WO2015109999A1 - 光学视野转换器 - Google Patents

光学视野转换器 Download PDF

Info

Publication number
WO2015109999A1
WO2015109999A1 PCT/CN2015/071160 CN2015071160W WO2015109999A1 WO 2015109999 A1 WO2015109999 A1 WO 2015109999A1 CN 2015071160 W CN2015071160 W CN 2015071160W WO 2015109999 A1 WO2015109999 A1 WO 2015109999A1
Authority
WO
WIPO (PCT)
Prior art keywords
anterior
mirror
mirrors
view
optical field
Prior art date
Application number
PCT/CN2015/071160
Other languages
English (en)
French (fr)
Inventor
刘焱
Original Assignee
刘焱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘焱 filed Critical 刘焱
Publication of WO2015109999A1 publication Critical patent/WO2015109999A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/14Mirrors; Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems

Definitions

  • the present invention relates to an optical field of view converter, and more particularly to a field of view converter that avoids leaning forward of a user's neck.
  • the patent US20130222757 (named: Ergonomic vertical vision redirection) describes a vertical field of view conversion system for human body, which relieves the angle of the neck forward when reading. Its principle is to change the direction of the light through the transmission and refraction of the sawtooth prism, but the angle of conversion can be limited.
  • the human eye needs to view the target through a jagged lens that easily interferes with the sharpness in the field of view.
  • Another Google patent, US20130070338 (name: Lightweight eyepiece for head mounted display), describes a lightweight eyewear for a head mounted display.
  • the human eye can be easily viewed by the human eye, and the human head can read the contents of the display without leaning forward, and can also observe the surrounding environment.
  • Two fields of view that can be observed by the eye one is the surrounding environment, the light passes through the prism to reach the human eye; the other is the virtual image of the display on a reflecting surface.
  • the two pictures overlap each other and interfere with each other.
  • An embodiment of an optical field of view converter includes a first mirror and two anterior mirrors: the two anterior mirrors are on the same side, respectively disposed in front of the left and right eyes of the user; a mirror above or below the two anterior mirrors; an optical positional relationship between the two anterior mirrors and the first mirror is: the first mirror reflects light emitted by the target range to the Two anterior mirrors, which in turn reflect the light to the left and right eyes of the user, respectively.
  • the beneficial effects of this embodiment are: providing a clear virtual image in the mirrored field of view, and viewing the surrounding environment to avoid mutual interference between the mirror virtual image and the surrounding environment.
  • the two anterior mirrors are plane mirrors, and the two anterior mirrors are located in the same plane.
  • the beneficial effect is that the user can see the virtual image of the same size, which is in line with the visual habit of the person.
  • the two anterior mirrors are symmetrical to each other with a center-to-center spacing that is less than the eyelid distance of the user.
  • the beneficial effect is that the mirrored fields of view of the left and right eyes are more coincident.
  • Figure 1 is a side view of a first embodiment of an optical field converter
  • Figure 2 is a plan view of a first embodiment of an optical field converter
  • Figure 3 is a front elevational view of the first embodiment of the optical field converter
  • Figure 4 is a view showing the field of view of the optical field converter of the first embodiment
  • Figure 5 is a view showing the use effect of the optical field converter of the first embodiment
  • Figure 6 is a side view of the second embodiment
  • Figure 7 is a use effect diagram of the second embodiment
  • Figure 8 is a side view of the third embodiment
  • Figure 9 is a view showing the use effect of the third embodiment.
  • Figure 10 is a first mirror design diagram
  • Figure 11 is a side view of the fourth embodiment.
  • Figure 1 is a side elevational view of a first embodiment of the optical field of view converter.
  • the first embodiment includes at least a first mirror 101, a left anterior mirror 102, and a right anterior mirror 103.
  • 102 and 103 are overlapped.
  • the first mirror 101 is located obliquely above the left anterior mirror 102 and the right anterior mirror 103.
  • the dashed line with arrows in the figure indicates a side view projection of the light path from the target range 100 to the human eye.
  • Light from the target range 100 is first reflected by the first mirror 101
  • the anterior mirrors 102 and 103 are reflected by the anterior mirrors 102 and 103, respectively, to the human eyes 105. After two specular reflections, the ocular image of the target range 100 can be observed through the orientation of the eye's front mirror.
  • the first embodiment of the present visual field converter further has a support member for connecting and fixing the above-mentioned mirror group, and a wearing mechanism for wearing the head of the human body.
  • the support member and the wearing mechanism are not shown in the drawings, and a support method like a spectacle frame, a head-mounted fixing method, or a combination of both may be employed.
  • the user can see the target range 100 below without looking down, which relieves the user's neck forward.
  • the head wearing the visual field converter of the first embodiment is actively active, for example, the head drives the visual field converter to perform the reclining motion, the target range 100 of the visual field converter is rotated to the left in FIG. 1; when the head is forward The target range of the field of view converter is rotated to the right.
  • the reading materials include: books, smart phones, computers, tablets, game machines, electronic ink devices, displays (such as LED displays, LCD displays), and the like.
  • FIG. 2 is a top plan view of a first embodiment of an optical field of view converter.
  • the first mirror 101 in the figure shows its back side, and the left front anterior mirror 102 and the right anterior ocular mirror 103 show their mirror faces.
  • the dashed line with arrows in Fig. 2 represents a top view projection of the solid line of light in Fig. 1, which also comes from the target range 100.
  • the anterior mirrors 102, 103 are a few centimeters away from the eye.
  • the horizontal center spacing 106 of the 102 and 103 is generally less than the user's eyelid distance 107, so that the distance between the left and right eyes is as close as possible to the left and right ocular mirrors.
  • the target range 100 will coincide at a certain distance.
  • the horizontal center-to-center spacing 106 of generally 102 and 103 is 80% to 99% of the eyelid distance 107.
  • the target range 100 in FIG. 2 represents the lateral width of the target field of view
  • the target range 100 in FIG. 1 represents the longitudinal extent of the target field of view. In Figure 2, the target field of view has a lateral width of more than 10 cm.
  • the anterior mirrors 102, 103 of the first embodiment of the present invention may be wider or narrower in width and may be determined according to a target range.
  • the target range 100 of the visual field converter is rotated to the left or right, which is also in accordance with the eye habit of the human body.
  • the intermediate portion of the first mirror 101 does not participate in the optical path of the optical field converter, and the intermediate portion mirror can be designed as a supporting mechanism.
  • the first mirror 101 can also be better aligned with the shape of the forehead of the human body according to the physiological curve of the middle part of the forehead of the human body.
  • Figure 3 is a front elevational view of a first embodiment of an optical field of view converter.
  • the first mirror 101 is shown in the figure Out of its mirror surface, the left front anterior mirror 102 and the right anterior ocular mirror 103 show their back faces. 102, 103 blocked part of the field of view of the eye, but there is still a lot of space not blocked.
  • the user can see the virtual image of the target range 100 through 102, 103, and can also see the surrounding environment through the space not blocked by 102, 103.
  • FIG. 4 it is a visual field effect diagram of the optical field converter of the first embodiment.
  • the user can clearly see a virtual image of the smartphone displaying "NEWS" in the mirrored field of view 110 in the middle of the field of view.
  • the mirrored field of view 110 is a virtual image of the target range 100 presented by the first mirror 101, the anterior mirrors 102, 103. In the space outside the mirrored field of view 110, you can also see clouds, mountains, roads, and trees in the surrounding environment.
  • FIG. 5 is a view showing the use effect of the optical field converter of the first embodiment.
  • the human body head is wearing the optical field converter of the first embodiment
  • the hand-held smart phone 121 is a virtual image 122 through the first mirror and then reflected to the human eye through the front mirror.
  • the human eye can see the virtual image 123 through the front optic mirror.
  • the optical field of view converter of the first embodiment converts the scene of the target range 100 to the orientation of the mirrored field of view 110, avoiding the user looking down.
  • the optical field of view converter is worn on the person's head and remains relatively fixed to the head.
  • the orientation of the mirrored field of view 110 is relatively fixed with respect to the head or the eye, but the user can see the environmental scene that was originally blocked by the mirrored field of view 110 by changing the orientation or position of the head, which is convenient to use.
  • the orientation of the target range 100 is constant relative to the head or eye, but may change relative to the position of the user's hand, and the user needs to move the material being read in the hand to keep it at the target.
  • the range is 100.
  • the mirror angle A of the mirror surface of the first mirror 101 and the anterior mirrors 102, 103 is about 42.2.
  • the angle of view of the mirror image field 110 on the vertical plane is about 12.5°, which is equal to the angle of distribution of the front optic mirror to the center of the eyeball in FIG.
  • the center of the mirrored field of view 110 is tilted by about 1.3° to the horizontal plane of the human eye.
  • the distribution angle of a single anterior mirror to the center of the eyeball is about 12.8°.
  • the mirrored field of view 110 of both eyes is not limited in the lateral width, and can be designed to be larger or smaller.
  • the two anterior mirrors are symmetric in shape, have a height of 14 mm (mm), and have a width of 13 mm.
  • the placement position is about 43 mm to 48 mm from the surface of the eye.
  • the center of the anterior mirror is about 44.5 mm from the eye.
  • the first mirror of Figure 5 has an edge near the user's lower forehead, the first mirror and the front The mirror creates a large space in front of the eye that can hold the glasses.
  • the direction and distribution angle of the target range 100 are not changed, and the visual field range that the eye can observe is not limited.
  • the change is not large; on the contrary, if the scale is enlarged, the direction and distribution angle of the target range 100 are not changed, and the field of view that the eye can observe does not change much.
  • the size of the visual field converter of the first embodiment can be adjusted.
  • the center of the anterior lens 102, 103 is about 20 mm to 80 mm from the surface of the eye, and it is not excluded that it can be larger or smaller.
  • the reduction cannot cause the first mirror to be pressed to the eyeball or the eye socket, and the enlargement cannot cause inconvenience in use.
  • the anterior mirror In order to make the mirrored field of view 110 a relatively square rectangle, the anterior mirror can be made slightly narrower near the eyeball and slightly wider away from the eyeball. In the actual product design, when the angle of the target range to be observed is larger, the distribution angles of the anterior mirrors 102 and 103 to the center of the eyeball are larger, and the occlusion of the surrounding environment is also larger.
  • the anterior mirrors 202, 203 of the present embodiment are located above the horizontal line of the center of the eyeball, and the underside gives the eyes a larger space of view of the surrounding environment.
  • 7 is a use effect diagram of the second embodiment.
  • the mirror image field 210 of the present embodiment is a field of view that the eye can see through the anterior mirrors 202, 203 (refer to FIG. 6), and is also above the horizontal line of the center of the eyeball.
  • the human eye must look upwards to see the virtual image.
  • This embodiment is more suitable for viewing the virtual image in the mirrored field of view 210 while viewing the environment scene.
  • the smartphone 221 displays information about the historical monument to the user.
  • Google Glass also has the ability to display contextual information, but the cost of this embodiment is lower.
  • the angle B between the first mirror 201 and the anterior mirrors 202, 203 of the present embodiment is 45°, and the angle B has a certain adjustment space.
  • the mirror image field 210 has a distribution angle of about 13.8 degrees on the vertical plane, and the center of the mirror field 210 is about 6.9 degrees on the horizontal plane of the eyeball.
  • the height of the two anterior mirrors is about 15.2 mm, and the placement position is about 40.5 mm-46 mm from the surface of the eye.
  • the center of the anterior mirror is about 44 mm from the eye.
  • the anterior mirrors 302 and 303 of the present embodiment are located below the horizontal line of the eyeball center, and the mirror image field of this embodiment is also below the horizontal line of the eyeball center.
  • Human eyes have long been accustomed to reading within the range of 0°-30° below the horizontal plane. This embodiment is more in line with human reading habits.
  • the target range 300 of the present embodiment is designed to be closer to the directly below the eyeball 105. In fact, by arranging the optical mirror, the target range 300 can also be placed in front of the eyeball 105. Below or other directions.
  • the target range 300 of the visual field converter of the present embodiment falls just in front of the human body.
  • people look down they will cause the neck to lean forward.
  • the neck fatigue can be better released.
  • This embodiment takes into consideration the habitual reading posture of the eyes and the need to release the neck pressure, and is more suitable for long-term reading and viewing.
  • the angle C between the first mirror 301 and the anterior mirrors 302, 303 of the present embodiment is also 45°.
  • the mirror image field 310 is distributed at a vertical plane angle of about 13.8 degrees, and the mirror field of view center 310 is inclined at a position of about 6.9 degrees below the eyeball level.
  • the height of the two anterior mirrors is about 15.2 mm, and the placement position is about 39.5 mm-47 mm from the surface of the eye.
  • the center of the anterior mirror is about 43 mm from the eye.
  • the present invention can also be implemented in the following manner on the basis of the first, second and third embodiments.
  • FIG. 10 is a first mirror design diagram.
  • the portion E of the first mirror close to the forehead of the human body is designed according to the physiological curve of the forehead to make it comfortable to wear. It is also possible to replace the first mirror with two separate small mirrors F, one for the left anterior mirror and the other for the right anterior mirror, which is easy to manufacture.
  • the angle between the first mirror and the anterior mirror ranges from about 38° to about 52°. Because the first mirror needs to receive the target range of light from between the eye and the anterior mirror, the smaller the angle of distribution of the anterior mirror to the center of the eyeball in the vertical plane, the angle and position of the left and right anterior mirror and the first mirror. There are more choices; conversely, the angle and position of the anterior and first mirrors are only a small range of choices.
  • the angle of distribution of the anterior mirror to the center of the eye in a vertical plane generally does not exceed 25°.
  • the distribution of the anterior mirror in the horizontal plane to the center of the eye can be large or small and flexible. As shown in FIG.
  • the horizontal width of the mirrored field of view 110 is large, and the width of the front view mirror can be reduced, as long as the screen size of the smartphone is satisfied, thereby providing the user with a larger environmental field of view.
  • the angle of the anterior mirror for the center of the eyeball in the horizontal plane is generally in the range of 1°-20°, and can be larger or smaller.
  • a new reflected light path and its mirror group layout are provided with respect to the first, second and third embodiments.
  • the first mirror 401 is located below the anterior mirrors 402, 403 and has an obtuse angle with the anterior mirrors 402, 403.
  • Light within the target range 400 is first reflected by the first mirror 401 and then reflected by the ocular mirrors 402, 403 into both eyes of the human body.
  • the eye views the virtual image of the mirrored field of view through the anterior mirrors 402, 403. 402, 403
  • occlusion of the surrounding environment is reduced. It should be understood that the embodiments may also adopt some implementation manners of other embodiments to constitute a new implementation manner, and are not repeatedly described herein.
  • the above invention may have the following additional embodiments.
  • the height of the image area of the optical field converter relative to the human eye can be determined by the height of the anterior mirror.
  • the mirror set (including the first mirror and the two anterior mirrors) can also be rotated as a whole, allowing the user to adjust the mirror field of view and the pitch angle of the target range to the human eye.
  • the left and right anterior mirrors are plane mirrors and are mounted on the same plane.
  • the front mirror is installed with a certain tolerance error.
  • the error exceeds the tolerance error, and the virtual image of the mirrored field of view seen by the user's left and right eyes is difficult to overlap, and long-term use may cause eye fatigue.
  • the error range is controlled to be small, the user sees a better coincident image with both eyes, resulting in better results.
  • the two anterior mirrors are integrated on the same transparent material. For example, if two anterior mirror mirrors are formed in a planar lens satisfying the size, it is easy to ensure that the two mirrors are in the same plane. For a better visual effect, the remaining transparent portion of the lens is used by the human eye to view the environmental scene.
  • the present invention can use a lens to connect and fix the anterior mirror and/or the first mirror, and the eye can observe the environment through the lens.
  • the anterior mirror of the present invention may be planar or curved, such as a spherical surface. If the two anterior mirrors are curved, they also need to be on the same surface. Also, the first mirror can be a curved surface or a flat surface. If it is a curved surface (such as a spherical surface) and the first mirror consists of two small mirrors, the two small mirrors also need to be on one surface.
  • the first mirror and/or the anterior mirror have an anti-reflection coating to reduce attenuation on the optical path.
  • the reflective layer of the first mirror and/or the anterior mirror is designed to be external to reduce the transmission loss of the normal mirror first transmission and re-reflection, and also avoid the reflection ghost generated by the incident surface of the conventional mirror.
  • the design has an anti-corrosion and anti-oxidation effect on the surface of the outer reflective layer.
  • the two reflections will produce a loss of light intensity
  • the lens around the anterior mirror also produces a loss of light intensity. It is possible to highlight one picture by controlling the light intensity loss of the material, suppressing the other picture, and keeping the light intensity loss of each part uniform.
  • the optical field converter of the present invention has higher definition than the virtual image of the patent US20130222757. It is also convenient to watch the surroundings. Compared with the patent US20130070338, the optical field-of-view converter of the invention has higher definition vision, and the ambient light has no influence on the mirror image, and the surrounding environment can be clearly observed. The two scenes are not in the optical path. interference. In addition, the invention is less costly.
  • the field of view conversion angle of the invention is generally about 90°, and even 120°, which can meet the need for field-of-field conversion to avoid neck tilt.

Abstract

一种光学视野转换器,包括第一反射镜(101)和两个眼前反射镜(102,103);所述两个眼前反射镜(102,103)处在同一个面,分别设置于使用者的左右眼睛的前方区域;所述第一反射镜(101)在所述两个眼前反射镜(102,103)的上方或下方;所述两个眼前反射镜(102,103)和所述第一反射镜(101)的光学位置关系是:所述第一反射镜(101)反射目标范围发出的光线到所述两个眼前反射镜(102,103),所述两个眼前反射镜(102,103)再分别反射所述光线到使用者的左右眼睛。

Description

光学视野转换器 技术领域
本发明涉及一种光学视野转换器,尤其是避免使用者颈部前倾的视野转换器。
背景技术
便携智能设备的普及增加了人们的阅读、玩游戏的时间,颈部疲劳经常发生。为了缓解颈部疲劳,需改变人体头部的观看姿势。
专利US20130222757(名称为:Ergonomic vertical vision redirection)描述了一种人体用的垂直视野转换系统,让人阅读时缓解颈部前倾的角度。它的原理是通过锯齿状棱镜的透射和折射改变光线的方向,但能转换的角度有限。人眼需通过锯齿状的透镜观看目标,这种透镜容易干扰视野内的清晰度。
另外一件Google公司的专利US20130070338(名称为:Lightweight eyepiece for head mounted display),描述了一种适用于头戴式显示器的轻型眼具。可以便于人眼观看显示器的画面,人体头部可以在不前倾的状态下阅读到显示器的内容,同时还可观察周围环境的景象。眼睛所能观察到的两幅视野:一幅是周围环境景象,其光线透过棱镜达到人眼;另一幅是显示器在一个反射面所呈的虚像。但两幅画面相互重叠,会相互干扰。
发明内容
本发明的目的是提供一种光学视野转换器,改善使用者的视觉效果。
一种光学视野转换器实施例,包括第一反射镜和两个眼前反射镜:所述两个眼前反射镜处在同一个面,分别设置于使用者的左右眼睛的前方区域;所述第一反射镜在所述两个眼前反射镜的上方或下方;所述两个眼前反射镜和所述第一反射镜的光学位置关系是:所述第一反射镜反射目标范围发出的光线到所述两个眼前反射镜,所述两个眼前反射镜再分别反射所述光线到所述使用者的左右眼睛。
本实施例的有益效果是:在镜像视野内提供清晰的虚像,并可以观看周围环境的景象,避免镜像虚像和周围环境景象的相互干扰。
如上所述一种光学视野转换器实施例,所述两个眼前反射镜为平面镜,所述两个眼前反射镜位于同一个平面。有益效果是使用者可以看到等大的虚像,符合人的视觉习惯。
如上所述一种光学视野转换器实施例,所述两个眼前反射镜相互对称,它们的中心间距小于所述使用者的眼睛瞳距。有益效果是左右眼的镜像视野更重合。
以上为发明概要,还有不少其他的发明内容请参考具体实施方式部分。
附图说明
图1是光学视野转换器第一实施例的侧视图;
图2是光学视野转换器第一实施例的俯视图;
图3是光学视野转换器第一实施例的正视图;
图4是第一实施例光学视野转换器的视野效果图;
图5是第一实施例光学视野转换器的使用效果图;
图6是第二实施例的侧视图;
图7是第二实施例的使用效果图;
图8是第三实施例的侧视图;
图9是第三实施例的使用效果图;
图10是一种第一反射镜设计图;
图11是第四实施例的侧视图。
具体实施方式
下面结合附图和具体实施例来说明本发明的实施方法。
图1所示是本光学视野转换器第一实施例的侧视图。第一实施例至少包括:第一反射镜101、左眼前反射镜102、右眼前反射镜103。图1中102、103重叠在一起。第一反射镜101位于左眼前反射镜102和右眼前反射镜103的斜上方。图中带箭头的虚线表示来自目标范围100的光线到达人体眼球的光路的侧视图投影。来自目标范围100的光线首先经过第一反射镜101反射 到眼前反射镜102、103,再由眼前反射镜102、103分别反射到人体双眼105。经过两次镜面反射后,眼睛通过眼前反射镜的方位可以观察到目标范围100的正像。
本视野转换器第一实施例还具有支持部件连接、固定上述反射镜组,还具有佩戴机构用于佩戴于人体的头部。所述支持部件和佩戴机构在附图中没有示出,可以采用类似眼镜架的支持方式、头戴式的固定方式或者两者的结合。使用者佩戴本光学视野转换器后无需低头就可以看到下方的目标范围100,缓解了使用者的颈部前倾。当佩戴有第一实施例视野转换器的头部主动活动时,例如头部带动视野转换器做后仰动作,视野转换器的目标范围100在图1中向左转动;当头部向前俯,视野转换器的目标范围则向右转动。因为头的转动方向和目标范围的移动方向符合人的用眼习惯,使用者容易将被阅读资料保持在本光学视野转换器的目标范围100内。所述阅读材料包括:书本、智能手机、电脑、平板电脑、游戏机、电子墨水设备、显示器(如LED显示器、LCD显示器)等等。
图2为光学视野转换器第一实施例的俯视图。图中第一反射镜101展示出了它的背面,左眼前反射镜102、右眼前反射镜103展示出了它们的镜面。图2中带箭头的虚线表示图1中的实线光平面的俯视图投影,所述实线光平面也来自目标范围100。当人用双眼观察目标物体,双眼的视线会逐渐汇聚到目标物体上。眼前反射镜102、103距离眼睛有几厘米的距离,为使左右眼通过左右眼前反射镜观察到的范围尽量重合,102和103的水平中心间距106一般小于使用者的眼睛瞳距107,这样双眼的目标范围100在一定距离外会重合。一般102和103的水平中心间距106为眼睛瞳距107的80%-99%。图2中的目标范围100表示的是目标视野范围的横向宽度,图1中的目标范围100表示的是所述目标视野范围的纵向宽度。图2中,所述目标视野范围的横向宽度达到10多厘米。本发明第一实施例的眼前反射镜102、103宽度上可更宽或更窄,可根据目标范围确定。
当人体的头部连同本视野转换器向左或右转动,如图2,视野转换器的目标范围100则跟着向左或右转动,也符合人体用眼习惯。
根据图2,第一反射镜101的中间部分并没有参与光学视野转换器的光路,中间部分镜面可以设计成支撑的机构。也可以根据人体额头中部的生理曲线使第一反射镜101与人体额头形状更好地吻合。
图3为光学视野转换器第一实施例的正视图。图中第一反射镜101展示 出了它的镜面,左眼前反射镜102、右眼前反射镜103展示出了它们的背面。102、103遮挡住了眼睛的部分视野,但还有很多空间没有被遮挡。使用者可以通过102、103看到目标范围100的虚像,也可以通过没有被102、103遮挡的空间看到周围环境。如图4所示是第一实施例光学视野转换器的视野效果图,使用者可以在视野中部的镜像视野110中清晰地看到一个显示有“NEWS”的智能手机虚像。所述镜像视野110就是通过第一反射镜101、眼前反射镜102、103所呈现的目标范围100的虚像。在镜像视野110以外的空间,还可以看到周围环境中的云朵、山脉、道路、树木。
如图5所示是第一实施例光学视野转换器的使用效果图。图中人体头部戴有第一实施例的光学视野转换器,手持智能手机121通过第一反射镜呈虚像122,然后再通过眼前反射镜反射到人体眼睛。人眼可以通过眼前反射镜看到虚像123。本第一实施例的光学视野转换器将目标范围100的景象转换到镜像视野110的方位,避免了使用者低头观看。
本光学视野转换器佩戴于人的头部并保持与头部的相对固定。当头部转动,镜像视野110的方位相对于头部或者眼睛是相对固定的,但使用者通过改变头部的朝向或位置可以看到原先被镜像视野110遮挡的环境景象,使用比较方便。同样,随着头部转动,目标范围100的方位相对于头部或者眼睛是不变的,但可能相对于使用者手的位置变化了,使用者需要移动手中的被阅读材料将其保持在目标范围100中。
以上对第一实施例的描述在其他实施例中也有用到,为了节省篇幅,其他地方不再累述,以上内容可以用于和其他实施方式的结合构成新的实施方式。
如图1,第一反射镜101的镜面和眼前反射镜102、103的镜面夹角A约为42.2°。如图5,所述镜像视野110在垂直面上的分布角度为12.5°左右,这一角度等于图1中眼前反射镜对于眼球中心的分布角度。镜像视野110的中心对于人体眼球水平面上倾约1.3°。如图2,单个眼前反射镜对于眼球中心在水平面上的分布角度约为12.8°,其实双眼的镜像视野110在横向宽度上限制不大,还可以设计得更大或者更小。所述两个眼前反射镜形状对称,高度为14mm(毫米),宽度为13mm,放置位置距离眼睛表面大概为43mm-48mm左右。所述眼前反射镜的中心距眼睛约44.5mm。
图5中的第一反射镜一个边缘靠近使用者的下前额,第一反射镜和眼前 反射镜在眼球前面构建出较大的空间,可以容纳眼镜。另外,参考图1,如果图中除眼球105外,所有部件以及它们的相对位置都以眼球中心为中心等比例缩小,目标范围100的方向和分布角度并没有变化,眼睛所能观察的视野范围变化也不大;相反如果等比例放大,目标范围100的方向和分布角度也没有变化,眼睛所能观察的视野范围变化也不大。本第一实施例视野转换器的尺寸可以有所调整,一般眼前反射镜102、103的中心距眼睛表面为20mm-80mm左右较为合适,不排除还可以更大或更小。但缩小不能导致第一反射镜压到眼球或者眼窝,扩大不能导致使用不便。
为了使镜像视野110为比较方正的长方形,眼前反射镜可以做成靠近眼球的地方稍窄,远离眼球的部位稍宽。在实际的产品设计中,当所需要观察的目标范围分布角度更大,则眼前反射镜102、103对于眼球中心的分布角度也要更大,对周围环境景象的遮挡也更大。
如图6所示第二实施例的侧视图,本实施例眼前反射镜202、203位于眼球中心水平线的上方,下面给眼睛留出更大的周围环境视野空间。如图7所示是第二实施例的使用效果图,本实施例镜像视野210是眼睛通过眼前反射镜202、203可以看到的视野(参考图6),也在眼球中心水平线的上方。人体眼睛须朝上观看所呈虚像。本实施例更适合于观看环境景象的同时看镜像视野210内的虚像。例如,当使用者正在瞻仰历史古迹,智能手机221显示该历史古迹的相关信息给使用者。Google Glass也有显示情景环境信息的功能,但本实施例的成本更低。
图6中,本实施例的第一反射镜201和眼前反射镜202、203夹角B为45°,夹角B角度还有一定的调节空间。所述镜像视野210在垂直面的分布角度为13.8°左右,镜像视野210的中心对于眼球水平面上倾约6.9°。所述两个眼前反射镜高度为15.2mm左右,放置位置距离眼睛表面大概为40.5mm-46mm左右。所述眼前反射镜的中心距眼睛约44mm。
如图8所示第三实施例的侧视图,本实施例眼前反射镜302、303位于眼球中心水平线的下方,则本实施例镜像视野也在眼球中心水平线的下方。人体眼睛长期习惯于在水平面下方0°-30°倾角范围内阅读,本实施例更符合人的阅读习惯。本实施例的目标范围300设计得更靠近眼球105的正下方。其实通过对光学反射镜的布置,也可以将目标范围300设置于眼球105的前 下方或其他方位。
如图9所示第三实施例的使用效果图,人体头部向后仰15°后,本实施例视野转换器的目标范围300正好落在人体的前方。当人低头阅读会造成颈部前倾,通过图9的后仰动作,能更好释放颈部的疲劳。本实施例兼顾了眼睛的习惯阅读姿势和释放颈部压力的需要,更适合用于长时间阅读、观看。
图8中,本实施例的第一反射镜301和眼前反射镜302、303夹角C也为45°。图9中,所述镜像视野310在垂直面分布角度为13.8°左右,镜像视野中心310的位于眼球水平面下倾约6.9°的位置。所述两个眼前反射镜高度为15.2mm左右,放置位置距离眼睛表面大概为39.5mm-47mm左右。所述眼前反射镜的中心距眼睛约43mm。
本发明还可以在第一、二、三实施例的基础上结合以下方式实施。
如图10是一种第一反射镜设计图,第一反射镜靠近人体额头的部位E按照额头的生理曲线进行设计,使其佩戴舒适。也可以将第一反射镜替换成两个独立的小反射镜F,一个用于左眼前反射镜,另一个用于右眼前反射镜,从而易于制造。
一般第一反射镜和眼前反射镜的夹角范围在38°-52°左右。因为第一反射镜需要从眼睛和眼前反射镜之间接收目标范围的光线,眼前反射镜在垂直平面内对于眼球中心的分布角度越小,左右眼前反射镜和第一反射镜的夹角及位置就有更多的选择;反之,眼前反射镜和第一反射镜的夹角及位置只有小范围的选择。眼前反射镜在垂直平面内对于眼球中心的分布角度一般不超过25°。眼前反射镜在水平面对于眼球中心的分布角度可大可小,比较灵活。如第一实施例图4所示,镜像视野110水平宽度余量很大,可以将眼前反射镜宽度缩小,只要满足智能手机屏幕大小即可,从而给使用者提供更大的环境视野。眼前反射镜对于眼球中心在水平面的分布角度一般在1°-20°的范围内,还可以更大或更小。
如图11所示第四实施例的侧视图,相对于第一、二、三实施例提供了一种新的反射光路及其反射镜组布局方式。第一反射镜401位于眼前反射镜402、403的下方,与眼前反射镜402、403的夹角为钝角。目标范围400内的光线首先通过第一反射镜401反射,再通过眼前反射镜402、403反射进入人体的双眼。眼睛通过眼前反射镜402、403观看镜像视野的虚像。402、403 为类似于其他实施例的左右眼前反射镜,减少了对周围环境的遮挡。应该可以理解到,本实施例也可以采用其他实施例的一些实施方式,构成新的实施方式,这里不再一一累述。
另外,上述发明还可以有以下补充实施方式。如前所述本光学视野转换器的呈像区域相对于人体眼睛的高低可以通过眼前反射镜的高低确定。还可以将反射镜组(包括第一反射镜和两个眼前反射镜)整体可旋转,让使用者可以调整镜像视野和目标范围对于人眼的俯仰角度。
以上图例中左右眼前反射镜为平面镜,安装在同一平面。在实际的产品制造中,眼前反射镜安装有一定的容忍误差。但误差超过容忍误差,使用者左右眼看到的镜像视野范围的虚像难以重合,长期使用会带来眼睛疲劳。如果误差范围控制得很小,则使用者双眼看到较好的重合图像,从而带来更好的效果。又一种实施方式,所述两个眼前反射镜集成在同一块透明材料上,例如在满足尺寸的一块平面透镜中制作出两个眼前反射镜镜面,则容易保证两个镜面在同一平面,带来更好的视觉效果,其透镜的剩余透明部分用于人眼观看环境景象。
又一种实施方式,本发明可以用透镜对眼前反射镜和/或第一反射镜进行连接、固定,眼睛可以通过所述透镜观察环境景象。
又一种实施方式,本发明眼前反射镜可以为平面也可以是曲面,例如球面。如果两个眼前反射镜是曲面,则它们也需要处在同一个曲面上。同样,第一反射镜可以是曲面或者平面。如果是曲面(例如球面),并且第一反射镜由两个小反射镜组成,则两个小反射镜也需要在一个曲面上。
又一种实施方式,为了减少光路上的衰减,第一反射镜和/或眼前反射镜有增透膜。或者第一反射镜和/或眼前反射镜的反射层设计在外面,以减少通常反射镜先透射再反射的透射损失,也避免了通常反射镜的入射表面产生的反射重影。所述设计在外面的反射层表面具有耐腐蚀、抗氧化的作用。
又一种实施方式,不管采用上述哪种镜面设计,两次反射都会产生光强的损耗,而眼前反射镜周围的透镜也产生光强的损耗。可以通过控制材料的光强损耗来突出一个画面,压抑另一幅画面;也可以保持各个部分的光强损耗一致。
本发明光学视野转换器比专利US20130222757所呈虚像的清晰度更高, 又便于观看周围环境。本发明光学视野转换器比专利US20130070338所呈虚像视野的清晰度也更高,周围环境的光线对镜像虚像基本上没有影响,同时还可以清晰地观察周围环境景象,两幅景象在光路上互不干扰。另外本发明成本较低。本发明的视野转换角度一般在90°左右,甚至可达到120°,可满足避免颈部前倾的视场转换需要。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到变化或替换,都应落在本发明的保护范围之内。

Claims (10)

  1. 一种光学视野转换器,包括第一反射镜和两个眼前反射镜:
    所述两个眼前反射镜处在同一个面,分别设置于使用者的左右眼睛的前方区域;
    所述第一反射镜在所述两个眼前反射镜的上方或下方;
    所述两个眼前反射镜和所述第一反射镜的光学位置关系是:所述第一反射镜反射目标范围发出的光线到所述两个眼前反射镜,所述两个眼前反射镜再分别反射所述光线到所述使用者的左右眼睛。
  2. 如权利要求1所述的光学视野转换器,所述两个眼前反射镜为平面镜,所述两个眼前反射镜位于同一个平面。
  3. 如权利要求1所述的光学视野转换器,所述两个眼前反射镜相互对称,它们的中心间距小于所述使用者的眼睛瞳距。
  4. 如权利要求1所述的光学视野转换器,所述眼前反射镜对于眼球中心在垂直平面展开的角度范围为25°以下。
  5. 如权利要求1所述的光学视野转换器,所述眼前反射镜视野在水平面的角度范围为20°以下。
  6. 如权利要求1所述的光学视野转换器,所述眼前反射镜中心距人眼的距离范围为20mm-80mm。
  7. 如权利要求1所述的光学视野转换器,所述两个眼前反射镜集成在同一块透镜上,所述透镜的透明部分用于观察周围环境;或者,所述两个眼前反射镜通过透镜连接,所述透镜用于观察周围环境。
  8. 如权利要求1所述的光学视野转换器,所述第一反射镜由两个小反射镜组成,分别反射所述目标范围的光线到所述两个眼前反射镜,所述两个小反射镜处于同一个面。
  9. 如权利要求8所述的光学视野转换器,所述第一反射镜的两个小反射镜集成在同一块透镜上,或者通过透镜进行固定。
  10. 如权利要求1所述的光学视野转换器,所述眼前反射镜在所述第一反射镜下前方,两者的镜面夹角在38°-52°之间。
PCT/CN2015/071160 2014-01-27 2015-01-20 光学视野转换器 WO2015109999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410039862.5A CN103728716A (zh) 2014-01-27 2014-01-27 光学视野转换器
CN201410039862.5 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015109999A1 true WO2015109999A1 (zh) 2015-07-30

Family

ID=50452864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071160 WO2015109999A1 (zh) 2014-01-27 2015-01-20 光学视野转换器

Country Status (2)

Country Link
CN (1) CN103728716A (zh)
WO (1) WO2015109999A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728716A (zh) * 2014-01-27 2014-04-16 刘焱 光学视野转换器
CN106918915A (zh) * 2017-05-16 2017-07-04 核桃智能科技(常州)有限公司 近眼显示系统
CN107561675A (zh) * 2017-09-30 2018-01-09 四川远瞻智汇科技有限公司 光路结构及应用该光路结构的保健阅读镜
CN109239886A (zh) * 2018-11-25 2019-01-18 张彦海 基于多面反射镜的简易视觉辅助装置
CN109814265A (zh) * 2019-03-28 2019-05-28 浙江大学医学院附属邵逸夫医院 一种免低头正视双反射成像手术眼镜
CN113495363A (zh) * 2020-08-15 2021-10-12 胡方明 二级反射镜
CN116685884A (zh) * 2020-08-15 2023-09-01 胡方明 二级反射镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2115546U (zh) * 1992-03-06 1992-09-09 卢一夫 具有后视功能的眼镜
CN1071518A (zh) * 1991-10-12 1993-04-28 赵幼仪 写读保健眼镜
CN2496049Y (zh) * 2001-04-03 2002-06-19 刘新亚 躺视眼镜
CN2662266Y (zh) * 2003-11-02 2004-12-08 欧阳相连 卧看电视眼镜
KR20080072800A (ko) * 2008-06-26 2008-08-07 유종호 굴절안경
CN201569799U (zh) * 2009-12-30 2010-09-01 上海市闸北区中小学科技指导站 一种卧式眼镜
CN201716486U (zh) * 2010-07-29 2011-01-19 苏肇汉 一种躺着看电视的眼镜
CN103728716A (zh) * 2014-01-27 2014-04-16 刘焱 光学视野转换器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071518A (zh) * 1991-10-12 1993-04-28 赵幼仪 写读保健眼镜
CN2115546U (zh) * 1992-03-06 1992-09-09 卢一夫 具有后视功能的眼镜
CN2496049Y (zh) * 2001-04-03 2002-06-19 刘新亚 躺视眼镜
CN2662266Y (zh) * 2003-11-02 2004-12-08 欧阳相连 卧看电视眼镜
KR20080072800A (ko) * 2008-06-26 2008-08-07 유종호 굴절안경
CN201569799U (zh) * 2009-12-30 2010-09-01 上海市闸北区中小学科技指导站 一种卧式眼镜
CN201716486U (zh) * 2010-07-29 2011-01-19 苏肇汉 一种躺着看电视的眼镜
CN103728716A (zh) * 2014-01-27 2014-04-16 刘焱 光学视野转换器

Also Published As

Publication number Publication date
CN103728716A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
WO2015109999A1 (zh) 光学视野转换器
US20180321484A1 (en) Systems, devices, and methods for wearable heads-up displays
EP3134763B1 (en) Compact architecture for near-to-eye display system
US9733477B2 (en) Dual axis internal optical beam tilt for eyepiece of an HMD
JP6369017B2 (ja) 虚像表示装置
KR101916079B1 (ko) 하나 또는 그 이상의 프레넬 렌즈를 수반하는 헤드 장착 디스플레이 장치
US10620438B2 (en) Head-borne viewing system comprising crossed optics
US20100271587A1 (en) eyewear comprising at least one display device
JP2015534108A (ja) 人間工学的な頭部搭載型ディスプレイデバイスおよび光学システム
US10324296B2 (en) Display device
JP2017068045A (ja) ウェアラブル装置
TWI531817B (zh) 虛像顯示模組與光學鏡頭
CN110426844A (zh) 一种光学系统及增强现实眼镜
US11067802B1 (en) Full human field of view (FOV) wrap around head-mounted display apparatus with a convex display device
US20190041663A1 (en) A contact lens that permits display of virtual visual information directly into the user's eye
JP7342659B2 (ja) 頭部装着型表示装置及び表示方法
CN111033356B (zh) 用于个人显示器的目镜和包括这样的目镜的个人显示器
TWI779789B (zh) 具擴增實境之光學系統
CN110955053B (zh) 一种基于正离焦的近眼显示系统
US11172718B2 (en) Wearable display device
CN208654444U (zh) 一种双目光学镜
KR102431165B1 (ko) 반사면이 일정 간격씩 이격된 빔 스플리터 광학계 및 이를 이용한 머리 착용형 디스플레이 장치
US10858243B2 (en) Backside reinforcement structure design for mirror flatness
JP2017229048A (ja) ヘッドマウントディスプレイ装置
WO2019075742A1 (zh) 一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15739974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15739974

Country of ref document: EP

Kind code of ref document: A1