WO2019075742A1 - 一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器 - Google Patents

一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器 Download PDF

Info

Publication number
WO2019075742A1
WO2019075742A1 PCT/CN2017/107093 CN2017107093W WO2019075742A1 WO 2019075742 A1 WO2019075742 A1 WO 2019075742A1 CN 2017107093 W CN2017107093 W CN 2017107093W WO 2019075742 A1 WO2019075742 A1 WO 2019075742A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
main lens
augmented reality
area
Prior art date
Application number
PCT/CN2017/107093
Other languages
English (en)
French (fr)
Inventor
程德文
王其为
侯伟洪
Original Assignee
北京耐德佳显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京耐德佳显示技术有限公司 filed Critical 北京耐德佳显示技术有限公司
Priority to PCT/CN2017/107093 priority Critical patent/WO2019075742A1/zh
Publication of WO2019075742A1 publication Critical patent/WO2019075742A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00

Definitions

  • the present invention relates to an ultra-thin augmented reality lens, a virtual image display imaging device using the same, and a near-eye display, the augmented reality lens having a very similar appearance to a normal corrective lens and having good optical properties for realizing augmented reality
  • the requirements of the display can be worn in the same way as ordinary glasses by implementing a specific manufacturing process.
  • VR virtual reality
  • AR augmented reality
  • head-mounted image display devices based on VR or AR mode have made great progress, and consumer-grade products have emerged in recent years, such as Samsung gear VR, Sony PSVR, Epson BT300, Microsoft Hololens, etc., because these head-mounted display devices need to be worn on the observer's head when used, compactness and light weight have always been the relentless pursuit of the industry to alleviate the observer's Load to improve usability.
  • Multiple reflective surfaces are designed to distribute incident image light through the array to a predetermined field of view to achieve a thickness of less than 2 mm.
  • AR optical components but the working principle of this optical component requires extremely high processing precision for the optical reflective surface of the array. Although it is widely favored due to its ultra-thin design, the high cost is difficult to meet the requirements of mass production.
  • the way in which the array splits the angle of view to enlarge the field of view determines in principle that no optical power is introduced. It is necessary to additionally cooperate with the projection amplifying element to adapt to the size of the microdisplay. For a large number of users with high visibility, the lens without power
  • the design does not address the needs of everyday wear, and the experience of wearing it is not friendly.
  • the invention provides a thin and stable augmented reality lens which can satisfactorily solve the visual requirement, and the additional micro display element forms a virtual image imaging device, and further, as a near-eye display, the main lens has a large area, including the edge portion thereof.
  • the light incident portion and the light exit portion substantially positioned in the central region of the main lens realize a main virtual image display function by folding/reflecting of light, and the auxiliary lens is used for compensating the transmitted light path and providing a surface satisfying the visibility requirement to improve Universality for users of different visual acuity.
  • An ultra-thin augmented reality lens includes: a main lens having a first area; and a secondary lens having a second area proximate to the main lens; the main lens including a portion of light at an edge thereof Incident and roughly determined a light emitting portion located in a central region of the main lens, and image light from the micro display element is transmitted from the incident surface of the light incident portion into the main lens, and propagates to the light emitting portion in a total reflection manner; the light emitting portion includes the spectroscopic portion a light exit surface of the layer for reflecting a portion of the image light propagating thereon to cause image light to exit the primary lens, wherein the first area is substantially the same as the second area.
  • Another ultra-thin augmented reality lens includes: a main lens having a first area; and a secondary lens having a second area attached to the main lens; the main lens including a portion located a light incident portion at an edge thereof and a light exit portion positioned substantially at a central region of the main lens, and image light from the micro display element is transmitted from the incident surface of the light incident portion into the main lens, and is totally reflected to the light
  • the light exiting portion includes a light exiting surface having a light splitting layer for reflecting a portion of the image light propagating thereon to cause image light to exit the primary lens, the first area being greater than the first Two areas, the second area matching the area of the light exit portion.
  • the light entrance face and the light exit face are curved faces having a predetermined power, and the light entrance face may be formed by bending inward or outward from the edge of the main lens.
  • the surface of the light exit surface is selected from one of a spherical surface, a rotationally symmetric aspheric surface, or a free curved surface;
  • the surface shape of the light incident surface is selected from one of a spherical surface, a rotationally symmetric aspheric surface, or a free curved surface, which is the same as or different from the surface type of the light incident surface.
  • the main lens according to the present invention includes a front surface having a first area and a rear surface opposite thereto, the light exit portion being located on the rear surface; preferably, the front surface of the main lens is a spherical or aspherical rotational symmetry plane
  • the surface profile of the rear surface except the light exit portion is selected from one of a spherical surface, an aspheric surface, a free curved surface, or a combination thereof.
  • the front surface of the main lens is a plurality of spherical or aspherical mosaic surfaces, and the light incident surface is curved toward the rear surface of the main lens, and the light exit portion is a free-form surface.
  • the secondary lens according to the present invention also includes a front surface and a rear surface, the front surface of the secondary lens being in conformity with the rear surface surface of the main lens that is in close proximity or conforming.
  • the image light does not have an intermediate image in the main lens; the number of reflections on the front surface of the main lens is at least one time and no more than four times. The number of reflections on the back surface is at least once and no more than four times.
  • the present invention also relates to a virtual image imaging apparatus using the above-described ultrathin augmented reality lens, further comprising a micro display device as an image source, the distance between the microdisplay and the light incident surface being adjustable, The adjustment range is no more than 3mm.
  • the microdisplay device may be selected from a miniature OLED, LCoS, micro LCD or DLP, and may further comprise a single lens, a lens group or a liquid lens between the micro display device and the light entry face.
  • the micro display device is fixed near the light incident portion by a bezel.
  • the bezel can further include a flexible Surrounding, enclosing the edge of the secondary lens and the primary lens, such enveloping provides sealing of the two lenses when the secondary lens is in close proximity to the primary lens.
  • the lens of the present invention can be constructed as an eyeglass-like near-eye display including the above-described virtual image forming apparatus placed in the lens position in the lens body, and the main circuit board and battery placed in the temple.
  • the main and auxiliary lenses can be injection molded with high precision using an optical resin material, and can provide visibility to both image light and ambient light, and is suitable for users with visibility, overall thinness and lightness. Up to 5mm or less, it is advantageous to achieve the same appearance as ordinary corrective vision glasses, and has a high degree of customization, which makes image fusion more accurate and more fashionable and friendly to wear.
  • Figure 1 is a cross-sectional view of a virtual imaging device in accordance with the present invention.
  • FIGS. 2(a) and (b) are cross-sectional views showing a primary lens and a secondary lens according to the present invention, respectively;
  • Figure 3 is a top plan view of a lens in accordance with the present invention.
  • FIG. 4 is a light path ray diagram for realizing a virtual enlarged display of image light in a main lens according to a first embodiment of the present invention
  • Figure 5 is a view of the primary and secondary lenses for 0D diopter according to the first embodiment of the present invention.
  • FIG. 6 is a main and auxiliary lens for negative vision according to a first embodiment of the present invention.
  • FIG. 7 is a light path ray diagram for realizing a virtual enlarged display of image light in a main lens according to a second embodiment of the present invention.
  • FIG. 8 is a light path diagram of a lens according to a second embodiment of the present invention when transmitting ambient light
  • FIG. 9 is a light path ray diagram for realizing a virtual enlarged display of image light in a main lens according to a third embodiment of the present invention.
  • Figure 10 is a cross-sectional view showing a primary lens and a secondary lens using a third embodiment of the present invention.
  • Figure 11 is a light ray diagram of image light in a main lens according to a fourth embodiment of the present invention.
  • Figure 12 is a light ray diagram of image light in a main lens according to a fifth embodiment of the present invention.
  • Figure 13 is a schematic view of a near-eye display of a glasses type according to the present invention.
  • Fig. 14 is a view showing an augmented reality fused image observed when the near-eye display shown in Fig. 13 is worn.
  • the area of the auxiliary lens 2 is substantially the same as the area of the main lens 1, that is, the auxiliary lens 2 is close to the main lens 1.
  • the outer edges of the two lenses maintain a uniform orientation.
  • Such a main lens shape is preferably formed into a circular shape, but is not limited thereto, and those skilled in the art can understand that other shapes suitable for molding can also be configured as the main lens and the auxiliary lens, and the final of the main lens and the auxiliary lens.
  • the shape can be determined by the frame.
  • FIG. 2 which are respectively a cross-sectional view of the main lens (see FIG. 2(a)) and the auxiliary lens (see FIG. 2(b)) of the present invention
  • FIG. 3 is a top view of the lens, wherein the A area is A region for magnifying the image light of the micro display device to be a virtual image is a boundary region between the faces 121 and 122 and 211 and 212 in Fig. 2.
  • the rear surface of the main lens i.e., the auxiliary lens
  • the surface of the virtual display portion (ie, the A region) and the front surface of the auxiliary mirror (ie, the surface facing the main lens) have a slight air gap 4 to ensure that the total reflection of the display light at the position of the inner mirror surface 121 is not destroyed, and the air gap 4 can be achieved by positioning the protrusions and the grooves on the circumference of the main lens and the auxiliary lens, and the portion having the protrusion height greater than the depth of the groove can constitute an air gap.
  • the spacing may be achieved by gluing together the exit portions, that is, the surface 14 of the main lens at the light exit portion and the surface 23 of the auxiliary lens when the main lens 1 is combined with the auxiliary lens 2 are glued to determine the relative positions of the primary and secondary lenses.
  • the relationship is such that the surface 122 of the primary lens and the surface 212 of the secondary lens and the surface 14 of the primary lens are adjacent to the surface 23 of the secondary lens at predetermined intervals to reduce stray light, ensuring total reflection of image light within the A region within the primary lens.
  • the surface of the auxiliary lens 2 adjacent to the main lens 1 has a surface pattern conforming to the rear surface of the main lens 1, and specifically, at a position corresponding to the light exit portion, similarly, substantially located in the central region of the auxiliary lens 2,
  • the lens 2 has a surface that protrudes from the rear surface thereof to conform to the main lens 1.
  • the rear surface 24 of the auxiliary lens 2 may have a surface shape substantially coincident with the non-adhesive surface 11 of the main lens 1, and is spherical or aspherical.
  • ambient light from the environment passes through the auxiliary lens 2 and the main lens 1 to enter.
  • the user's human eye image, for the ambient light, the above combination of the main lens 1 and the auxiliary lens 2 does not produce a power, that is, the user's human eye is equivalent to wearing a centerless and edge-free amblyopia lens,
  • the vision does not produce a corrective effect, the ambient light normally enters the human eye for imaging, the imaging is clear, and the image light provided from the micro display device 3 is superimposed to produce a fusion display effect.
  • the rear surface 24 of the auxiliary lens 2 is spherical or aspherical, but has a non-conformal surface shape with the non-adhesive surface 11 of the main lens 1, so that the combined manner of the main lens 1 and the auxiliary lens 2 produces predetermined light.
  • the power is similar to the lens for normal vision correction.
  • ambient light from the environment passes through the auxiliary lens 2 and the main lens 1 to enter the user's human eye.
  • the user's human eye is equivalent to wearing.
  • the fixed-view lens has a corrective effect on vision, and the human eye with visibility can thus clearly image the ambient light, and also superimposes the image light provided from the micro display device 3 to produce a fusion display effect.
  • the image light display optical path diagram the image light from the micro display device 3 at the position 106 is transmitted through the incident surface 105 of the light incident portion of the main lens to enter the main lens.
  • the light incident surface has a face shape that is curved inwardly (ie, toward the user when worn), and is at an angle to the front and rear surfaces 102 and 104 of the main lens so that the incident image light can be totally reflected in the main lens.
  • the light is incident on the exit surface 103 after several times of total reflection on the front and rear surfaces 102, 104 of the main lens, and part of the light is reflected by the surface 103 and then transmitted through the surface 102 into the human eye for imaging.
  • the exit surface 103 has a spectroscopic layer with a predetermined transflective splitting ratio, such as a transflective film or other transflective splitting film, so that the image light can be reflected as efficiently as possible when incident on the light exit surface of the main lens 1.
  • a transflective splitting ratio such as a transflective film or other transflective splitting film
  • the splitting ratio of the spectroscopic film can be selected according to the brightness of the microdisplay device to ensure that the image light of the micro display device is effectively utilized as much as possible, and the intensity of the subsequent ambient light is balanced to obtain Good augmented reality image contrast.
  • the main lens 1 serves as a main optical component for imaging (amplifying a virtual image) of the microdisplay device, and provides a predetermined power by using the curvature of the light incident surface, the light exit surface, and the intermediate propagation surface of the main lens 1, and is displayed on the micro display device.
  • the image is magnified so that the image light of the micro display device is magnified and projected through the main lens 1, and the image from the micro display device seen at the human eye appears to be emitted a few meters away from the eye instead of Very close (the location where the micro display device is actually located).
  • the incident surface 105 of the main lens 1 is preferably a face shape using a free curved surface, and may be a spherical or aspherical surface.
  • the front surface 102 of the main lens 1 is preferably of a spherical or aspherical surface type, similar to a conventional vision correction type ophthalmic lens, for example, having a diameter of about 70 mm.
  • a conventional vision correction type ophthalmic lens for example, having a diameter of about 70 mm.
  • Such an arrangement can facilitate the primary lens and the secondary lens of the present invention. When integrated, it can be conveniently applied to the cutting tool of the corrective ophthalmic lens, so that it is suitable for adapting the glasses frame of different shapes.
  • the exit surface 103 of the main lens 1 is preferably a free-form surface type, and may also be a spherical or aspherical surface.
  • the aspherical surface type can use the following equation:
  • the freeform surface shape can be described in the form of an XY polynomial.
  • the equation is as follows:
  • the rear surface 104 of the main lens 1 may be a spherical or aspherical surface.
  • a free-form surface or a non-continuous, segment-spliced spherical surface and an aspheric surface may be used.
  • the entire surface according to the first embodiment of the present invention adopts a face shape of a rotationally symmetric spherical surface to reduce the difficulty of processing, and the respective optical surface parameters according to the first embodiment of the present invention can be as shown in the following Table 1-1:
  • FIG. 5 and 6 are optical path diagrams showing the direction of transmission of ambient light when the lens of the first embodiment of the present invention is displayed in a near-eye state.
  • the main lens and the auxiliary lens are both made of a light transmissive optical resin material, and the light in the transmission direction is passed through the auxiliary lens.
  • the rear surface 108 enters the lens and exits the human eye through the front surface 102 of the primary mirror.
  • the rear surface 108 of the secondary lens is consistent with the profile of the primary lens front surface 102 for compensating for the effect of the primary lens on the transmitted light path.
  • FIG. 5 is a secondary lens for the 0D dioptric power of the first embodiment, the spherical surface curvature of the auxiliary lens rear surface 108 and the main lens front surface 102 is the same, and the combined view has a 0D of transmitted light;
  • FIG. 6 is a negative view.
  • the spherical curvature of the rear surface 109 of the auxiliary lens is inconsistent with the curvature of the front surface 102 of the primary mirror, and the combination of the two achieves a visual acuity of about -5.75D for the ambient light. It is understood by those skilled in the art that by changing the curvature of the rear surface of the auxiliary lens, the requirements for the use of the transmitted light path when the different visual persons are worn can be satisfied.
  • FIG. 7 is a light path ray diagram for realizing a virtual enlarged display of image light in a main lens according to a second embodiment of the present invention.
  • the difference from the first embodiment is that the rear surface of the main lens is no longer a single spherical surface.
  • the two aspherical surfaces 204 and 205 of the segmented splicing can adjust the distance between the virtual image plane enlarged by the main lens by adjusting the relative positions (207-209) of the micro-display device and the light incident surface of the main lens, thereby satisfying the The requirements for the use of virtual display light paths when wearing different visibility groups.
  • the light emitted by the micro display device 3 at the positions 209, 208, and 207 is transmitted into the main lens through the incident surface of the light incident portion 206.
  • the light incident surface has an inwardly curved surface shape, and the front and rear surfaces 203 and 204/ of the main mirror. 205 is at an angle such that incident image light can be transmitted in the main lens in a totally reflective manner.
  • the image light is reflected by the surface 205 and incident on the surface 202.
  • the light is reflected on the surface 202 because the incident angle satisfies the total reflection condition.
  • the incident angle of the light on the 204 surface satisfies the total reflection condition.
  • the light is reflected on the surface 204 and then incident on the surface 202 again, and then totally reflected again and then incident on the exit surface 203, part of the light. After being reflected by the surface 203, the light is transmitted through the surface 202 and then enters the human eye for imaging.
  • the light emitted by the microdisplay at different positions passes through the virtual image imaging device and the virtual image distance is different, that is, the requirement for the virtual image distance when the different visual persons are worn.
  • the surface 202 of the main lens adopts a surface shape of a conventional rotationally symmetric spherical surface; the exit surface 203 and the incident surface 206 adopt a free-form surface shape with more degrees of freedom, and the surface design of the free curved surface is favorable for providing power.
  • the design flexibility is increased, and the optical image quality is improved, and the distortion is reduced.
  • the rear surfaces 204, 205 of the main lens adopt a rotationally symmetric aspherical surface shape, and there is a height difference at the boundary between the surfaces 204 and 205.
  • optical surface parameters according to the second embodiment of the present invention can be as shown in the following Table 2-1:
  • the surfaces 207-209 represent the microdisplay device at different positions, generally, no more than 3 mm from the position 207 to 209 to ensure the overall miniaturization, the surface 204 and the surface 205 are aspherical, and the coefficients are as shown in Table 2-2. Shown as follows:
  • FIG. 8 is a view showing a combined structure and an optical path diagram of a main lens and a secondary lens for realizing a light transmission direction of a lens in a near-eye display according to a second embodiment of the present invention, wherein the rear surface of the main lens is divided into two regions as shown in FIG. 3;
  • the area A is an area for realizing the image light of the micro display to be enlarged, and mainly includes the surfaces 203, 204, and 205.
  • the B area is the surface 210, and the curvature of the surface 210 is equal to the surface 202. It can be understood that the curvature of the surface 210 can also be
  • the surface 202 is different, that is, the rear surface of the main lens is not limited in the area except the A area, and only the auxiliary lens is required to make the corresponding surface type matching.
  • FIG. 9 is a light path ray diagram for realizing a virtual enlarged display of image light in a main lens according to a third embodiment of the present invention.
  • the rear surface of the main lens is spherical or aspherical, and the curvature and the main lens are The front surface is the same, the image light incident surface 305 of the microdisplay is a spherical surface, and the reflective exit surface 303 is a free curved surface.
  • optical surface parameters according to the third embodiment of the present invention can be as shown in Table 3-1 below:
  • the surface of the surface 303 is a free-form surface, and the coefficients are as shown in Table 3-2:
  • the auxiliary lens 2 does not have substantially the same area as the main lens 1, but covers only the light exit portion of the main lens 1, as shown in FIG. .
  • the auxiliary lens is formed to have substantially the same area as the main lens, as shown in the foregoing embodiments and the drawings, the surface facing the environment at the time of final use is formed into a surface having no influence on the image light by being completely covered. It protects the light transmission quality of the main lens A area and provides different visibility.
  • the curvature of the back surface of the main lens is equal to the curvature of the front surface, and the reflection surface 303 has no influence on the transmission direction, that is, the auxiliary
  • the lens only needs to compensate the influence of the surface 303 on the transmitted light path, and the size of the auxiliary lens can be greatly reduced.
  • the lower right side of FIG. 10 is a schematic view of the auxiliary lens.
  • the surface 307 can be bonded to the surface 303, and the surface 308 and the surface 304
  • the curvature is equal, so that the outer surface of the auxiliary lens and the outer surface of the main lens become the same surface, and the surface covering the protective film can also protect the light transmission quality in the main lens A region, and can further reduce the thickness of the entire lens.
  • the curvature of the face 304 (308) can also be different from the face 302 to meet the requirements for the virtual image distance and the external vision correction when the user wears different visions, but the main lens needs to be customized according to the visibility.
  • FIG 11 is a light path ray diagram of image light in a main lens according to a fourth embodiment of the present invention, further including an interchangeable lens 407 (408) above the incident surface of the main lens, and replacing the lens 407 by replacing the lens, for example, the lens 408. Therefore, the distance between the enlarged virtual image position of the image light by the main lens is finally adjusted, thereby satisfying the requirement of using the virtual display light path when the different vision groups are worn; the single lens 407 (408) can also select the lens group or the liquid lens.
  • the system of other adjustable focal lengths is replaced; the transmitted light path of the fourth embodiment is similar to that discussed in the previous embodiments.
  • the front surface of the main lens is formed by splicing two spherical surfaces, or alternatively formed.
  • An aspherical splicing, or a partial free-form surface; the light-incident surface has a face shape that is curved toward the rear surface (ie, away from the user when worn), and the micro-display emits image light at position 507 through the incident surface 506 to the front surface. 505.
  • the image light is reflected more than once on the front surface of the main lens, so that the distance of the micro display from the center of the lens is increased, so that the micro display can be
  • the structure of the foregoing embodiment is slightly away from the user side and the center, which is advantageous for the heat dissipation and the design of the outer fixing frame, and does not affect the transmitted light path.
  • the thickness of the lens can be ensured to be no more than 8 mm at the edge, and under the premise of combining strength and optical performance, preferably below 5 mm, at the same time, adaptation to different user's visual acuity is realized;
  • the geometric center of the lens is the center of the circle, the image light is transmitted from the edge to the substantially central exit surface, the propagation area is controllable and the distance is short, and the image light does not form an intermediate image inside, even if the optical transmission path contains a discontinuous surface type, the use The transmission visual impact is also low.
  • the method of plating the reflective film By using total reflection or alternatively, the method of plating the reflective film, the amount of stray light is small, and the number of reflections of the image light on the front surface and the back surface is not more than 4 times and not less than one time, respectively, effectively improving the light energy of the image light. Utilization rate.
  • the micro display device may be fixed to the vicinity of the light incident portion by the frame to constitute a virtual image forming device.
  • the frame may further include a flexible surrounding. The edges of the adjacent primary and secondary lenses are enclosed to provide sealing of the two lenses. The flexible enveloping ensures that the sealing of the two lenses is still ensured when the primary and secondary lenses are cut into other shapes due to the shape of the eyeglass frame.
  • the thickness is thin, so that the near-eye display using the present invention has an appearance similar to that of ordinary corrective glasses or fashion sunglasses. , as shown in Figure 13.
  • the near-eye display includes a virtual image forming apparatus comprising a lens of an embodiment of the invention and a micro-display device of a predetermined size, wherein the lens is placed directly in front of the user's eyes, and is preferably provided in the form of a dual purpose in the eyeglass body, in the hope In the use scene of the monocular display, it is only necessary to install a micro-display device for one purpose, and the difference in weight between the two sides is small, and a uniform appearance can be realized without a separate weight.
  • the thinness allows the user to wear the eyeglass-type near-eye display device of the present invention comfortably and for a long period of time, both indoors and outdoors, and without the need for additional corrective glasses.
  • additional sensors can be built into the eyeglass frame to obtain various information to determine what type of augmented reality image is appropriate and where it should be provided on the overall image, such as an environment under a depth camera.
  • the controller may be General purpose data processing and control devices such as CPU or other micro A processor or the like, as will be understood by those skilled in the art, the sensor and its associated circuit, and the main circuit board on which the central processing unit is usually mounted, etc., will be placed in the temple in a conventional manner, which will increase the size of the glasses-type device.
  • the weight should be miniaturized as much as possible to reduce the effect of reducing the comfort of wearing the glasses.
  • the thin and light type makes the glasses-type device of the present invention suitable for various decorative occasions.
  • a filter film may be coated on the outer side of the auxiliary lens to filter. Excessive sunlight or some harmful light is easy to implement.

Abstract

一种用于增强现实显示的超薄型光学镜片,具体的,涉及一种具有可变换外周形状和指定面型以适应不同视度需求的光学镜片,从而将微显示器呈现的图像放大以形成虚像,并被使用者眼睛观察到;光学镜片的具有第一面积的主镜片(1)以及贴近于主镜片(1)上的具有第二面积的辅镜片(2);主镜片(1)包括部分的位于其边缘的光入射部和大致被定位于主镜片(1)中央区域的光出射部,光出射部用以将光导向人眼方向,并且对于两镜片而言,第一面积与第二面积可以基本相同。

Description

一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器 技术领域
本发明涉及一种超薄型的增强现实用镜片、使用其的虚像显示成像装置以及近眼显示器,上述增强现实用镜片具有与普通矫正镜片极其类似的外观,并具备良好的光学性能以实现增强现实显示的要求,可以通过实施特定的制造工艺使其佩戴与普通眼镜无异。
背景技术
虚拟现实(virtual reality,VR)和增强现实(augmented reality,AR)的概念提出以来,基于VR或者AR模式的头戴式图像显示装置取得了长足的发展,近年来出现了消费级的产品,诸如Samsung gear VR,Sony PSVR,Epson BT300,Microsoft Hololens等等,由于这些头戴式显示装置在使用时需要佩戴于观察者头部,因此紧凑和轻量化一直是业内的不懈追求,以减轻观察者的负载,提高可使用性。
以色列的Lumus公司生产一种轻薄型的阵列光波导被推崇为轻薄型方案的典型,经过设计的多个反射面能够将入射的影像光通过阵列分散达到预定视场角,以得到厚度小于2mm的AR光学元件,但这种光学元件的工作原理对阵列光学反射面的加工精度要求极高,虽然因超薄的设计而广受青睐,但居高不下的成本难以满足大规模生产的要求,同时阵列分光扩大视场角的方式从原理上决定了不引入任何光焦度,需要另外配合投影放大元件方能适应微型显示器的尺寸,而对于大量有视度的使用者,无光焦度的镜片设计无法解决日常佩戴的需求,佩戴使用时的体验并不友好。
发明内容
本发明提供一种轻薄而稳定性的、可以圆满解决视度需求的增强现实用镜片,附加微型显示元件形成虚像成像装置,进而作为近眼显示器,主镜片具有较大的面积,包括位于其边缘部分的光入射部和大致被定位于主镜片中央区域的光出射部,通过光线的折/反射实现主要的虚像显示的功能,辅镜片用以补偿透射光路以及提供满足视度要求的表面,以提高对不同视度用户的普适性。
根据本发明的一种超薄型增强现实用镜片,包括:具有第一面积的主镜片以及贴近所述主镜片的具有第二面积的辅镜片;所述主镜片包括部分的位于其边缘的光入射部和大致被定 位于主镜片中央区域的光出射部,来自微型显示元件的图像光从所述光入射部的入射面透射进入主镜片内,以全反射方式向所述光出射部传播;光出射部包括具有分光层的光出射面,用以将传播至其上的图像光部分的反射以使图像光射出所述主镜片,其中所述第一面积与第二面积基本相同。
根据本发明的另一种超薄型增强现实用镜片,包括:具有第一面积的主镜片以及贴合于所述主镜片上的具有第二面积的辅镜片;所述主镜片包括部分的位于其边缘的光入射部和大致被定位于主镜片中央区域的光出射部,来自微型显示元件的图像光从所述光入射部的入射面透射进入主镜片内,以全反射方式向所述光出射部传播;所述光出射部包括具有分光层的光出射面,用以将传播至其上的图像光部分的反射以使图像光射出所述主镜片,所述第一面积大于所述第二面积,所述第二面积与所述光出射部面积相匹配。
在典型的实施方式下,光入射面和光出射面为弯曲面,具有预定的光焦度,光入射面可以从主镜片的边缘向内或向外弯曲而形成。
光出射面的面型选自球面、旋转对称非球面或自由曲面之一;
光入射面的面型选自球面、旋转对称非球面或自由曲面之一,与光入射面的表面类型相同或者不同。
根据本发明的主镜片,包括具有第一面积的前表面和与之相对的后表面,所述光出射部位于后表面上;优选的,主镜片的前表面呈球面或者非球面的旋转对称面型,后表面除光出射部外的表面面型选自球面、非球面、自由曲面之一或其组合。
或者,可替代的,主镜片的前表面呈多个球面或者非球面的拼接面型,光入射面向主镜片的后表面弯曲,所述光出射部为自由曲面的面型。
根据本发明的辅镜片,也包括前表面和后表面,所述辅镜片的前表面与其贴近或者贴合的主镜片的后表面面型一致。
根据本发明的超薄型增强现实用镜片,图像光在主镜片内不存在中间像;在主镜片前表面上反射的次数至少为一次,且不超过四次。在后表面上反射的次数至少为一次,且不超过四次。
本发明还涉及一种使用了上述超薄型增强现实用镜片的虚像成像装置,进一步包括了微型显示器件作为图像源,所述微型显示器与所述光入射面之间的距离可调节,所述调节范围不超过3mm。
微型显示器件可以选自微型OLED,LCoS,微型LCD或者DLP,在微型显示器件与所述光入射面之间进一步可以包括单个镜片、镜片组或液体透镜。
一般的,微型显示器件通过边框被固定在光入射部附近。边框还可以进一步包括柔性的 包围,包围辅镜片和主镜片的边缘,当辅镜片贴近而不是贴合主镜片时,这样的包围使两镜片具有密封性。
由于本发明镜片的轻薄性,可以构成为一种眼镜状的近眼显示器,其中包括了被置于眼镜本体中镜片位置的上述虚像成像装置,以及被置于眼镜腿中的主电路板和电池。
根据发明的镜片以及使用其的设备,主、辅镜片均可采用光学树脂材料以高精密度注塑成型,对图像光和环境光均可提供视度,适用于具有视度的使用者,整体轻薄至5mm以下,利于实现一种与普通矫正视力用眼镜一样的外观,并具有高度客制化的可行性,使图像融合更加准确,佩戴更加时尚和友好。
附图说明
图1为根据本发明的虚拟成像装置的截面图;
图2(a)、(b)分别示出根据本发明的主镜片和辅镜片的截面图;
图3为根据本发明的镜片的俯视图;
图4为根据本发明第一实施例的主镜片内对图像光实现虚拟放大显示的光路光线图;
图5为根据本发明第一实施例的针对0D视度时的主、辅镜片;
图6为根据本发明第一实施例的针对负视度时的主、辅镜片;
图7为根据本发明第二实施例的主镜片内对图像光实现虚拟放大显示的光路光线图;
图8为本发明第二实施例的镜片对环境光透射时的光路图;
图9为根据本发明第三实施例的主镜片内对图像光实现虚拟放大显示的光路光线图;
图10为采用本发明第三实施例的主镜片和辅镜片的截面图
图11为根据本发明第四实施例的主镜片内图像光的光路光线图;
图12为根据本发明第五实施例的主镜片内图像光的光路光线图;
图13为根据本发明的眼镜式的近眼显示器示意图;
图14为佩戴有图13所示近眼显示器时观察到的增强现实融合图像示意图。
具体实施方式
以下对本发明示例性实施例进行详细的描述以解释本发明,其示例表示在附图中,其中,相同的标号始终表示相同部件。除非有明确的表示,本领域技术人员应当理解的,所谓前后 仅作为相对性描述,不作为实际在前或者在后的绝对性限制,而第一、第二等词汇也应仅理解为区分不同的部件,而不包含顺序的限定性作用,并且,在不同的实施例中,同样被称为第一部分的部件结构也可以是不相同的。
第一实施例
根据本发明的一种镜片及其构成的虚像成像装置,如图1所示,主要包括具有第一面积的主镜片1,和具有第二面积的辅镜片2,以及微型显示器件3,诸如微型OLED、背光型LCD、微型LED,DLP等,在图1所示的本发明的第一实施例中,辅镜片2的面积与主镜片1的面积大体相当,即辅镜片2贴近至主镜片1的后表面12上时,两镜片的外缘保持一致的走向。这样的主镜片形状优选的形成为圆形,但不限于此的,本领域技术人员可以理解,其他利于成型的形状同样可以构成为上述主镜片和辅镜片,而且,主镜片和辅镜片的最终外形可以由镜框决定。
如图2所示,分别为本发明主镜片(参见图2(a)示出)和辅镜片(参见图2((b)示出)的截面图,图3为镜片俯视图,其中A区域为实现对微型显示器件的图像光进行放大呈虚像的区域,为图2中面121与122以及211与212的分界区域。主镜片1与辅镜片2结合时使主镜片后表面(即朝向辅镜片的表面)虚拟显示部分(即A区域)与辅镜前表面(即朝向主镜片的表面)存在微小的空气间隔4以保证显示光线在主镜内面121位置处的全反射不被破坏,空气间隔4可以通过在主镜片和辅镜片的圆周设置凸起与凹槽定位实现,凸起高度大于凹槽深度的部分即可构成空气间隔。
或者,也可以通过出射部胶合在一起而实现间隔,即主镜片1与辅镜片2结合时处于光出射部的主镜片的表面14和辅镜片的表面23胶合以确定主、辅镜片的相对位置关系,使主镜片的表面122与辅镜片的表面212以及主镜片的表面14与辅镜片的表面23以预定间隔接近以减少杂光,确保A区域内的图像光在主镜片内的全反射。辅镜片2,与主镜片1相邻的表面具有与主镜片1的后表面一致的表面面型,具体的,在与光出射部对应的位置,同样,基本位于辅镜片2的中央区域,辅镜片2具有相对于其后表面凸出的表面,以和主镜片1达成贴合。
辅镜片2的后表面24,可以具有与主镜片1的非贴合表面11大概一致的面型,呈球面或者非球面,此时来自环境的环境光透过辅镜片2和主镜片1,进入使用者人眼成像,对于环境光而言,主镜片1和辅镜片2的上述组合方式不产生光焦度,即使用者人眼相当于佩戴了中央和边缘厚度无异的无视度镜片,对视力不产生矫正作用,环境光正常进入人眼成像,成像清晰,并叠加了来自微型显示器件3提供的图像光,产生融合显示的效果。
可选择的,辅镜片2的后表面24呈球面或者非球面,但与主镜片1的非贴合表面11具有不一致的面型,从而使主镜片1和辅镜片2的组合方式产生预定的光焦度,类似于普通矫正视力用的镜片,此时来自环境的环境光透过辅镜片2和主镜片1,进入使用者人眼成像,对于环境光而言,使用者人眼相当于佩戴了固定视度的镜片,对视力具有矫正作用,具有视度的人眼因此可以对环境光成像清晰,同时也叠加了来自微型显示器件3提供的图像光,产生融合显示的效果。
第一实施例
如图4所示,为本发明第一实施例中图像光显示光路图,来自位置106处的微型显示器件3的图像光,通过主镜片的光入射部的入射面105透射以进入主镜片内,光入射面具有向内(即向佩戴时的使用者方向)弯曲的面型,且与主镜片的前后表面102和104成一定的角度以使入射的图像光可以以全反射方式在主镜片内传输,光线在主镜片前后表面102、104经过数次全反射后入射在出射面103上分光,部分光线经面103反射后透过面102出射进入人眼成像。
具体的,出射面103具有预定透反分光比的分光层,例如半反半透膜或者其他透反射比的分光膜,使图像光入射到主镜片1的光出射面时能够被尽量有效的反射回主镜片1的内部,分光膜的分光比可以根据微型显示器件的发光亮度进行选择,以确保微型显示器件的图像光尽可能被有效利用,并与后续外界环境光的强度达到平衡,以获得良好的增强现实图像对比度。主镜片1作为对微型显示器件成像(放大虚像)的主要光学元件,利用主镜片1的光入射面、光出射面以及中间传播表面的曲率,提供预定的光焦度,对微型显示器件上显示的图像进行放大,使微型显示器件的图像光通过主镜片1被放大投远,在人眼处看到的来自微型显示器件的图像看上去像是从离眼睛几米远的地方发出的而不是从很近的地方(该微型显示器件实际所在的位置)发出的。
主镜片1的入射面105,优选的使用自由曲面的面型,也可以采用球面或者非球面的面型。
主镜片1的前表面102,优选的选用球面或者非球面的面型,与普通的视度矫正型眼镜片类似,例如,直径约为70mm,这样的设置可以便于本发明的主镜片和辅镜片在合成一体时,可以方便的适用于矫正性眼镜片的切割工具,以使其利于适配不同造型的眼镜框。
主镜片1的出射面103,优选的选用自由曲面面型,也可以采用球面或者非球面的面型。
所述非球面面型可以使用如下描述方程:
Figure PCTCN2017107093-appb-000001
自由曲面面型则可以采用XY多项式的形式进行描述,方程如下:
Figure PCTCN2017107093-appb-000002
主镜片1后表面104,可以选用球面或者非球面的面型,特别的,可以采用自由曲面或者非连续的、分段拼接的球面和非球面。
根据本发明第一实施例的全部表面采用旋转对称球面的面型以降低加工的难度,根据本发明第一实施例的各光学表面参数可由下表1-1所示:
Figure PCTCN2017107093-appb-000003
表1-1
图5、6所示为本发明第一实施例的镜片实现近眼显示时环境光透射方向的光路图,主镜片和辅镜片均以透光的光学树脂材料制成,透射方向的光线经辅镜片的后表面108进入镜片,经过主镜前表面102出射进入人眼。辅镜片的后表面108与主镜片前表面102面型趋势一致,用于补偿主镜片对透射光路造成的影响。图5为针对第一实施例下0D视度的辅镜片,辅镜片后表面108与主镜片前表面102的球面曲率一致,两者组合后对透射光的视度为0D;图6为负视度的辅镜片方案,辅镜片的后表面109球面曲率与主镜前表面102曲率不一致,两者组合后对环境光实现约-5.75D的视度。本领域技术人员理解的,通过改变辅镜片后表面的曲率可以满足不同视度人群佩戴时对透射光路的使用要求。
第二实施例
如图7所示为本发明第二实施例主镜片内对图像光实现虚拟放大显示的光路光线图,与第一实施例不同的是主镜片的后表面不再是一个单独的球面,而成为分段拼接的两个非球面204与205,可以通过调节微型显示器件与主镜片光入射面的相对位置(207~209)实现对经主镜片放大的虚拟像面的远近的调节,从而满足了不同视度人群佩戴时对虚拟显示光路的使用要求。
微型显示器件3在位置209、208及207发出的光,通过光入射部206的入射面透射进入主镜片内,光入射面具有向内弯曲的面型,且与主镜前后表面203和204/205呈一定的角度以使入射的图像光可以以全反射的方式在主镜片内传输,图像光经面205反射后入射在面202上,由于入射角度满足全反射条件,光线在面202上反射后入射在面204上,同样地,光线在204面上的入射角度满足全反射条件,光线在面204反射后再次入射在面202上,然后再次全反射后入射在出射面203上,部分光线经面203反射后透过面202出射后进入人眼成像。微型显示器在不同位置发出的光经虚像成像装置后所成虚像距离不同,即满足不同视度人群佩戴时对虚像距离的要求。
本实施例主镜片的面202采用传统旋转对称球面的面型;出射面203与入射面206采用更多自由度的自由曲面的面型,自由曲面的面型设计有利于在提供光焦度时增加设计灵活性,并提高光学的成像像质,减小畸变;主镜片的后表面204、205采用旋转对称非球面的面型,面204与205交界位置处存在高度差。
根据本发明第二实施例的各光学表面参数可由下表2-1所示:
表面标记 表面类型 半径 X偏心 Y偏心 Z偏心 Alpha倾斜
光阑(201) 球面 无限 0 0 0 0
202 球面 -76.9 0 0.000 17.00 0.000
203 XY多项式 -52.455 0 0.000 19.712 -22.512
204 非球面 -90.442 0 0.000 21.00 0.000
205 非球面 -22.707 0 0.000 22.414 0.000
206 XY多项式 4.571 0 21.469 16.373 30.602
207(display) 球面 无限 0 19.203 14.958 -7.468
208(display) 球面 无限 0 19.131 15.147 -7.367
209(display) 球面 无限 0 19.076 13.617 -10.077
表2-1
其中表面207-209代表微型显示器件在不同位置,一般的,从位置207到209不超过3mm以确保整体的小型化,表面204和表面205面型为非球面,各项系数如表2-2所示:
  表面204 表面205
k 54.893 -0.870
A 9.548e-005 8.443e-005
B -1.403e-006 -2.429e-007
C 1.317e-008 3.989e-010
D -5.282e-011 -1.100e-012
E 2.227e-014 2.928e-015
F 4.693e-016 -2.855e-018
表2-2
表面203和表面206表面面型为自由曲面,各项系数如表2-3所示:
  参数项 表面203 表面206
K   0.0000E+00 0.0000E+00
C1 X 0.0000E+00 0.0000E+00
C2 Y 0.0000E+00 0.0000E+00
C3 X2 -0.002564 -0.1497
C4 XY 0.0000E+00 0.0000E+00
C5 Y2 -0.003872 -1.1820
C6 X3 0.0000E+00 0.0000E+00
C7 X2Y -3.827e-005 -0.0080
C8 XY2 0.0000E+00 0.0000E+00
C9 Y3 2.517e-005 -1.370
C10 X4 -2.146e-005 0.0002842
C11 X3Y 0.0000E+00 0.0000E+00
C12 X2Y2 -2.060e-005 0.02268
C13 XY3 0.0000E+00 0.0000E+00
C14 Y4 -4.617e-005 -1.904
C15 X5 0.0000E+00 0.0000E+00
C16 X4Y 1.101e-005 1.1578e-005
C17 X3Y2 0.0000E+00 0.0000E+00
C18 X2Y3 -6.375e-006 0.04648
C19 XY4 0.0000E+00 0.0000E+00
C20 Y5 -1.555e-006 -0.9388
C21 X6 2.399e-006 -0.0004926
C22 X5Y 0.0000E+00 0.0000E+00
C23 X4Y2 5.968e-006 -0.0001553
C24 X3Y3 0.0000E+00 0.0000E+00
C25 X2Y4 2.315e-006 0.03284
C26 XY5 0.0000E+00 0.0000E+00
C27 Y6 1.645e-006 0.1417
C28 X7 0.0000E+00 0.0000E+00
C29 X6Y -3.029e-007 -6.345e-005
C30 X5Y2 0.0000E+00 0.0000E+00
C31 X4Y3 -9.257e-007 -0.0006358
C32 X3Y4 0.0000E+00 0.0000E+00
C33 X2Y5 1.094e-007 0.01133
C34 XY6 0.0000E+00 0.0000E+00
C35 Y7 1.000e-007 0.2046
表2-3
图8所示为本发明第二实施例的镜片实现近眼显示时环境光透射方向的主镜片与辅镜片组合结构及光路图,主镜片的后表面如图3中所示分为两个区域,A区域为实现对微型显示器的图像光进行放大呈虚像的区域,主要包括面203、204、205,B区域为面210,面210曲率与面202相等,可以理解的,面210曲率也可以与面202不同,即主镜片的后表面除A区域内,其他区域的面型并无限定,只需辅镜片做出相应的面型匹配即可。
与第一实施例类似的,通过改变辅镜片的后表面的曲率可以满足不同视度人群佩戴时对透射光路的使用要求。
第三实施例
图9所示为本发明第三实施例的主镜片内对图像光实现虚拟放大显示的光路光线图,在第三实施例中,主镜片的后表面为球面或者非球面,且曲率与主镜片的前表面相同,微型显示器的图像光入射面305为球面,反射出射面303为自由曲面。
根据本发明第三实施例的各光学表面参数可由下表3-1所示:
Figure PCTCN2017107093-appb-000004
表3-1
其中表面303表面面型为自由曲面,各项系数如表3-2所示:
  参数项 表面303
K   0.0000E+00
C1 X 0.0000E+00
C2 Y 0.0000E+00
C3 X2 -0.0350
C4 XY 0.0000E+00
C5 Y2 -0.0356
C6 X3 0.0000E+00
C7 X2Y 3.347e-005
C8 XY2 0.0000E+00
C9 Y3 4.075e-005
C10 X4 -8.972e-006
C11 X3Y 0.0000E+00
C12 X2Y2 -1.281e-006
C13 XY3 0.0000E+00
C14 Y4 1.659e-006
C15 X5 0.0000E+00
C16 X4Y -1.314e-006
C17 X3Y2 0.0000E+00
C18 X2Y3 1.464e-005
C19 XY4 0.0000E+00
C20 Y5 4.366e-007
C21 X6 -9.817e-008
C22 X5Y 0.0000E+00
C23 X4Y2 -1.092e-006
C24 X3Y3 0.0000E+00
C25 X2Y4 -7.212e-007
C26 XY5 0.0000E+00
C27 Y6 -7.499e-007
C28 X7 0.0000E+00
C29 X6Y 6.106e-008
C30 X5Y2 0.0000E+00
C31 X4Y3 -3.499e-007
C32 X3Y4 0.0000E+00
C33 X2Y5 -5.867e-007
C34 XY6 0.0000E+00
C35 Y7 7.207e-008
表2-3
不同于图1-8所示的实施方式,在第三实施例中,辅镜片2不具有与主镜片1大致相同的面积,而仅仅覆盖主镜片1的光出射部,具体如图10所示。当辅镜片形成为与主镜片大致相同的面积时,如前述各实施例及附图所示的,通过完全覆盖的方式使最终使用时面向环境的表面形成为对图像光无影响的表面,能够很好的保护主镜片A区域内光线传输质量并利于提供不同的视度。但在第三实施例中,针对无视度,即组合视度为0D的情况,主镜片的后表面曲率与前表面曲率相等,除反射出射面303外对透射方向光线不再产生影响,即辅镜片只需补偿面303对透射光路产生的影响,辅镜片的尺寸可以大幅减小,图10右下所示为辅镜片示意图,此时可以使面307与面303贴合,面308与面304曲率相等,使辅镜片的外侧表面与主镜片的外侧表面成为一致的表面,在此表面上覆盖保护膜同样可以保护主镜片A区域内光线传输质量,可以进一步降低整个镜片的厚度。可以理解的,面304(308)的曲率也可以与面302有所差异以适应不同视度用户佩戴时对虚像距离和对外界校正视力的使用要求,但主镜片即需要按照视度进行定制。
第四实施例
图11所示为本发明第四实施例的主镜片内图像光的光路光线图,进一步包括了在主镜片入射面上方的可更换镜片407(408),通过更换镜片,例如镜片408替换镜片407,使最终经过主镜片对图像光所呈的放大虚像位置实现远近调节,从而满足了不同视度人群佩戴时对虚拟显示光路的使用要求;单镜片407(408)也可以选用镜片组或液体透镜等其他可调节焦距的系统代替;第四实施例的透射光路与前述各实施例的讨论类似。
第五实施例
图12所示为本发明第五实施例的主镜片内图像光的光路光线图,与第一实施例不同的是,主镜片的前表面为两个球面拼接而成,或者,可替代的形成为非球面的拼接,或者部分的自由曲面;光入射面具有向后表面(即向佩戴时远离使用者方向)弯曲的面型,微型显示器在位置507发出图像光通过入射面506入射至前表面505,相比第一实施例,图像光在主镜片前表面多反射一次,使得微型显示器距离镜片中心的距离加大,从而使微型显示器可以 相对于前述实施例的结构略远离使用者侧和中心,有利于其散热和外固定框的设计,不对透射光路产生影响。
根据本发明上述各实施例的镜片,其厚度在边缘能够确保不大于8mm,并在兼顾强度和光学性能的前提下,优选在5mm以下,同时实现了对不同使用者视度的适应;以主镜片的几何中心为圆心,图像光从边缘传递到大致中央的出射面,传播区域可控且距离短,图像光在内部不形成中间像,即使光传输路径内包含不连续的面型,对使用者透射视觉影响也较低。利用全反射或者可替代的,镀反射膜的方式,杂散光少,使图像光在前表面和后表面上的反射次数分别不超过4次且不少于一次,有效提高了图像光的光能利用率。
对于本发明各实施例的镜片,微型显示器件可以通过边框被固定在光入射部附近构成虚像成像装置,特别的,对于例如第一、二实施例的镜片,边框还可以进一步包括柔性的包围以包围贴近的主镜片和辅镜片的边缘,以使两镜片具有密封性。柔性的包围确保在主镜片和辅镜片被因眼镜框外形而裁剪成其他形状时,依然能够保证两镜片的密封。
[近眼显示器]
根据本发明另一方面,由于上述各实施例中镜片构成的虚像成像装置均可用作近眼显示器的光学元件,厚度轻薄,从而使用本发明的近眼显示器具有类似于普通矫正眼镜或者时尚太阳镜的外观,如图13所示。该近眼显示器包括本发明实施例的镜片和预定尺寸的微型显示器件组成的虚像成像装置,其中镜片被置于使用者眼睛的正前方,在眼镜本体内,优选以双目的形式提供,在希望单目显示的使用场景中,只需不安装一目的微型显示器件,双侧重量差异小,无需单独的配重即可实现统一的外观。由于虚像成像中光出射面上分光层的作用,来自现实世界场景的光(即环境光),与来自微型显示器件的图像光,在用户眼睛处融合,从而使用户看到融合的图像,如图14所示,在图14所示的图像中,可以看到现实场景的一部分,比如使用者视野内的树林,以及来自微型显示器件的用于增强现实的图像,比如此时并不存在于树林中的飞鸟。
一般而言,轻薄性使得用户能够舒适且较长时间的佩戴本发明的眼镜式近眼显示设备,包括在户内和户外,并且无需另外的矫正眼镜。除镜片的部分,还可以在眼镜框内置额外的传感器,从而得到各种信息以确定什么类型的增强现实图像是恰当的以及它应当被提供在整体图像上的什么地方,例如深度相机下的环境构建、惯性测量单元以及运动跟踪技术等等,现有技术中的各种相应的传感器和控制器均可构成用于传感本发明上述近眼显示器所需的得到的各项数据,控制器可以是通用的数据处理和控制器件,比如中央处理器CPU或者其他微 处理器等,本领域技术人员应当理解的,传感器和与其配套的电路、以及通常安装有中央处理器的主电路板等,按照一般的方式,将置于镜腿中,会增加眼镜式设备的重量,应当尽量小型化以减小对眼镜佩戴的舒适度降低的作用。而从时尚的角度考虑,轻薄型使得本发明的眼镜式设备同样适合各类装饰型的场合佩戴,例如,希望具有太阳镜之类的防护效果时,可以在辅镜片外侧镀有滤光膜以过滤过强的太阳光或者某种有害光,简单易实施。
前面的对本技术的详细描述只是为了说明和描述。它不是为了详尽的解释或将本技术限制在所公开的准确的形式。鉴于上述教导,许多修改和变型都是可能的。所描述的实施例只是为了最好地说明本技术的原理以及其实际应用,从而使精通本技术的其他人在各种实施例中最佳地利用本技术,适合于特定用途的各种修改也是可以的。本技术的范围由所附的权利要求进行定义。

Claims (18)

  1. 一种超薄型增强现实用镜片,包括:
    具有第一面积的主镜片以及贴近所述主镜片的具有第二面积的辅镜片;
    所述主镜片包括部分的位于其边缘的光入射部和大致被定位于主镜片中央区域的光出射部,来自微型显示元件的图像光从所述光入射部的入射面透射进入主镜片内,以全反射方式向所述光出射部传播;
    所述光出射部包括具有分光层的光出射面,用以将传播至其上的图像光部分的反射以使图像光射出所述主镜片,
    其中所述第一面积与第二面积基本相同。
  2. 一种超薄型增强现实用镜片,包括:
    具有第一面积的主镜片以及贴合于所述主镜片上的具有第二面积的辅镜片;
    所述主镜片包括部分的位于其边缘的光入射部和大致被定位于主镜片中央区域的光出射部,来自微型显示元件的图像光从所述光入射部的入射面透射进入主镜片内,以全反射方式向所述光出射部传播;
    所述光出射部包括具有分光层的光出射面,用以将传播至其上的图像光部分的反射以使图像光射出所述主镜片,
    其中所述第一面积大于所述第二面积,所述第二面积与所述光出射部面积相匹配。
  3. 如权利要求1或2所述的虚像成像装置,其特征在于,所述光入射面和光出射面为弯曲面,具有预定的光焦度,光入射面从所述主镜片的边缘向内或向外弯曲而形成。
  4. 如权利要求3所述的超薄型增强现实用镜片,其特征在于所述光出射面的面型选自球面、旋转对称非球面或自由曲面之一。
  5. 如权利要求3所述的超薄型增强现实用镜片,其特征在于所述光入射面的面型选自球面、旋转对称非球面或自由曲面之一,与光入射面的表面类型相同或者不同。
  6. 如权利要求1或2所述的超薄型增强现实用镜片,其特征在于,所述主镜片包括具有第一面积的前表面和与之相对的后表面,所述光出射部位于后表面上。
  7. 如权利要求6所述的超薄型增强现实用镜片,其特征在于,所述前表面呈球面或者非球面的旋转对称面型,所述后表面除光出射部外的表面面型选自球面、非球面、自由曲面之一或其组合。
  8. 如权利要求6所述的超薄型增强现实用镜片,其特征在于,所述主镜片的前表面呈多个球面或者非球面的拼接面型,所述光入射面向主镜片的后表面弯曲,所述光出射部为自由曲面的面型。
  9. 如权利要求6所述的超薄型增强现实用镜片,所述辅镜片包括前表面和后表面,所述辅镜 片的前表面与其贴近或者贴合的主镜片的后表面面型一致。
  10. 如权利要求1或2所述的超薄型增强现实用镜片,图像光在主镜片内不存在中间像。
  11. 如权利要求10所述的超薄型增强现实用镜片,所述图像光在主镜片的前表面上反射的次数至少为一次,且不超过四次。
  12. 如权利要求10所述的超薄型增强现实用镜片,所述图像光在主镜片的后表面上反射的次数至少为一次,且不超过四次。
  13. 一种使用了如权利要求1或2所述超薄型增强现实用镜片的虚像成像装置,其特征在于,还包括微型显示器件作为图像源,所述微型显示器与所述光入射面之间的距离可调节,所述调节范围不超过3mm。
  14. 如权利要求13所述的虚像成像装置,其特征在于,在所述微型显示器件选自微型OLED,LCoS,微型LCD或者DLP。
  15. 如权利要求14所述的虚像成像装置,其特征在于,在所述微型显示器件与所述光入射面之间包括单个镜片、镜片组或液体透镜。
  16. 如权利要求14所述的虚像成像装置,所述微型显示器件通过边框被固定在光入射部附近。
  17. 一种使用了如权利要求1所述超薄型增强现实用镜片的虚像成像装置,还进一步包括柔性的包围,以包围贴近的辅镜片和主镜片的边缘,以使两镜片具有密封性。
  18. 一种近眼显示器,所述近眼显示器呈眼镜状,包括被置于眼镜本体中镜片位置的如权利要求13-17所述的虚像成像装置,以及被置于眼镜腿中的主电路板和电池。
PCT/CN2017/107093 2017-10-20 2017-10-20 一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器 WO2019075742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107093 WO2019075742A1 (zh) 2017-10-20 2017-10-20 一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107093 WO2019075742A1 (zh) 2017-10-20 2017-10-20 一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器

Publications (1)

Publication Number Publication Date
WO2019075742A1 true WO2019075742A1 (zh) 2019-04-25

Family

ID=66174222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107093 WO2019075742A1 (zh) 2017-10-20 2017-10-20 一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器

Country Status (1)

Country Link
WO (1) WO2019075742A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128346A1 (en) * 2007-03-29 2010-05-27 Carl Zeiss Ag Optical ocular system
CN103293674A (zh) * 2012-02-24 2013-09-11 精工爱普生株式会社 虚像显示装置
CN204360019U (zh) * 2015-01-06 2015-05-27 广州南北电子科技有限公司 一种光学系统和视频眼镜
CN104755968A (zh) * 2012-10-26 2015-07-01 高通股份有限公司 透视式近眼显示器
CN105824121A (zh) * 2015-01-06 2016-08-03 广州南北电子科技有限公司 一种光学系统和视频眼镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128346A1 (en) * 2007-03-29 2010-05-27 Carl Zeiss Ag Optical ocular system
CN103293674A (zh) * 2012-02-24 2013-09-11 精工爱普生株式会社 虚像显示装置
CN104755968A (zh) * 2012-10-26 2015-07-01 高通股份有限公司 透视式近眼显示器
CN204360019U (zh) * 2015-01-06 2015-05-27 广州南北电子科技有限公司 一种光学系统和视频眼镜
CN105824121A (zh) * 2015-01-06 2016-08-03 广州南北电子科技有限公司 一种光学系统和视频眼镜

Similar Documents

Publication Publication Date Title
TWI633333B (zh) 用於透視型頭戴式顯示器之薄曲面形接目鏡
JP6595619B2 (ja) シースルーヘッドウェアラブルディスプレイのための効率的な薄い湾曲したアイピース
EP3320384B1 (en) Adding prescriptive correction to eyepieces for see-through head wearable displays
US10007115B2 (en) Placement of a computer generated display with focal plane at finite distance using optical devices and a see-through head-mounted display incorporating the same
CN105829952B (zh) 用于头部可穿戴显示器的透明目镜
CN105629478B (zh) 目视光学成像装置以及使用其的双目近眼显示器
CN110073272B (zh) 一种自由曲面棱镜组及使用其的近眼显示装置
US9915823B1 (en) Lightguide optical combiner for head wearable display
KR101421199B1 (ko) 헤드 마운티드 디스플레이 광학계
TWI531817B (zh) 虛像顯示模組與光學鏡頭
KR102646230B1 (ko) 헤드 장착형 디스플레이용 광가이드가 포함 된 광학 장치
CN110426844A (zh) 一种光学系统及增强现实眼镜
CN110208950A (zh) 一种用于增强现实显示的眼镜及其光学组件
CN107765434B (zh) 一种单像源双目近眼显示装置
KR101362873B1 (ko) 헤드 마운티드 디스플레이 광학계
WO2019075742A1 (zh) 一种超薄型增强现实用镜片、使用其的虚像成像装置和近眼显示器
US20200018970A1 (en) Wearable optical display system for unobstructed viewing
US11966058B2 (en) Ultra-thin lens, virtual image display device using same, and near-eye display
US20230213762A1 (en) Ultra-thin lens, virtual image display device using same, and near-eye display
TWI779789B (zh) 具擴增實境之光學系統
US20230393399A1 (en) Zonal lenses for a head-mounted display (hmd) device
CN208654444U (zh) 一种双目光学镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929024

Country of ref document: EP

Kind code of ref document: A1