WO2015110356A1 - Film souple photovoltaique a haut rendement, procede d'obtention et utilisation - Google Patents

Film souple photovoltaique a haut rendement, procede d'obtention et utilisation Download PDF

Info

Publication number
WO2015110356A1
WO2015110356A1 PCT/EP2015/050753 EP2015050753W WO2015110356A1 WO 2015110356 A1 WO2015110356 A1 WO 2015110356A1 EP 2015050753 W EP2015050753 W EP 2015050753W WO 2015110356 A1 WO2015110356 A1 WO 2015110356A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
film
layer
prismatic
films
Prior art date
Application number
PCT/EP2015/050753
Other languages
English (en)
Inventor
Alain JANET
Original Assignee
Janet Alain
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janet Alain filed Critical Janet Alain
Priority to EP15700580.2A priority Critical patent/EP3097591A1/fr
Priority to US15/112,969 priority patent/US20160336467A1/en
Publication of WO2015110356A1 publication Critical patent/WO2015110356A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention is in the field of photovoltaic films and in particular relates to a high efficiency photovoltaic flexible film, a process for obtaining such a film and its use in various devices.
  • State of the art relates to a high efficiency photovoltaic flexible film, a process for obtaining such a film and its use in various devices.
  • An object of the present invention is to provide a new generation flexible photovoltaic film with high efficiency.
  • Another object of the present invention is to provide a method for obtaining a high efficiency photovoltaic flexible film.
  • the implementation of the photovoltaic flexible film of the present invention does not require a heavy and expensive support thus allowing an overall reduction of the costs of use.
  • the method of the invention makes it possible to combine flexible photovoltaic films with prismatic films which correct the angle of the solar rays to obtain flexible and light photovoltaic films of high efficiency.
  • the flexible photovoltaic film of the present invention can be used with roof-type load bearing structures that can not withstand large masses.
  • the flexible film obtained can be wound and unrolled manually and / or mechanically.
  • the invention will also find application on market segments such as:
  • the film obtained by the process of the present invention allows photovoltaic production even when the incidence of light rays decreases thus improving the efficiency of the installations.
  • the method of the invention comprises at least one vacuum encapsulation step of the photovoltaic layer between two flexible polymer films and a step of thermofusion of said multilayers.
  • the prismatic layer containing nano-prisms for straightening the angle of the light rays.
  • the polymeric films are copolymers selected from the group of ethylene-acrylic acid (EAA) or ethylene-methyl acrylate (EMA).
  • EAA ethylene-acrylic acid
  • EMA ethylene-methyl acrylate
  • the polymer films are nano films having an average thickness ranging from 40 to 50 microns.
  • the heat-melting step is carried out without resin in a closed oven.
  • the heat-melting step is carried out over a temperature range of between 95 ° and 180 ° centigrade.
  • the photovoltaic layer consists of photovoltaic cells in a plate.
  • the photovoltaic cells are chosen from the group of mixed copper, indium, gallium, selenium (CIGS), cadmium telluride (CdTe) or selenium (CdS), organic type (OPV) type printable cells. no, or "Dye-Sensitized Solar Cell” type (DSSC, DSC).
  • the photovoltaic layer further comprises a network of electrical conductors.
  • the prismatic layer consists of a very thin transparent prismatic film having surface microrainings.
  • the invention also relates to a multilayer photovoltaic film comprising at least one prismatic upper layer and a photovoltaic intermediate layer, the film being characterized in that the photovoltaic layer is encapsulated between two flexible polymer films.
  • the multilayer photovoltaic film comprises a lower layer forming a reinforcing thickness consisting of a textile mesh having a fiber angulation ranging from 0 ° to 90 °.
  • the lower layer further comprises a polyester or polyvinyl fluoride film.
  • the lower layer further comprises a synthetic taffeta film barely woven in polyester fibers.
  • the invention further relates to the use of the flexible film
  • photovoltaic high yield obtained by the method of the invention in particular, the use on a roof-type structure or wing.
  • FIGS. 1 a and 1 b respectively show a view in section of the structure of the photovoltaic flexible high efficiency film of the present invention according to two embodiments;
  • Figure 2 illustrates the main steps of the encapsulation process of the invention
  • FIG. 3 shows different structures to advantageously use the invention.
  • FIGS. 4a to 4e illustrate the optical function produced by the high efficiency photovoltaic film of the present invention. Detailed description of the invention
  • Figure 1a shows a sectional view of a first structure of the photovoltaic flexible film (100) high efficiency of the present invention obtained according to the illustrated method schematically in fig 2
  • Figure 1b shows a sectional view of a variant of the structure of Figure 1a.
  • the film (100) is multilayered and composed mainly of a top or top layer (102) constituting the prismatic layer of the film, of a lower or lower layer (106, 107, 108 or 110) constituting a reinforcement and a intermediate layer (104) constituting the photovoltaic layer.
  • the upper layer (102) consists of a very thin prismatic film having a thickness of substantially 20 to 70 micrometers.
  • the prismatic film may be structured with micro-surface grooves known as "riblets effect" and constituting a protective barrier.
  • the prismatic film is transparent, antireflective, shockproof and very UV stable. It absorbs the energy of solar radiation and contains nano-prisms to straighten the angle of light rays.
  • a film which can be a commercially available film improves the daily optimum exposure time and thus increases the efficiency of the low-layer light-absorbing photovoltaic film.
  • the intermediate layer comprises a film of cells
  • the cells can be in plate ("shingle” according to the conspicuous Anglicism) or in topping.
  • the photovoltaic cells are chosen from the group consisting of copper, indium, gallium, selenium (CIGS), cadmium telluride (CdTe) or selenium (CdS) type organic type mixture cells. (OPV) printable or not, or type “Dye-Sensitized Solar Cell” (DSSC, DSC).
  • the thickness of the photovoltaic cell film is preferably between 5 and 100 micrometers.
  • Such a film can be a movie
  • the intermediate layer further comprises a network of
  • the electrical conductors are circuits of copper or silver paste for example.
  • the network of electrical conductors comprises rechargeable batteries and a charge control device for particular power "LED” or “OLED” positioned under the multilayer film.
  • the photovoltaic intermediate layer is encapsulated between two interlayer copolymers (103, 105).
  • the encapsulating material consists of a copolymer selected from the group of ethylene-acrylic acid (EAA) or ethylene-methyl acrylate (EMA) to allow a transparent, solid matrix bond, durable and waterproof between the various films and components of the structure (100).
  • the inter-layers are nano films having an average thickness ranging from 40 to 50 microns.
  • the multilayers of the film structure are laminated by melting thermoplastic polymer films.
  • the thermofusion (202, 204) is carried out under vacuum, without resin, over a temperature range of 95 ° to 180 ° centigrade.
  • the lower or lower layer (106, 107, 108, 109, 110) comprises a reinforcing thickness (106) constituting a textile mesh having a fiber angulation ranging from 0 ° to 90 °.
  • the grid consists of fibers selected from the group of glass fibers or polyester terephthalate (PET) or aromatic polyamide (Aramid) or known carbon or poly (p-phenylene-2,6-benzobisoxazole) (PBO) under the brand name Zylon®, or Ultra-high-molecular-weight polyethylene (UHMWPE) also known under the name high modulus polyethylene (HMPE), or liquid crystal polymer (LCP) known under the Vectran® brand, or polyolefin multi-filament type known under the trademark Innegra®, or basalt fiber.
  • PET polyester terephthalate
  • Amid aromatic polyamide
  • PBO poly (p-phenylene-2,6-benzobisoxazole)
  • UHMWPE Ultra-high-
  • the given examples of the fibers for the reinforcing grid are not limiting and any other material making it possible to obtain a high mechanical stability can be considered.
  • the reinforcing grid advantageously makes it possible to withstand the tensile and flutter stresses due to the wind, mainly when the film is used outdoors or when it is suitable for deformation, breakage or delamination.
  • the reinforcing grid may be completed by a complementary film (108) which is laminated by melting a thermoplastic polymer film (107) during the process of obtaining the final structure (100).
  • the complementary film (108) is a polyester film or a Tedlar ® film particularly adapted to tropical regions, and for sealing the lower part of the structure (100).
  • a slightly woven synthetic taffeta (110) is added to the complementary film.
  • the taffeta is made of polyester fibers or Dyneema ® fibers.
  • a straight-wire tape is sewn onto the taffeta to accommodate eyelets and install a rope that provides significant resistance to UV, impact, friction such as raguages, and tearing, while protecting the Polyester waterproofing film located above.
  • the two described variants of the structure of the high-efficiency photovoltaic flexible film of the invention are obtained according to an innovative method whose main steps (202, 204) are diagrammatically illustrated in FIG. 2.
  • the method thus consists of integrating, then encapsulating with at least two nano films (1 02, 1 04) in a multilayer structure whose layers are laminated by melting thermoplastic polymer films.
  • the thermofusion is carried out without resin, under vacuum in a closed oven, or alternatively between two heating zones (plates, covers) in a temperature range between 95 ° and 1 80 ° centigrade.
  • FIG. 3 shows examples of the use of the photovoltaic flexible film with high efficiency (1 00) of the invention as parking shade (300), as a boat bimini (302) or integrated with boat sails (304).
  • the inventor has estimated that a shade cover used to cover for example a parking lot of about twenty staggered cars,
  • Figures 4a to 4e illustrate the optical function produced by the high efficiency photovoltaic film of the present invention.
  • the prismatic layer used in the present invention has characteristics for correcting the angle of solar rays. It aims to solve the problem of having photovoltaic films that are productive and effective, regardless of the sun, regardless of the angle of the light rays, unlike prismatic films known to those skilled in the art that are used as layers protective or barriers.
  • Figure 4a shows a so-called Fresnel prism comprising narrow parallel strips of prism with the same angle at the top as the single basic prism where "the angle of refraction is independent of the thickness of the prism".
  • Such films are preferably made of light polymers.
  • the simple prismatic films have a sawtooth structure and deflect the light rays at an angle determined by the geometry of the prism.
  • a Fresnel lens in the form of parallel strips, is made of a thin flexible material (polymer) comprising grooves in a surface
  • the resulting so-called “prismatic film” lens membrane can be applied to a flat or curved optical surface.
  • a hat-shaped prism can be used to take advantage of the symmetry of the input dioptres of the prisms composing the film.
  • angles of apex and the angles of inclination of the sides vary according to the deviations sought.
  • the high efficiency photovoltaic flexible film of the invention can be used in different environments on isolated sites or connected, for many and various applications such as use on recreational tents, reception or military, for clothing uses, for roofs or as flexible and flexible covers, on inclined plane such as for example on the sail of a boat at the cottage, on street furniture such as bus shelters or vehicles to name just a few examples of applications.
  • minor variations can be introduced to the process without impacting the final structure of the photovoltaic flexible film described which offers a high yield.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne un film souple photovoltaïque de nouvelle génération offrant un haut rendement. Le film souple photovoltaïque résulte de la combinaison d'un film photovoltaïque (104) ultra fin et très souple avec un film prismatique (102) très fin, antireflet, absorbant l'énergie du rayonnement solaire et redressant l'angle des rayons solaires. Le procédé de l'invention permet un encapsulage des modules photovoltaïques et du film prismatique par un assemblage de films fins thermoplastiques polymères souples (103, 105) et une thermofusion sans résine sous vide.

Description

FILM SOUPLE PHOTOVOLTAÏQUE A HAUT RENDEMENT, PROCEDE D'OBTENTION ET UTILISATION
Domaine de l'invention
L'invention est dans le domaine des films photovoltaïques et en particulier concerne un film souple photovoltaïque à haut rendement, un procédé d'obtention d'un tel film et son utilisation dans divers dispositifs. Etat de la Technique
Les enjeux environnementaux et économiques actuels que sont entre autres l'augmentation des prix de l'énergie, la raréfaction des ressources d'hydrocarbures, l'impact sur le réchauffement climatique des émissions de C02, ou encore les préoccupations liées à l'indépendance énergétique, renforcent l'intérêt actuel pour les énergies renouvelables tel l'Eolien ou le photovoltaïque qui peuvent contribuer au mix énergétique et au développement économique. Les technologies solaires photovoltaïques qui convertissent l'énergie solaire en électricité en exploitant l'effet photovoltaïque constitue une voie d'intérêt pour une transition énergétique.
Toutefois, le coût des cellules photovoltaïques est encore trop élevé et leurs rendements sont encore trop faibles pour constituer une solution massivement retenue pour diverses applications au regard de l'électricité produite de façon centralisée par les voies classiques que sont le nucléaire, le thermique ou l'hydraulique. Il existe alors le besoin d'une solution ayant une efficacité photovoltaïque accrue permettant de répondre à de multiples applications tant industrielles qu'individuelles.
Résumé de l'invention
Un objet de la présente invention est de proposer un film souple photovoltaïque de nouvelle génération offrant un haut rendement.
Un autre objet de la présente invention adresse un procédé pour obtenir un film souple photovoltaïque à haut rendement.
Avantageusement, la mise en œuvre du film souple photovoltaïque de la présente invention ne nécessite pas un support lourd et coûteux permettant ainsi une réduction globale des coûts d'utilisation.
Selon un mode de réalisation, le procédé de l'invention permet de combiner des films photovoltaïques souples avec des films prismatiques qui redressent l'angle des rayons solaires pour obtenir des films souples et légers photovoltaïques de haut rendement.
Avantageusement, grâce à son faible poids et à sa manipulation aisée, le film souple photovoltaïque de la présente invention permet d'être utilisée avec des structures portantes de type toiture ne pouvant supporter des masses importantes.
Avantageusement, le film souple obtenu peut être enroulé et déroulé manuellement et/ou mécaniquement.
Avantageusement, l'invention trouvera aussi application sur des segments de marché tels que :
- celui des sites isolés avec des applications diverses liées au transport, au mobilier urbain, au plein air (outdoor) ou pour des ombrières de parking par exemple ;
- celui des sites connectés au réseau notamment pour l'intégration aux toitures qui ne peuvent pas supporter la masse de modules classiques.
Toujours avantageusement, le film obtenu par le procédé de la présente invention permet une production photovoltaïque même lorsque l'incidence des rayons lumineux baisse améliorant ainsi le rendement des installations.
Ainsi pour obtenir un film photovoltaïque multicouches ayant au moins une couche prismatique et une couche photovoltaïque, le procédé de l'invention comprend au moins une étape d'encapsulation sous vide de la couche photovoltaïque entre deux films polymères souples et une étape de thermofusion desdites multicouches, la couche prismatique contenant des nano-prismes permettant de redresser l'angle des rayons lumineux.
Dans un mode de réalisation, les films polymères sont des copolymères sélectionnés dans le groupe des éthylène-acide acrylique (EAA) ou des éthylène-méthylique d'acrylate (EMA).
Dans une variante, les films polymères sont des nano films ayant une épaisseur moyenne allant de 40 à 50 micromètres.
Avantageusement, l'étape de thermofusion est réalisée sans résine dans un four clos. Toujours avantageusement, l'étape de thermofusion est réalisée sur une plage de température comprise entre 95° et 180° centigrades.
Dans un mode de réalisation, la couche photovoltaïque est constituée de cellules photovoltaïques en plaque.
Avantageusement, les cellules photovoltaïques sont choisies dans le groupe des cellules de type mélange de Cuivre, Indium, Gallium, Sélénium (CIGS), de type Tellurure de Cadmium (CdTe) ou de Sélénium (CdS), de type organique (OPV) imprimable ou non, ou encore de type « Dye-Sensitized Solar Cell » (DSSC, DSC).
Dans une variante, la couche photovoltaïque comprend de plus un réseau de conducteurs électriques.
Dans un autre mode de réalisation, la couche prismatique est constituée d'un film prismatique très fin transparent ayant des microrainures de surface. L'invention concerne aussi un film photovoltaïque multicouche comprenant au moins une couche supérieure prismatique et une couche intermédiaire photovoltaïque, le film étant caractérisé en ce que la couche photovoltaïque est encapsulée entre deux films polymères souples. Dans une réalisation, le film photovoltaïque multicouche comprend une couche inférieure formant une épaisseur de renforcement constituée d'un grillage textile présentant une angulation de fibres allant de 0° à 90°.
Dans une variante, la couche inférieure comprend de plus un film en polyester ou en fluorure de polyvinyle. Dans une autre variante, la couche inférieure comprend de plus un film en taffetas synthétique à peine tissé en fibres polyester.
L'invention concerne de plus l'utilisation du film souple
photovoltaïque à haut rendement obtenu selon le procédé de l'invention, en particulier, l'utilisation sur une structure de type toiture ou voilure.
Description des figures
Différents aspects et avantages de l'invention vont apparaître en appui de la description d'un mode préféré d'implémentation de l'invention mais non limitatif, avec référence aux figures ci-dessous : Les figures 1 a et 1 b montrent respectivement une vue en coupe de la structure du film souple photovoltaïque à haut rendement de la présente invention selon deux modes de réalisation;
La figure 2 illustre les principales étapes du procédé d'encapsulage de l'invention;
La figure 3 montre différentes structures permettant d'utiliser avantageusement l'invention ; et
Les figures 4a à 4e 4e illustrent la fonction optique produite par le film photovoltaïque à haut rendement de la présente invention. Description détaillée de l'invention
Référence est maintenant faite aux figures 1 a et 1 b et à la figure 2. La figure 1 a montre une vue en coupe d'une première structure du film (100) souple photovoltaïque à haut rendement de la présente invention obtenu selon le procédé illustré schématiquement en figue 2, et la figure 1 b montre une vue en coupe d'une variante de la structure de la figure 1 a.
Le film (100) est multicouches et composé principalement d'une couche haute ou supérieure (102) constituant la couche prismatique du film, d'une couche basse ou inférieure (106, 107, 108 ou 110) constituant un renforcement et d'une couche intermédiaire (104) constituant la couche photovoltaïque.
La couche haute (102) est constituée d'un film prismatique très fin ayant une épaisseur sensiblement comprise entre 20 à 70 micromètres.
Dans une variante, le film prismatique peut être structuré avec des micro-rainures de surface connus comme « effet riblets » et constituant une barrière protectrice.
Dans un mode de réalisation préférentiel, le film prismatique est transparent, antireflet, antichoc et très stable aux UV. Il absorbe l'énergie du rayonnement solaire et contient des nano-prismes pour redresser l'angle des rayons lumineux. Un tel film qui peut être un film disponible du commerce améliore le temps d'exposition optimum journalier et ainsi augmente le rendement du film photovoltaïque absorbeur de lumière placé en couche basse.
La couche intermédiaire comprend un film de cellules
photovoltaïques (104). Les cellules peuvent être en plaque (« shingle » selon l'anglicisme consacré) ou en nappage. Dans un mode de réalisation préférentiel, les cellules photovoltaïques sont choisies dans le groupe des cellules de type mélange de Cuivre, Indium, Gallium, Sélénium (CIGS), de type Tellurure de Cadmium (CdTe) ou de Sélénium (CdS), de type organique (OPV) imprimable ou non, ou encore de type « Dye-Sensitized Solar Cell » (DSSC, DSC).
L'épaisseur du film de cellules photovoltaïques est de préférence comprise entre 5 à 100 micromètres. Un tel film peut être un film
disponible du commerce. La couche intermédiaire comprend de plus un réseau de
conducteurs électriques ainsi qu'une connectique permettant de
transporter l'énergie récoltée. Selon les variantes, les conducteurs électriques sont des circuits de cuivre ou en pâte d'argent par exemple. . Dans une variante de réalisation, le réseau de conducteurs électriques comprend des batteries rechargeables et un dispositif de régulation de charge pour notamment alimenter des « LED » ou des « OLED » positionnés sous le film multicouche.
Tel que montré sur la figure 1 a ou 1 b, la couche intermédiaire photovoltaïque est encapsulée entre deux inter-couches copolymères (103, 105). Dans un mode de réalisation préférentiel, le matériau d'encapsulation est constitué d'un copolymère sélectionné dans le groupe des éthylène-acide acrylique (EAA) ou des éthylène-méthylique d'acrylate (EMA) pour permettre une liaison matricielle transparente, solide, durable et étanche entre les différents films et composants de la structure (100). Selon les variantes de réalisation, les inter-couches sont des nano films ayant une épaisseur moyenne allant de 40 à 50 micromètres.
Selon le procédé de l'invention, les multicouches de la structure du film sont laminées par la fusion de films polymères thermoplastiques. La thermofusion (202, 204) est réalisée sous vide, sans résine, sur une plage de température allant de 95° à 180° centigrades.
La couche basse ou inférieure (106, 107, 108, 109, 110) comprend une épaisseur de renforcement (106) constituant un grillage textile présentant une angulation de fibres allant de 0° à 90°. De manière préférentielle, la grille est constituée de fibres choisies dans le groupe des fibres de type verre ou polyester téréphtalate (PET) ou polyamide aromatique (Aramide) ou carbone ou Poly(p-phénylène-2,6- benzobisoxazole) (PBO) connu sous le nom de la marque Zylon®, ou Ultra-high-molecular-weight polyethylene (UHMWPE) également connu sous le nom polyéthylène à haut module (HMPE), ou polymère à cristaux liquides (LCP) connu sous la marque Vectran®, ou encore de type polyoléfine multi filaments connu sous la marque Innegra®, ou en fibre de basalte. Les exemples donnés des fibres pour la grille de renforcement ne sont pas limitatifs et tout autre matériau permettant d'obtenir une grande stabilité mécanique peut être considéré. La grille de renforcement permet avantageusement de résister aux contraintes de traction et de battement dues au vent, principalement lors d'une utilisation du film en extérieur ou d'une utilisation propice aux déformations, aux ruptures ou à la délamination.
Selon des variantes de réalisation, la grille de renforcement peut être complétée par un film complémentaire (108) qui est laminé par la fusion d'un film polymère thermoplastique (107) au cours du procédé d'obtention de la structure finale (100).
De manière préférentielle, le film complémentaire (108) est un film en polyester ou un film Tedlar ® particulièrement adapté aux régions tropicales, et permettant d'assurer l'étanchéité de la partie inférieure de la structure (100).
Dans une autre variante de réalisation telle celle montrée à la figure 1 b, un taffetas (110) synthétique à peine tissé est ajouté au film complémentaire. De manière préférentielle, le taffetas est en fibres polyester ou en fibres Dyneema ®.
Dans une implémentation d'usage, une bande droit-fil est cousue sur le taffetas pour accueillir des œillets et installer une ralingue qui apporte une résistance importante aux UV, aux impacts, aux frottements tels que des raguages, et à la déchirure, tout en protégeant le film Polyester d'étanchéité situé au-dessus. Les deux variantes décrites de la structure du film souple photovoltaïque à haut rendement de l'invention sont obtenues selon un procédé innovant dont les principales étapes (202, 204) sont schématiquement illustrées en figure 2. Le procédé consiste ainsi à intégrer, puis encapsuler au moins deux nano films (1 02, 1 04) dans une structure multicouche dont les couches sont laminées par la fusion de films polymères thermoplastiques. La thermofusion est réalisée sans résine, sous vide dans un four clos, ou alternativement entre deux zones chauffantes (plaques, couvertures) dans une plage de température comprise entre 95° et 1 80° centigrades.
La figure 3 montre des exemples d'utilisation du film souple photovoltaïque à haut rendement (1 00) de l'invention comme ombrière de parking (300), comme bimini de bateau (302) ou intégré à des voiles de bateau (304).
L'inventeur a estimé qu'une ombrière utilisée pour couvrir par exemple un parking d'une vingtaine de voitures en quinconce,
représentant environ 400m2, pourrait recevoir de l'ordre de 300m2 du film souple photovoltaïque de l'invention, soit de l'ordre de 75% de la surface totale. Par ailleurs, une telle ombrière de parking de 300m2 produirait de l'ordre de 31 .5 kW en 1 2 volts ou 28 kW en 220volts, ce qui correspond sensiblement à la consommation électrique totale d'un navire de 30m.
Les figures 4a à 4e illustrent la fonction optique produite par le film photovoltaïque à haut rendement de la présente invention. En effet, la couche prismatique utilisée dans la présente invention présente des caractéristiques pour redresser l'angle des rayons solaires. Elle vise à résoudre le problème d'avoir des films photovoltaïques qui soient productifs et efficaces, quelque soit l'ensoleillement, quelque soit l'angle des rayons lumineux, contrairement aux films prismatiques connus de l'homme du métier qui sont utilisés comme des couches protectrices ou des barrières.
La figure 4a montre un prisme dit de Fresnel comprenant des bandes parallèles étroites de prisme avec un même angle au sommet que le prisme de base unique où « l'angle de réfraction est indépendant de l'épaisseur du prisme ».
De tels films sont de manière préférentielle fabriqués en polymères légers.
Comme illustré sur figure 4b, les films prismatiques simples ont une structure en dents de scie et dévient les rayons lumineux selon un angle déterminé par la géométrie du prisme.
Quand une lentille de Fresnel, sous forme de bandes parallèles, est constituée d'un matériau flexible mince (polymère) comprenant des rainures dans une surface, la membrane lentille dite « film prismatique» résultante peut être appliqué à une surface optique plane ou incurvée.
Avantageusement, comme illustré en figure 4c, il peut être combiné un même profil symétrique à une suite de prismes simples, sous forme de bandes parallèles, ainsi qu'un centre ouvert au rayonnement direct de la source lumineuse. Cette combinaison permet d'optimiser la collecte des rayons lumineux en les déviant pour améliorer l'efficacité du film
récepteur photovoltaïque.
Avantageusement, comme illustré sur les figures 4d et 4e, un prisme en forme de chapeau peut être utilisé aux fins de tirer avantage de la symétrie des dioptres d'entrée des prismes composant le film
prismatique et leurs capacités de réfraction. Les angles d'apex et les angles d'inclinaison des cotés varient en fonction des déviations recherchées.
L'homme de l'art comprendra que seuls quelques exemples d'utilisation sont décrits, mais qu'ils ne sont en rien limitatif et que le film souple photovoltaïque à haut rendement de l'invention peut être utilisé dans différents environnements sur sites isolés ou reliés, pour de nombreuses et diverses applications telles que l'utilisation sur des tentes de loisir, de réception ou militaires, pour des usages d'habillement, pour des toitures ou comme revêtements souples et flexibles, sur plan incliné comme par exemple sur la voile d'un bateau à la gite, sur du mobilier urbain comme des abris-bus ou des véhicules pour ne citer que quelques exemples d'application. Par ailleurs, des variantes mineures peuvent être introduites au procédé sans pour autant impacter la structure finale du film souple photovoltaïque décrit qui offre un haut rendement.

Claims

Revendications
Un procédé pour obtenir un film photovoltaïque multicouches (100) ayant au moins une couche prismatique (201 ) et une couche photovoltaïque (203), le procédé comprenant au moins une étape (202) d'encapsulation sous vide de la couche photovoltaïque entre deux films polymères souples et une étape (204) de thermofusion desdites multicouches, la couche prismatique contenant des nano- prismes permettant de redresser l'angle des rayons lumineux.
Le procédé selon la revendication 1 dans lequel les films polymères sont des copolymères sélectionnés dans le groupe des éthylène-acide acrylique (EAA) ou des éthylène-méthylique d'acry- late (EMA).
Le procédé selon la revendication 1 ou 2 dans lequel les films polymères sont des nano films ayant une épaisseur moyenne allant de 40 à 50 micromètres.
Le procédé selon l'une quelconque des revendications 1 à 3 dans lequel l'étape de thermofusion est réalisée sans résine dans un four clos.
Le procédé selon l'une quelconque des revendications 1 à 4 dans lequel l'étape de thermofusion est réalisée sur une plage de température comprise entre 95° et 180° centigrades.
Le procédé selon l'une quelconque des revendications 1 à 5 dans lequel la couche photovoltaïque est constituée de cellules photo- voltaïques en plaque ou en nappage.
7. Le procédé selon l'une quelconque des revendications 1 à 6 dans lequel les cellules photovoltaïques sont choisies dans le groupe des cellules de type mélange de Cuivre, Indium, Gallium, Sélénium (CIGS), de type Tellurure de Cadmium (CdTe) ou de Sélénium (CdS), de type organique (OPV) imprimable ou non, ou encore de type « Dye-Sensitized Solar Cell » (DSSC, DSC).
8. Le procédé selon l'une quelconque des revendications 1 à 7 dans lequel la couche photovoltaïque comprend de plus un réseau de conducteurs électriques.
9. Le procédé selon l'une quelconque des revendications 1 à 8 dans lequel la couche prismatique est constituée d'un film prismatique très fin transparent ayant des micro-rainures de surface.
10. Un film photovoltaïque multicouche (100) comprenant au moins une couche supérieure prismatique (102) et une couche intermédiaire photovoltaïque (104), le film étant caractérisé en ce que la couche prismatique contient des nano-prismes permettant de redresser l'angle des rayons lumineux et la couche photovoltaïque est encapsulée entre deux films polymères souples.
1 1 . Le film photovoltaïque multicouche selon la revendication 10 comprenant de plus une couche inférieure (205) formant une épaisseur de renforcement constituée d'un grillage textile (106) présentant une angulation de fibres allant de 0° à 90°.
12. Le film photovoltaïque multicouche selon la revendication 11 où la couche inférieure comprend de plus film complémentaire (108) en polyester ou en fluorure de polyvinyle.
13. Le film photovoltaïque multicouche selon la revendication 12 où le film complémentaire comprend de plus un film (110) en taffetas synthétique à peine tissé en fibres polyester. 14. Le film photovoltaïque selon l'une quelconque des revendications 10 à 13 obtenu selon le procédé de l'une quelconque des revendications 1 à 9.
15. Une structure (300, 302, 304) de type toiture ou voilure comprenant un film photovoltaïque obtenu selon le procédé de l'une quelconque des revendications 1 à 9.
PCT/EP2015/050753 2014-01-21 2015-01-16 Film souple photovoltaique a haut rendement, procede d'obtention et utilisation WO2015110356A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15700580.2A EP3097591A1 (fr) 2014-01-21 2015-01-16 Film souple photovoltaique a haut rendement, procede d'obtention et utilisation
US15/112,969 US20160336467A1 (en) 2014-01-21 2015-01-16 High-efficiency flexible photovoltaic film, manufacturing process and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1400114 2014-01-21
FR1400114A FR3016734B1 (fr) 2014-01-21 2014-01-21 Film souple photovoltaique a haut rendement, procede d'obtention et utilisation

Publications (1)

Publication Number Publication Date
WO2015110356A1 true WO2015110356A1 (fr) 2015-07-30

Family

ID=50290102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/050753 WO2015110356A1 (fr) 2014-01-21 2015-01-16 Film souple photovoltaique a haut rendement, procede d'obtention et utilisation

Country Status (4)

Country Link
US (1) US20160336467A1 (fr)
EP (1) EP3097591A1 (fr)
FR (1) FR3016734B1 (fr)
WO (1) WO2015110356A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10709908B2 (en) 2015-04-13 2020-07-14 Rhodia Operations Sulfate-free formulations for skin cleansing
DE102020133068B3 (de) 2020-12-11 2022-05-19 Audi Aktiengesellschaft Textilaufbau mit flexiblen Solarzellen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098580A1 (fr) * 2016-12-01 2018-06-07 Costain Roderick Panneaux de produit de construction solaire intégrés
US10583389B2 (en) 2016-12-21 2020-03-10 Genesis Systems Llc Atmospheric water generation systems and methods
GB2563828A (en) 2017-06-21 2019-01-02 Soliton Holdings Corp Absorption of electromagnetic energy
FR3081286B1 (fr) * 2018-05-28 2020-07-17 Alain JANET Ecran d'ombrage mobile pour serre agricole
CN112531055B (zh) * 2020-12-24 2021-11-02 中山德华芯片技术有限公司 一种柔性太阳能电池及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711972A (en) * 1985-07-05 1987-12-08 Entech, Inc. Photovoltaic cell cover for use with a primary optical concentrator in a solar energy collector
US20070295390A1 (en) * 2006-05-05 2007-12-27 Nanosolar, Inc. Individually encapsulated solar cells and solar cell strings having a substantially inorganic protective layer
US20080053516A1 (en) * 2006-08-30 2008-03-06 Richard Allen Hayes Solar cell modules comprising poly(allyl amine) and poly (vinyl amine)-primed polyester films
US20100126557A1 (en) * 2008-11-24 2010-05-27 E. I. Du Pont De Nemours And Company Solar cell modules comprising an encapsulant sheet of a blend of ethylene copolymers
US20100139769A1 (en) * 2009-11-30 2010-06-10 Covalent Solar, Inc. Solar concentrators with light redirection
WO2011076418A2 (fr) * 2009-12-23 2011-06-30 Energetica Holding Gmbh Module solaire doté d'une carte de circuit imprimé, procédé de fabrication et utilisation
US20120282437A1 (en) * 2011-05-04 2012-11-08 Saint-Gobain Performance Plastics Corporation Film for photovoltaic devices
US20120305080A1 (en) * 2010-02-12 2012-12-06 Mitsubishi Chemical Corporation Solar cell module and method of manufacturing solar cell module
US20130213459A1 (en) * 2009-06-01 2013-08-22 Bp Corporation North America Inc. Photovoltaic device with a polymeric mat and method of making the same
US20130250425A1 (en) * 2010-12-08 2013-09-26 3 M Innovative Properties Company Glass-like polymeric antireflective films, methods of making and light absorbing devices using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628854A (en) * 1969-12-08 1971-12-21 Optical Sciences Group Inc Flexible fresnel refracting membrane adhered to ophthalmic lens
WO2006132643A2 (fr) * 2004-06-30 2006-12-14 Northwestern University Procede de fabrication de nanoprismes metalliques a epaisseur predeterminee
US7776130B2 (en) * 2006-06-19 2010-08-17 Northwestern University pH-controlled photosynthesis of silver nanoprisms
US9214639B2 (en) * 2010-06-24 2015-12-15 Massachusetts Institute Of Technology Conductive polymer on a textured or plastic substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4711972A (en) * 1985-07-05 1987-12-08 Entech, Inc. Photovoltaic cell cover for use with a primary optical concentrator in a solar energy collector
US20070295390A1 (en) * 2006-05-05 2007-12-27 Nanosolar, Inc. Individually encapsulated solar cells and solar cell strings having a substantially inorganic protective layer
US20080053516A1 (en) * 2006-08-30 2008-03-06 Richard Allen Hayes Solar cell modules comprising poly(allyl amine) and poly (vinyl amine)-primed polyester films
US20100126557A1 (en) * 2008-11-24 2010-05-27 E. I. Du Pont De Nemours And Company Solar cell modules comprising an encapsulant sheet of a blend of ethylene copolymers
US20130213459A1 (en) * 2009-06-01 2013-08-22 Bp Corporation North America Inc. Photovoltaic device with a polymeric mat and method of making the same
US20100139769A1 (en) * 2009-11-30 2010-06-10 Covalent Solar, Inc. Solar concentrators with light redirection
WO2011076418A2 (fr) * 2009-12-23 2011-06-30 Energetica Holding Gmbh Module solaire doté d'une carte de circuit imprimé, procédé de fabrication et utilisation
US20120305080A1 (en) * 2010-02-12 2012-12-06 Mitsubishi Chemical Corporation Solar cell module and method of manufacturing solar cell module
US20130250425A1 (en) * 2010-12-08 2013-09-26 3 M Innovative Properties Company Glass-like polymeric antireflective films, methods of making and light absorbing devices using same
US20120282437A1 (en) * 2011-05-04 2012-11-08 Saint-Gobain Performance Plastics Corporation Film for photovoltaic devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3097591A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10709908B2 (en) 2015-04-13 2020-07-14 Rhodia Operations Sulfate-free formulations for skin cleansing
DE102020133068B3 (de) 2020-12-11 2022-05-19 Audi Aktiengesellschaft Textilaufbau mit flexiblen Solarzellen
WO2022122227A1 (fr) * 2020-12-11 2022-06-16 Audi Ag Structure de tissu comprenant des cellules solaires flexibles

Also Published As

Publication number Publication date
EP3097591A1 (fr) 2016-11-30
US20160336467A1 (en) 2016-11-17
FR3016734A1 (fr) 2015-07-24
FR3016734B1 (fr) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2015110356A1 (fr) Film souple photovoltaique a haut rendement, procede d'obtention et utilisation
US9331224B2 (en) Photovoltaic roofing elements, photovoltaic roofing systems, methods and kits
US8656657B2 (en) Photovoltaic roofing elements
US20060201545A1 (en) Fire resistant laminate and photovoltaic module incorporating the fire resistant laminate
US20120048375A1 (en) Film used for solar cell module and module thereof
WO2009086545A1 (fr) Feuille de doublage photoluminescente pour modules de piles photovoltaïques
US20090194143A1 (en) Photovoltaic Arrays, Systems and Roofing Elements Having Parallel-Series Wiring Architectures
CN102280512A (zh) 一种具有高转换效率的太阳能电池组件
JP2010034489A (ja) 膜状太陽電池及び太陽電池パネル
US20160336470A1 (en) Solar cell module
JP2010021498A (ja) 薄膜太陽電池、太陽電池ユニット及び太陽電池構造体
US11784268B2 (en) Flexible and light photovoltaic module
KR20220149453A (ko) 착색 태양 전지의 제조 방법
CN102330489A (zh) 彩色光伏建筑一体化(bipv)模块
JP2011219916A (ja) 太陽電池モジュール一体型建材及びその施工方法
CN102367018A (zh) 彩色光伏建筑一体化(bipv)模块
FR3081614A1 (fr) Module photovoltaique comportant une ou plusieurs diodes de bypass en face arriere d'une cellule photovoltaique du module
US20150040981A1 (en) Durable photovoltaic modules
JP2014510653A (ja) 光電子バックシートラミネート、光電子バックシートラミネートから成る光電子モジュールおよび光電子バックシートラミネートを作る方法
WO2020197388A1 (fr) Dispositif de production d'énergie à partir de lumière ambiante et dispositif de conversion photovoltaïque
JP5633412B2 (ja) 太陽電池モジュールおよび取付方法
CN109524493A (zh) 一种太阳能组件及光伏组件
Jelle et al. A Review of Research Pathways and Opportunities for Building Integrated Photovoltaics from a Materials Science Perspective
JP2015195712A (ja) 太陽電池装置
WO2023086486A1 (fr) Matériaux et procédés pour dispositifs photovoltaïques en tandem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15700580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15112969

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015700580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015700580

Country of ref document: EP