAC (SEQ ID NO: 39)
  • P450A3-F3 TTCGACCAACCTGACAACGTTCTC (SEQ ID NO: 40)
  • P450A3-R4 GCCTCATACTCTTCTCTCGGTCTC (SEQ ID NO: 41)
  • the cDNA sequences encoding P450A1 and P450A3 were determined as SEQ ID NOS: 42 and 44, respectively. Furthermore, from the cDNA sequence, the deduced amino acid sequences of P450A1 and P450A3 were deduced as SEQ ID NOs: 43 and 45, respectively.
  • Example 7 Preparation of vector for expression of P450A1 and P450A3
  • pKIM-URA-NCP1 NCP1 (NADP-cytochrome P450 reductase) gene of Saccharomyces cerevisiae S288c strain.
  • Saccharomyces cerevisiae S288c strain was inoculated on YPD agar medium (1% Bacto yeast extract, 2% peptone, 2% glucose, 2% agar) and grown at 30 ° C. for 3 days.
  • Saccharomyces cerevisiae S288c grown on the agar medium was inoculated into 2 mL of YPD liquid medium (1% Bacto yeast extract, 2% peptone, 2% glucose), and cultured with shaking at 30 ° C. and 180 rpm overnight.
  • YPD liquid medium 1% Bacto yeast extract, 2% peptone, 2% glucose
  • a precipitate fraction was obtained by centrifugation at 5,000 ⁇ g for 3 minutes at room temperature, and this precipitate fraction was suspended in a suspension buffer (0.1 M sodium chloride, 10 mM Tris-hydrochloric acid (pH 7.5), Glass beads were added to the suspension in 1 mM ethylenediaminetetraacetic acid disodium, 0.1% sodium dodecyl sulfate), and the cells were disrupted by vigorous shaking while cooling. A phenol / chloroform / isoamyl alcohol (25/24/1) solution saturated with 10 mM Tris-hydrochloric acid (pH 8.0) was added thereto, and the protein was denatured by further shaking.
  • a suspension buffer 0.1 M sodium chloride, 10 mM Tris-hydrochloric acid (pH 7.5)
  • Glass beads were added to the suspension in 1 mM ethylenediaminetetraacetic acid disodium, 0.1% sodium dodecyl sulfate
  • the upper layer solution was transferred separately, and further an equal amount of chloroform was added. After shaking, the mixture was centrifuged at 18,000 ⁇ g for 5 minutes at room temperature, and the upper layer liquid was further transferred. After adding 3M sodium acetate aqueous solution and ethanol to the liquid, the nucleic acid fraction was precipitated by centrifugation at 18,000 ⁇ g for 20 minutes at 4 ° C. A 70% aqueous ethanol solution was added to the precipitate, shaken again, and centrifuged at 18,000 ⁇ g for 5 minutes at 4 ° C. to remove the supernatant.
  • an aqueous chromosomal DNA solution of Saccharomyces cerevisiae S288c was prepared by adding water.
  • a PCR reaction solution was prepared by adding 10 pmoles of primers NCP1-F1 and NCP1-R1, 25 ⁇ L of PrimeSTAR Max Premix and water to 50 ⁇ L in total to 5 ng of this DNA.
  • a PCR reaction comprising 30 cycles of 15 seconds ⁇ 72 ° C. and 10 seconds was performed.
  • NCP1-F1 GGGCCCAAAAAAATGCCGTTTGGAATAGAC (SEQ ID NO: 46)
  • NCP1-R1 AAGCTTACCAGACATCTTCTTGG (including HindIII) (SEQ ID NO: 47)
  • coli DH5 ⁇ was transformed and spread on LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight were inoculated into 5 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight. QIAprep Spin Miniprep Plasmid DNA was obtained by Kit. When the obtained plasmid was double-treated with restriction enzymes AatII and ScaI, DNA fragments of 2.9 kbp and 0.4 kbp were confirmed as expected.
  • a plasmid pMW119d in which a multicloning site was removed from pMW119 was constructed. did.
  • this pMW119d is double-treated with restriction enzymes AatII and ScaI, and then subjected to end blunting with DNA Blunting Kit (Takara Bio Inc.).
  • AatII and ScaI restriction enzymes
  • DNA Blunting Kit DNA Blunting Kit
  • 2.9 kbp and 0.4 kbp DNA fragments obtained 2. 9 kbp DNA was obtained.
  • a 6.2 kbp fragment was obtained from the 6.2 kbp and 1.6 kbp DNAs obtained by subjecting pESC-LEU (Agilent) to treatment with restriction enzymes MluI and ScaI followed by end blunting using DNA Blunting Kit.
  • E. coli was used with the reaction solution.
  • E. coli DH5 ⁇ was transformed and spread on LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt. Colonies obtained by incubating the agar medium at 37 ° C. overnight were inoculated into 5 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight.
  • QIAprep Spin Miniprep Plasmid DNA was obtained by Kit.
  • PCR reaction was carried out by preparing 30 cycles of 98 ° C., 10 seconds ⁇ 55 ° C., 5 seconds ⁇ 72 ° C., 6 seconds.
  • ESCURA-F1 GGGCCACAGCTTTTCAATTCAATTCATC (SEQ ID NO: 50)
  • ESCURA-R1 GGGTAATAACTGATATAATTAAATTGAAGC (SEQ ID NO: 51)
  • the resulting 1.1 kbp PCR reaction product was separately treated with pMW119 with restriction enzyme SmaI and then dephosphorylated with BAPC75 and mixed with DNA fragment, and DNA Ligation Kit ⁇ Mighty Mix> was added, A ligation reaction was performed. Thereafter, E. coli was used with the reaction solution. E. coli DH5 ⁇ was transformed and applied to an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt. Colonies obtained by incubating this agar medium overnight at 37 ° C. were inoculated into 5 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight.
  • E. coli DH5 ⁇ was transformed and applied to an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt. Colonies obtained by incubating this agar medium overnight at 37 ° C. were inoculated into 5 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt, and subjected to reciprocal shaking culture at 37 ° C. and 300 rpm overnight.
  • QIAprep Spin Miniprep Plasmid DNA was obtained by Kit. When the obtained DNA was treated with the restriction enzyme PstI (Takara Bio Inc.), the production of 3.1 kbp and 4.5 kbp DNA was confirmed as expected, and a plasmid vector pKIM-URA was constructed.
  • Plasmid DNA of p-KIM-URA-NCP1 was obtained by Spin Miniprep Kit.
  • an aqueous solution containing DNA obtained by treating pMW119 plasmid (manufactured by Nippon Gene) with restriction enzyme SmaI (Takara Bio) and further dephosphorylating with BAPC75 is mixed with the above PCR reaction solution.
  • DNA Ligation Kit ⁇ Mighty Mix> was added to perform a ligation reaction. Hold the reaction solution After transformation of E. coli DH5 ⁇ , the cell suspension was spread on an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt and incubated at 37 ° C. overnight.
  • pMW119-P450A1 was subjected to restriction enzyme treatment with NotI and SacI to obtain about 1.5 kbp DNA containing the P450A1 gene fragment, and similarly pKIM-URA-NCP1 plasmid DNA subjected to restriction treatment with NotI and SacI.
  • Ligation Mix DNA Ligation Kit ⁇ Mighty Mix>
  • ligation reaction was performed. After transformation of E. coli DH5 ⁇ with the reaction solution, the cell suspension was treated with 50 ⁇ g / mL ampicillin.
  • an aqueous solution containing DNA obtained by treating pMW119 plasmid (manufactured by Nippon Gene) with restriction enzyme SmaI (Takara Bio) and further dephosphorylating with BAPC75 is mixed with the above PCR reaction solution.
  • Ligation Mix DNA Ligation Kit ⁇ Mighty Mix> was added to perform a ligation reaction.
  • the cell suspension contains 50 ⁇ g / mL ampicillin sodium salt. It was applied on LB agar medium and incubated overnight at 37 ° C.
  • Colonies grown on the agar medium were inoculated into 5 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt, and reciprocal shaking culture at 37 ° C. and 300 rpm. Obtained by overnight culture in Then, plasmid DNA was extracted using QIAprep Spin Miniprep Kit, and the resulting plasmid DNA was simultaneously treated with NotI and SacI, and the reaction solution was analyzed by agarose gel electrophoresis.
  • coli DH5 ⁇ was transformed with the reaction solution, and the cell suspension was placed on an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt. After coating and incubating overnight at 37 ° C., colonies that grew on the same agar medium were obtained, and these colonies were inoculated into 2 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt at 37 ° C. and 300 rpm. From the cells obtained by overnight culture by reciprocal shaking culture, plasmid DNA was extracted using QIAprep Spin Miniprep Kit, so that pKIM- in which the P450A3 gene was inserted in a form that functions downstream of the Gal10 promoter. Obtain URA-NCP1-P450A3 plasmid did.
  • Example 8 Confirmation of gene by 11 ⁇ hydroxylation activity Saccharomyces cerevisiae INVSc1 strain (manufactured by Life Technologies Japan) was transformed by the lithium acetate method using pKIM-URA-NCP1-P450A1 or pKIM-URA-NCP1-P450A3, When it was spread on an SD-U agar medium and incubated at 30 ° C. for 2 days, colony growth was observed.
  • the composition of the SD-U agar medium was as follows.
  • SD0.25-U medium liquid medium excluding agar in the above SD0.25-U agar medium composition
  • Saccharomyces cerevisiae INVSc1 (P450A1) strain was inoculated into 50 mL of SD0.25-U medium (liquid medium excluding agar in the above SD0.25-U agar medium composition) charged in two 300 mL Erlenmeyer flasks. Incubated overnight at 30 ° C. with 180 rpm swirling. Thereafter, 5.5 mL of a 20% galactose aqueous solution was added to the culture solution, and the culture was further continued for 24 hours with 30 ° C. and 180 rpm swirling.
  • SD0.25-U medium liquid medium excluding agar in the above SD0.25-U agar medium composition
  • the entire culture solution was transferred to a 50 mL conical tube (Nippon Becton Dickinson), centrifuged at 2,000 ⁇ g for 3 minutes at room temperature, and the supernatant was removed. After 10 mL of water was added to each cell and suspended, the two were combined and centrifuged again at 2,000 ⁇ g for 3 minutes at room temperature to wash the cells. Subsequently, the cells were suspended in 20 mL of SG solution (SD0.25-U medium in which 0.25% glucose was replaced with 2% galactose).
  • SD0.25-U medium in which 0.25% glucose was replaced with 2% galactose
  • the solution was subjected to 42 times and the eluate having the same retention time as that of hydrocortisone was collected and about 35 mL of a solution was obtained. Further, 36 mL of ethyl acetate was added to and mixed with 18 mL of the solution obtained by distilling off methanol using a centrifugal concentrator (EYELA), followed by centrifugation at 2,000 ⁇ g and room temperature for 30 seconds. The upper layer was transferred to another container, and the solvent was distilled off with a centrifugal concentrator. The solid content of 2.4 mg obtained was dissolved by adding 0.6 mL of methanol-d, and proton NMR was measured. Since the NMR profile was consistent with that of the hydrocortisone preparation, P450A1 was determined to be steroid 11 ⁇ hydroxylase.
  • Example 9 Confirmation of the effect of NCP1 Using 1 ng pUC118-P450A1 as template DNA, 10 pmoles primers p450A1-F8 and p450A1-R7, 25 ⁇ L PrimeSTAR Max Premix (manufactured by Takara Bio Inc.), and further adding water, PCR in a total amount of 50 ⁇ L A reaction solution was prepared, and a temperature program comprising one cycle of 98 ° C. ⁇ 10 seconds ⁇ 52 ° C. ⁇ 5 seconds ⁇ 72 ° C. ⁇ 8 seconds was operated for 30 cycles.
  • P450A1-F8 GCGAATTCAAAAAAATGGATACCCAGACTG (including EcoRI) (SEQ ID NO: 54)
  • P450A1-R7 GGTAGATCTACACTACTACTCTCTTGAAAG (including BglII) (SEQ ID NO: 55)
  • the PCR reaction solution is subjected to restriction enzyme treatment with EcoRI (Takara Bio) and BglII (Takara Bio) to obtain about 1.5 kbp DNA containing the P450A1 gene fragment. Similarly, restriction treatment with EcoRI and BglII is performed.
  • Ligation Mix DNA Ligation Kit ⁇ Mighty Mix>
  • the suspension was applied on an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt and incubated overnight at 37 ° C., and colonies that grew on the agar medium were obtained, and these colonies were obtained at 50 ⁇ g / mL ampicillin.
  • LB medium 5 containing sodium salt Plasmid DNA was extracted using QIAprep Spin Miniprep Kit from the bacterial cells obtained by inoculating L and incubating overnight by reciprocal shaking culture at 37 ° C. and 300 rpm, and the resulting plasmid DNA was EcoRI and BglII. Then, the reaction solution was analyzed by agarose gel electrophoresis.
  • Saccharomyces cerevisiae INVSc1 strain was transformed with pKIM-URA-P450A1 by the lithium acetate method, spread on SD-U agar medium, and incubated at 30 ° C. for 2 days. Colony growth was observed. Saccharomyces cerevisiae INVSc1 (pKIM-URA-P450A1) was used.
  • Saccharomyces cerevisiae INVSc1 (pKIM-URA-P450A1) strain and INVSc1 (pKIM-URA-NCP1-P450A1) strain were each inoculated into a 40 mL SD0.25-U medium charged in a 300 mL Erlenmeyer flask and 30 ° C. Incubated overnight with 180 rpm swirl shaking. Thereafter, 4.4 mL of a 20% galactose aqueous solution was added to the culture solution, and the culture was further continued for 24 hours at 30 ° C. with 180 rpm swirling.
  • Example 10 Recombinant expression of P450A1 in other Saccharomyces cerevisiae strains Saccharomyces cerevisiae FY1679-6c strain (EUROS CARF, Germany) and Saccharomyces cerevisiae YPH499 strain (Life Technologies Japan) were used as hosts for pKIM-URA- NCP1-P450A1 was transformed with SD-URA agar medium (2% glucose, 0.67% yeast nitrogen base (without amino acids) (Difco), 1.92 g / L Yeast Synthetic Dropout Medium Without Uracil (Sigmar), respectively. Aldrich), 2% agar) was coated with the transformation solution and incubated at 30 ° C for 2 days.
  • SD-URA agar medium 2% glucose, 0.67% yeast nitrogen base (without amino acids) (Difco), 1.92 g / L Yeast Synthetic Dropout Medium Without Uracil (Sigmar), respectively. Aldrich), 2% agar
  • pKIM- CY852 strain RA-NCP1-P450A1 was introduced, and, CY851 strains were obtained. Further, 2 clones of each of these were replicated on another same agar medium, incubated for 2 days, and then 2 clones of CY852 strain and CY851 strain grown on the same agar medium were separately added to 2 mL of SD-URA medium. And incubating at 30 ° C. and 200 rpm with shaking.
  • each culture solution was further inoculated into 20 mL of the same medium containing 0.1 mM FeSO 4 .7H 2 O charged in a 200 mL Erlenmeyer flask, and swirling culture was performed at 30 ° C. and 200 rpm. . After 8 hours, transfer the entire amount of the culture solution to a 50 mL conical tube, collect the cells by centrifugation at 5,000 ⁇ g for 5 minutes at room temperature, and 1 mL of a hydroxylated cell reaction solution (67 mM potassium phosphate buffer ( pH 7.5), 1% galactose, 2.7% glycerol).
  • a hydroxylated cell reaction solution 67 mM potassium phosphate buffer ( pH 7.5), 1% galactose, 2.7% glycerol.
  • Example 11 Comparison with mammalian-derived steroid 11 ⁇ hydroxylase CYP11B1
  • SEQ ID NO: 56 human-derived CYP11B1 coding region has base numbers 432 to 1943, and the others are pUC57 vector portions.
  • the amino acid sequence corresponding to base numbers 432 to 1940 of SEQ ID NO: 56 is shown in SEQ ID NO: 57.
  • the gene sequence encoding bovine-derived ADX was obtained by reverse transcription of cDNA from bovine kidney-derived RNA, synthesized using this cDNA as a template, and inserted into pESC-URA. Each gene sequence was inserted into the same pESC-URA plasmid. In this case, the mitochondrion of COX4 protein derived from Saccharomyces cerevisiae S288c strain was placed at the N-terminus of each protein with the intention of allowing the gene product to function in mitochondria. The DNA sequence was designed to add a transition signal sequence.
  • cox4-F AGTACTAGTATGCTTTCACTACGTCAATCGAT (SEQ ID NO: 58)
  • cox4-R GCTGGTACCGGGTTTTTGCTGAAGCAGAT (SEQ ID NO: 59)
  • PCR reaction solution B with a total volume of 50 ⁇ L.
  • a temperature program comprising a cycle of 98 ° C. ⁇ 10 seconds ⁇ 50 ° C. ⁇ 15 seconds ⁇ 72 ° C. ⁇ 90 seconds was operated for 30 cycles.
  • mm11B1-F ACCCTACTAGTATGGGTACCCGCGCCGCGCG (including KpnI) (SEQ ID NO: 60)
  • m11B1-R TCCAGAATTCTTAGTTAATGGCACGAAAGG (including SacI) (SEQ ID NO: 61)
  • the PCR reaction solution A was subjected to restriction enzyme treatment with SpeI (Takara Bio Inc.) and KpnI (Takara Bio Inc.), and the PCR reaction solution B was subjected to KpnI and SacI (Takara Bio Inc.), each containing about 0 containing a cox4 signal sequence. .1 kbp DNA and about 1.4 kbp DNA containing the CYP11B1 gene fragment were obtained and mixed with the DNA fragment of the pESC-URA plasmid, which was similarly restricted with SpeI and SacI, and Ligation High (manufactured by Toyobo Co., Ltd.) ) was added to carry out a ligation reaction. Using the reaction solution, E. coli.
  • E. coli DH5 ⁇ After transformation of E. coli DH5 ⁇ , the cell suspension was applied onto an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt, incubated at 37 ° C. overnight, and colonies that grew on the agar medium were obtained. . These colonies are inoculated into 5 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt, and cultured overnight at 37 ° C. and 200 rpm reciprocating shaking culture, and then using QIAprep Spin Miniprep Kit. Plasmid DNA was extracted. The obtained plasmid DNA was simultaneously treated with SpeI, KpnI and SacI, and the reaction mixture was analyzed by agarose gel electrophoresis.
  • the pESC-URA-cox4-CYP11B1 plasmid was obtained in which the expected cox4-CYP11B1 gene was inserted in a form that functions downstream of the Gal10 promoter.
  • a temperature program consisting of 98 ° C. ⁇ 10 seconds ⁇ 50 ° C. ⁇ 15 seconds ⁇ 72 ° C. ⁇ 10 seconds was operated for 30 cycles.
  • cox4-3F AGTGGATCCATGCTTTCACTACGTCAATCGAT (including BamHI) (SEQ ID NO: 62)
  • cox4-2R GGGTTTTTGCTGCAGCAGAT (including PstI) (SEQ ID NO: 63)
  • ADX-F AGTACTAGTATGCTTTCACTACGTCAATCGAT (SEQ ID NO: 64)
  • ADX-3R GCTGGTACCGGGTTTTTGCTGAAGCAGAT (SEQ ID NO: 65)
  • the PCR reaction solution D is subjected to restriction enzyme treatment with BamHI (Takara Bio Inc.) and HindIII (Takara Bio Inc.) to obtain about 0.4 kbp of DNA containing the Adx gene fragment, and similarly restriction treatment with BamHI and HindIII.
  • BamHI Tekara Bio Inc.
  • HindIII Tekara Bio Inc.
  • E. coli E. coli. After transformation of E. coli DH5 ⁇ , the cell suspension was applied onto an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt, incubated at 37 ° C. overnight, and colonies that grew on the agar medium were obtained.
  • the pESC-URA-Adx plasmid in which the same Adx gene was inserted in such a way as to function downstream of the Gal1 promoter was obtained (SEQ ID NO: 66: on the sequence, the Adx gene has base numbers 2946 to 3335).
  • the amino acid sequence corresponding to base numbers 2946 to 3332 of SEQ ID NO: 66 is shown in SEQ ID NO: 67.
  • PCR reaction solution E Using 1 ng pESC-URA-Adx as template DNA, 10 pmoles primer cox4-4F, ADX-3R, 25 ⁇ L PrimeSTAR Max Premix, and water were further added to prepare PCR reaction solution E with a total amount of 50 ⁇ L.
  • a temperature program comprising a cycle of 98 ° C. ⁇ 10 seconds ⁇ 50 ° C. ⁇ 15 seconds ⁇ 72 ° C. ⁇ 30 seconds was operated for 30 cycles.
  • cox4-4F AGTCTGCAGCAAAAACCCAGCAGCTCAGAAGATAAAA (SEQ ID NO: 68)
  • ADX-3R GTAAAAGCTTTTATTCTATCTTTGAGGAGTTC (SEQ ID NO: 69)
  • the PCR reaction solution C was subjected to restriction enzyme treatment with BamHI and PstI
  • the PCR reaction solution E was subjected to restriction enzyme treatment with PstI and HindIII.
  • DNA was obtained, mixed with a DNA fragment of the pESC-URA-cox4-CYP11B1 plasmid, which was similarly restricted with BamHI and HindIII, and Ligation High was added to carry out a ligation reaction.
  • E. coli After transformation of E.
  • coli DH5 ⁇ the cell suspension was applied onto an LB agar medium containing 50 ⁇ g / mL ampicillin sodium salt, incubated at 37 ° C. overnight, and colonies that grew on the agar medium were obtained. . These colonies are inoculated into 5 mL of LB medium containing 50 ⁇ g / mL ampicillin sodium salt, and cultured overnight at 37 ° C. and 200 rpm reciprocating shaking culture, and then using QIAprep Spin Miniprep Kit. Plasmid DNA was extracted. The obtained plasmid DNA was simultaneously treated with BamHI, PstI and HindIII, and the reaction solution was analyzed by agarose gel electrophoresis.
  • Transformation was performed by introducing each of p1SC-URA-cox4-CYP11B1-cox4-Adx using FY1679-6c as a host by electroporation, and the cell suspension was applied to an SD-URA agar medium at 30 ° C. As a result of incubation for 2 days, FY1679-6c (pESC-URA-cox4-CYP11B1-cox4-Adx) (hereinafter CY542) was obtained.
  • CY542 and CY852 grown on SD-URA agar medium were inoculated into 2 mL of SD-URA medium, and FY1679-6c was inoculated into SD-URA medium supplemented with 2 mg / L uracil, and swirl culture at 30 ° C. and 200 rpm. did. After one night, each culture solution was further charged in a 200 mL Erlenmeyer flask. The 20 mL glucose concentration was reduced to 0.25% in SD-URA medium (FY1679-6c culture was further supplemented with 2 mg / L uracil. In addition, FeSO 4 .7H 2 O was added to a final concentration of 1 mM, and swirling shaking culture at 30 ° C.
  • the molar yield of hydrocortisone in the 11 ⁇ hydroxylation reaction using Compound S of CY852 strain as a substrate was 95%.
  • Example 12 Examination of steroid substrate Saccharomyces cerevisiae INVSc1 (pKIM-URA-NCP1-A1) strain was inoculated into 40 mL SD0.25-U medium charged in a 300 mL Erlenmeyer flask and cultured overnight at 30 ° C. with 180 rpm swirling did. Thereafter, 4.4 mL of a 20% galactose aqueous solution was added to the culture solution, and the culture was further continued for 24 hours at 30 ° C. with swirling shaking at 180 rpm.
  • progesterone, 17 ⁇ -hydroxyprogesterone, 11-deoxycorticosterone, and compound S are substrates for 11 ⁇ hydroxylation by P450A1, but they are extremely reactive when 4-cholesten-3-one is used as a substrate. It was suggested that the speed was slow.
  • Table 9 shows the added base mass and the accumulated concentration of each 11 ⁇ hydroxide for the 11 ⁇ hydroxylation reaction when each was used as a substrate.
  • a useful substance such as hydrocortisone can be efficiently produced by contacting a transformant obtained by genetic recombination of the DNA of the present invention with yeast or the like with an 11-deoxysteroid compound such as compound S.
  • an 11-deoxysteroid compound such as compound S.
  • sterol 7-position reductase gene, sterol side chain cleaving enzyme gene, steroid 3-position oxidase / isomerase gene, steroid 17 ⁇ -position hydroxylase gene, and / or steroid 21-position hydroxylase By using a transformant obtained by introducing a gene into yeast or the like, a useful substance in which the 11 ⁇ -position such as hydrocortisone is hydroxylated can be efficiently fermented and produced from an inexpensive carbon source.
  • the 11 ⁇ hydroxylation reaction of Compound S by a recombinant microorganism using the gene is close to practical use in terms of yield and reaction rate.
  • sterol 7-position reductase gene, sterol side chain cleaving enzyme gene, steroid 3-position oxidase / isomerase gene, steroid 17 ⁇ -position hydroxylase gene, and / or steroid 21 In a method for efficiently fermentatively producing a useful substance hydroxylated at the 11 ⁇ -position such as hydrocortisone from an inexpensive carbon source using a transformant obtained by introducing a hydroxylase gene into yeast or the like, The gene product is useful because it has higher 11 ⁇ hydroxylation activity than conventional CYP11B1 and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

以下の(a1)、(b1)または(c1)の蛋白質を用いてハイドロコルチゾン等の11βヒドロキシステロイドの製造を行う。 (a1)配列番号43のアミノ酸配列を含む蛋白質。 (b1)配列番号43のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。(c1)配列番号43のアミノ酸配列との配列一致性が90%以上のアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。

Description

新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法
 本発明は新規ステロイド11β水酸化酵素およびそれを用いたハイドロコルチゾン等の11βヒドロキシステロイドの製造法に関する。
 医薬として有用なハイドロコルチゾン、プレドニゾロンまたはそれらの置換誘導体の製造方法としては、17α,21-ジヒドロキシプレグネ-4-エン-3,20-ジオン(以下、「コンパウンドS」という。)やその置換誘導体にカビなどの微生物を作用させ、その11β位を水酸化する方法(特許文献1)や、酵母などを宿主とし、ステロール7位還元酵素遺伝子、ステロール側鎖切断酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、ステロイド21位水酸化酵素遺伝子、および/または、ステロイド11β位水酸化酵素遺伝子を発現する組換え生物の培養において安価炭素源から当該有用物質を効率よく発酵生産する方法(特許文献2)が知られている。
 これまでにステロイド11β水酸化反応(以下、単に「11β水酸化反応」と称することがある。)に関与している酵素の遺伝子配列を特許文献1記載のカビなどから取得することも試みられてきた。しかし、当該蛋白質のアミノ酸配列解析が困難であり、さらに、当該蛋白質は哺乳類由来の11β水酸化酵素(CYP11B1)とはアミノ酸配列が大きく異なることが予想され、その他の微生物では当該反応を触媒する酵素の遺伝子が取得されていないことから、11β水酸化反応に関与している酵素の遺伝子配列の取得は困難であることが知られている(非特許文献1、および非特許文献2参照)。
特開昭62-118897号公報 特表2004-528827号公報
Janig, R. G. et al. Steroid 11β-hydroxylation by a fungal microsomal cytochrome P450, J. Steroid Biochem. Mol. Biol. (1992) 43(8); pp.1117-1123 Suzuki, K. et al. Purification of cytochrome P-450(P-450lun) catalyzing steroid 11β-hydroxylation in Curvularia lunata, Biochimica et Biophysica Acta (1993) 1203(2); pp.215-223
 特許文献1に記載の方法では、当該カビが含有する他の酵素活性が基質に作用することで副産物が生じることにより、基質をコンパウンドSとする11β水酸化反応の収率が不十分(モル収率で86%)であり、精製工程の負荷がかかるという問題があった。
 また、特許文献2に記載の方法では、11β水酸化酵素の活性が不十分であり、11β水酸化反応の基質となるコンパウンドS(文献中では11-デオキシコルチゾル)が副産物として残存するため、収率悪く、精製工程の負荷がかかるという問題があった。
 本発明は、上記課題に鑑みなされた発明であり、11β水酸化反応を効率よくし得る新規ステロイド11β水酸化酵素およびそれを用いたハイドロコルチゾン等の11βヒドロキシステロイドの製造法を提供することを課題とする。
 本発明者らは上記課題を解決するために鋭意検討を行った。すなわち、ステロイド11β水酸化活性を有する微生物であるクルブラリア・ルナタ(Curvularia lunata(C. lunata))MCI-1688株の染色体DNAの配列を独自に解読し、その中から、他の微生物由来の、ステロイド11β水酸化酵素とはタイプの異なる、ステロイド11α水酸化酵素遺伝子に相同性を示す配列について解析を行ない、候補配列を絞り込んだ。続いて、その中から11β水酸化活性が誘導される培養条件において転写量が増加している配列を取得したこと等により、新規な11β水酸化酵素の遺伝子配列を取得することに成功した。そして、当該遺伝子がコードする蛋白質の活性を確認し、この酵素がハイドロコルチゾンなどの11βヒドロキシステロイドの合成反応を効率よく触媒することを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
[1]以下の(a1)、(b1)または(c1)の蛋白質。
(a1)配列番号43のアミノ酸配列を含む蛋白質。
(b1)配列番号43のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
(c1)配列番号43のアミノ酸配列との配列一致性が90%以上のアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
[2][1]に記載の蛋白質をコードするDNA。
[3]以下の(a2)、(b2)、(c2)または(d2)のDNA。
(a2)配列番号42の塩基配列を含むDNA。
(b2)配列番号42の塩基配列において1または数個の塩基が欠失、置換または付加された塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(c2)配列番号42の塩基配列との配列一致性が90%以上の塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(d2)配列番号42の塩基配列からなるDNAと相補的なDNAと、ストリンジェントな条件下でハイブリダイズし、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
[4][2]または[3]に記載のDNAと、該DNAがコードする蛋白質が宿主生物または宿主細胞内で発現可能な発現制御領域とを含む組換えベクター。
[5][2]もしくは[3]に記載のDNA、または[4]に記載の組換えベクターを宿主生物または宿主細胞に導入した形質転換体。
[6][1]に記載の蛋白質、または[5]に記載の形質転換体もしくはその処理物に11-デオキシステロイド化合物を接触させることで11βヒドロキシステロイド化合物を生成させ、該11βヒドロキシステロイド化合物を回収することを特徴とする、11βヒドロキシステロイド化合物の製造方法。
 本発明によれば、新規な11β水酸化酵素の遺伝子配列を提供することができ、微生物等を宿主として11β水酸化酵素活性を有する遺伝子組換え体も提供することができる。また、当該遺伝子を有する遺伝子組換え微生物の培養菌体をコンパウンドSなどに作用させることで、その11β位が水酸化された反応物を効率よく生産することができる。
各遺伝子の転写量推移;誘導剤添加区 ○、誘導剤非添加区 ●で示した。Ct値が低い方がmRNAレベルは高いと考える。
 以下、本発明の実施の形態について詳細に説明する。
<本発明の蛋白質およびDNA>
 本発明の蛋白質は、以下の(a1)、(b1)または(c1)の蛋白質である。
(a1)配列番号43のアミノ酸配列を含む蛋白質。
(b1)配列番号43のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。ここで、数個とは、具体的には20個以下、好ましくは10個以下、より好ましくは5個以下、特に好ましくは3個以下である。
(c1)配列番号43のアミノ酸配列との配列一致性(同一性)が90%以上、好ましくは95%以上のアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
本発明の(a1)の蛋白質は、配列番号43のアミノ酸配列からなる蛋白質であることが好ましい。
本発明の(c1)の蛋白質における配列一致性の検索は、例えば、DNA Databank of JAPAN(DDBJ)を対象に、FASTA programやBLAST programなどを用いて行うことができる。
 上述の本発明の蛋白質は、ステロイド11β水酸化活性を有する蛋白質であり、本発明の蛋白質をコンパウンドSなどに作用させることで、その11β位が水酸化された反応物を効率よく生産することができ、従来のカビ菌体を用いた同様の反応に比べ副産物の蓄積が大幅に削減され、反応収率も従来の酵素と比較して顕著に向上させることができる。ステロイド11β水酸化活性は、例えば、後述の実施例に記載したような、コンパウンドSをハイドロコルチゾンへ変換する能力によって確認することができる。
 また、本発明の蛋白質は、いずれも小胞体型P450に分類されるが、このタイプのP450が水酸化酵素としての機能を発現するには当該酵素への電子供与蛋白質であるNADPH:チトクロムP450還元酵素の存在も必要である。従って、通常であれば、P450遺伝子を酵母等で遺伝子組換えにより発現させる場合、同時に同種微生物由来のNADPH:チトクロム P450還元酵素などの当該P450へ電子伝達可能なNADPH:チトクロム P450還元酵素をコードする遺伝子の遺伝子組換えも必要になると考えられる。しかしながら、驚くべきことに、後述する本発明のDNAをサッカロミセス・セレビシエにおいて遺伝子組換えにより発現させる場合はその必要性が無く、本発明のDNAのみでも機能発現が可能である。これは、C.lunata由来のNADPH:Cytochrome P450酸化還元酵素遺伝子から予想されるアミノ酸配列がサッカロミセス・セレビシエの同酵素遺伝子配列から予想されるアミノ酸配列と配列一致性が高いことにより、サッカロミセス・セレビシエの当該蛋白質(NCP1p)がその機能を代替することによると考えられる。これにより、哺乳動物由来の11β水酸化酵素を用いる場合に比べて組換え操作を簡略化できるという効果も有する。
 本発明の蛋白質は、後述する本発明のDNAを適当な宿主において発現させ、菌体から精製することによって得ることができる。また、C. lunataなどの微生物から精製することによって得ることもできる。
 また、本発明のDNAは、上記蛋白質をコードするDNAであり、具体的には、以下の(a2)、(b2)、(c2)または(d2)のDNAである。
(a2)配列番号42の塩基配列を含むDNA。
(b2)配列番号42の塩基配列において1または数個の塩基が欠失、置換または付加された塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。ここで数個とは、具体的には60個以下、好ましくは30個以下、より好ましくは15個以下、特に好ましくは9個以下である。
(c2)配列番号42の塩基配列との配列一致性(同一性)が90%以上、好ましくは95%以上の塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
(d2)配列番号42の塩基配列からなるDNAと相補的なDNAと、ストリンジェントな条件下でハイブリダイズし、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
 本発明の(a2)のDNAは、配列番号42の塩基配列からなるDNAであることが好ましい。
本発明の(b2)のDNAは、当業者であれば、配列番号42に記載のDNAに部位特異的変異導入法(Nucleic Acid Res.10,pp.6487(1982)、Methods in Enzymol.100,pp.448(1983)、Molecular Cloning 2ndEdt., Cold Spring Harbor Laboratory Press(1989)PCR A Practical Approach IRL Press pp.200(1991))等を用いて適宜置換、欠失、及び/または付加変異を導入することにより得ることが可能である。
本発明の(c2)のDNAにおける配列一致性の検索は、例えば、DNA Databank of JAPAN(DDBJ)を対象に、FASTA programやBLAST programなどを用いて行うことができる。
 また、本発明の(d2)のDNAは、配列番号42の塩基配列からなるDNAと相補的な塩基配列を有するDNAまたはその一部をプローブとして用いて、ステロイド11β水酸化活性を有する微生物から調製したDNAに対し、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等によりストリンジェントな条件下でハイブリダイゼーションを行い、ハイブリダイズするDNAを得ることによっても取得できる。本発明のポリペプチドをコードするDNAの「一部」とは、プローブとして用いるのに十分な長さのDNAのことであり、具体的には15bp以上、好ましくは50bp以上、より好ましくは100bp以上のものである。
 本明細書において「ストリンジェントな条件下でハイブリダイズする塩基配列」とは、DNAをプローブとして使用し、ストリンジェントな条件下、コロニーハイブリダイゼーション法、プラークハイブリダイゼーション法、あるいはサザンブロットハイブリダイゼーション法等を用いることにより得られるDNAの塩基配列を意味し、ストリンジェントな条件としては、例えば、0.1×SSC、0.1%SDS、65℃の条件下で洗浄する条件を挙げることができる。
 なお、本発明のDNAは、例えば、C. lunataなどの微生物のcDNAライブラリーを鋳型としたPCR法やハイブリダイゼーション法によって単離することができる。また、本発明のDNAは、本発明者らによりその塩基配列が明らかになったため、配列番号42に基づく化学合成等によって得ることもできる。
<本発明の組換えベクター>
 本発明の蛋白質をコードするDNA(「本発明のDNA」と称する場合がある。「本発明のDNA」は、前記(a2)、(b2)、(c2)、及び(d2)を含むものである。)を後述する宿主生物または宿主細胞(以下、「宿主」と称する場合がある。)にて発現させるため本発明のDNAを発現ベクターに導入することにより、組換えベクターを作成し、当該ベクターで宿主を形質転換することでステロイド11β水酸化活性を宿主に付与することが可能である。ここで、組換えベクターは、本発明のDNAと、本発明のDNAがコードする蛋白質(本発明の蛋白質)が宿主内で発現可能となるような発現制御領域(例えば、プロモーター)とを含む組換えベクターを意味する。ここでいう「本発明のDNA」は、宿主において内在性のものであってもよい。
 本発明の組換えベクターは、通常、宿主に適したプロモーターの下流に本発明のDNAの5'末端側が連結されて挿入されたベクターである。また、本発明のDNAの3'末端側にターミネーター配列が付加されてもよい。
 本発明の組換えベクター作製に用いる発現ベクターとしては、宿主細胞内で複製増殖可能であれば特に制限されるものではないが、プラスミドベクター、シャトルベクター、およびファージベクターなどが挙げられる。
 発現ベクターやプロモーターの種類は後述する宿主に応じて適宜選択できる。以下、具体的に、各宿主における好ましい発現ベクター、プロモーター、ターミネーターなどの例を挙げるが、本発明はこれらの例に限定されない。
 宿主をエシェリヒア属細菌とする場合、プラスミドベクターとしては、pBR322、pUC18、pHSG298、pUC118、pSTV28、pTWV228、pHY300PLK(タカラバイオ)、pKK223-3が挙げられる。また、ファージベクターとしては、(λFixIIベクター(Stratagene社製等)等を挙げることができる。
 また、プロモーターとしては、lac(β-ガラクトシダーゼ)、trp(トリプトファンオペロン)、tac、 trc (lac、trpの融合)、λファージ pL、pRなどに由来するプロモーターなどが挙げられる。また、ターミネーターとしては、trpA由来、ファージ由来、rrnBリボソーマルRNA由来のターミネーターなどが挙げられる。
 宿主をバチルス属細菌とする場合、ベクターとしては、pUB110系プラスミド、pC194系プラスミドなどを挙げることができる。プロモーター及びターミネーターとしては、アルカリプロテアーゼ、中性プロテアーゼ、α-アミラーゼ等の酵素遺伝子のプロモーターやターミネーターなどが利用できる。
 宿主をシュードモナス属細菌とする場合、ベクターとしては、シュードモナス属細菌で確立されている一般的な宿主ベクター系や、トルエン化合物の分解に関与するプラスミド、TOLプラスミドを基本にした広宿主域ベクター(RSF1010などに由来する自律的複製に必要な遺伝子を含む)pKT240(Gene, 26, 273-82(1983))を挙げることができる。また、プロモーター及びターミネーターとしては、エシェリヒア属細菌で用いられるtacプロモーターなど、及び、エシェリヒア属細菌由来5SリボゾーマルRNAターミネーターなどを挙げることができる。
 宿主をコリネ型細菌とする場合、ベクターとしては、pAJ43(Gene 39,281 (1985))、pCS11(特開昭57-183799号公報)、pCB101(Mol. Gen. Genet. 196, 175 (1984)などのプラスミドベクターを挙げることができる。また、エシェリヒア・コリ-コリネ型細菌のシャトルベクターとしては、例えば、pCRY30(特開平3-210184号公報)、pCRY21(特開平2276575号公報)、pCRY2KE、pCRY2KX、pCRY31、pCRY3KEおよびpCRY3KX、pCRY2およびpCRY3(特開平1-191686号公報)、pAM330(特開昭58-67679号公報)、 pHM1519(特開昭58-77895号公報)、pAJ655、pAJ611およびpAJ1844(特開昭58-192900号公報)、 pCG1(特開昭57-134500号公報)、 pCG2(特開昭58-35197号公報)、 pCG4およびpCG11(特開昭57-183799号公報)等を挙げることができる。プロモーター及びターミネーターとしては、大腸菌(エシェリヒア・コリ)で使用されている各種プロモーター及びターミネーターが利用可能である。
 宿主をサッカロミセス属酵母とする場合、ベクターとしては、YRp系、YEp系、YCp系、YIp系プラスミドやpESCベクター(STRATAGENE)およびpAURベクター(タカラバイオ)などが挙げられる。また、酵母で使用できるベクターは、Adv. Biochem. Eng. 43, 75-102 (1990)、Yeast 8,423-488(1992)などに詳細に記載されている。
 プロモーターとしては、フォスフォグリセレートキナーゼをコードするPGK1遺伝子、アルコールデヒドロゲナーゼをコードするADH1遺伝子、あるいはジェネラルアミノ酸パーミアーゼをコードするGAP1遺伝子等の恒常的発現プロモーターを利用できるほか、GAL1/GAL10 (Johnston, M. et al., (1984) Mol. Cell. Biol. 4(8), 1440-1448)等の誘導型プロモーターを利用することもできる。グリセルアルデヒド-3-リン酸脱水素酵素、酸性フォスファターゼ、エノラーゼ、メタロチオネインなどのプロモーターも使用可能である。
 宿主をシゾサッカロミセス属酵母とする場合、ベクターとしては、サッカロミセス属酵母と同様にYRp系、YEp系、YCp系、YIp系プラスミドやpAUR224ベクター(タカラバイオ)などが挙げられる。プロモーターとしては、アルコールデヒドロゲナーゼをコードするADH1遺伝子、ウィルスのSV40プロモーター等の恒常的発現プロモーターを利用できるほか、インベルターゼをコードするinv1遺伝子プロモーター (グルコース存在下で抑制)や熱ショック蛋白質をコードするhsp16遺伝子プロモーター等の誘導型プロモーターなどを利用することもできる。このほか、nmt1プロモーター(チアミン存在下で抑制)やctr4プロモーター(銅存在下で抑制)なども使用可能である。
 宿主をピキア属酵母とする場合、染色体挿入型のベクターが用いられ、例としてはpPICZベクターやpGAPZベクター(いずれもライフテクノロジーズジャパン)などが挙げられる。
 プロモーターとしては、グリセルアルデヒド-3-リン酸脱水素酵素をコードするGAP遺伝子等の恒常的発現プロモーターを利用できるほか、アルコールオキシダーゼをコードするAOX1遺伝子等の誘導型プロモーターなどを利用することもできる。
 また、宿主をアスペルギルス属糸状菌とする場合、染色体挿入型のベクターを使用することが一般的であるが、AMA1配列を有するARp1などのように細胞内で自立複製可能なプラスミドベクターなども使用される。後者の例として、pPTRIIベクターやpAUR316(いずれもタカラバイオ)が挙げられる。プロモーターとしては、エノラーゼをコードするenoA遺伝子やペプチド鎖伸長因子をコードするtef1遺伝子等の恒常的発現プロモーターを利用できるほか、アルコール脱水素酵素をコードするalcA遺伝子のほか、α-アミラーゼをコードするamyB遺伝子等の誘導型プロモーターも利用できる。
 さらに、宿主を植物細胞または植物体とする場合、染色体挿入型のベクターを使用することが一般的であるが、タバコモザイクウィルスなどのウィルスベクターも使用される。さらには、一過性発現を目的とする際は、当該植物細胞又は植物体内で複製する必要が無いため、植物細胞又は植物体にDNAを導入できればよく、植物細胞又は植物体で複製できなくても導入に用いるアグロバクテリウム属細菌において複製可能なプラスミドベクターも使用される。プロモーターとしてはカリフラワーモザイクウィルスの35SプロモーターやユビキチンをコードするUbi遺伝子等の恒常的発現プロモーターなどを利用することができる。
 上述したものの他に、プロモーターを連結した本発明の蛋白質をコードするDNAを含むDNAを、宿主の染色体中に直接導入する相同組換え技術(例えば、Bio/Technol. 9, 1382-1385(1991))や、トランスポゾンや挿入配列等を用いて導入する技術も用いることができ、これらの技術により遺伝子導入する際に用いる配列等も本発明の組換えベクターに含まれる。従って、本発明の組換えベクターは、宿主において、本発明の蛋白質を発現させ得るものであればよく、宿主への遺伝子の導入の方法は特に限定されない。
<本発明の形質転換体>
 本発明によれば、さらに、本発明のDNAまたは本発明の組換えベクターを宿主に導入した形質転換体が提供される。このような本発明の形質転換体もしくはその処理物を後述する本発明の製造方法に用いると、該形質転換体により、11βデオキシステロイド化合物を反応の原料として11βヒドロキシステロイド化合物を生産することが可能になる。
 本発明のDNA又は本発明の組換えベクターを導入する宿主としては、以下のような生物または細胞が例示される。
 エシェリヒア・コリ(Escherichia coli)などのエシェリヒア(Escherichia)属細菌;バチルス・サチリス(Bacillus subtilis)、バチルス・ブレビス(Bacillus brevis)、バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)などのバチルス(Bacillus)属細菌;セラチア・マーセッセンス(Serratia marcescens)などのセラチア(Serratia)属細菌;シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・アエルギノサ(Pseudomonas aeruginosa)などのシュードモナス(Pseudomonas)属細菌;コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、ブレビバクテリウム・フラバム(Brevibacterium flavum)、ブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)などのコリネ型細菌;ロドコッカス・エリスロポリス(Rhodococcus erythropolis)などのロドコッカス(Rhodococcus)属細菌;ラクトバチルス・カゼイ(Lactobacillus casei)などのラクトバチルス(Lactobacillus)属細菌、ストレプトミセス・リビダンス(Streptomyces lividans)などのストレプトミセス(Streptomyces)属細菌;サーマス・サーモフィラス(Thermus thermophilus)などのサーマス(Thermus)属細菌;ストレプトコッカス・ラクティス(Streptococcus lactis)などのストレプトコッカス(Streptococcus)属細菌;放線菌(Actinomycetes)属細菌。
 アスペルギルス・ニガー(Aspergillus nigar)、アスペルギルス・オリゼ(Aspergillus oryzae)などのアスペルギルス(Aspergillus)属カビ;モルティエレラ・ラマニアナ(Mortierella ramanniana)、モルティエレラ・バイニエリ(Mortierella bainieri)、モルティエレラ・アルピナ(Mortierella alpina)などのモルティエレラ(Mortierella)属カビ;フザリウム・フジクロイ(Fusarium fujikuroi)などのフザリウム(Fusarium)属カビ;クルブラリア・ルナタ(Curvularia lunata)などのクルブラリア(Curvularia)属カビ。
 アラビドシス・サリアナ(Arabidopsis thaliana)、グリシン・マックス(Glycine max)、ニコチアナ・ベンサミアナ(Nicotiana benthamiana)、ニコチアナ・タバカム(Nicotiana tabacum)、オリゼ・サティーバ(Oryzae sativa)、ソラナム・ツベロサム(Solanum tuberosum)、ソラナム・リコペルシカム(Solanum lycopersicum)、ジー・メイ(Zea mays)などの植物または植物細胞。
 サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、サッカロミセス・バヤヌス(Saccharomyces bayanus)などのサッカロミセス(Saccharomyces)属酵母;ピキア・パストリス(Pichia pastoris)、ピキア・ファリノサ(Pichia farinosa)などのピキア(Pichia)属酵母;キャンディダ・グラブラータ(Candida glabrata)、キャンディダ・トロピカリス(Candida tropicalis)、キャンディダ・ユティリス(Candida utilis)、キャンディダ・ボイディニィ(Candida boidinii)などのキャンディダ(Candida)属酵母;シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)などのシゾサッカロミセス(Schizosaccharomyces)属酵母;ヤロウィア・リポリティカ(Yarrowia lypolitica)などのヤロウィア(Yarrowia)属酵母;デバリオマイセス・ニルソニ(Debaryomyces nilssonii)などのデバリオマイセス属酵母;ロドトルラ・グルティニス(Rhodotorula glutinis)などのロドトルラ属酵母;リポマイセス・リポフェラス(Lipomyces lipoferus)などのリポマイセス属酵母;クルイベロマイセス・ラクティス(Kluyveromyces lactis)などのクリイベロマイセス属酵母;ロドスポリジウム・トルロイディス(Rhodosporidium toruloides)などのロドスポリジウム属酵母;トルロプシス・コリキュロサ(Torulopsis colliculosa)などのトルロプシス属酵母。
 これらの中では酵母が好ましく、代謝工学的手法が用いやすいことからサッカロミセス属酵母が特に好ましい。サッカロミセス属酵母の中でも、his3、leu2、trp1、ura3などの栄養要求性の遺伝型であることが望ましく、例えば、以下の株が例示される。
 サッカロミセス・セレビジエYPH499株(MATa ura3 lys2 ade2 trp1 his3 leu2)(ATCC204679:American Type Culture CollectionまたはSTRATAGENEより入手できる)、サッカロミセス・セレビジエFY1679-6c株(MATα ura3 leu2 trp1 his3)(Euroscarf社から入手できる)、サッカロミセス・セレビジエX2181-1B株(MATalpha his2 gal1 trp1 ade1 MAL SUC)(ATCC204822:American Type Culture Collectionより入手できる)、サッカロミセス・セレビジエINVSc1株(MATa/MATα his3Δ1/his3Δ1 leu2/leu2 trp1-289/trp1-289 ura3-52/ura3-52)(ライフテクノロジーズジャパン社より入手できる)を用いることができる。あるいは、サッカロミセス・セレビシエKA311A株(MATa his3 leu2 trp1 ura3)(Mol. Cell Biol. 13, 307-3083(1993))も用いることができ、KA311A株は、独立行政法人産業総合研究所特許生物寄託センターに受託番号:FERM P-19053として寄託されている。また、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)FY1679-28c株(JP2004-528827 A1)、FY1679-18b株(JP2004-528827 A1)、YPH500株(ATCC204680)も用いることができる。
 また、本発明の形質転換体(好ましくは酵母)は、本発明のDNA、即ち、本発明の蛋白質である11β水酸化酵素をコードする遺伝子の導入に加えて、以下に説明する他の酵素をコードする遺伝子も同じ形質転換体(好ましくは酵母)に導入することで、グルコースやエタノールなどの安価な原料からハイドロコルチゾンのような有用な11βヒドロキシステロイド化合物を効率よく自律的に発酵生産するプロセスの構築が可能になる。
 他の酵素としては、ステロール側鎖切断酵素遺伝子が導入されていることが好ましい。必要に応じて、さらに、ステロール7位還元酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、およびステロイド21位水酸化酵素遺伝子からなる群から選ばれる少なくとも一種が導入されていてもよい。
 本発明の形質転換体において、これらの他の酵素の活性を得るためには、これらの他の酵素の遺伝子を<本発明の組換えベクター>の項で例示した発現ベクター等に挿入して、後述する方法にて宿主を形質転換すればよい。
 本発明の蛋白質をコードする遺伝子と共に、導入することができる他の酵素の遺伝子を以下に例示する。
 ステロール7位還元酵素遺伝子は、Journal of Biological Chemistry 1996, 271, 10866-10873記載のシロイヌナズナ(Arabidopsis thaliana)由来のもの、あるいはApplied and Environmental Microbiology 2007, 73, 1736-1741記載のモルティエレラ(Mortierella)属カビ由来ものが用いられる。
 ステロール側鎖切断酵素遺伝子としては、ステロール側鎖の20位及び22位との結合を切断する活性を有する蛋白質をコードするDNAが挙げられ、例えば、WO2010/079594国際公開パンフレットに記載の酵素蛋白質(CYP204A1やCYPSS204A)や、ウシ、ヤギ、ウマ、マウス、ラット、ニワトリ、ゼブラフィッシュ、あるいはヒトなど動物由来のCYP11A1蛋白質をコードするDNAなどが挙げられる。
 ステロール3位酸化酵素/異性化酵素遺伝子は、ウシ、マウス、ラット、ヒト、あるいは植物由来3β-ヒドロキシステロイド脱水素酵素(3βHSD)やストレプトミセス(Streptomyces)属細菌由来コレステロール酸化酵素が好ましい。
 ステロイド17α位水酸化酵素蛋白質、ステロイド21位水酸化酵素蛋白質、ステロイド3位酸化酵素/異性化酵素遺伝子は、例えば、Molecular and Cellular Endocrinology1990, 73, 73-80に記載のものが用いられる。
 ステロイド17α位水酸化酵素遺伝子は、例えば、ウシ、マウス、ラット、あるいはヒト由来シトクロムP450c17が好ましい。
 また、ステロイド21位水酸化酵素遺伝子は、ウシ、マウス、ラット、あるいはヒト由来シトクロムP450c21が好ましい。
 また、必要に応じて、上述の他の酵素の活性に必要な電子伝達系を構成する蛋白質などの遺伝子も導入することがさらに好ましい。具体的には、本発明の蛋白質をコードする遺伝子、あるいは、本発明の蛋白質をコードする遺伝子および上述の他の酵素に加えて、該酵素蛋白質への電子伝達活性を有するフェレドキシン蛋白質、および該フェレドキシン蛋白質への電子伝達活性を有するフェレドキシン還元酵素蛋白質のそれぞれをコードする遺伝子も同時に宿主微生物に導入すること、または、人工的にこれらの蛋白質を該酵素活性が維持されるよう遺伝子工学的に融合した蛋白質を創製し導入することが好ましい。
 ここで、電子伝達活性を有するフェレドキシン蛋白質、および該フェレドキシン蛋白質への電子伝達活性を有するフェレドキシン還元酵素蛋白質は両者の活性を有する1種の蛋白質でもよい。例えば、Bacillus megateriumのP450-BM3遺伝子のP450還元酵素ドメインを酵素蛋白質(P450 2C11)に連結し、人工的に作製した融合蛋白質を利用できる(Helvig, C. and Capdevila, J. H., Biochemistry, (2000)39, 5196-5205)。
 フェレドキシン還元酵素は、例えば以下の中から選択される。
ホウレン草由来のフェレドキシンレダクターゼ、
シュードモナス プチダ(Pseudomonas putida)由来プチダレドキシンレダクターゼ、動物由来のアドレノドキシンレダクターゼ、
ノボスフィンゴビウム サブテラニウム(Novosphingobium subterraneum)由来フェレドキシンレダクターゼ、
ノボスフィンゴビウム アロマティシボランス(Novosphingobium aromaticivorans)由来フェレドキシンレダクターゼ、
エシェリヒア コリ(Escherichia coli)由来フラボドキシンレダクターゼやフェレドキシンレダクターゼ、
アシネトバクター エスピー(Acinetobacter sp.) ADP1株由来 フェレドキシンレダクターゼ、
サッカロミセス・セレビシエ(Saccharomyces cerevisiae)由来 アドレノドキシンレダクターゼ様蛋白質(arh1p)、
またはその他のフェレドキシンレダクターゼ。
 フェレドキシンは、例えば以下の中から選択される;
ホウレン草由来のフェレドキシン、
シュードモナス プチダ(Pseudomonas putida)由来プチダレドキシン、
動物由来のアドレノドキシン、
ノボスフィンゴビウム サブテラニウム(Novosphingobium subterraneum)由来フェレドキシン、
ノボスフィンゴビウム アロマティシボランス(Novosphingobium aromaticivorans)由来フェレドキシン、
エシェリヒア コリ(Escherichia coli)由来フラボドキシンやフェレドキシン、
アシネトバクター エスピー(Acinetobacter sp.) ADP1株由来 フェレドキシン、
サッカロミセス・セレビシエ(Saccharomyces cerevisiae)由来 フェレドキシン様蛋白質(yah1p)、
またはその他のフェレドキシン型蛋白質。
 さらに、ステロイド18位水酸化酵素としてはヒト由来シトクロムP45011B2などが挙げられ、3-オキソステロイド-Δ1-脱水素酵素としてはピメロバクター シンプレックス(Pimelobacter simplex)やロドコッカス エリスロポリス(Rhodococcus erythropolis)由来の3-オキソステロイド-Δ1-脱水素酵素などが利用可能である。
 上述した酵素をコードする遺伝子、またはそれを含む組換えベクターによる上記宿主への形質転換法としては、コンピテントセル法[Journal of Molecular Biology, Vol.53, p.159 (1970)]、酢酸リチウム法[Ito, H. et al. J. Bacteriol., Vol.153, p.163 (1983)]、スフェロプラスト法[Hinnen, A., et al. Proc. Natl. Acad. Sci. USA, Vol.75, p.1929 (1978)]、エレクトロポレーション法(Fromm ME,et al.,(1986) Nature 319(6056):791-793)等による形質転換法、ファージを用いた形質導入法[E. Ohtsubo, Genetics, Vol.64, p.189 (1970)]、接合伝達法[J. G. C. Ottow, Ann. Rev.Microbiol., Vol.29,p.80 (1975)]、細胞融合法[M.H. Gabor, J. Bacteriol., Vol.137, p.1346 (1979)]、アグロバクテリウム法[Luis, H-E., et al. Nature, Vol.303, p.209 (1983)], パーティクルボンバードメント法[Klein, T.M., et al. Nature, Vol.327, p.70 (1987)]等を用いることができる。これらの方法から、宿主生物に適した方法を適宜選択すればよい。
 また、上述の酵素をコードする遺伝子に加えて、さらに11β水酸化反応により生じた11βヒドロキシステロイド化合物に作用する酵素をコードする遺伝子を導入すれば、誘導体化した11βヒドロキシステロイド化合物も製造することができる。したがって、上述の遺伝子に加えて、ステロイド18位水酸化酵素やステロイド1位酸化酵素などの遺伝子を導入してもよい。
 なお、形質転換体の作製のための手順、宿主に適合した組換えベクターの構築および宿主の培養方法は、分子生物学、生物工学、遺伝子工学の分野において慣用されている技術に準じて行うことができる(例えば、Sambrookら、モレキュラー・クローニング、Cold Spring Harbor Laboratories)。
 また、上述した本発明の形質転換体の培養は、炭素源、窒素源、無機塩、各種ビタミン等を含む通常の栄養培地で行うことができ、炭素源としては、例えばブドウ糖、ショ糖、果糖、麦芽糖等の糖類、エタノール、メタノール等のアルコール類、クエン酸、リンゴ酸、コハク酸、マレイン酸、フマル酸等の有機酸類、廃糖蜜等が用いられる。窒素源としては、例えばアンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、尿素等がそれぞれ単独もしくは混合して用いられる。また、無機塩としては、例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウム等が用いられる。この他にペプトン、肉エキス、酵母エキス、コーンステイープリカー、カザミノ酸、ビオチン等の各種ビタミン等の栄養素を培地に添加することができる。
 培養は用いる宿主の種類に応じて適当な方法を選択できるが、通常、通気撹拌、振とう等の好気条件下で行う。培養温度は、宿主の生育し得る温度であれば特に制限はなく、また、培養途中のpHについても宿主が生育し得るpHであれば特に制限はない。培養中のpH調整は、酸またはアルカリを添加して行うことができる。さらに、宿主を植物細胞とする場合は、種類によっては光を照射することが好ましい。
 形質転換で得られた植物体を栽培する場合は、土壌に移植して栽培することも、窒素源、無機塩、各種ビタミン等を含む水溶液を用いた水耕栽培をすることもできる。窒素源としては各種硝酸塩やアンモニウム塩等が使用可能であり、無機塩として例えばリン酸一水素カリウム、リン酸二水素カリウム、硫酸マグネシウム等が用いられる。栽培においては、光の照射が必要だが、植物体の種類や生育状態に応じて光の波長、強度、周期を変えるとよい。温度についても植物が生育する範囲であれば特に制限無く、土壌または水耕栽培における水溶液のpHについても植物が生育する範囲であれば特に制限はない。水耕栽培における水溶液のpHについては酸またはアルカリを添加することで調節できる。
 このようにして培養または栽培された本発明の形質転換体を、後述する11βヒドロキシステロイド化合物の製造方法に供することができる。あるいは、後述する製造方法において、11βヒドロキシステロイド化合物の製造と並行して、本発明の形質転換体の培養を行なうこともできる。
<11βヒドロキシステロイド化合物の製造方法>
 本発明の蛋白質(11β水酸化酵素)、または、上述の本発明の形質転換体もしくはその処理物を11-デオキシステロイド化合物に接触させ、11βヒドロキシステロイド化合物を生成させ、該11βヒドロキシステロイド化合物を回収することにより、11βヒドロキシステロイド化合物を製造することができる。
 ここで、11-デオキシステロイド化合物としては、17α,21-ジヒドロキシプレグネ-4-エン-3,20-ジオン(コンパウンドS)、11-デオキシコルチコステロン、プロゲステロン、17α-ヒドロキシプロゲステロン、およびそれらの誘導体などが挙げられる。誘導体としては、17α,21-ジヒドロキシプレグネ-4-エン-3,20-ジオン 21-アセテート、または、17α,21-ジヒドロキシプレグナ-1,4-ジエン-3,20-ジオンなどが挙げられる。これらの中では、コンパウンドS、またはその誘導体が好ましい。
 11βヒドロキシステロイド化合物としては、ハイドロコルチゾン、コルチコステロン、11β-ヒドロキシプロゲステロン、21-デオキシコルチゾルおよびそれらの誘導体などが挙げられる。誘導体としてはハイドロコルチゾン 21-アセテート、プレドニゾロンなどが挙げられる。これらの中では、ハイドロコルチゾン、またはその誘導体が好ましい。
 形質転換体の処理物としては、形質転換体である微生物菌体や植物細胞(以下、「微生物菌体等」という。)あるいは植物体を超音波、粉砕、圧擦等の手段で破砕して得られる破砕物、該破砕物を水等で抽出して得られる、本発明の蛋白質を含有する抽出物、該抽出物に更に硫安塩析、カラムクロマトグラフィー等の処理を行って得られる本発明の蛋白質を含む画分や、上記微生物菌体等を担体に固定化したものなどが挙げられる。
 形質転換体である微生物菌体等は固定化することもでき、形質転換体の固定化は、それ自体既知の通常用いられている方法に従い、アクリルアミドモノマー、アルギン酸、またはカラギーナン等の適当な担体に形質転換体である微生物菌体等を固定化させる方法により行うことができる。例えば、微生物菌体等を担体に固定化する場合には、培養物から回収されたまま、あるいは適当な緩衝液、例えば0.02~0.2M程度のリン酸緩衝液(pH6~10)等で洗浄された微生物菌体等を使用することができる。なお、本発明の蛋白質のみを固定化してもよい。
 一方、上述の11β水酸化酵素をコードする遺伝子の導入に加えて、他の酵素をコードする遺伝子も同じ形質転換体(好ましくは酵母)に導入することで、グルコースやエタノールなどの安価な原料からハイドロコルチゾンのような有用な11βヒドロキシステロイド化合物を効率よく自律的に発酵生産するプロセスを構築する場合において、ハイドロコルチゾンを製造するときは、本発明の11β水酸化酵素をコードする遺伝子のほかに、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、ステロイド3位酸化酵素/異性化酵素、ステロイド17α位水酸化酵素、およびステロイド21位水酸化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。
 コルチコステロンを製造するときは、本発明の11β水酸化酵素をコードする遺伝子のほかに、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、ステロイド3位酸化酵素/異性化酵素、およびステロイド21位水酸化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。
 11β-ヒドロキシプロゲステロンを製造するときは、本発明の11β水酸化酵素をコードする遺伝子のほかに、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、およびステロイド3位酸化酵素/異性化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。
 21-デオキシコルチゾルを製造するときは、本発明の11β水酸化酵素をコードする遺伝子の他に、少なくともステロール側鎖切断酵素、フェレドキシン、フェレドキシン還元酵素、ステロール7位還元酵素、ステロイド3位酸化酵素/異性化酵素、およびステロイド17α位水酸化酵素をコードする遺伝子をそれぞれ導入した宿主を用いて製造することが好ましい。
 本発明の蛋白質(ステロイド11β水酸化酵素)、または本発明のDNAを含む組換えベクターで形質転換された形質転換体もしくはその処理物に接触させる際の条件については、目的とする11βヒドロキシステロイド化合物を得ることができれば特に制限はないが、以下のような条件とすることが好ましい。用いる本発明の形質転換体の宿主が微生物や細胞である場合は、上述の培養方法と同等に培地中で接触させることができる。基質である11-デオキシステロイド化合物の濃度は、0.01%~10%が好ましく、0.1%~2%がより好ましい。反応温度は15~40℃が好ましく、25℃~35℃がより好ましい。反応pHはpH4~pH10が好ましく、pH5~pH9がより好ましい。11β水酸化反応には酸素が必要であることから好気条件が好ましい。
 さらに、11β水酸化反応には還元力の供給が必要であるため、生物が生育状態にある条件が好ましく、宿主が微生物や植物細胞である場合には培養(即ち、生育)と並行して11β水酸化反応を進行させることも好ましい。この還元力とは、具体的には電子やエネルギーである。NADHやNADPH等の化合物で供給するためにグルコース脱水素酵素またはグルコース6リン酸脱水素酵素、および、グルコースなどを共存させてNADHやNADPHを再還元することで還元力である電子やエネルギーをステロイド11β水酸化反応に供給したり、電子メディエーター存在下で電力を供給することにより直接還元力である電子やエネルギーをステロイド11β水酸化反応に供給したりすることで、培養と並行して11β水酸化反応を進めることも好ましい。
 培地中や植物体に蓄積したハイドロコルチゾンなどの11βヒドロキシステロイド化合物を回収する方法は特に限定されず、当業者に公知の分離または精製のための手法を用いることができる。例えば、溶媒抽出、晶析、樹脂吸着、カラムクロマトグラフィー等により行うことができる。
 また、ここで、回収物としては、培地中や植物体に蓄積した11βヒドロキシステロイド化合物を単離、精製したものに限定されず、菌体を分離した培地や、目的とする11βヒドロキシステロイド化合物を含有する培地や植物体そのものも含まれる。
 また、回収されたハイドロコルチゾンなどの11βヒドロキシステロイド化合物からは、各種の誘導体を公知の方法で製造することができる。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。
(実施例1)
クルブラリア・ルナタ MCI1688株におけるステロイド11β位水酸化活性を誘導する培養条件
 クルブラリア・ルナタMCI1688をPDA寒天培地(ポテトデキストロース寒天培地(Difco))上に塗布し、28℃で9日間培養したのち、同寒天培地上に生育したクルブラリア・ルナタMCI1688株を2mLのGPCSL-II液体培地(10%(w/v)グルコース、2%(w/v)ポリペプトン(日本製薬)、0.5%(w/v)コーンスティープリカー(シグマーアルドリッチ社))2本に植菌し、28℃で往復振盪培養(300rpm)した。培養3日間経過したものを種培養液として、それぞれ全量を300mL容三角フラスコに仕込んだ50mLのGPCSL-II培地に植菌し、28℃、150rpmの旋回振盪で本培養を開始した。本培養24時間後、一方の培養液にのみ11β水酸化活性の誘導剤として20mgの20-ヒドロキシメチル-1,4-プレグナジエン-3-オン(ACROS社)粉末を加え(誘導剤添加区)、もう1本には何も加えず(誘導剤非添加区)、28℃で150rpmの旋回振盪培養を継続した。その4時間後、各々の本培養液から2mLずつをそれぞれ2本の試験管に採取し、そこへ110μLの1.7%(w/v) コンパウンドS(シグマーアルドリッチ社)のメタノール溶液を加え、さらに28℃にて300rpmで往復振盪することで培養を継続した。20時間後、各培養液に4mLの酢酸エチルを添加してよく混合し、2,000×g、30秒間、室温にて遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に1.5mLのメタノールを添加して残渣を溶解した。さらにこのメタノール溶液にメタノールを添加し、40倍に希釈しHPLC分析(分析条件A;以下記載)に供した。なお、同時にハイドロコルチゾン(シグマーアルドリッチ社)およびコンパウンドSの標品についても分析し、その溶出時間を確認した。
分析条件A
 カラム;COSMOSIL 5C18-AR-II φ4.6×150mm(ナカライテスク社)
 カラム温度;40℃
 検出方法;254nmの吸光度
 試料注入量;5μl
 溶離液;メタノール/水=50/50
 溶離液流速;1mL/分
 分析時間;25分.
 当該分析の結果、ハイドロコルチゾン(10.8分)、及び、コンパウンドS(20.5分)と同じ溶出時間にピークを確認し、特にハイドロコルチゾンに該当するピークの面積値からハイドロコルチゾンの濃度を計算した(表1)。その結果、誘導剤添加区にてハイドロコルチゾン蓄積が増加し、当該菌株の11β水酸化活性が誘導することが確認された。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
クルブラリア・ルナタ MCI1688株の染色体DNA配列における11β水酸化酵素遺伝子配列候補の絞込み
 発明者らが独自で解読したクルブラリア・ルナタ MCI1688株の染色体DNA配列から推定される各種アミノ酸配列のうち、国際公開第2002/046386号パンフレットに配列番号2として記載されているアスペルギルス・オクラセウス ATCC18500株由来ステロイド11α水酸化酵素のアミノ酸配列と相同性の高いアミノ酸配列およびそのアミノ酸配列をコードする核酸配列をプログラムTBLASTN 2.2.19を用いて検索した。この相同性評価に用いた条件はプログラム付帯のデフォルト値を用いた。
 分析の結果、Expect valueが1.0e-10より低い合計5種類の推定アミノ酸配列(P450A1~A5)が候補として挙がり、これらの配列についてさらなる絞込みを行った。これらの推定アミノ酸配列はそれぞれチトクロムP450蛋白質に特徴的な部分アミノ酸配列を有していることから、P450A1(配列番号1)、P450A2(配列番号2,3)、P450A3(配列番号4)、P450A4(配列番号5)、P450A5(配列番号6)とした。このうち、P450A2のアミノ酸配列についてはP450A2-1(配列番号2)およびP450A2-2(配列番号3)の2つのアミノ酸配列が同一蛋白質の異なる部分配列であると考えられる。その理由は、それぞれをコードする核酸配列が染色体上で極めて近接していること、転写における読み取り方向が同一であること、また、配列検索に用いたステロイド11α水酸化酵素アミノ酸配列の異なる部分に相同性を示すことからである。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
染色体DNA配列における遺伝子領域の推定
 クルブラリア・ルナタ MCI1688株の染色体DNA配列より、上記5種類の推定アミノ酸配列をコードする遺伝子領域を含むDNA配列をそれぞれ配列番号7~11に記載した。
 これらのDNA配列を検索配列としてBLASTX2,2,27プログラムを用いて公共の蛋白質データベースに対し、デフォルトの条件にて相同性の高い蛋白質の検索を実施した。
 この検索により抽出された既知のアミノ酸配列は、クルブラリア・ルナタ MCI1688株の染色体DNA配列より見出された推定チトクロムP450蛋白質5種類それぞれと最も相同性が高い既知のアミノ酸配列と考えられるため、これら得られた配列との比較を参考に翻訳開始コドン及び終止コドンの染色体DNA配列上における位置をイントロンの存在可能性も考慮しながら推定した。配列によっては、開始コドンが明瞭でないもの、エキソンと思われる領域に終止コドンが見出されるものが含まれ、完全に予測することは困難だったが、上記の推定アミノ酸配列から以下のP450A1~A5の5種類のDNA配列を11β水酸化酵素のDNA配列候補とした(配列番号12~16)。
(実施例4)
クルブラリア・ルナタ MCI1688株の染色体DNA配列における11β水酸化酵素DNA配列候補のさらなる絞込み
 クルブラリア・ルナタMCI1688をPDA寒天培地上に塗布し、28℃で9日間培養したのち、同寒天培地上に生育したクルブラリア・ルナタMCI1688株を2mLのGPCSL-II液体培地(10%(w/v)グルコース、2%(w/v)ポリペプトン、0.5%(w/v)コーンスティープリカー)6本に植菌し、28℃で往復振盪培養(300rpm)した。培養3日間経過したものを種培養液として、それぞれ全量を300mL容三角フラスコに仕込んだ50mLのGPCSL-II培地(計6本)に植菌し、28℃、150rpmの旋回振盪で本培養を開始した。本培養24時間後、うち4本の培養液に11β水酸化活性の誘導剤として20mgの20-ヒドロキシメチル-1,4-プレグナジエン-3-オン粉末を加え(誘導剤添加区)、もう2本には何も加えず(誘導剤非添加区)、28℃で150rpmの旋回振盪培養を継続した。誘導剤添加した直後、誘導剤添加区と誘導剤非添加区のフラスコ1本ずつの振盪培養を停止し、氷上で15分冷却後、遠心分離(2,000×g、4℃、10分)により、菌体画分を集めた。この画分を20mLの0.9%(w/v)NaCl水溶液に懸濁し、再度遠心分離により菌体画分を集め、-80℃で凍結保存した。誘導剤添加区については誘導剤添加後1.4時間及び2.7時間にそれぞれ1本のフラスコの培養を停止し、同様の処理により菌体画分-80℃で凍結保存した。さらに、誘導剤添加してから4時間後には残りの誘導剤添加区および非添加区のフラスコ1本ずつについても上記と同様に培養を停止して、菌体を-80℃で凍結保存した。
 凍結保存した菌体にメタルコーンを加えてビーズショッカー(安井器械社製)にて回転速度1700rpmで20秒間(4℃)の菌体破砕処理を行った。このあと、メタルコーンを取り除いた処理物について、ISOGENキット(ニッポンジーン社)を用いて、添付のマニュアルインストラクションに従い総RNAを抽出し、得られたRNA画分を100μLのDEPC処理水(ジエチルピロカーボネート処理水)に溶解した。このうち42.5μLを別に取り分け、これに5μLの10×DNaseI bufferと2.5μLの5unit/μL DNaseI水溶液(タカラバイオ社)を添加し、混合後37℃で2時間インキュベートすることで染色体DNAの共存を排除した。DNaseI処理後、再度ISOGENキットを用いて総RNAを抽出し、最終的に0.5μg/μLとなるようDEPC処理水に溶解した。
 6種類の0.5μg/μL RNA水溶液2μLをそれぞれ鋳型として、PrimeScript High Fidelity RT-PCR Kit(タカラバイオ社)により逆転写反応を行うことで、6種それぞれのcDNA水溶液を20μLずつ調製した。逆転写反応の条件はPrimeScript High Fidelity RT-PCR Kit(タカラバイオ社)添付のマニュアルインストラクションに従い、プライマーとして同キット付属のOligo dT primerを用いた。
 誘導剤添加区の菌体から得られた4種類(誘導剤添加直後、1.4時間後、2.7時間後、4時間後)のcDNA調製液をそれぞれ8μLずつ混合した。このcDNA混合液1μLを鋳型として、それぞれP450A1からP450A5の推定N末端およびC末端部位をコードするDNA配列を基に作成したフォワードプライマーおよびリバースプライマーを5pmolesずつ、2倍濃度のPrimeSTAR Max Premixを12.5μL、およびこれらに水を加えて合計25μLとして、1サイクルが98℃ 10秒→50℃ 15秒→72℃ 90秒からなる反応を30サイクル実施した。
使用プライマー
 P450A1
P450A1-F1: ATGGATACCCAGACTGTCGAGCTG(配列番号17)
P450A1-R1: CTACACTACTACTCTCTTGAAAGC(配列番号18)
 P450A2
P450A2-F1: ATGATTATTGAGCTCTTCTCATC(配列番号19)
  P450A2-R1: CTACACCAGTATACTCGGTTCTCC(配列番号20)
 P450A3
  P450A3-F1: ATGGCCGGAGACGAAGTGAG(配列番号21)
P450A3-R1: TCACCCATCACTAGACGTCCAC(配列番号22)
 P450A4
P450A4-F1: ATGGGGATCCCTTATGTCTTGC(配列番号23)
  P450A4-R1: TTACCATAGCACATCTTGCGTTG(配列番号24)
 P450A5
  P450A5-F1: ATGGGCAACTTTTTTGACAACTC(配列番号25)
P450A5-R1: TTAAATCTTTGGGTTTGCGAGGTC(配列番号26)
 それぞれのPCR反応液についてアガロースゲル用いた電気泳動で分析したところ、P450A1およびP450A3のプライマーペアを添加したPCR反応液において約1.5kbp付近の移動度にDNAの増幅を確認した。その一方で、P450A2、P450A4、及び、P450A5のプライマーペアを用いたPCR反応液の電気泳動ではDNAの増幅を確認できなかった。上記得られた結果より、候補配列をさらにP450A1及びP450A3に絞り込んだ。
(実施例5)
P450A1及びP450A3の転写レベル解析による誘導効果の確認
 さらに、上記において調製したcDNA溶液それぞれ10μLに190μLのDEPC処理水を加えて20倍に希釈し、うち2μLをリアルタイムPCRの鋳型試料とした。これにそれぞれ5pmolesのP450A1、P450A3、アクチン、グリセルアルデヒド-3-リン酸脱水素酵素、及び、40SリボゾームRNA遺伝子特異的なプライマー(以下、それぞれP450A1-F4及びP450A1-R4、P450A3-F4及びP450A3-R4、actin-F2及びactin-R2、GAPDH-F1及びGAPDH-R1、そして、40S-F2及び40S-R2)、1μLのLight Cycler Fast Start DNA Master SYBR Green I(ロシェ・ダイアグノスティクス社)、20nmolesの塩化マグネシウム水溶液、及び、DEPC処理水を加えて液量10μLとして、Light Cycler(ロシェ・ダイアグノスティクス社)を用いてリアルタイムPCRによる発現レベルの解析を実施した。
使用プライマー
 P450A1
P450A1-F4: GTTTTGCGATTCACTGGACCTAC(配列番号27)
P450A1-R4: GAAGGGTAGAATGCGTTGTCTTG(配列番号28)
 P450A3
P450A3-F4: CTATACCAGAAGGCATCCATTTCC(配列番号29)
P450A3-R4: GCCTCATACTCTTCTCTCGGTCTC(配列番号30)
 アクチン
actin-F2: GACCGTATGCAGAAGGAAATCAC(配列番号31)
actin-R2: AAGGTGGAGAGCGAAGCAAG(配列番号32)
 グリセルアルデヒド-3-リン酸脱水素酵素
GAPDH-F1: ATGCACGCGATTGACACGTCCTC(配列番号33)
GAPDH-R1: CTAAGCGTTGCCATCAATCTTG(配列番号34)
 40SリボゾームRNA
40S-F2: ATCACGTTGACGCCTCTGG(配列番号35)
40S-R2: CTCGTCCTGCTCAAGAACACC(配列番号36)
 なお、PCRプログラムについては対象の遺伝子によって以下のとおりとし、転写量は2次微分最大法によりCt値を求めた。
 95℃・10秒→57℃・10秒→72℃・6秒(P450A1、P450A3、及び、アクチン)
 95℃・10秒→54℃・10秒→72℃・6秒(グリセルアルデヒド-3-リン酸脱水素酵素)
 95℃・10秒→57℃・10秒→72℃・4秒(40SリボゾームRNA)
 各cDNA試料における対象遺伝子の転写レベル解析の結果を表3に示す。ここで、2次微分最大法によるCt値を記載しているため、値が低いほど転写レベルが高いと評価される。
Figure JPOXMLDOC01-appb-T000003
 アクチン、グリセルアルデヒド-3-リン酸脱水素酵素、及び、40SリボゾームRNA遺伝子の転写レベルは誘導剤非添加区試料において誘導剤添加区試料よりやや高い値となっているが、P450A1およびP450A3遺伝子の転写レベルは誘導剤添加直後に同等またはP450A1については高い転写レベルであった。この結果より、P450A1およびP450A3は誘導剤添加により転写が誘導されるが、その誘導効果はP450A1の方がP450A3よりも効果が高いと示唆された。
(実施例6)
絞り込んだ配列候補遺伝子の取得
 pUC118プラスミド(タカラバイオ社製)を制限酵素HincII(タカラバイオ社)で処理して得られたDNAをさらにBAPC75(タカラバイオ社製)による脱リン酸化処理を施した。これにより得られたDNAを含む水溶液とP450A1のPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>(タカラバイオ社)を加えて連結反応を行った。同様に、pMW119プラスミド(ニッポンジーン社製)を制限酵素SmaI(タカラバイオ社)で処理して得られたDNAについてさらにBAPC75により脱リン酸化処理を施したDNAを含む水溶液とP450A3のPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。それぞれ得られた反応液を用いて、E.coli DH5α(タカラバイオ社)を形質転換したのち、その形質転換溶液を50μg/mLのアンピシリン ナトリウム塩(シグマーアルドリッチ社)を含有するLB寒天培地(1%Bactoトリプトン(Difco)、0.5% Bacto酵母エキス(Difco)、1% 塩化ナトリウム、2% 寒天)に塗布し、一晩37℃でインキュベートした。その結果、形質転換されたと思われるE.coliのコロニーがLB寒天培地上に出現していた。これらのコロニーについて、それぞれ5pmolesのDNAプライマーM13-F1及びM13-R1、2nmolesのdNTP、1μLの10倍濃縮Extaqバッファー(タカラバイオ社製)、0.05μLのExtaq水溶液(タカラバイオ社)、及び水を加えて合計10μLから成るPCR反応液を調製し、サーマルサイクラーを用いてコロニーPCRを実施した。
M13-F1: GGTTTTCCCAGTCACGAC(配列番号37)
M13-R1: CGGATAACAATTTCACACAGG(配列番号38)
 その反応における温度変化プログラムは、95℃、1分に引き続き、1サイクルが95℃、30秒→50℃、30秒→72℃、1.5分から成る反応を30サイクル、そして72℃、2分で終了するとした。このコロニーPCRの結果、それぞれの形質転換体コロニーについて、約1.5kbpのDNAが増幅されたことを確認したので、それぞれコロニーはpUC118-P450A1またはpMW119-P450A3というベクターを有すると考えられた。さらにこれらそれぞれのコロニーを2mLのLB液体培地(1% Bactoトリプトン(Difco)、0.5% Bacto酵母エキス(Difco)、1% 塩化ナトリウム)に植菌し、37℃、300rpm(往復振盪)で一晩培養し、生育した菌体を遠心分離により集め、QIAprep Spin Miniprep Kit(キアゲン社製)を用いて、プラスミドDNAを抽出した。これらのプラスミドDNAを鋳型として用いた、GenomeLab dye terminator cycle sequencing with quick start kit(ベックマンコールター社製)によるPCR反応(96℃、30秒に引き続き、96℃、20秒→50℃、20秒→60℃、4分を30サイクル実施する温度プログラム用いた)を実施し、DNAシークエンサーCEQ8000によりDNA配列を解析した。なお、pUC118-P450A1のDNA配列解析に用いたプライマーは、M13-F1、M13-R1、及び、P450A1-F3であり、pMW119-P450A3のDNA配列解析に用いたプライマーは、M13-F1、M13-R1、P450A3-F3、及び、P450A3-R4であった。
P450A1-F3: AAGACGTATATGCCGCCATGTGAC(配列番号39)
P450A3-F3: TTCGACCAACCTGACAACGTTCTC(配列番号40)
P450A3-R4: GCCTCATACTCTTCTCTCGGTCTC(配列番号41)
 このDNA配列解析の結果、P450A1およびP450A3をコードするcDNA配列はそれぞれ、配列番号42,44と決められた。
 さらに、上記cDNA配列より、P450A1およびP450A3の推定アミノ酸配列はそれぞれ、配列番号43,45と推定された。
(実施例7)
P450A1及びP450A3の発現用ベクター調製
(1)pKIM-URA-NCP1の作成
 サッカロミセス・セレビシエ S288c株のNCP1(NADP-チトクロムP450還元酵素)遺伝子を取得するために、以下の操作を行った。まず、サッカロミセス・セレビシエ S288c株をYPD寒天培地(1% Bacto酵母エキス、2% ペプトン、2% グルコース、2% 寒天)上に接種し、30℃で3日間生育させた。当該寒天培地上に生育したサッカロミセス・セレビシエ S288cを2mLのYPD液体培地(1% Bacto酵母エキス、2% ペプトン、2% グルコース)に接種し、30℃、180rpmで一晩旋回振盪培養した。培養後、5,000×g、3分、室温の遠心分離で沈殿画分を取得し、この沈殿画分を懸濁緩衝液(0.1M 塩化ナトリウム、10mM トリス-塩酸(pH7.5)、1mM エチレンジアミン四酢酸二ナトリウム、0.1% ドデシル硫酸ナトリウム)に懸濁したところにガラスビーズを加え、冷却しながら激しく振盪することにより菌体破砕を行った。そこへ10mM トリス-塩酸(pH8.0)で飽和したフェノール/クロロホルム/イソアミルアルコール(25/24/1)溶液を添加し、さらに振盪することで蛋白質を変性させた。これを18,000×g、5分、室温で遠心分離後、上層の液を別に移し、さらに等量のクロロホルムを添加した。振盪後、18,000×g、5分、室温で遠心分離し、上層の液をさらに別に移した。その液に3M酢酸ナトリウム水溶液、及び、エタノールを添加したのち、18,000×g、20分間、4℃で遠心分離することで核酸画分を沈殿させた。この沈殿に70%エタノール水溶液を添加し、再度振盪後、18,000×g、5分間、4℃で遠心分離し、上清を除いた。得られた沈殿を乾燥したのち、水を添加することでサッカロミセス・セレビシエ S288cの染色体DNA水溶液を調製した。このDNA5ngに、それぞれ10pmolesのプライマーNCP1-F1およびNCP1-R1、25μLのPrimeSTAR Max Premix、及び、水を加えて合計50μLとすることでPCR反応液を調製し、98℃・10秒→50℃・15秒→72℃・10秒の30サイクルから成るPCR反応を行った。
NCP1-F1: GGGCCCAAAAAAATGCCGTTTGGAATAGAC(配列番号46)
 NCP1-R1: AAGCTTACCAGACATCTTCTTGG(含HindIII) (配列番号47)
 反応終了後の液をアガロース電気泳動で分析したところ、約2kbpのDNAが増幅していることを確認した。予め制限酵素HincIIで切断し、BAPC75を用いて脱リン酸化処理して調製したpUC118プラスミドベクター処理物にPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。このプラスミドを制限酵素SmaIおよびHindIIIで二重切断したところ、アガロース電気泳動で2.1kbpおよび3.2kbpのDNAを検出したことからpUC118-NCP1の作成を確認した。
(2)pKIM-URAの作成
 プラスミドベクターpMW119 DNA5ngを鋳型として、それぞれ10pmolesのプライマーpMW-F1及びpMW-R1、25μLのPrimeSTAR Max Premix、及び、水を加えて合計50μLとすることでPCR反応液を調製し、98℃・10秒→55℃・5秒→72℃・5秒が30サイクルから成るPCR反応を行った。
pMW-F1: CTACGGGGTCTGACGCTC(配列番号48)
pMW-R1: ACGTTTTCCAATGATGAGCAC(配列番号49)
 これにより得られた0.8kbpのPCR反応産物を制限酵素FspI(New England Biolab社)で処理すると、0.45kbpおよび0.38kbpのDNAが得られるが、このうち、0.45kbpのDNA断片を取得した。プラスミドベクターpMW119 DNAを制限酵素FspIで処理して得られる2.9kbpと1.3kbpのDNAのうち、前者と上記0.45kbpのDNAを混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。得られたプラスミドを制限酵素AatII及びScaIで二重処理したところ、予想通り2.9kbp及び0.4kbpのDNA断片が確認されたことから、pMW119よりマルチクローニングサイトを除去した形のプラスミドpMW119dを構築した。次に、このpMW119dを制限酵素AatII及びScaIで二重処理したのち、DNA Blunting Kit(タカラバイオ社)による末端平滑化を施して得られる2.9kbp及び0.4kbpのDNA断片のうち、2.9kbpのDNAを取得した。一方、pESC-LEU(アジレント社)を制限酵素MluI及びScaIによる処理後にDNA Blunting Kitを用いた末端平滑化処理して得られる6.2kbp及び1.6kbpのDNAのうち、6.2kbp断片を取得し、これに上記の2.9kbpDNAを混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。得られたプラスミドDNAを制限酵素ScaI処理したところ、予想通り9.1kbpのDNA断片が得られたことから、pESC-URAのpUCoriをpMW119由来のpSC101oriに置き換えたプラスミドpESC-SC101-LEUを構築した。
 1ngのpESC-URA(アジレント社)DNAを鋳型に、それぞれ10molesのプライマーESCURA-F1およびESCURA-R1に加え、25μLのPrimeSTAR Max Premix、及び、水を加えて合計50μLとすることでPCR反応液を調製し、98℃・10秒→55℃・5秒→72℃・6秒が30サイクルから成るPCR反応を行った。
ESCURA-F1: GGGCCACAGCTTTTCAATTCAATTCATC(配列番号50)
ESCURA-R1: GGGTAATAACTGATATAATTAAATTGAAGC(配列番号51)
 これにより得られた1.1kbpのPCR反応産物を、別途pMW119を制限酵素SmaIで処理した後、BAPC75で脱リン酸化処理したDNA断片と混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。得られたDNAを制限酵素SmaIで処理したところ、予想通り1.1kbp及び4.2kbpのDNAを確認し、pMW119-URA3を構築した。このpMW119-URA3を制限酵素SmaIで処理して得られる1.1kbp及び4.2kbpのDNAのうち、1.1kbpのDNAを、pESC-SC101-LEUを制限酵素NaeI及びPflFI(それぞれNew England Biolab社)による処理後にDNA Blunting Kitによる末端平滑化処理して得られる6.5kbpのDNAと混合しDNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し一晩37℃、300rpmの往復振盪培養を行い、QIAprep Spin Miniprep Kitにより、プラスミドDNAを取得した。得られたDNAを制限酵素PstI(タカラバイオ社)で処理したところ、予想通り3.1kbp及び4.5kbpのDNAが生成を確認し、プラスミドベクターpKIM-URAを構築した。
(3)pKIM-URA-NCP1の作成
 pUC118-NCP1のDNAを制限酵素SmaIおよびHindIIIで処理して得られたDNA断片を、予め同制限酵素で処理し、抽出・精製されたp-KIM-URAプラスミド断片と混合し、DNA Ligation Kit<Mighty Mix>を添加して、連結反応を行った。その後、当該反応液を用いてE.coli DH5αを形質転換し、50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地に塗布した。この寒天培地を37℃で一晩インキュベートして得られたコロニーについて、50μg/mLのアンピシリン ナトリウム塩を含むLB培地2mLに植菌し一晩37℃、300rpm(往復振盪)の培養を行い、QIAprep Spin Miniprep Kitにより、p-KIM-URA-NCP1のプラスミドDNAを取得した。
(4)pKIM-URA-NCP1への11β水酸化酵素遺伝子配列候補の挿入
 1ng pUC118-P450A1を鋳型DNAとして、それぞれ10pmolesのプライマーp450A1-F6、及び、p450A1-R1、25μL PrimeSTAR Max Premix(タカラバイオ社製)、さらに、水を添加して、総量50μLのPCR反応液を調製し、1サイクルが98℃・10秒→52℃・5秒→72℃・8秒から成る温度プログラムを30サイクル運転した。
P450A1-F6: GCGGCCGCAAAAAAATGGATACCCAGACTGTCG(含NotI) (配列番号52)
 一方、pMW119プラスミド(ニッポンジーン社製)を制限酵素SmaI(タカラバイオ社)で処理して得られたDNAについてさらにBAPC75により脱リン酸化処理を施したDNAを含む水溶液と上記のPCR反応液を混合し、DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を持ってE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートした。同寒天培地上に生育したコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出した。得られたプラスミドDNAをNotI(タカラバイオ社製)およびSacI(タカラバイオ社製)により同時処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り1.5kbpおよび4.2kbpのDNA断片の存在が確認できたことから、想定どおりのpMW119-P450A1プラスミドが作成された。さらに、pMW119-P450A1をNotIおよびSacIで制限酵素処理を施し、P450A1遺伝子断片を含む約1.5kbpのDNAを取得し、同様にNotIおよびSacIで制限処理を施したpKIM-URA-NCP1プラスミドのDNA断片と混合し、Ligation Mix(DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を持ってE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地2mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出することで、P450A1遺伝子がGal10プロモーターの下流に機能する形で挿入されたpKIM-URA-NCP1-P450A1プラスミドを取得した。
 また、1ng pMW119-P450A3を鋳型DNAとして、それぞれ10pmolesのプライマーp450A3-F7、及び、p450A3-R1、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液を調製し、1サイクルが98℃・10秒→55℃・15秒→72℃・8秒から成る温度プログラムを30サイクル運転した。
P450A3-F7: GCGGCCGCAAAAAAATGGCCGGAGACGAAG(含NotI) (配列番号53)
 一方、pMW119プラスミド(ニッポンジーン社製)を制限酵素SmaI(タカラバイオ社)で処理して得られたDNAについてさらにBAPC75により脱リン酸化処理を施したDNAを含む水溶液と上記のPCR反応液を混合し、Ligation Mix(DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートした。同寒天培地上に生育したコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出した。得られたプラスミドDNAをNotIおよびSacIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り1.6kbpおよび4.2kbpのDNA断片の存在が確認できたことから、想定どおりのpMW119-P450A3(F7)プラスミドが作成されたと考えた。pMW119-P450A3(F7)をNotIおよびSacIで制限酵素処理を施し、P450A3遺伝子断片を含む約1.6kbpのDNAを取得し、同様にNotIおよびSacIで制限処理を施したpKIM-URA-NCP1プラスミドのDNA断片と混合し、Ligation Mix(DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地2mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いて、プラスミドDNAを抽出することで、P450A3遺伝子がGal10プロモーターの下流に機能する形で挿入されたpKIM-URA-NCP1-P450A3プラスミドを取得した。
(実施例8)
11β水酸化活性による遺伝子の確認
 サッカロミセス・セレビシエINVSc1株(ライフテクノロジーズジャパン社製)を、pKIM-URA-NCP1-P450A1、または、pKIM-URA-NCP1-P450A3を用いて酢酸リチウム法により形質転換し、SD-U寒天培地上に塗布し、30℃で2日間インキュベートしたところ、コロニーの生育が見られた。なお、SD-U寒天培地の組成は以下のとおりとした。
 2% グルコース
 0.67% 酵母ニトロゲンベース(アミノ酸不含)(Difco)
 0.01% L-アルギニン
 0.01% L-システイン
 0.01% L-スレオニン
 0.01% L-グルタミン酸
 0.01% L-リジン
 0.01% L-ロイシン
 0.01% L-トリプトファン
 0.005% L-ヒスチジン
 0.005% L-アスパラギン酸
 0.005% L-イソロイシン
 0.005% L-メチオニン
 0.005% L-フェニルアラニン
 0.005% L-プロリン
 0.005% L-セリン
 0.005% L-チロシン
 0.005% L-バリン
 1.5% 寒天
 サッカロミセス・セレビシエINVSc1(P450A1)株、および、同INVSc1(P450A3)株をそれぞれ100mL三角フラスコに仕込んだ10mLのSD0.25-U培地(上記SD0.25-U寒天培地組成において寒天を除いた液体培地)に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、1.1mLの20% ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、15mL容コニカルチューブ(日本ベクトン・ディッキンソン社)に培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた後、1mLの水を添加し懸濁後、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を1mLのSG溶液(SD0.25-U培地の0.25% グルコースを2% ガラクトースに置き換えたもの)で懸濁し、さらに2μLの1.7% コンパウンドSのメタノール溶液を加え、28℃、280rpmの往復振盪で反応させた。24時間後、反応液に2mLの酢酸エチルを加えてよく混合し、2,000×g、室温で30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に0.5mLのメタノールを添加して溶解した。さらにこのメタノール溶液にメタノールを添加し、40倍に希釈しHPLC分析(分析条件A)に供したところ、サッカロミセス・セレビシエINVSc1(P450A1)株を用いた反応ではハイドロコルチゾン(シグマーアルドリッチ社)と保持時間の一致する吸光度ピークが確認されたが、同INVSc1(P450A3)株では確認できなかった。
 サッカロミセス・セレビシエINVSc1(P450A1)株をそれぞれ2本の300mL容三角フラスコに仕込んだ50mLのSD0.25-U培地(上記SD0.25-U寒天培地組成において寒天を除いた液体培地)に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、5.5mLの20% ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、50mL容コニカルチューブ(日本ベクトン・ディッキンソン社)に培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた。それぞれ菌体に10mLの水を添加して懸濁後、2本を合一し、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を20mLのSG溶液(SD0.25-U培地の0.25% グルコースを2% ガラクトースに置き換えたもの)で懸濁した。予め50μLの1.7%コンパウンドSのメタノール溶液を加えておいた20本の15mL容コニカルチューブにその酵母懸濁液をそれぞれ1mL加え、28℃、280rpmの往復振盪で反応させた。24時間後、反応液に2mLの酢酸エチルを加えてよく混合し、2,000×g、室温にて30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に1.0mLのメタノールを添加して溶解し、HPLC分析(分析条件Aの試料注入量を20μLに置き換えたもの)に42回供し、ハイドロコルチゾンと同じ保持時間の溶出液を分取し合一した溶液約35mLが得られた。これをさらに遠心濃縮器(EYELA)にてメタノールを留去した18mLの溶液に36mLの酢酸エチルを加えてよく混合し、2,000×g、室温にて30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた2.4mgの固形分に0.6mLのメタノール-dを添加して溶解し、プロトンNMRを測定したところ、NMRのプロファイルはハイドロコルチゾン標品のそれと一致したことから、P450A1はステロイド11β水酸化酵素であると判断された。
(実施例9)
NCP1の効果確認
 1ng pUC118-P450A1を鋳型DNAとして、それぞれ10pmolesのプライマーp450A1-F8、及び、p450A1-R7、25μL PrimeSTAR Max Premix(タカラバイオ社製)、さらに、水を添加して、総量50μLのPCR反応液を調製し、1サイクルが98℃・10秒→52℃・5秒→72℃・8秒から成る温度プログラムを30サイクル運転した。
P450A1-F8: GCGAATTCAAAAAAATGGATACCCAGACTG (含EcoRI) (配列番号54)
P450A1-R7: GGTAGATCTACACTACTACTCTCTTGAAAG (含BglII) (配列番号55)
 上記のPCR反応液をEcoRI(タカラバイオ社)およびBglII(タカラバイオ社)で制限酵素処理を施し、P450A1遺伝子断片を含む約1.5kbpのDNAを取得し、同様にEcoRIおよびBglIIで制限処理を施したpKIM-URAプラスミドのDNA断片と混合し、Ligation Mix(DNA Ligation Kit<Mighty Mix>を加えて連結反応を行った。その反応液を持ってE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをEcoRIおよびBglIIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り1.5kbpおよび7.6kbpのDNA断片の存在が確認できたことから、想定どおりのA1遺伝子がGal10プロモーターの下流に機能する形で挿入されたpKIM-URA-P450A1プラスミドを取得した。
 サッカロミセス・セレビシエINVSc1株をpKIM-URA-P450A1を用いて酢酸リチウム法により形質転換し、SD-U寒天培地上に塗布し、30℃で2日間インキュベートしたところ、コロニーの生育が見られ、これをサッカロミセス・セレビシエINVSc1(pKIM-URA-P450A1)とした。
 サッカロミセス・セレビシエINVSc1(pKIM-URA-P450A1)株、および、同INVSc1(pKIM-URA-NCP1-P450A1)株をそれぞれ300mL三角フラスコに仕込んだ40mLのSD0.25-U培地に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、4.4mLの20% ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、50mL容コニカルチューブに培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた後、10mLの水を添加し懸濁後、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を8mLのSG溶液で懸濁し、菌体懸濁液から1mLずつをそれぞれ6本の試験管に採取し、そこへ50μLの1%(w/v) コンパウンドSのメタノール溶液を加え、さらに28℃にて280rpmの往復振盪で反応させた。1、2、4、7、11、22時間後、それぞれの菌株について1本の試験管反応液に2mLの酢酸エチルを加えてよく混合し、室温、2,000×gで30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に0.5mLのメタノールに溶解した。さらにこのメタノール溶液にメタノールを添加し、10倍に希釈しHPLC分析(分析条件A)に供した。分析の結果、ハイドロコルチゾンに該当するピークの面積値から各反応時間におけるハイドロコルチゾンの濃度を計算した(下表)。その結果、P450A1のみを過剰発現するサッカロミセス・セレビシエ INVSc1(pKIM-URA-P450A1)株においても11β水酸化によるハイドロコルチゾンの蓄積が確認できた。
Figure JPOXMLDOC01-appb-T000004
(実施例10)
他のサッカロミセス・セレビシェ株におけるP450A1の組換え発現
 サッカロミセス・セレビシエ FY1679-6c株(EUROSCARF、ドイツ)、および、サッカロミセス・セレビシエ YPH499株(ライフテクノロジーズジャパン社)を宿主として、酢酸リチウム法によりpKIM-URA-NCP1-P450A1で形質転換し、それぞれSD-URA寒天培地(2% グルコース、0.67% 酵母ニトロゲンベース(アミノ酸不含)(Difco)、1.92g/L Yeast Synthetic Dropout Medium Supplement Without Uracil(シグマーアルドリッチ社)、2% 寒天)に形質転換液を塗布し、30℃で2日間インキュベートした結果、それぞれの宿主にpKIM-URA-NCP1-P450A1が導入されたCY852株、及び、CY851株が得られた。さらにこれらについて2クローンずつを別の同寒天培地上にレプリカし、2日間インキュベートしたのち、同寒天培地上に生育したCY852株、及び、CY851株の2クローンをそれぞれ別個に2mLのSD-URA培地に植菌し、30℃、200rpmで旋回振盪培養した。一晩経過したのち、それぞれの培養液をさらに200mL容三角フラスコに仕込んだ0.1mMのFeSO4・7H2Oを含む同培地20mLに植菌し、30℃、200rpmの旋回振盪培養を行った。8時間後に50mL容コニカルチューブに培養液全量を移し、5,000×g、5分、室温の遠心分離により菌体を回収し、1mLの水酸化菌体反応液(67mM リン酸カリウム緩衝液(pH7.5)、1% ガラクトース、2.7% グリセロール)に再懸濁した。これに最終濃度50mg/LになるようにコンパウンドSを加えて、30℃、200rpmの旋回振盪により反応を約20時間実施した。反応終了後、反応液1mLに酢酸エチルを1mL添加し、激しく混和したのち18,000×g、30秒、室温の遠心分離を行い、上層を別のポリプロピレン製チューブに移し、窒素気流下で酢酸エチルを留去した。これを再度繰返して得られた残渣をまとめて回収したのち、200μLアセトニトリルを添加し、激しく振盪することでこれを溶解した。得られたアセトニトリル溶液を試料として、以下の条件で分析した(分析条件B)。
分析機器;ACQUITY UltraPerformance LC(ウォーターズ)カラム;ACQUITY UPLCR BEH C18 1.7μm φ2.1×100mm
カラム温度;40℃
Figure JPOXMLDOC01-appb-T000005

分析時間;5分
試料注入量;2μL
検出方法;吸光度240nm
 分析の結果、CY852及びCY851のそれぞれ2クローンにおいて、ハイドロコルチゾンの蓄積を確認した。
Figure JPOXMLDOC01-appb-T000006
(実施例11)
哺乳類由来ステロイド11β水酸化酵素CYP11B1との比較
 GenBankにAAH96285.1として登録されたアミノ酸配列を参考に、ヒト由来CYP11B1をコードする遺伝子配列を以下のとおり合成し、pUC57に挿入した形でpUC57-CYP11B1を取得した(配列番号56:ヒト由来CYP11B1コード領域は塩基番号432~1943であり、他はpUC57ベクター部分)。なお、配列番号56の塩基番号432~1940に相当するアミノ酸配列を配列番号57に示す。
 ウシ由来ADXをコードする遺伝子配列については牛腎臓由来RNAからcDNAを逆転写した後、このcDNAを鋳型として合成し、pESC-URAに挿入した形で取得した。それぞれの遺伝子配列を同一のpESC-URAプラスミドに挿入したが、この場合、遺伝子産物をミトコンドリアにて機能させることを意図して、それぞれの蛋白質のN末端にサッカロミセス・セレビシエ S288c株由来COX4蛋白質のミトコンドリア移行シグナル配列が付加するようにDNA配列を設計した。
 サッカロミセス・セレビシエ S288c株の染色体DNA 1ngを鋳型DNAとして、それぞれ10pmolesのプライマーcox4-F、及び、cox4-R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Aを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・10秒から成る温度プログラムを30サイクル運転した。
cox4-F:AGTACTAGTATGCTTTCACTACGTCAATCGAT (配列番号58)
cox4-R:GCTGGTACCGGGTTTTTGCTGAAGCAGAT (配列番号59)
 また、1ng pUC57-CYP11B1を鋳型DNAとして、それぞれ10pmolesのプライマーmm11B1-F、及び、m11B1-R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Bを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・90秒から成る温度プログラムを30サイクル運転した。
mm11B1-F: ACCCTACTAGTATGGGTACCCGCGCCGCGCG (含KpnI) (配列番号60)
m11B1-R: TCCAGAATTCTTAGTTAATGGCACGAAAGG (含SacI) (配列番号61)
 上記のPCR反応液AをSpeI(タカラバイオ社)およびKpnI(タカラバイオ社)で、PCR反応液BをKpnIおよびSacI(タカラバイオ社)で制限酵素処理を施し、それぞれcox4シグナル配列を含む約0.1kbpのDNA、および、CYP11B1遺伝子断片を含む約1.4kbpのDNAを取得し、同様にSpeIおよびSacIで制限処理を施したpESC-URAプラスミドのDNA断片と混合し、Ligation High(東洋紡社製)を加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、200rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをSpeIおよびKpnIおよびSacIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り0.1kbpおよび1.4kbpおよび6.6kbpのDNA断片の存在が確認できたことから、想定どおりのcox4-CYP11B1遺伝子がGal10プロモーターの下流に機能する形で挿入されたpESC-URA-cox4-CYP11B1プラスミドを取得した。
 サッカロミセス・セレビシエ S288c株の染色体DNA 1ngを鋳型DNAとして、それぞれ10pmolesのプライマーcox4-3F、及び、cox4-2R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Cを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・10秒から成る温度プログラムを30サイクル運転した。
cox4-3F: AGTGGATCCATGCTTTCACTACGTCAATCGAT (含BamHI) (配列番号62)
cox4-2R: GGGTTTTTGCTGCAGCAGAT (含PstI) (配列番号63)
 ウシ由来Adxをコードする遺伝子については牛腎臓由来のRNA<Bovine Kindey poly A+ RNA(クロンテック社製)>を鋳型として、逆転写反応キット<Super ScriptIII First-strand Sythesis system for RT-PCR(インビトロジェン社製)>の取扱説明書に記載された反応条件に従い逆転写反応によってcDNAを得た後、このcDNA 1ngを鋳型DNAとして、それぞれ10pmolesのプライマーADX-F、及び、ADX-3R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Dを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・30秒から成る温度プログラムを30サイクル運転することにより、シグナルペプチド部分を除くAdxに該当する遺伝子部分を増幅した。
ADX-F:AGTACTAGTATGCTTTCACTACGTCAATCGAT (配列番号64)
ADX-3R:GCTGGTACCGGGTTTTTGCTGAAGCAGAT (配列番号65)
 上記のPCR反応液DをBamHI(タカラバイオ社)およびHindIII(タカラバイオ社)で制限酵素処理を施し、Adx遺伝子断片を含む約0.4kbpのDNAを取得し、同様にBamHIおよびHindIIIで制限処理を施したpESC-URAプラスミドのDNA断片と混合し、Ligation Highを加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、300rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをBamHIおよびHindIIIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り0.4kbpおよび6.6kbpのDNA断片の存在が確認できたことから、想定どおりのAdx遺伝子がGal1プロモーターの下流に機能する形で挿入されたpESC-URA-Adxプラスミドを取得した(配列番号66:配列上、Adx遺伝子は塩基番号2946~3335である)。なお、配列番号66の塩基番号2946~3332に相当するアミノ酸配列を配列番号67に示す。
 1ng pESC-URA-Adxを鋳型DNAとして、それぞれ10pmolesのプライマーcox4-4F、及び、ADX-3R、25μL PrimeSTAR Max Premix、さらに、水を添加して、総量50μLのPCR反応液Eを調製し、1サイクルが98℃・10秒→50℃・15秒→72℃・30秒から成る温度プログラムを30サイクル運転した。
cox4-4F: AGTCTGCAGCAAAAACCCAGCAGCTCAGAAGATAAAA(配列番号68)
ADX-3R: GTAAAAGCTTTTATTCTATCTTTGAGGAGTTC(配列番号69)
 上記のPCR反応液CをBamHIおよびPstIで、PCR反応液EをPstIおよびHindIIIで制限酵素処理を施し、それぞれcox4シグナル配列を含む約0.1kbpのDNAとAdx遺伝子断片を含む約0.4kbpのDNAを取得し、同様にBamHIおよびHindIIIで制限処理を施したpESC-URA-cox4-CYP11B1プラスミドのDNA断片と混合し、Ligation Highを加えて連結反応を行った。その反応液を用いてE.coli DH5αを形質転換後、その細胞懸濁液を50μg/mLのアンピシリン ナトリウム塩を含むLB寒天培地上に塗布し、37℃で一晩インキュベートしたのち、同寒天培地上に生育したコロニーを取得した。これらのコロニーを50μg/mLのアンピシリン ナトリウム塩を含むLB培地5mLに植菌し、37℃、200rpmの往復振盪培養で一晩培養することにより得られた菌体から、QIAprep Spin Miniprep Kitを用いてプラスミドDNAを抽出した。得られたプラスミドDNAをBamHIおよびPstI並びにHindIIIにより同時に処理したのち、反応液をアガロースゲル電気泳動にて分析したところ、予想通り0.1kbpおよび0.4kbpおよび8.1kbpのDNA断片の存在が確認できたことから、想定どおりのAdx遺伝子がGal1プロモーターの下流に機能する形で挿入されたpESC-URA-cox4-CYP11B1-cox4-Adxプラスミドを取得した。
 FY1679-6cを宿主として、pESC-URA-cox4-CYP11B1-cox4-Adxをそれぞれ導入する形質転換をエレクトロポレーション法により行い、その細胞懸濁液をSD-URA寒天培地に塗布し、30℃で2日間インキュベートした結果、FY1679-6c (pESC-URA-cox4-CYP11B1-cox4-Adx)(以後、CY542)が得られた。SD-URA寒天培地上に生育したCY542およびCY852を2mLのSD-URA培地に、またFY1679-6cを2mg/L ウラシルを添加したSD-URA培地に植菌し、30℃、200rpmで旋回振盪培養した。一晩経過したのち、それぞれの培養液をさらに200mL容三角フラスコに仕込んだ20mLのグルコースの濃度を0.25%に減少させたSD-URA培地(FY1679-6c培養には2mg/L ウラシルをさらに添加)に植菌し、また終濃度1mMになるようFeSO4・7H2Oを加え、30℃、200rpmの旋回振盪培養を行った。8時間後にそれぞれの培養液に2mLの20%ガラクトース水溶液を加え培養を継続し、さらにその20時間後、1%コンパウンドSのエタノール溶液を0.1mL添加し、培養を24時間継続した。この際、培養期間0時間、4時間、8時間において200μLずつサンプリングを行った。これらの培養液に酢酸エチルを1mL添加し、激しく混和したのち18,000×g、30秒、室温の遠心分離を行い、上層を別のポリプロピレン製チューブに移し、窒素気流下で酢酸エチルを留去した。これを再度繰返して得られた残渣に、200μLアセトニトリルを添加し、激しく振盪することでこれを溶解した。得られたアセトニトリル溶液を試料として、分析条件Bで培養液に含まれるハイドロコルチゾンとコンパウンドSの濃度を測定した。その結果、下表のとおり、P450A1を導入したCY852においては、CYP11B1を導入したCY542よりも良好なコンパウンドSのハイドロコルチゾンへの変換が確認された。
Figure JPOXMLDOC01-appb-T000007
 なお、CY852株のコンパウンドSを基質とする11β水酸化反応におけるハイドロコルチゾンのモル収率は95%であった。
(実施例12)
ステロイド基質の検討
 サッカロミセス・セレビシエ INVSc1(pKIM-URA-NCP1-A1)株を300mL容三角フラスコに仕込んだ40mLのSD0.25-U培地に植菌し、30℃、180rpmの旋回振盪で一晩培養した。その後、4.4mLの20%ガラクトース水溶液を培養液に添加し、さらに30℃、180rpmの旋回振盪で24時間培養を継続した。培養終了後、50mL容コニカルチューブに培養液を全量移し、2,000×g、3分、室温で遠心分離し、上清を除いた後、10mLの水を添加し懸濁後、再度2,000×g、3分、室温で遠心分離して菌体を洗浄した。続いて、菌体を8mLのSG溶液で懸濁し、酵母懸濁液から1mLずつを4本の試験管に採取し、そこへ60μLの25% メチル-β-シクロデキストリン(和光純薬工業)水溶液、及び、50μLの2% 11-デオキシコルチコステロン(MP Biomedicals)のメタノール溶液、1% 17α-ヒドロキシプロゲステロン(ナカライテスク)のメタノール溶液、2% プロゲステロン(和光純薬工業)のメタノール溶液、または、1% 4-コレステン-3-オン(和光純薬工業)のメタノール溶液を加え、28℃、280rpmの往復振盪で反応させた。24時間後、反応液に2mLの酢酸エチルを加えてよく混合し、室温、2,000×gで30秒間遠心分離した。その上層を別の容器に移し、遠心濃縮器にて溶媒を留去して得られた固形分に0.5mLのメタノールに溶解した。さらにこのメタノール溶液をメタノールで10倍に希釈したものをHPLC分析の試料とした(分析条件C:下に示した)。その結果、11-デオキシコルチコステロン、17α-ヒドロキシプロゲステロン、プロゲステロンを加えたものにおいてはそれぞれの11-β水酸化物と同一の保持時間に吸光度ピークが確認されたが、4-コレステン-3-オンにおいては確認できなかった。このことから、プロゲステロン、17α-ヒドロキシプロゲステロン、11-デオキシコルチコステロン、および、コンパウンドSはP450A1による11β水酸化反応の基質となるが、4-コレステン-3-オンを基質とした場合は極めて反応速度が遅いということが示唆された。
分析条件C
 使用カラム;COSMOSIL 5C18-AR-II φ4.6×150mm(ナカライテスク、日本)
 カラム温度;40℃
 検出方法;254nmの吸光度
 試料注入量;5μL
 溶出条件
Figure JPOXMLDOC01-appb-T000008
 それぞれを基質として用いた場合の11β水酸化反応について、添加した基質量とそれぞれの11β水酸化物の蓄積濃度を表9に記す。
Figure JPOXMLDOC01-appb-T000009
 さらに、同様に調製した酵母懸濁液2mLに、20μLの1% ハイドロコルチゾン メタノール溶液を添加して、上記と同様に反応し、抽出した画分について分析条件CでLC分析したところ、わずかながらハイドロコルチゾン由来と思われる変換物(未同定)の蓄積をクロマトグラム上で確認したが、ほとんどのハイドロコルチゾンが残存していた。これにより、P450A1の酵素によりハイドロコルチゾンが分解されないことを確認できた。
 本発明のDNAを酵母等に遺伝子組換えして得られる形質転換体をコンパウンドS等の11-デオキシステロイド化合物と接触させることによりハイドロコルチゾン等の有用物質が効率よく製造できる。また、当該DNAのほか、ステロール7位還元酵素遺伝子、ステロール側鎖切断酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、および/または、ステロイド21位水酸化酵素遺伝子を酵母等に導入することにより得られる形質転換体を用いて、安価な炭素源からハイドロコルチゾン等の11β位が水酸化された有用物質を効率よく発酵生産することができる。
 当該遺伝子を用いた組換え微生物によるコンパウンドSの11β水酸化反応については、収率および反応速度等において実用化に近いレベルである。一方で、本発明のDNAのほかに、ステロール7位還元酵素遺伝子、ステロール側鎖切断酵素遺伝子、ステロイド3位酸化酵素/異性化酵素遺伝子、ステロイド17α位水酸化酵素遺伝子、および/または、ステロイド21位水酸化酵素遺伝子を酵母等に導入することにより得られる形質転換体を用いて、安価な炭素源からハイドロコルチゾン等の11β位が水酸化された有用物質を効率よく発酵生産する方法においては、従来のCYP11B1等に比べて当該遺伝子産物の11β水酸化活性高いことから有用である。

Claims (6)

  1. 以下の(a1)、(b1)または(c1)の蛋白質。
    (a1)配列番号43のアミノ酸配列を含む蛋白質。
    (b1)配列番号43のアミノ酸配列において1または数個のアミノ酸が欠失、置換または付加されたアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
    (c1)配列番号43のアミノ酸配列との配列一致性が90%以上のアミノ酸配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質。
  2. 請求項1に記載の蛋白質をコードするDNA。
  3. 以下の(a2)、(b2)、(c2)または(d2)のDNA。
    (a2)配列番号42の塩基配列を含むDNA。
    (b2)配列番号42の塩基配列において1または数個の塩基が欠失、置換または付加された塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
    (c2)配列番号42の塩基配列との配列一致性が90%以上の塩基配列を含み、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
    (d2)配列番号42の塩基配列からなるDNAと相補的なDNAと、ストリンジェントな条件下でハイブリダイズし、かつ、ステロイド11β水酸化活性を有する蛋白質をコードするDNA。
  4. 請求項2または請求項3に記載のDNAと、該DNAがコードする蛋白質が宿主生物または宿主細胞内で発現可能な発現制御領域とを含む組換えベクター。
  5. 請求項2もしくは請求項3に記載のDNA、または請求項4に記載の組換えベクターを宿主生物または宿主細胞に導入した形質転換体。
  6. 請求項1に記載の蛋白質または請求項5に記載の形質転換体もしくはその処理物に11-デオキシステロイド化合物を接触させることで11βヒドロキシステロイド化合物を生成させ、該11βヒドロキシステロイド化合物を回収することを特徴とする、11βヒドロキシステロイド化合物の製造方法。
PCT/JP2014/051276 2014-01-22 2014-01-22 新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法 WO2015111155A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051276 WO2015111155A1 (ja) 2014-01-22 2014-01-22 新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051276 WO2015111155A1 (ja) 2014-01-22 2014-01-22 新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法

Publications (1)

Publication Number Publication Date
WO2015111155A1 true WO2015111155A1 (ja) 2015-07-30

Family

ID=53680987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051276 WO2015111155A1 (ja) 2014-01-22 2014-01-22 新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法

Country Status (1)

Country Link
WO (1) WO2015111155A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097343A (zh) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 新月弯胞霉中甾类11β-羟化酶及其编码基因与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118897A (ja) * 1985-11-20 1987-05-30 Mitsubishi Chem Ind Ltd ステロイド類の11β位の水酸化法
WO2010079594A1 (ja) * 2009-01-07 2010-07-15 三菱化学株式会社 ステロール側鎖切断酵素蛋白質およびその利用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118897A (ja) * 1985-11-20 1987-05-30 Mitsubishi Chem Ind Ltd ステロイド類の11β位の水酸化法
WO2010079594A1 (ja) * 2009-01-07 2010-07-15 三菱化学株式会社 ステロール側鎖切断酵素蛋白質およびその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERD-RUDIGER JANIG ET AL.: "Steroid 11beta-hydroxylation by a fungal microsomal cytochrome P450", THE JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 43, no. 8, 1992, pages 1117 - 1123, XP023549786 *
KENZI SUZUKI ET AL.: "Purification and properties of cytochrome P-450 catalyzing steroid 11beta-hydroxylation in Curvularia lunata", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1203, 1993, pages 215 - 223, XP023332016 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097343A (zh) * 2018-08-09 2018-12-28 中国科学院天津工业生物技术研究所 新月弯胞霉中甾类11β-羟化酶及其编码基因与应用

Similar Documents

Publication Publication Date Title
US10428354B2 (en) Altered host cell pathway for improved ethanol production
US8124388B2 (en) Production of 3-hydroxypropionic acid using beta-alanine/pyruvate aminotransferase
EP3287519B1 (en) Compositions and methods for 3-hydroxypropionic acid production
KR102643557B1 (ko) 대상 분자의 생성을 위한 유전자 최적화 미생물
JP4651896B2 (ja) (r)−2−オクタノール脱水素酵素、該酵素の製造方法、該酵素をコードするdnaおよびこれを利用したアルコールの製造方法
JP2020526213A (ja) エクトイン産生酵母
WO2013050659A1 (en) Eukaryotic cell and method for producing glycolic acid
FI120877B (fi) DNA-sekvenssi, joka koodaa A. thaliana -proteiinia, jolla on delta-5,7-steroli, delta-7-reduktaasiaktiivisuutta, delta-7-Red-proteiinia, menetelmä sen valmistamiseksi, muunnettuja hiivakantoja sekä sovellutuksia
CN112135905A (zh) C-8甾醇异构化的优化
JPWO2019159831A1 (ja) 組換え宿主細胞及びd−ブタントリオールの新規製造方法
JP4668176B2 (ja) トリテルペン水酸化酵素
JP6107130B2 (ja) 新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法
WO2015111155A1 (ja) 新規ステロイド11β水酸化酵素およびそれを用いた11βヒドロキシステロイドの製造方法
US10329250B2 (en) Process for producing 7-dehydrocholesterol and vitamin D3
JP6622564B2 (ja) 1,4−ブタンジオールの製造方法
US20140170722A1 (en) Method for producing isobutanol and recombinant microorganism capable of producing isobutanol
JP2012024084A (ja) 新規酵母およびそれを用いたδ5,7−ステロール及びハイドロコルチゾンの製造方法
CN112154213A (zh) C-5甾醇去饱和的优化
CN109468287B (zh) 一种羟化酶突变体
CN112752841A (zh) 经修饰的甾醇酰基转移酶
CN113265343B (zh) 一种重组多形汉逊酵母的构建方法及其应用
CN113136347B (zh) 高产松柏醇的酿酒酵母工程菌及其构建和应用
JP2023007916A (ja) ピリドキサールリン酸を含有する酵母菌体の製造方法
CA2987478A1 (en) Mutant yarrowia strain capable of degrading galactose
WO2018150377A2 (en) Culture modified to convert methane or methanol to 3-hydroxyproprionate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14879412

Country of ref document: EP

Kind code of ref document: A1