WO2015110683A1 - Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados - Google Patents

Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados Download PDF

Info

Publication number
WO2015110683A1
WO2015110683A1 PCT/ES2015/070037 ES2015070037W WO2015110683A1 WO 2015110683 A1 WO2015110683 A1 WO 2015110683A1 ES 2015070037 W ES2015070037 W ES 2015070037W WO 2015110683 A1 WO2015110683 A1 WO 2015110683A1
Authority
WO
WIPO (PCT)
Prior art keywords
inlet
duct
air
turbine
conduit
Prior art date
Application number
PCT/ES2015/070037
Other languages
English (en)
French (fr)
Inventor
José María DESANTES FERNÁNDEZ
José GALINDO LUCAS
Francisco PAYRI GONZÁLEZ
Pedro PIQUERAS CABRERA
José Ramón SERRANO CRUZ
Original Assignee
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Politècnica De València filed Critical Universitat Politècnica De València
Priority to US15/113,969 priority Critical patent/US10379002B2/en
Priority to ES15739932T priority patent/ES2737706T3/es
Priority to CN201580005799.6A priority patent/CN106415232B/zh
Priority to EP15739932.0A priority patent/EP3098586B1/en
Priority to JP2016547915A priority patent/JP6559144B2/ja
Publication of WO2015110683A1 publication Critical patent/WO2015110683A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus

Definitions

  • the present invention relates in general to the field of combustion engine tests, and more specifically to a device for conditioning the atmosphere during combustion engine tests.
  • test benches require, in a multitude of circumstances, precise control of pressure and / or temperature, both in intake and exhaust. This is the case, for example, of test campaigns aimed at calibrating the motor control with altitude, cold start studies, repetitive reference conditions in test campaigns that extend over time, etc.
  • the problem posed is that of obtaining control over the pressure so that it is lower than atmospheric, that is, to simulate a situation of higher altitude. This case occurs, for example, when it is desired to study the operation of the engine at an altitude level higher than that of the laboratory in which the test is performed, or in the case of the study of aviation engines and equipment.
  • it is also desirable to reproduce lower altitude conditions by increasing atmospheric pressure for example when it is desired to reproduce the conditions at sea level in a test room that is geographically at high altitude, or when it is desired to study the engine behavior in the inside of a mine below sea level.
  • document ES2398095 Al (also published as US 20130306159 Al), of the same applicants as this one, discloses an installation to simulate the pressure and temperature conditions of the air sucked by an alternative internal combustion engine operating at height .
  • said installation has a series of drawbacks that it would be desirable to solve in order to improve its performance.
  • Said installation comprises, among other things, a centripetal radial turbine to expand an air flow to the pressure and temperature of the air sucked by the alternative internal combustion engine.
  • the installation comprises a temperature conditioning system, which adjusts the desired temperature in the air after its expansion in the centripetal radial turbine, in a range of ⁇ 10 ° C.
  • Precise control of the centripetal radial turbine is done with a standard PID acting on the temperature conditioning system.
  • this arrangement of elements does not allow adequate simulation of certain conditions, such as high temperature. It would be desirable in this case to improve the temperature control system in order to expand the simulation range of the equipment.
  • WO2008036993 A2 discloses a method and device for supplying conditioned combustion gas to an internal combustion engine. Exhaust gases can be mixed with the air to be introduced into the engine intake. The exhaust gases of the internal combustion engine are discharged through an exhaust pipe by means of a suction system for the exhaust gas of the combustion engine, preferably a system that includes a filter, a dilution line and a fan.
  • the present invention discloses an atmosphere conditioning device for combustion engine testing that provides at least one or more of the advantages described above.
  • the device of the present invention comprises:
  • an inlet duct arranged to be connected at a first end to an inlet of a combustion engine to be tested and that draws air from the outside atmosphere through a second end; an outlet conduit arranged to be connected at a first end to the combustion engine exhaust and which expels the exhaust gases into the atmosphere at a second end;
  • a first communication conduit that communicates the inlet conduit with the outlet conduit near its first respective ends, so that the admission of the device is in communication with the escape thereof;
  • turbogroup disposed in the inlet conduit, the turbogroup comprising a turbine coupled to a system of dissipation of the energy generated in the expansion;
  • a bumper valve that derives the flow of air in the inlet duct that flows to the turbine, and the bumper valve and the turbine can be regulated to obtain a desired flow and pressure value in the inlet conduit;
  • a first heat regenerator consisting of respective heat exchangers in the inlet and outlet ducts connected by the same thermal fluid circuit, arranged between the supercharger turbogroup and the first communication conduit, facilitating heat exchange indirect between the exhaust gases in the outlet duct and the intake air in the inlet duct;
  • turbocharger downstream of the heat exchanger, powered by turbocharger feed means, to regulate, together with the turbine and the bipper valve, the decrease in intake air pressure and air flow.
  • the operation of the device of the present invention can be reversed, connecting the intake of the engine to the second end of the outlet duct and the exhaust of the engine to the second end of the inlet duct, the inlet duct becoming the outlet duct and vice versa, so that the turbocharger, the turbine and the bumper valve together regulate the increase in intake air pressure. Therefore, the device of the present invention allows the pressure and temperature of the inlet air supplied to the engine to be tested to be modified independently. Likewise, the device of the present invention allows to modify the temperature of the inlet air with a minimum energy expenditure, by taking advantage of the heat of the combustion engine's own exhaust gases to increase the temperature of the inlet air.
  • the present invention also discloses an atmosphere conditioning process for combustion engine testing, which comprises the steps of:
  • the step of varying the pressure of the inlet air is carried out by the combined action of a turbocharger, a turbine and a bumper valve that regulates the amount of inlet air
  • the present invention also relates to the use of a device according to the present invention to independently condition the pressure and the temperature of the atmosphere in a combustion engine test.
  • Figure 1 shows a diagram of the device according to a first embodiment of the present invention, according to a first mode of operation.
  • Figure 2 shows a diagram of the device according to the first embodiment of the present invention, according to a second mode of operation.
  • Figure 3 shows a schematic of the device according to a second embodiment of the present invention.
  • Figure 4 shows a diagram of an alternative embodiment to dissipate the energy generated in the turbine expansion of the device of the present invention.
  • Figure 5 shows a diagram of an alternative embodiment of the turbocharger of the device of the present invention.
  • FIG. 1 the device is used to simulate a higher altitude effect with respect to the geographical elevation at which the combustion engine is being tested, that is, at a lower pressure. This is the case, for example, of engine operation in high mountain areas.
  • Fig. 2 the device is used to simulate a lower altitude effect with respect to the geographical elevation at which the combustion engine is being tested, that is, at a higher pressure. This is the case, for example, of a motor operation at sea level (when the test room is installed at higher levels) or even at a level below sea level, for example inside mines.
  • the device comprises an inlet conduit (1) arranged to be connected at a first end (la) to an intake of a combustion engine (not shown) to be tested.
  • the inlet duct (1) has a filter (2) through which air is drawn from the outside atmosphere. The filter (2) makes it possible to prevent impurities from entering the device.
  • It also comprises an outlet duct (3) arranged to be connected at a first end (3a) to the combustion engine exhaust and which expels the exhaust gases into the atmosphere from a second end (3g).
  • reference numbers 1 and 3 refer to the inlet duct and the outlet duct, respectively, in their entirety. When each of these reference numbers is followed by a letter (la, Ib, le ...; 3a, 3b, 3c.) A section of the corresponding conduit is referred to. This notation is used solely for reasons of clarity, and the person skilled in the art will understand that it is not necessarily from different ducts but from sections of the same duct.
  • the inlet duct (1) and the outlet duct (3) are communicated by a first communication duct (4) located near the respective first ends (la, 3a). In this way, the admission of the device is in communication with the escape of the device.
  • the first communication conduit (4) also has a valve (5) that allows to open or close the communication between the inlet duct (1) and the outlet duct (3).
  • the valve (5) is always open.
  • the incoming air circulates from the inlet duct (1) to the outlet duct (3), both air and the difference between the air that the equipment sucks through the filter (2) ) and that required by the engine. Therefore, a mixture of air and exhaust gas is available in the outlet duct (3b).
  • the device also has a second communication conduit (6) that communicates the inlet conduit (1) with the outlet conduit (3), arranged close to the second end (lf, 3g ) thereof.
  • Said second communication conduit (6) further comprises a valve (7) similar to the valve (5) mentioned above.
  • the device further comprises at least one turbogroup of supercharging arranged in the inlet duct (1), which in turn comprises a turbine (8) coupled to a system of dissipation of the energy generated in the expansion.
  • the turbine (8) is preferably a variable geometry turbine (TGV) and more preferably of the centripetal radial type.
  • the energy dissipation system generated in the turbine expansion is composed of a centrifugal radial compressor (9).
  • the compressor (9) is connected to a filter (10) through which air is drawn from the atmosphere and to at least one back pressure valve (11) through which the compressor (9) discharges the aspirated air into the atmosphere.
  • the device also comprises a baip valve
  • the inlet air flow in the inlet duct (le), located downstream of the turbine (8) and a condensate separator (13), is a mixture of air that expands in the turbine ( 8) and air that is derived through the baip valve (12).
  • the device comprises two heat regenerators, one located near the first end (the, 3a) of the inlet (1) and outlet (3) ducts, and another located near the second end (lf, 3g) thereof.
  • Each regenerator uses a thermal fluid, which can be for example water or oil, to exchange heat between two gas streams.
  • Each heat regenerator includes two exchangers of heat, one arranged in the inlet duct and another in the outlet duct, connected by the same thermal fluid circuit, so that indirect heat exchange between the exhaust gases in the outlet duct and the air is facilitated inlet in the inlet duct.
  • the first heat regenerator exchanges heat between the mixture of air and exhaust gases that circulates through the outlet duct (3b) and the air that circulates through the inlet duct (le ).
  • the thermal fluid is driven by a pump (14).
  • the thermal fluid collects the heat in the exchanger (15) of the exhaust gas flowing through the duct (16).
  • the thermal fluid transmits that heat, in the exchanger (15 '), to the air flowing through the inlet duct (le) so that the temperature of the air in the inlet duct (Ib) is higher than the air temperature in the inlet duct (le).
  • the temperature of the air in the inlet duct (Ib) is regulated by a baip valve (17). If the baip valve (17) is closed, a greater flow rate is allowed through the duct (16) so that a greater increase in the air temperature in the inlet duct (Ib) is allowed. On the contrary, if the baip valve (17) is closed, a lower flow is allowed in the duct (16) so that the increase in air temperature in the duct (Ib) is smaller.
  • the heat regenerator comprises a three-way valve (18). located upstream of the heat exchanger (15 ') and an auxiliary heat exchanger (19), located between the three-way valve (18) and the heat exchanger (15).
  • the auxiliary heat exchanger (19) is connected to a refrigerant fluid circuit (not shown) to which the thermal fluid will transmit the heat collected by the latter in the heat exchanger (15 '), which in turn comes from the air circulating through the inlet duct (le).
  • the bumper valve (17) will be fully open and the three-way valve (18) will allow the passage to the heat exchanger (15 ') and will close the path that, located before the heat exchanger (15'), flows the fluid.
  • the temperature in the inlet duct (Ib) can be independent of the pressure and the temperature in the inlet duct (le).
  • the second heat regenerator exchanges heat between the mixture of air and exhaust gases that circulates through the duct (3e) and the inlet air that circulates through the duct (20).
  • the thermal fluid is driven by a pump (21).
  • the thermal fluid collects the heat in the heat exchanger (22) of the exhaust gas flowing through the duct (3e).
  • the thermal fluid transmits that heat, in the heat exchanger (22 '), to the inlet air that circulates through the duct (20), so that the temperature of the air in the duct (23) is higher than the temperature of the inlet air in the duct (20).
  • the temperature of the inlet air in the duct (Id) is regulated by a baip valve (24).
  • baip valve (24) If the baip valve (24) is closed, more flow is allowed to pass through the duct (20) thus allowing an increase in the air temperature in the inlet duct (Id). Conversely, if the baip valve (24) is opened, the effect of temperature increase produced by the heat exchanger (22 ') is reduced.
  • the second heat regenerator comprises, as in the previous case, a three-way valve (25) located upstream of the heat exchanger (22) and an auxiliary heat exchanger (26), located between the heat exchanger (22 ') and the three-way valve (25).
  • the auxiliary heat exchanger (26) is connected to a refrigerant fluid circuit (not shown) to which the thermal fluid will transmit the heat collected by the latter in the heat exchanger (22 '), which in turn comes from the air circulating through the duct (20).
  • the position of the bumper valve (24) is regulated and the valve is closed three-way (25) to prevent the passage to the heat exchanger (22) and open the path that, located before the heat exchanger (22), draws the fluid.
  • the temperature in the inlet duct (Id) can be independent of the pressure and the temperature in the test zone.
  • the device shown in Figure 1 also comprises an ice and condensate separator (27) located immediately downstream of the inlet duct (Id) and before the turbine (8).
  • the turbocharger (29) is powered by at least one electric motor (31).
  • the turbocharger (29) sucks from the outlet duct (3d) the cooled mixture of air and exhaust gases to extract it from the device.
  • the electric motor (31) regulates the turbocharger's rotation regime (29) until a certain desired value of mass flow and pressure in the admitted air is reached, regulating these conditions together with the turbine (8) and the bipper valve (12).
  • the mixture of air and exhaust gases sucked by the turbocharger (29) passes through the outlet duct (3e), through the exchanger (22) of the second heat regenerator described above, to ultimately discharge into the atmosphere through of the outlet duct (3g).
  • FIG 2 the operation of a device according to the same embodiment shown in Figure 1 is described, but in an overpressure generation mode. That is to say, in the mode of operation of Figure 2 the device is simulating atmospheric conditions at an altitude level lower than that of the room in which the test is being carried out, it is say, at a higher pressure.
  • the inlet air instead of passing through the turbine (8) of the supercharging turbogroup that decreases its pressure, passes through the turbocharger (29) thus providing a desired pressure value to the inlet air that it is higher than the value of the atmospheric pressure at the altitude level at which the test is being carried out.
  • the valve (7) located in the second communication conduit (6) is always open. In this way, air is always flowing through the second communication duct (6) from the duct (3) to the duct (1); therefore, a mixture of air and exhaust gases is available in the duct (1).
  • the conduit (1) is also connected to the conduit (3) through the first communication conduit (4).
  • the valve (5) located in the first communication duct (4) is always closed, so that the ducts (1) and (3) are isolated in that point
  • the device according to a first preferred embodiment of the present invention allows simulating atmospheric conditions of both higher and lower pressure, and of both higher and lower temperature, at the same time. atmosphere of the altitude level at which the test is performed.
  • the settings that can be made on pressure and temperature are independent of each other.
  • the increase in the temperature of the inlet air is carried out with a minimum energy expenditure, since the heat from the exhaust gases of the internal combustion engine being tested is used.
  • a simple change in the configuration of the device of the first embodiment of the invention makes it possible to easily change the mode of operation, from simulating a higher pressure to simulating a pressure lower than that of the surrounding atmosphere.
  • the device can operate with the ability to simulate a lower pressure or a pressure higher than that of the surrounding atmosphere without changing the respective location of the filter (2) and the internal combustion engine as it was done when changing the mode of operation between figures 1 and 2 above.
  • the device according to the second preferred embodiment of the invention further comprises a set of three-way valves that allow the use of the device in a way of increasing or reducing the pressure of the inlet air with respect to atmospheric air.
  • the device comprises a first three-way valve (32) that connects the inlet duct (Id), downstream of the supercharger turbogroup, with the outlet duct (3d), between the heat exchanger (28) and the turbocharger (29). This connection is made through a conduit (33).
  • a second three-way valve (34) connects the inlet duct (le), between the supercharger turbogroup and the first heat regenerator, with the outlet duct (3f) near its second end. This connection is made through a conduit (35).
  • a third three-way valve (36) connects the outlet duct (3c), between the first heat regenerator and the heat exchanger (28), with the inlet duct (Id), between the first three-way valve ( 32) and the supercharging turbogroup. This connection is made through a conduit (37).
  • a fourth three-way valve (38) connects the outlet duct (3e), between the turbocharger (29) and the point at which a duct (35) from the second three-way valve (34), and the inlet duct (le), enters between the second three-way valve (34) and the first regenerator of heat This connection is made through a conduit (39).
  • the air is aspirated from the atmosphere through the air filter (2) and transported through the inlet duct (1) until admission of the internal combustion engine being tested (not shown).
  • the three-way valves (32) and (34) allow the passage of sucked air through the inlet duct, closing the flow passage to the ducts (33) and (35) respectively.
  • the communication conduit (4) connects the inlet conduit (Ib) with the outlet conduit (3b) to maintain the same pressure in both.
  • the engine exhaust duct discharges the engine exhaust to the outlet duct (3a).
  • the exhaust gases and diluted suction air are mixed (trapped by the communication duct (4)). These gases are evacuated into the atmosphere by reaching them to the outlet duct (3f), keeping the three-way valves (36) and (38) open in the direction of the outlet duct flow (3) and closing the flow passage towards the ducts (37) and (39) respectively.
  • the air is sucked through the air filter (2).
  • the first three-way valve (32) is closed in the direction of the turbine inlet (8) and open to divert the flow to the duct (33).
  • Third three-way valve (36) is closed in the direction towards the conduit (3c) so that the flow from the conduit (33) is discharged into the conduit (3d) and does not recede; having as its only free path the flow to the turbocharger (29).
  • the fourth three-way valve (38) is closed in the direction towards the duct (3f), so that the flow of aspirated air is diverted through the duct (39), and is discharge into the duct (le).
  • the second three-way valve (34) is closed preventing flow transfer from the turbine (8) to the first heat regenerator. Therefore, the air drawn from the duct (39) is discharged to the inlet of the first heat regenerator and does not recede; having as its only free path the flow towards the inlet duct (the) coupled to the intake of the engine.
  • Engine exhaust gases are discharged into the outlet duct (3a) with a direction of flow to the third three-way valve (36).
  • this three-way valve (36) prevents the flow passage into the duct (3c) by diverting it through the duct (37) to the turbine inlet (8).
  • the first three-way valve (32) is closed in the direction of entry to the turbine (8) and open so that the flow is diverted to the duct (33). In this way the flow from the duct (37) does not recede; having as its only free path the flow to the turbine (8) and the bipper valve (12).
  • the second three-way valve (34) Upon reaching the second three-way valve (34), the flow is diverted to the conduit (35), the passage being to the inlet conduit (le) closed.
  • the fourth three-way valve (38) is closed in the direction towards the conduit (3e) so that the mixture of exhaust gases and air does not recede; having as its only free path the flow into the atmosphere through the outlet duct (3f).
  • FIG. 3 also presents several additional changes with respect to the embodiment shown in Figures 1 and 2.
  • an additional heat exchanger (40) is connected to a refrigeration circuit. This heat exchanger (40) allows to reduce the temperature of the inlet air to a desired value.
  • the heat regenerator is composed of the exchanger (15 '), the exchanger (15), the pump (14) and the bumper valve (17). This heat regenerator is only used to heat in the heat exchanger (15 ') the air that is discharged into the duct (Ib), using the energy of the mixture of exhaust gases and dilution air circulating through the heat exchanger. heat exchanger (15).
  • the turbine (8) can also be coupled to an electric generator (41) that absorbs the energy obtained in the expansion in the turbine.
  • the turbocharger (29) is driven by a turbine (42).
  • the turbine assembly (42) and turbocharger (29) coupled on the same axis can be a supercharger turbogroup.
  • the turbine (42) is driven by a flow of gases generated for it in a flow bank.
  • the turbine (42) regulates the turbocharger rotation regime (29) until a certain desired value of mass flow and pressure in the admitted air is reached, regulating these conditions together with the turbine (8) and the valve of the bippers (12) .
  • the device according to the present invention has a number of advantages over the prior art.
  • an advantage of the device of the present invention is that it has a reversible operation. That is, the equipment disclosed in the preferred embodiments of the present invention allows operation, with a low energy cost, to simulate both higher and lower atmospheric pressure conditions. This capacity is necessary to simulate the atmosphere at sea level in those engines located in facilities located at high geographical levels. It also serves to simulate the work atmosphere of those engines that operate in mines located at levels below sea level.
  • Another additional advantage is that, thanks to the inclusion of the baipás valve to the variable geometry turbine, it is possible to have a greater mass flow rate at reduced altitudes.
  • the flexible design of the device allows decoupling the temperature conditions that can be generated in the inlet air from the pressure that can be demanded.
  • the temperature can be increased with respect to the temperature of the atmosphere of the place.
  • the temperature can be reduced with respect to the temperature of the atmosphere of the place by means of combination of a polytropic expansion process (with an isentropic yield of between 40% and 80%) with a cooling process close to isobar conditions.
  • the present invention also discloses an atmosphere conditioning process for combustion engine testing, preferably using a device according to the present invention, comprising the steps of:
  • the step of varying the pressure of the inlet air in the process of the preferred embodiment of the present invention is carried out by the combined action of a turbocharger, a turbine and a baip valve that regulates the amount of inlet air.
  • Alternative embodiments of the process of the present invention may include, for example, the incorporation of a second stage of variation of the inlet air temperature.
  • at least one of the stages of variation of the inlet air temperature consists in the increase of the temperature thereof by indirect heat exchange with hot exhaust gases.
  • the step of varying the inlet air pressure may comprise either reducing the inlet air pressure or increasing the inlet air pressure.
  • the process may comprise either the step of increasing the pressure of the exhaust gases before expelling them into the atmosphere or the step of reducing the pressure of the exhaust gases before expelling them into the atmosphere.
  • the present invention also relates to the use of a device according to the present invention, as defined above with reference to Figures 1 to 5, to independently condition the pressure and the temperature of the atmosphere in an engine test of combustion.
  • turbocharger and the turbine may be coupled to other systems that provide or dissipate energy respectively, not necessarily limited to those described hereinbefore.
  • the present invention allows simulating both overpressure and low pressure conditions with respect to atmospheric pressure according to a reversible operation with the same equipment, without the need for major configuration changes to change the mode of operation.
  • the present invention allows the regulation of pressure and air flow.
  • the baipás valve (12) derives the air flow in the inlet duct (1) that circulates towards the turbine (8), which allows a much greater flow of mass flow to be transferred, especially at reduced altitudes. In this way, the device puts a lot of flow in circulation so that in case of fluctuation, the suction pressure does not change and the connection of the motor to the device does not affect the operation of the motor itself. In short, the baipás valve (12) allows to simulate the conditions of low height better and increases the simulation range of the equipment. In addition, the possibility that the turbine (8) is of variable geometry, gives a notable improvement in performance and flexibility that provides an energy advantage to be taken into account.
  • the vacuum generator system is a turbocharger
  • the present invention has regenerators for heating the intake air, taking advantage of the energy of the engine exhaust gases and being able to simulate high temperature conditions, thus avoiding the use of electrical resistances and providing extra control over the temperature.
  • it has a heat exchanger for cold (cold producing equipment) specifically integrated into each of the regenerators.
  • the equipment allows you to precisely control the pressure and temperature of the sucked air both at the intake and the exhaust of the engine, and allows a wide range of simulation.

Abstract

La invención describe un dispositivo de acondicionamiento de atmósfera para ensayo de motores, que comprende un conducto de entrada conectado a una admisión de motor, un conducto de salida conectado al escape del motor y que expulsa gases de escape, un conducto de comunicación que comunica el conducto de entrada con el de salida, un turbogrupo de sobrealimentación en el conducto de entrada que comprende una turbina, una válvula de baipás que deriva el caudal de aire que circula hacia la turbina, un regenerador de calor compuesto por intercambiadores de calor en los conductos de entrada y de salida conectados por un mismo circuito de fluido térmico, una válvula de baipás en el conducto de salida junto a su intercambiador de calor, un intercambiador de calor en el conducto de salida aguas abajo del regenerador de calor, y un turbocompresor aguas abajo del intercambiador de calor.

Description

DISPOSITIVO DE ACONDICIONAMIENTO DE ATMOSFERA PARA EL
ENSAYO DE MOTORES DE COMBUSTIÓN, PROCEDIMIENTO Y USO
RELACIONADOS
Campo de la invención
La presente invención se refiere de manera general al campo de los ensayos de motores de combustión, y más concretamente a un dispositivo para acondicionar la atmósfera durante ensayos de motores de combustión.
Antecedentes de la invención
El ensayo y la caracterización de motores de combustión interna alternativos en bancos de ensayo requieren, en multitud de circunstancias, el control preciso de la presión y/o de la temperatura, tanto en admisión como en el escape. Este es el caso, por ejemplo, de campañas de ensayos destinadas a la calibración del control del motor con la altitud, estudios de arranque en frío, repetitividad de condiciones de referencia en campañas de ensayos que se extienden en el tiempo, etc.
En muchos casos el problema planteado es el de obtener control sobre la presión para que ésta sea inferior a la atmosférica, es decir, para simular una situación de altitud superior. Este caso se da, por ejemplo, cuando se desea estudiar el funcionamiento del motor en una cota de altitud superior a la del laboratorio en el que se realiza el ensayo, o en el caso del estudio de motores y equipos de aviación. Sin embargo, en otros casos también es deseable reproducir condiciones de altitud inferior aumentando la presión atmosférica, por ejemplo cuando se desean reproducir las condiciones a nivel del mar en una sala de ensayo que se encuentra geográficamente a altitud elevada, o cuando se desea estudiar el comportamiento del motor en el interior de una mina por debajo del nivel del mar.
En la técnica ya se conocen algunos procedimientos para realizar este tipo de simulación de condiciones atmosféricas .
Por ejemplo, el documento ES2398095 Al (también publicado como US 20130306159 Al), de los mismos solicitantes que el presente, da a conocer una instalación para simular las condiciones de presión y temperatura del aire aspirado por un motor de combustión interna alternativo operando en altura. No obstante, dicha instalación presenta una serie de inconvenientes que seria deseable solucionar para mejorar sus prestaciones.
La instalación dada a conocer en el documento ES2398095 Al está dedicada principalmente al estudio de altitudes superiores para su aplicación en la aviación, pero no al estudio del funcionamiento de los motores en condiciones de altitud inferiores, como puede ser el caso de minas que se encuentran por debajo del nivel del mar. Seria deseable en este caso aumentar el rango de simulación del equipo para poder simular condiciones no solo de alta, sino también de baja cota, de manera reversible.
Dicha instalación comprende, entre otras cosas, una turbina radial centrípeta para expandir un flujo de aire hasta la presión y temperatura del aire aspirado por el motor de combustión interna alternativo. Además la instalación comprende un sistema acondicionador de temperatura, que ajusta la temperatura deseada en el aire tras su expansión en la turbina radial centrípeta, en un rango de ±10°C. El control preciso de la turbina radial centrípeta se hace con un PID estándar actuando sobre el sistema acondicionador de temperatura. No obstante, esta disposición de elementos no permite una adecuada simulación de ciertas condiciones, como puede ser de alta temperatura. Seria deseable en este caso mejorar el sistema de control de la temperatura para poder ampliar el rango de simulación del equipo.
El documento US2004186699 describe un simulador de altitud variable para prueba de motores, que obtiene la regulación del aumento de presión en admisión tanto como la regulación de su disminución respecto del lugar de ensayo, simulando altitudes superiores e inferiores a la del lugar de ensayo y la regulación independiente de presión y de temperatura del aire de alimentación al motor.
El documento WO2008036993 A2 divulga un procedimiento y dispositivo para suministrar gas de combustión acondicionado a un motor de combustión interna. Los gases de escape pueden mezclarse con el aire que va a introducirse en la aspiración del motor. Los gases de escape del motor de combustión interna se descargan a través de un tubo de escape mediante un sistema de aspiración para el gas de escape del motor de combustión, preferiblemente un sistema que incluye un filtro, un conducto de dilución y un ventilador.
Aunque se conocen algunos procedimientos y dispositivos para proporcionar una simulación de las condiciones atmosféricas a diferentes altitudes para los ensayos de motores de combustión interna, sigue existiendo la necesidad en la técnica de procedimientos y dispositivos alternativos que proporcionen ventajas con respecto a la técnica anterior. Por ejemplo, seria deseable disponer de un dispositivo que permita realizar el acondicionamiento de la atmósfera en cuanto a presión y temperatura para ensayos de motores de combustión con un gasto energético reducido. También seria deseable un dispositivo que permita que dicho acondicionamiento de la presión y de la temperatura pueda realizarse de manera independiente uno de otro. Por otro lado, seria deseable disponer de un dispositivo que permita simular condiciones atmosféricas tanto a altitudes superiores como inferiores, con diseño compacto, fácil y sencillo de usar, sin requerir grandes cambios de configuración para cambiar el modo de funcionamiento.
Sumario de la invención
La presente invención da a conocer un dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión que proporciona al menos una o varias de las ventajas descritas anteriormente. Para ello, el dispositivo de la presente invención comprende:
un conducto de entrada dispuesto para conectarse en un primer extremo a una admisión de un motor de combustión que va a someterse a ensayo y que aspira aire de la atmósfera exterior por un segundo extremo; un conducto de salida dispuesto para conectarse en un primer extremo al escape del motor de combustión y que expulsa por un segundo extremo los gases de escape a la atmósfera;
un primer conducto de comunicación que comunica el conducto de entrada con el conducto de salida cerca de sus primeros extremos respectivos, de modo que la admisión del dispositivo está en comunicación con el escape del mismo;
un turbogrupo de sobrealimentación dispuesto en el conducto de entrada, comprendiendo el turbogrupo una turbina acoplada a un sistema de disipación de la energía generada en la expansión;
- una válvula de baipás que deriva el caudal de aire en el conducto de entrada que circula hacia la turbina, pudiendo regularse la válvula de baipás y la turbina para obtener un valor de caudal y de presión deseados en el conducto de entrada;
un primer regenerador de calor, compuesto por intercambiadores de calor respectivos en el conducto de entrada y en el conducto de salida conectados por un mismo circuito de fluido térmico, dispuesto entre el turbogrupo de sobrealimentación y el primer conducto de comunicación, facilitando el intercambio de calor indirecto entre los gases de escape en el conducto de salida y el aire de admisión en el conducto de entrada;
una válvula de baipás en el conducto de salida junto a su intercambiador de calor correspondiente del primer regenerador de calor, que regula la cantidad de gases de escape que participan realmente en el intercambio de calor;
un intercambiador de calor en el conducto de salida aguas abajo del primer regenerador de calor para enfriar los gases de escape hasta una temperatura segura; y
un turbocompresor aguas abajo del intercambiador de calor, alimentado por medios de alimentación de turbocompresor, para regular junto con la turbina y la válvula de baipás la disminución de presión del aire de admisión y el caudal de aire.
Preferiblemente, el funcionamiento del dispositivo de la presente invención puede invertirse, conectando la admisión del motor al segundo extremo del conducto de salida y el escape del motor al segundo extremo del conducto de entrada, convirtiéndose el conducto de entrada en el de salida y viceversa, de modo que el turbocompresor, la turbina y la válvula de baipás regulan en conjunto el aumento de presión del aire de admisión. Por tanto, el dispositivo de la presente invención permite modificar la presión y la temperatura del aire de entrada suministrado al motor que va a someterse a ensayo de manera independiente. Asimismo, el dispositivo de la presente invención permite modificar la temperatura del aire de entrada con un gasto energético mínimo, mediante el aprovechamiento del calor de los propios gases de escape del motor de combustión para aumentar la temperatura del aire de entrada.
La presente invención también da a conocer un procedimiento de acondicionamiento de atmósfera para el ensayo de motores de combustión, que comprende las etapas de :
someter aire de entrada atmosférico a una etapa de variación de la presión;
someter aire de entrada a una etapa de variación de la temperatura;
desviar aire de entrada hacia la salida para poner en comunicación directa los gases de escape con el aire de entrada;
introducir aire de entrada sometido a variaciones de presión y de temperatura independientes en la admisión de un motor que va a someterse a ensayo;
reducir la temperatura de los gases de escape hasta una temperatura segura para su paso por un turbocompresor ; y
expulsar gases de escape del motor que se somete a ensayo a la atmósfera.
En el procedimiento de la invención, la etapa de variación de la presión del aire de entrada se realiza mediante la acción combinada de un turbocompresor, una turbina y una válvula de baipás que regula la cantidad de aire de entrada.
Por último, la presente invención también se refiere al uso de un dispositivo según la presente invención para acondicionar independientemente la presión y la temperatura de la atmósfera en un ensayo de motores de combustión.
Breve descripción de las figuras
La presente invención se entenderá mejor con referencia a las siguientes figuras que ilustran realizaciones preferidas de la invención, proporcionadas a modo de ejemplo, y que no deben interpretarse como limitativas de la invención de ninguna manera.
La figura 1 muestra un esquema del dispositivo según una primera realización de la presente invención, según un primer modo de funcionamiento.
La figura 2 muestra un esquema del dispositivo según la primera realización de la presente invención, según un segundo modo de funcionamiento.
La figura 3 muestra un esquema del dispositivo según una segunda realización de la presente invención.
La figura 4 muestra un esquema de una realización alternativa para disipar la energía generada en la expansión de la turbina del dispositivo de la presente invención .
La figura 5 muestra un esquema de una realización alternativa del turbocompresor del dispositivo de la presente invención.
Descripción detallada de las realizaciones preferidas
A continuación va a describirse un dispositivo según una primera realización preferida de la presente invención según dos modos de funcionamiento diferentes, haciendo referencia respectivamente a las figuras 1 y 2. En la figura 1 se usa el dispositivo para simular un efecto de mayor altitud con respecto a la cota geográfica en la que se está sometiendo el motor de combustión a ensayo, es decir, a una presión inferior. Este es el caso por ejemplo del funcionamiento del motor en zonas de alta montaña.
En la figura 2 se usa el dispositivo para simular un efecto de menor altitud con respecto a la cota geográfica en la que se está sometiendo el motor de combustión a ensayo, es decir, a una presión superior. Este es el caso por ejemplo de un funcionamiento del motor a nivel del mar (cuando la sala de ensayo se encuentra instalada a cotas superiores) o incluso a nivel inferior al nivel del mar, por ejemplo en el interior de minas.
Tal como se observa en la figura 1, el dispositivo comprende un conducto de entrada (1) dispuesto para conectarse en un primer extremo (la) a una admisión de un motor de combustión (no mostrado) que va a someterse a ensayo. En un segundo extremo (lf) el conducto de entrada (1) presenta un filtro (2) por el que se aspira aire de la atmósfera exterior. El filtro (2) permite evitar la entrada de impurezas en el dispositivo.
También comprende un conducto de salida (3) dispuesto para conectarse en un primer extremo (3a) al escape del motor de combustión y que expulsa por un segundo extremo (3g) los gases de escape a la atmósfera.
Tal como se usa a lo largo de la presente descripción, los números de referencia 1 y 3 se refieren al conducto de entrada y al conducto de salida, respectivamente, en su totalidad. Cuando cada uno de estos números de referencia va seguido por una letra (la, Ib, le...; 3a, 3b, 3c.) se hace referencia a un tramo del conducto correspondiente. Esta notación se emplea únicamente por motivos de claridad, y el experto en la técnica entenderá que no se trata necesariamente de conductos diferentes sino de tramos de un mismo conducto.
El conducto de entrada (1) y el conducto de salida (3) están comunicados mediante un primer conducto de comunicación (4) situado cerca de los primeros extremos (la, 3a) respectivos. De este modo, la admisión del dispositivo está en comunicación con el escape del mismo.
El primer conducto de comunicación (4) presenta además una válvula (5) que permite abrir o cerrar la comunicación entre el conducto de entrada (1) y el conducto de salida (3) . En el caso de la figura 1, es decir, cuando el dispositivo funciona generando una presión inferior a la atmosférica, la válvula (5) está siempre abierta. Asi, por el primer conducto de comunicación (4) circula aire de entrada desde el conducto de entrada (1) hacia el conducto de salida (3), tanto aire como la diferencia entre el aire que aspira el equipo a través del filtro (2) y el que requiera el motor. Por lo tanto, en el conducto de salida (3b) se dispone de una mezcla de aire y gas de escape.
Según la realización mostrada en la figura 1, el dispositivo también presenta un segundo conducto de comunicación (6) que pone en comunicación el conducto de entrada (1) con el conducto de salida (3), dispuesto próximo al segundo extremo (lf, 3g) de los mismos. Dicho segundo conducto de comunicación (6) comprende además una válvula (7) similar a la válvula (5) anteriormente mencionada. Cuando el dispositivo funciona según el modo de funcionamiento mostrado en la figura 1, es decir a una presión de trabajo inferior a la presión atmosférica, la válvula (7) situada en el segundo conducto de comunicación (6) está siempre cerrada, incomunicando asi los conductos de entrada (1) y de salida (3) en este punto.
El dispositivo comprende además al menos un turbogrupo de sobrealimentación dispuesto en el conducto de entrada (1), que comprende a su vez una turbina (8) acoplada a un sistema de disipación de la energía generada en la expansión. La turbina (8) es preferiblemente una turbina de geometría variable (TGV) y más preferiblemente del tipo radial centrípeta.
Según la realización preferida de la presente invención, el sistema de disipación de la energía generada en la expansión de la turbina está compuesto por un compresor radial centrífugo (9) . El compresor (9) está conectado a un filtro (10) a través del cual aspira aire de la atmósfera y a al menos una válvula de contrapresión (11) a través de la cual el compresor (9) descarga a la atmósfera el aire aspirado.
El dispositivo también comprende una válvula de baipás
(12) situada de tal forma que deriva el caudal de aire en el conducto de entrada (1) que circula hacia la turbina (8) . La válvula de baipás (12) y la turbina (8) pueden regularse para obtener un valor de caudal másico y de presión deseado en el conducto de entrada (1) . Por lo tanto, el caudal de aire de entrada en el conducto de entrada (le), situado aguas abajo de la turbina (8) y de un separador de condensados (13), es una mezcla de aire que se expande en la turbina (8) y de aire que se deriva a través de la válvula de baipás (12) .
De acuerdo con el esquema mostrado en la figura 1, el dispositivo comprende dos regeneradores de calor, uno situado cerca del primer extremo (la, 3a) de los conductos de entrada (1) y de salida (3), y otro situado cerca del segundo extremo (lf, 3g) de los mismos. Cada regenerador utiliza un fluido térmico, que puede ser por ejemplo agua o aceite, para intercambiar calor entre dos corrientes de gas. Cada regenerador de calor incluye dos intercambiadores de calor, uno dispuesto en el conducto de entrada y otro en el conducto de salida, conectados por un mismo circuito de fluido térmico, de modo que se facilita el intercambio de calor indirecto entre los gases de escape en el conducto de salida y el aire de admisión en el conducto de entrada.
Cuando el equipo funciona a una presión inferior a la atmosférica, el primer regenerador de calor intercambia calor entre la mezcla de aire y gases de escape que circula por el conducto de salida (3b) y el aire que circula por el conducto de entrada (le) . En el primer regenerador el fluido térmico se impulsa mediante una bomba (14) . El fluido térmico recoge el calor en el intercambiador (15) del gas de escape que circula por el conducto (16) . El fluido térmico transmite ese calor, en el intercambiador (15'), al aire que circula por el conducto de entrada (le) de tal forma que la temperatura del aire en el conducto de entrada (Ib) es superior a la temperatura del aire en el conducto de entrada (le) .
La temperatura del aire en el conducto de entrada (Ib) se regula gracias a una válvula de baipás (17) . Si se cierra la válvula de baipás (17), se permite un paso de caudal mayor por el conducto (16) de modo que se permite un mayor aumento de la temperatura del aire en el conducto de entrada (Ib) . Por el contrario, si se cierra la válvula de baipás (17) se permite un menor caudal en el conducto (16) de modo que el aumento de temperatura del aire en el conducto (Ib) es menor.
Si por el contrario se desea reducir la temperatura del aire en el conducto de entrada (Ib) por debajo de la temperatura del aire en el conducto de entrada (le), el regenerador de calor comprende para ello una válvula de tres vías (18) situada aguas arriba del intercambiador de calor (15') y un intercambiador de calor auxiliar (19), situado entre la válvula de tres vías (18) y el intercambiador de calor (15) . El intercambiador de calor auxiliar (19) está conectado a un circuito de fluido frigorífico (no mostrado) al cual el fluido térmico transmitirá el calor recogido por éste último en el intercambiador de calor (15'), y que a su vez proviene del aire que circula por el conducto de entrada (le) . En este caso, en el que se desea enfriar el aire en el conducto de entrada (Ib) con respecto al conducto de entrada (le), la válvula de baipás (17) estará totalmente abierta y la válvula de tres vías (18) permitirá el paso hacia el intercambiador de calor (15') y cerrará el camino que, situado antes del intercambiador de calor (15'), deriva el fluido. En resumen, con este primer regenerador de calor puede independizarse la temperatura en el conducto de entrada (Ib) de la presión y la temperatura en el conducto de entrada ( le) .
Cuando el equipo funciona a una presión inferior a la atmosférica, el segundo regenerador de calor intercambia calor entre la mezcla de aire y gases de escape que circula por el conducto (3e) y el aire de entrada que circula por el conducto (20) . En el segundo regenerador el fluido térmico se impulsa mediante una bomba (21) . El fluido térmico recoge el calor en el intercambiador de calor (22) del gas de escape que circula por el conducto (3e) . El fluido térmico transmite ese calor, en el intercambiador de calor (22'), al aire de entrada que circula por el conducto (20), de tal forma que la temperatura del aire en el conducto (23) es superior a la temperatura del aire de entrada en el conducto (20) . La temperatura del aire de entrada en el conducto (Id) se regula gracias a una válvula de baipás (24) . Si se cierra la válvula de baipás (24), se permite que pase más caudal por el conducto (20) permitiendo asi un aumento de la temperatura del aire en el conducto de entrada (Id) . A la inversa, si se abre la válvula de baipás (24) se reduce el efecto de aumento de temperatura producido por el intercambiador de calor (22') .
Si se desea reducir la temperatura del aire de entrada en el conducto de entrada (Id) por debajo de la temperatura del aire en el conducto de entrada (le), el segundo regenerador de calor comprende para ello, como en el caso anterior, una válvula de tres vías (25) situada aguas arriba del intercambiador de calor (22) y un intercambiador de calor auxiliar (26), situado entre el intercambiador de calor (22') y la válvula de tres vías (25) . El intercambiador de calor auxiliar (26) está conectado a un circuito de fluido frigorífico (no mostrado) al cual el fluido térmico transmitirá el calor recogido por este último en el intercambiador de calor (22'), y que a su vez proviene del aire que circula por el conducto (20) . En este caso, en el que se desea enfriar el aire en el conducto de entrada (Id) con respecto al aire en el conducto de entrada (le), se regula la posición de la válvula de baipás (24) y se cierra la válvula de tres vías (25) para impedir el paso hacia el intercambiador de calor (22) y abrir el camino que, situado antes del intercambiador de calor (22), deriva el fluido. En resumen, con este segundo regenerador de calor puede independizarse la temperatura en el conducto de entrada (Id) de la presión y la temperatura en la zona de ensayo .
El dispositivo mostrado en la figura 1 también comprende un separador de hielo y condensados (27) situado inmediatamente aguas abajo del conducto de entrada (Id) y antes de la turbina (8) .
Pasando ahora al conducto de salida (3), inmediatamente aguas abajo del primer regenerador de calor, los gases de escape, diluidos con aire de entrada, y parcialmente enfriados (mediante el primer regenerador de calor y la dilución) , se enfrian nuevamente en un intercambiador de calor (28) hasta una temperatura segura para su introducción en un turbocompresor (29) . El intercambiador de calor (28) puede usar como fluido refrigerante cualquier fluido adecuado, tal como agua de red a temperatura ambiente. Posteriormente al intercambiador de calor (28), y antes del turbocompresor (29) , se hacen pasar los gases de escape por un separador de condensados (30) .
El turbocompresor (29) está alimentado por al menos un motor eléctrico (31) . El turbocompresor (29) succiona desde el conducto de salida (3d) la mezcla enfriada de aire y gases de escape para extraerla del dispositivo. El motor eléctrico (31) regula el régimen de giro del turbocompresor (29) hasta que se alcanza un determinado valor deseado de caudal másico y de presión en el aire admitido, regulando estas condiciones junto con la turbina (8) y la válvula de baipás ( 12 ) .
La mezcla de aire y gases de escape succionada por el turbocompresor (29) pasa por el conducto de salida (3e), a través del intercambiador (22) del segundo regenerador de calor anteriormente descrito, para descargarse en última instancia a la atmósfera a través del conducto de salida (3g) .
Haciendo ahora referencia a la figura 2, se describe el funcionamiento de un dispositivo según la misma realización mostrada en la figura 1, pero en un modo de generación de sobrepresión . Es decir, en el modo de funcionamiento de la figura 2 el dispositivo está simulando condiciones atmosféricas a una cota de altitud inferior a la de la sala en la que se está realizando el ensayo, es decir, a una presión superior.
Los elementos principales del dispositivo son los mismos que los mostrados en la figura 1, y por tanto no volverá a realizarse una descripción detallada de los mismos. Los elementos que son iguales en la figura 2 con respecto a la figura 1 se indican con los mismos números de referencia .
La principal diferencia del modo de funcionamiento mostrado en la figura 2 con respecto al mostrado en la figura 1, y que constituye una ventaja sustancial de la presente invención con respecto a los dispositivos conocidos en la técnica anterior, es que se ha permitido instalar el filtro de aire (2) (que anteriormente estaba conectado en el segundo extremo del conducto de entrada (lf) ), en el primer extremo del conducto de salida (3a) . La admisión del motor de combustión interna que está sometiéndose a ensayo se conecta al segundo extremo del conducto de salida (3g), mientras que el escape del motor de combustión interna se conecta al segundo extremo del conducto de entrada (lf) . Por tanto, en este segundo modo de funcionamiento se ha invertido la función que desempeñan los conductos de entrada y de salida (el conducto (1) actúa ahora como conducto de salida mientras que el conducto (3) actúa ahora como conducto de entrada) . De este modo, el aire de entrada, en lugar de pasar a través de la turbina (8) del turbogrupo de sobrealimentación que disminuye su presión, pasa a través del turbocompresor (29) proporcionando asi un valor de presión deseado al aire de entrada que es superior al valor de la presión atmosférica en la cota de altitud en la que está realizándose el ensayo .
Cuando el equipo funciona según la presente configuración, es decir comprimiendo el aire aspirado, la válvula (7) situada en el segundo conducto de comunicación (6) está siempre abierta. De esta forma, por el segundo conducto de comunicación (6) circula siempre aire desde el conducto (3) hacia el conducto (1) ; por lo tanto, en el conducto (1) se dispone de una mezcla de aire y gases de escape .
Dicha mezcla de aire y gases de escape se descarga a la atmósfera a través del conducto (la) . El conducto (1) también está conectado al conducto (3) a través del primer conducto de comunicación (4) . Cuando el equipo funciona según la presente configuración, es decir comprimiendo el aire aspirado, la válvula (5) situada en el primer conducto de comunicación (4) está siempre cerrada, de modo que los conductos (1) y (3) están incomunicados en ese punto.
Por tanto, tal como puede observarse a partir de las figuras 1 y 2 comentadas anteriormente, el dispositivo según una primera realización preferida de la presente invención permite simular condiciones atmosféricas de presión tanto superior como inferior, y de temperatura tanto superior como inferior, a la atmósfera de la cota de altitud a la que se realiza el ensayo. Los ajustes que pueden realizarse sobre la presión y la temperatura son independientes entre si. Además, el aumento de la temperatura del aire de entrada se realiza con un gasto energético mínimo, ya que se aprovecha el calor procedente de los propios gases de escape del motor de combustión interna que está sometiéndose a ensayo. Un simple cambio en la configuración del dispositivo de la primera realización de la invención permite cambiar fácilmente el modo de funcionamiento, de simular una presión superior a simular una presión inferior a la de la atmósfera circundante.
Haciendo ahora referencia a la figura 3, se muestra una segunda realización preferida del dispositivo según la presente invención. Según esta segunda realización, el dispositivo puede funcionar con capacidad de simular una presión inferior o una presión superior a la de la atmósfera circundante sin necesidad de cambiar la ubicación respectiva del filtro (2) y del motor de combustión interna tal como se hizo al cambiar el modo de funcionamiento entre las figuras 1 y 2 anteriores.
Los elementos en la figura 3 que son iguales a los mostrados en las figuras 1 y 2 llevan los mismos números de referencia, y no se describirán con más detalle.
El dispositivo según la segunda realización preferida de la invención comprende además un conjunto de válvulas de tres vías que permiten el uso del dispositivo en un modo de aumento o reducción de la presión del aire de entrada con respecto al aire atmosférico. En concreto, el dispositivo comprende una primera válvula de tres vías (32) que conecta el conducto de entrada (Id), aguas abajo del turbogrupo de sobrealimentación, con el conducto de salida (3d), entre el intercambiador de calor (28) y el turbocompresor (29) . Esta conexión se realiza a través de un conducto (33) .
Una segunda válvula de tres vías (34) conecta el conducto de entrada (le), entre el turbogrupo de sobrealimentación y el primer regenerador de calor, con el conducto de salida (3f) próximo a su segundo extremo. Esta conexión se realiza a través de un conducto (35) .
Una tercera válvula de tres vías (36) conecta el conducto de salida (3c), entre el primer regenerador de calor y el intercambiador de calor (28), con el conducto de entrada (Id), entre la primera válvula de tres vías (32) y el turbogrupo de sobrealimentación. Esta conexión se realiza a través de un conducto (37) .
Por último, una cuarta válvula de tres vías (38) conecta el conducto de salida (3e), entre el turbocompresor (29) y el punto en el que desemboca un conducto (35) procedente de la segunda válvula de tres vías (34), y el conducto de entrada (le), entre la segunda válvula de tres vías (34) y el primer regenerador de calor. Esta conexión se realiza a través de un conducto (39) .
Asi, en la realización de la figura 3, para funcionar a una presión inferior a la atmosférica, el aire se aspira de la atmósfera a través del filtro de aire (2) y se transporta por el conducto de entrada (1) hasta la admisión del motor de combustión interna que está sometiéndose a ensayo (no mostrado) . Para ello, las válvulas de tres vías (32) y (34) permiten el paso de aire aspirado a través del conducto de entrada, cerrando el paso de flujo hacia los conductos (33) y (35) respectivamente. El conducto de comunicación (4) conecta el conducto de entrada (Ib) con el conducto de salida (3b) para mantener la misma presión en ambos .
El conducto de escape del motor descarga los gases de escape del motor al conducto de salida (3a) . En el conducto de salida (3b) se mezclan los gases de escape y aire aspirado de dilución (trasegado por el conducto de comunicación (4) ) . Estos gases se evacúan a la atmósfera haciéndolos llegar hasta el conducto de salida (3f), manteniendo las válvulas de tres vías (36) y (38) abiertas en el sentido del flujo del conducto de salida (3) y cerrando el paso de flujo hacia los conductos (37) y (39) respectivamente .
En el caso contrario, es decir, en el caso de un funcionamiento del dispositivo generando sobrepresión, el aire se aspira a través del filtro de aire (2) . En este caso, la primera válvula de tres vías (32) se encuentra cerrada en el sentido de entrada a la turbina (8) y abierta para desviar el flujo hacia el conducto (33) . La tercera válvula de tres vías (36) se encuentra cerrada en el sentido hacia el conducto (3c) de modo que el flujo procedente del conducto (33) se descarga en el conducto (3d) y no retrocede; teniendo como único camino libre el flujo hacia el turbocompresor (29) . A la salida del turbocompresor (29), la cuarta válvula de tres vías (38) se encuentra cerrada en el sentido hacia el conducto (3f), de modo que el flujo de aire aspirado se desvia por el conducto (39), y se descarga en el conducto (le) . La segunda válvula de tres vías (34) se encuentra cerrada impidiendo el trasiego de flujo desde la turbina (8) hacia el primer regenerador de calor. Por lo tanto, el aire aspirado procedente del conducto (39) se descarga a la entrada del primer regenerador de calor y no retrocede; teniendo como único camino libre el flujo con sentido hacia el conducto de entrada (la) acoplado a la admisión del motor .
Los gases de escape del motor se descargan en el conducto de salida (3a) con sentido de flujo hacia la tercera válvula de tres vías (36) . Como se ha indicado, esta válvula de tres vías (36) evita el paso de flujo hacia el conducto (3c) derivándolo por el conducto (37) hacia la entrada de la turbina (8) . Como se ha indicado, la primera válvula de tres vías (32) se encuentra cerrada en el sentido de entrada a la turbina (8) y abierta para que el flujo se derive al conducto (33) . De este modo el flujo procedente del conducto (37) no retrocede; teniendo como único camino libre el flujo hacia la turbina (8) y la válvula de baipás (12) . Al llegar a la segunda válvula de tres vías (34), el flujo se desvia hacia el conducto (35), estando el paso hacia el conducto de entrada (le) cerrado. La cuarta válvula de tres vías (38) está cerrada en el sentido hacia el conducto (3e) de modo que la mezcla de gases de escape y aire no retrocede; teniendo como único camino libre el flujo hacia la atmósfera por el conducto de salida ( 3f ) .
La realización mostrada en la figura 3 presenta además varios cambios adicionales con respecto a la realización mostrada en las figuras 1 y 2. En primer lugar, entre el conducto de entrada (1), aguas arriba de la primera válvula de tres vías (32) se encuentra un intercambiador de calor adicional (40) conectado a un circuito frigorífico. Este intercambiador de calor (40) permite reducir la temperatura del aire de entrada hasta un valor deseado.
En segundo lugar, en la segunda realización mostrada en la figura 3 tan sólo se necesita un regenerador de calor, y además éste es más sencillo que los mostrados en las figuras 1 y 2. En este caso, el regenerador de calor está compuesto por el intercambiador (15'), el intercambiador (15), la bomba (14) y la válvula de baipás (17) . Este regenerador de calor tan sólo se usa para calentar en el intercambiador de calor (15') el aire que se descarga al conducto (Ib), usando para ello la energía de la mezcla de gases de escape y aire de dilución que circula por el intercambiador de calor (15) .
Haciendo ahora referencia a una realización adicional, mostrada en la figura 4, se observa que la turbina (8) también puede acoplarse a un generador eléctrico (41) que absorbe la energía obtenida en la expansión en la turbina.
Según otra realización preferida, mostrada en la figura 5, el turbocompresor (29) , se impulsa mediante una turbina (42) . El conjunto turbina (42) y turbocompresor (29) acoplados en el mismo eje puede ser un turbogrupo de sobrealimentación. La turbina (42) se acciona mediante un caudal de gases generados para ello en un banco de flujo. En esta realización de la presente invención, la turbina (42) regula el régimen de giro del turbocompresor (29) hasta que se alcanza un determinado valor deseado de caudal másico y de presión en el aire admitido, regulando estas condiciones junto con la turbina (8) y la válvula de baipás (12) .
Tal como puede desprenderse de la descripción anterior, el dispositivo según la presente invención presenta una serie de ventajas con respecto a la técnica anterior. Por ejemplo, una ventaja del dispositivo de la presente invención es que presenta un funcionamiento reversible. Es decir, el equipo dado a conocer en las realizaciones preferidas de la presente invención permite el funcionamiento, con un bajo coste energético, para simular condiciones de presión tanto superior como inferior a la atmosférica. Esta capacidad es necesaria para simular la atmósfera al nivel del mar en aquellos motores ubicados en instalaciones situadas en cotas geográficas altas. También sirve para simular la atmósfera de trabajo propia de aquellos motores que operan en minas ubicadas a cotas inferiores al nivel del mar. Otra ventaja adicional es que, gracias a la inclusión de la válvula de baipás a la turbina de geometría variable, se permite disponer de mayor caudal de flujo másico a altitudes reducidas.
El diseño flexible del dispositivo según las realizaciones preferidas de la presente invención permite desacoplar las condiciones de temperatura que pueden generarse en el aire de entrada de la presión que puede demandarse. Por una parte, puede aumentarse la temperatura con respecto a la temperatura de la atmósfera del lugar. Para ello se hace uso de al menos un regenerador de calor que aprovecha la energía de los gases de escape. Por otra parte, puede reducirse la temperatura con respecto a la temperatura de la atmósfera del lugar por medio de la combinación de un proceso de expansión politrópica (con un rendimiento isentrópico de entre el 40% y el 80%) con un proceso de enfriamiento cercano a condiciones isóbaras.
La presente invención también da a conocer un procedimiento de acondicionamiento de atmósfera para el ensayo de motores de combustión, preferiblemente haciendo uso de un dispositivo según la presente invención, que comprende las etapas de:
someter aire de entrada atmosférico a una etapa de variación de la presión;
someter aire de entrada a una etapa de variación de la temperatura;
desviar aire de entrada hacia la salida para poner en comunicación directa los gases de escape con el aire de entrada;
introducir aire de entrada sometido a variaciones de presión y de temperatura independientes en la admisión de un motor que va a someterse a ensayo; reducir la temperatura de los gases de escape hasta una temperatura segura para su paso por un turbocompresor ; y
expulsar gases de escape del motor que se somete a ensayo a la atmósfera.
La etapa de variación de la presión del aire de entrada en el procedimiento de la realización preferida de la presente invención se realiza mediante la acción combinada de un turbocompresor, una turbina y una válvula de baipás que regula la cantidad de aire de entrada.
Realizaciones alternativas del procedimiento de la presente invención pueden incluir, por ejemplo, la incorporación de una segunda etapa de variación de la temperatura del aire de entrada. Según otra realización alternativa, al menos una de las etapas de variación de la temperatura del aire de entrada consiste en el aumento de la temperatura del mismo mediante intercambio de calor indirecto con gases de escape calientes.
Según la presente invención, la etapa de variación de la presión del aire de entrada puede comprender o bien reducir la presión del aire de entrada o bien aumentar la presión del aire de entrada.
Asimismo, según la presente invención, el procedimiento puede comprender o bien la etapa de aumentar la presión de los gases de escape antes de expulsarlos a la atmósfera o bien la etapa de reducir la presión de los gases de escape antes de expulsarlos a la atmósfera.
Por último, la presente invención también se refiere al uso de un dispositivo según la presente invención, tal como se definió anteriormente con referencia a las figuras 1 a 5, para acondicionar independientemente la presión y la temperatura de la atmósfera en un ensayo de motores de combustión.
Aunque se ha descrito la presente invención con referencia a realizaciones preferidas de la misma, el experto en la técnica entenderá que pueden aplicarse modificaciones y variaciones a las realizaciones descritas sin por ello apartarse del alcance de la presente invención. Por ejemplo, el turbocompresor y la turbina podrán acoplarse a otros sistemas que proporcionen o disipen energía respectivamente, no necesariamente limitados a los descritos anteriormente en el presente documento.
Asimismo, aunque se han descrito realizaciones preferidas del dispositivo de la presente invención que comprenden dos regeneradores de calor para transmitir calor de los gases de escape al aire de entrada, resultará evidente para un experto en la técnica que realizaciones alternativas del dispositivo de la presente invención pueden incluir un único regenerador de calor, o bien más de dos regeneradores de calor.
El experto en la técnica también entenderá que aunque se ha descrito la presente invención haciendo referencia a ensayos de motores de combustión interna, la misma también puede aplicarse con modificaciones menores al ensayo de otros elementos asociados que también pueden tener que funcionar a distintas cotas de altitud (tales como por ejemplo filtros de aire, silenciadores, elementos de limpieza de gases de escape (postratamiento), etc.) .
Según todo lo expuesto, la presente invención permite simular tanto condiciones de sobrepresión como de baja presión respecto de la presión atmosférica según un funcionamiento reversible con el mismo equipo, sin la necesidad de grandes cambios de configuración para cambiar el modo de funcionamiento.
Gracias a la válvula baipás (12), en combinación con el turbocompresor (29) y la turbina (8), la presente invención permite la regulación de presión y caudal del aire .
La válvula baipás (12) deriva el caudal de aire en el conducto de entrada (1) que circula hacia la turbina (8), lo que permite trasegar mucho más caudal de flujo másico, en especial a altitudes reducidas. De este modo, el dispositivo pone mucho caudal en circulación para que en caso de fluctuación, la presión de aspiración no cambie y la conexión del motor al dispositivo no afecte al funcionamiento del propio motor. En definitiva, la válvula baipás (12) permite simular mejor las condiciones de baja altura y aumenta el rango de simulación del equipo. Además, la posibilidad de que la turbina (8) sea de geometría variable, otorga una notable mejora en cuanto a rendimiento y flexibilidad que proporciona una ventaja energética a tener en cuenta.
El sistema generador de vacío es un turbocompresor
(29) que en una de las realizaciones es movido por un motor eléctrico (31) o por una turbina (42) (formando turbocompresor y turbina otro turbogrupo) , por lo que resulta un equipo muy compacto.
Por otro lado, la presente invención cuenta con regeneradores para calentar el aire de admisión aprovechando la energía de los gases de escape del motor y poder simular condiciones de alta temperatura, por lo que evita el uso de resistencias eléctricas y aporta un control extra sobre la temperatura. Además, cuenta con un intercambiador de calor para frío (equipo productor de frío) integrado de forma específica en cada uno de los regeneradores .
De este modo, el equipo permite controlar de forma precisa la presión y la temperatura del aire aspirado tanto en la admisión como en el escape del motor, y permite un amplio rango de simulación.
Todo ello le proporciona una ventaja técnica respecto al estado de la técnica, especialmente del documento ES2398095 Al (también publicado como US 20130306159 Al) y del documento US2004186699, que aunque permite también la simulación a altitudes inferiores al lugar de ensayo, es menos compacto y tanto los elementos como el método utilizado para conseguirlo difieren de lo divulgado por la presente invención.

Claims

RE IVINDICACIONES
Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, comprendiendo el dispositivo :
un conducto de entrada (1) dispuesto para conectarse en un primer extremo (la) a una admisión de un motor de combustión que va a someterse a ensayo y que aspira aire de la atmósfera exterior por un segundo extremo (lf);
un conducto de salida (3) dispuesto para conectarse en un primer extremo (3a) al escape del motor de combustión y que expulsa por un segundo extremo (3g) los gases de escape a la atmósfera;
un primer conducto de comunicación (4) que comunica el conducto de entrada (1) con el conducto de salida (3) cerca de sus primeros extremos (la, 3a) respectivos, de modo que la admisión del dispositivo está en comunicación con el escape del mismo ;
un turbogrupo de sobrealimentación dispuesto en el conducto de entrada (1), comprendiendo el turbogrupo una turbina (8) acoplada a un sistema de disipación de la energía generada en la expansión; una válvula de baipás (12) que deriva el caudal de aire en el conducto de entrada (1) que circula hacia la turbina (8), pudiendo regularse la válvula de baipás (12) y la turbina (8) para obtener un valor de presión y caudal de aire deseados en el conducto de entrada (1);
un primer regenerador de calor, compuesto por intercambiadores de calor (15, 15') respectivos en el conducto de salida (3) y en el conducto de entrada (1) conectados por un mismo circuito de fluido térmico, dispuesto entre el turbogrupo de sobrealimentación y el primer conducto de comunicación (4), facilitando el intercambio de calor indirecto entre los gases de escape en el conducto de salida (3) y el aire de admisión en el conducto de entrada ( 1 ) ;
una válvula de baipás (17) en el conducto de salida (3) junto a su intercambiador de calor (15) correspondiente del primer regenerador de calor, que regula la cantidad de gases de escape que participan realmente en el intercambio de calor; un intercambiador de calor (28) en el conducto de salida (3) aguas abajo del primer regenerador de calor para enfriar los gases de escape hasta una temperatura segura; y
un turbocompresor (29) aguas abajo del intercambiador de calor (28), alimentado por medios de alimentación de turbocompresor, para regular junto con la turbina (8) y la válvula de baipás (12) la disminución de presión del aire de admisión y el caudal de aire de admisión.
Dispositivo según la reivindicación 1, caracterizado por que permite conectar la admisión del motor al segundo extremo (3g) del conducto de salida (3) y el escape del motor al segundo extremo (lf) del conducto de entrada (1), de modo que se invierte el funcionamiento del dispositivo convirtiéndose el conducto de entrada en el de salida y viceversa, de modo que el turbocompresor (29), la turbina (8) y la válvula de baipás (12) regulan en conjunto el aumento de presión del aire de admisión.
Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende además una bomba (14) que impulsa el fluido térmico entre los intercambiadores (15, 15') del primer regenerador de calor .
Dispositivo según la reivindicación 3, caracterizado por que el circuito de fluido térmico en el primer regenerador de calor comprende además :
una válvula de tres vías (18) situada aguas arriba del intercambiador de calor (15') ubicado en el conducto de entrada (1); y
un intercambiador de calor auxiliar (19) conectado a un circuito de fluido frigorífico;
de modo que el intercambiador auxiliar (19) puede enfriar indirectamente el aire de entrada en el conducto de entrada (1) .
Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende además un segundo regenerador de calor, compuesto por intercambiadores de calor (22, 22') respectivos en el conducto de salida (3) y en el conducto de entrada (1) conectados por un mismo circuito de fluido térmico, dispuesto en la proximidad de los segundos extremos (lf, 3g) respectivos del conducto de entrada (1) y el conducto de salida (3), facilitando un intercambio de calor indirecto adicional entre los gases de escape en el conducto de salida (3) y el aire de admisión en el conducto de entrada (1) .
Dispositivo según la reivindicación 5, caracterizado por que comprende además una válvula de baipás (24) en el conducto de entrada (1) junto a su intercambiador de calor (22') correspondiente del segundo regenerador de calor, que regula la cantidad de gases de entrada que participan realmente en el intercambio de calor. Dispositivo según cualquiera de las reivindicaciones 5 y 6, caracterizado por que comprende además una bomba (21) que impulsa el fluido térmico entre los intercambiadores (22, 22') del segundo regenerador de calor .
Dispositivo según cualquiera de las reivindicaciones 5 a 7, caracterizado por que el circuito de fluido térmico en el segundo regenerador de calor comprende además :
una válvula de tres vías (25) situada aguas arriba del intercambiador de calor (22) del conducto de salida ( 3 ) ; y
un intercambiador de calor auxiliar (26) conectado a un circuito de fluido frigorífico;
de modo que el intercambiador auxiliar (26) puede enfriar indirectamente el aire de entrada en el conducto de entrada (1) .
Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que el primer conducto de comunicación (4) comprende además una válvula (5) que permite abrir o cerrar dicha comunicación entre el conducto de entrada (1) y el conducto de salida (3) . Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende además un segundo conducto de comunicación (6), dispuesto en la proximidad de los segundos extremos (lf, 3g) respectivos del conducto de entrada (1) y el conducto de salida (3), que pone en comunicación el conducto de entrada (1) con el conducto de salida (3) .
Dispositivo según la reivindicación 10, caracterizado por que el segundo conducto de comunicación (6) comprende además una válvula (7) que permite abrir o cerrar dicha comunicación entre el conducto de entrada (1) y el conducto de salida (3) .
12. Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que el sistema de disipación de energía generada en la expansión en la turbina está compuesto por un compresor radial centrífugo (9) que está conectado a un filtro (10) a través del cual aspira aire de la atmósfera y a una válvula de contrapresión (11) a través de la cual descarga el aire que trasiega a la atmósfera.
13. Dispositivo según cualquiera de las reivindicaciones 1 a 11, caracterizado por que el sistema de disipación de energía generada en la expansión en la turbina está compuesto por un generador eléctrico (41) .
14. Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que la turbina (8) es una turbina de geometría variable.
15. Dispositivo según la reivindicación 14, caracterizado por que la turbina de geometría variable es de tipo radial centrípeta.
16. Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que los medios de alimentación de turbocompresor se seleccionan de un motor eléctrico (31) y una turbina (42) .
17. Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende además un filtro (2) en el extremo del dispositivo por el que se aspira aire de la atmósfera exterior para evitar la entrada de impurezas en el dispositivo.
18. Dispositivo según la reivindicación 1, caracterizado por que comprende además :
una primera válvula de tres vías (32) que conecta el conducto de entrada (1), aguas abajo del turbogrupo de sobrealimentación, con el conducto de salida (3), entre el intercambiador de calor (28) y el turbocompresor (29) ;
una segunda válvula de tres vías (34) que conecta el conducto de entrada (1), entre el turbogrupo de sobrealimentación y el primer regenerador de calor, con el conducto de salida (3) próximo a su segundo extremo ( 3g) ;
una tercera válvula de tres vías (36) que conecta el conducto de salida (3), entre el primer regenerador de calor y el intercambiador de calor
(28) , con el conducto de entrada (1), entre la primera válvula de tres vías (32) y el turbogrupo de sobrealimentación; y
una cuarta válvula de tres vías (38) que conecta el conducto de salida (3), entre el turbocompresor
(29) y el punto en el que desemboca un conducto procedente de la segunda válvula de tres vías (34), y el conducto de entrada (1), entre la segunda válvula de tres vías (34) y el primer regenerador de calor;
de modo que la configuración del conjunto de válvulas de tres vías (32, 34, 36, 38) permite el uso del dispositivo en modo de aumento o reducción de la presión del aire de entrada con respecto al aire atmosférico .
Dispositivo según la reivindicación 18, caracterizado por que comprende además un intercambiador de calor adicional (40) en el conducto de entrada (1), aguas arriba de la primera válvula de tres vías (32), para reducir la temperatura del aire de entrada.
Dispositivo según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende además al menos un separador de condensados (13, 27, 30) . Procedimiento de acondicionamiento de atmósfera para el ensayo de motores de combustión mediante un dispositivo de acondicionamiento de atmósfera, que comprende las etapas de:
someter aire de entrada atmosférico a una etapa de variación de la presión;
someter aire de entrada a una etapa de variación de la temperatura;
desviar aire de entrada hacia la salida para poner en comunicación directa los gases de escape con el aire de entrada;
introducir aire de entrada sometido a variaciones de presión y de temperatura independientes en la admisión de un motor que va a someterse a ensayo; reducir la temperatura de los gases de escape hasta una temperatura segura para su paso por un turbocompresor ; y
expulsar gases de escape del motor que se somete a ensayo a la atmósfera;
en el que la etapa de variación de la presión del aire de entrada se realiza mediante la acción combinada de un turbocompresor, una turbina y una válvula de baipás que regula la cantidad de aire de entrada.
Procedimiento según la reivindicación 21, caracterizado por que comprende dos etapas de variación de la temperatura del aire de entrada.
Procedimiento según cualquiera de las reivindicaciones 21 y 22, caracterizado por que al menos una de las etapas de variación de la temperatura del aire de entrada consiste en el aumento de la temperatura del mismo mediante intercambio de calor indirecto con gases de escape calientes. Procedimiento según cualquiera de las reivindicaciones 21 a 23, caracterizado por que la etapa de variación de la presión del aire de entrada comprende reducir la presión del aire de entrada.
Procedimiento según cualquiera de las reivindicaciones 21 a 23, caracterizado por que la etapa de variación de la presión del aire de entrada comprende aumentar la presión del aire de entrada.
Uso de un dispositivo tal como se definió en cualquiera de las reivindicaciones 1 a 20, para acondicionar independientemente la presión y la temperatura de la atmósfera en un ensayo de motores de combustión .
PCT/ES2015/070037 2014-01-24 2015-01-21 Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados WO2015110683A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/113,969 US10379002B2 (en) 2014-01-24 2015-01-21 Device for atmosphere conditioning for testing combustion engines, and associated method and use
ES15739932T ES2737706T3 (es) 2014-01-24 2015-01-21 Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados
CN201580005799.6A CN106415232B (zh) 2014-01-24 2015-01-21 用于内燃机测试的空气调节装置及相关方法和使用
EP15739932.0A EP3098586B1 (en) 2014-01-24 2015-01-21 Device for atmosphere conditioning for testing combustion engines, and associated method and use
JP2016547915A JP6559144B2 (ja) 2014-01-24 2015-01-21 内燃エンジンの試験のための雰囲気状態調整装置ならびにその調整方法および使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430071 2014-01-24
ES201430071A ES2485618B1 (es) 2014-01-24 2014-01-24 Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados

Publications (1)

Publication Number Publication Date
WO2015110683A1 true WO2015110683A1 (es) 2015-07-30

Family

ID=51293353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070037 WO2015110683A1 (es) 2014-01-24 2015-01-21 Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados

Country Status (6)

Country Link
US (1) US10379002B2 (es)
EP (1) EP3098586B1 (es)
JP (1) JP6559144B2 (es)
CN (1) CN106415232B (es)
ES (2) ES2485618B1 (es)
WO (1) WO2015110683A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114935A1 (en) 2017-12-12 2019-06-20 Horiba Europe Gmbh Device, method and use for conditioning intake air for testing internal combustion engines
CN111426482A (zh) * 2020-05-06 2020-07-17 湖南汉能科技有限公司 一种航空发动机燃烧室试验台

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2544516B1 (es) * 2015-01-21 2016-05-12 Universitat Politècnica De València Dispositivo para acondicionar la atmósfera en ensayos de motores de combustión interna alternativos, procedimiento y uso de dicho dispositivo
CN107101831B (zh) * 2017-05-16 2023-06-20 新奥能源动力科技(上海)有限公司 用于燃气涡轮机的燃烧试验台、燃烧试验控制方法和装置
TWI655363B (zh) * 2017-11-02 2019-04-01 李忠諭 能量儲放設備及能量儲放方法
AT520886B1 (de) * 2018-01-24 2019-11-15 Avl List Gmbh Prüfstand für einen Prüfling
EP4172538A1 (de) * 2020-06-26 2023-05-03 Christof Global Impact Limited Verfahren und vorrichtung zur konditionierung eines gases
ES2875173B2 (es) 2021-03-11 2023-06-15 Univ Valencia Politecnica Dispositivo y procedimiento de emulacion de sistemas de sobrealimentacion
US20230051585A1 (en) * 2021-08-12 2023-02-16 US Govt as Rep by the Secretary of the Air Force Apparatus and Method for Seeding a Wind Tunnel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186699A1 (en) 2003-03-17 2004-09-23 Gerard Glinsky Variable altitude simulator system for testing engines and vehicles
WO2008036993A2 (de) 2006-09-28 2008-04-03 Avl List Gmbh Verfahren und vorrichtung zur versorgung einer verbrennungsmaschine mit konditioniertem verbrennungsgas
CN101738322A (zh) * 2009-12-21 2010-06-16 中国人民解放军军事交通学院 汽车高海拔性能模拟试验系统
CN201600243U (zh) * 2009-12-21 2010-10-06 中国人民解放军军事交通学院 一种在模拟高原环境下测定发动机性能的实验装置
ES2398095A1 (es) 2011-01-31 2013-03-13 Universidad Politécnica De Valencia Instalación para simular las condiciones de presión y temperatura del aire aspirado por un motor de combustión interna alternativo.

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685480A1 (fr) 1991-12-18 1993-06-25 Aerospatiale Procede et installation pour la generation de rafales d'air a haute enthalpie non pollue.
DE4308630C1 (de) 1993-03-18 1994-08-04 Hagenuk Fahrzeugklima Gmbh Kombinierter Kühl- und Heizprozeß und Vorrichtung zur Klimatisierung eines Raumes
DE29915931U1 (de) 1999-09-10 2000-01-13 Btd Buero Fuer Tech Dienstleis Einrichtung zur Prüfung gasführender Teile Automobil-KFZ Motoren
US6561014B1 (en) * 2000-10-20 2003-05-13 Delphi Technologies, Inc. Altitude simulator for dynamometer testing
CN1476512A (zh) 2000-11-22 2004-02-18 Avl里斯脱有限公司 向内燃机供应经过调节的燃烧气体的方法 ,实施此方法的设备 ,确定内燃机废气中有害物数量的方法以及实施此方法的设备
CN1180234C (zh) * 2002-02-09 2004-12-15 中国人民解放军军事交通学院 内燃机特性低压模拟试验台
JP2004239219A (ja) * 2003-02-07 2004-08-26 Kyoko Inoue 燃料消費率を向上させたディーゼルエンジン、ディーゼルエンジンに使用する吸気加熱装置及びディーゼルエンジンの燃料消費率を向上させる方法
AT414154B (de) 2004-05-28 2006-09-15 Seibt Kristl & Co Gmbh Vorrichtung und verfahren zur versorgung eines verbrennungsmotors mit einem konditionierten verbrennungsgas
JP2006231974A (ja) 2005-02-22 2006-09-07 Shimadzu Corp 航空機の空気調和装置
US7438061B2 (en) * 2006-08-22 2008-10-21 Gm Global Technology Operations, Inc. Method and apparatus for estimating exhaust pressure of an internal combustion engine
JP4740084B2 (ja) * 2006-10-05 2011-08-03 株式会社東洋製作所 自走車用エンジンの環境試験装置
CN101231215B (zh) 2008-02-28 2010-04-21 北京航空航天大学 航空发动机燃油系统高空性能试验装置及其试验方法
DE102009016807A1 (de) 2009-04-09 2010-10-14 Fev Motorentechnik Gmbh Prüfstand zur Höhensimulation
EP2295950B1 (en) 2009-09-09 2013-05-29 Control Sistem S.r.l. Apparatus and method for altimetric conditioning of internal-combustion engines
CN101788384B (zh) * 2009-12-21 2012-05-09 中国人民解放军军事交通学院 发动机高原环境实验室
CN102023096B (zh) * 2010-11-15 2012-05-30 北京航空航天大学 一种航空活塞发动机内流高空模拟试验装置及其试验方法
WO2012101827A1 (ja) 2011-01-28 2012-08-02 トヨタ自動車株式会社 消失模型と、消失模型の製造方法と、消失模型を用いた金型の製造方法
CN202547943U (zh) 2012-03-30 2012-11-21 广西玉柴机器股份有限公司 发动机低压模拟测试平台
CN103630364B (zh) * 2013-12-10 2016-06-29 中国重汽集团济南动力有限公司 一种模拟高原环境试验柴油机的方法
CN203758745U (zh) * 2014-04-03 2014-08-06 上海同圆发动机测试设备有限公司 采用进排气旁通模拟发动机高原试验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186699A1 (en) 2003-03-17 2004-09-23 Gerard Glinsky Variable altitude simulator system for testing engines and vehicles
WO2008036993A2 (de) 2006-09-28 2008-04-03 Avl List Gmbh Verfahren und vorrichtung zur versorgung einer verbrennungsmaschine mit konditioniertem verbrennungsgas
CN101738322A (zh) * 2009-12-21 2010-06-16 中国人民解放军军事交通学院 汽车高海拔性能模拟试验系统
CN201600243U (zh) * 2009-12-21 2010-10-06 中国人民解放军军事交通学院 一种在模拟高原环境下测定发动机性能的实验装置
ES2398095A1 (es) 2011-01-31 2013-03-13 Universidad Politécnica De Valencia Instalación para simular las condiciones de presión y temperatura del aire aspirado por un motor de combustión interna alternativo.
US20130306159A1 (en) 2011-01-31 2013-11-21 Universidad Politecnica De Valencia Unit for simulating the pressure and temperature conditions of the air drawn in by a reciprocating internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019114935A1 (en) 2017-12-12 2019-06-20 Horiba Europe Gmbh Device, method and use for conditioning intake air for testing internal combustion engines
CN111426482A (zh) * 2020-05-06 2020-07-17 湖南汉能科技有限公司 一种航空发动机燃烧室试验台

Also Published As

Publication number Publication date
JP6559144B2 (ja) 2019-08-14
ES2737706T3 (es) 2020-01-15
US20160349147A1 (en) 2016-12-01
EP3098586A4 (en) 2018-01-24
ES2485618A1 (es) 2014-08-13
ES2485618B1 (es) 2015-04-01
JP2017505904A (ja) 2017-02-23
CN106415232A (zh) 2017-02-15
CN106415232B (zh) 2019-06-11
EP3098586A1 (en) 2016-11-30
US10379002B2 (en) 2019-08-13
EP3098586B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
ES2737706T3 (es) Dispositivo de acondicionamiento de atmósfera para el ensayo de motores de combustión, procedimiento y uso relacionados
ES2791297T3 (es) Dispositivo para acondicionar la atmósfera en ensayos de motores de combustión interna alternativos, procedimiento y uso de dicho dispositivo
BR102017011081A2 (pt) Airplane
BR102014020794A2 (pt) pacote de um sistema de controle ambiental, e, aeronave
BR102018007339A2 (pt) aeronave, e, sistema de condicionamento de ar
ES2705973T3 (es) Unidad para simular las condiciones de presión y temperatura del aire aspirado por un motor de combustión interna alternativo
BR102016002935A2 (pt) motores de turbina a gás com resfriamento intermediário e método de controle de uma temperatura de um fluxo de ar
BR102016012886A2 (pt) sistema de ar condicionado, e, método para realizar um modo de arrefecimento de trocador de calor
EP3112637B1 (en) Air supply and conditioning system for a gas turbine
BR102018001586A2 (pt) sistema de controle de ambiente de uma aeronave
BR102017008147A2 (pt) Environmental control system
EP3159496A1 (en) Gas turbine with a valve cooling system
ES2776381T3 (es) Sistema de aire acondicionado
ES2747856A1 (es) Metodo y equipo de refrigeracion para la carga ultrarrapida de baterias de sistemas propulsivos hibridos o electricos
BR102018001600B1 (pt) Sistema de controle de ambiente para fornecimento de ar condicionado para um volume de uma aeronave
BR102018001600A2 (pt) sistema de controle de ambiente
BR102018001617B1 (pt) Sistema de controle de ambiente de uma aeronave
US20070084225A1 (en) Air cycle system with variable mix recuperator
BR102018001617A2 (pt) sistema de controle de ambiente de uma aeronave.
BR102016030867A2 (pt) Cooling system configured to reduce temperature inside a motor and aircraft

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15739932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15113969

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015739932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015739932

Country of ref document: EP